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Abstract

For an arbitrary set X and an equivalence relation p on X, denote by P, (X) the semigroup of
partial transformations v on X such that xu C x(ker(«)) for every 2 € dom(«), and the image
of o is a partial transversal of p. Every transversal K of 1 defines a subgroup G = Gy of P, (X).
We study subsemigroups (G, U) of P,(X) generated by G U U, where U is any set of elements of
P, (X) of rank less than | X/p|. We show that each (G, U) is a regular semigroup, describe Green’s
relations and ideals in (G, U), and determine when (G, U) is an inverse semigroup and when it is a
completely regular semigroup. For a finite set X, the top J-class J of P,(X) is a right group. We
find formulas for the ranks of the semigroups J, G U I, J U I, and I, where [ is any proper ideal of
P,(X).
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1 Introduction

In semigroup theory, transformation semigroups play a role analogous to the role of permutation groups
in group theory. For a given set X, denote by 7'(X) the semigroup of full transformations on X, that is,
the set of all functions from X to X with function composition as the semigroup operation. (Throughout
this paper, we will write functions on the right and compose from left to right; that is, for f : A — B
and g : B — C, we will write x f, rather than f(z), and z(fg), rather than (gf)(x).) The semigroup
T(X) is fundamental in semigroup theory since every semigroup can be embedded in some 7'(X) [7,
Theorem 1.1.2]. This result is analogous to Cayley’s Theorem for groups, which states that every group
can be embedded in some symmetric group Sym(X) of all permutations on X . A natural generalization
of T'(X) is the semigroup P(X) of partial transformations on X (that is, functions whose domain and
image are included in X). The semigroup P(X) contains as its subsemigroups both 7'(X) and the
symmetric inverse semigroup Z(X) of partial injective transformations on X. The semigroup Z(X)
is fundamental for the important class of inverse semigroups (see [13] and [7, Chapter 5]) since every
inverse semigroup can be embedded in some Z(X) [7, Theorem 5.1.7], which is another analogue of
Cayley’s Theorem for groups.
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These transformation semigroups can be generalized by introducing an equivalence relation p on X.
In 1976, S. Madhavan [9] generalized the symmetric inverse semigroup Z(X) this way by defining the
semigroup Z,,(X') consisting of all partial transformations v on X such that xu = x(ker(a)) for every
x € dom(a), and im(«) is a partial transversal of p. Madhavan proved that every right normal right
inverse semigroup (regular semigroup satisfying e fg = feg for all idempotents e, f, g) can be embedded
into some Z,,(X'). In 2005, H. Pei [11] introduced the semigroup 7'(X, ;1) of full transformations o on X
that preserve p (for all x,y € X, if (z,y) € p then (za, ya) € p). The analogous semigroup P (X, )
of partial transformations on X preserving p was studied in [12]. In 2004, J. Aradjo and the second
author [2] studied the semigroup 7'(X, i, K) of full transformations o on X that preserve both p and a
fixed transversal K of ; (K« C K). One can consider the analogous semigroup P (X, u, K) of partial
transformations on X. We also note that some subgroups of Sym(X ), where X is finite, defined by two
partitions of X of the same type were studied in [1].

In 2010, S. Mendes-Gongalves and R.P. Sullivan [10] introduced the semigroup E(X, u) of full
transformations v on X such that i C ker(«), and its subsemigroup 7),(X) consisting of all o €
E(X, i) such that im(«) is a partial transversal of ;. They proved that T,(X) = Reg(E(X, 1)) [10,
Theorem 2.3], where for a semigroup S, Reg(.S) denotes the set of regular elements of S. Again, one can
consider the analogous semigroup EP (X, 1) of partial transformations « on X such that xp C z(ker(«))
for every x € dom(«), and its subsemigroup P,(X) consisting of all aw € EP(X, ;1) such that im(«) is
a partial transversal of .

The semigroups described in the preceding paragraph, and others, are special cases of the sandwich
semigroups studied in [4]. For non-empty sets X and Y, denote by P7T % the semigroup of all partial
maps from X to Y, with product * defined by f x g = fag, where a is a fixed partial map from Y to
X [4, 3.2]. The set Reg(PT %y ) of regular elements of P7 %y is a subsemigroup of PT %y [4, 3.3].
Let 1 be an equivalence relation on X, let K be a transversal of y, and let a : X — K be the function
such that ka=! = ku (where kpu is the p-class of k). Then PT% y is isomorphic to EP(X, ), and
Reg(PT %) is isomorphic to P, (X). Similarly, the semigroups E (X, u) and T),(X) are special cases
of the sandwich semigroups studied in [5].

For the semigroups of partial transformations mentioned above, we have

Z,(X) € Pu(X) € E(X,p) € P(X,p) and P(X,p, K) € P(X, pr).
For the corresponding full transformation semigroups, we have
(Z.(X)NT(X)) CTW(X) C E(X,u) CT(X,p) and T(X,p, K) C T(X, p).

Let o € P(X). We denote the domain of o by dom(«v), the image of o by im(«v), and the rank of «
(the cardinality of im(«)) by rank(«). The kernel of « is an equivalence ker(«) on dom(«) defined by

ker(a) = {(z,y) € dom(a) x dom(e) : zax = yar}.

Let 1 be an equivalence on X. For z € X, we denote by zu the p-equivalence class. Then X/u =
{zp : x € X} is the partition of X induced by . A transversal of 1 is any subset K of X such that K
intersects each element of X/ at exactly one point. Any subset of a transversal of 1 is called a partial
transversal of L.

Definition 1.1. Let i be an equivalence on X. An o € P(X) is called a u-transformation if xp C
x(ker(ca)) for every x € dom(«), and im(cv) is a partial transversal of ;.. We denote by P, (X) the set
of p-transformations on X. It is clear that P, (X) is a subsemigroup of P(X).



As we have already pointed out, P,(X) is a special case of the semigroup Reg(PT %y ) studied
in [4].

Definition 1.2. Let 1 be an equivalence on X. Fix a transversal K of p. An element 0 € P,(X) is
called a K -permutation if ker(c) = p and im(o) = K. We denote by Gy the set of K-permutations.
Then Gy is a subgroup of P, (X) isomorphic to the symmetric group Sym(K’) (see Proposition 2.1).

