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ABSTRACT: Separation techniques hyphenated to high-resolution 604 °]

mass spectrometry are essential in untargeted metabolomic analyses. ; E L\M gg‘r‘:,‘:]‘:"ogrm P,
Due to the complexity and size of the resulting data, analysts rely on E 30 {2

computer-assisted tools to mine for features that may represent a | % 35

chromatographic signal. However, this step remains problematic, and | £ | 1~ ' : : :
a high number of false positives are often obtained. This work reports 0 5 0 eimin 1 20 25
a novel approach where each step is carefully controlled to decrease 0] 01

the likelihood of errors. Datasets are first corrected for baseline drift | 3 3 TIC after data cleaning
and background noise before the MS scans are converted from profile |2 J E ueing Finnee

to centroid. A new alignment strategy that includes purity control is g 10 N

introduced, and features are quantified using the original data with | £ , o~

scans recorded as profile, not the extracted features. All the 0 5 mﬂ 15 20 25

algorithms used in this work are part of the Finnee Matlab toolbox
that is freely available. The approach was validated using metabolites
in exhaled breath condensates to differentiate individuals diagnosed with asthma from patients with chronic obstructive pulmonary
disease. With this new pipeline, twice as many markers were found with Finnee in comparison to XCMS-online, and nearly 50%
more than with MS-Dial, two of the most popular freeware for untargeted metabolomics analysis.

B INTRODUCTION

Liquid chromatography hyphenated to high-resolution mass
spectrometry (LC-HRMS) is a fast-developing technique for
untargeted proteomic and metabolomic analyses.' > Modern
instruments provide unique separation power, high mass

Myers and co-workers have recently demonstrated that 30 to
60% false positives,'” depending on the experimental
conditions, were detected by two of the most used packages
(XCMS and mzMine)."® Such a high number of false positives
are worrying as these will be carried over throughout the whole

resolution, and accurate mass measurements, allowing the
separation, detection, and quantification of hundreds of
compounds, with concentrations spanning many orders of
magnitude, in a single run.’ The datasets resulting from a
single LC-HRMS run are a collection of MS spectra gathered
along the time and can range from hundreds of MB to a few
GB. Due to the wealth of information that is contained in the
dataset, computer-assisted MS analysis tools are nowadays
central to the analytical scheme.” The main tasks of these tools
are to separate chromatographic-like information from the
noise (mining or feature extraction), to recognize features from
the same compound in the different datasets (peak alignment),
and to analyze all the gathered information (chemometrics or
machine learning)."”*~"> The underlying assumption is that
the variations observed in the data are related to chemical
variations in the samples and thus to the metabolomic
activities. However, this assumption is not always correct,
and many observed variations are the result of processing
errors, false positives, and misalignment.m’14 For example,
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analytical pipeline, potentially resulting in false compound
identification.'” This issue is not specific to free software;
indeed, Li and co-workers compared two commercial software
(MarkerView and Compound Discoverer) with three free
alternatives (MS-Dial, MZmine 2, XCMS), and similar
performances in the detection of correct features derived
from compounds in the mixtures were observed.'®

Different controls have been proposed to improve the
reliability of the features mined in metabolomics.">'” One of
the most relevant concepts introduced in untargeted analyses

was the quality control sample (QC).">'*~*" QCs should be
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Scheme 1. Schematic Illustration of the Workflow of the Computerized Finnee Approach Used in This Study
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representative of the composition and matrix of all samples.
They are generally made of small aliquots of all target samples,
and they are injected between samples at regular intervals.
Features are mined and aligned between all samples and QC.
Features present in all QC samples with a low quantitative
coefficient of variation are likely to be well processed; only
these features should be used for the sample. With complex
samples, more than 50% features are often discarded after QC
evaluation.”” This number will increase if minor peaks are
considered. While QCs allow removal of many false-positive
features (noise or baseline recognized as a peak), correct
features can also be discarded, and this is principally due to
errors during the different computerized steps. Maximizing
extracted aligned features while decreasing false positives is one
of the main challenges in untargeted metabolomics,” and
improving and validating the algorithms used during
untargeted data mining will contribute to this goal.

