Semigroups of Partial Transformations with Kernel and Image Restricted by an Equivalence

Jorge André
Departamento de Matemática
Universidade Nova de Lisboa, Portugal, jmla@fct.unl.pt
Janusz Konieczny
Department of Mathematics, University of Mary Washington
Fredericksburg, VA 22401, USA, jkoniecz@umw.edu

Abstract

For an arbitrary set X and an equivalence relation μ on X, denote by $P_{\mu}(X)$ the semigroup of partial transformations α on X such that $x \mu \subseteq x(\operatorname{ker}(\alpha))$ for every $x \in \operatorname{dom}(\alpha)$, and the image of α is a partial transversal of μ. Every transversal K of μ defines a subgroup $G=G_{K}$ of $P_{\mu}(X)$. We study subsemigroups $\langle G, U\rangle$ of $P_{\mu}(X)$ generated by $G \cup U$, where U is any set of elements of $P_{\mu}(X)$ of rank less than $|X / \mu|$. We show that each $\langle G, U\rangle$ is a regular semigroup, describe Green's relations and ideals in $\langle G, U\rangle$, and determine when $\langle G, U\rangle$ is an inverse semigroup and when it is a completely regular semigroup. For a finite set X, the top \mathcal{J}-class J of $P_{\mu}(X)$ is a right group. We find formulas for the ranks of the semigroups $J, G \cup I, J \cup I$, and I, where I is any proper ideal of $P_{\mu}(X)$.

2010 Mathematics Subject Classification: 20M20, 20M12, 20M17, 05E15
Keywords: Partial transformation semigroups, equivalence relations, Green's relations, regular semigroups, ideals, rank.

1 Introduction

In semigroup theory, transformation semigroups play a role analogous to the role of permutation groups in group theory. For a given set X, denote by $T(X)$ the semigroup of full transformations on X, that is, the set of all functions from X to X with function composition as the semigroup operation. (Throughout this paper, we will write functions on the right and compose from left to right; that is, for $f: A \rightarrow B$ and $g: B \rightarrow C$, we will write $x f$, rather than $f(x)$, and $x(f g)$, rather than $(g f)(x)$.) The semigroup $T(X)$ is fundamental in semigroup theory since every semigroup can be embedded in some $T(X)$ [7, Theorem 1.1.2]. This result is analogous to Cayley's Theorem for groups, which states that every group can be embedded in some symmetric group $\operatorname{Sym}(X)$ of all permutations on X. A natural generalization of $T(X)$ is the semigroup $P(X)$ of partial transformations on X (that is, functions whose domain and image are included in X). The semigroup $P(X)$ contains as its subsemigroups both $T(X)$ and the symmetric inverse semigroup $\mathcal{I}(X)$ of partial injective transformations on X. The semigroup $\mathcal{I}(X)$ is fundamental for the important class of inverse semigroups (see [13] and [7, Chapter 5]) since every inverse semigroup can be embedded in some $\mathcal{I}(X)$ [7, Theorem 5.1.7], which is another analogue of Cayley's Theorem for groups.

These transformation semigroups can be generalized by introducing an equivalence relation μ on X. In 1976, S. Madhavan [9] generalized the symmetric inverse semigroup $\mathcal{I}(X)$ this way by defining the semigroup $\mathcal{I}_{\mu}(X)$ consisting of all partial transformations α on X such that $x \mu=x(\operatorname{ker}(\alpha))$ for every $x \in \operatorname{dom}(\alpha)$, and $\operatorname{im}(\alpha)$ is a partial transversal of μ. Madhavan proved that every right normal right inverse semigroup (regular semigroup satisfying efg=feg for all idempotents e, f, g) can be embedded into some $\mathcal{I}_{\mu}(X)$. In 2005, H. Pei [11] introduced the semigroup $T(X, \mu)$ of full transformations α on X that preserve μ (for all $x, y \in X$, if $(x, y) \in \mu$ then $(x \alpha, y \alpha) \in \mu$). The analogous semigroup $P(X, \mu)$ of partial transformations on X preserving μ was studied in [12]. In 2004, J. Araújo and the second author [2] studied the semigroup $T(X, \mu, K)$ of full transformations α on X that preserve both μ and a fixed transversal K of $\mu(K \alpha \subseteq K)$. One can consider the analogous semigroup $P(X, \mu, K)$ of partial transformations on X. We also note that some subgroups of $\operatorname{Sym}(X)$, where X is finite, defined by two partitions of X of the same type were studied in [1].

In 2010, S. Mendes-Gonçalves and R.P. Sullivan [10] introduced the semigroup $E(X, \mu)$ of full transformations α on X such that $\mu \subseteq \operatorname{ker}(\alpha)$, and its subsemigroup $T_{\mu}(X)$ consisting of all $\alpha \in$ $E(X, \mu)$ such that $\operatorname{im}(\alpha)$ is a partial transversal of μ. They proved that $T_{\mu}(X)=\operatorname{Reg}(E(X, \mu))$ [10, Theorem 2.3], where for a semigroup $S, \operatorname{Reg}(S)$ denotes the set of regular elements of S. Again, one can consider the analogous semigroup $E^{p}(X, \mu)$ of partial transformations α on X such that $x \mu \subseteq x(\operatorname{ker}(\alpha))$ for every $x \in \operatorname{dom}(\alpha)$, and its subsemigroup $P_{\mu}(X)$ consisting of all $\alpha \in E^{p}(X, \mu)$ such that $\operatorname{im}(\alpha)$ is a partial transversal of μ.

The semigroups described in the preceding paragraph, and others, are special cases of the sandwich semigroups studied in [4]. For non-empty sets X and Y, denote by $\mathcal{P} \mathcal{T}_{X Y}^{a}$ the semigroup of all partial maps from X to Y, with product \star defined by $f \star g=f a g$, where a is a fixed partial map from Y to X [4, 3.2]. The set $\operatorname{Reg}\left(\mathcal{P} \mathcal{T}_{X Y}^{a}\right)$ of regular elements of $\mathcal{P} \mathcal{T}_{X Y}^{a}$ is a subsemigroup of $\mathcal{P} \mathcal{T}_{X Y}^{a}$ [4, 3.3]. Let μ be an equivalence relation on X, let K be a transversal of μ, and let $a: X \rightarrow K$ be the function such that $k a^{-1}=k \mu$ (where $k \mu$ is the μ-class of k). Then $\mathcal{P} \mathcal{T}_{K X}^{a}$ is isomorphic to $E^{p}(X, \mu)$, and $\operatorname{Reg}\left(\mathcal{P} \mathcal{T}_{K X}^{a}\right)$ is isomorphic to $P_{\mu}(X)$. Similarly, the semigroups $E(X, \mu)$ and $T_{\mu}(X)$ are special cases of the sandwich semigroups studied in [5].

For the semigroups of partial transformations mentioned above, we have

$$
\mathcal{I}_{\mu}(X) \subseteq P_{\mu}(X) \subseteq E^{p}(X, \mu) \subseteq P(X, \mu) \text { and } P(X, \mu, K) \subseteq P(X, \mu)
$$

For the corresponding full transformation semigroups, we have

$$
\left(\mathcal{I}_{\mu}(X) \cap T(X)\right) \subseteq T_{\mu}(X) \subseteq E(X, \mu) \subseteq T(X, \mu) \text { and } T(X, \mu, K) \subseteq T(X, \mu)
$$

Let $\alpha \in P(X)$. We denote the domain of α by $\operatorname{dom}(\alpha)$, the image of $\alpha \operatorname{by} \operatorname{im}(\alpha)$, and the rank of α (the cardinality of $\operatorname{im}(\alpha)$) by $\operatorname{rank}(\alpha)$. The kernel of α is an equivalence $\operatorname{ker}(\alpha)$ on $\operatorname{dom}(\alpha)$ defined by

$$
\operatorname{ker}(\alpha)=\{(x, y) \in \operatorname{dom}(\alpha) \times \operatorname{dom}(\alpha): x \alpha=y \alpha\} .
$$

Let μ be an equivalence on X. For $x \in X$, we denote by $x \mu$ the μ-equivalence class. Then $X / \mu=$ $\{x \mu: x \in X\}$ is the partition of X induced by μ. A transversal of μ is any subset K of X such that K intersects each element of X / μ at exactly one point. Any subset of a transversal of μ is called a partial transversal of μ.

Definition 1.1. Let μ be an equivalence on X. An $\alpha \in P(X)$ is called a μ-transformation if $x \mu \subseteq$ $x(\operatorname{ker}(\alpha))$ for every $x \in \operatorname{dom}(\alpha)$, and $\operatorname{im}(\alpha)$ is a partial transversal of μ. We denote by $P_{\mu}(X)$ the set of μ-transformations on X. It is clear that $P_{\mu}(X)$ is a subsemigroup of $P(X)$.

As we have already pointed out, $P_{\mu}(X)$ is a special case of the semigroup $\operatorname{Reg}\left(\mathcal{P} \mathcal{T}_{X Y}^{a}\right)$ studied in [4].
Definition 1.2. Let μ be an equivalence on X. Fix a transversal K of μ. An element $\sigma \in P_{\mu}(X)$ is called a K-permutation if $\operatorname{ker}(\sigma)=\mu$ and $\operatorname{im}(\sigma)=K$. We denote by G_{K} the set of K-permutations. Then G_{K} is a subgroup of $P_{\mu}(X)$ isomorphic to the symmetric group $\operatorname{Sym}(K)$ (see Proposition 2.1).
Notation 1.3. For the remainder of the paper, we fix a nonempty set X, an equivalence μ on X, a transversal K of μ, the group $G=G_{K}$, the cardinal $v=|X / \mu|=|K|$, and a nonempty set U of μ transformations of rank $<v$. We denote by $\langle G, U\rangle$ the subsemigroup of $P_{\mu}(X)$ generated by the set $G \cup U$. Note that v may be finite or infinite and that for every $\alpha \in P_{\mu}(X), \operatorname{rank}(\alpha) \leq v$.

The purpose of this paper is to study the semigroups $\langle G, U\rangle$. These semigroups generalize several well-known semigroups. Let $\mu=\operatorname{id}_{X}$. Then, $K=X$ is the only transversal of μ and $G=G_{K}=$ $\operatorname{Sym}(X)$. Let $X=\{1, \ldots, n\}$. Define $\alpha, \beta \in P_{\mu}(X)$ by $1 \alpha=2$ and $x \alpha=x$ for all $x \neq 1$, $\operatorname{dom}(\beta)=\{2, \ldots, n\}$ and $x \beta=x$ for all $x \in \operatorname{dom}(\beta)$. Then $\langle G,\{\alpha, \beta\}\rangle=P(X)$ [7, Exercise 1.9.13], $\langle G, \alpha\rangle=T(X)$ [7, Exercise 1.9.7], and $\langle G, \beta\rangle=\mathcal{I}(X)$ [7, Exercise 5.11.6]. For an arbitrary set X and any proper ideal I of $P(X), T(X)$, or $\mathcal{I}(X)$, we can select a suitable U such that $\langle G, U\rangle=\operatorname{Sym}(X) \cup I$.

