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Abstract

For an arbitrary set X and an equivalence relation µ on X , denote by Pµ(X) the semigroup of
partial transformations α on X such that xµ ⊆ x(ker(α)) for every x ∈ dom(α), and the image
of α is a partial transversal of µ. Every transversal K of µ defines a subgroup G = GK of Pµ(X).
We study subsemigroups 〈G,U〉 of Pµ(X) generated by G ∪ U , where U is any set of elements of
Pµ(X) of rank less than |X/µ|. We show that each 〈G,U〉 is a regular semigroup, describe Green’s
relations and ideals in 〈G,U〉, and determine when 〈G,U〉 is an inverse semigroup and when it is a
completely regular semigroup. For a finite set X , the top J -class J of Pµ(X) is a right group. We
find formulas for the ranks of the semigroups J , G ∪ I , J ∪ I , and I , where I is any proper ideal of
Pµ(X).
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1 Introduction

In semigroup theory, transformation semigroups play a role analogous to the role of permutation groups
in group theory. For a given set X , denote by T (X) the semigroup of full transformations on X , that is,
the set of all functions from X to X with function composition as the semigroup operation. (Throughout
this paper, we will write functions on the right and compose from left to right; that is, for f : A → B
and g : B → C, we will write xf , rather than f(x), and x(fg), rather than (gf)(x).) The semigroup
T (X) is fundamental in semigroup theory since every semigroup can be embedded in some T (X) [7,
Theorem 1.1.2]. This result is analogous to Cayley’s Theorem for groups, which states that every group
can be embedded in some symmetric group Sym(X) of all permutations on X . A natural generalization
of T (X) is the semigroup P (X) of partial transformations on X (that is, functions whose domain and
image are included in X). The semigroup P (X) contains as its subsemigroups both T (X) and the
symmetric inverse semigroup I(X) of partial injective transformations on X . The semigroup I(X)
is fundamental for the important class of inverse semigroups (see [13] and [7, Chapter 5]) since every
inverse semigroup can be embedded in some I(X) [7, Theorem 5.1.7], which is another analogue of
Cayley’s Theorem for groups.
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These transformation semigroups can be generalized by introducing an equivalence relation µ on X .
In 1976, S. Madhavan [9] generalized the symmetric inverse semigroup I(X) this way by defining the
semigroup Iµ(X) consisting of all partial transformations α on X such that xµ = x(ker(α)) for every
x ∈ dom(α), and im(α) is a partial transversal of µ. Madhavan proved that every right normal right
inverse semigroup (regular semigroup satisfying efg = feg for all idempotents e, f, g) can be embedded
into some Iµ(X). In 2005, H. Pei [11] introduced the semigroup T (X,µ) of full transformations α onX
that preserve µ (for all x, y ∈ X , if (x, y) ∈ µ then (xα, yα) ∈ µ). The analogous semigroup P (X,µ)
of partial transformations on X preserving µ was studied in [12]. In 2004, J. Araújo and the second
author [2] studied the semigroup T (X,µ,K) of full transformations α on X that preserve both µ and a
fixed transversal K of µ (Kα ⊆ K). One can consider the analogous semigroup P (X,µ,K) of partial
transformations on X . We also note that some subgroups of Sym(X), where X is finite, defined by two
partitions of X of the same type were studied in [1].

In 2010, S. Mendes-Gonçalves and R.P. Sullivan [10] introduced the semigroup E(X,µ) of full
transformations α on X such that µ ⊆ ker(α), and its subsemigroup Tµ(X) consisting of all α ∈
E(X,µ) such that im(α) is a partial transversal of µ. They proved that Tµ(X) = Reg(E(X,µ)) [10,
Theorem 2.3], where for a semigroup S, Reg(S) denotes the set of regular elements of S. Again, one can
consider the analogous semigroupEp(X,µ) of partial transformations α onX such that xµ ⊆ x(ker(α))
for every x ∈ dom(α), and its subsemigroup Pµ(X) consisting of all α ∈ Ep(X,µ) such that im(α) is
a partial transversal of µ.

The semigroups described in the preceding paragraph, and others, are special cases of the sandwich
semigroups studied in [4]. For non-empty sets X and Y , denote by PT aXY the semigroup of all partial
maps from X to Y , with product ? defined by f ? g = fag, where a is a fixed partial map from Y to
X [4, 3.2]. The set Reg(PT aXY ) of regular elements of PT aXY is a subsemigroup of PT aXY [4, 3.3].
Let µ be an equivalence relation on X , let K be a transversal of µ, and let a : X → K be the function
such that ka−1 = kµ (where kµ is the µ-class of k). Then PT aKX is isomorphic to Ep(X,µ), and
Reg(PT aKX) is isomorphic to Pµ(X). Similarly, the semigroups E(X,µ) and Tµ(X) are special cases
of the sandwich semigroups studied in [5].

For the semigroups of partial transformations mentioned above, we have

Iµ(X) ⊆ Pµ(X) ⊆ Ep(X,µ) ⊆ P (X,µ) and P (X,µ,K) ⊆ P (X,µ).

For the corresponding full transformation semigroups, we have

(Iµ(X) ∩ T (X)) ⊆ Tµ(X) ⊆ E(X,µ) ⊆ T (X,µ) and T (X,µ,K) ⊆ T (X,µ).

Let α ∈ P (X). We denote the domain of α by dom(α), the image of α by im(α), and the rank of α
(the cardinality of im(α)) by rank(α). The kernel of α is an equivalence ker(α) on dom(α) defined by

ker(α) = {(x, y) ∈ dom(α)× dom(α) : xα = yα}.

Let µ be an equivalence on X . For x ∈ X , we denote by xµ the µ-equivalence class. Then X/µ =
{xµ : x ∈ X} is the partition of X induced by µ. A transversal of µ is any subset K of X such that K
intersects each element of X/µ at exactly one point. Any subset of a transversal of µ is called a partial
transversal of µ.

Definition 1.1. Let µ be an equivalence on X . An α ∈ P (X) is called a µ-transformation if xµ ⊆
x(ker(α)) for every x ∈ dom(α), and im(α) is a partial transversal of µ. We denote by Pµ(X) the set
of µ-transformations on X . It is clear that Pµ(X) is a subsemigroup of P (X).

2



As we have already pointed out, Pµ(X) is a special case of the semigroup Reg(PT aXY ) studied
in [4].

Definition 1.2. Let µ be an equivalence on X . Fix a transversal K of µ. An element σ ∈ Pµ(X) is
called a K-permutation if ker(σ) = µ and im(σ) = K. We denote by GK the set of K-permutations.
Then GK is a subgroup of Pµ(X) isomorphic to the symmetric group Sym(K) (see Proposition 2.1).

Notation 1.3. For the remainder of the paper, we fix a nonempty set X , an equivalence µ on X , a
transversal K of µ, the group G = GK , the cardinal v = |X/µ| = |K|, and a nonempty set U of µ-
transformations of rank < v. We denote by 〈G,U〉 the subsemigroup of Pµ(X) generated by the set
G ∪ U . Note that v may be finite or infinite and that for every α ∈ Pµ(X), rank(α) ≤ v.