Finnee is a Matlab toolbox designed for analysis in
hyphenated datasets. Previous works describe a data cleaning
approach, with algorithms to correct baseline drift and
background noise. The corrections were made with MS
scans recorded as profile, and it has been demonstrated that
this step allows reduction in the number of false positives, even
with peaks with low intensities.”””* This manuscript presents
the next steps with feature extraction, QC alignment
methodologies using a constrained clustering approach, and
targeted reanalysis using the original data. Algorithms are
described and validated by comparing the metabolomic
signatures of exhaled breath condensates (EBCs) of asthmatic
individuals with chronic obstructive pulmonary disease
(COPD) patients.
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EBCs are obtained by condensation of gases and droplets
released during exhalation.”>*® This sampling procedure is
suitable for patients of all age groups, irrespective of the disease
severity, as it is safe, noninvasive, easy, and straightforward.
Traditionally, pulmonologists focus their attention on non-
specific characteristics of the EBC, such as the pH that
correlates with airway inflammation,” but it has also been
demonstrated that EBCs are a source of biomarkers and can
elucidate the inflammation process of the lungs, such as asthma
or COPD.**"** However, these biomarkers are often gresent at
low concentrations, which complicates the analysis.”> Results
obtained with Finnee are compared with XCMS-online®*’
and MS-Dijal.*®

B RESULTS AND DISCUSSION

Workflow of the Computerized Approach for Finnee.
The workflow developed in this work is separated into three
steps; steps 1 and 2 are illustrated in Scheme 1.

Step 1: Extracting features of interest — This step is similar
to classical pipelines and aims to find and align features along
all QCs. Briefly, after the acquisition, datasets resulting from
each QC sample are converted from their proprietary format to
the open mzML format.>® For this work, msConvert,*
supported by ProteoWizard,"' was used. MS scans should be
obtained as profile (or continuous) spectra rather than
centroid (or discrete) spectra.*” The QCs are cleaned from
baseline drift and then from background noise using
Finnee””** (see Data Cleaning) before converting the MS
scans from profile to centroid spectra. QCs can now be mined
for chromatographic-like features (see Peak Mining). Figures
of merit for all peaks from each QC are summarized in a peak

https://dx.doi.org/10.1021/acsomega.0c01610
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list. In this work, a constrained clustering approach was
developed to align features present in the QC (see Peak List
Alignment). At the end of this step, a series of features present
in one or more QCs are obtained. These are characterized by
their coordinate (accurate mass, m,, and centroid time, ¢.) and
peak area. Only features present in more than 50% QCs are
retained.

Step 2: Optimization and validation — Features, previously
selected, are reanalyzed from the original data using the region
of interest (ROI) (see Region of Interest (ROI) and
Quantification). Quantification is performed in two steps.
First, the peak limits (times at peak start and peak end) are
obtained for each feature in every QC. Then, for each feature,
consolidated peak limits are obtained. All features are analyzed
for a third time using these common limits. Features are
filtered to only retain the ones common to all QCs with a
relative standard deviation of their area below a set threshold
(in this work, 20%).

Step 3: Sample analysis — Samples are analyzed sequentially
using the original data with the ROI and the consolidated
limits. Only features previously selected are mined for. This
approach not only allows analysis of the target features with
high reliability but also avoids the need to align hundreds of
peak lists with the corresponding computer limitation.

Data Cleaning. Data cleaning is used to remove needless
information in datasets. The procedure has been modified
from previous works.””** Scheme 2 details the different steps
used in the data cleaning process.

Briefly, for each run, the dataset, converted to mzML, is
opened using the Finnee toolbox.* The master mzAxis (Mmz)
is calculated using the most intense spectrum. All MS spectra

Scheme 2. Schematic Illustration of the Data Cleaning
Workflow Used in This Study
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full scan and profile mode
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are then aligned to the Mmz using a linear interpolation
algorithm. This simple transformation allows use of a common
m/z axis for all spectra. Data can easily be read at a given time
to obtain the MS spectrum or at a given m/z value. The profile
obtained at a specific m/z value is named a single m/z profile
(SMP). It should be emphasized that this approach is different
from the binning techniques,”. Extracted ion profiles (EIPs)
can be obtained summing nearby SMPs.

