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Abstract 

The plant cell wall is, in its majority, constituted by complex and structurally diverse 

polysaccharides that are valuable resources for industrial and biotechnological applications. 

Anaerobic microbial organisms are highly efficient for plant cell wall polysaccharide 

biodegradation and have evolved a multi-enzyme complex system, the Cellulosome, where 

catalytic enzymes have non-catalytic Carbohydrate Binding Modules (CBMs) appended that 

highly potentiate the enzymes’ catalytic efficiency. Deciphering at molecular level the 

mechanisms underlying plant cell wall carbohydrate recognition and deconstruction by different 

cellulolytic bacteria is crucial to elucidate these complex biological systems, as well as to further 

promote novel potential applications. The work developed in this Thesis focused on the unique 

approach of combining carbohydrate microarrays with X-ray crystallography, to uncover 

carbohydrate ligands for CBMs and to structurally characterize novel CBM-carbohydrate 

interactions of two anaerobic bacteria that reside in different ecological niches: Clostridium 

thermocellum, found in soils, and Ruminococcus flavefaciens FD-1, present in the rumen of 

herbivorous. To this end, microarrays featuring carbohydrate probes with polysaccharide and 

oligosaccharide sequences representative of the structural diversity found on plant cell walls, but 

also in fungal and bacterial cell walls, were developed and then used to screen the 

carbohydrate-binding and ligand-specificity of 150 CBMs of C. thermocellum and R. flavefaciens 

CBMomes. The groups of polysaccharides that are differentially recognised were revealed for 

59 CBMs and novel CBM-ligand specificities were identified for 23 modules from C. thermocellum 

and 21 from R. flavefaciens. Overall, the two bacteria differentially expressed CBM families with 

different carbohydrate-binding specificities, which may reflect adaptation to substrate availability 

in their specific ecological niche or the complexity of their Cellulosome. Using the information 

derived from the high-throughput microarray analysis, and according to their biotechnological 

relevance or novelty, CBMs and the respective ligands were selected for further structural studies. 

The novel CBM structures solved, complemented with biochemical and biophysical data, enabled 

the characterization of the molecular determinants for the recognition of mixed-linked 

β1,3-1,4-glucans by C. thermocellum family 11 CBM, chitin and peptidoglycan-derived sequences 

by a novel LysM domain from C. thermocellum family 50 CBMs, and pectic arabinans by 

R. flavefaciens family 13 CBM. The results reported here allow to assign a functional role for these 

CBMs and CBM families and contribute to the classification of the novel CBMs identified in the 

genome of the two bacteria, particularly those from R. flavefaciens FD1. Furthermore, the 

information derived from this integrative study, can promote a better understanding of cellulolytic 

capabilities of these bacteria, as well as to potentiate biotechnological applications of CBMs. 

Keywords: Carbohydrate-Binding Modules (CBMs) • Protein-carbohydrate recognition • 

Clostridium thermocellum • Ruminococcus flavefaciens FD-1 • Carbohydrate microarrays • X-ray 

crystallography 
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Resumo 

A parede celular das plantas é maioritariamente constituída por polissacáridos complexos e 

estruturalmente diversos, também designados de hidratos de carbono, que são importantes 

recursos para aplicações industriais e biotecnológicas. Alguns microorganismos que residem em 

ambiente anaeróbio são altamente especializados e eficientes na degradação de hidratos de 

carbono da parede celular vegetal, tendo desenvolvido para esta função um complexo 

multi-enzimático de tamanho megadalton à superfície celular, designado de Celulossoma. Neste 

complexo, os módulos catalíticos encontram-se adjacentes a módulos não-catalíticos de ligação 

a hidratos de carbono (CBMs), que potenciam a eficiência catalítica das enzimas. De forma a 

elucidar estes sistemas biológicos complexos e promover novas aplicações, é crucial decifrar ao 

nível molecular os mecanismos subjacentes ao reconhecimento e desconstrução de hidratos de 

carbono por diferentes bactérias celulolíticas. Neste sentido, esta Tese combina a tecnologia dos 

microarrays de hidratos de carbono e a cristalografia de raios-X para identificar ligandos e 

caracterizar estruturalmente novas interacções CBM-hidratos de carbono de duas bactérias 

anaeróbias que residem em diferentes nichos ecológicos: Clostridium thermocellum, encontrada 

maioritariamente no solo, e Ruminococcus flavefaciens FD-1, presente no rúmen de herbívoros. 

No trabalho desenvolvido, foram aplicados microarrays constituídos de hidratos de carbono 

(polissacáridos e oligossacáridos) com sequências representativas da diversidade estrutural da 

parede celular das plantas, e outras de fungos ou bactérias, para investigar o reconhecimento e 

a especificidade de 150 CBMs identificados no genoma destas bactérias. Os resultados 

identificaram diferentes grupos de polissacáridos reconhecidos por 59 CBMs e novas 

especificidades para 23 CBMs de C. thermocellum e 21 CBMs de R. flavefaciens. Os CBMs das 

duas bactérias exibiram especificidades diferentes para ligação a hidratos de carbono, o que 

poderá reflectir a adaptação ao seu nicho ecológico e a complexidade dos seus celulossomas. 

Utilizando a informação derivada dos microarrays, e de acordo com a relevância biotecnológica 

ou novidade, CBMs e respectivos ligandos foram seleccionados para caracterização estrutural. 

As novas estruturas de CBMs resolvidas permitiram a caracterização dos determinantes 

moleculares para o reconhecimento de β1,3-1,4-glucanos pelo CBM da família 11 de 

C. thermocellum, de quitina e peptidoglicano por um novo domínio LysM da família de CBMs 50 

de C. thermocellum, e de arabinanos pécticos por CBMs da família 13 de R. flavefaciens. Os 

resultados permitiram atribuir um papel funcional a estes CBMs e famílias de CBMs nas duas 

bactérias, contribuindo para a classificação dos novos CBMs identificados, particularmente de 

R. flavefaciens. Este estudo integrativo permitiu uma melhor compreensão das capacidades 

celulolíticas destas bactérias, e servirá para potenciar aplicações biotecnológicas destes CBMs. 

Palavras-chave: Módulos de ligação a hidratos de carbono (CBMs) • Reconhecimento 

proteína-hidrato de carbono • Clostridium thermocellum • Ruminococcus flavefaciens FD-1 • 

Microarrays de hidratos de carbono • Cristalografia de raios-X 
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Thesis outline 

The work described in this Thesis focused on a unique approach combining carbohydrate 

microarrays with X-ray crystallography, to uncover the carbohydrate-binding specificity of CBMs 

from the cellulolytic bacteria C. thermocellum and R. flavefaciens FD-1 and to structurally 

characterize novel CBM-carbohydrate recognition mechanisms at a molecular level. To this end, 

sequential projects were followed, and the respective results and conclusions were divided into 5 

chapters (Chapters 2-6) as outlined below. 

Chapter 1 starts with a general introduction on the composition of plant cell wall polysaccharides 

and the systems that cellulolytic microorganisms employ for its biodegradation, including several 

biotechnological applications of CBMs. These sections are followed by an overview on the 

carbohydrate microarrays technology and on protein X-ray crystallography as the two main 

techniques applied in this Thesis, focusing on the characterization of protein-carbohydrate 

interactions. At the end of the chapter, the rationale and the main objectives of the Thesis work 

plan are presented. 

Chapter 2 is the first results chapter and describes the construction and validation of an 

NGL-microarrays platform comprised of naturally-derived glucan- and hemicellulose-related 

oligosaccharides to address the need of increasing the diversity of plant-derived 

sequence-defined microarrays developed to this date. The application of the microarrays to 

assign carbohydrate ligands and the specificities of CBMs and plant carbohydrate-specific 

antibodies is demonstrated. 

The application of these new microarrays to the high-throughput screening of C. thermocellum 

and R. flavefaciens CBMomes and to assign novel CBM-carbohydrate specificities is described 

in Chapter 3. Derived from the results obtained from the microarrays screening analysis, and 

considering their functional, biotechnological and industrial relevance, three representative 

CBMs, with the respective ligands, were selected for further biochemical and biophysical 

characterization, and are explored in the next three chapters.  

Chapter 4 details the molecular determinants for the ligand recognition of family 11 

C. thermocellum CBM to mixed-linked β1,3-1,4-glucans, describing the CBM 3D structures in 

complex with tetra- and hexa-saccharide ligands. 

In the same trend, Chapter 5 is focused on the structural and functional characterization of a 

C. thermocellum CBM from family 50, which is identified as a novel LysM domain binding to chitin 

(β1,4-linked GlcNAc) and peptidoglycan sequences. 



XXX 
 

In Chapter 6, the carbohydrate ligand recognition by R. flavefaciens family 13 CBMs is explored, 

and the structure of a newly identified CBM13 and its binding specificity to pectic α1,5-arabinan 

sequences is described. 

Finally, in Chapter 7 the main conclusions of the Thesis work are drawn in an integrative manner, 

and future perspectives are presented. 



 

CHAPTER 1 
GENERAL INTRODUCTION1 

 

                                                      

 
1Some sections of this Introduction were reproduced and updated from Ribeiro, D.O., Pinheiro, 
B.A., Carvalho, A.L., Palma, A.S. (2018) Targeting protein-carbohydrate interactions in plant cell-
wall biodegradation: the power of carbohydrate microarrays. In Carbohydrate Chemistry: 
Chemical and biological approaches (Rauter AP, Lindhorst T, & Queneau Y, eds), pp. 159–176. 
Royal Society of Chemistry (DOI: 10.1039/9781788010641-00159). 
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1 General Introduction 

1.1 Structural diversity of plant cell wall polysaccharides 

The plant cell wall is an intricate structure composed in its majority by complex polysaccharides 

and a smaller number of structural proteins. The composition in polysaccharides is highly variable, 

depending if the plant cell wall is expanding (primary cell wall) or if its role is to give additional 

structural support to the cell (secondary plant cell wall). It also differs between species, with 

distinct chemical compositions among the cell walls of grass and flowering plant species3,4. The 

wider molecular and functional diversity of the polysaccharides is mainly observed in the primary 

cell wall with their configurations changing throughout the plant cell development, expansion and 

division5.  

In plant cell walls, microfibrils of the major polysaccharide cellulose form a network embedded in 

a matrix of various complex polysaccharides, such as hemicelluloses, β-glucans and pectins 

(Figure 1.1). The hemicelluloses are interconnected with cellulose reinforcing the strength and 

resilience of the network, while the hydrated gels composed of pectin that intercalate this network, 

determine the porosity and thickness of the cell wall. The entire structure is maintained by 

non-covalent interactions, both spontaneous physico-chemical interactions and enzymatic 

crosslinking, that exist between these polysaccharides4,6. 

 
Figure 1.1. Illustrative representation of the diversity of major polysaccharides in the plant cell wall. 
In combination with hemicelluloses, cellulose microfibrils form a network interspersed by pectin 
polysaccharides. The main hemicellulose polysaccharides found in plant cell walls are xyloglucan (dicot 
species) and arabinoxylan (grasses). The major pectin polysaccharides are rhamnogalacturonan I and 
homogalacturonan4. 

The plant cell wall polysaccharides are structurally diverse (Figure 1.2). Cellulose is composed of 

aligned linear homopolymers of β1,4-D-linked glucosyl residues, organized in sheets packed in a 
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“parallel-up” fashion forming a structure that is, in its majority, crystalline7. Hemicelluloses 

maintain a β1,4-D-linked backbone but are structurally more complex and composed of other 

residues, in addition to glucose, such as mannose and xylose, in linear or branched sequences. 

Examples of hemicelluloses include xyloglucans, xylans, mannans, glucomannans and 

mixed-linked β1,3-1,4-D-glucans (β1,4-D-linked glucans with interspersed single β1,3-D-linkages). 

All hemicelluloses have significant structural similarity as their backbone residues share the same 

equatorial configuration at C1 and C4 positions. While xyloglucans are widespread in land plants, 

the others are more species specific: xylans (dicots and commelinid monocots), mannans 

(charophytes) and β1,3-D-β1,4-D-glucans (grasses)8. Callose is a β1,3-D-glucan that is 

widespread and occurs in specialized walls or wall-associated structures, specifically at stages of 

differentiation9. Pectins are a structurally diverse group of polysaccharides constituted by 

galacturonic acid (GalpA) in their backbone sequences. The predominant pectins in the primary 

plant cell wall are: homogalacturonan (HG), a polysaccharide with an unsubstituted backbone of 

α1,4-D-linked GalpA residues, and rhamnogalacturonan-I (RG-I), a polysaccharide with a 

backbone of the repeating disaccharide [-α1,2-L-Rhap-α1,4-D-GalpA-]n, substituted at the 

rhamnose residue with different structural domains, such as galactans, arabinans or 

arabinogalactans (Figure 1.2). Other pectins such as xylogalacturonan (XGA), which has a 

homogalacturonan backbone substituted by xylose, and rhamnogalacturonan-II (RG-II), a highly 

ramified polysaccharide with a homogalacturonan backbone comprising 7 to 9 α1,4-D-linked 

GalpA residues are present in smaller amounts. Rhamnogalacturonan-II is the most structurally 

complex cell wall known polysaccharide as it has 12 different monosaccharide residues 

interconnected by more than 20 glycosidic types of linkages10.  