The purpose of this paper is to study the semigroups 〈G,U〉. These semigroups generalize several
well-known semigroups. Let µ = idX . Then, K = X is the only transversal of µ and G = GK =
Sym(X). Let X = {1, . . . , n}. Define α, β ∈ Pµ(X) by 1α = 2 and xα = x for all x 6= 1,
dom(β) = {2, . . . , n} and xβ = x for all x ∈ dom(β). Then 〈G, {α, β}〉 = P (X) [7, Exercise 1.9.13],
〈G,α〉 = T (X) [7, Exercise 1.9.7], and 〈G, β〉 = I(X) [7, Exercise 5.11.6]. For an arbitrary set X and
any proper ideal I of P (X), T (X), or I(X), we can select a suitable U such that 〈G,U〉 = Sym(X)∪I .

In Section 2, we prove that every semigroup 〈G,U〉 is regular (Theorem 2.4) and characterize the sets
U for which 〈G,U〉 is an inverse semigroup (Theorem 2.7) and those U for which 〈G,U〉 is a completely
regular semigroup (Theorem 2.10). In Section 3, we describe Green’s relations (Theorems 3.1 and 3.2)
and the ideals (Theorem 3.4) of 〈G,U〉, and determine the partial order of ideals of 〈G,U〉 (Theorem 3.6).

In Section 4, we assume that X is a finite set. Then, every ideal of Pµ(X) is of the form Ir = {α ∈
Pµ(X) : rank(α) ≤ r} and every J -class of Pµ(X) is of the form Jr = {α ∈ Pµ(X) : rank(α) = r},
where 0 ≤ r ≤ v. Moreover, Jv is a right group (Proposition 4.9), and Pµ(X) = Jv ∪ Iv−1. We
find formulas for the ranks of the semigroups G ∪ Ir (Theorem 4.7), Jv (Proposition 4.9), Jv ∪ Ir
(Theorem 4.10), and Ir (Corollary 4.11), where 0 ≤ r < v.

2 Regularity

In this section, we prove that each 〈G,U〉 is a regular semigroup and determine when 〈G,U〉 is an inverse
semigroup and when it is a completely regular semigroup.

An element a of a semigroup S is called regular if a = axa for some x ∈ S. If all elements of
S are regular, we say that S is a regular semigroup. An element a′ in S is called an inverse of a in S
if a = aa′a and a′ = a′aa′. Since regular elements are precisely those that have inverses (if a = axa
then a′ = xax is an inverse of a), we may define a regular semigroup as a semigroup in which each
element has an inverse [7, p. 51]. If every element of S has exactly one inverse then S is called an
inverse semigroup. An alternative definition is that S is an inverse semigroup if it is regular and its
idempotents commute [7, Theorem 5.1.1]. If every element of S is in some subgroup of S then S is
called a completely regular semigroup [7, 4.1].

It is well known that P (X), T (X), and I(X) are regular semigroups. The semigroup Iµ(X) is also
regular, but Ep(X,µ) and P (X,µ) are not regular semigroups [9, 10, 12].

We first prove that G = GK is a group.

Proposition 2.1. The set G = GK from Definition 1.2 is a subgroup of Pµ(X) isomorphic to the sym-
metric group Sym(K).

Proof. Define f : Sym(K) → Pµ(X) by δf = σ, where for every a ∈ K, (aµ)σ = {aδ}. Then
ker(σ) = µ and im(σ) = K, so σ ∈ G. It is straightforward to check that f is an injective semigroup
homomorphism with im(f) = G. The result follows.
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The following lemma will be crucial in our arguments. We will use it often without mentioning it
explicitly.

Lemma 2.2. Let L be a partial transversal of µ with |L| < |K|. Suppose σ : L→ K is injective. Then
σ can be extended to σ ∈ G.

Proof. Recall that v = |K| and let r = |L|, so r < v. Since σ is injective, |Lσ| = |L| = r < v. Let
K ′ = {a ∈ K : a ∈ bµ for some b ∈ L}, K1 = K \ K ′, and K2 = K \ Lσ. Since L is a partial
transversal of µ, we have |K ′| = |L| = r. It follows that |K1| = |K2| = v − r (if v is finite) and
|K1| = |K2| = v (if v is infinite). Fix a bijection g : K1 → K2.

Define σ : X → X as follows. Let x ∈ X . If xµ ∩ L = {b}, then define (xµ)σ = {bσ}. If
xµ ∩ L = ∅, then define (xµ)σ = {ag}, where {a} = K1 ∩ xµ. It is then clear that σ ∈ G and σ is an
extension of σ.

Notation 2.3. Let α ∈ Pµ(X) with rank(α) = r. Then 0 ≤ r ≤ v. Write im(α) = {xi}1≤i≤r and let
Ai = xiα

−1 ∩K. We will write

α =

(
Ai
xi

)
,

where it will be understood that i is a cardinal ranging from 1 to r = rank(α). This notation is justified
by the fact that α ∈ Pµ(X) is determined by its values on dom(α) ∩K.

For example, let X = {1, . . . , 8}, µ correspond to the partition {{1, 2, 3}, {4, 5}, {6, 7, 8}}, and
K = {1, 4, 6}. Then α, β ∈ Pµ(X) defined by {1, 2, 3, 4, 5}α = {1}, {6, 7, 8}α = {4}, and
{4, 5, 6, 7, 8}β = {6} will be written

α =

(
{1, 4} {6}
1 4

)
and β =

(
{4, 6}
6

)
.

Theorem 2.4. Each semigroup 〈G,U〉 is regular.

Proof. Let α ∈ 〈G,U〉. If rank(α) = v, then α ∈ G, and so α is a regular element of 〈G,U〉 since

G is a group. Suppose α =

(
Ai
xi

)
with rank(α) < v. Fix ai ∈ Ai (note that ai ∈ K) and define

σ : {xi} → K by xiσ = ai. By Lemma 2.2, σ can be extended to σ ∈ G. It is clear that ασα = α, so α
is regular.

Remark 2.5. Let α =

(
Ai
xi

)
∈ 〈G,U〉 with rank(α) < v and let σ ∈ G be as in the proof of

Theorem 2.4. Since ασα = α, the transformation α′ = σασ is an inverse of α. For this particular
inverse, we have

xiα
′ = xi(σασ) = ai(ασ) = xiσ = ai.

Theorem 2.4 is not true if we allow U to contain transformations of rank v. For example, suppose

|X/µ| = ℵ0 with K = {a1, a2, . . .}. Consider α =

(
Ai
ai

)
of rank ℵ0 with Ai = {a2i}. Then 〈G,α〉

is not a regular semigroup. Indeed, suppose α = αβα for some β ∈ 〈G,α〉. Then ai = a2iα =
a2i(αβα) = ai(βα), which implies aiβ ∈ a2iµ. Thus im(β) 6= K, which is impossible since im(α) =
K, and so the image of every element of 〈G,α〉 is K.

However, Pµ(X) is a regular semigroup. We fix an idempotent ε ∈ Pµ(X) such that ker(ε) = µ.
Since then the image of ε is a transversal of µ, we may assume that im(ε) = K. Note that ε is the
identity of the group G = GK and (aµ)ε = {a} for every a ∈ K.

For a semigroup S, we denote by Reg(S) the set of all regular elements of S.
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Theorem 2.6. Pµ(X) = Reg(εP (X)). Consequently, Pµ(X) is a regular semigroup.