Notation 1.3. For the remainder of the paper, we fix a nonempty set X, an equivalence p on X, a
transversal K of u, the group G = Gy, the cardinal v = |X/u| = |K]|, and a nonempty set U of -
transformations of rank < v. We denote by (G,U) the subsemigroup of P,(X) generated by the set
G UU. Note that v may be finite or infinite and that for every o € P, (X), rank(a) < v.

The purpose of this paper is to study the semigroups (G, U). These semigroups generalize several
well-known semigroups. Let u = idyx. Then, K = X is the only transversal of y and G = G =
Sym(X). Let X = {1,...,n}. Define o, € P,(X) by la = 2 and za = « for all z # 1,
dom(f) ={2,...,n} and 28 = x for all x € dom(f). Then (G, {«, 5}) = P(X) [7, Exercise 1.9.13],
(G,a) =T(X) [7, Exercise 1.9.7], and (G, ) = Z(X) [7, Exercise 5.11.6]. For an arbitrary set X and
any proper ideal I of P(X), T'(X), or Z(X), we can select a suitable U such that (G, U) = Sym(X)UI.

In Section 2, we prove that every semigroup (G, U) is regular (Theorem 2.4) and characterize the sets
U for which (G, U) is an inverse semigroup (Theorem 2.7) and those U for which (G, U) is a completely
regular semigroup (Theorem 2.10). In Section 3, we describe Green’s relations (Theorems 3.1 and 3.2)
and the ideals (Theorem 3.4) of (G, U), and determine the partial order of ideals of (G, U) (Theorem 3.6).

In Section 4, we assume that X is a finite set. Then, every ideal of P,(X) is of the form I, = {a €
P,(X) : rank(a) < r} and every J-class of P,(X) is of the form J, = {a € P,(X) : rank(a) = 1},
where 0 < r < v. Moreover, J, is a right group (Proposition 4.9), and P,(X) = J, U I,_1. We
find formulas for the ranks of the semigroups G U I, (Theorem 4.7), J, (Proposition 4.9), J, U I,
(Theorem 4.10), and I, (Corollary 4.11), where 0 < r < v.

2 Regularity

In this section, we prove that each (G, U) is a regular semigroup and determine when (G, U) is an inverse
semigroup and when it is a completely regular semigroup.

An element a of a semigroup S is called regular if a = aza for some x € S. If all elements of
S are regular, we say that S is a regular semigroup. An element a’ in S is called an inverse of a in S
if a = ad’a and ' = a’ad’. Since regular elements are precisely those that have inverses (if a = axa
then a’ = zax is an inverse of a), we may define a regular semigroup as a semigroup in which each
element has an inverse [7, p. 51]. If every element of S has exactly one inverse then S is called an
inverse semigroup. An alternative definition is that S is an inverse semigroup if it is regular and its
idempotents commute [7, Theorem 5.1.1]. If every element of S is in some subgroup of S then S is
called a completely regular semigroup [7, 4.1].

It is well known that P(X), T'(X), and Z(X) are regular semigroups. The semigroup Z,,(X) is also
regular, but EP (X, u) and P(X, u1) are not regular semigroups [9, 10, 12].

We first prove that G = G is a group.

Proposition 2.1. The set G = Gy from Definition 1.2 is a subgroup of P, (X) isomorphic to the sym-
metric group Sym(K).

Proof. Define f : Sym(K) — P,(X) by 6f = o, where for every a € K, (au)o = {ad}. Then
ker(o) = pand im(o) = K, so o € G. It is straightforward to check that f is an injective semigroup
homomorphism with im(f) = G. The result follows. O



The following lemma will be crucial in our arguments. We will use it often without mentioning it
explicitly.

Lemma 2.2. Let L be a partial transversal of p with |L| < |K|. Suppose o : L — K is injective. Then
o can be extended to 7 € G.

Proof. Recall that v = |K| and let » = |L|, so r < v. Since o is injective, |[Lo| = |L| = r < v. Let
K' ={a € K :a€ buforsomebe L}, K1 = K\ K', and Ko = K \ Lo. Since L is a partial
transversal of u, we have |K’| = |L| = r. It follows that |K;| = |K2| = v — r (if v is finite) and
| K| = |K2| = v (if v is infinite). Fix a bijection g : K1 — Ko.

Define @ : X — X as follows. Let z € X. If zpu N L = {b}, then define (zpu)g = {bo}. If
xp N L = 0, then define (zp)o = {ag}, where {a} = K N xu. Itis then clear that & € G and 7 is an
extension of o. O

Notation 2.3. Let o € P,(X) with rank(c) = . Then 0 < r < v. Write im(«) = {z;}1<i<, and let
A; = z;o~ ' N K. We will write
<Ai>
o= )
T

where it will be understood that 7 is a cardinal ranging from 1 to = rank(«). This notation is justified
by the fact that o € P,(X) is determined by its values on dom(a) N K.

For example, let X = {1,...,8}, u correspond to the partition {{1,2,3}, {4,5}, {6,7,8}}, and
K = {1,4,6}. Then o, € P,(X) defined by {1,2,3,4,5}a = {1}, {6,7,8}a = {4}, and
{4,5,6,7,8}5 = {6} will be written

o () mag— (490

Theorem 2.4. Each semigroup (G,U) is regular.
Proof. Let o € (G,U). If rank(a) = v, then o € G, and so « is a regular element of (G, U) since

G is a group. Suppose o = ( Z) with rank(a) < v. Fix a; € A; (note that a; € K) and define

i
o:{z;} - K by z;0 = a;. By Lemma 2.2, o can be extended to & € G. It is clear that aoa = «, s0 @
is regular. O

7

Remark 2.5. Let o = <ﬁ1> € (G,U) with rank(a) < v and let @ € G be as in the proof of

Theorem 2.4. Since aca = «, the transformation o/ = Gao is an inverse of . For this particular
inverse, we have
rid = xi(Gao) = a;(av) = 2,0 = a;.

Theorem 2.4 is not true if we allow U to contain transformations of rank v. For example, suppose

| X/ = No with K = {ay,a2,...}. Consider o = (1;11) of rank Xy with A; = {ag;}. Then (G, a)
(2

is not a regular semigroup. Indeed, suppose & = afa for some 8 € (G,«a). Then a; = agiax =

azi(afa) = a;(Pa), which implies a;8 € agip. Thus im(5) # K, which is impossible since im(a) =

K, and so the image of every element of (G, o) is K.