As consequence of this structural diversity, cellulolytic microorganisms that are highly specialised 

in degrading the plant cell wall polysaccharides have developed a consortium of Carbohydrate 

Active Enzymes (CAZymes) appended by Carbohydrate Binding Modules (CBMs) for which the 

diversity of activities and specificities matches the variety of polysaccharides. 

1.2 Cellulolytic microorganisms’ express proteomes highly efficient in 
plant cell wall biodegradation 

The machinery for degrading plant cell wall polysaccharides differs from anaerobic to aerobic 

microorganisms, however the modular organization of the polysaccharide-degrading enzymes is 

maintained in both.  

Due to energetic constraints and competition between the species found in anaerobic 

environments, most anaerobic cellulolytic microorganisms have arranged an efficient but rather 

elaborated system, where the produced and secreted CAZymes, such as endoglucanases, 

exoglucanases and β-glucosidases, are assembled in supramolecular complexes (molecular  
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Figure 1.2. Examples of structures of polysaccharides found in the plant cell wall. The Haworth 
conformational structure of the main chain representative tetrasaccharide sequences is represented; –R, 
possible ramification position; the different possible sequences of the ramifications to the main backbone 
chain are depicted. In the mixed-linked β-glucans, the β1,3-linkages separate segments of 2 up to 14 glucose 
residues linked with β1,4-linkages9. 

weight >3 MDa), termed the ‘cellulosome’ (Figure 1.3) (see references11–14 for a comprehensive 

review on cellulosomes). Cellulosomes show different levels of complexity and are mainly 

localized at the cell surface12. These are known as integrating systems and are composed by one 

or more scaffoldins, where CAZymes are integrated and brought to the vicinity of the substrate. 

The scaffoldin is a structural subunit composed of several cohesin modules that bind their binding 
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partners, the dockerin modules, present in CAZymes and other relevant proteins. Most of the 

scafoldins have in their modular structure a CBM from family 3a, that specifically binds to 

recalcitrant cellulosic substrates13. These multi-enzyme complexes can be attached to the 

bacteria surface and display very complex and dynamic assemblies. One example is the 

cellulosome from Clostridium thermocellum, which has a primary scaffoldin (ScaA) comprising 

nine highly conserved type I cohesins, which allow the incorporation of different CAZymes and 

associated CBMs, through their type I dockerins (Figure 1.3A). To attach the scaffoldin subunit to 

the surface of the bacterial cell, membrane-associated proteins are bound to a type II cohesin12,15. 

Bacteria of the genera Acetivibrio, Clostridium, Ruminococcus, Thermotoga16,17 and fungi of the 

genera Neocallimastix, Piromyces and Orpinomyces12 are examples of anaerobic cellulolytic 

microorganisms. The ecosystems where anaerobes are found to degrade plant polysaccharides 

to soluble sugars are as diverse as soils, sediments or water bodies. Recently, much attention 

has been given to the polysaccharide-degrading systems from anaerobic organisms that reside 

in the digestive tracts of invertebrates and vertebrates18,19. These offer novel systems for studying 

carbohydrate recognition and are important for communication with the host, such as the human 

host, promoting health and nutritional benefits. 

 

Figure 1.3. The anaerobic bacterial cellulosome. Schematic representation the architecture of the 
cellulosomal assembly of (A) C. thermocellum and (B) R. flavefaciens FD-1. The colour code represents the 
different specificities of cohesin-dockerin (Coh-Doc), that compose the various scaffoldins (Sca). The 
CAZymes modules, can additionally have appended CBMs. (Adapted from Bule et al., 201814). 

Aerobic microorganisms secrete large quantities of CAZymes to the environment, organized in 

much simpler non-integrating systems. Bacteria from genera Bacillus, Micromonospora, Cellvibrio 

and Pseudomonas20 and fungi from genera Aspergillus21 are examples of aerobic cellulolytic 

microorganisms. The enzymatic activities of the CAZymes are still complementary, showing 

strong synergy in the degradation of plant cell walls.   

It is worth emphasizing in this section the recently identified lytic polysaccharide monooxygenases 

(LPMO) as key players in the first steps of plant biomass degradation19. LPMOs are 
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copper-dependent enzymes which cleave crystalline substrates by oxidizing the glycosidic bonds. 

By introducing chain breaks in insoluble polysaccharides, such as cellulose and chitin, and also 

in some hemicelluloses, LPMOs have the ability to enhance the activity of the glycoside 

hydrolases.  

CAZymes and CBMs are classified into sequence-based families in the CAZy database 

(www.cazy.org)22. This database, with regular updates, is dedicated to classifying and analyse 

genomic, structural and biochemical information concerning CAZymes and associated CBMs 

involved in the synthesis, modification and breakdown of oligo- and polysaccharides22. Currently 

(as of March 2020), there are numerous different CAZymes and CBM families identified:  167 

families of glycoside hydrolases (GHs), 110 families of glycosyl transferases, 40 families of 

polysaccharide lyases (PLs), 17 families of carbohydrate esterases (CEs), 16 families of auxiliary 

activities (including the 6 LPMO families), and 86 families of CBMs. 

1.2.1 Carbohydrate-binding modules: the non-catalytic domains associated with 
Carbohydrate Active enZymes 

CBMs are a class of carbohydrate-binding proteins, defined as non-catalytic protein domains, with 

amino acid sequences ranging from 30 to 200 amino acids23,24. These modules were initially 

defined as cellulose-binding domains (CBDs), as the first examples of CBMs mainly bound to 

crystalline cellulose25. However, these modules show a highly diverse range of ligand specificities, 

between different families and even within the same family. Several characterized CBMs 

recognize non-crystalline cellulose, chitin, xylan, mannan, galactan, soluble α- and β-glucans and 

insoluble storage polysaccharides, such as starch and glycogen22.   

The number of newly identified CBM sequences with putative carbohydrate binding is growing 

fast due to the exponential increase of sequence information derived from microbial genomics, 

metagenomics and transcriptomics data. Many of these proteins await elucidation and 

assignment of a carbohydrate-binding function26,27.  

1.2.1.1 Classification of CBMs 

Based on the conservation of protein fold, CBMs are divided into 7 different fold families. Most 

CBMs identified to date are classified in the β-sandwich family of protein folds. To provide 

additional functional relevance to the CBM classification, these modules have been grouped into 

three types: A, B, and C, according to the mode of interaction with the carbohydrates and the 

architecture of the binding site23,24.  

CBMs from type A have a planar hydrophobic surface decorated by aromatic residues that interact 

with flat crystalline polysaccharides, such as chitin or cellulose. This type of interaction is 

observed in the crystal structure of a CBM63-containing Bacillus subtilis expansin in complex with 

β1,4-D-linked cellohexaose28. Some type A CBMs have been reported to bind not only to 
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crystalline cellulose but also to soluble polysaccharides such as CBMs from family 2 and 3, which 

can also bind xyloglucans29, and CBM64 from Spirochaeta thermophila that binds a variety of 

hemicelluloses30. 

CBMs from type B or endo-type are classified as CBMs that bind to internal oligosaccharide 

sequences. These CBMs exhibit a cleft or groove, that accommodates oligosaccharide chains 

with four or more residues, and show higher binding affinities with the increase of the 

oligosaccharide chain length. 

One example is the highly thermostable family 4 CBM from Thermotoga maritima that binds 

β1,3-glucans and β1,3-1,4-glucans31,32 (Figure 1.4A). This CBM comprises the C-terminus of the 

putative laminarinase Lam16A and the recognition of β1,3-D-linked laminarioligosaccharides 

involves three tryptophan residues (W28, W58, and W99) and one tyrosine residue (Y23). One 

other example is the family 11 CBM from C. thermocellum, which recognizes mixed-linked 

β1,3-1,4-glucans32–34 (Chapter 4 of this Thesis is dedicated to the understanding of the molecular 

determinants of this CBM specificity). This CBM is associated to the enzyme Lic26A-Cel5E, an 

enzyme that contains GH5 and GH26 catalytic domains that display β1,4-glucan and 

β1,3-1,4-glucan endoglucanase activity, respectively33.  

CBMs from type C, or exo-type, are classified as CBMs that recognize the non-reducing end of 

an oligosaccharide sequence, binding in an optimal way to mono-, di- or trisaccharides, due to 

steric restriction in the binding site. Unlike the type B CBMs, type C do not contain the extended 

grooves in the binding-sites. Examples of this CBM type are the family 6 CBM from Bacillus 

halodurans in complex with laminarihexaose35, the family 42 CBM from C. thermocellum, a 

β-trefoil lectin that binds the arabinose side chains of complex hemicelluloses36, and family 13 

CBM from Streptomyces lividans, another β-trefoil binding xylose or xylo-oligosaccharides37.  

Remarkably, the family 6 CBM from Cellvibrio mixtus exhibits a type B cleft capable of recognizing 

β1,4-, β1,3-, and β1,3-1,4-linked glucose oligosaccharides, and a type C cleft that interacts with 

terminal residues of β1,4- and β1,3-linked glucose and also β1,4-xylose oligosaccharides38,39 

(Figure 1.4B).  

1.2.1.2 Functional Roles of CBMs 

Although, in general, CBMs display low affinity towards their target ligands (in the µM-mM 

range)23, modular  enzymes increase their avidity by containing multiple copies of CBMs, 

enhancing the affinity for their target polysaccharide26. Although the mechanism by which CBMs 

potentiate catalysis remains elusive26, the following  four functional major roles are recognized for 

CBMs23,24,26: 1) Targeting function, where CBMs target the joined catalytic modules to specific 

regions on the carbohydrate substrate, such as reducing end, non-reducing end or internal 

polysaccharide chain, bringing the enzyme into close and prolonged contact with the target ligand; 

2) Proximity effect, where CBMs increase the concentration of enzyme near its substrate, leading 
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Figure 1.4. Carbohydrate recognition by CBMs. (A) Type B protein-carbohydrate interactions illustrated 
by 2 views of the 3D structure of family 4 CBM from Thermotoga maritima in complex with β1,3-D-linked 
laminarihexaose (PDB ID: 1GUI31). This type of CBMs displays a cleft arrangement in which the binding site 
accommodates glycan chains with four or more monosaccharide units. (B) Family 6 CBM from Cellvibrio 
mixtus exhibits a type B cleft (in complex with β1,3-1,4-linked glucose tetrasaccharide (PDB ID: 1UZ0) and 
a type C cleft (in complex with β1,4-linked glucose disaccharide) (PDB ID: 1UYX)38. Representations (not to 
scale) of individual 3D structures were done with program Chimera40 using the PDB atomic coordinates. 

to a more rapid and efficient carbohydrate degradation; 3) Disruptive function, where CBMs act 

to disrupt the surface of tightly packed polysaccharides, such as crystalline cellulose fibres and 

starch granules, causing them to become more exposed to the catalytic module and, hence, 

increasing the degradation efficiency; and 4) Cell attachment, where CBMs adhere enzymes onto 

the surface of bacterial cell wall components, while exerting catalytic activity on an external 

carbohydrate substrate.  

Several organisms possess CBMs that are not directly involved in plant cell wall degradation and 

have been found to perform other functions, acting in isolated or tandem forms. These modules 

can act as potential carbohydrate-sensors (or sensing domains) of the biomass availability in the 

extracellular medium, and examples are  C. thermocellum CBMs from families 3 and 42 that 

trigger the expression of the enzymatic machinery specific for the degradation of the detected 

polysaccharides13,41. Additionally, certain CBMs, also known as Lysin motif domains or LysM 

domains, are involved in signalling between bacteria and plants, but can also be found in fungal 
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proteins acting as host immunity modulators, or be involved in the development of bacterial 

spores42. 

Given the wide variety of ligand specificities, CBMs are an excellent model to study 

protein-carbohydrate recognition mechanisms. Additionally, these modules are interesting 

candidates for various applications in biotechnology, and some specific examples will be 

referenced in the next section. 