Proof. Let α =

(
Ai
xi

)
∈ Pµ(X). Fix ai ∈ Ai and consider β =

(
xiµ
ai

)
∈ P (X). Then α = εα and

β = εβ, so α, β ∈ εP (X), and α = αβα. Thus α ∈ Reg(εP (X)).
Conversely, let α ∈ Reg(εP (X)). Then, α = αβα for some β ∈ εP (X). By the definition of

ε, we have xµ ⊆ x(ker(α)) for every x ∈ dom(α). Let x, y ∈ dom(α) with (xα, yα) ∈ µ. Then
xα, yα ∈ dom(β), and so (xα)β = (yα)β (since zµ ⊆ z(ker(β)) for every z ∈ dom(β)). Thus,
xα = x(αβα) = ((xα)β)α = ((yα)β)α = y(αβα) = yα, which implies that im(α) is a partial
transversal of µ. Hence α ∈ Pµ(X)

We note that εP (X) = Ep(X,µ) (see Section 1).

Theorem 2.7. A semigroup 〈G,U〉 is an inverse semigroup if and only if the following conditions are
satisfied:

(a) for all α ∈ U and x ∈ dom(α), xµ = x(ker(α));

(b) for all α, β ∈ U , x ∈ dom(α), and y ∈ dom(β), if (xα, yβ) ∈ µ, then xα = yβ.

Proof. (⇒) Suppose that (a) does not hold. Then there is α =

(
Ai
xi

)
∈ U such that |Aj | ≥ 2 for some

j. Select ai ∈ Ai (for each i) and a ∈ Aj such that a 6= aj . Define σ1, σ2 : {xi} → K by xiσ1 = ai
for all i, xiσ2 = ai if i 6= j, and xjσ2 = a, and extend these mappings to σ1, σ2 ∈ G as in the proof
of Lemma 2.2. Both σ1ασ1 and σ2ασ2 are inverses of α (see Remark 2.5). Moreover, they are distinct
since xj(σ1ασ1) = aj and xj(σ2ασ2) = a. Thus 〈G,U〉 is not an inverse semigroup.

Suppose that (b) does not hold. Then there are α, β ∈ U such that, for some x ∈ dom(α) and y ∈
dom(β), (xα, yβ) ∈ µ and xα 6= yβ. Let α′ and β′ be inverses of α and β in 〈G,U〉, respectively. Then
α′α and β′β are idempotents. Since (xα, yβ) ∈ µ, we have (xα)β′ = (yβ)β′ and (yβ)α′ = (xα)α′.
Thus

(xα)(α′αβ′β) = (xα)(β′β) = ((xα)β′)β = ((yβ)β′)β = yβ.

On the other hand,

(xα)(β′βα′α) = (yβ)(β′βα′α) = (yβ)(α′α) = ((yβ)α′)α = ((xα)α′)α = xα.

Thus the idempotents α′α and β′β do not commute, and so 〈G,U〉 is not an inverse semigroup.
(⇐) Conversely, suppose that (a) and (b) are satisfied. Note that these conditions are also satisfied

by the elements of the group G and they are preserved by the composition of transformations. It follows
that (a) and (b) hold for all elements of 〈G,U〉. We already know that 〈G,U〉 is a regular semigroup.
Let ε, ξ ∈ 〈G,U〉 be idempotents. We will show that ε and ξ commute. Note that α ∈ Pµ(X) is an
idempotent if and only if for all x ∈ dom(α), (x, xα) ∈ ker(α). Let x ∈ dom(εξ), that is, x ∈ dom(ε)
and xε ∈ dom(ξ). Since ε satisfies (a), we have (x, xε) ∈ µ. Since x ∈ dom(ε) and xε ∈ dom(ξ), it
follows that xµ ⊆ dom(ε) and xµ = (xε)µ ⊆ dom(ξ). Further, by (a) applied to ξ, (x, xξ) ∈ µ. Thus
x ∈ dom(ξε), so dom(εξ) ⊆ dom(ξε). The reverse inclusion follows by symmetry, so dom(εξ) =
dom(ξε). Now, both x(εξ) and x(ξε) are in xµ. Thus, by (b), x(εξ) = x(ξε). Hence the idempotents in
〈G,U〉 commute, and so 〈G,U〉 is an inverse semigroup.

Using arguments from the proof of Theorem 2.7, we can obtain the following result.

Theorem 2.8. If |X| ≥ 2, then Pµ(X) and Tµ(X) are not inverse semigroups.
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Regarding a criterion for 〈G,U〉 to be a completely regular semigroup, we will use the following
result about P (X). This result has been proved for T (X) [3, Theorem 2.10] and extends easily to P (X).

Lemma 2.9. For every α ∈ P (X), α is in a subgroup of P (X) if and only if im(α) is a transversal of
ker(α).

Theorem 2.10. A semigroup 〈G,U〉 is completely regular if and only if for every nonzero α ∈ U ,
ker(α) = X ×X .

Proof. (⇒) Suppose ker(α) 6= X×X for some nonzero α ∈ U . Note that ker(α) 6= µ since rank(α) <
v. Thus there are two possible cases.
Case 1. ker(α) = µ ∩ (dom(α)× dom(α)) and dom(α) 6= X .

Then there is a ∈ K such that aµ ∩ dom(α) = ∅. Let x ∈ dom(α) (such an x exists since α 6= 0)
and y = xα. Define σ : {y} → K by yσ = a and extend it to σ ∈ G. Let β = ασ ∈ 〈G,U〉 and note
that xβ = a and a /∈ dom(β). Thus im(β) is not a transversal of ker(β), and so 〈G,U〉 is not completely
regular.
Case 2. ker(α) 6= µ ∩ (dom(α)× dom(α)).

Then, since α 6= 0, there are x, y ∈ dom(α) such that (x, y) ∈ ker(α) and (x, y) /∈ µ. If im(α)
is not a transversal of ker(α), then 〈G,U〉 is not completely regular. Suppose im(α) is a transversal of
ker(α). We can then assume that x ∈ im(α). Let z ∈ dom(α) with zα = x and let w = xα.

Suppose (x,w) ∈ ker(α). Then w = x since im(α) is a transversal of ker(α). Thus xα = x = zα,
and so (x, z) ∈ ker(α). Since ker(α) 6= X × X , there is u ∈ X such that (x, u) /∈ ker(α). Suppose
u ∈ dom(α) and let t = uα. Note that t 6= x (since (x, u) /∈ ker(α)), and so (x, t) /∈ ker(α) (since x
is the only element of im(α) in the ker(α)-class of x). Let {a} = K ∩ xµ and {b} = K ∩ yµ. Then
a 6= b (since (x, y) /∈ µ). Define σ1 : {x, t} → K by xσ1 = a and tσ1 = b and extend it to σ1 ∈ G. Let
β1 = ασ1 ∈ 〈G,U〉 and note that ker(β1) = ker(α), xβ1 = a and uβ1 = b. Thus a, b ∈ im(β1) and
(x, y) ∈ ker(β1), so im(β1) is not a transversal of ker(β1). Suppose u /∈ dom(α) and let {c} = K ∩uµ.
Define σ2 : {x} → K by xσ2 = c and extend it to σ2 ∈ G. Let β2 = ασ2 ∈ 〈G,U〉 and note that
ker(β2) = ker(α), xβ2 = c, and c /∈ dom(β2). Thus im(β2) is not a transversal of ker(β2). Hence,
when (x,w) ∈ ker(α), 〈G,U〉 is not completely regular.