The SMP that suffers from the influence of background ions
can be detected due to the low number of nonzero
intensities.”* These can be corrected for baseline drift using,
for example, the asymmetrically reweighted penalized least
squares (arPLS) algorithms.** The noise at each m/z is
estimated, and points, whose neighbor intensities are lower
than 10 times the value of the noise, are considered as
background noise, and their intensities are set to zero.”*

Peak Mining. MS spectra are converted from profile to
centroid,”” and chromatographic-like features are recognized
and extracted as data points, in successive scans, whose
centroid m/z does not differ by more than a set value.”” For
each feature, figures of merit (FOMs) are calculated (including
the chromatographic statistical moments™ and accurate
masses’”) and are summarized in peak tables. Because the
datasets have already been corrected for baseline drift and
background noise, no deconvolution or baseline correction
algorithms are used. A detected feature may be a single ion, but
it can also be multiple, nonbaseline-separated, isobaric ions.

Peak List Alignment. Scheme 3 presents the algorithms
used to align the features shared in different datasets. One of
the peak lists is randomly selected as the seeding list, and each
peak within the list is assigned to a single cluster. The following
list is randomly chosen, and for each feature within this list, the
Euclidian distance, d, to all clusters are computed as

t..—
d<li 1’1) = (mac,i - mac,n)z + (C,li

— \2
tc,n)

Wr (1)
where d(in) is the Euclidian distance between peak i and
cluster n, m,; and t_; are the accurate mass and centroid time
of peak i, respectively, and #, , and ¥ , are the average
accurate masses and centroid times of all features within the
cluster n. Wr is a correcting factor; e.g., a Wr 100 means that a
difference of 0.001 in the m/z will have the same importance as
a difference of 0.1 min in the time (see Optimization of Finnee
Peak Alignment with QC Samples).

A peak will be assigned to its closest cluster if and only if m,,
and ¢, differences are below predefined values; otherwise, the
feature will start a new cluster. Once all peaks are arranged into
clusters, the clusters’ figures of merit are calculated. These
figures include the number of elements, the average accurate
mass, and the associated standard deviation.

Overlapping clusters are then detected using the following
rule:

St (2)

where Am, and Af, are the average accurate mass difference
and the average centroid time difference between two clusters,
respectively, and s, and s, are the within-cluster standard
deviations of the accurate masses and of the centroid times,
respectively. Two clusters, detected as overlapping, are merged,

https://dx.doi.org/10.1021/acsomega.0c01610
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Scheme 3. Schematic Illustration of the Constrained Clustering Approach
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and the process is repeated until no overlapping clusters
remain.

Each final cluster is checked for purity using the Pearson
correlation coefficient p,(n) using eq 3.

p(n) = cov(Y(i, n), Y(n))

Oy (i,n)0% (n)

()

Y(in) is the profile of the feature i in the cluster, represented
as a two-dimensional array, time, and intensity; Y(n) is
calculated as the average of all profiles within the cluster n. cov
is the covariance, Gy , is the standard deviation of Y(i, ), and
0%(y) is the standard deviation of Y(n). The Pearson correlation
coefficient is an efficient way of comparing two distributions
independent of their intensities. A cluster is assumed pure if all
profiles correlated to the average profile result in p; higher than
a set value (typically 0.7). This makes sure that all profiles
within a cluster are similar.

Region of Interest (ROI) and Quantification. In this
work, following the determination of putative features, defined
by their accurate masses and centroid time, a targeted
approach was implemented to extract an ROI in the original
data for each feature. The ROI is an m X n matrix that contains
all points from the original dataset, whose time and m/z are
within a set interval. For this work, the time interval
corresponded to the centroid time of the targeted feature +1
min, and the m/z interval spanned 11 increments in the Mmz
centered around the m/z closest to the accurate mass of the

16092

target features. An example of an ROI with ¢, = 1.95 min and
m,. = 97.0760 is shown in Figure 1.

The ROI analysis is done, first, by calculating at each time
the area and mass centroid along the m/z axis. In Figure 1B,
the black profile corresponds to the variation of the mass peak
area A(t) as a function of time, and the scattered red dots are
the corresponding mass centroid values m/z(t). In the area
profile, data were corrected for baseline drift as in Data
Cleaning only if more than 95% of the data are non-null.