1.2.2 Biotechnological applications of carbohydrate-binding proteins  

Plant cell wall polysaccharides present major potential for biological and biotechnological 

applications, from paper and textiles industries, biotransformation of lignocellulosic materials into 

biofuels and other renewable products of biorefinery, and as sources of dietary fibres for both 

human and animal nutrition. In the past decades, the use of microbial and enzymatic systems to 

overcome the difficult deconstruction of such recalcitrant polysaccharides, yielding efficient and 

low-cost mechanisms, have gained importance43–45.  

Not long after the identification of cellulosomes, their potential applications to biotechnology 

started to be explored46. Given their vast array of CAZymes and extreme habitat variability, 

cellulosomes can be engineered as a multi-functional protein complex tool12,45,47. Chimeric 

cellulosomes or designer cellulosomes have been used, for instance, as potential replacements 

or extensions of native cellulosomes to produce biofuels from cellulosic biomass48. 

Additionally, each protein module in the cellulosome can be explored, individually or combined 

with free-acting CAZymes, for a wide spread of industrial and biotechnological applications47. 

Synergistic actions between individual enzymes have been exploited to produce a combination 

of feed enzymes with the ability to degrade Chlorella vulgaris cell wall, with the purpose of 

improving the bioavailability of its valuable nutritional compounds for monogastric animal diets 

and facilitate the cost-effective use of microalgae by the feed industry44.  

CBMs have also been largely explored for many biotechnological applications. Given their vast 

diversity, the ability to function autonomously in chimeric proteins and the controllable binding 

specificities so that the right solution can be adapted to an existing problem, make CBMs 

attractive candidates for a variety of applications49,50. From enhancers in biomass degradation51; 

improvement of cellulose fibre properties for the paper and textile industries; functionalization of 

biomaterials in biomedicine;  production, purification and immobilization of recombinant proteins; 

in food industry for the improvement of animal feed nutritional value; and as molecular probes for 

protein-carbohydrate interactions50.  

As molecular probes, CBMs are valuable tools for the study of plant cell wall architecture. 

Recombinant CBMs have been used for characterizing native complex carbohydrates and 

engineered biomaterials50. CBMs from CAZy families 2a, 6, and 29 containing poly-histidine tags 

have been used for the analysis and detection of polysaccharides in maize coleoptiles cell walls, 
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such as crystalline cellulose, xylans, galactomannan and glucomannan52. Two recombinant 

fluorescent CBM-probes consisting of a green fluorescent protein fused with a CBM3, that binds 

to both amorphous and crystalline cellulose, and mono-cherry fluorescent protein fused with a 

CBM17, that only binds to amorphous cellulose, have been used to reveal the surface 

accessibilities of amorphous and crystalline celluloses in Avicel53. 

Given the increasing repertoire of CBMs, and their various potential and valuable applications, 

understanding the structural basis of their ligand specificity is of the most importance. 

1.2.3 Clostridium thermocellum and Ruminococcus flavefaciens FD-1 

The work developed in this Thesis focused on CBMs from Clostridium thermocellum 

(C. thermocellum) and Ruminococcus flavefaciens FD-1 (R. flavefaciens), two Gram-positive, 

anaerobic, cellulosome-producing cellulolytic bacteria that reside in different ecological niches, 

and of relevance in fields such as of bioprocessing and animal nutrition. C. thermocellum is a 

thermophilic bacterium54, found mostly in soils and hot springs and it is considered the most 

efficient cellulolytic microorganism for the degradation of lignocellulosic biomass55. 

C. thermocellum cellulosome (Figure 1.3A) was the first to be identified and characterized15 (see 

section 1.2), and its complex architectural components have been extensively studied12,56,57. On 

its turn, R. flavefaciens species are found in the digestive tracts of ruminants, other herbivorous 

animals and humans, and are among the most important ruminal cellulolytic bacteria, considered 

to be primarily responsible for plant cell wall biodegradation in the rumen58.  Recent sequencing 

of R. flavefaciens FD-1 genome has revealed one of the most complex cellulosomes (Figure 1.3B) 

identified to date, with one of the largest collection of cellulosome-associated proteins among 

known fibre-degrading bacteria14,27. Besides the numerous modular GHs, several CBMs were 

identified to belong to known CAZy families and also putative CBM sequences27, some of which 

have recently been classified into new families 75 to 8059.  

Throughout the years, efforts were made to elucidate the molecular mechanism for the assembly 

of cellulosomes, enabling the identification of its different structural components. As such, 

C. thermocellum CBMs have been widely studied and characterized, yielding a vast amount of 

available information, with up to 90 CBMs from diverse families deposited in the CAZy database. 

Despite this, there are still numerous C. thermocellum CBMs that await elucidation and 

experimental validation. In contrast, given the more recent R. flavefaciens FD-1 genome 

sequencing, there is not much information available yet. Given the crucial roles of CBMs in plant 

cell wall biodegradation, the elucidation of the carbohydrate-specificities of the numerous 

assigned R. flavefaciens FD-1 CBMs and the understanding of mechanisms of carbohydrate 

recognition will promote the knowledge of this bacterium cellulolytic capabilities. 
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1.3 Methods for characterizing protein-carbohydrate interactions 

Understanding the molecular basis for carbohydrate recognition by proteins and the relationship 

between structure and function are prerequisites for the development of future innovations in 

biological, biotechnological and industrial fields60. To this end, several state-of-the-art techniques 

have been developed for the characterization of protein-carbohydrate interactions.  

Characterization of protein-carbohydrate recognition often uses a combination of analytical 

methods, that can provide insights into the biological roles of each protein and their ligands, with 

structural studies, to understand the mechanisms of ligand-binding at molecular level. 

Carbohydrate microarrays61 allow to decode carbohydrate recognition by screening proteins for 

ligand-binding and specificity. Other analytical methodologies, such as Isothermal Titration 

Calorimetry (ITC)62, MicroScale Thermophoresis (MST)60, Enzyme-Linked Immunosorbent Assay 

(ELISA)63 and Affinity Gel Electrophoresis (AGE)62 can then be used to assess 

protein-carbohydrate affinity to target poly- and oligosaccharides. Structural characterization of 

the protein-carbohydrate recognition can be achieved by determining the molecular structures of 

protein-carbohydrate complexes, and X-ray crystallography64 and Nuclear Magnetic Resonance 

(NMR) spectroscopy60 are the methods of choice, which can be used in a complementary manner. 

High resolution data can also be integrated with lower resolution results from Cryo-Electron 

Microscopy (Cryo-EM) and Small Angle X-ray Scattering (SAXS)  when characterizing large 

multi-component complexes65. Additionally, computational methodologies, such as Molecular 

Dynamics (MD) and molecular docking66 are advantageous tools to complement the experimental 

data. 

In the next sections emphasis will be given to the methodological aspects and application of 

carbohydrate microarrays and X-ray crystallography, as these were the two major techniques 

applied to achieve the objectives of the proposed Thesis work plan.  

1.3.1 Carbohydrate microarrays 

The development of carbohydrate microarrays in the recent decades came to revolutionize the 

study of carbohydrate-protein interactions, satisfying the high demand for high-throughput  

methods to systematically array carbohydrate libraries and identify the specificity and biological 

role of carbohydrate-binding proteins67–73. 

The main advantage of the microarray technology is that a wide diversity of carbohydrate probes 

can be immobilized on a microarray surface and simultaneously assessed for binding events, 

using only minute amounts of samples. This miniaturization feature of the microarrays, takes the 

most out of precious materials, both carbohydrates and protein analytes, while generating a large 

amount of information on a variety of carbohydrate-recognising systems74,75. Another important 

feature of the microarrays is the multivalent display of the arrayed carbohydrates, which enables 
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the optimisation of carbohydrate presentation for interaction with the protein and promotes 

detection of very low affinities of carbohydrate-protein interactions. 

Carbohydrate microarrays are generally of two categories: polysaccharide or glycoprotein 

microarrays and oligosaccharide microarrays74. The carbohydrate samples can either be isolated 

from natural sources or be chemically or chemo-enzymatically synthetized. On the one hand, 

polysaccharide or glycoprotein microarrays can comprise the full diversity of a particular glycome 

and may avoid the loss of any labile or conformational determinants during the release of the 

oligosaccharides from their molecules of origin68,69,71,74. On the other hand, oligosaccharide 

microarrays are powerful tools to assess binding-specificity in carbohydrate recognition events 

and to identify the binding epitopes71,74. Polysaccharides and glycoproteins can be readily and 

randomly immobilized on solid matrices based on hydrophobic physical adsorption or 

charge-based interaction68,69,74. The immobilization of oligosaccharides is more challenging, given 

their low mass and hydrophilic nature, and chemical derivatization at the reducing 

monosaccharide is usually required prior to immobilization, to introduce suitable functional 

groups74–76. Being in equilibrium between the hemiacetal closed-ring and the aldehyde 

open-chain form, the reducing monosaccharide can serve as an electrophilic group for a 

chemoselective reaction with numerous nucleophilic amine-, hydrazide-, or oxyamine-containing 

reagents74–76. For oligosaccharides obtained through chemical synthesis, the functionality is 

generally carried out by placing a linker at the reducing terminal monosaccharide residue in a 

form suitable for flexible modifications74–76. These different strategies allow oligosaccharides to 

be immobilized on a compatible microarray surface. Polymer-based surfaces such as 

nitrocellulose or plastic are usually an attractive solid surface for non-covalent immobilization67–

69,72, whereas gold or functionalised glass are used to covalently attach carbohydrate probes70,77. 

1.3.1.1 Carbohydrate microarray platforms 

To date, several carbohydrate microarray platforms have been developed that: 1) use alternative 

chemical strategies to overcome the limitation of direct immobilization of oligosaccharides onto 

solid matrices; 2) differ on the type of carbohydrates and how they are displayed on the array 

surface; and 3) are based on covalent or non-covalent immobilization to different surfaces. These 

are reviewed in detail in recent references73,75,76,78–81. Here, some high-throughput platforms that 

contain a high diversity of oligosaccharide probes and that use different strategies for their 

immobilization and presentation will be highlighted.  

Feizi and colleagues have developed a microarray system based on the neoglycolipid (NGL) 

technology82, in which the oligosaccharides are linked to a lipid67,71,72,78,83,84. A summary of the 

key steps involved in the construction of the NGL-based microarrays and their analysis to reveal 

carbohydrate-binding patters is depicted in Figure 1.5. Central to this microarray system is the 

microscale lipid conjugation of oligosaccharides (natural or chemically synthesized 

sequence-defined or as mixtures) to an aminophospholipid to produce NGLs. The generated NGL  
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Figure 1.5. Schematic overview of the main steps comprising the analysis using 
neoglycolipid (NGL)-based carbohydrate microarrays. The key steps of this methodology are depicted 
in three stages:  1) Construction of the NGL-based carbohydrate microarrays: the probes are all 
lipid-linked and comprise both NGLs prepared from natural or chemically synthesized oligosaccharides and 
glycolipids, natural or synthetic; the interface with mass spectrometry (MS) and HPTLC or HPLC, enables 
purification and characterization of oligosaccharides or NGL mixtures; the NGLs can also be prepared from 
oligosaccharide mixtures derived from ligand-bearing glycomes, to reveal and characterise the 
oligosaccharide ligands they harbour (‘designer’ microarray methodology); the NGL and glycolipid probes 
are robotically dispensed onto nitrocellulose-coated glass slides using a liposome formulation in the 
presence of carrier lipids.  2) Probing and Fluorescence imaging: Cyanine 3 fluorophore is included in the 
NGLs liposome formulation, so that the immobilized probes can be visualised by fluorescence imaging at 
532 nm; the microarrays can then be probed for carbohydrate-binding by monoclonal antibodies, CBMs, 
lectins and viruses or other pathogens; the binding signals are revealed by scanning for Alexa-fluor647 
emission at 647 nm. 3) Microarray data analysis and display: the fluorescence intensities are quantified 
and analysed to reveal the carbohydrate binding patterns using a dedicated software, which includes a 
database that holds all of the microarray data and metadata on experimental conditions and information on 
probes and proteins; interactive tools are then used for semi-automatic presentation of microarray data by 
filtering, sorting and deep mining every data point. Figure adapted from Palma et al. 201478 and 
Palma et al. 201532. 
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probes have amphipathic properties, which enables efficient display onto nitrocellulose-coated 

glass slides using a liposome formulation in the presence of carrier lipids85 (Figures 1.5 and 1.6A). 