Finally, suppose (x,w) /∈ ker(α). Let {a} = K∩xµ and {b} = K∩yµ. Then a 6= b (since (x, y) /∈
µ). Define σ : {x,w} → K by xσ = a and wσ = b and extend it to σ ∈ G. Let β = ασ ∈ 〈G,U〉 and
note that ker(β) = ker(α), zβ = a and xβ = b. Thus a, b ∈ im(β) and (x, y) ∈ ker(β), so im(β) is not
a transversal of ker(β). Hence, when (x,w) /∈ ker(α), 〈G,U〉 is not completely regular.

(⇐) Conversely, suppose ker(α) = X×X for every nonzero α ∈ U . Then, every element of 〈G,U〉
is either an element of the group G or a constant idempotent with domain X . Thus 〈G,U〉 is completely
regular.

Using arguments from the proof of Theorem 2.10, we can obtain the following result.

Theorem 2.11. If µ 6= X ×X , then Pµ(X) and Tµ(X) are not completely regular semigroups.

3 Green’s relations and ideals

In this section, we determine Green’s relations and ideals in 〈G,U〉.
Let S be a semigroup and denote by S1 the semigroup S with an identity adjoined (if necessary).

Then, for every a ∈ S, S1a, aS1, and S1aS1 are, respectively, the principal left ideal, principal right
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ideal, and principal ideal generated by a. The principal ideals of S have been used to define five equiv-
alence relations on S that are among the most important tools in studying semigroups. For a, b ∈ S,
we say that aL b if S1a = S1b, aR b if aS1 = bS1, and aJ b if S1aS1 = S1bS1. We define H as
the intersection of L and R, and D as the join of L and R, that is, the smallest equivalence relation on
S containing both L and R. These equivalences are called Green’s relations. The relations L and R
commute [7, Proposition 2.1.3], and consequently D = L◦R = R◦L. For a Green relation F in S and
a ∈ S, we denote by Fa the F-equivalence class of a.

Green’s relations in the semigroup P (X) are well known: αLβ ⇔ im(α) = im(β); αRβ ⇔
ker(α) = ker(β); αJ β ⇔ rank(α) = rank(β), and D = J .

If T is a regular subsemigroup of S and F ∈ {L,R,H}, then F in T is the restriction of F in S to
T × T [7, Proposition 2.4.2]. Thus, by Theorem 2.4, we have the following result.

Theorem 3.1. For all α, β ∈ 〈G,U〉, αLβ ⇔ im(α) = im(β) and αRβ ⇔ ker(α) = ker(β).

The corresponding statements about relations D and J in a regular subsemigroup T of a semigroup
S are not true. Therefore, the next result requires a proof. First we note that in any semigroup S, the
inclusion relation on the set of principal ideals induces the partial order relation≤ on the set ofJ -classes:

Ja ≤ Jb ⇔ S1aS1 ⊆ S1bS1.

Theorem 3.2. In every 〈G,U〉, D = J . Moreover, if α, β ∈ 〈G,U〉, then Jα ≤ Jβ ⇔ rank(α) ≤
rank(β). Consequently, αJ β ⇔ rank(α) = rank(β).

Proof. Let α, β ∈ 〈G,U〉. If Jα ≤ Jβ , then α = γ1βγ2 for some γ1, γ2 ∈ 〈G,U〉1, which implies
rank(α) ≤ rank(β). Conversely, let r = rank(α), t = rank(β), and suppose r ≤ t. If r = t = v, then

α, β ∈ G, and so, since G is a group, αJ β, which implies Jα ≤ Jβ . Suppose r < v. Let α =

(
Ai
xi

)
and β =

(
Bj
yj

)
, with 1 ≤ i ≤ r and 1 ≤ j ≤ t. Fix bj ∈ Bj and define σ1 : {xi} → {bi} by xiσ1 = bi

(1 ≤ i ≤ r). Then σ1 is well defined (since r ≤ t) and injective. Thus, since r < v, σ1 can be extended
to σ1 ∈ G. For every 1 ≤ i ≤ r, let {ci} = xiµ ∩K, and define σ2 : {yi}1≤i≤r → {ci} by yiσ2 = ci,
and extend σ2 to σ2 ∈ G. Let α′ ∈ 〈G,U〉 be an inverse of α. Then, for all 1 ≤ i ≤ r and all ai ∈ Ai,

ai(ασ1βσ2α
′α) = xi(σ1βσ2α

′α) = bi(βσ2α
′α) = yi(σ2α

′α)

= ci(α
′α) = xi(α

′α) = ai(αα
′α) = aiα.

It follows that α = (ασ1)β(σ2α
′α), and so Jα ≤ Jβ .

In every semigroup, D ⊆ J . Let α, β ∈ 〈G,U〉 with αJ β. Then, by the first part of the proof,
rank(α) = rank(β). Let r = rank(α). If r = v, then α, β ∈ G, and so αD β. Suppose r < v. Let

α =

(
Ai
xi

)
, and β =

(
Bi
yi

)
, with 1 ≤ i ≤ r. Fix ai ∈ Ai and bi ∈ Bi, define σ1 : {xi} → {ai}

by xiσ1 = ai, σ2 : {ai} → {bi} by aiσ2 = bi, and extend σ1 to σ1 ∈ G and σ2 to σ2 ∈ G. Let
γ = ασ1 σ2β ∈ 〈G,U〉. Then, for all 1 ≤ i ≤ r and all ci ∈ Ai,

ciγ = ci(ασ1 σ2β) = ai(ασ1 σ2β) = xi(σ1 σ2β) = ai(σ2β) = biβ = yi.

It follows that ker(γ) = ker(α) and im(γ) = im(β). Thus, by Theorem 3.1, αR γ and γ Lβ, and so
αD β since D = R ◦ L. Hence J ⊆ D, and so D = J .
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Notation 3.3. Let β ∈ 〈G,U〉 with r = rank(β). By Theorem 3.2, the principal ideal of 〈G,U〉
generated by β consists of all α ∈ 〈G,U〉 such that rank(α) ≤ r. We denote this principal ideal by Ir,
that is,

Ir = {α ∈ 〈G,U〉 : rank(α) ≤ r}.
For a cardinal k, we denote by k+ the successor cardinal of k [8, p. 162]. For 1 ≤ r ≤ v+, let

Er = {α ∈ 〈G,U〉 : rank(α) < r}.

It is clear that Er is an ideal of 〈G,U〉. Note that Ev+ = 〈G,U〉 and that for every 0 ≤ r ≤ v, Ir = Er+ .

We will now prove that every ideal of 〈G,U〉 is equal to some ideal Er, where 1 ≤ r ≤ v+, and
determine the partial order of ideals of 〈G,U〉.
Theorem 3.4. Let I be an ideal of 〈G,U〉. Then I = Er for some r with 1 ≤ r ≤ v+.

Proof. Let r be the minimum cardinal such that r ≤ v+ and rank(β) < r for every β ∈ I . (Such an r
exists because rank(β) < v+ for every β ∈ 〈G,U〉.) Clearly, I ⊆ Er. Let α ∈ Er. By the minimality of
r, there is β ∈ I such that rank(α) ≤ rank(β). By Theorem 3.2, α = γ1βγ2 for some γ1, γ2 ∈ 〈G,U〉1.
Thus α ∈ I , and so Er ⊆ I .