However, P,(X) is a regular semigroup. We fix an idempotent ¢ € P, (X) such that ker(e) = p.
Since then the image of ¢ is a transversal of y, we may assume that im(e¢) = K. Note that ¢ is the
identity of the group G = Gy and (ap)e = {a} forevery a € K.

For a semigroup S, we denote by Reg(.S) the set of all regular elements of S.

4



Theorem 2.6. P,(X) = Reg(eP(X)). Consequently, P, (X) is a regular semigroup.

Proof. Let a = (i’) € P,(X). Fix a; € A; and consider = (%M € P(X). Then o = e« and
7 7

B=¢eB,s0oq,f €cP(X),and a = afa. Thus o € Reg(eP(X)).

Conversely, let & € Reg(¢P(X)). Then, o« = afa for some § € ¢P(X). By the definition of
e, we have zp C x(ker(w)) for every z € dom(w). Let x,y € dom(w) with (zor,ya) € p. Then
za,ya € dom(f), and so (za)B = (ya)B (since zu C z(ker(f)) for every z € dom(f)). Thus,
za = z(afa) = ((za)p)a = ((ya)pf)a = y(afa) = ya, which implies that im(«) is a partial
transversal of ;.. Hence o € P, (X) O

We note that e P(X) = EP(X, i) (see Section 1).

Theorem 2.7. A semigroup (G,U) is an inverse semigroup if and only if the following conditions are
satisfied:

(@) foralla € U and z € dom(«), xpu = z(ker(a));

(b) forall o, B € U, z € dom(«), and y € dom(p), if (xa, yB) € p, then ra = yp.

Proof. (=) Suppose that (a) does not hold. Then there is o = ) € U such that |A;| > 2 for some

T
j. Select a; € A; (for each i) and a € A; such that a # a;. Define 01,09 : {z;} — K by zj01 = q;
for all ¢, x;09 = a; if i # j, and z;02 = a, and extend these mappings to 01,02 € G as in the proof
of Lemma 2.2. Both 101 and 2a05 are inverses of o (see Remark 2.5). Moreover, they are distinct
since xj(o10i01) = a; and xj(020072) = a. Thus (G, U) is not an inverse semigroup.

Suppose that (b) does not hold. Then there are v, 8 € U such that, for some 2 € dom(«) and y €
dom(f), (za, yB) € pand xa # yfB. Let o' and B’ be inverses of « and 3 in (G, U), respectively. Then
o'« and ' are idempotents. Since (z«, y3) € p, we have (za)f’ = (yB)F and (yB)a’ = (za)d/.
Thus

(za)(@/aB'B) = (wa)(B'8) = (za)B)B = ((yB)B) = yB.

On the other hand,

(za)(B'Bda) = (yB)(B'Bda) = (yB)(d'a) = ((yB)a')a = ((za)a')a = za.

Thus the idempotents o/« and /3’3 do not commute, and so (G, U) is not an inverse semigroup.

(<) Conversely, suppose that (a) and (b) are satisfied. Note that these conditions are also satisfied
by the elements of the group G and they are preserved by the composition of transformations. It follows
that (a) and (b) hold for all elements of (G,U). We already know that (G, U) is a regular semigroup.
Let ¢,£ € (G,U) be idempotents. We will show that € and £ commute. Note that o« € P,(X) is an
idempotent if and only if for all z € dom(«), (z, za) € ker(«). Let x € dom(gf), thatis, x € dom(e)
and ze € dom(¢). Since ¢ satisfies (a), we have (z,xe) € u. Since x € dom(e) and ze € dom(§), it
follows that x4 C dom(e) and xp = (ze)p C dom(&). Further, by (a) applied to &, (x,x€) € p. Thus
x € dom(&e), so dom(e€) C dom(&e). The reverse inclusion follows by symmetry, so dom(e€) =
dom(&e). Now, both x(£€) and z(&e) are in zp. Thus, by (b), z(c£) = x(£e). Hence the idempotents in
(G,U) commute, and so (G, U) is an inverse semigroup. O

Using arguments from the proof of Theorem 2.7, we can obtain the following result.

Theorem 2.8. If | X| > 2, then P,(X) and T, (X) are not inverse semigroups.



Regarding a criterion for (G, U) to be a completely regular semigroup, we will use the following
result about P(X ). This result has been proved for 7'(X) [3, Theorem 2.10] and extends easily to P(X).

Lemma 2.9. For every o € P(X), v is in a subgroup of P(X) if and only if im(«) is a transversal of
ker(a).

Theorem 2.10. A semigroup (G,U) is completely regular if and only if for every nonzero o € U,
ker(a) = X x X.

Proof. (=) Suppose ker(a) # X x X for some nonzero a € U. Note that ker(cv) # p since rank(a) <
v. Thus there are two possible cases.

Case 1. ker(a) = p N (dom(ar) x dom(er)) and dom(ar) # X.
Then there is @ € K such that ap N dom(a) = ). Let € dom(«) (such an z exists since o # 0)
and y = za. Define 0 : {y} — K by yo = aand extenditto g € G. Let 5 = a7 € (G,U) and note

that 23 = a and @ ¢ dom(f3). Thus im(f3) is not a transversal of ker(/3), and so (G, U) is not completely
regular.

Case 2. ker(«) # p N (dom(a) x dom()).

Then, since o # 0, there are x,y € dom(«) such that (z,y) € ker(a) and (z,y) ¢ p. If im(a)
is not a transversal of ker(«a), then (G, U) is not completely regular. Suppose im(«) is a transversal of
ker(a). We can then assume that = € im(«). Let z € dom(«) with zaw = x and let w = za.