The reducing oligosaccharides can be conjugated through reductive amination to the aminolipid 

1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPE, DH-NGLs) (Figure 1.6C). This 

procedure yields the ring-opening of the monosaccharide at the reducing end74. To overcome this 

limitation, NGLs with ring-closed monosaccharide cores have been introduced by Liu and 

colleagues86. These are prepared by conjugating reducing oligosaccharides to an 

aminooxy-functionalized DHPE by oxime ligation (without reduction) (AOPE, AO-NGLs) (Figure 

1.6C). This procedure enables the efficient presentation of short oligosaccharides for direct 

binding assays86. The non-covalent immobilization of NGLs in a lipid environment onto a 

nitrocellulose surface introduces an element of mobility. This mode of presentation simulates to 

some extent the cell surface display of glycans and may be advantageous for detection of binding 

for particular recognition systems78. The NGL-based microarray system currently contains a 

repertoire of around 900 sequence-defined probes, with a high content of natural oligosaccharide 

sequences, including NGLs derived from various oligosaccharides of mammalian sources, from 

polysaccharides of bacterial, fungal, and plant origins, and natural and synthetic glycolipids78 

(accessed through the link https://glycosciences.med.ic.ac.uk/glycanLibraryIndex.html). 

The microarray platform of the Consortium for Functional Glycomics (CFG) developed by the 

early work of Blixt and colleagues70,87 is also based upon amine chemistry, whereby 

oligosaccharides linked at the reducing end with an amine-terminating linker are covalently 

immobilized onto N-hydroxysuccinimide (NHS) ester-derivatized glass slides (Figure 1.6B). 

Recent microarray versions are composed of around 600 mammalian-type probes (mammalian 

printed array version 5.2). Other strategies that also use an amino-linker involve immobilization 

of the amine-terminated oligosaccharides onto epoxide-derivatized slides (Figure 1.6B). 

Examples are by Cummings and colleagues that used this method for immobilization of 

naturally-derived oligosaccharide libraries88 and by Varki and colleagues who developed a 

structurally diverse microarray of sialylated oligosaccharides89. Gildersleeve and colleagues 

demonstrated that oligosaccharides conjugated to bovine serum albumin (BSA) or human serum 

albumin (HSA)  (displayed as neoglycoproteins) may also be efficiently immobilized using amine 

chemistry onto epoxide functionalized glass slides for binding studies90. Other groups, have 

developed covalent microarrays based on different chemistries, such as the early work by Shin 

and colleagues using the thiol chemistry, whereby maleimide-functionalized oligosaccharides are 

immobilized onto thiol-derivatized slides91. In these covalent oligosaccharide microarray 

platforms, the nature and length of the linkers between the oligosaccharide and the array surface 

are important for accessibility of the oligosaccharide to the protein and detection of specific 

binding.   

https://glycosciences.med.ic.ac.uk/glycanLibraryIndex.html
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Figure 1.6. Graphic representation of examples of immobilization strategies used to generate 
carbohydrate microarrays. (A) Non-covalent microarrays: immobilization onto nitrocellulose-coated glass 
slides of reducing oligosaccharides derivatized by reductive amination to an aminophosholipid, to prepare 
neoglycolipids (NGLs)78, or to BSA, to prepare neoglycoproteins92. (B) Covalent microarrays: immobilization 
of synthetic oligosaccharides derivatized at the reducing end to an amino-terminating linker onto 
N-hydroxysuccinimide (NHS)-functionalized glass slides70 or onto epoxide-functionalized glass slides89. 
(C) NGL probes prepared from reducing oligosaccharides by reductive amination (DHPE, DH-NGLs)93 and 
by oxime ligation (AOPE, AO-NGLs)86; the derivatization of the oligosaccharide by oxime ligation produces 
an equilibrium between the open- and closed-ring form of the reducing monosaccharide86. Examples of 
carbohydrate structures in the different libraries are shown using the symbol nomenclature for glycans 
(SNFG) according to Varki et al., 201594. 

The NGL-based microarray facility and that of the Consortium of Functional Glycomics (accessed 

through links https://www.imperial.ac.uk/glycosciences/ and http://www.functionalglycomics.org/, 

respectively) are the two largest platforms assembled to date that are open to the broad scientific 

community for microarray screening analyses of carbohydrate-binding proteins in different 

biological contexts.  

Although the number of sequence-defined probes in carbohydrate microarrays has been 

expanding, the increase in diversity to date has been mainly on mammalian-type sequences. 

Some groups, however, have focused on development of microarrays from microbial32,95,96 or 

plant-derived carbohydrates32,92,97–102. Sequence-defined oligosaccharides can be derived from 

https://www.imperial.ac.uk/glycosciences/
http://www.functionalglycomics.org/
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natural polysaccharides and the development of methods for fine-tuned depolymerisation, 

purification, high-sensitive sequencing and structural characterisation of the oligosaccharide 

fragments are crucial32,92. Methods for chemical103–105 or chemo-enzymatic synthesis106 of 

structural elements from complex microbial or plant cell wall polysaccharides offer powerful 

complementary approaches to develop sequence-defined microarrays. Recently, 

Seeberger et al. combining different carbohydrate synthesis approaches including automated 

glycan assembly, solution-phase synthesis and chemoenzymatic methods, successfully obtained 

a library of over 300 structures of different microbial oligosaccharides, which were used to develop 

the most diverse microbe-focused carbohydrate microarray platform to date95. The genetic 

engineering of bacterial strains with specific CAZymes gene deletions to produce 

oligosaccharides in the presence of a target substrate107, offer an alternative approach to achieve 

the much needed structural diversity.  

In the context of the work developed in this thesis, some selected examples of microarray 

approaches to study plant-carbohydrate recognition by CBMs will be highlighted in the sections 

below. 

1.3.1.2 Microarrays focused on plant carbohydrates for recognition studies 

Early work by Willats and colleagues, reported on a carbohydrate-based approach for 

high-throughput plant polysaccharide cell wall profiling99. This Comprehensive Microarray 

Polymer Profiling (CoMPP) is based on the extraction of Arabidopsis thaliana and Physcomitrella 

patens polysaccharides and printing of the polysaccharide-rich fractions onto nitrocellulose-based 

arrays. These are then probed with CBMs and monoclonal antibodies of known specificities for 

plant cell wall polysaccharides. The CoMPP strategy enables the plant cell wall composition to 

be assessed in a semi-quantitative high-throughput way by revealing the relative abundance of 

polysaccharide epitopes99. More recently, using the same principle of arraying chemically 

extracted polysaccharides and the information of monoclonal antibodies, Waldron and colleagues 

have analysed quantitatively the abundance of different non-cellulosic polysaccharides in 331 

genetically different Brassica napus cultivars100. These studies are providing insights to plant cell 

wall biosynthesis and restructuring100. This high-throughput screening of polysaccharide 

structures requires the use of proteins for which carbohydrate-specificity is known. Thus, 

development of sequence-defined plant-based carbohydrate microarrays is highly important to 

provide these protein tools.  

Later on, Willats and colleagues have developed a suitable platform for high-throughput analysis 

of the specificities of CBMs and monoclonal anti-carbohydrate antibodies92. This microarray is 

composed of linear and branched oligosaccharides, either isolated from polysaccharides, such 

as glucans, xylans, mannans, galactans, xyloglucans or arabinans, using enzymatic or chemical 

hydrolysis or generated by chemical synthesis92. The oligosaccharides are coupled to BSA by 

reductive amination, producing a ring-opened monosaccharide at the reducing end of the 
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oligosaccharide (Figure 1.6A)92. These neoglycoproteins are arrayed non-covalently together with 

plant polysaccharides onto a solid matrix, such as nitrocellulose-coated glass slides. The 

developed microarrays were recently used to characterize unknown CBMs of R. flavefaciens 

FD-1 cellulosome, revealing six previously unidentified CBM families targeting β-glucans, 

β-mannans and pectic homogalacturonan59. This study was important to gain knowledge on the 

complexity of the R. flavefaciens cellulosome and its extended repertoire of CBMs for efficient 

plant cell wall degradation in absence of CBMs that target cellulose. More recently, the sequence 

diversity in these microarrays was expanded to contain linear, branched and phosphorylated 

α1,4-D-linked glucose maltooligosaccharides108. These were applied to characterize the starch 

binding domain CBM20 of Aspergillus niger as tool for high-throughput screening of starch 

structures during development and germination108. 

Microarray platforms comprised of synthetic plant-based oligosaccharide sequences have also 

been developed in more recent years. Pfrengle and colleagues, have constructed microarrays of 

plant cell wall oligosaccharides obtained by solution-phase synthesis and by automated glycan 

assembly, comprising a range of sequences from xylans, glucans, xyloglucans, galactans, 

arabinogalactans and pectins109,110. The synthetized oligosaccharides equipped with an 

aminoalkyl-linker at the reducing end, were printed onto NHS-functionalized glass slides. These 

microarrays allowed to determine the binding epitopes of 79 plant cell wall carbohydrate-directed 

antibodies, and can also be used to identify and characterize unknown glycoside hydrolases 

substrate-specificities110. 

1.3.1.3 Combining microarray analysis with mass spectrometry 

A key feature of the NGL technology is its interface with Mass Spectrometry (MS) and 

High-Performance Thin Layer Chromatography (HPTLC) or High Performance Liquid 

Chromatography (HPLC)74,78 (Figure 1.5). This enables bioactive oligosaccharides released from 

a glycome source to be resolved from heterogeneous mixtures, characterized and purified, 

allowing the discovery and characterization of novel ligands of biological relevance67,71,78,85. 

Based on their previous work, which used this ‘designer’ approach from ligand-bearing glucans 

to assign the oligosaccharide ligands for the immune receptor Dectin-172 and anti-fungal 

therapeutic antibodies74, Palma and colleagues have developed a sequence-defined ‘glucome’ 

microarray as a screening tool for glucan-binding proteins32. The glucome microarray comprised 

153 gluco-oligosaccharide probes, with diverse sequences and chain lengths representing major 

sequences in glucans, including those present in plant cell wall. The oligosaccharides were 

prepared by depolymerization of glucans and multiple chromatographic methods at microscale or 

were synthesized chemically. The linkage and sequence determination of the linear and branched 

oligosaccharides were determined at high-sensitivity by development of a negative-ion 

Electrospray Ionization Collision-Induced Dissociation Mass Spectrometry (ESI-CID-MS/MS) 

method for gluco-oligosaccharides32. The oligosaccharides were converted to NGL probes by 
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oxime ligation to an aminooxy-functionalized lipid (AO-NGLs)86 (Figure 1.6C). The optimization of 

this method enabled long chains of gluco-oligosaccharides, otherwise difficult to derivatize, to be 

displayed in the microarrays for interaction studies86,96.    

Combining the microarray analysis with MS sequencing enabled the high sensitivity detection and 

unambiguous assignment of specificity of glucan recognition. The purity of glucan 

polysaccharides of different structural types is of particular importance for assignment of 

specificity. The partial fragmentation of the polysaccharides, the sequencing of the 

oligosaccharides by the negative-ion ESI-CID-MS/MS method and their interrogation on the 

microarrays, not only provided detailed information on linkage, sequence and chain-length 

requirements of glucan-recognizing proteins, but also were a sensitive means of revealing 

unsuspected sequences in the polysaccharides32. 

1.3.2 Protein crystallography 

Once interactions between proteins and carbohydrates are analysed and the binding specifies 

are assigned, elucidation of the three-dimensional structures of their complexes is a prerequisite 

for a better understanding of the molecular basis underlying the recognition process and hence 

the relationship between structure and function. Macromolecular X-ray Crystallography is a 

method of choice for determining the structures of proteins and their complexes. Although 

consisting of a laborious and time-consuming process, with the increasing of computing power, 

allied to the development of modern molecular biology techniques, commercial screening 

solutions and dedicated instrumentation, X-ray crystallography has largely contributed to the 

elucidation of biologically relevant carbohydrate-mediated recognition events in the recent 

decades. For a more comprehensive understanding on biological crystallography methods, Rupp, 

2009111 is a reference textbook. 

Determining the structure of proteins and protein-ligand complexes by X-ray crystallography, 

entails a series of methods and steps that determine the success of the resulting structure 

(Figure 1.7). Starting from a relatively large amount of a purified protein sample at an appropriate 

concentration, crystallization conditions are screened and eventually single crystals with quality 

suitable for X-ray diffraction are obtained. By irradiating the crystal with an X-ray beam, the 

resulting diffraction pattern reflects its composition and can be used to calculate an electron 

density map, upon calculating the phases. From the density map, an atomic model of the protein 

can be progressively built, refined and validated before its deposition in the Protein Data Bank 

(PDB)64,65,112.  