In Section 2, we prove that every semigroup $\langle G, U\rangle$ is regular (Theorem 2.4) and characterize the sets U for which $\langle G, U\rangle$ is an inverse semigroup (Theorem 2.7) and those U for which $\langle G, U\rangle$ is a completely regular semigroup (Theorem 2.10). In Section 3, we describe Green's relations (Theorems 3.1 and 3.2) and the ideals (Theorem 3.4) of $\langle G, U\rangle$, and determine the partial order of ideals of $\langle G, U\rangle$ (Theorem 3.6).

In Section 4, we assume that X is a finite set. Then, every ideal of $P_{\mu}(X)$ is of the form $I_{r}=\{\alpha \in$ $\left.P_{\mu}(X): \operatorname{rank}(\alpha) \leq r\right\}$ and every \mathcal{J}-class of $P_{\mu}(X)$ is of the form $J_{r}=\left\{\alpha \in P_{\mu}(X): \operatorname{rank}(\alpha)=r\right\}$, where $0 \leq r \leq v$. Moreover, J_{v} is a right group (Proposition 4.9), and $P_{\mu}(X)=J_{v} \cup I_{v-1}$. We find formulas for the ranks of the semigroups $G \cup I_{r}$ (Theorem 4.7), J_{v} (Proposition 4.9), $J_{v} \cup I_{r}$ (Theorem 4.10), and I_{r} (Corollary 4.11), where $0 \leq r<v$.

2 Regularity

In this section, we prove that each $\langle G, U\rangle$ is a regular semigroup and determine when $\langle G, U\rangle$ is an inverse semigroup and when it is a completely regular semigroup.

An element a of a semigroup S is called regular if $a=a x a$ for some $x \in S$. If all elements of S are regular, we say that S is a regular semigroup. An element a^{\prime} in S is called an inverse of a in S if $a=a a^{\prime} a$ and $a^{\prime}=a^{\prime} a a^{\prime}$. Since regular elements are precisely those that have inverses (if $a=a x a$ then $a^{\prime}=x a x$ is an inverse of a), we may define a regular semigroup as a semigroup in which each element has an inverse [7, p. 51]. If every element of S has exactly one inverse then S is called an inverse semigroup. An alternative definition is that S is an inverse semigroup if it is regular and its idempotents commute [7, Theorem 5.1.1]. If every element of S is in some subgroup of S then S is called a completely regular semigroup [7, 4.1].

It is well known that $P(X), T(X)$, and $\mathcal{I}(X)$ are regular semigroups. The semigroup $\mathcal{I}_{\mu}(X)$ is also regular, but $E^{p}(X, \mu)$ and $P(X, \mu)$ are not regular semigroups [9,10, 12].

We first prove that $G=G_{K}$ is a group.
Proposition 2.1. The set $G=G_{K}$ from Definition 1.2 is a subgroup of $P_{\mu}(X)$ isomorphic to the symmetric group $\operatorname{Sym}(K)$.

Proof. Define $f: \operatorname{Sym}(K) \rightarrow P_{\mu}(X)$ by $\delta f=\sigma$, where for every $a \in K,(a \mu) \sigma=\{a \delta\}$. Then $\operatorname{ker}(\sigma)=\mu$ and $\operatorname{im}(\sigma)=K$, so $\sigma \in G$. It is straightforward to check that f is an injective semigroup homomorphism with $\operatorname{im}(f)=G$. The result follows.

The following lemma will be crucial in our arguments. We will use it often without mentioning it explicitly.
Lemma 2.2. Let L be a partial transversal of μ with $|L|<|K|$. Suppose $\sigma: L \rightarrow K$ is injective. Then σ can be extended to $\bar{\sigma} \in G$.

Proof. Recall that $v=|K|$ and let $r=|L|$, so $r<v$. Since σ is injective, $|L \sigma|=|L|=r<v$. Let $K^{\prime}=\{a \in K: a \in b \mu$ for some $b \in L\}, K_{1}=K \backslash K^{\prime}$, and $K_{2}=K \backslash L \sigma$. Since L is a partial transversal of μ, we have $\left|K^{\prime}\right|=|L|=r$. It follows that $\left|K_{1}\right|=\left|K_{2}\right|=v-r$ (if v is finite) and $\left|K_{1}\right|=\left|K_{2}\right|=v$ (if v is infinite). Fix a bijection $g: K_{1} \rightarrow K_{2}$.

Define $\bar{\sigma}: X \rightarrow X$ as follows. Let $x \in X$. If $x \mu \cap L=\{b\}$, then define $(x \mu) \bar{\sigma}=\{b \sigma\}$. If $x \mu \cap L=\emptyset$, then define $(x \mu) \bar{\sigma}=\{a g\}$, where $\{a\}=K_{1} \cap x \mu$. It is then clear that $\bar{\sigma} \in G$ and $\bar{\sigma}$ is an extension of σ.

Notation 2.3. Let $\alpha \in P_{\mu}(X)$ with $\operatorname{rank}(\alpha)=r$. Then $0 \leq r \leq v$. Write $\operatorname{im}(\alpha)=\left\{x_{i}\right\}_{1 \leq i \leq r}$ and let $A_{i}=x_{i} \alpha^{-1} \cap K$. We will write

$$
\alpha=\binom{A_{i}}{x_{i}},
$$

where it will be understood that i is a cardinal ranging from 1 to $r=\operatorname{rank}(\alpha)$. This notation is justified by the fact that $\alpha \in P_{\mu}(X)$ is determined by its values on $\operatorname{dom}(\alpha) \cap K$.

For example, let $X=\{1, \ldots, 8\}, \mu$ correspond to the partition $\{\{1,2,3\},\{4,5\},\{6,7,8\}\}$, and $K=\{1,4,6\}$. Then $\alpha, \beta \in P_{\mu}(X)$ defined by $\{1,2,3,4,5\} \alpha=\{1\},\{6,7,8\} \alpha=\{4\}$, and $\{4,5,6,7,8\} \beta=\{6\}$ will be written

$$
\alpha=\left(\begin{array}{cc}
\{1,4\} & \{6\} \\
1 & 4
\end{array}\right) \text { and } \beta=\binom{\{4,6\}}{6} .
$$

Theorem 2.4. Each semigroup $\langle G, U\rangle$ is regular.
Proof. Let $\alpha \in\langle G, U\rangle$. If $\operatorname{rank}(\alpha)=v$, then $\alpha \in G$, and so α is a regular element of $\langle G, U\rangle$ since G is a group. Suppose $\alpha=\binom{A_{i}}{x_{i}}$ with $\operatorname{rank}(\alpha)<v$. Fix $a_{i} \in A_{i}$ (note that $a_{i} \in K$) and define $\sigma:\left\{x_{i}\right\} \rightarrow K$ by $x_{i} \sigma=a_{i}$. By Lemma 2.2, σ can be extended to $\bar{\sigma} \in G$. It is clear that $\alpha \bar{\sigma} \alpha=\alpha$, so α is regular.

Remark 2.5. Let $\alpha=\binom{A_{i}}{x_{i}} \in\langle G, U\rangle$ with $\operatorname{rank}(\alpha)<v$ and let $\bar{\sigma} \in G$ be as in the proof of Theorem 2.4. Since $\alpha \bar{\sigma} \alpha=\alpha$, the transformation $\alpha^{\prime}=\bar{\sigma} \alpha \bar{\sigma}$ is an inverse of α. For this particular inverse, we have

$$
x_{i} \alpha^{\prime}=x_{i}(\bar{\sigma} \alpha \bar{\sigma})=a_{i}(\alpha \bar{\sigma})=x_{i} \bar{\sigma}=a_{i} .
$$

Theorem 2.4 is not true if we allow U to contain transformations of rank v. For example, suppose $|X / \mu|=\aleph_{0}$ with $K=\left\{a_{1}, a_{2}, \ldots\right\}$. Consider $\alpha=\binom{A_{i}}{a_{i}}$ of rank \aleph_{0} with $A_{i}=\left\{a_{2 i}\right\}$. Then $\langle G, \alpha\rangle$ is not a regular semigroup. Indeed, suppose $\alpha=\alpha \beta \alpha$ for some $\beta \in\langle G, \alpha\rangle$. Then $a_{i}=a_{2 i} \alpha=$ $a_{2 i}(\alpha \beta \alpha)=a_{i}(\beta \alpha)$, which implies $a_{i} \beta \in a_{2 i} \mu$. Thus $\operatorname{im}(\beta) \neq K$, which is impossible since im $(\alpha)=$ K, and so the image of every element of $\langle G, \alpha\rangle$ is K.

However, $P_{\mu}(X)$ is a regular semigroup. We fix an idempotent $\varepsilon \in P_{\mu}(X)$ such that $\operatorname{ker}(\varepsilon)=\mu$. Since then the image of ε is a transversal of μ, we may assume that $\operatorname{im}(\varepsilon)=K$. Note that ε is the identity of the group $G=G_{K}$ and $(a \mu) \varepsilon=\{a\}$ for every $a \in K$.

For a semigroup S, we denote by $\operatorname{Reg}(S)$ the set of all regular elements of S.

Theorem 2.6. $P_{\mu}(X)=\operatorname{Reg}(\varepsilon P(X))$. Consequently, $P_{\mu}(X)$ is a regular semigroup.
Proof. Let $\alpha=\binom{A_{i}}{x_{i}} \in P_{\mu}(X)$. Fix $a_{i} \in A_{i}$ and consider $\beta=\binom{x_{i} \mu}{a_{i}} \in P(X)$. Then $\alpha=\varepsilon \alpha$ and $\beta=\varepsilon \beta$, so $\alpha, \beta \in \varepsilon P(X)$, and $\alpha=\alpha \beta \alpha$. Thus $\alpha \in \operatorname{Reg}(\varepsilon P(X))$.

Conversely, let $\alpha \in \operatorname{Reg}(\varepsilon P(X))$. Then, $\alpha=\alpha \beta \alpha$ for some $\beta \in \varepsilon P(X)$. By the definition of ε, we have $x \mu \subseteq x(\operatorname{ker}(\alpha))$ for every $x \in \operatorname{dom}(\alpha)$. Let $x, y \in \operatorname{dom}(\alpha)$ with $(x \alpha, y \alpha) \in \mu$. Then $x \alpha, y \alpha \in \operatorname{dom}(\beta)$, and so $(x \alpha) \beta=(y \alpha) \beta$ (since $z \mu \subseteq z(\operatorname{ker}(\beta))$ for every $z \in \operatorname{dom}(\beta)$). Thus, $x \alpha=x(\alpha \beta \alpha)=((x \alpha) \beta) \alpha=((y \alpha) \beta) \alpha=y(\alpha \beta \alpha)=y \alpha$, which implies that $\operatorname{im}(\alpha)$ is a partial transversal of μ. Hence $\alpha \in P_{\mu}(X)$

We note that $\varepsilon P(X)=E^{p}(X, \mu)$ (see Section 1).
Theorem 2.7. A semigroup $\langle G, U\rangle$ is an inverse semigroup if and only if the following conditions are satisfied:
(a) for all $\alpha \in U$ and $x \in \operatorname{dom}(\alpha), x \mu=x(\operatorname{ker}(\alpha))$;
(b) for all $\alpha, \beta \in U, x \in \operatorname{dom}(\alpha)$, and $y \in \operatorname{dom}(\beta)$, if $(x \alpha, y \beta) \in \mu$, then $x \alpha=y \beta$.