Suppose (z,w) € ker(a). Then w = x since im(«) is a transversal of ker(«/). Thus za = = = za,
and so (z,z) € ker(«). Since ker(a) # X x X, there is u € X such that (z,u) ¢ ker(a). Suppose
u € dom(w) and let ¢ = uc. Note that ¢ # x (since (z,u) ¢ ker(«)), and so (x,t) ¢ ker(a) (since =
is the only element of im(«) in the ker(«)-class of z). Let {a} = K Nzu and {b} = K N yu. Then
a # b (since (z,y) ¢ p). Define o1 : {z,t} — K by xo1 = a and to; = b and extend itto o7 € G. Let
f1 = ao1 € (G,U) and note that ker(31) = ker(a), 1 = a and uf5y = b. Thus a,b € im(f;) and
(z,y) € ker(f1), soim(f;) is not a transversal of ker(3;). Suppose u ¢ dom(«) and let {c} = K Nup.
Define 09 : {z} — K by zoy = c and extend it to o3 € G. Let f2 = aoz € (G,U) and note that
ker(f2) = ker(«), zf52 = ¢, and ¢ ¢ dom(f2). Thus im(f2) is not a transversal of ker(f2). Hence,
when (z,w) € ker(a), (G, U) is not completely regular.

Finally, suppose (z,w) ¢ ker(«). Let {a} = KNzpand {b} = KNyu. Then a # b (since (z,y) ¢
w). Define o : {z,w} — K by 0 = a and wo = band extenditto € G. Let § = av € (G,U) and
note that ker(f) = ker(a), 26 = a and 3 = b. Thus a,b € im(5) and (z,y) € ker(f3), so im(/3) is not
a transversal of ker(3). Hence, when (z, w) ¢ ker(«), (G, U) is not completely regular.

(<) Conversely, suppose ker(«) = X x X for every nonzero « € U. Then, every element of (G, U)
is either an element of the group G or a constant idempotent with domain X. Thus (G, U) is completely
regular. O

Using arguments from the proof of Theorem 2.10, we can obtain the following result.

Theorem 2.11. If 1 # X x X, then P,(X) and T,,(X) are not completely regular semigroups.

3 Green’s relations and ideals

In this section, we determine Green’s relations and ideals in (G, U).
Let S be a semigroup and denote by S' the semigroup S with an identity adjoined (if necessary).
Then, for every a € S, S'a, aS*, and S'aS! are, respectively, the principal left ideal, principal right



ideal, and principal ideal generated by a. The principal ideals of .S have been used to define five equiv-
alence relations on S that are among the most important tools in studying semigroups. For a,b € S,
we say that a L b if Sla = S'b, aRbif ST = bSY, and a T b if S*aS! = S'bSL. We define H as
the intersection of £ and R, and D as the join of £ and R, that is, the smallest equivalence relation on
S containing both £ and R. These equivalences are called Green’s relations. The relations £ and R
commute [7, Proposition 2.1.3], and consequently D = Lo R = R o L. For a Green relation F in S and
a € S, we denote by Fy, the F-equivalence class of a.

Green’s relations in the semigroup P(X) are well known: a L3 < im(a) = im(5); aR 5 <
ker(a) = ker(8); o J B < rank(a) = rank(5), and D = J.

If T is a regular subsemigroup of S and F € {L£, R, H}, then F in T is the restriction of F in S to
T x T [7, Proposition 2.4.2]. Thus, by Theorem 2.4, we have the following result.

Theorem 3.1. Forall o, € (G,U), a L f < im(a) = im(B) and a R < ker(«) = ker ().

The corresponding statements about relations D and 7 in a regular subsemigroup 7" of a semigroup
S are not true. Therefore, the next result requires a proof. First we note that in any semigroup S, the
inclusion relation on the set of principal ideals induces the partial order relation < on the set of 7 -classes:

J, < Jp < StaSt C S'pSt.

Theorem 3.2. In every (G,U), D = J. Moreover, if o, € (G,U), then J, < Jg < rank(a) <
rank(B). Consequently, o J 3 < rank(a) = rank(3).

Proof. Let o, 3 € (G,U). If J, < Jg, then a = 1872 for some 71,72 € (G, U)!, which implies
rank(a) < rank(J). Conversely, let r = rank(«), ¢ = rank(/3), and suppose r < t. If r = ¢t = v, then
a, 8 € G, and so, since G is a group,  J 3, which implies J, < Jg. Suppose r < v. Let o = <AZ>

K3

and 8 = (5”) with1 < i <rand1 < j <t Fix b; € Bj and define 01 : {x;} — {b;} by zj01 = b;
j
(1 <4 <r). Then o7 is well defined (since r < t) and injective. Thus, since < v, o1 can be extended

toor € G. Forevery 1 <i <r,let{¢} = z;u N K, and define 03 : {y; }1<i<r = {ci} by yio2 = ¢,
and extend o3 to 73 € G. Let o € (G, U) be an inverse of . Then, forall 1 < i < rand all a; € A;,

ai(ao1Bod a) = zi(a1 8020/ ) = bi(fozd/ o) = yi(o20/ )

= ¢i(d/a) = zi(da) = a;(ad’a) = a;a.

It follows that o = (ao7)[(020/ @), and so J,, < J3.

In every semigroup, D C J. Let o, 5 € (G,U) with « J 3. Then, by the first part of the proof,
rank(a) = rank(f). Let r = rank(«). If r = v, then o, 5 € G, and so D . Suppose r < v. Let
a = (il), and 8 = (Bf>, with 1 < i < r. Fix a; € A; and b; € B;, define 01 : {z;} — {a;}

(A (A
by zijo1 = ai, o2 @ {a;} — {bi} by a;o0 = b;, and extend 01 to 57 € G and 02 to 53 € G. Let
v =ao1 028 € (G,U). Then, forall 1 <i <randall¢; € A;,

¢y = ci(ao1 0283) = a;(ao1 028) = xi(01 020) = ai(028) = biB = y;.

It follows that ker(y) = ker(«) and im(y) = im(/3). Thus, by Theorem 3.1, « Ry and vy £ /3, and so
aDpBsinceD =RoL.Hence 7 C D,andsoD = J. O



Notation 3.3. Let 5 € (G,U) with r = rank(/3). By Theorem 3.2, the principal ideal of (G, U)
generated by [ consists of all « € (G, U) such that rank(«) < r. We denote this principal ideal by I,.,
that is,

I, = {a € (G,U) : rank(a) < r}.
For a cardinal k, we denote by k™ the successor cardinal of k [8, p. 162]. For 1 < r < v™, let

E, ={a € (G,U) : rank(a) < r}.
It is clear that ), is an ideal of (G, U). Note that E,+ = (G,U) and that forevery 0 < r < v, I, = E,+.

We will now prove that every ideal of (G, U) is equal to some ideal FE,, where 1 < r < v*, and
determine the partial order of ideals of (G, U).