As crystallization is a very time-consuming step and requires considerable amounts of protein, 

assessing purity, conformational stability and monodispersity of the protein sample prior to the 

crystallization trials is a good practice. Besides native and SDS-PAGE, techniques such as  
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Figure 1.7. Schematic overview of the main steps comprised in the determination of protein and 
protein-ligand structures by X-ray crystallography, from the purified protein to the final 
three-dimensional structure. As an example, Cellulomonas fimi CBM4 bound to β1,4-D-glucose 
pentasaccharide is represented (PDB ID: 1GU3). 

Differential Scanning Fluorimetry (DSF, also referred to as Thermofluor) or Dynamic Light 

Scattering (DLS) are routinely used64,65.  

Additionally, when attempting to obtain protein-ligand complexes, the protein’s capabilities to its 

putative ligands should be confirmed prior to the crystallization assays, especially when dealing 

with ligands difficult to obtain in large quantities, such as oligosaccharides. In section 1.3 above, 

some state-of-the-art biophysical methods that are usually employed to analyse protein-ligand 

binding are referred. This preliminary analysis allows to assess the experimental conditions, such 

as the affinity of the interaction, that will most likely lead to the complex formation and increase 

the chances of obtaining the desired crystals65. 

One of the limiting steps in X-ray crystallography is obtaining well-ordered single crystals suitable 

for X-ray diffraction. This is especially true when trying to obtain protein-carbohydrate crystals. 

Due to the intrinsic high flexibility of carbohydrates, protein-oligosaccharide complexes can be 

challenging to crystallize113. Even when succeeding in obtaining crystals, quite often part or the 

whole ligand is not observed in the electron density map, even from high resolution diffraction 

data65,113. 

1.3.2.1 Protein crystallization 

In order to form crystals, protein molecules must separate from solution and self-assemble into a 

periodic crystal lattice structure. A comprehensive representation of the phenomenon of protein 

crystallization is usually depicted in terms of a phase diagram showing how the concentration of 

a specific protein in solution changes relative to the concentration of a precipitating agent 
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(Figure 1.8). The precipitating agent (or precipitant) is usually a solvent compound, such as 

polyethylene glycol, ammonium sulphate or sodium chloride, present in relatively high 

concentration in the protein solution. Initially, in the protein solution concentrated in the range of 

mg/mL, molecules are found in random orientation, surrounded by water and precipitant 

molecules. Interactions between solvent and protein are stronger than among protein molecules 

themselves. Once the solubility limit is exceeded, the solution becomes metastable. With 

concentration increase to the supersaturation phase, spontaneous or homogeneous nucleation 

occurs. During the nucleation stage, the solute protein molecules dispersed in the solvent start to 

gather into clusters and form stable nuclei. These clusters are stable only if they reach some 

critical size, which depends on physical conditions, such as supersaturation, temperature and 

pressure. Once this critical size is reached, the protein crystal will grow spontaneously as long as 

the solution is in the supersaturated state. This should be a slow process, to allow the protein 

molecules to assemble orderly in the crystal lattice and promote crystal growth. Crystal growth 

stops when the equilibrium is reached65,111. 

 

Figure 1.8. Phase diagram for protein crystallization. The diagram contains a region of undersaturation 
and supersaturation. The supersolubility curve separates the condition where nucleation or precipitation 
spontaneously occur from the condition where the solution remains clear. Crystals can only grow from a 
supersaturated solution. The supersaturated region is divided in the metastable zone, where nuclei will grow 
into crystals; the nucleation zone, where nuclei will form; and the precipitation zone. (Adapted from Carvalho 
et al., 201865) 

Solubility-reducing agents or precipitants are the primary component in this process. The pH of 

the crystallization cocktail, usually stabilized by a buffer, also determines the level of protein 

solubility, and shifts the local surface charge distribution of the protein. Temperature also affects 

protein solubility, which depending on the precipitant composition, may either increase or 

decrease with temperature. In addition, protein crystallization is an entropy-driven process, and 

the release of water molecules from across hydrophobic and polar residues during the crystal 

formation, contributes to the entropy gain of the system111. 
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Nowadays, automated crystallization nanodrop robots are used, which increase the number of 

conditions tested and require a smaller amount of protein and ligand, when compared to 

traditional manual crystallization procedures. Robots are the easiest way to screen over 

thousands of conditions thanks to the high diversity of crystallization formulations that are 

commercially available. In addition to precipitants and buffer solutions, these screenings can also 

include a diversity of additive compounds to help stabilizing intermolecular crosslinks in protein 

crystals and promote lattice formation64,65,111.  

When aiming to obtain crystals of protein-ligand complexes, soaking and co-crystallization are 

the common methods used64,65. The soaking method involves incubation of crystals of the 

unliganded-protein with the ligand of interest for a time period (from seconds to days) that may 

require optimization. For co-crystallization, crystals are prepared starting from a solution of the 

protein pre-incubated with the ligand at a high molar ratio (5 to 10-fold excess). The latter is 

usually the method of choice when working with oligosaccharides. However, even when 

crystallization conditions are already well established for the unliganded-protein, obtaining 

crystals of the protein-ligand complex may not be as straightforward and optimization of the 

conditions may be required64,65.  

Crystallization experiments are usually carried out through vapour diffusion using the 

hanging-drop or the sitting-drop method (Figure 1.7), in manual or automated setups. In this 

technique, a drop containing a mixture of the protein solution, previously incubated with the ligand 

in the case of co-crystallization, and the precipitant compound is placed in a sealed reservoir to 

equilibrate against the precipitant solution. Since the protein-precipitant mixture in the drop is less 

concentrated than in the reservoir solution, water evaporates from the drop and as a result, the 

concentrations of both protein and precipitant in the drop slowly increase until equilibrium is 

reached. As the protein solution in the drop becomes supersaturated, nucleation and phase 

separation occurs, and protein crystals may form64,111. 

Crystals consist of periodic assemblies of fundamental building blocks – unit cells – orderly 

disposed in a rigid three-dimensional crystal lattice (Figure 1.9), capable of diverting X-ray 

photons. The unit cell is the smallest unit that can reproduce the whole crystal content by 

translations in the three-dimensional space, and can either be atoms, small molecules or whole 

proteins, forming a sparse network of weak intermolecular interactions. The smallest unit that can 

generate the whole unit cell, using the crystallographic symmetry operators, is defined as the 

asymmetric unit. Unit cells are described by three unique cell axes 𝑎𝑎, 𝑏𝑏 and 𝑐𝑐, and three unique 

angles between them, α, β, and γ. The specific relationship between these six parameters defines 

the crystal's lattice and the space group, which in turn will define the exact position of each spot 

(reflection) in the diffraction pattern produced by the crystal65,111.  

Once crystals are formed, only a limited number of molecular interactions exist forming the 

network of weak intermolecular forces that keep the large protein molecules connected, mainly 
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Figure 1.9. Assembly of unit cells in a three-dimensional crystal lattice. Schematic representation of 
the assembly of unit cells to form a protein crystal, where each unit cell contains 1 copy of the asymmetric 
unit packed according to the space group’s symmetry operations. a, b and c are the cell axes that define the 
angles α, between b and c; β, between a and c; and γ between a and b. (Adapted from Rupp, 2009111) 

ionic interactions and hydrogen bonds established between atoms from surface amino acids and, 

quite often, mediated by water molecules. These interactions are very specific, and inherent to 

each particular protein and have to take place at specific locations on its surface, in order to 

self-assemble the molecules into a well-formed, periodic crystal65,111. Proteins frequently present 

irregular shapes and dangling ends, and disordered termini or flexible loops, that are not easily 

stacked and assembled into a regular, periodic lattice. In addition to the weak intermolecular 

forces keeping the molecules together in the crystal, the substantial size of protein molecules, 

and low number of contacts per unit volume, also reduce the crystals’ stability. Also, protein 

crystals contain on average 40-60% solvent, mostly disordered in large solvent channels between 

the stacked molecules, and also along plain rotation axes in the crystal structure65,111. 

Once a single crystal is obtained, suitable for X-ray diffraction, it is harvested under the 

microscope and mounted on the X-ray diffractometer, or cryo-preserved to be later measured 

using synchrotron radiation. The minimum size of crystals needed for diffraction experiments 

range from 50µm to 0.5mm, but crystals of 20-50 µm are considered amenable for synchrotron 

data collection in microfocus beamlines64,111. 

1.3.2.2 X-ray diffraction 

X-rays are electromagnetic radiation ranging from 0.1 to 100 Å and can be produced by 

bombarding a metal target, most often copper, with an electron beam that is generated by a 

heated filament and accelerated by an electric field. As a result, a high-energy electron then 

collides with the metal target displacing an electron of the metal from a low-lying orbital and 

making an electron from a higher orbital to drop to the vacated one. This transition of the electron 

from an M-shell to a K-shell results in the emission of the excess electrons’ energy in the form of 

an X-ray photon112. 
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By exposing a single crystal of a protein to a monochromated X-rays beam, the X-rays are 

scattered by the atoms present in the crystal and a set of diffraction spots, called reflections, is 

recorded on the detector originating the diffraction pattern. Each reflection spot in the diffraction 

pattern results from a monochromatic wave, constructively scattered by all equivalent lattice 

points that fulfil Bragg’s Law (Equation 1.1 and Figure 1.10),  

𝑛𝑛 𝜆𝜆 = 2 𝑑𝑑. sin𝜃𝜃                                                                         (1.1) 

that describes the relationship between the angle of the incident beam 𝜃𝜃 and the wavelength 𝜆𝜆, 

where d is the minimum spacing between equivalent planes in the crystal, i e. the maximum 

resolution 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜆𝜆 2 sin 𝜃𝜃𝑚𝑚𝑎𝑎𝑥𝑥⁄ . 

 

Figure 1.10. Bragg's Law defines the relationship between the angle of the incident radiation, θ, the 
distance between the planes of a crystal, d, and the wavelength of the incident radiation, λ. The waves 
of incident monochromatic radiation are reflected by the parallel equidistant planes of a crystal. When the 
difference in optical path between the scattered waves takes a multiple of the wavelength, constructive 
interference occurs, and a diffraction spot is produced.  

The intensity of the reflection is recorded by the detector and corresponds to the intensity of this 

constructive wave. The diffraction data contains information from all atoms in the structure and is 

obtained as a list of reflection intensities with hkl positions (𝐼𝐼ℎ𝑙𝑙𝑘𝑘)64,65,114,115, defined by the crystal 

planes that originated each reflection. At this point, the unit cell parameters and space group can 

be determined, and a full data collection experiment is performed. Afterwards, all the collected 

diffraction images are integrated and the intensity and hkl position of each reflection is extracted.  

The power of the crystal to divert the X-ray photons is what dictates the high resolution limit of the 

diffraction data set and the global quality of the data set65. This quality is assessed by calculation 

of a series of important parameters: the value of I/σ(I), which corresponds to the signal-to-noise 

ratio; the completeness, which corresponds to the percentage of the reflections relative to the 

total number of reflections that could be measured for that crystal, and should be greater than 

90%; the redundancy or multiplicity, which is the number of observations per reflection (that is, 

the number of times the same reflection was measured); the Rmerge (Equation 1.2) and Rp.m.i 

(Equation 1.3) factors, which compare the intensities measured for the various reflections, and 

should be as low as possible since equivalent reflections (related by symmetry) must have similar 

intensity values; and the CC1/2 (correlation coefficient between random half data sets116), that is 
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generally close to 1 at low resolution and falls to near zero at higher resolution as the intensities 

become weaker. Individually, these parameters do not indicate the resolution limits, but are used 

globally to assess the quality of a data set. 

(1.2) 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 =
∑ ∑ |𝐼𝐼𝑖𝑖(ℎ𝑘𝑘𝑘𝑘) − 𝐼𝐼(̅ℎ𝑘𝑘𝑘𝑘)|𝑛𝑛

𝑖𝑖=1ℎ𝑘𝑘𝑘𝑘

∑ ∑ 𝐼𝐼𝑖𝑖(ℎ𝑘𝑘𝑘𝑘)𝑛𝑛
𝑖𝑖=1ℎ𝑘𝑘𝑘𝑘

 

  (1.3) 

𝑅𝑅𝑝𝑝.𝑖𝑖.𝑚𝑚. =
∑ �1 (𝑛𝑛 − 1)⁄ ∑ |𝐼𝐼𝑖𝑖(ℎ𝑘𝑘𝑘𝑘) − 𝐼𝐼(̅ℎ𝑘𝑘𝑘𝑘)|𝑛𝑛

𝑖𝑖=1ℎ𝑘𝑘𝑘𝑘

∑ ∑ 𝐼𝐼𝑖𝑖(ℎ𝑘𝑘𝑘𝑘)𝑛𝑛
𝑖𝑖=1ℎ𝑘𝑘𝑘𝑘

 

 

Nowadays, due to the brightness of X-rays from a synchrotron facility, which is a thousand times 

greater than that from a laboratory X-ray generator of fixed-wavelength, most structures are 

solved by using synchrotron radiation64. Synchrotrons have the additional advantage of providing 

tunable radiation, which can be modulated to different wavelengths of interest. Synchrotron 

facilities have contributed to the structural characterization of protein-carbohydrate interactions of 

most carbohydrate-recognising protein families117. 