Peak limits are calculated in two ways. First, local maxima
are determined using a moving window of size 2*wdz + 1,
with, typically, wdz = S. The window scans all the points in the
profile. The central point is recognized as a local maximum if it
is the highest value within the window, and there are no null
values within the window. Peak start, t,,, and peak end, t,
are measured independently for every feature as the time of the
first and last points before and after each local maximum with
intensity null or negative. Second, consolidated limits are
calculated by pooling the limits from the same features from all
QCs. Outliers are detected and removed using the MAD
algorithms,45 and consolidated peak start, Ct,,,,, and peak end,
Ct,ng are calculated as

Ctstart = tstart - Zatsmt (4)
Ctend = g + ZO'tmd (5)

https://dx.doi.org/10.1021/acsomega.0c01610
ACS Omega 2020, 5, 16089—16098


https://pubs.acs.org/doi/10.1021/acsomega.0c01610?fig=sch3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c01610?fig=sch3&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c01610?ref=pdf

ACS Omega http://pubs.acs.org/journal/acsodf
10°
3.5
A
3
25
=2
£ 2
2
215
2
=
=1
0.5
0
97.076 J
97075 g 1 15 2 25 3
miz Time /min
3000 97.0770
B
97.0765
2000
3
o .
® - He7.0760 £
b R
a .
1000
+97.0755
v
0 /\\N ) L 97.0750
1 2 3
Time /min

Figure 1. (A) ROI corresponding to ¢t = 1.95 + 1.00 min and m/z = 97.0760 =+ S increments. (B) Corresponding profiles with, in black, the peak
areas as a function of time and, in red, the mass centroid. Black arrows correspond to the local maxima; red arrows correspond to the peaks’ limits.

where "t and £, 4 are the means of the peak starts and the

peak ends and o, and o, , are the associated standard
deviations, respectively.
For each peak, the volume, V, time centroid, t., and accurate
. 46
mass, m,, are calculated using

peak end
At_,) + A(t
vy A A
2
t=peak start (6)
R L XA + 4 AG)
t== ) X At
2
t=peak start (7)
zpeak end A(t) x M/Z(t)
t=peak start i i
m, = peak end A
zt=peak start (tl) (8)

In the case of multiple peaks, only the peak whose peak
centroid and accurate mass are closest to the target values is
conserved.

Optimization of Finnee Peak Alignment with QC
Samples. Following the mining step, an average of 13000
features, with maximum intensities ranging from 25000 to 10°,
was identified. The alignment was performed as described in
the Experimental Section and Computational Methods, where
the optimization of three parameters is indicated (Ain, AF,
and Wr). Am, and A, correspond to the constrained accurate
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mass and centroid time differences, respectively, that control if
the feature is arranged in an existing or in a new cluster, and
Wr is a weight factor. The influence of these factors was
assessed by the number of features common to all QCs with an
RSD of the peak area below 20%. At this stage, figures of merit
are calculated using the mined features, not the ROI (Table 1).

Table 1. Alignment Parameters and Number of Obtained
Features

Wr 170 135 135 135 135
Am, 0.005 0.005 0.002 0.01 0.02
A, 0.5 0.675 0.27 1.35 271
number of features” 1781 1781 1776 1782 1779

“Number of aligned features present in all QCs, with an RSD of the
peak area below 20%.

Comparison with MS-Dial and XCMS Online. Param-
eters for MS-Dial and XCMS were also optimized using the
QC samples as described in the Supporting Information. Table
2 summarizes the results obtained by MS-Dial, XCMS, and
Finnee. For Finnee, QCs were quantified in two different ways,
either using the extracted features as performed classically or
using the ROI, as described in the Experimental Section and
Computational Methods. Each software was evaluated using
the number of aligned features that are common to all QCs
and with an RSD of the peak areas below 20%.

https://dx.doi.org/10.1021/acsomega.0c01610
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Table 2. Comparison between MS-Dial, XCMS, and Finnee

MS-Dial XCMS P

aligned features" 1456 1587 1782 2491

Finnee” Finnee

“QCs were quantified with the mined features. “QCs were quantified
with the ROI and consolidated peak limits. “Number of aligned
features present in all QCs, with an RSD of the peak area below 20%.

Finnee obtained, when using the mined features, 11% more
markers than XCMS and 18% more markers than MS-Dial.
However, performance is significantly improved when the
markers are reanalyzed using a targeted approach with ROI
with 28% more markers found. It is believed that reanalyzing
the markers using a targeted approach allows mitigation of the
errors generated by the successful transformation. The Venn
diagram in Figure 2 illustrates the repartition of the markers.

MS-Dial

Finnee

Figure 2. Venn diagram showing the number of features found by
Finnee (red), MS-Dial (blue), and XCMS (green).