It follows from Theorem 3.4 that the ideals of every semigroup 〈G,U〉 form a chain. To describe this
chain, we need the following lemma.

Lemma 3.5. Let t < v and suppose U contains some α with rank(α) = t. Then:

(1) for every cardinal r with 1 ≤ r < t, there is β ∈ 〈G,U〉 such that rank(β) = r;

(2) if U contains some γ with dom(γ) 6= X , then 0 ∈ 〈G,U〉.

Proof. Let α =

(
Ai
xi

)
, where 1 ≤ i ≤ t, and fix ai ∈ Ai. To prove (1), let 1 ≤ r < t. Suppose t ≥ ℵ0

and consider two possible cases.
Case 1. There is a cardinal l with 1 ≤ l ≤ t such that |Al| > t.

Then, there is a subset {bj}r<j≤t of Al such that each bj 6= al and bj1 6= bj2 if j1 6= j2. If l ≤ r,
then define σ : {xi} → K by xiσ = ai if 1 ≤ i ≤ r, and xiσ = bi if r < i ≤ t; if l > r, then
define σ : {xi} → K by xiσ = ai if 1 ≤ i < r, xrσ = al, and xiσ = bi if r < i ≤ t. In either
case, we can extend σ to σ ∈ G. Let β = ασα ∈ 〈G,U〉. Then, im(β) = {xi}1≤i≤r if l ≤ r, and
im(β) = {xi}1≤i<r ∪ {xl} if l > r. In either case, rank(β) = r.
Case 2. For every cardinal i with 1 ≤ i ≤ t, |Ai| ≤ t.

Then, |
⋃
Ai| ≤ t · t = t < v, and so there is a subset {bj}r<j≤t of K \

⋃
Ai such that bj1 6= bj2

if j1 6= j2. Define σ : {xi} → K by xiσ = ai if 1 ≤ i ≤ r, and xiσ = bi if r < i ≤ t. Then, for
β = ασα ∈ 〈G,U〉, we have im(β) = {xi}1≤i≤r, and so rank(β) = r.

Suppose t < ℵ0. We may assume that r = t − 1. (The result will then follow by an inductive
argument.) Suppose there is l ∈ {1, . . . , t} such that |Al| ≥ 2. We then have some b ∈ Al with b 6= al.
Select j ∈ {1, . . . , t} with j 6= l (possible since 1 ≤ r < t, so t ≥ 2). Define σ : {xi} → K by
xiσ = ai if i 6= j, and xjσ = b, and extend σ to σ ∈ G. Then, for β = ασα ∈ 〈G,U〉, we have
im(β) = {xi}i 6=j , and so rank(β) = t− 1. Suppose |Ai| = 1 for all i. Since t < v, we then have some
b ∈ K \

⋃
1≤i≤tAi. Define σ : {xi} → K by xiσ = ai if i < t and xtσ = b, and extend σ to σ ∈ G.

Then, for β = ασα ∈ 〈G,U〉, we have im(β) = {xi}i 6=t, and so rank(β) = t− 1.
To prove (2), suppose U contains some γ with dom(γ) 6= X . Select a ∈ K such that a /∈ dom(γ).

By (1), there exists β ∈ 〈G,U〉 with rank(β) = 1. Let im(β) = {y}. Define σ : {y} → K by yσ = a
and extend σ to σ ∈ G. Then βσγ = 0.
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For sets A and B, we will write A ⊂ B to mean A ⊆ B and A 6= B.

Theorem 3.6. Let m = min{r : rank(α) < r for every α ∈ U}. Then:

(1) if U consists of full transformations on X , then the chain of ideals of 〈G,U〉 is isomorphic to the
chain of cardinals {r : 2 ≤ r ≤ m} ∪ {v+};

(2) if U contains a strictly partial transformation on X , then the chain of ideals of 〈G,U〉 is isomor-
phic to the chain of cardinals {r : 1 ≤ r ≤ m} ∪ {v+}.

Proof. Note that m ≤ v. Suppose U consists of full transformations on X . Let 2 ≤ r < m. By the
minimality of m, there is α ∈ U such that r ≤ rank(α). By Lemma 3.5, 〈G,U〉 contains a trans-
formation of rank < r. Thus, for every cardinal r with 2 ≤ r < m, Er 6= ∅. Moreover, Em 6= ∅
(since E2 ⊆ Em) and E1 = ∅ (since 0 cannot be a product of full transformations on X). Hence, by
Theorem 3.4, {Er : 2 ≤ r ≤ m} ∪ {Ev+} is the set of ideals of 〈G,U〉. Define

f : {r : 2 ≤ r ≤ m} ∪ {v+} → {Er : 2 ≤ r ≤ m} ∪ {Ev+}

by rf = Er (2 ≤ r ≤ m) and v+f = Ev+ . It is then clear that f is surjective and that it preserves the
order (for all s, t ∈ {r : 2 ≤ r ≤ m}∪{v+}, if s ≤ t, thenEs ⊆ Et). Let s, t ∈ {r : 2 ≤ r ≤ m}∪{v+}
with s < t. If t = v+, thenEs ⊂ Et sinceG ⊆ Ev+ andG∩Es = ∅. Suppose t ≤ m. By the minimality
of m, U contains α such that s ≤ rank(α). If rank(α) < t, then α ∈ Et \ Es, so Es ⊂ Et. Suppose
rank(α) ≥ t. Then, by Lemma 3.5, there is β ∈ 〈G,U〉 with rank(β) = s. Thus β ∈ Et \ Es, so
Es ⊂ Et. Hence f is injective, and so it is a poset isomorphism.

We have proved (1). The proof of (2) is almost identical. The difference is that, if U contains a
strictly partial transformation, then E1 6= ∅ by Lemma 3.5.

For example, denote by Z, Q, and R, the sets of integers, rational numbers, and real numbers, re-
spectively. Let X = R, let µ be defined by the partition

{{−n, n} : n ∈ Z} ∪ {Q \ Z} ∪ {{x} : x ∈ R \Q},

and K = {0, 1, 2, . . .} ∪ {12} ∪ {x : x ∈ R \Q}. Then v = 2ℵ0 . Consider the idempotent

ε =

(
{0} {1} {2} . . . {12} K \Q
0 1 2 . . . 1

2

√
2

)
∈ Pµ(R)

(see Notation 2.3) and the semigroup 〈G, ε〉. Note that ε is a full transformation on R and that rank(ε) =
ℵ0. Thus, the cardinal m from Theorem 3.6 is ℵ1 (see [8, p. 131]) and the chain of ideals of 〈G, ε〉 is
isomorphic to the chain of cardinals

2 < 3 < 4 < . . . < ℵ0 < ℵ1 < (2ℵ0)+,

which, in turn, is isomorphic to the ordinal ω0 + 2 (see [8, p. 131]).