1.3.2.3 3D structure determination 

To solve the structure of a protein or protein-ligand complex, the electron density that surrounds 

all the atoms of the macromolecule in the crystal must be calculated, and structure factors and 

phase information are necessary, as expressed by the electron density equation (Equation 1.4): 

(1.4) 

𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (1/𝑉𝑉)�|𝐹𝐹ℎ𝑘𝑘𝑘𝑘|
ℎ𝑘𝑘𝑘𝑘

∙ 𝑒𝑒2𝜋𝜋𝜋𝜋𝛼𝛼ℎ𝑘𝑘𝑘𝑘 ∙ 𝑒𝑒[−2𝜋𝜋𝜋𝜋(ℎ𝑥𝑥+𝑘𝑘𝑘𝑘+𝑙𝑙𝑙𝑙)] 

where |𝐹𝐹ℎ𝑘𝑘𝑘𝑘|, known as the amplitude of the structure factor, is obtained from the intensities of 

each reflection, measured experimentally (|𝐹𝐹ℎ𝑘𝑘𝑘𝑘| =  �𝐼𝐼ℎ𝑘𝑘𝑘𝑘), 𝛼𝛼 is the phase angle of the scattered 

wave, 𝑥𝑥𝑗𝑗𝑦𝑦𝑗𝑗𝑧𝑧𝑗𝑗 is the position of atom 𝑗𝑗 in the unit cell and 𝑉𝑉 is the volume of the unit cell. 

However, from the dataset collected phase angle values cannot be obtained. This is what it is 

known as the Phase Problem in crystallography. While the intensities and the structure factors 

are directly measured in the diffraction experiment, phase angle values need to be correctly 

estimated in order to obtain the electron density map64,65. 

Three methods are generally used to determine the phases. Single or Multiple Isomorphous 

Replacement (SIR/MIR), that uses heavy atoms such as Au, Pt, and Hg usually soaked into the 

native crystals. Multiwavelength Anomalous Dispersion (MAD) and Single-wavelength 

Anomalous Dispersion (SAD), that exploit the anomalous dispersion (or scattering) effect of 

specific atoms, typically selenium, recurring to selenomethionyl proteins in which methionines are 
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replaced by selenomethionine upon protein expression. SIRAS and MIRAS are additional 

methods that combine Isomorphous Replacement and anomalous scattering. Ultimately, the 

Molecular Replacement (MR) method can be applied if the structure of the same protein or a 

similar one, with at least 30% amino acid sequence identity, has already been solved64,65. MR is 

of particular importance for protein-ligand complexes, as the unliganded-structure phases can be 

combined with the diffraction intensities of the crystal with the bound ligand to calculate its electron 

density map65. 

1.3.2.4 Model building and validation 

Once the phases have been estimated and the electron density map obtained, preliminary model 

building takes place. This process is greatly affected by the quality of the map which depends on 

the maximum resolution of the diffraction data64,65.  

In protein-ligand complexes, the electron density should reveal the ligand so that its model can 

be built and integrated in the list of coordinates. The level of detail observed for the ligand depends 

on the diffraction data quality and but also on the affinity of the protein for that ligand. The affinity 

to a ligand can influence its occupancy and, in consequence, the definition of the electron density 

in the protein binding site. Additionally, longer ligands that do not bind entirely to the protein, can 

be partially disordered in the regions exposed65,113. The number of observed solvent molecules is 

also highly dependent on the resolution of the data and its addition can help in high resolution 

model building65. 

Several cycles of model refinement and manual rebuilding take place in order to improve the data 

statistics. The accuracy of the model is defined by the Rwork and Rfree factors, that indicate the error 

between the calculated and the observed amplitudes and should not differ by more than 

5%64,65,118. The stereochemistry of the model is another validation point, which is given in the form 

of root mean standard deviations (rmsd) for bond lengths and bond angles. The Rwork and Rfree 

factors together with rmsd values, are good indicators of how well the model fits the data. Model 

building aims to find the model that best explains the measured data and hence the crystal's 

content. The final set of atom coordinates achieved should reflect only the interpretable parts of 

the calculated electron density, with the best possible set of phases, which cannot be dissociated 

from the quality and high resolution limit of the data65.  

Once refinement statistics are taken to its best possible values, model validation takes place. The 

Ramachandran plot reveals the distribution of amino acid residues in the energetically allowed 

regions. The distribution of temperature factors (B factor or Atomic Displacement Parameter), 

side chain torsion angles, close contacts and water network contacts are among the several 

parameters that are validated in order to help correcting and finalizing the best structural model65.  

This is a process assisted by several available software packages and platforms dedicated to 

model refinement and validation65. When working with a model of a protein-carbohydrate 
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complex, there are specific tools that must be employed to validate the carbohydrate structure. 

This is the case of the recently developed Privateer tool that checks the fit of carbohydrates within 

electron density, validates the sugar ring conformation and can detect stereochemistry problems 

as well119,120. 

Once the final model is achieved, the structure can be deposited in the Protein Data Bank (PDB), 

in the form of a list of 3D coordinates, associated to the respective list of observed structure 

factors (the measured X-ray diffraction data).  

1.4 Structural characterization of protein-carbohydrate interactions  

Due to the recognised importance of carbohydrates in diverse biological processes, there has 

been an increase of research to study protein-carbohydrate interactions and elucidate the 

molecular mechanisms responsible for the binding recognition. With the increasing number of 

protein-carbohydrate structures characterized and deposited in the PDB in recent years, ~450 

structures released since 2015 from a total of ~2000 protein structure entries assigned as 

carbohydrate-binding, great knowledge has been gained in understanding the common molecular 

features that govern the formation of protein-carbohydrate complexes.  

The formation of these complexes is driven by favourable changes in enthalpy (ΔH) and entropy 

(ΔS), accompanied by an increase of the free energy (ΔG) of binding from monosaccharides to 

longer  chain-length oligosaccharides113. Entropic penalties may also occur due to restricted 

conformational freedoms of the protein and ligand62. Additionally, upon protein-carbohydrate 

interaction, there is an increase in avidity due to a multivalent effect113.  

It is well known that weak molecular forces are largely responsible for protein-carbohydrate 

recognition113,121–123. The most important interactions are van der Waals forces, electrostatic 

interactions and hydrogen bonds, where the CH-π hydrogen bonding are detrimental for the 

binding events113,121–123. 

Although sometimes overlooked when studying protein-ligand interactions, water-mediated 

hydrogen bonding have also been shown to influence protein-carbohydrate affinity124. Given its 

unique ability to donate and accept two hydrogen bonds, water molecules mediate protein-ligand 

interactions. Ligands compete with a water molecule for binding to the protein binding site, where 

water molecules will be replaced, retained, or displaced to favour or not ligand binding125. Water 

molecules impact the ΔG of binding both enthalpically, by displacing poorly ordered waters or 

forming newly ordered water network, and entropically, through hydrophobic effect124,125. Water 

networks can make considerable contributions to the protein-ligand affinity, where perturbation of 

these networks, even without disrupting the ligand or the protein, can substantially decrease 

enthalpically optimal interactions and introduce solvent mobility, hence having an impact on the 

ligands’ binding124.  
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CH-π interactions involve a type of hydrogen bond between aliphatic and aromatic CH’s as the 

hydrogen donor, and the π-systems of arenes as acceptors113,121. These interactions have also 

been referred to as ‘edge-to-face’, ‘T-shape’, ‘π-π-’ or ‘arene-arene’-interactions121. 

Carbohydrate-aromatic CH-π interactions are described as stacking interactions due to the 

parallel orientation of the interacting carbohydrate and the aromatic rings123 (Figure 1.11).  

 

Figure 1.11. Examples of carbohydrate-aromatic CH-π interactions. (A) Family 6 CBM from Cellvibrio 
mixtus in complex with cellobiose (Glcβ4Glc) in its type C cleft (PDB ID: 1UYX)38, exhibiting CH-π stacking 
between both faces of the first glucopyranose ring from a Tyr33 and a Trp92 residue; and (B) Bacillus 
halodurans family 26 CBM bound to maltose (Glcα4Glc) (PDB ID: 2C3H)126, exhibiting CH-π interactions 
between the top faces of the glucose rings and Tyr25 and Trp37, with Tyr23 contributing to hydrogen 
bonding. Representations (not to scale) of individual 3D structures were done with program Chimera40 using 
the PDB atomic coordinates. 

Although usually weaker than other interactions, the CH-π effects define the protein-carbohydrate 

enthalpy of binding113. The side chains of aromatic amino acids Trp, Tyr, Phe and His, are typical 

π-systems that can act as acceptor groups. The carboxyl or carboxamide side chains in Asp, Glu, 

Asn and Gln may also contribute. Additionally, main chain peptide groups, which constitute 

π-systems with some degree of delocalization, may also act as π-acceptors. The frequent 

occurrence of aliphatic and aromatic CH-π interactions, not just in proteins but as well in nucleic 

acids, membrane lipids and polysaccharides, suggests an important functional role121. 

Analysis of protein-carbohydrate structures deposited in the PDB have revealed that many 

carbohydrate-binding proteins contain aromatic amino acid residues in their binding sites and that 

these residues interact with their carbohydrate ligands in a stacking geometry through CH-π 

interactions113,122,123. Recent studies have revealed that aliphatic hydrophobic residues in the 

carbohydrate-binding sites are not favoured when compared to aromatic side chains, with a higher 

preference for Trp residues followed by Tyr122,123. Aromatic CH-π interactions can be found in 

carbohydrate-binding proteins, such as CBMs, lectins and CAZymes, and are involved in a wide 

range of processes from carbohydrate-binding, catalytic processing and transport123. 

β-D-glucopyranose is structurally predisposed for carbohydrate-aromatic interactions due to the 

fact that all of its ring C–H hydrogens are oriented axially, which makes it possible to interact with 
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an aromatic system, like of Trp, Tyr and Phe, in a parallel stacking geometry123. This stacking 

interaction can happen either at the top, the bottom or both faces of the carbohydrate ring 

(Figure 1.11A). On the contrary, α-D-glucopyranose only interacts with the carbohydrate ring top 

face  (Figure 1.11B) because the anomeric hydroxyl group blocks the bottom face123. 

These carbohydrate-aromatic CH-π interactions have been defined as dispersion interactions, 

tuned by electrostatics and partially stabilized by a hydrophobic effect in solvated systems122,123. 

As electrostatic interactions are highly influenced by directionality and charge distribution on 

donor and acceptor molecules, they can further strengthen and orientate the 

carbohydrate-aromatic complexes123. Additionally, because the electrostatic surfaces and the 

electropositive characters of C-H bonds of the carbohydrates engaging in CH-π interactions differ 

between carbohydrate isomers, the aromatic side chains of the protein engage with different 

regions of the carbohydrate. This effect provides a mechanism for discriminating between 

carbohydrate monomers, influencing which bind to the protein and how they are positioned within 

carbohydrate-binding sites122.  
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1.5 Thesis main objectives 

The work described in this Thesis aimed to add knowledge about biotechnologically relevant 

bacterial species by identifying the carbohydrate ligands and structurally characterizing the 

ligand-specificity of novel CBMs from C. thermocellum and R. flavefaciens FD-1. These are highly 

efficient cellulolytic anaerobic bacteria, which present cellulosomes expressing different complex 

architectures and a high number of yet uncharacterized CBMs. Given the crucial roles of CBMs, 

the elucidation of their binding specificities and mechanisms of carbohydrate recognition will 

contribute to the characterization of the bacterial cellulosomes, promoting the knowledge of these 

bacteria cellulolytic capabilities. The experimental design of this Thesis will explore the potential 

of applying a unique approach combining carbohydrate microarrays and X-ray crystallography, 

aiming to contribute to the classification and elucidation of those CBMs biological roles, as well 

as to their potential biotechnological applications. To achieve these aims, this Thesis will 

contemplate the following major objectives: 

1) To construct carbohydrate microarray platforms of polysaccharides and sequence-defined 

oligosaccharides, representative of those found in plant cell walls, putative ligands for the CBMs 

of C. thermocellum and R. flavefaciens FD-1. 