Proof. (\Rightarrow) Suppose that (a) does not hold. Then there is $\alpha=\binom{A_{i}}{x_{i}} \in U$ such that $\left|A_{j}\right| \geq 2$ for some j. Select $a_{i} \in A_{i}$ (for each i) and $a \in A_{j}$ such that $a \neq a_{j}$. Define $\sigma_{1}, \sigma_{2}:\left\{x_{i}\right\} \rightarrow K$ by $x_{i} \sigma_{1}=a_{i}$ for all $i, x_{i} \sigma_{2}=a_{i}$ if $i \neq j$, and $x_{j} \sigma_{2}=a$, and extend these mappings to $\overline{\sigma_{1}}, \overline{\sigma_{2}} \in G$ as in the proof of Lemma 2.2. Both $\overline{\sigma_{1}} \alpha \overline{\sigma_{1}}$ and $\overline{\sigma_{2}} \alpha \overline{\sigma_{2}}$ are inverses of α (see Remark 2.5). Moreover, they are distinct since $x_{j}\left(\overline{\sigma_{1}} \alpha \overline{\sigma_{1}}\right)=a_{j}$ and $x_{j}\left(\overline{\sigma_{2}} \alpha \overline{\sigma_{2}}\right)=a$. Thus $\langle G, U\rangle$ is not an inverse semigroup.

Suppose that (b) does not hold. Then there are $\alpha, \beta \in U$ such that, for some $x \in \operatorname{dom}(\alpha)$ and $y \in$ $\operatorname{dom}(\beta),(x \alpha, y \beta) \in \mu$ and $x \alpha \neq y \beta$. Let α^{\prime} and β^{\prime} be inverses of α and β in $\langle G, U\rangle$, respectively. Then $\alpha^{\prime} \alpha$ and $\beta^{\prime} \beta$ are idempotents. Since $(x \alpha, y \beta) \in \mu$, we have $(x \alpha) \beta^{\prime}=(y \beta) \beta^{\prime}$ and $(y \beta) \alpha^{\prime}=(x \alpha) \alpha^{\prime}$. Thus

$$
(x \alpha)\left(\alpha^{\prime} \alpha \beta^{\prime} \beta\right)=(x \alpha)\left(\beta^{\prime} \beta\right)=\left((x \alpha) \beta^{\prime}\right) \beta=\left((y \beta) \beta^{\prime}\right) \beta=y \beta .
$$

On the other hand,

$$
(x \alpha)\left(\beta^{\prime} \beta \alpha^{\prime} \alpha\right)=(y \beta)\left(\beta^{\prime} \beta \alpha^{\prime} \alpha\right)=(y \beta)\left(\alpha^{\prime} \alpha\right)=\left((y \beta) \alpha^{\prime}\right) \alpha=\left((x \alpha) \alpha^{\prime}\right) \alpha=x \alpha
$$

Thus the idempotents $\alpha^{\prime} \alpha$ and $\beta^{\prime} \beta$ do not commute, and so $\langle G, U\rangle$ is not an inverse semigroup.
(\Leftarrow) Conversely, suppose that (a) and (b) are satisfied. Note that these conditions are also satisfied by the elements of the group G and they are preserved by the composition of transformations. It follows that (a) and (b) hold for all elements of $\langle G, U\rangle$. We already know that $\langle G, U\rangle$ is a regular semigroup. Let $\varepsilon, \xi \in\langle G, U\rangle$ be idempotents. We will show that ε and ξ commute. Note that $\alpha \in P_{\mu}(X)$ is an idempotent if and only if for all $x \in \operatorname{dom}(\alpha),(x, x \alpha) \in \operatorname{ker}(\alpha)$. Let $x \in \operatorname{dom}(\varepsilon \xi)$, that is, $x \in \operatorname{dom}(\varepsilon)$ and $x \varepsilon \in \operatorname{dom}(\xi)$. Since ε satisfies (a), we have $(x, x \varepsilon) \in \mu$. Since $x \in \operatorname{dom}(\varepsilon)$ and $x \varepsilon \in \operatorname{dom}(\xi)$, it follows that $x \mu \subseteq \operatorname{dom}(\varepsilon)$ and $x \mu=(x \varepsilon) \mu \subseteq \operatorname{dom}(\xi)$. Further, by (a) applied to $\xi,(x, x \xi) \in \mu$. Thus $x \in \operatorname{dom}(\xi \varepsilon)$, so $\operatorname{dom}(\varepsilon \xi) \subseteq \operatorname{dom}(\xi \varepsilon)$. The reverse inclusion follows by symmetry, so $\operatorname{dom}(\varepsilon \xi)=$ $\operatorname{dom}(\xi \varepsilon)$. Now, both $x(\varepsilon \xi)$ and $x(\xi \varepsilon)$ are in $x \mu$. Thus, by (b), $x(\varepsilon \xi)=x(\xi \varepsilon)$. Hence the idempotents in $\langle G, U\rangle$ commute, and so $\langle G, U\rangle$ is an inverse semigroup.

Using arguments from the proof of Theorem 2.7, we can obtain the following result.
Theorem 2.8. If $|X| \geq 2$, then $P_{\mu}(X)$ and $T_{\mu}(X)$ are not inverse semigroups.

Regarding a criterion for $\langle G, U\rangle$ to be a completely regular semigroup, we will use the following result about $P(X)$. This result has been proved for $T(X)$ [3, Theorem 2.10] and extends easily to $P(X)$.

Lemma 2.9. For every $\alpha \in P(X), \alpha$ is in a subgroup of $P(X)$ if and only if $\operatorname{im}(\alpha)$ is a transversal of $\operatorname{ker}(\alpha)$.

Theorem 2.10. A semigroup $\langle G, U\rangle$ is completely regular if and only if for every nonzero $\alpha \in U$, $\operatorname{ker}(\alpha)=X \times X$.

Proof. (\Rightarrow) Suppose $\operatorname{ker}(\alpha) \neq X \times X$ for some nonzero $\alpha \in U$. Note that $\operatorname{ker}(\alpha) \neq \mu$ since $\operatorname{rank}(\alpha)<$ v. Thus there are two possible cases.
Case 1. $\operatorname{ker}(\alpha)=\mu \cap(\operatorname{dom}(\alpha) \times \operatorname{dom}(\alpha))$ and $\operatorname{dom}(\alpha) \neq X$.
Then there is $a \in K$ such that $a \mu \cap \operatorname{dom}(\alpha)=\emptyset$. Let $x \in \operatorname{dom}(\alpha)$ (such an x exists since $\alpha \neq 0$) and $y=x \alpha$. Define $\sigma:\{y\} \rightarrow K$ by $y \sigma=a$ and extend it to $\bar{\sigma} \in G$. Let $\beta=\alpha \bar{\sigma} \in\langle G, U\rangle$ and note that $x \beta=a$ and $a \notin \operatorname{dom}(\beta)$. Thus $\operatorname{im}(\beta)$ is not a transversal of $\operatorname{ker}(\beta)$, and so $\langle G, U\rangle$ is not completely regular.
Case 2. $\operatorname{ker}(\alpha) \neq \mu \cap(\operatorname{dom}(\alpha) \times \operatorname{dom}(\alpha))$.
Then, since $\alpha \neq 0$, there are $x, y \in \operatorname{dom}(\alpha)$ such that $(x, y) \in \operatorname{ker}(\alpha)$ and $(x, y) \notin \mu$. If $\operatorname{im}(\alpha)$ is not a transversal of $\operatorname{ker}(\alpha)$, then $\langle G, U\rangle$ is not completely regular. Suppose $\operatorname{im}(\alpha)$ is a transversal of $\operatorname{ker}(\alpha)$. We can then assume that $x \in \operatorname{im}(\alpha)$. Let $z \in \operatorname{dom}(\alpha)$ with $z \alpha=x$ and let $w=x \alpha$.

Suppose $(x, w) \in \operatorname{ker}(\alpha)$. Then $w=x$ since $\operatorname{im}(\alpha)$ is a transversal of $\operatorname{ker}(\alpha)$. Thus $x \alpha=x=z \alpha$, and so $(x, z) \in \operatorname{ker}(\alpha)$. Since $\operatorname{ker}(\alpha) \neq X \times X$, there is $u \in X$ such that $(x, u) \notin \operatorname{ker}(\alpha)$. Suppose $u \in \operatorname{dom}(\alpha)$ and let $t=u \alpha$. Note that $t \neq x$ (since $(x, u) \notin \operatorname{ker}(\alpha)$), and so $(x, t) \notin \operatorname{ker}(\alpha)$ (since x is the only element of $\operatorname{im}(\alpha)$ in the $\operatorname{ker}(\alpha)$-class of $x)$. Let $\{a\}=K \cap x \mu$ and $\{b\}=K \cap y \mu$. Then $a \neq b$ (since $(x, y) \notin \mu$). Define $\sigma_{1}:\{x, t\} \rightarrow K$ by $x \sigma_{1}=a$ and $t \sigma_{1}=b$ and extend it to $\overline{\sigma_{1}} \in G$. Let $\beta_{1}=\alpha \overline{\sigma_{1}} \in\langle G, U\rangle$ and note that $\operatorname{ker}\left(\beta_{1}\right)=\operatorname{ker}(\alpha), x \beta_{1}=a$ and $u \beta_{1}=b$. Thus $a, b \in \operatorname{im}\left(\beta_{1}\right)$ and $(x, y) \in \operatorname{ker}\left(\beta_{1}\right)$, $\operatorname{so} \operatorname{im}\left(\beta_{1}\right)$ is not a transversal of $\operatorname{ker}\left(\beta_{1}\right)$. Suppose $u \notin \operatorname{dom}(\alpha)$ and let $\{c\}=K \cap u \mu$. Define $\sigma_{2}:\{x\} \rightarrow K$ by $x \sigma_{2}=c$ and extend it to $\overline{\sigma_{2}} \in G$. Let $\beta_{2}=\alpha \overline{\sigma_{2}} \in\langle G, U\rangle$ and note that $\operatorname{ker}\left(\beta_{2}\right)=\operatorname{ker}(\alpha), x \beta_{2}=c$, and $c \notin \operatorname{dom}\left(\beta_{2}\right)$. Thus $\operatorname{im}\left(\beta_{2}\right)$ is not a transversal of $\operatorname{ker}\left(\beta_{2}\right)$. Hence, when $(x, w) \in \operatorname{ker}(\alpha),\langle G, U\rangle$ is not completely regular.

Finally, suppose $(x, w) \notin \operatorname{ker}(\alpha)$. Let $\{a\}=K \cap x \mu$ and $\{b\}=K \cap y \mu$. Then $a \neq b$ (since $(x, y) \notin$ $\mu)$. Define $\sigma:\{x, w\} \rightarrow K$ by $x \sigma=a$ and $w \sigma=b$ and extend it to $\bar{\sigma} \in G$. Let $\beta=\alpha \bar{\sigma} \in\langle G, U\rangle$ and note that $\operatorname{ker}(\beta)=\operatorname{ker}(\alpha), z \beta=a$ and $x \beta=b$. Thus $a, b \in \operatorname{im}(\beta)$ and $(x, y) \in \operatorname{ker}(\beta)$, $\operatorname{so} \operatorname{im}(\beta)$ is not a transversal of $\operatorname{ker}(\beta)$. Hence, when $(x, w) \notin \operatorname{ker}(\alpha),\langle G, U\rangle$ is not completely regular.
(\Leftarrow) Conversely, suppose $\operatorname{ker}(\alpha)=X \times X$ for every nonzero $\alpha \in U$. Then, every element of $\langle G, U\rangle$ is either an element of the group G or a constant idempotent with domain X. Thus $\langle G, U\rangle$ is completely regular.