656 common features were found by all approaches, and 992
were found by two approaches. Interestingly, 81% of the
teatures found by XCMS were also found by Finnee, and 66%
of the features found by MS-Dial were also found by Finnee.
However, few features found by MS-Dial and XCMS were not
found by Finnee.

Differential Analysis of Asthma and COPD. As final
validation of the Finnee pipeline, EBC samples from three
groups (five controls, five patients diagnosed with COPD, and
five patients diagnosed with asthma as described in the
Experimental Section and Computational Methods, all run in
triplicate) were analyzed by XCMS, MS-Dial, and Finnee. For
XCMS, three pair jobs were performed with the optimized
parameters: asthma vs COPD, asthma vs control, and COPD
vs control. After completion, results were exported, and the
features were aligned with the QC samples (see the Supporting
Information). Only features aligned with QC features with the
previous constraints were selected. Triplicates were pooled,
features were aligned, and those not present in all triplicates
were discarded. For each feature, the average area was
calculated.

Welch’s t-test (t-test assuming unequal variance) was used to
select features in which the mean of the peak areas is
significantly different between two groups (p < 0.05, n = S in
each group). The same approach was used for MS-Dial. The
areas were not corrected for instrumental variation with the
QC samples. However, pooling the replicates that were
injected at random positions within the sample sequence
allows the effect of this bias to be diminished. For Finnee, the
samples were analyzed using the ROI with consolidated peak
limits, optimized using the QC samples. Previously, data in
triplicate were averaged, and Welch’s t-test was used to retain

features where the assumption of equal means at the 5%
significance level (h > 0.05) was not verified.

Figure 3 shows the Venn diagrams for the markers found by
Finnee, MS-Dial, and XCMS when pairing (A) asthma with

A MS-Dial
Finnee
B MS-Dial

Finnee

XCMs

C MS-Dial

Finnee

Figure 3. Venn diagram showing the number of discriminating
markers between (A) asthma and control, (B) COPD and control,
and (C) asthma and COPD found by Finnee (red), MS-Dial (blue),
and XCMS (green).

control, (B) COPD with control, and (C) asthma with COPD
groups. The profiles of the three pair jobs are similar. In all
cases, XCMS was found to have the lowest number of markers
followed by MS-Dial, with on average 28% more markers than
XCMS, and then Finnee with 43% more markers than MS-
Dial. The high number of markers, found with the three
software, for the pair job asthma vs COPD should be noted,
which is 10 times more than with the pair job asthma vs
control and COPD vs control. As the sequence of injections,
including replicates, were random, bias due to instrumental
variations can be ruled out. However, the sample size is small,
and it should be increased to validate this preliminary work.
Finally, each marker was visually inspected to assess its
reliability in discriminating two groups. For each marker, the
extracted ion profiles (EIPs) were obtained in each sample.
The EIPs were aligned to a common time axis, and EIPs from
each classification were averaged. An example is shown in
Figure 4 where asthma and control groups are compared. The
plain dark lines are the average of all EIPs with m/z = 249.148
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Figure 4. Averaged (black trace) and corresponding standard deviation (red trace) of the 15 extracted ion profiles with m/z = 249.148 + 0.00S, for

asthma and control groups.

+ 0.00S (spanning 11 points in the m/z axis), and the dotted
red lines are the means plus or minus one standard deviation.
All figures are in a shared folder https://drive.google.com/
drive/folders/1mkQyDcGbSG3KP_ VpfATuXNv6D69D
wW]?usp=sharing, together with the Excel files “Comprehen-
sive results.xlsx” that summarize the results of the classification.

Markers were classified in three groups in the Excel file
(green: figures that corroborate the predicted markers; yellow:
figures that display a peak at the predicted time but with a
mean height similar in both groups; red: no chromatographic
peaks observed at the predicted time or m/z). Multiple
coeluting peaks are not treated differently compared to single
baseline-separated peaks. On average, less than 5% of all
markers were classified as false positives (red: absence of
peaks) with each software. 18% of the markers were classified
as yellow (presence of a peak but doubting the ability of this
peak to differentiate the two groups) with MS-Dial, 25% with
Finnee, and 29% with XCMS. This represents excellent
predictive values with all software with a clear advantage to
Finnee with those data due to the higher number of markers
predicted. It is particularly notable that many markers
predicted by Finnee cover markers predicted by one of the
two other software, but not both; however, very few markers
predicted by the two other software were not predicted by
Finnee (see Figure 2), highlighting the reliability of the
pipeline.