2) To perform initial screening analysis of carbohydrate binding for C. thermocellum and 

R. flavefaciens FD-1 CBMs with predicted or unknown specificities, using the validated 

microarrays platform of plant cell wall polysaccharides, to identify its carbohydrate binding 

patterns.  

3) To conduct a second screening using the newly constructed oligosaccharides microarrays to 

identify the oligosaccharide ligands and assign the specificity of C. thermocellum and 

R. flavefaciens FD-1 CBMs for which polysaccharide binding patterns were obtained in the first 

screening.  

4) To determine the structural basis of the carbohydrate recognition mechanisms of selected 

novel CBMs and CBM-ligand complexes from C. thermocellum and R. flavefaciens FD-1. 
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2 Development of glucan and hemicellulose oligosaccharide 
microarrays applied to plant cell wall carbohydrate 
recognition 

2.1 Introduction 

The plant cell wall is constituted by structurally diverse and complex polysaccharides (Figures 1.1 

and 1.2, Chapter 1), comprising cellulose, glucans, hemicelluloses and pectins, which provide 

valuable resources for industrial and biotechnological applications43,61,127,128. The composition in 

polysaccharides is highly variable, depending on the growth stage, tissue type and phylogenetic 

groups and plant species3,4,61. The understanding of plant cell wall polysaccharide molecular 

structures, functions, and biosynthesis, as well as the biological mechanisms underlying 

carbohydrate recognition and deconstruction by microorganisms, is required to further promote 

their industrial and biotechnological use.  

Given the continuously increasing amount of information derived from microbial genomic 

sequencing, there is a high demand for high-throughput and sensitive micro-methods to 

interrogate and characterize the high complexity of newly identified carbohydrate recognition 

systems. The carbohydrate microarray technology has emerged as a powerful high-throughput 

screening tool for ligand discovery and characterization of carbohydrate-protein interactions. Its 

application to many biological systems has led to rapid advances in the decoding of glycomes7-10 

and the development of oligosaccharide microarrays has played a major role in unravelling 

carbohydrate-binding specificities for proteins71,92.  

In the above context, the development of sequence-defined plant-based carbohydrate 

microarrays has been highly important to provide proteins with characterised specificities for plant 

cell wall research. Carbohydrate-binding proteins, such as lectins and CBMs, and 

carbohydrate-directed monoclonal antibodies, are serving as tools in the detailed characterization 

of the diversity of plant cell wall carbohydrate structures129,130. These proteins can be used in 

quantitative and high-throughput assays, giving measurements about specific carbohydrate 

epitopes present in plant polysaccharides129. However, detailed characterization of epitope 

requires the availability of focused plant carbohydrate microarray platforms with purified and well 

characterized plant oligosaccharides probes. 

As reviewed in Chapter 1 (section 1.3.1), some laboratories have developed microarrays from 

plant-derived carbohydrates32,92,97–102, and the number of sequence-defined probes has been 

expanding. Willats and colleagues have established microarrays of oligosaccharides coupled to 

BSA at the reducing end by reductive amination for arraying non-covalently onto 

nitrocellulose-coated glass slides92. The oligosaccharides comprised linear and branched 

sequences of glucans, xylans, mannans, galactans, xyloglucans or arabinans, either isolated from 
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polysaccharides or generated by chemical synthesis92. Pfrengle and colleagues, have 

constructed microarrays of plant cell wall oligosaccharides obtained by solution-phase or 

automated glycan assembly synthesis, covalently immobilized onto NHS ester-derivatized glass 

slides through an aminoalkyl-linker at the reducing end, comprising a range of sequences from 

xylans, glucans, xyloglucans, galactans, arabinogalactans and pectins109,110. Palma and 

colleagues have developed sequence-defined glucome microarrays32, comprised of 153 

gluco-oligosaccharides with diverse sequences and chain lengths representing major sequences 

in glucans, including those present in plant cell walls, converted to NGL probes by oxime ligation 

to an aminooxy-functionalized lipid (AO-NGLs) and non-covalently immobilized onto 

nitrocellulose-coated glass slides86. A key feature of the NGL technology is its interface with mass 

spectrometry (MS) and high-performance thin layer chromatography (HPTLC) or high 

performance liquid chromatography (HPLC), enabling bioactive oligosaccharides released from 

a glycome source to be resolved from heterogeneous mixtures, characterized and purified32,74,78 

(Figure 1.5, Chapter 1). The partial depolymerisation of the polysaccharides, the sequencing of 

the oligosaccharides by the negative-ion electrospray ionization mass spectrometry with 

collision-induced dissociation  (ESI-CID-MS/MS) method and their interrogation on the 

microarrays, not only provides detailed information on linkage, sequence and chain-length 

requirement of carbohydrate-recognizing proteins, but also provides a sensitive means of 

revealing unsuspected sequences in the polysaccharides32. 

The work presented in this chapter aimed at extending the glucome NGL-microarray platform with 

naturally-derived linear and branched hemicellulose oligosaccharides to address the need of 

increasing oligosaccharide structural diversity and chain-length range, including galactomannan 

and fucosylated-xyloglucan sequences that are under-represented in microarrays, for studies of 

plant cell wall carbohydrate recognition. To this end, novel microarrays with AO-NGL probes were 

constructed that comprised oligosaccharide fragments derived from xylans, arabinoxylans, 

arabinans, mannans, galactomannans and xyloglucans. The development of plant 

oligosaccharide microarrays from naturally-derived heterogeneous mixtures poses considerable 

challenges in obtaining size homogenous and structurally-defined probes.  

The main difficulty for construction of microarrays from plant-derived oligosaccharides is the lack 

of any chromophore in their hexose and pentose constituents, as the commonly used low 

wavelength UV detection (e.g. 195 nm or 206 nm) for mammalian glycans is not applicable to 

these plant oligosaccharides. In this work, this was addressed by: 1) using size exclusion 

fractionation of oligosaccharide mixtures or HPTLC upon lipid derivatization and MALDI-MS 

analysis; 2) probing the microarrays with CBMs and lectins, for which specificity is known, and 

monoclonal carbohydrate-directed antibodies to validate and characterize the oligosaccharide 

sequences of the NGL-probes; and 3) devising a new strategy to conjugate oligosaccharides with 

a bifunctional UV/fluorescence tag for sensitive detection in HPLC, allowing detailed fine 

separation/purification of structurally similar oligosaccharides before its conversion into NGL 
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probes.  In this work, we aimed to extend the use of negative-ion ESI-CID-MS/MS for homo 

gluco-oligosaccharides (Palma et al., 201532) to hetero hexo-/pento-oligosaccharides. 

The application of the developed microarrays was valuable to assign the carbohydrate-binding 

specificities for Clostridium thermocellum CBMs from families 25 and 35 and for the 

galactomannan-directed monoclonal antibody CCRC-M70. These validated glucan and 

hemicellulose oligosaccharide microarrays will be essential tools to unravel the 

carbohydrate-binding for CBMs of cellulolytic microorganisms that exhibit highly diverse 

specificities. This will be a topic further developed in the following chapters of this Thesis. 

2.2 Results 
2.2.1 Construction of glucan and hemicellulose oligosaccharide microarrays 

The glucan microarrays comprised 153 gluco-oligosaccharides derived from partial 

depolymerisation of glucans or from chemical synthesis and prepared as NGLs probes 

(Table S2.1, probes 1 to 153). Among these, were linear oligosaccharide sequences with homo 

linkages in α or β configurations: 1,2-, 1,3-, 1,4-, or 1,6-linked, with degree of polymerization (DP) 

ranging from DP-2 to DP-13; linear oligosaccharide sequences with hetero linkages: α1,4-1,6, 

ranging from DP-3 to DP-7 and β1,3-1,4 ranging from DP-3 to DP-16; branched oligosaccharide 

sequences with β1,3(β1,6) linkages, DP-2 to DP-13; and synthetic branched oligosaccharides of 

β1,3-linked linear backbones (DP-8 or DP-9), with a β1,6-linked mono-glucosyl branches. These 

NGL probes were previously described by Palma and colleagues to generate the 

sequence-defined “glucome” microarray platform32.  

In this study, the strategy used for the glucome microarray was followed to prepare hemicellulose 

oligosaccharide NGL probes. To this end, reducing oligosaccharide fragments of discrete chain 

lengths were isolated from oligosaccharide mixtures of depolymerised xylan, arabinoxylan, 

arabinan, mannan, galactomannan and xyloglucan (Table S2.2) by size exclusion 

chromatography with off-line MALDI-MS analysis. The oligosaccharides thus prepared, were 

conjugated to an aminooxy-functionalized-lipid via oxime-ligation to generate AO-NGL probes 

(Figure 1.6, Chapter 1), following standard procedures32,86,131. The purified NGL products were 

analysed by MALDI-MS for molecular mass determination and therefore assignment of degree of 

polymerisation (DP) for the major components in each NGL probe (Table 2.1). The NGLs 

prepared comprised oligosaccharide sequences derived from: linear β1,4- or linear mixed-linked 

β1,3-1,4-xylans (DP-3 to DP-13); arabinoxylans (β1,4-xylans with α1,2- and/or α1,3-linked 

arabinose branches; DP-3 to DP-6); linear α1,5-arabinans (DP-2 to DP-9); α1,5-arabinans with 

α-arabinose branches at position O3 (DP-5 and DP-6) or at both O2 and O3 (DP-6); linear 

β1,4-mannans (up to DP-8); galactomannan (β1,4-mannan with α1,6-linked galactose branches; 

DP-2 to DP-11); xyloglucan from tamarind (DP-7 to DP-9); and fucosylated-xyloglucan from apple 

(DP-7 and DP-10). Carbohydrate sequence information on these probes is in Table S2.1 (probes 

154 to 204).  
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Table 2.1.MALDI-MS analysis of AO-NGLs derived from hemicellulose oligosaccharide fractions. 
Oligosaccharide seriesa NGL probe designation DPb [M-H]-  

calculatedc  
[M-H]-  

detectedd 

Xylan 

Xyl-3(β3-4) 3 1131.69 1131.8 
Xyl-4(β3-4) 4 1263.73 1263.8 
Xyl-5(β3-4) 5 1395.78 1395.9 
Xyl-6(β3-4) 6 1527.82 1527.9 
Xyl-7(β3-4) 7 1659.86 1660.0 
Xyl-8(β3-4) 8 1791.90 1792.0 (1660.0, 1924.1)e 
Xyl-9(β3-4) 9 1923.95 1924.1 (1792.0, 2056.2) 
Xyl-10(β3-4) 10 2055.99 2056.1 (1924.0, 2188.2) 
Xyl-11(β3-4) 11 2188.03 2188.2 (2056.1, 2320.2) 
Xyl-12(β3-4) 12 2320.07 2320.2 (2188.1, 2452.2) 
Xyl-13(β3-4) 13 2452.11 2452.2 (2320.1, 2584.2) 

Arabinoxylan 
(Ara-Xylan) 

Ara-Xylan-3 3 1131.69 1131.6 
Ara-Xylan-4a 4 1263.73 1263.7 
Ara-Xylan-4b 4 1263.73 1263.7 
Ara-Xylan-5a 5 1395.78 1395.8 
Ara-Xylan-5b 5 1395.78 1395.8 
Ara-Xylan-5c 5 1395.78 1395.8 
Ara-Xylan-6 6 1527.82 1527.8 

Arabinan 

Ara-2(α5) 2 999.65 999.6 
Ara-3(α5) 3 1131.69 1131.6 
Ara-4(α5) 4 1263.73 1263.8 
Ara-5(α5) 5 1395.78 1396.0 
Ara-6(α5) 6 1527.82 1527.9 
Ara-7(α5) 7 1659.86 1659.9 
Ara-8(α5) 8 1791.90 1791.9 
Ara-9(α5) 9 1923.95 1924.0 (1791.9) 
Ara-4B3 4 1263.73 1263.7 
Ara-5B 5 1395.78 1395.9 

Mannan 

Man-4(β4) 4 1383.78 1383.8 
Man-5(β4) 5 1545.83 1545.7 
Man-6(β4) 6 1707.88 1707.9 
Man-8(β4) 8 2031.99 2031.9 

Galactomannan 
(Gal-Mannan) 