Using arguments from the proof of Theorem 2.10, we can obtain the following result.
Theorem 2.11. If $\mu \neq X \times X$, then $P_{\mu}(X)$ and $T_{\mu}(X)$ are not completely regular semigroups.

3 Green's relations and ideals

In this section, we determine Green's relations and ideals in $\langle G, U\rangle$.
Let S be a semigroup and denote by S^{1} the semigroup S with an identity adjoined (if necessary). Then, for every $a \in S, S^{1} a, a S^{1}$, and $S^{1} a S^{1}$ are, respectively, the principal left ideal, principal right
ideal, and principal ideal generated by a. The principal ideals of S have been used to define five equivalence relations on S that are among the most important tools in studying semigroups. For $a, b \in S$, we say that $a \mathcal{L} b$ if $S^{1} a=S^{1} b, a \mathcal{R} b$ if $a S^{1}=b S^{1}$, and $a \mathcal{J} b$ if $S^{1} a S^{1}=S^{1} b S^{1}$. We define \mathcal{H} as the intersection of \mathcal{L} and \mathcal{R}, and \mathcal{D} as the join of \mathcal{L} and \mathcal{R}, that is, the smallest equivalence relation on S containing both \mathcal{L} and \mathcal{R}. These equivalences are called Green's relations. The relations \mathcal{L} and \mathcal{R} commute [7, Proposition 2.1.3], and consequently $\mathcal{D}=\mathcal{L} \circ \mathcal{R}=\mathcal{R} \circ \mathcal{L}$. For a Green relation \mathcal{F} in S and $a \in S$, we denote by F_{a} the \mathcal{F}-equivalence class of a.

Green's relations in the semigroup $P(X)$ are well known: $\alpha \mathcal{L} \beta \Leftrightarrow \operatorname{im}(\alpha)=\operatorname{im}(\beta) ; \alpha \mathcal{R} \beta \Leftrightarrow$ $\operatorname{ker}(\alpha)=\operatorname{ker}(\beta) ; \alpha \mathcal{J} \beta \Leftrightarrow \operatorname{rank}(\alpha)=\operatorname{rank}(\beta)$, and $\mathcal{D}=\mathcal{J}$.

If T is a regular subsemigroup of S and $\mathcal{F} \in\{\mathcal{L}, \mathcal{R}, \mathcal{H}\}$, then \mathcal{F} in T is the restriction of \mathcal{F} in S to $T \times T$ [7, Proposition 2.4.2]. Thus, by Theorem 2.4, we have the following result.

Theorem 3.1. For all $\alpha, \beta \in\langle G, U\rangle, \alpha \mathcal{L} \beta \Leftrightarrow \operatorname{im}(\alpha)=\operatorname{im}(\beta)$ and $\alpha \mathcal{R} \beta \Leftrightarrow \operatorname{ker}(\alpha)=\operatorname{ker}(\beta)$.
The corresponding statements about relations \mathcal{D} and \mathcal{J} in a regular subsemigroup T of a semigroup S are not true. Therefore, the next result requires a proof. First we note that in any semigroup S, the inclusion relation on the set of principal ideals induces the partial order relation \leq on the set of \mathcal{J}-classes:

$$
J_{a} \leq J_{b} \Leftrightarrow S^{1} a S^{1} \subseteq S^{1} b S^{1} .
$$

Theorem 3.2. In every $\langle G, U\rangle, \mathcal{D}=\mathcal{J}$. Moreover, if $\alpha, \beta \in\langle G, U\rangle$, then $J_{\alpha} \leq J_{\beta} \Leftrightarrow \operatorname{rank}(\alpha) \leq$ $\operatorname{rank}(\beta)$. Consequently, $\alpha \mathcal{J} \beta \Leftrightarrow \operatorname{rank}(\alpha)=\operatorname{rank}(\beta)$.
Proof. Let $\alpha, \beta \in\langle G, U\rangle$. If $J_{\alpha} \leq J_{\beta}$, then $\alpha=\gamma_{1} \beta \gamma_{2}$ for some $\gamma_{1}, \gamma_{2} \in\langle G, U\rangle^{1}$, which implies $\operatorname{rank}(\alpha) \leq \operatorname{rank}(\beta)$. Conversely, let $r=\operatorname{rank}(\alpha), t=\operatorname{rank}(\beta)$, and suppose $r \leq t$. If $r=t=v$, then $\alpha, \beta \in G$, and so, since G is a group, $\alpha \mathcal{J} \beta$, which implies $J_{\alpha} \leq J_{\beta}$. Suppose $r<v$. Let $\alpha=\binom{A_{i}}{x_{i}}$ and $\beta=\binom{B_{j}}{y_{j}}$, with $1 \leq i \leq r$ and $1 \leq j \leq t$. Fix $b_{j} \in B_{j}$ and define $\sigma_{1}:\left\{x_{i}\right\} \rightarrow\left\{b_{i}\right\}$ by $x_{i} \sigma_{1}=b_{i}$ ($1 \leq i \leq r$). Then σ_{1} is well defined (since $r \leq t$) and injective. Thus, since $r<v, \sigma_{1}$ can be extended to $\overline{\sigma_{1}} \in G$. For every $1 \leq i \leq r$, let $\left\{c_{i}\right\}=x_{i} \mu \cap K$, and define $\sigma_{2}:\left\{y_{i}\right\}_{1 \leq i \leq r} \rightarrow\left\{c_{i}\right\}$ by $y_{i} \sigma_{2}=c_{i}$, and extend σ_{2} to $\overline{\sigma_{2}} \in G$. Let $\alpha^{\prime} \in\langle G, U\rangle$ be an inverse of α. Then, for all $1 \leq i \leq r$ and all $a_{i} \in A_{i}$,

$$
\begin{aligned}
a_{i}\left(\alpha \overline{\sigma_{1}} \beta \overline{\sigma_{2}} \alpha^{\prime} \alpha\right) & =x_{i}\left(\overline{\sigma_{1}} \beta \overline{\sigma_{2}} \alpha^{\prime} \alpha\right)=b_{i}\left(\beta \overline{\sigma_{2}} \alpha^{\prime} \alpha\right)=y_{i}\left(\overline{\sigma_{2}} \alpha^{\prime} \alpha\right) \\
& =c_{i}\left(\alpha^{\prime} \alpha\right)=x_{i}\left(\alpha^{\prime} \alpha\right)=a_{i}\left(\alpha \alpha^{\prime} \alpha\right)=a_{i} \alpha .
\end{aligned}
$$

It follows that $\alpha=\left(\alpha \overline{\sigma_{1}}\right) \beta\left(\overline{\sigma_{2}} \alpha^{\prime} \alpha\right)$, and so $J_{\alpha} \leq J_{\beta}$.
In every semigroup, $\mathcal{D} \subseteq \mathcal{J}$. Let $\alpha, \beta \in\langle G, U\rangle$ with $\alpha \mathcal{J} \beta$. Then, by the first part of the proof, $\operatorname{rank}(\alpha)=\operatorname{rank}(\beta)$. Let $r=\operatorname{rank}(\alpha)$. If $r=v$, then $\alpha, \beta \in G$, and so $\alpha \mathcal{D} \beta$. Suppose $r<v$. Let $\alpha=\binom{A_{i}}{x_{i}}$, and $\beta=\binom{B_{i}}{y_{i}}$, with $1 \leq i \leq r$. Fix $a_{i} \in A_{i}$ and $b_{i} \in B_{i}$, define $\sigma_{1}:\left\{x_{i}\right\} \rightarrow\left\{a_{i}\right\}$ by $x_{i} \sigma_{1}=a_{i}, \sigma_{2}:\left\{a_{i}\right\} \rightarrow\left\{b_{i}\right\}$ by $a_{i} \sigma_{2}=b_{i}$, and extend σ_{1} to $\overline{\sigma_{1}} \in G$ and σ_{2} to $\overline{\sigma_{2}} \in G$. Let $\gamma=\alpha \overline{\sigma_{1}} \overline{\sigma_{2}} \beta \in\langle G, U\rangle$. Then, for all $1 \leq i \leq r$ and all $c_{i} \in A_{i}$,

$$
c_{i} \gamma=c_{i}\left(\alpha \overline{\sigma_{1}} \overline{\sigma_{2}} \beta\right)=a_{i}\left(\alpha \overline{\sigma_{1}} \overline{\sigma_{2}} \beta\right)=x_{i}\left(\overline{\sigma_{1}} \overline{\sigma_{2}} \beta\right)=a_{i}\left(\overline{\sigma_{2}} \beta\right)=b_{i} \beta=y_{i} .
$$

It follows that $\operatorname{ker}(\gamma)=\operatorname{ker}(\alpha)$ and $\operatorname{im}(\gamma)=\operatorname{im}(\beta)$. Thus, by Theorem 3.1, $\alpha \mathcal{R} \gamma$ and $\gamma \mathcal{L} \beta$, and so $\alpha \mathcal{D} \beta$ since $\mathcal{D}=\mathcal{R} \circ \mathcal{L}$. Hence $\mathcal{J} \subseteq \mathcal{D}$, and so $\mathcal{D}=\mathcal{J}$.

Notation 3.3. Let $\beta \in\langle G, U\rangle$ with $r=\operatorname{rank}(\beta)$. By Theorem 3.2, the principal ideal of $\langle G, U\rangle$ generated by β consists of all $\alpha \in\langle G, U\rangle$ such that $\operatorname{rank}(\alpha) \leq r$. We denote this principal ideal by I_{r}, that is,

$$
I_{r}=\{\alpha \in\langle G, U\rangle: \operatorname{rank}(\alpha) \leq r\}
$$

For a cardinal k, we denote by k^{+}the successor cardinal of k [8, p. 162]. For $1 \leq r \leq v^{+}$, let

$$
E_{r}=\{\alpha \in\langle G, U\rangle: \operatorname{rank}(\alpha)<r\} .
$$

It is clear that E_{r} is an ideal of $\langle G, U\rangle$. Note that $E_{v^{+}}=\langle G, U\rangle$ and that for every $0 \leq r \leq v, I_{r}=E_{r^{+}}$.
We will now prove that every ideal of $\langle G, U\rangle$ is equal to some ideal E_{r}, where $1 \leq r \leq v^{+}$, and determine the partial order of ideals of $\langle G, U\rangle$.
Theorem 3.4. Let I be an ideal of $\langle G, U\rangle$. Then $I=E_{r}$ for some r with $1 \leq r \leq v^{+}$.
Proof. Let r be the minimum cardinal such that $r \leq v^{+}$and $\operatorname{rank}(\beta)<r$ for every $\beta \in I$. (Such an r exists because $\operatorname{rank}(\beta)<v^{+}$for every $\beta \in\langle G, U\rangle$.) Clearly, $I \subseteq E_{r}$. Let $\alpha \in E_{r}$. By the minimality of r, there is $\beta \in I$ such that $\operatorname{rank}(\alpha) \leq \operatorname{rank}(\beta)$. By Theorem 3.2, $\alpha=\gamma_{1} \beta \gamma_{2}$ for some $\gamma_{1}, \gamma_{2} \in\langle G, U\rangle^{1}$. Thus $\alpha \in I$, and so $E_{r} \subseteq I$.