Theorem 3.4. Let I be an ideal of (G,U). Then I = E, for some r with1 <r < v™,

Proof. Let r be the minimum cardinal such that r < v™ and rank(3) < r for every 8 € I. (Such an r
exists because rank(3) < v™ forevery 8 € (G,U).) Clearly, I C E,. Let o € E,. By the minimality of
r, there is 3 € I such that rank(a) < rank(f3). By Theorem 3.2, o = 71372 for some 71,72 € (G, U)*.
Thus o € I, and so E, C I. ]

It follows from Theorem 3.4 that the ideals of every semigroup (G, U) form a chain. To describe this
chain, we need the following lemma.

Lemma 3.5. Let t < v and suppose U contains some « with rank(«) = t. Then:

(1) for every cardinal v with 1 < r < t, there is § € (G,U) such that rank(3) = r;
(2) if U contains some y with dom(y) # X, then 0 € (G,U).

Proof. Leta = <;12>, where 1 < ¢ < t, and fix a; € A;. To prove (1),let 1 < r < t. Suppose t > Ng

(2
and consider two possible cases.

Case 1. There is a cardinal [ with 1 <[ < ¢ such that | 4;| > ¢.

Then, there is a subset {b;},<;j<; of A; such that each b; # a; and bj, # bj, if j1 # jo. If I < 7,
then define o : {z;} — K byzo = q;if 1 < i < r,and zj0 = b;if r < i < ¢;if I > r, then
define 0 : {z;} - Kbywzijoc =a;ifl <i<r, z,0 =a;andz;c =b;if r < i < t. In either
case, we can extend o to & € G. Let § = aoa € (G,U). Then, im(8) = {z;}1<i<, if | < r, and
im(B) = {xi}1<i<r U {x;} if I > r. In either case, rank(5) = r.

Case 2. For every cardinal 7 with 1 <14 <, |A;| <t

Then, [|JA;] <t-t =1t < v, and so there is a subset {b; },«j<¢ of K \ |JA; such that b;, # b;,
if j1 # jo. Define o : {x;} — Kby zj0 = a;if 1 < i < r, and x;0 = b; if r < i < t. Then, for
= aoa € (G,U), we have im(8) = {x;}1<i<y, and so rank(8) = r.

Suppose ¢ < Ng. We may assume that 7 = ¢ — 1. (The result will then follow by an inductive
argument.) Suppose there is [ € {1,...,t} such that |A;| > 2. We then have some b € A; with b # a;.
Select j € {1,...,t} with j # [ (possible since 1 < r < ¢, sot > 2). Define o : {z;} — K by
xijo = a; if i # j, and ;0 = b, and extend o to & € G. Then, for § = ada € (G,U), we have
im(3) = {x;}i~;, and so rank() = ¢t — 1. Suppose |A;| = 1 for all 7. Since ¢ < v, we then have some
be K\ U< Ai. Define o : {z;} - Kby 20 =a;ifi < tand ;0 = b, and extend o to 7 € G.
Then, for 3 = aga € (G, U), we have im(8) = {z;};4, and so rank(3) =t — 1.

To prove (2), suppose U contains some v with dom(y) # X. Select a € K such that a ¢ dom(7).
By (1), there exists 5 € (G, U) with rank(5) = 1. Let im(3) = {y}. Define o : {y} — K by yo = a
and extend 0 to @ € G. Then S5y = 0. O




For sets A and B, we will write A C Btomean A C B and A # B.
Theorem 3.6. Let m = min{r : rank(«) < r for every o € U}. Then:

(1) if U consists of full transformations on X, then the chain of ideals of (G, U) is isomorphic to the
chain of cardinals {r : 2 <r < m}U{v"};

(2) if U contains a strictly partial transformation on X, then the chain of ideals of (G, U) is isomor-
phic to the chain of cardinals {r : 1 <r <m}U{v"}.

Proof. Note that m < v. Suppose U consists of full transformations on X. Let 2 < r < m. By the
minimality of m, there is « € U such that »r < rank(«). By Lemma 3.5, (G, U) contains a trans-
formation of rank < r. Thus, for every cardinal r with 2 < r < m, E,. # (). Moreover, E,, # ()
(since F C E,,) and E; = () (since 0 cannot be a product of full transformations on X). Hence, by
Theorem 3.4, {E, : 2 < r < m} U {E,+} is the set of ideals of (G, U). Define

f{r:2<r<mlu{vt)} = {E. :2<r<m}uU{E,}

byrf=FE,(2<r <m)andv"f = E,:. Itis then clear that f is surjective and that it preserves the
order (forall s,t € {r: 2 <r <m}uU{vt},if s <t then Es C Ey). Lets,t € {r: 2 <r <m}u{v'}
with s < t. If t = v, then E;, C E; since G C E,+ and GNE, = (). Suppose t < m. By the minimality
of m, U contains « such that s < rank(«). If rank(a) < t, then o € Ey \ Es, so Es C E;. Suppose
rank(«) > t. Then, by Lemma 3.5, there is § € (G,U) with rank(8) = s. Thus 8 € E; \ Es, so
E, C E;. Hence f is injective, and so it is a poset isomorphism.

We have proved (1). The proof of (2) is almost identical. The difference is that, if U contains a
strictly partial transformation, then E; # () by Lemma 3.5. O

For example, denote by Z, @, and R, the sets of integers, rational numbers, and real numbers, re-
spectively. Let X = R, let 1 be defined by the partition

{{-n,n} neZ}U{Q\Z}U{{z}: 2z € R\ Q},
and K = {0,1,2,...} U{3} U {z : 2 € R\ Q}. Then v = 2%°. Consider the idempotent

({0} {1} {2} ... {3} K\Q
6_<0 1 2 ... 1 ﬂ)ep“(R)

2

(see Notation 2.3) and the semigroup (G, €). Note that ¢ is a full transformation on R and that rank(e) =
No. Thus, the cardinal m from Theorem 3.6 is N; (see [8, p. 131]) and the chain of ideals of (G, ¢) is
isomorphic to the chain of cardinals

2<3 <4<, <Ry <Ny < (2V)T,

which, in turn, is isomorphic to the ordinal wgy + 2 (see [8, p. 131]).