Bl CONCLUSIONS

The different tools developed in the Finnee toolbox aim to
process hyphenated MS datasets with thoroughness. In this
work, the algorithms have been used to recognize peaks, at low
intensities, in EBC samples. With this data, Finnee out-
performed XCMS with 82% more markers discovered and MS-
Dial with 43% more markers. This result should not be
extrapolated to other studies; however, this demonstrated the
validity of the pipeline. It should be emphasized that the
detected features should not be considered yet as markers of
asthma and COPD diseases. The samples analyzed were few,
and the markers should also be identified to determine if they
are endogenous metabolites or exogenous chemicals. The aim

of this work was to design tools that will allow extraction of
markers at low intensities. The pipeline will be used in a large-
scale metabolomics project aiming at obtaining reliable
markers for COPD, asthma, and asthma COPD overlap in
EBC samples.

B EXPERIMENTAL SECTION AND COMPUTATIONAL
METHODS

EBC Samples and Clinical Assessment. EBC samples
were collected from 15 individuals randomly selected (five
controls, five with asthma medical diagnosis, and five with
COPD medical diagnosis, as assessed by the OLDER Study —
Obstructive Lung Diseases in Elders). The Ethics Committee
of Nova Medical School approved this study.

Asthma was assigned when the patient reported respiratory
symptoms, was a nonsmoker, and presented a positive
reversibility test (FEV1 > 12% and 200 mL). COPD disease
was attributed to those who also reported being current
smokers, had a post-bronchodilator FEV1/FVC < 0.70, and
had a negative reversibility test.

LC—MS Analysis. Samples were analyzed in triplicate by
LC—MS using an Orbitrap Q Exactive Focus (Thermo
Scientific) coupled to an Ultimate 3000 UHPLC (Thermo
Scientific). A pooled quality control (QC) sample was used to
compensate for any possible time-dependent batch effects. The
QC samples were created using a small aliquot from each
sample. The QC samples were reinjected at regular intervals to
bracket the samples. The separation was performed using a
Waters XBridge column C18 (2.1 X 150 mm, 3.5 ym particle
size, P/N 186003023). The mobile phase A was water with
0.1% formic acid (v/v), and mobile phase B was acetonitrile
with 0.1% formic acid (v/v) (Optima LC—MS Grade, Fisher
Scientific). The gradient program was as follows: 1 min at 1%
B; 1—13 min from 1 to 99% B, 13—15 min at 99% B, 15—16
min from 99 to 1% B, and 4 min at 1% B. The column
temperature was maintained at 30 °C, and a flow rate of 400
uL/min was used.

The Q_ Exactive Focus MS method consisted of several
cycles of full MS scan (R = 70000) followed by three ddMS2
scans (R = 17500), with a (N)CE of 30 and in positive mode.
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External calibration was performed using LTQ_ESI Positive
Ion Calibration Solution (Thermo Scientific) and the lock
mass enabled internal calibration. Data were obtained using the
Xcalibur software v.4.0.27.19 (Thermo Scientific). The raw MS
files, as recorded by the instrument, are available from the
corresponding author upon reasonable request.

Programming. Finnee was developed using Matlab
R2019a (Mathworks). The toolbox is open-access and freely
accessible, including the new functions that were designed for
this manuscript. The Matlab code used in this study is available
in Zenodo with the identifier doi: 10.5281/zenodo.3581436.*
The code source can also be downloaded from GitHub
(https://github.com/glerny/finnee2016/). For this work,
functions were programmed and run using a PC equipped
with an Intel Core i7 CPU (2.80 GHz) and 18.0 GB RAM.

XCMS online (https://xcmsonline.scripps.edu) was used as
control. The following parameters were used (description of
the optimization process can be found in the Supporting
Information):

e Feature detection: method centWave (with ppm: 100;
minimum peak width: § s; maximum peak width: 60s)

e Retention time correction: method none

o Alignment: default (bw: S; mnfrac: 0.5; mzwid: 0.015)

e Statistics: unpaired parametric t-test

MS-Dial (ver. 3.98) was used with the following parameters:

e Data collection: MSI tolerance: 0.002 m/z

e Peak detection: minimum peak height: 100 amu, mass
slice width: 0.005 m/z

e Alignment: retention time tolerance: 0.05S min, MSI1
tolerance: 0.005 m/z

B ASSOCIATED CONTENT

© Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acsomega.0c01610.
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