It follows from Theorem 3.4 that the ideals of every semigroup $\langle G, U\rangle$ form a chain. To describe this chain, we need the following lemma.
Lemma 3.5. Let $t<v$ and suppose U contains some α with $\operatorname{rank}(\alpha)=t$. Then:
(1) for every cardinal r with $1 \leq r<t$, there is $\beta \in\langle G, U\rangle$ such that $\operatorname{rank}(\beta)=r$;
(2) if U contains some γ with $\operatorname{dom}(\gamma) \neq X$, then $0 \in\langle G, U\rangle$.

Proof. Let $\alpha=\binom{A_{i}}{x_{i}}$, where $1 \leq i \leq t$, and fix $a_{i} \in A_{i}$. To prove (1), let $1 \leq r<t$. Suppose $t \geq \aleph_{0}$ and consider two possible cases.
Case 1. There is a cardinal l with $1 \leq l \leq t$ such that $\left|A_{l}\right|>t$.
Then, there is a subset $\left\{b_{j}\right\}_{r<j \leq t}$ of A_{l} such that each $b_{j} \neq a_{l}$ and $b_{j_{1}} \neq b_{j_{2}}$ if $j_{1} \neq j_{2}$. If $l \leq r$, then define $\sigma:\left\{x_{i}\right\} \rightarrow K$ by $x_{i} \sigma=a_{i}$ if $1 \leq i \leq r$, and $x_{i} \sigma=b_{i}$ if $r<i \leq t$; if $l>r$, then define $\sigma:\left\{x_{i}\right\} \rightarrow K$ by $x_{i} \sigma=a_{i}$ if $1 \leq i<r, x_{r} \sigma=a_{l}$, and $x_{i} \sigma=b_{i}$ if $r<i \leq t$. In either case, we can extend σ to $\bar{\sigma} \in G$. Let $\beta=\alpha \bar{\sigma} \alpha \in\langle G, U\rangle$. Then, $\operatorname{im}(\beta)=\left\{x_{i}\right\}_{1 \leq i \leq r}$ if $l \leq r$, and $\operatorname{im}(\beta)=\left\{x_{i}\right\}_{1 \leq i<r} \cup\left\{x_{l}\right\}$ if $l>r$. In either case, $\operatorname{rank}(\beta)=r$.
Case 2. For every cardinal i with $1 \leq i \leq t,\left|A_{i}\right| \leq t$.
Then, $\left|\bigcup A_{i}\right| \leq t \cdot t=t<v$, and so there is a subset $\left\{b_{j}\right\}_{r<j \leq t}$ of $K \backslash \bigcup A_{i}$ such that $b_{j_{1}} \neq b_{j_{2}}$ if $j_{1} \neq j_{2}$. Define $\sigma:\left\{x_{i}\right\} \rightarrow K$ by $x_{i} \sigma=a_{i}$ if $1 \leq i \leq r$, and $x_{i} \sigma=b_{i}$ if $r<i \leq t$. Then, for $\beta=\alpha \bar{\sigma} \alpha \in\langle G, U\rangle$, we have $\operatorname{im}(\beta)=\left\{x_{i}\right\}_{1 \leq i \leq r}$, and so $\operatorname{rank}(\beta)=r$.

Suppose $t<\aleph_{0}$. We may assume that $r=t-1$. (The result will then follow by an inductive argument.) Suppose there is $l \in\{1, \ldots, t\}$ such that $\left|A_{l}\right| \geq 2$. We then have some $b \in A_{l}$ with $b \neq a_{l}$. Select $j \in\{1, \ldots, t\}$ with $j \neq l$ (possible since $1 \leq r<t$, so $t \geq 2$). Define $\sigma:\left\{x_{i}\right\} \rightarrow K$ by $x_{i} \sigma=a_{i}$ if $i \neq j$, and $x_{j} \sigma=b$, and extend σ to $\bar{\sigma} \in G$. Then, for $\beta=\alpha \bar{\sigma} \alpha \in\langle G, U\rangle$, we have $\operatorname{im}(\beta)=\left\{x_{i}\right\}_{i \neq j}$, and so $\operatorname{rank}(\beta)=t-1$. Suppose $\left|A_{i}\right|=1$ for all i. Since $t<v$, we then have some $b \in K \backslash \bigcup_{1 \leq i \leq t} A_{i}$. Define $\sigma:\left\{x_{i}\right\} \rightarrow K$ by $x_{i} \sigma=a_{i}$ if $i<t$ and $x_{t} \sigma=b$, and extend σ to $\bar{\sigma} \in G$. Then, for $\beta=\alpha \bar{\sigma} \alpha \in\langle G, U\rangle$, we have $\operatorname{im}(\beta)=\left\{x_{i}\right\}_{i \neq t}$, and so $\operatorname{rank}(\beta)=t-1$.

To prove (2), suppose U contains some γ with $\operatorname{dom}(\gamma) \neq X$. Select $a \in K$ such that $a \notin \operatorname{dom}(\gamma)$. By (1), there exists $\beta \in\langle G, U\rangle$ with $\operatorname{rank}(\beta)=1$. Let $\operatorname{im}(\beta)=\{y\}$. Define $\sigma:\{y\} \rightarrow K$ by $y \sigma=a$ and extend σ to $\bar{\sigma} \in G$. Then $\beta \bar{\sigma} \gamma=0$.

For sets A and B, we will write $A \subset B$ to mean $A \subseteq B$ and $A \neq B$.
Theorem 3.6. Let $m=\min \{r: \operatorname{rank}(\alpha)<r$ for every $\alpha \in U\}$. Then:
(1) if U consists of full transformations on X, then the chain of ideals of $\langle G, U\rangle$ is isomorphic to the chain of cardinals $\{r: 2 \leq r \leq m\} \cup\left\{v^{+}\right\} ;$
(2) if U contains a strictly partial transformation on X, then the chain of ideals of $\langle G, U\rangle$ is isomorphic to the chain of cardinals $\{r: 1 \leq r \leq m\} \cup\left\{v^{+}\right\}$.

Proof. Note that $m \leq v$. Suppose U consists of full transformations on X. Let $2 \leq r<m$. By the minimality of m, there is $\alpha \in U$ such that $r \leq \operatorname{rank}(\alpha)$. By Lemma $3.5,\langle G, U\rangle$ contains a transformation of rank $<r$. Thus, for every cardinal r with $2 \leq r<m, E_{r} \neq \emptyset$. Moreover, $E_{m} \neq \emptyset$ (since $E_{2} \subseteq E_{m}$) and $E_{1}=\emptyset$ (since 0 cannot be a product of full transformations on X). Hence, by Theorem 3.4, $\left\{E_{r}: 2 \leq r \leq m\right\} \cup\left\{E_{v^{+}}\right\}$is the set of ideals of $\langle G, U\rangle$. Define

$$
f:\{r: 2 \leq r \leq m\} \cup\left\{v^{+}\right\} \rightarrow\left\{E_{r}: 2 \leq r \leq m\right\} \cup\left\{E_{v^{+}}\right\}
$$

by $r f=E_{r}(2 \leq r \leq m)$ and $v^{+} f=E_{v^{+}}$. It is then clear that f is surjective and that it preserves the order (for all $s, t \in\{r: 2 \leq r \leq m\} \cup\left\{v^{+}\right\}$, if $s \leq t$, then $E_{s} \subseteq E_{t}$). Let $s, t \in\{r: 2 \leq r \leq m\} \cup\left\{v^{+}\right\}$ with $s<t$. If $t=v^{+}$, then $E_{s} \subset E_{t}$ since $G \subseteq E_{v^{+}}$and $G \cap E_{s}=\emptyset$. Suppose $t \leq m$. By the minimality of m, U contains α such that $s \leq \operatorname{rank}(\alpha)$. If $\operatorname{rank}(\alpha)<t$, then $\alpha \in E_{t} \backslash E_{s}$, so $E_{s} \subset E_{t}$. Suppose $\operatorname{rank}(\alpha) \geq t$. Then, by Lemma 3.5, there is $\beta \in\langle G, U\rangle$ with $\operatorname{rank}(\beta)=s$. Thus $\beta \in E_{t} \backslash E_{s}$, so $E_{s} \subset E_{t}$. Hence f is injective, and so it is a poset isomorphism.

We have proved (1). The proof of (2) is almost identical. The difference is that, if U contains a strictly partial transformation, then $E_{1} \neq \emptyset$ by Lemma 3.5.

For example, denote by \mathbb{Z}, \mathbb{Q}, and \mathbb{R}, the sets of integers, rational numbers, and real numbers, respectively. Let $X=\mathbb{R}$, let μ be defined by the partition

$$
\{\{-n, n\}: n \in \mathbb{Z}\} \cup\{\mathbb{Q} \backslash \mathbb{Z}\} \cup\{\{x\}: x \in \mathbb{R} \backslash \mathbb{Q}\}
$$

and $K=\{0,1,2, \ldots\} \cup\left\{\frac{1}{2}\right\} \cup\{x: x \in \mathbb{R} \backslash \mathbb{Q}\}$. Then $v=2^{\aleph_{0}}$. Consider the idempotent

$$
\varepsilon=\left(\begin{array}{cccccc}
\{0\} & \{1\} & \{2\} & \ldots & \left\{\frac{1}{2}\right\} & K \backslash \mathbb{Q} \\
0 & 1 & 2 & \ldots & \frac{1}{2} & \sqrt{2}
\end{array}\right) \in P_{\mu}(\mathbb{R})
$$

(see Notation 2.3) and the semigroup $\langle G, \varepsilon\rangle$. Note that ε is a full transformation on \mathbb{R} and that $\operatorname{rank}(\varepsilon)=$ \aleph_{0}. Thus, the cardinal m from Theorem 3.6 is \aleph_{1} (see [8, p. 131]) and the chain of ideals of $\langle G, \varepsilon\rangle$ is isomorphic to the chain of cardinals

$$
2<3<4<\ldots<\aleph_{0}<\aleph_{1}<\left(2^{\aleph_{0}}\right)^{+}
$$

which, in turn, is isomorphic to the ordinal $\omega_{0}+2$ (see [8, p. 131]).