4 Ranks

Throughout this section, X will be a finite set. By the more general results obtained in [4, 3.4], we can
conclude the following. Every ideal of Pµ(X) is of the form Es = {α ∈ Pµ(X) : rank(α) < s}, where
1 ≤ s ≤ v+. For a finite set X , Es = Ir = {α ∈ Pµ(X) : rank(α) ≤ r}, where r = s − 1. Thus
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{Ir : 0 ≤ r ≤ v} is the set of ideals of Pµ(X). Each ideal Ir is principal and is generated by any
α ∈ Pµ(X) of rank r. Moreover, Iv = Pµ(X) and if r < v, then Ir is a proper ideal of Pµ(X). Let
Jr be the set of elements of Pµ(X) of rank r, where 0 ≤ r ≤ v. Then {Jr : 0 ≤ r ≤ v} is the set of
J -classes of Pµ(X), with J0 < J1 < . . . < Jv.

Since v is finite, Jv is the union of groups GM , where M ranges over all transversals of µ (see
Definition 1.2). We will show that Jv is a right group (Proposition 4.9).

In this section, we find formulas for the ranks of the semigroups G ∪ Ir, Jv, Jv ∪ Ir, and Ir, where
0 ≤ r < v. (For r = v − 1, we have Jv ∪ Ir = Pµ(X).) We also record the corresponding formulas for
Tµ(X) = Pµ(X) ∩ T (X).

Definition 4.1. Let S be a semigroup. The rank of S, denoted rankS, is the minimum cardinality of a
generating set of S.

The ranks of various transformation semigroups have been found. For example, for a finite set X ,
rank P (X) = 4, rank T (X) = 3, and rank I(X) = 3. The following general result for the ranks of
finite semigroups proved in [6] is useful when working with transformation semigroups.

Lemma 4.2. ( [6, Theorem 10]) Let S be a finite nontrivial semigroup with a maximal regular class
J -class J such that 〈J〉 = S. Suppose that each groupH-class of J has rank ≤ 2, and it is not the case
that J has exactly one idempotent in everyR-class and in every L-class. Then rankS = max{ml,mr},
where ml and mr are the numbers of L- andR-classes in J , respectively.

Definition 4.3. Let α =

(
Ai
xi

)
∈ Pµ(X) with rank(α) = r, 0 ≤ r ≤ v, as in Notation 2.3. In this

section, we will always assume that |A1| ≥ |A2| ≥ . . . ≥ |Ar|. Let ni = |Ai| andm = |K \
⋃

1≤i≤r Ai|.
Then the sequence

(n1, n2, . . . , nr;m)

will be called the µ-type of α and denoted typeµ(α). We will call the number m the deficit of α. Note
that n1 + n2 + · · ·+ nr +m = v and that if α 6= 0, then the sequence (n1, n2, . . . , nr) is a partition of
v −m with r parts [14, p. 235].

By a µ-type we will mean any sequence (n1, n2, . . . , nr;m) with 0 ≤ r ≤ v, each ni ≥ 1, m ≥ 0,
and n1 + n2 + · · ·+ nr +m = v.

For example, every σ ∈ G has µ-type (1, 1, . . . , 1; 0). Let X = {1, . . . , 9}, µ be defined by the
partition {{1, 2, 3}, {4, 5}, {6, 7, 8}, {9}}, and K = {1, 4, 6, 9}. Then

α =

(
{1, 4} {6}
1 2

)
∈ Pµ(X)

has µ-type (2, 1; 1).

Lemma 4.4. Let α, β ∈ Pµ(X) with rank(α) = rank(β) = r < v. Then:

(1) typeµ(σβ) = typeµ(β) for all σ ∈ Pµ(X) with rank(σ) = v;

(2) if α = βγ, for some γ ∈ Pµ(X), then typeµ(α) = typeµ(β).

Proof. Let α =

(
Ai
xi

)
and β =

(
Bi
yi

)
, 1 ≤ i ≤ r. Then for every σ ∈ Pµ(X) with rank(σ) = v,

σβ =

(
Biσ

−1

yi

)
, where Biσ−1 = {k ∈ K : kσ ∈ bµ for some b ∈ Bi}. Since σ maps different
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elements of K to elements in different µ-classes, |Biσ−1| = |Bi| for all i, so σβ and β have the same
µ-type.

Suppose α = βγ for some γ ∈ Pµ(X). Let b ∈ Bi. Then either b ∈ Aj , for some j, or b ∈
K\
⋃

1≤i≤r Ai. Suppose b ∈ Aj and let c ∈ Bi. Then bβ = cβ, and so xj = bα = b(βγ) = c(βγ) = cα.
Thus c ∈ Aj .

We have proved that for every i, either Bi ⊆ Aj , for some j, or Bi ⊆ K \
⋃

1≤i≤r Ai. Let j ∈
{1, . . . , r} and a ∈ Aj . Then a ∈ dom(α), and so a ∈ dom(β) (since α = βγ). Thus a ∈ Bi for some
i, and so, by the foregoing argument, a ∈ Bi ⊆ Aj .

It then follows that every Aj is a union of some distinct Bi1 , . . . , Bikj . But the number of Ajs is r
and the number of Bis is also r. Hence each kj must equal to 1, that is, for every j, there is ij such that
Aj = Bij , and ij1 6= ij2 if j1 6= j2. It follows that typeµ(α) = typeµ(β).

The following proposition will be crucial for the rank results.

Proposition 4.5. Let 0 ≤ r < v and suppose U ⊆ Jr, where Jr is the J -class of Pµ(X) of rank r. Then
Jr ⊆ 〈G,U〉 if and only if for every µ-type (n1, n2, . . . , nr;m) and every partial transversal L of µ with
|L| = r and L 6⊆ K, there are α, β ∈ U such that typeµ(α) = (n1, n2, . . . , nr;m) and im(β) = L.

Proof. Suppose Jr ⊆ 〈G,U〉. Let (n1, n2, . . . , nr;m) be a µ-type andL be a partial transversal of µwith
|L| = r and L 6⊆ K. Since Jr ⊆ 〈G,U〉, there is η ∈ 〈G,U〉 such that typeµ(η) = (n1, n2, . . . , nr;m)
and im(η) = L. Since 〈G,U〉 is generated by G ∪ U , η = σαγ or η = αγ, where σ ∈ G, α ∈ U ,
and γ ∈ 〈G,U〉. Since εα = α, where ε is the identity in G = GK , we may assume that η = σαγ.
Thus, by Lemma 4.4, typeµ(α) = typeµ(σα) = typeµ(η) = (n1, n2, . . . , nr;m). Also, η = θβ, where
θ ∈ 〈G,U〉 and β ∈ U . (Note that β cannot be followed by any element δ ∈ G since im(η) = L and
L 6⊆ K.) Then L ⊆ im(β), and so im(β) = L since |L| = rank(β) = r.

Conversely, suppose that the set U satisfies the given condition. Let γ =

(
Ci
yi

)
∈ Jr, and let

(n1, n2, . . . , nr;m) be the µ-type of γ (so ni = |Ci| for every i) and L = im(γ) = {yi}. By the

hypothesis, there is α =

(
Ai
xi

)
∈ U with typeµ(α) = (n1, n2, . . . , nr;m). Then, for every i, |Ai| =

|Ci|, so there is a bijection fi : Ai → Ci. Define σ :
⋃

1≤i≤r Ai → K by aσ = afi if a ∈ Ai, and extend
σ to σ ∈ G. (Since X is finite, Lemma 2.2 is also true if |L| = |K|.) Then

(σ)−1ασ =

(
Aiσ
xiσ

)
=

(
Aifi
xiσ

)
=

(
Ci
xiσ

)
.