4 Ranks

Throughout this section, X will be a finite set. By the more general results obtained in [4, 3.4], we can
conclude the following. Every ideal of P,(X) is of the form Es; = {a € P,(X) : rank(«) < s}, where
1 < s < v'. For a finite set X, Es = I, = {a € P,(X) : rank(a) < r}, where r = s — 1. Thus
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{I, : 0 < r < v} is the set of ideals of P, (X). Each ideal I, is principal and is generated by any
a € P,(X) of rank r. Moreover, I, = P,(X) and if r < v, then I, is a proper ideal of P,(X). Let
J, be the set of elements of P,(X) of rank r, where 0 < 7 < v. Then {J, : 0 < r < v} is the set of
J-classes of P, (X), with Jyp < Ji < ... < J,.

Since v is finite, J, is the union of groups G,,;, where M ranges over all transversals of y (see
Definition 1.2). We will show that J,, is a right group (Proposition 4.9).

In this section, we find formulas for the ranks of the semigroups G U I, J,,, J, U I, and I,., where
0 <7 <w. (Forr=v—1, wehave J, UI, = P,(X).) We also record the corresponding formulas for
T,(X) =P,(X)NT(X).

Definition 4.1. Let S be a semigroup. The rank of S, denoted rank S, is the minimum cardinality of a
generating set of S.

The ranks of various transformation semigroups have been found. For example, for a finite set X,
rank P(X) = 4, rank T(X) = 3, and rank Z(X) = 3. The following general result for the ranks of
finite semigroups proved in [6] is useful when working with transformation semigroups.

Lemma 4.2. ([6, Theorem 10]) Let S be a finite nontrivial semigroup with a maximal regular class
J-class J such that (J) = S. Suppose that each group H-class of J has rank < 2, and it is not the case
that J has exactly one idempotent in every R-class and in every L-class. Then rank S = max{m;, m,},
where m; and m, are the numbers of L- and R-classes in J, respectively.

Definition 4.3. Let o = <ﬁ1> € P,(X) with rank(a) = r, 0 < r < v, as in Notation 2.3. In this
7

section, we will always assume that |[A;| > [Ag| > ... > |A,|. Letn; = |4;| and m = |K \ Uy <, 4l
Then the sequence
(nlu ng,..., n?"7m)

will be called the pi-type of o and denoted type, (o). We will call the number m the deficit of «. Note

that ny 4+ ng + - - - + n, + m = v and that if « # 0, then the sequence (n1, na, ..., n,) is a partition of
v — m with r parts [14, p. 235].
By a u-type we will mean any sequence (n1,n2,...,n,;m) with 0 < r < v, eachn; > 1, m > 0,

andni +ns+---+n.+m=o.

For example, every o € G has p-type (1,1,...,1;0). Let X = {1,...,9}, u be defined by the
partition {{1, 2,3}, {4,5}, {6,7,8}, {9}},and K = {1,4,6,9}. Then

o= ({1’14} {g}> € Py(X)

has p-type (2,1;1).
Lemma 4.4. Let o, f € P,(X) with rank(a)) = rank(3) = r < v. Then:
(1) typey(oB) = type,(B) for all o € P,(X) with rank(o) = v;

(2) if a = B, for some v € P, (X), then type,(a) = typeu ().

Proof. Let o = <§z> and 8 = <B'i>, 1 <4 < r. Then for every o € P,(X) with rank(o) = v,
(2 (2
1
of = BZ; ), where Bijo™! = {k € K : ko € buforsome b € B;}. Since o maps different
(2
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elements of K to elements in different p-classes, |B;o ! =

pi-type.

Suppose o = [~ for some v € P,(X). Let b € B;. Then either b € Aj;, for some j, or b €
K\Uj<;<, Ai. Suppose b € Ajandletc € B;. Then b = ¢f3, and so x; = ba = b(B7) = ¢(Bv) = ca
Thus C_E_/lj.

We have proved that for every i, either B; C Aj, for some j, or B; C K \ |J;<;<, Ai. Letj €
{1,...,7} and a € A;. Then a € dom(c), and so a € dom(B) (since o = 37). Thus a € B; for some
i, and so, by the foregoing argument, a € B; C A;.

It then follows that every A; is a union of some distinct B; , .. ., Bik]-- But the number of A;s is r

| B;| for all 7, so o3 and 3 have the same

and the number of B;s is also r. Hence each k; must equal to 1, that is, for every j, there is i; such that
Aj = B;,, and ij, # ij, if j1 # jo. It follows that type, (a) = type,(8). O

The following proposition will be crucial for the rank results.

Proposition 4.5. Let 0 < r < v and suppose U C J,, where J,. is the J -class of P,(X) of rank r. Then
Jr € (G, U) if and only if for every u-type (ni,ne, . ..,n,;m) and every partial transversal L of u with
|L| =rand L € K, there are o, 3 € U such that type,(a) = (n1,n2,...,ny;m) and im(3) = L.

Proof. Suppose J, C (G,U). Let (n1,na,...,n,;m)bea u-type and L be a partial transversal of p with
|L| =rand L Z K. Since J, C (G,U), there is n € (G, U) such that type,(n) = (n1,n2,...,n,;m)
and im(n) = L. Since (G,U) is generated by G U U, n = oay or n = avy, where 0 € G, o € U,
and v € (G,U). Since enx = «, where ¢ is the identity in G = Gy, we may assume that n = oar.
Thus, by Lemma 4.4, type,, () = type,(ca) = type,(n) = (n1,na, ..., n.;m). Also, n = 63, where
0 € (G,U) and B € U. (Note that 3 cannot be followed by any element 6 € G since im(n) = L and
L ¢ K.) Then L C im(/3), and so im(3) = L since |L| = rank(5) = r.