4 Ranks

Throughout this section, X will be a finite set. By the more general results obtained in [4, 3.4], we can conclude the following. Every ideal of $P_{\mu}(X)$ is of the form $E_{s}=\left\{\alpha \in P_{\mu}(X): \operatorname{rank}(\alpha)<s\right\}$, where $1 \leq s \leq v^{+}$. For a finite set $X, E_{s}=I_{r}=\left\{\alpha \in P_{\mu}(X): \operatorname{rank}(\alpha) \leq r\right\}$, where $r=s-1$. Thus
$\left\{I_{r}: 0 \leq r \leq v\right\}$ is the set of ideals of $P_{\mu}(X)$. Each ideal I_{r} is principal and is generated by any $\alpha \in P_{\mu}(X)$ of rank r. Moreover, $I_{v}=P_{\mu}(X)$ and if $r<v$, then I_{r} is a proper ideal of $P_{\mu}(X)$. Let J_{r} be the set of elements of $P_{\mu}(X)$ of rank r, where $0 \leq r \leq v$. Then $\left\{J_{r}: 0 \leq r \leq v\right\}$ is the set of \mathcal{J}-classes of $P_{\mu}(X)$, with $J_{0}<J_{1}<\ldots<J_{v}$.

Since v is finite, J_{v} is the union of groups G_{M}, where M ranges over all transversals of μ (see Definition 1.2). We will show that J_{v} is a right group (Proposition 4.9).

In this section, we find formulas for the ranks of the semigroups $G \cup I_{r}, J_{v}, J_{v} \cup I_{r}$, and I_{r}, where $0 \leq r<v$. (For $r=v-1$, we have $J_{v} \cup I_{r}=P_{\mu}(X)$.) We also record the corresponding formulas for $T_{\mu}(X)=P_{\mu}(X) \cap T(X)$.

Definition 4.1. Let S be a semigroup. The rank of S, denoted rank S, is the minimum cardinality of a generating set of S.

The ranks of various transformation semigroups have been found. For example, for a finite set X, $\operatorname{rank} P(X)=4$, $\operatorname{rank} T(X)=3$, and $\operatorname{rank} \mathcal{I}(X)=3$. The following general result for the ranks of finite semigroups proved in [6] is useful when working with transformation semigroups.

Lemma 4.2. ([6, Theorem 10]) Let S be a finite nontrivial semigroup with a maximal regular class \mathcal{J}-class J such that $\langle J\rangle=S$. Suppose that each group \mathcal{H}-class of J has rank ≤ 2, and it is not the case that J has exactly one idempotent in every \mathcal{R}-class and in every \mathcal{L}-class. Then $\operatorname{rank} S=\max \left\{m_{l}, m_{r}\right\}$, where m_{l} and m_{r} are the numbers of \mathcal{L} - and \mathcal{R}-classes in J, respectively.

Definition 4.3. Let $\alpha=\binom{A_{i}}{x_{i}} \in P_{\mu}(X)$ with $\operatorname{rank}(\alpha)=r, 0 \leq r \leq v$, as in Notation 2.3. In this section, we will always assume that $\left|A_{1}\right| \geq\left|A_{2}\right| \geq \ldots \geq\left|A_{r}\right|$. Let $n_{i}=\left|A_{i}\right|$ and $m=\left|K \backslash \bigcup_{1 \leq i \leq r} A_{i}\right|$. Then the sequence

$$
\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)
$$

will be called the μ-type of α and denoted $\operatorname{type}_{\mu}(\alpha)$. We will call the number m the deficit of α. Note that $n_{1}+n_{2}+\cdots+n_{r}+m=v$ and that if $\alpha \neq 0$, then the sequence $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ is a partition of $v-m$ with r parts [14, p. 235].

By a μ-type we will mean any sequence $\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$ with $0 \leq r \leq v$, each $n_{i} \geq 1, m \geq 0$, and $n_{1}+n_{2}+\cdots+n_{r}+m=v$.

For example, every $\sigma \in G$ has μ-type $(1,1, \ldots, 1 ; 0)$. Let $X=\{1, \ldots, 9\}, \mu$ be defined by the partition $\{\{1,2,3\},\{4,5\},\{6,7,8\},\{9\}\}$, and $K=\{1,4,6,9\}$. Then

$$
\alpha=\left(\begin{array}{cc}
\{1,4\} & \{6\} \\
1 & 2
\end{array}\right) \in P_{\mu}(X)
$$

has μ-type $(2,1 ; 1)$.
Lemma 4.4. Let $\alpha, \beta \in P_{\mu}(X)$ with $\operatorname{rank}(\alpha)=\operatorname{rank}(\beta)=r<v$. Then:
(1) $\operatorname{type}_{\mu}(\sigma \beta)=\operatorname{type}_{\mu}(\beta)$ for all $\sigma \in P_{\mu}(X)$ with $\operatorname{rank}(\sigma)=v$;
(2) if $\alpha=\beta \gamma$, for some $\gamma \in P_{\mu}(X)$, then $\operatorname{type}_{\mu}(\alpha)=\operatorname{type}_{\mu}(\beta)$.

Proof. Let $\alpha=\binom{A_{i}}{x_{i}}$ and $\beta=\binom{B_{i}}{y_{i}}, 1 \leq i \leq r$. Then for every $\sigma \in P_{\mu}(X)$ with $\operatorname{rank}(\sigma)=v$, $\sigma \beta=\binom{B_{i} \sigma^{-1}}{y_{i}}$, where $B_{i} \sigma^{-1}=\left\{k \in K: k \sigma \in b \mu\right.$ for some $\left.b \in B_{i}\right\}$. Since σ maps different
elements of K to elements in different μ-classes, $\left|B_{i} \sigma^{-1}\right|=\left|B_{i}\right|$ for all i, so $\sigma \beta$ and β have the same μ-type.

Suppose $\alpha=\beta \gamma$ for some $\gamma \in P_{\mu}(X)$. Let $b \in B_{i}$. Then either $b \in A_{j}$, for some j, or $b \in$ $K \backslash \bigcup_{1 \leq i \leq r} A_{i}$. Suppose $b \in A_{j}$ and let $c \in B_{i}$. Then $b \beta=c \beta$, and so $x_{j}=b \alpha=b(\beta \gamma)=c(\beta \gamma)=c \alpha$. Thus $c \in A_{j}$.

We have proved that for every i, either $B_{i} \subseteq A_{j}$, for some j, or $B_{i} \subseteq K \backslash \bigcup_{1 \leq i \leq r} A_{i}$. Let $j \in$ $\{1, \ldots, r\}$ and $a \in A_{j}$. Then $a \in \operatorname{dom}(\alpha)$, and so $a \in \operatorname{dom}(\beta)$ (since $\alpha=\beta \gamma$). Thus $a \in B_{i}$ for some i, and so, by the foregoing argument, $a \in B_{i} \subseteq A_{j}$.

It then follows that every A_{j} is a union of some distinct $B_{i_{1}}, \ldots, B_{i_{k_{j}}}$. But the number of $A_{j} s$ is r and the number of $B_{i} s$ is also r. Hence each k_{j} must equal to 1 , that is, for every j, there is i_{j} such that $A_{j}=B_{i_{j}}$, and $i_{j_{1}} \neq i_{j_{2}}$ if $j_{1} \neq j_{2}$. It follows that $\operatorname{type}_{\mu}(\alpha)=\operatorname{type}_{\mu}(\beta)$.

The following proposition will be crucial for the rank results.
Proposition 4.5. Let $0 \leq r<v$ and suppose $U \subseteq J_{r}$, where J_{r} is the \mathcal{J}-class of $P_{\mu}(X)$ of rank r. Then $J_{r} \subseteq\langle G, U\rangle$ if and only if for every μ-type ($n_{1}, n_{2}, \ldots, n_{r} ; m$) and every partial transversal L of μ with $|L|=r$ and $L \nsubseteq K$, there are $\alpha, \beta \in U$ such that $\operatorname{type}_{\mu}(\alpha)=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$ and $\operatorname{im}(\beta)=L$.

Proof. Suppose $J_{r} \subseteq\langle G, U\rangle$. Let $\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$ be a μ-type and L be a partial transversal of μ with $|L|=r$ and $L \nsubseteq K$. Since $J_{r} \subseteq\langle G, U\rangle$, there is $\eta \in\langle G, U\rangle$ such that $\operatorname{type}_{\mu}(\eta)=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$ and $\operatorname{im}(\eta)=L$. Since $\langle G, U\rangle$ is generated by $G \cup U, \eta=\sigma \alpha \gamma$ or $\eta=\alpha \gamma$, where $\sigma \in G, \alpha \in U$, and $\gamma \in\langle G, U\rangle$. Since $\varepsilon \alpha=\alpha$, where ε is the identity in $G=G_{K}$, we may assume that $\eta=\sigma \alpha \gamma$. Thus, by Lemma 4.4, $\operatorname{type}_{\mu}(\alpha)=\operatorname{type}_{\mu}(\sigma \alpha)=\operatorname{type}_{\mu}(\eta)=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$. Also, $\eta=\theta \beta$, where $\theta \in\langle G, U\rangle$ and $\beta \in U$. (Note that β cannot be followed by any element $\delta \in G$ since $\operatorname{im}(\eta)=L$ and $L \nsubseteq K$.) Then $L \subseteq \operatorname{im}(\beta)$, and so $\operatorname{im}(\beta)=L$ since $|L|=\operatorname{rank}(\beta)=r$.

Conversely, suppose that the set U satisfies the given condition. Let $\gamma=\binom{C_{i}}{y_{i}} \in J_{r}$, and let $\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right.$) be the μ-type of γ (so $n_{i}=\left|C_{i}\right|$ for every i) and $L=\operatorname{im}(\gamma)=\left\{y_{i}\right\}$. By the hypothesis, there is $\alpha=\binom{A_{i}}{x_{i}} \in U$ with type ${ }_{\mu}(\alpha)=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$. Then, for every $i,\left|A_{i}\right|=$ $\left|C_{i}\right|$, so there is a bijection $f_{i}: A_{i} \rightarrow C_{i}$. Define $\sigma: \bigcup_{1 \leq i \leq r} A_{i} \rightarrow K$ by $a \sigma=a f_{i}$ if $a \in A_{i}$, and extend σ to $\bar{\sigma} \in G$. (Since X is finite, Lemma 2.2 is also true if $|\bar{L}|=|K|$.) Then

$$
(\bar{\sigma})^{-1} \alpha \bar{\sigma}=\binom{A_{i} \bar{\sigma}}{x_{i} \bar{\sigma}}=\binom{A_{i} f_{i}}{x_{i} \bar{\sigma}}=\binom{C_{i}}{x_{i} \bar{\sigma}} .
$$

Suppose $\left\{y_{i}\right\}_{1 \leq i \leq r} \subseteq K$. Define $\delta:\left\{x_{i} \bar{\sigma}\right\} \rightarrow K$ by $\left(x_{i} \bar{\sigma}\right) \delta=y_{i}$, and extend δ to $\bar{\delta} \in G$. Then $(\bar{\sigma})^{-1} \alpha \bar{\sigma} \bar{\delta}=\gamma$. Suppose $\left\{y_{i}\right\} \nsubseteq K$. Then, by the hypothesis, there is $\beta=\binom{B_{i}}{y_{i}} \in U$. Fix $b_{i} \in B_{i}$, define $\delta:\left\{x_{i} \bar{\sigma}\right\} \rightarrow K$ by $\left(x_{i} \bar{\sigma}\right) \delta=b_{i}$, and extend δ to $\bar{\delta} \in G$. Then $(\bar{\sigma})^{-1} \alpha \bar{\sigma} \bar{\delta} \beta=\gamma$. Hence $\gamma \in\langle G, U\rangle$, and so $J_{r} \subseteq\langle G, U\rangle$.