Suppose {yi}1≤i≤r ⊆ K. Define δ : {xiσ} → K by (xiσ)δ = yi, and extend δ to δ ∈ G. Then

(σ)−1ασδ = γ. Suppose {yi} 6⊆ K. Then, by the hypothesis, there is β =

(
Bi
yi

)
∈ U . Fix bi ∈ Bi,

define δ : {xiσ} → K by (xiσ)δ = bi, and extend δ to δ ∈ G. Then (σ)−1ασδβ = γ. Hence
γ ∈ 〈G,U〉, and so Jr ⊆ 〈G,U〉.

For positive integers n and r ≤ n, denote by pr(n) the number of partitions of n with r parts. For
example, (3, 1, 1) and (2, 2, 1) are the only partitions of 5 with 3 parts, so p3(5) = 2. There is no known
closed formula for calculating pr(n). For recursive formulas, see [14, Theorem 2.4.4].

Lemma 4.6. Let α ∈ Pµ(X) with rank(α) = r < v − 1. Then, there are ε, γ ∈ Pµ(X), both of rank
r + 1, such that α = εγ.

11



Proof. Let α =

(
Ai
xi

)
and fix ai ∈ Ai. Choose y ∈ X such that y /∈ xiµ, for every i, 1 ≤ i ≤ r

(possible since r < v − 1 and |X/µ| = v), and note that y /∈ {x1, . . . , xr}.
Suppose |At| ≥ 3, for some t, and let b, c ∈ At with b 6= c and b, c 6= at. Define ε ∈ Pµ(X), with

dom(ε) = dom(α), by kε = ai if k ∈ Ai and i 6= t, kε = at if k ∈ At and k 6= b, and bε = b. Then
im(ε) = {ai}1≤i≤r ∪ {b}. Define γ ∈ Pµ(X), with dom(γ) = dom(α), by kγ = xi if k ∈ Ai and
i 6= t, kγ = xt if k ∈ At and k 6= c, and cγ = y. Then im(ε) = {xi}1≤i≤r ∪ {y}.

Suppose |As| = |At| = 2, for some distinct s, t, say As = {as, b} and At = {at, c}. Define
ε ∈ Pµ(X), with dom(ε) = dom(α), by kε = ai if k ∈ Ai and i 6= s, asε = as, and bε = b. Define
γ ∈ Pµ(X), with dom(γ) = dom(α), by kγ = xi if k ∈ Ai and i 6= t, atγ = xt, and cγ = y.

Suppose |As| = 2, for some s, say As = {as, b}, and |Ai| = 1 for every i 6= s. Since r < v − 1,
there is c ∈ K such that c /∈ Ai for every i. Define ε exactly as in the previous case. Define γ ∈ Pµ(X),
with dom(γ) = dom(α) ∪ cµ, by kγ = xi for all k ∈ Ai, and cγ = y.

Finally, suppose |Ai| = 1 for every i. Since r < v− 1, there are distinct b, c ∈ K such that b, c /∈ Ai
for every i. Define ε ∈ Pµ(X), with dom(ε) = dom(α) ∪ bµ, by kε = ai for every k ∈ Ai, and bε = b.
Define γ exactly as in the previous case.

In all cases, im(ε) = {ai}1≤i≤r ∪ {b} (so rank(ε) = r + 1), im(γ) = {xi}1≤i≤r ∪ {y} (so
rank(γ) = r + 1), and α = εγ.

Let {Q1, Q2, . . . , Qv} denote the set of µ-classes.

Theorem 4.7. Let v ≥ 3 and let Ir be the ideal of Pµ(X) consisting of all transformations of rank ≤ r,
where 1 ≤ r < v. Then

rank (G ∪ Ir) = max

 ∑
1≤i1<...<ir≤v

|Qi1 | · · · |Qir | −
(
v

r

)
,

v−r∑
m=0

pr(v −m)

+ 2.

Proof. Let s1 =
∑

1≤i1<...<ir≤v |Qi1 | · · · |Qir | −
(
v
r

)
and s2 =

∑v−r
m=0 pr(v − m). Then s1 is the

number of partial transversals L of µ such that |L| = r and L 6⊆ K, and s2 is the number of µ-types
(n1, n2, . . . , nr;m) with 0 ≤ m ≤ v − r.

Suppose s1 ≥ s2. Construct a set U of transformations of rank r as follows. For every µ-type
τ = (n1, n2, . . . , nr;m), select α with typeµ(α) = τ and add it to U . Since s1 ≥ s2, we can make
these selections in such a way that every α ∈ U has image L 6⊆ K and any two distinct α1, α2 ∈ U have
distinct images. At this point, there are s1− s2 partial transversals L of µ such that |L| = r, L 6⊆ K, and
L is not the image of any α ∈ U . For each such an L, select an idempotent (or any element) ε ∈ Ir with
im(ε) = L and add it to U . Then U consists of s1 elements of rank r.

Suppose s1 < s2. Construct a set U of transformations of rank r as follows. For every µ-type
τ = (n1, n2, . . . , nr;m), select α with typeµ(α) = τ and add it to U . Since s1 < s2, we can make these
selections in such a way that for every partial transversal L of µ with |L| = r and L 6⊆ K, there is α ∈ U
such that im(α) = L. Then U consists of s2 elements of rank r.

In either case, the µ-types of elements of U cover all µ-types (n1, n2, . . . , nr;m) and the images of
elements of U cover all partial transversals L of µ such that |L| = r and L 6⊆ K. Thus, by Proposi-
tion 4.5, 〈G,U〉 contains all elements of Ir of rank r. Further, by Lemma 4.6, it also contains all elements
of Ir of rank< r. HenceG∪U generatesG∪Ir. Moreover, by Proposition 4.5, U is a set of the smallest
cardinality such that G ∪ U generates G ∪ Ir.

The result now follows since |U | = max{s1, s2} andG ∼= Sym(K), so it is generated by 2 elements.
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If v ≥ 1 and r = 0, then I0 = {0}, so G∪ I0 has rank 3 if v ≥ 3 (since then G has rank 2), and it has
rank 2 if v ∈ {1, 2} (since then G has rank 1). If v = 2 and r = 1, then G∪ I1 has rank max{s1, s2}+1
(since then G has rank 1).

The following result is a special case of [4, Theorem 4.4].

Lemma 4.8. Let Jr be the J -class in Pµ(X) consisting of all transformations of rank r, where 0 ≤ r ≤
v. Then:

(1) Jr has S(v + 1, r + 1)R-classes and
∑

1≤i1<...<ir≤v |Qi1 | · · · |Qir | L-classes;

(2) Jr has r!S(v + 1, r + 1)
∑

1≤i1<...<ir≤v |Qi1 | · · · |Qir | elements.

Recall that Jv is the top J -class of Pµ(X). A semigroup S is called a right group if S ∼= G × E,
where G is a group and E is a right zero semigroup [7, Exercise 6].

Proposition 4.9. Let v ≥ 1. Then:

(1) Jv is a right group;

(2) if µ 6= idX , then rank Jv = |Q1| · · · |Qv|.

Proof. Recall that Jv is the union of groups GM , where M ranges over all transversals of µ. Fix one
of these groups, say G = GK , and let E be the set of idempotents in Jv. Note each element of E is
the identity of some group GM , and that for all ε ∈ E and β ∈ Jv, εβ = β. Thus E is a right zero
semigroup. Define f : G× E → Jv by (α, ε)f = αε. The function f is a homomorphism, since for all
(α, ε), (β, ξ) ∈ G× E,

((α, ε)(β, ξ))f = (αβ, εξ)f = (αβ, ξ)f = αβξ = α(εβ)ξ = ((α, ε)f)((β, ξ)f).