Conversely, suppose that the set U satisfies the given condition. Let v = <CZ> € Jr, and let
7
(n1,n2,...,n.;m) be the p-type of v (so n; = |C;| for every i) and L = im(y) = {y;}. By the
i
T
|Cil, so there is a bijection f; : A; — C;. Define o : Ulgz‘gr A; = Kbyao = af;ifa € A;, and extend
otod € G. (Since X is finite, Lemma 2.2 is also true if | L| = | K|.) Then

o= (17)= (48)- (%)

Suppose {yi}1<i<r € K. Define 6 : {z;5} — K by (7,5)0 = y;, and extend § to 6 € G. Then

(@)"'azé = . Suppose {y;} Z K. Then, by the hypothesis, there is 3 = (5’) € U. Fix b; € B;,
define § : {x;7} — K by (z;6)5 = b;, and extend § to 6 € G. Then (7) 'azd3 = 7. Hence
v € (G,U),and so J, C (G,U). O

hypothesis, there is @ = € U with type,(a) = (n1,n2,...,n;m). Then, for every i, |A;| =

For positive integers n and r < n, denote by p,(n) the number of partitions of n with r parts. For
example, (3,1,1) and (2, 2, 1) are the only partitions of 5 with 3 parts, so p3(5) = 2. There is no known
closed formula for calculating p,.(n). For recursive formulas, see [14, Theorem 2.4.4].

Lemma 4.6. Let o € P,(X) with rank(a) = r < v — 1. Then, there are €,y € P,(X), both of rank
r + 1, such that o = €.
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Proof. Let a = ;12 and fix a; € A;. Choose y € X such that y ¢ x;u, forevery i, 1 < i < r
(2
(possible since r < v — 1 and | X/u| = v), and note thaty ¢ {x1,..., 2, }.

Suppose |A;| > 3, for some ¢, and let b, c € A; with b # c and b, ¢ # a;. Define ¢ € P,(X), with
dom(e) = dom(«), by ke = a; if k € A; andi # t, ke = a; if k € Ay and k # b, and be = b. Then
im(e) = {a;}i1<i<r U {b}. Define v € P,(X), with dom(y) = dom(«), by ky = x; if k € A; and
i#t ky=uaiifk € Ayand k # ¢, and ¢y = y. Then im(e) = {x; }1<i<r U {y}.

Suppose |As| = |Ay = 2, for some distinct s,¢, say A, = {as,b} and A, = {ay,c}. Define
e € P,(X), with dom(e) = dom(a), by ke = a; if k € A; and i # s, ase = ag, and be = b. Define
v € P,(X), with dom(y) = dom(a), by ky = z; if k € A;and i # ¢, ayy = x4, and ¢y = y.

Suppose |As| = 2, for some s, say A; = {as, b}, and |A4;| = 1 forevery i # s. Since r < v — 1,
there is ¢ € K such that ¢ ¢ A; for every i. Define ¢ exactly as in the previous case. Define v € P,(X),
with dom(y) = dom(a) U cp, by ky = x; forall k € A;, and ¢y = v.

Finally, suppose |A;| = 1 for every 4. Since r < v — 1, there are distinct b, ¢ € K such that b,c ¢ A;
for every i. Define ¢ € P,(X), with dom(e) = dom(a) U by, by ke = a; for every k € A;, and be = b.
Define ~y exactly as in the previous case.

In all cases, im(¢) = {a;}i<i<r U {b} (so rank(e) = r + 1), im(y) = {x;}1<i<r U {y} (s0
rank(y) =r+ 1), and a = 7. O

Let {Q1,Q2,...,Qy} denote the set of u-classes.

Theorem 4.7. Let v > 3 and let I, be the ideal of P,(X) consisting of all transformations of rank < r,
where 1 < r < wv. Then

v—r

v

rank (G U I,) = max Z |Qiy |-+ 1Qi, | — (r)’ Zpr(v—m) + 2.
1< <. < <v m=0

Proof. Let 51 = Y10 o o5 < |Qir| -+ |Qi.| — (7) and s5 = Y20 " pr(v — m). Then s is the
number of partial transversals L of p such that |L| = r and L ¢ K, and s9 is the number of p-types

(n1,n2,...,npym) with0 < m < v —r.
Suppose s1 > s3. Construct a set U of transformations of rank r as follows. For every u-type
T = (n1,n2,...,n.;m), select a with type, (o) = 7 and add it to U. Since s; > sy, we can make

these selections in such a way that every o € U has image L Z K and any two distinct oy, e € U have
distinct images. At this point, there are s; — so partial transversals L of y such that |L| = r, L Z K, and
L is not the image of any o € U. For each such an L, select an idempotent (or any element) € € I, with
im(e) = L and add it to U. Then U consists of s; elements of rank 7.

Suppose s1 < so. Construct a set U of transformations of rank r as follows. For every p-type
T = (n1,n2,...,n.;m), select a with type, (o) = 7 and add it to U. Since s; < s2, we can make these
selections in such a way that for every partial transversal L of u with |[L| = rand L € K, thereis o € U
such that im(a)) = L. Then U consists of so elements of rank 7.

In either case, the u-types of elements of U cover all u-types (n1,ng, ..., n,;m) and the images of
elements of U cover all partial transversals L of x such that |[L| = r and L ¢ K. Thus, by Proposi-
tion 4.5, (G, U) contains all elements of I, of rank r. Further, by Lemma 4.6, it also contains all elements
of I, of rank < . Hence GUU generates GU I,.. Moreover, by Proposition 4.5, U is a set of the smallest
cardinality such that G U U generates G U I,.

The result now follows since |U| = max{sy, s2} and G = Sym(K), so it is generated by 2 elements.

O

12



If v > 1 and r = 0, then Iy = {0}, so G U I has rank 3 if v > 3 (since then G has rank 2), and it has
rank 2 if v € {1, 2} (since then G has rank 1). If v = 2 and r = 1, then G U I; has rank max{sy, sa} + 1
(since then GG has rank 1).

The following result is a special case of [4, Theorem 4.4].

Lemma 4.8. Let J, be the J-class in P,,(X) consisting of all transformations of rank r, where 0 < r <
v. Then:

(1) Jp has S(v+ 1,7+ 1) R-classes and 31 <; - o5 <, |Qir| -+ Qi | L-classes;

@) Jrhas 'S+ 1r+1) 3105, < cip<o [Qir| -+ |Qi, | elements.

Recall that J,, is the top J-class of P,(X). A semigroup S is called a right group if S = G x E,
where G is a group and FE is a right zero semigroup [7, Exercise 6].

Proposition 4.9. Letv > 1. Then:
(1) J, is a right group;

(2) if p # idy, then rank J, = |Q1] - |Qu].