For positive integers n and $r \leq n$, denote by $p_{r}(n)$ the number of partitions of n with r parts. For example, $(3,1,1)$ and $(2,2,1)$ are the only partitions of 5 with 3 parts, so $p_{3}(5)=2$. There is no known closed formula for calculating $p_{r}(n)$. For recursive formulas, see [14, Theorem 2.4.4].

Lemma 4.6. Let $\alpha \in P_{\mu}(X)$ with $\operatorname{rank}(\alpha)=r<v-1$. Then, there are $\varepsilon, \gamma \in P_{\mu}(X)$, both of rank $r+1$, such that $\alpha=\varepsilon \gamma$.

Proof. Let $\alpha=\binom{A_{i}}{x_{i}}$ and fix $a_{i} \in A_{i}$. Choose $y \in X$ such that $y \notin x_{i} \mu$, for every $i, 1 \leq i \leq r$ (possible since $r<v-1$ and $|X / \mu|=v$), and note that $y \notin\left\{x_{1}, \ldots, x_{r}\right\}$.

Suppose $\left|A_{t}\right| \geq 3$, for some t, and let $b, c \in A_{t}$ with $b \neq c$ and $b, c \neq a_{t}$. Define $\varepsilon \in P_{\mu}(X)$, with $\operatorname{dom}(\varepsilon)=\operatorname{dom}(\alpha)$, by $k \varepsilon=a_{i}$ if $k \in A_{i}$ and $i \neq t, k \varepsilon=a_{t}$ if $k \in A_{t}$ and $k \neq b$, and $b \varepsilon=b$. Then $\operatorname{im}(\varepsilon)=\left\{a_{i}\right\}_{1 \leq i \leq r} \cup\{b\}$. Define $\gamma \in P_{\mu}(X)$, with $\operatorname{dom}(\gamma)=\operatorname{dom}(\alpha)$, by $k \gamma=x_{i}$ if $k \in A_{i}$ and $i \neq t, k \gamma=x_{t}$ if $k \in A_{t}$ and $k \neq c$, and $c \gamma=y$. Then $\operatorname{im}(\varepsilon)=\left\{x_{i}\right\}_{1 \leq i \leq r} \cup\{y\}$.

Suppose $\left|A_{s}\right|=\left|A_{t}\right|=2$, for some distinct s, t, say $A_{s}=\left\{a_{s}, b\right\}$ and $A_{t}=\left\{a_{t}, c\right\}$. Define $\varepsilon \in P_{\mu}(X)$, with $\operatorname{dom}(\varepsilon)=\operatorname{dom}(\alpha)$, by $k \varepsilon=a_{i}$ if $k \in A_{i}$ and $i \neq s, a_{s} \varepsilon=a_{s}$, and $b \varepsilon=b$. Define $\gamma \in P_{\mu}(X)$, with $\operatorname{dom}(\gamma)=\operatorname{dom}(\alpha)$, by $k \gamma=x_{i}$ if $k \in A_{i}$ and $i \neq t, a_{t} \gamma=x_{t}$, and $c \gamma=y$.

Suppose $\left|A_{s}\right|=2$, for some s, say $A_{s}=\left\{a_{s}, b\right\}$, and $\left|A_{i}\right|=1$ for every $i \neq s$. Since $r<v-1$, there is $c \in K$ such that $c \notin A_{i}$ for every i. Define ε exactly as in the previous case. Define $\gamma \in P_{\mu}(X)$, with $\operatorname{dom}(\gamma)=\operatorname{dom}(\alpha) \cup c \mu$, by $k \gamma=x_{i}$ for all $k \in A_{i}$, and $c \gamma=y$.

Finally, suppose $\left|A_{i}\right|=1$ for every i. Since $r<v-1$, there are distinct $b, c \in K$ such that $b, c \notin A_{i}$ for every i. Define $\varepsilon \in P_{\mu}(X)$, with $\operatorname{dom}(\varepsilon)=\operatorname{dom}(\alpha) \cup b \mu$, by $k \varepsilon=a_{i}$ for every $k \in A_{i}$, and $b \varepsilon=b$. Define γ exactly as in the previous case.

In all cases, $\operatorname{im}(\varepsilon)=\left\{a_{i}\right\}_{1 \leq i \leq r} \cup\{b\}$ (so $\left.\operatorname{rank}(\varepsilon)=r+1\right), \operatorname{im}(\gamma)=\left\{x_{i}\right\}_{1 \leq i \leq r} \cup\{y\}$ (so $\operatorname{rank}(\gamma)=r+1)$, and $\alpha=\varepsilon \gamma$.

Let $\left\{Q_{1}, Q_{2}, \ldots, Q_{v}\right\}$ denote the set of μ-classes.
Theorem 4.7. Let $v \geq 3$ and let I_{r} be the ideal of $P_{\mu}(X)$ consisting of all transformations of rank $\leq r$, where $1 \leq r<v$. Then

$$
\operatorname{rank}\left(G \cup I_{r}\right)=\max \left\{\sum_{1 \leq i_{1}<\ldots<i_{r} \leq v}\left|Q_{i_{1}}\right| \cdots\left|Q_{i_{r}}\right|-\binom{v}{r}, \sum_{m=0}^{v-r} p_{r}(v-m)\right\}+2 .
$$

Proof. Let $s_{1}=\sum_{1 \leq i_{1}<\ldots<i_{r} \leq v}\left|Q_{i_{1}}\right| \cdots\left|Q_{i_{r}}\right|-\binom{v}{r}$ and $s_{2}=\sum_{m=0}^{v-r} p_{r}(v-m)$. Then s_{1} is the number of partial transversals L of μ such that $|L|=r$ and $L \nsubseteq K$, and s_{2} is the number of μ-types $\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$ with $0 \leq m \leq v-r$.

Suppose $s_{1} \geq s_{2}$. Construct a set U of transformations of rank r as follows. For every μ-type $\tau=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$, select α with $\operatorname{type}_{\mu}(\alpha)=\tau$ and add it to U. Since $s_{1} \geq s_{2}$, we can make these selections in such a way that every $\alpha \in U$ has image $L \nsubseteq K$ and any two distinct $\alpha_{1}, \alpha_{2} \in U$ have distinct images. At this point, there are $s_{1}-s_{2}$ partial transversals L of μ such that $|L|=r, L \nsubseteq K$, and L is not the image of any $\alpha \in U$. For each such an L, select an idempotent (or any element) $\varepsilon \in I_{r}$ with $\operatorname{im}(\varepsilon)=L$ and add it to U. Then U consists of s_{1} elements of rank r.

Suppose $s_{1}<s_{2}$. Construct a set U of transformations of rank r as follows. For every μ-type $\tau=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$, select α with $\operatorname{type}_{\mu}(\alpha)=\tau$ and add it to U. Since $s_{1}<s_{2}$, we can make these selections in such a way that for every partial transversal L of μ with $|L|=r$ and $L \nsubseteq K$, there is $\alpha \in U$ such that $\operatorname{im}(\alpha)=L$. Then U consists of s_{2} elements of rank r.

In either case, the μ-types of elements of U cover all μ-types $\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$ and the images of elements of U cover all partial transversals L of μ such that $|L|=r$ and $L \nsubseteq K$. Thus, by Proposition 4.5, $\langle G, U\rangle$ contains all elements of I_{r} of rank r. Further, by Lemma 4.6, it also contains all elements of I_{r} of rank $<r$. Hence $G \cup U$ generates $G \cup I_{r}$. Moreover, by Proposition 4.5, U is a set of the smallest cardinality such that $G \cup U$ generates $G \cup I_{r}$.

The result now follows since $|U|=\max \left\{s_{1}, s_{2}\right\}$ and $G \cong \operatorname{Sym}(K)$, so it is generated by 2 elements.

If $v \geq 1$ and $r=0$, then $I_{0}=\{0\}$, so $G \cup I_{0}$ has rank 3 if $v \geq 3$ (since then G has rank 2), and it has rank 2 if $v \in\{1,2\}$ (since then G has rank 1). If $v=2$ and $r=1$, then $G \cup I_{1}$ has rank $\max \left\{s_{1}, s_{2}\right\}+1$ (since then G has rank 1).

The following result is a special case of [4, Theorem 4.4].
Lemma 4.8. Let J_{r} be the \mathcal{J}-class in $P_{\mu}(X)$ consisting of all transformations of rank r, where $0 \leq r \leq$ v. Then:
(1) J_{r} has $S(v+1, r+1) \mathcal{R}$-classes and $\sum_{1 \leq i_{1}<\ldots<i_{r} \leq v}\left|Q_{i_{1}}\right| \cdots\left|Q_{i_{r}}\right| \mathcal{L}$-classes;
(2) J_{r} has $r!S(v+1, r+1) \sum_{1 \leq i_{1}<\ldots<i_{r} \leq v}\left|Q_{i_{1}}\right| \cdots\left|Q_{i_{r}}\right|$ elements.

Recall that J_{v} is the top \mathcal{J}-class of $P_{\mu}(X)$. A semigroup S is called a right group if $S \cong G \times E$, where G is a group and E is a right zero semigroup [7, Exercise 6].

Proposition 4.9. Let $v \geq 1$. Then:
(1) J_{v} is a right group;
(2) if $\mu \neq \mathrm{id}_{X}$, then rank $J_{v}=\left|Q_{1}\right| \cdots\left|Q_{v}\right|$.

Proof. Recall that J_{v} is the union of groups G_{M}, where M ranges over all transversals of μ. Fix one of these groups, say $G=G_{K}$, and let E be the set of idempotents in J_{v}. Note each element of E is the identity of some group G_{M}, and that for all $\varepsilon \in E$ and $\beta \in J_{v}, \varepsilon \beta=\beta$. Thus E is a right zero semigroup. Define $f: G \times E \rightarrow J_{v}$ by $(\alpha, \varepsilon) f=\alpha \varepsilon$. The function f is a homomorphism, since for all $(\alpha, \varepsilon),(\beta, \xi) \in G \times E$,

$$
((\alpha, \varepsilon)(\beta, \xi)) f=(\alpha \beta, \varepsilon \xi) f=(\alpha \beta, \xi) f=\alpha \beta \xi=\alpha(\varepsilon \beta) \xi=((\alpha, \varepsilon) f)((\beta, \xi) f)
$$

Let $(\alpha, \varepsilon),(\beta, \xi) \in G \times E$ with $\alpha \varepsilon=\beta \xi$. Then $\operatorname{im}(\varepsilon)=\operatorname{im}(\xi)$, which implies $\varepsilon=\xi$ since an idempotent in J_{v} is completely determined by its image. Let $x \in X$. Then $(x \alpha) \varepsilon=(x \beta) \xi=(x \beta) \varepsilon$, and so $x \alpha$ and $x \beta$ are in the same μ-class (since $\operatorname{ker}(\varepsilon)=\mu$). Thus, since $\operatorname{im}(\alpha)=\operatorname{im}(\beta)=K$ and K is a transversal of μ, it follows that $x \alpha=x \beta$. Hence $(\alpha, \varepsilon)=(\beta, \xi)$, so f is injective. Thus, it is also surjective since $G \times E$ and J_{v} are finite semigroups of the same size. (Indeed, $|G|=r!,|E|=\left|Q_{1}\right| \cdots\left|Q_{v}\right|$, and $\left|J_{v}\right|=r!\left|Q_{1}\right| \cdots\left|Q_{v}\right|$ by Lemma 4.8.) Hence f is an isomorphism, which proves (1).