Let (α, ε), (β, ξ) ∈ G×E with αε = βξ. Then im(ε) = im(ξ), which implies ε = ξ since an idempotent
in Jv is completely determined by its image. Let x ∈ X . Then (xα)ε = (xβ)ξ = (xβ)ε, and so xα and
xβ are in the same µ-class (since ker(ε) = µ). Thus, since im(α) = im(β) = K and K is a transversal
of µ, it follows that xα = xβ. Hence (α, ε) = (β, ξ), so f is injective. Thus, it is also surjective since
G × E and Jv are finite semigroups of the same size. (Indeed, |G| = r!, |E| = |Q1| · · · |Qv|, and
|Jv| = r!|Q1| · · · |Qv| by Lemma 4.8.) Hence f is an isomorphism, which proves (1).

If µ 6= idX , then Jv satisfies the hypotheses of Lemma 4.2. By Lemma 4.8, Jv has one R-class and
|Q1| · · · |Qv| L-classes, so (2) follows.

If µ = idX , then Jv = Sym(X), and so rank Jv = 2 if |X| ≥ 3, and rank Jv = 1 if |X| ≤ 2.

Theorem 4.10. Let v ≥ 2 and let Ir be the ideal of Pµ(X) consisting of all elements of rank ≤ r, where
1 ≤ r < v. Then

rank (Jv ∪ Ir) =
v−r∑
m=0

pr(v −m) + rank Jv,

where rank Jv = |Q1| · |Q2| · · · |Qv| if µ 6= idX , rank Jv = 2 if µ = idX and |X| ≥ 3, and rank Jv = 1
if |X| = 2.

Proof. Let A be any set of generators of Jv ∪ Ir. Let (n1, n2, . . . , nr;m) be a µ-type. Since A generates
Jv ∪ Ir, there is η ∈ 〈A〉 such that typeµ(η) = (n1, n2, . . . , nr;m). Since rank(η) = r, we have
η = σαγ or η = αγ, where σ ∈ Jv, α ∈ A with rank(α) = r, and γ ∈ Jv ∪ Jr. Since εα =
α for any idempotent ε ∈ Jv, we may assume that η = σαγ. Thus, by Lemma 4.4, typeµ(α) =
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typeµ(σα) = typeµ(η) = (n1, n2, . . . , nr;m). Hence for every µ-type τ = (n1, n2, . . . , nr;m), A
contains an element α with typeµ(α) = τ . Since A must also contain a generating set of Jv and∑v−r

m=0 pr(v − m) is the number of µ-types (n1, n2, . . . , nr;m), we have |A| ≥
∑v−r

m=0 pr(v − m) +
rank Jv, and so rank (Jv ∪ Ir) ≥

∑v−r
m=0 pr(v −m) + rank Jv.

We will now construct a set A of generators of Jv ∪ Ir with exactly
∑v−r

m=0 pr(v − m) + rank Jv
elements. Begin with A being a set of generators of Jv of the smallest cardinality. Then for every µ-type
τ = (n1, n2, . . . , nr;m), select αwith typeµ(α) = τ and add it toA. LetL = {m1,m2, . . . ,mr} be any

partial transversal of µ of size r. Then L ⊆M for some transversal M of µ. Select any α =

(
Ai
xi

)
∈ A

of rank r. Define σ : {xi} →M by xiσ = mi and extend σ to σ ∈ GM (possible by Lemma 2.2 applied
to GM ). Then

(σ)−1ασ =

(
Aiσ
xiσ

)
=

(
Aiσ
mi

)
.

Thus (σ)−1ασ ∈ 〈A〉 and im((σ)−1ασ) = L. Hence the µ-types of elements of 〈A〉 cover all µ-types
(n1, n2, . . . , nr;m) and the images of elements of 〈A〉 cover all partial transversals L of µ such that
|L| = r. Thus, by Proposition 4.5, 〈G ∪ U〉, where U = {α ∈ 〈A〉 : rank(α) = r}, contains all
elements of Ir of rank r. Further, by Lemma 4.6, it also contains all elements of Ir of rank < r. Hence
〈A〉 = Jv ∪ Ir since Jv ⊆ 〈A〉 and G ∪ U ⊆ 〈A〉. The cardinality of A is

∑v−r
m=0 pr(v −m) + rank Jv

by the construction, so it follows that rank (Jv ∪ Ir) ≤
∑v−r

m=0 pr(v −m) + rank Jv.
Hence rank (Jv ∪ Ir) =

∑v−r
m=0 pr(v −m) + rank Jv. Finally, the statements about the rank of Jv

are true by Proposition 4.9.

If r = 0, then I0 = {0}, so rank (Jv ∪ I0) = rank Jv + 1.
Since Pµ(X) = Jv ∪ Iv−1 and

∑v−(v−1)
m=0 pv−1(v − m) = pv−1(v) + pv−1(v − 1) = 2, we have

rank Pµ(X) = rank Jv + 2 if v ≥ 2. If v = 1, then rank Pµ(X) = rank Jv + 1 = |Q1|+ 1 = n+ 2,
where n = |X|. These facts can also be deduced from the more general [4, Theorem 4.5].

The result for each proper ideal Ir of Pµ(X) follows from Lemma 4.2.

Corollary 4.11. Let v ≥ 2 and let Ir be the ideal of Pµ(X) consisting of all transformations of rank≤ r,
where 1 ≤ r < v. Then

rank Ir = max

 ∑
1≤i1<...<ir≤v

|Qi1 | · · · |Qir |, S(v + 1, r + 1)

 .

Proof. The top J -class Jr of Ir satisfies the hypotheses of Lemma 4.2 by Theorem 2.6, Lemma 4.6, and
the fact that v ≥ 2 and 1 ≤ r < v. Thus the result follows by Lemma 4.8.

If v ≥ 1 and r = 0, Then Ir = {0} has rank 1.
The results and proofs of this section carry over to the semigroup Tµ(X) = Pµ(X) ∩ T (X), where

T (X) is the semigroup of full transformations on X . The only differences are that Tµ(X) has no ideal
I0 and each element of Tµ(X) has deficit 0, so the sum

∑v−r
m=0 pr(v −m) reduces to pr(v). Note that

the J -classes Jv in Pµ(X) and Tµ(X) are the same.
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Theorem 4.12. Let v ≥ 3 and let Ir be the ideal of Tµ(X) consisting of all elements of rank ≤ r, where
1 ≤ r < v. Then

rank (G ∪ Ir) = max

 ∑
1≤i1<...<ir≤v

|Qi1 | · · · |Qir | −
(
v

r

)
, pr(v)

+ 2,

rank (Jv ∪ Ir) = pr(v) + rank Jv,

rank Ir = max

 ∑
1≤i1<...<ir≤v

|Qi1 | · · · |Qir |, S(v, r)

 .

Consequently, rankTµ(X) = rank Jv + 1

The result for rankTµ(X) can also be deduced from the more general [5, Theorem 5.18].

Acknowledgment. We are grateful to the referee for a very careful reading of the paper.
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