Proof. Recall that J,, is the union of groups G,,;, where M ranges over all transversals of ;. Fix one
of these groups, say G = G, and let F be the set of idempotents in .J,. Note each element of E is
the identity of some group G, and that for alle € E and 8 € J,, ¢ = . Thus E is a right zero
semigroup. Define f : G x E' — J, by (a, €) f = ae. The function f is a homomorphism, since for all
(ov,e),(B,€) € G X E,

((a,e)(B,))f = (aB, e€) f = (aB, &) f = afs = a(ef) = ((a, ) /)((B,€)[)-

Let (o, €), (5,€) € Gx E with ae = B€. Thenim(e) = im(&), which implies € = ¢ since an idempotent
in J, is completely determined by its image. Let x € X. Then (za)e = (z5)€ = ()¢, and so za and
a3 are in the same p-class (since ker(¢) = ). Thus, since im(«) = im(f) = K and K is a transversal
of p, it follows that xa = 3. Hence (o, ) = (3,&), so f is injective. Thus, it is also surjective since
G x E and J, are finite semigroups of the same size. (Indeed, |G| = r!, |E| = |Q1]---|Q], and
|Jy] = 7!|Q1] - - - |Qy| by Lemma 4.8.) Hence f is an isomorphism, which proves (1).

If u # idy, then J, satisfies the hypotheses of Lemma 4.2. By Lemma 4.8, .J,, has one R-class and
|Q1] - - |Qy| L-classes, so (2) follows. O

If 4 = id, then J, = Sym(X), and so rank J,, = 2 if | X| > 3, and rank J, = 1if | X| < 2.

Theorem 4.10. Let v > 2 and let I, be the ideal of P,(X) consisting of all elements of rank < r, where
1 <r<w. Then

rank (J, U I,) = Z pr(v —m) + rank J,,
m=0
where rank J, = |Q1]-|Q2] - - - |Qy| if p # idx, rank J, = 2ifp = idy and | X| > 3, andrank J, =1
if1X] = 2.

Proof. Let A be any set of generators of J, U I,.. Let (n1,ng,...,n,;m) be a u-type. Since A generates
Jy U I, there is n € (A) such that type,(n) = (n1,n2,...,n,;m). Since rank(n) = r, we have
n = oayorn = ay, where 0 € J,, « € A with rank(ar) = r, and v € J, U J,. Since eax =
«a for any idempotent € € .J,, we may assume that n = cay. Thus, by Lemma 4.4, type,(a) =
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typeu(oa) = typeu(n) = (n1,n2,...,n,;m). Hence for every p-type 7 = (ni,n2,...,n,;m), A
contains an element @ with type,(a) = 7. Since A must also contain a generating set of J, and
> o pr(v —m) is the number of p-types (n1,n2,...,n.;m), we have |[A| > 37" p.(v —m) +
rank J,, and so rank (J, UI.) > > """ p.(v —m) + rank J,.

We will now construct a set A of generators of .J, U I, with exactly > " p,(v — m) + rank J,
elements. Begin with A being a set of generators of J,, of the smallest cardinality. Then for every u-type
T = (n1,n2,...,n,;m), select o with type,, (o) = 7 and additto A. Let L = {my, mo, ..., m,} be any

partial transversal of p of size r. Then L C M for some transversal M of u. Select any o = <f1> €A
(3

of rank r. Define o : {z;} — M by x;0 = m,; and extend o to & € G s (possible by Lemma 2.2 applied

to Gpr). Then
(E)_IOZE _ Ao _ Ao
;0 m; )

Thus (7)~'a@ € (A) and im((7) 'a@) = L. Hence the p-types of elements of (A) cover all u-types
(n1,n2,...,n,;m) and the images of elements of (A) cover all partial transversals L of p such that
|L| = r. Thus, by Proposition 4.5, (G U U), where U = {a € (A) : rank(a) = r}, contains all
elements of I,. of rank r. Further, by Lemma 4.6, it also contains all elements of I,. of rank < r. Hence
(A) = J, U I, since J, C (A) and GUU C (A). The cardinality of Ais > )" pr(v —m) + rank J,
by the construction, so it follows that rank (J, U I,) < """ p.(v — m) 4 rank J,,.

Hence rank (J, U I,) = > " pr(v — m) + rank J,. Finally, the statements about the rank of .J,,
are true by Proposition 4.9. O

If » = 0, then Iy = {0}, so rank (J, U IO) = rank J, + 1.

Since P,(X) = J, UL,y and Y, ) po_ 1(v =m) = py_1(v) + py—1(v — 1) = 2, we have
rank PM(X) =rank J, +2ifv > 2. va =1, thenrank P,(X) =rank J, +1=|Qi|+1=n+2,
where n = | X|. These facts can also be deduced from the more general [4, Theorem 4.5].

The result for each proper ideal I, of P, (X)) follows from Lemma 4.2.

Corollary 4.11. Letv > 2 and let I, be the ideal of P,,(X) consisting of all transformations of rank < r,
where 1 < r < wv. Then

rank [, = max Z |Qiy| -+ 1Qi, |, S(v+1,r+1)

1<ii <...<ip<v

Proof. The top J-class J, of I, satisfies the hypotheses of Lemma 4.2 by Theorem 2.6, Lemma 4.6, and
the fact that v > 2 and 1 < 7 < v. Thus the result follows by Lemma 4.8. OJ

If v > 1 and r = 0, Then I, = {0} has rank 1.

The results and proofs of this section carry over to the semigroup 7),(X) = P,(X) N T(X), where
T'(X) is the semigroup of full transformations on X. The only differences are that 7),(X') has no ideal
I and each element of 7),(X) has deficit 0, so the sum " p,(v — m) reduces to p,(v). Note that
the J-classes J, in P,,(X) and T},(X) are the same.
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Theorem 4.12. Let v > 3 and let I, be the ideal of T,,(X ) consisting of all elements of rank < r, where
1 <r<wv. Then

rank (G U I,) = max Z Qi |-+ Qi | — <:j>7 pr(v) p +2,

1<i1 <. <5 <v

rank (J, U I.) = py(v) + rank J,,
rank /, = max Z Qi |-+ 1Qi, |, S(v,T)
1<i1<...<ip<v
Consequently, rank T, (X) = rank J, + 1

The result for rank 7),(X') can also be deduced from the more general [5, Theorem 5.18].

Acknowledgment. We are grateful to the referee for a very careful reading of the paper.
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