If $\mu \neq \mathrm{id}_{X}$, then J_{v} satisfies the hypotheses of Lemma 4.2. By Lemma 4.8, J_{v} has one \mathcal{R}-class and $\left|Q_{1}\right| \cdots\left|Q_{v}\right| \mathcal{L}$-classes, so (2) follows.

If $\mu=\operatorname{id}_{X}$, then $J_{v}=\operatorname{Sym}(X)$, and so rank $J_{v}=2$ if $|X| \geq 3$, and rank $J_{v}=1$ if $|X| \leq 2$.
Theorem 4.10. Let $v \geq 2$ and let I_{r} be the ideal of $P_{\mu}(X)$ consisting of all elements of rank $\leq r$, where $1 \leq r<v$. Then

$$
\operatorname{rank}\left(J_{v} \cup I_{r}\right)=\sum_{m=0}^{v-r} p_{r}(v-m)+\operatorname{rank} J_{v}
$$

where rank $J_{v}=\left|Q_{1}\right| \cdot\left|Q_{2}\right| \cdots\left|Q_{v}\right|$ if $\mu \neq \operatorname{id}_{X}$, rank $J_{v}=2$ if $\mu=\operatorname{id}_{X}$ and $|X| \geq 3$, and rank $J_{v}=1$ $i f|X|=2$.

Proof. Let A be any set of generators of $J_{v} \cup I_{r}$. Let $\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$ be a μ-type. Since A generates $J_{v} \cup I_{r}$, there is $\eta \in\langle A\rangle$ such that $\operatorname{type}_{\mu}(\eta)=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$. Since $\operatorname{rank}(\eta)=r$, we have $\eta=\sigma \alpha \gamma$ or $\eta=\alpha \gamma$, where $\sigma \in J_{v}, \alpha \in A$ with $\operatorname{rank}(\alpha)=r$, and $\gamma \in J_{v} \cup J_{r}$. Since $\varepsilon \alpha=$ α for any idempotent $\varepsilon \in J_{v}$, we may assume that $\eta=\sigma \alpha \gamma$. Thus, by Lemma 4.4, $\operatorname{type}_{\mu}(\alpha)=$
$\operatorname{type}_{\mu}(\sigma \alpha)=\operatorname{type}_{\mu}(\eta)=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$. Hence for every μ-type $\tau=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right), A$ contains an element α with $\operatorname{type}_{\mu}(\alpha)=\tau$. Since A must also contain a generating set of J_{v} and $\sum_{m=0}^{v-r} p_{r}(v-m)$ is the number of μ-types $\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$, we have $|A| \geq \sum_{m=0}^{v-r} p_{r}(v-m)+$ rank J_{v}, and so $\operatorname{rank}\left(J_{v} \cup I_{r}\right) \geq \sum_{m=0}^{v-r} p_{r}(v-m)+\operatorname{rank} J_{v}$.

We will now construct a set A of generators of $J_{v} \cup I_{r}$ with exactly $\sum_{m=0}^{v-r} p_{r}(v-m)+\operatorname{rank} J_{v}$ elements. Begin with A being a set of generators of J_{v} of the smallest cardinality. Then for every μ-type $\tau=\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$, select α with $\operatorname{type}_{\mu}(\alpha)=\tau$ and add it to A. Let $L=\left\{m_{1}, m_{2}, \ldots, m_{r}\right\}$ be any partial transversal of μ of size r. Then $L \subseteq M$ for some transversal M of μ. Select any $\alpha=\binom{A_{i}}{x_{i}} \in A$ of rank r. Define $\sigma:\left\{x_{i}\right\} \rightarrow M$ by $x_{i} \sigma=m_{i}$ and extend σ to $\bar{\sigma} \in G_{M}$ (possible by Lemma 2.2 applied to G_{M}). Then

$$
(\bar{\sigma})^{-1} \alpha \bar{\sigma}=\binom{A_{i} \bar{\sigma}}{x_{i} \bar{\sigma}}=\binom{A_{i} \bar{\sigma}}{m_{i}} .
$$

Thus $(\bar{\sigma})^{-1} \alpha \bar{\sigma} \in\langle A\rangle$ and $\operatorname{im}\left((\bar{\sigma})^{-1} \alpha \bar{\sigma}\right)=L$. Hence the μ-types of elements of $\langle A\rangle$ cover all μ-types $\left(n_{1}, n_{2}, \ldots, n_{r} ; m\right)$ and the images of elements of $\langle A\rangle$ cover all partial transversals L of μ such that $|L|=r$. Thus, by Proposition 4.5, $\langle G \cup U\rangle$, where $U=\{\alpha \in\langle A\rangle: \operatorname{rank}(\alpha)=r\}$, contains all elements of I_{r} of rank r. Further, by Lemma 4.6, it also contains all elements of I_{r} of rank $<r$. Hence $\langle A\rangle=J_{v} \cup I_{r}$ since $J_{v} \subseteq\langle A\rangle$ and $G \cup U \subseteq\langle A\rangle$. The cardinality of A is $\sum_{m=0}^{v-r} p_{r}(v-m)+\operatorname{rank} J_{v}$ by the construction, so it follows that $\operatorname{rank}\left(J_{v} \cup I_{r}\right) \leq \sum_{m=0}^{v-r} p_{r}(v-m)+\operatorname{rank} J_{v}$.

Hence $\operatorname{rank}\left(J_{v} \cup I_{r}\right)=\sum_{m=0}^{v-r} p_{r}(v-m)+\operatorname{rank} J_{v}$. Finally, the statements about the rank of J_{v} are true by Proposition 4.9.

If $r=0$, then $I_{0}=\{0\}$, so $\operatorname{rank}\left(J_{v} \cup I_{0}\right)=\operatorname{rank} J_{v}+1$.
Since $P_{\mu}(X)=J_{v} \cup I_{v-1}$ and $\sum_{m=0}^{v-(v-1)} p_{v-1}(v-m)=p_{v-1}(v)+p_{v-1}(v-1)=2$, we have $\operatorname{rank} P_{\mu}(X)=\operatorname{rank} J_{v}+2$ if $v \geq 2$. If $v=1$, then $\operatorname{rank} P_{\mu}(X)=\operatorname{rank} J_{v}+1=\left|Q_{1}\right|+1=n+2$, where $n=|X|$. These facts can also be deduced from the more general [4, Theorem 4.5].

The result for each proper ideal I_{r} of $P_{\mu}(X)$ follows from Lemma 4.2.
Corollary 4.11. Let $v \geq 2$ and let I_{r} be the ideal of $P_{\mu}(X)$ consisting of all transformations of rank $\leq r$, where $1 \leq r<v$. Then

$$
\operatorname{rank} I_{r}=\max \left\{\sum_{1 \leq i_{1}<\ldots<i_{r} \leq v}\left|Q_{i_{1}}\right| \cdots\left|Q_{i_{r}}\right|, S(v+1, r+1)\right\} .
$$

Proof. The top \mathcal{J}-class J_{r} of I_{r} satisfies the hypotheses of Lemma 4.2 by Theorem 2.6, Lemma 4.6, and the fact that $v \geq 2$ and $1 \leq r<v$. Thus the result follows by Lemma 4.8.

If $v \geq 1$ and $r=0$, Then $I_{r}=\{0\}$ has rank 1 .
The results and proofs of this section carry over to the semigroup $T_{\mu}(X)=P_{\mu}(X) \cap T(X)$, where $T(X)$ is the semigroup of full transformations on X. The only differences are that $T_{\mu}(X)$ has no ideal I_{0} and each element of $T_{\mu}(X)$ has deficit 0 , so the sum $\sum_{m=0}^{v-r} p_{r}(v-m)$ reduces to $p_{r}(v)$. Note that the \mathcal{J}-classes J_{v} in $P_{\mu}(X)$ and $T_{\mu}(X)$ are the same.

Theorem 4.12. Let $v \geq 3$ and let I_{r} be the ideal of $T_{\mu}(X)$ consisting of all elements of rank $\leq r$, where $1 \leq r<v$. Then

$$
\begin{aligned}
\operatorname{rank}\left(G \cup I_{r}\right) & =\max \left\{\sum_{1 \leq i_{1}<\ldots<i_{r} \leq v}\left|Q_{i_{1}}\right| \cdots\left|Q_{i_{r}}\right|-\binom{v}{r}, p_{r}(v)\right\}+2, \\
\operatorname{rank}\left(J_{v} \cup I_{r}\right) & =p_{r}(v)+\operatorname{rank} J_{v}, \\
\operatorname{rank} I_{r} & =\max \left\{\sum_{1 \leq i_{1}<\ldots<i_{r} \leq v}\left|Q_{i_{1}}\right| \cdots\left|Q_{i_{r}}\right|, S(v, r)\right\}
\end{aligned}
$$

Consequently, $\operatorname{rank} T_{\mu}(X)=\operatorname{rank} J_{v}+1$
The result for $\operatorname{rank} T_{\mu}(X)$ can also be deduced from the more general [5, Theorem 5.18].
Acknowledgment. We are grateful to the referee for a very careful reading of the paper.

References

[1] J. André, J. Araújo, and P.J. Cameron, The classification of partition homogeneous groups with applications to semigroup theory, J. Algebra 452 (2016), 288-310.
[2] J. Araújo and J. Konieczny, Semigroups of transformations preserving an equivalence relation and a cross-section, Comm. Algebra 32 (2004), 1917-1935.
[3] A.H. Clifford and G.B. Preston, The Algebraic Theory of Semigroups, Mathematical Surveys, No. 7, American Mathematical Society, Providence, Rhode Island, 1964 (Vol. I) and 1967 (Vol. II).
[4] I. Dolinka, I. Durdev, J. East, P. Honyam, K. Sangkhanan, J. Sanwong, and W. Sommanee, Sandwich semigroups in locally small categories II: transformations, Algebra Universalis 79 (2018), Art. 76, 53 pp.
[5] I. Dolinka and J. East, Variants of finite full transformation semigroups, Int. J. Algebra Comput. 25 (2015), 1187-1222.
[6] R.D. Gray, The minimal number of generators of a finite semigroup, Semigroup Forum 89 (2014), 135-154.
[7] J.M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
[8] K. Hrbacek and T. Jech, Introduction to Set Theory, Third Edition, Taylor \& Francis, New York, 1999.
[9] S. Madhavan, On right normal right inverse semigroups, Semigroup Forum 12 (1976), 333-339.
[10] S. Mendes-Gonçalves and R.P. Sullivan, Semigroups of transformations restricted by an equivalence, Cent. Eur. J. Math. 8 (2010), 1120-1131.
[11] H. Pei, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005), 109-118.
[12] H. Pei and H. Zhou, Semigroups of partial transformations preserving an equivalence relation, $A d v$. Math. (China) 38 (2009), 103-116.
[13] M. Petrich, Inverse Semigroups, John Wiley \& Sons, New York, 1984.
[14] H.J. Straight, Combinatorics: An Invitation, Brooks/Cole Publishing Co., Pacific Grove, CA, 1993.