Gal-Mannan-2e 2 1059.67 1059.7 
Gal-Mannan-3e 3 1221.72 1221.7 
Gal-Mannan-4e 4 1383.78 1383.8 
Gal-Mannan-5e 5 1545.83 1545.9 
Gal-Mannan-6e 6 1707.88 1708.0 (1545.9) 
Gal-Mannan-7e 7 1869.93 1870.0 
Gal-Mannan-8e 8 2031.99 2032.1 
Gal-Mannan-5m 5 1545.83 1545.9 
Gal-Mannan-6m 6 1707.88 1707.9 
Gal-Mannan-7m 7 1869.93 1870.0 
Gal-Mannan-8m 8 2031.99 2032.0 
Gal-Mannan-9e 9 2194.04 2194.2 
Gal-Mannan-10e 10 2356.09 2356.2 (2194.2) 
Gal-Mannan-11e 11 2518.15 2518.3 (2356.2) 

Xyloglucan 
 

Xyl-Glucan-7 7 1779.90 1779.9 
Xyl-Glucan-8 8 1941.96 1942.0 (1779.9) 
Xyl-Glucan-9 9 2104.01 2104.0 
Fuc-Xyl-Glucan-6 6 1647.86 1647.8 (1793.8) 
Fuc-Xyl-Glucan-9 9 2104.01 2104.0 (1941.9, 2250.0) 

aThe designation of the linear and branched oligosaccharide moieties corresponds to the sources of the oligosaccharide 
fragments to prepare the NGLs (depolymerised polysaccharides or oligosaccharides); bDegree of polymerization (DP) for 
the major components in each fraction; cCalculated masses for major components are given; dNegative-ion MALDI-MS 
was used for the analysis of the AO-NGLs and [M-H]- were detected; eWhere multiple components were detected, relative 
intensities of molecular ions greater than 20% are shown in brackets. The molecular ions detected for Fuc-Xyl-Glucan-6 
at 1647.8 m/z (DP-6) correspond to the 1793.8 m/z sequence (DP-7) without the fucose monomer. For Fuc-Xyl-Glucan-9, 
the molecular ions detected at 2104.0 m/z (DP-9) correspond to the 2250.0 m/z sequence (DP-10) without the fucose 
monomer. Both fucosylated and non-fucosylated components are present in these NGL-probes.  
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To construct the microarrays, a total of 204 AO-NGLs from glucan and hemicellulose 

oligosaccharides were printed by non-covalent immobilization using a liposome formulation onto 

16-pad nitrocellulose-coated glass slides. Figure 2.1A shows the typical 16-pad subarray layout 

used, which featured 64 probes, each printed at 2 levels at 2 and 5 fmol/spot in duplicate (four 

spots for one probe in a row); up to 256 spots (16×16) in total in each subarray. The analysis of 

different carbohydrate-binding proteins in these microarrays highlighted the structural diversity of 

oligosaccharide probes included (Figure 2.1A-B). The binding signals observed were probe-dose 

dependent, and the results of the analysis with the probes at 5 fmol/spot will be described in the 

sections below.  

 

Figure 2.1. Binding patterns revealed by probing the glucan and hemicellulose oligosaccharide 
microarrays with sequence-specific carbohydrate-binding proteins. (A) Microarray fluorescence 
imaging showing a typical subarray of immobilized 64 probes upon visualisation using Cyanine-3 (Cy3) 
fluorophore (532 nm) included in the printing solution (panel at the left) and subarrays showing binding spots 
observed upon probing with CmCBM6-2 (sub-array featuring β-glucan sequences) and monoclonal 
antibodies LM10 (sub-array featuring β-xylan sequences) and 400-4 (sub-array featuring β-mannan 
sequences).  (B) Heat map representing the relative binding intensities, calculated as the percentage of the 
fluorescence signal intensity given by the probe (printed at 5 fmol/spot) most strongly bound by each protein 
(normalized as 100%). Numerical fluorescence intensity signals are given in Table S2.4. The microarray 
comprises 204 neoglycolipid probes with a wide degree of polymerization (DP) range of linear and branched 
oligosaccharide sequences of α- and β-glucans, β-xylans, α-arabinans, β-mannans and xyloglucans. The 
major representative structural domain for each probe series is depicted at the top of the panel using a 
tetrasaccharide backbone sequence as a reference. Carbohydrate sequence information on these probes 
is in Table S2.1. The carbohydrate-specific monoclonal antibodies, lectins and CBMs investigated in the 
microarrays targeting the different carbohydrate groups are depicted at the left. The monosaccharide 
symbolic representation used was according to the updated SNFG1. 
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2.2.2 Validation of the constructed microarrays 

To validate the microarray for carbohydrate recognition studies, a total of 18 carbohydrate-binding 

proteins were used to probe the microarray, including carbohydrate-specific monoclonal 

antibodies, lectins and microbial CBMs. The criteria to select the proteins for analysis were 

two-fold: proteins that have their binding specificities characterised by different methods, and 

proteins for which the microarrays would serve as important tools to assign novel binding 

specificities. The binding features obtained with the characterised proteins were used for 

microarray quality control and structural validation of the generated probes. As shown in 

Figure 2.1A-B, discrete clusters of binding could be identified with the grouping of probes by main 

carbohydrate structural domain. Overall, these were in agreement with the reported 

carbohydrate-binding specificities of the proteins investigated (Table S2.3). That is, there was a 

clear pattern differentiation of α- or β-glucans, β-xylans (linear or ramified with arabinose), 

α-arabinans, β-mannans (linear or ramified with galactose), or xyloglucans. Additional specificities 

were also revealed using the newly constructed microarrays. The prominent findings of the 

microarray analysis will be described in the sections below.  

2.2.2.1 Recognition of gluco-oligosaccharides with α- and β-glycosidic linkages in linear 
or branched chains 

The binding profiles observed with the glucan-recognizing proteins are highlighted in Figure 2.2A, 

which shows a snapshot of the glucan oligosaccharide probes in the arrays (Table S2.1, probes 

1 to 153). 

The α-glucan-derived oligosaccharide probes have been previously validated using anti-α1,4-, 

α1,3- and α1,6-glucan specific monoclonal antibodies, and a Thermotoga maritima α1,4-glucan 

binding CBM from family 4132. In the current study, the microarrays were probed with human 

malectin, which is a highly conserved lectin in the endoplasmic reticulum of mammals with a 

CBM-type fold (CBM family 57, as classified in the CAZy database)132,133. This lectin exhibits a 

unique specificity towards α1,3-di-glucosylated high-mannose N-glycans, but similarly to its CBM 

structural homologues also recognises glucan sequences, with higher affinity for α-glucans132,133. 

The current microarray analysis showed the glucan-binding property of malectin to linear α1,3-, 

α1,4-, α1,6-linked glucose sequences and also that malectin exhibited a chain-length dependency 

up to the DP-4/DP-5, only in the case of α1,3-glucan sequences. Malectin also bound to mixed-

linked α1,4-1,6-glucan oligosaccharides that have an α1,6-linked glucose at the non-reducing end 

(Figure 2.2B, probes 45, 47 and 49). Although this lectin was more avid towards α1,3-linked 

glucose, it also showed binding to linear β1,3-linked glucose oligosaccharides, as previously 

reported132,133, and to branched oligosaccharides containing β1,3-linked glucose sequences.  

The microarrays were also applied to assign the α-glucan binding specificity for an 

uncharacterised putative starch-binding domain from Clostridium thermocellum assigned to CAZy  



CHAPTER 2. DEVELOPMENT OF GLUCAN AND HEMICELLULOSE OLIGOSACCHARIDE MICROARRAYS 

 

41 
 

 

 

Figure 2.2. Microarray analysis of glucan-binding proteins. (A) Binding with human malectin and 
CtCBM25, and β-glucan-specific monoclonal antibodies 400-2, 400-3 and CBMs CtCBM11 and CmCBM6-2. 
The binding signals are depicted as means of fluorescence intensities of duplicate spots at 5 fmol of 
oligosaccharide probe arrayed (with error bars) and are representative of at least two independent 
experiments. Numerical fluorescence intensity signals are given in Table S2.4. The microarray comprise 153 
gluco-oligosaccharide-NGLs32 for which the glucose linkages are indicated in the coloured panels. 
Carbohydrate sequence information on these probes is in Table S2.1. (B) The sequences of the 
mixed-linked linear α4,6- and β3,4-glucan and branched β3(6)-glucan probes are depicted indicating the 
position in the binding charts. 

family 25 (CtCBM25Cthe_0956). The microarray analysis showed that this CBM exhibits a different 

binding profile when compared to malectin, showing exclusive binding to linear sequences of 

α1,4-linked glucose with a chain-length dependency higher than DP-4. This CBM also bound, 

albeit weakly, to linear α1,3-glucan sequences with DP-10 to DP-13, which might be explained 
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by the presence of α1,4-glucan sequences in these fractions (Table S2.1)32, and to the 

mixed-linked α1,4-1,6-glucan hexasaccharide with a α1,4-trisaccharide sequence at the 

non-reducing end (probe 48, Figure 2.2B). 

The β-glucan-derived microarrays have been previously validated using antibodies and CBMs 

with specificity towards linear β1,3-, β1,4-, β1,6-glucans, as well as to mixed-linked 

β1,3-β1,4-glucans32. In the current microarray analysis, the Clostridium thermocellum 

(C. thermocellum) family 11 CBM (CtCBM11Cthe_1472) and the Cellvibrio mixtus family 6 CBM 

(CmCBM6-2) were also used in parallel with the β1,3-glucan-specific (400-2) and 

β1,3-β1,4-glucan-specific (400-3) monoclonal antibodies (Table S2.3). The antibody 400-2 

exhibited the predicted binding specificity towards β1,3 oligosaccharide sequences, with a 

chain-length dependency of DP-4. The binding observed with the 400-3 and CtCBM11Cthe_1472 

corroborated the reported mixed-linked β1,3-1,4-glucan binding specificity of these proteins32,134, 

with DP ranges from DP-4 to DP-13 and DP-7 to DP-16, respectively, and a chain-length 

dependency more pronounced for CtCBM11Cthe_1472. The tetrasaccharide with an internal 

β1,3-linkage didn’t elicit any binding signals with both proteins (Figure 2.2B, probe 106), indicating 

that the spacing and the position of the β1,3-linkages within the chain is important for recognition.  

The capability of binding with weak affinity to linear β1,4-linked, but not to β1,3-linked glucose 

sequences, was also observed for both proteins. CmCBM6-2 showed the broadest binding profile, 

and bound to all of the β-linked glucose oligosaccharides with DP-2 and longer as previously 

observed32, including the ability to bind to xyloglucan oligosaccharides, which have a β1,4-linked 

glucose backbone  (Figure 2.1). This CBM also bound to the oligosaccharide series of other 

β-linked hexoses, including xylose and mannose, although with weaker intensities.  

2.2.2.2 Recognition of linear β-xylans, branched arabinoxylans and α-arabinans  

The binding recognition profiles observed with the xylan- and arabinan-binding proteins are 

highlighted in Figure 2.3A, which shows a snapshot of the linear β1,4- and mixed-linked 

β1,3-1,4-xylans, branched arabinoxylans and α1,5-arabinan oligosaccharide probes comprised  

in the arrays (Table S2.1, probes 154 to 181). 

The β1,4-xylan-specific monoclonal antibodies LM10 and LM11135 showed binding to linear 

β1,4-linked xylose tetra- and pentasaccharides and to the mixed-linked β1,3-1,4-xylan 

oligosaccharides derived from Palmaria palmate xylan (DP-3 to DP-13). LM11, having a higher 

tolerance for backbone substitution, showed also strong binding to β-xylose sequences with α1,2- 

or α1,3-arabinose substitutions at the non-reducing end (probes 166 and 167 Figure 2.3B). The 

weak binding observed with LM10 to these probes, and the ability to bind to probe 171, with an 

internal α1,2- or α1,3-arabinose substitution, shows evidence that this antibody has specificity 

towards the non-reducing end of β1,4-linked xylans109. The weak binding of LM11 to the latter 

indicates that this antibody binds internally and requires longer epitopes of at least 3 xylose 

monomers.  
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Figure 2.3. Microarray analysis of xylan- and arabinan-binding proteins. (A) The binding signals of 
β1,4-xylan-specific monoclonal antibodies LM10, LM11 and CtCBM22-2, and anti-α1,5-arabinan antibody 
LM6 are depicted as means of fluorescence intensities of duplicate spots at 5 fmol of oligosaccharide probe 
arrayed (with error bars) and are representative of at least two independent experiments. Numerical scores 
are given in Table S2.4. The different carbohydrate groups are indicated in the coloured panels. The 
microarrays included 10 linear β1,3-1,4-xylan-NGLs from DP-3 to DP-13, 7 branched 
β1,4-xylan(α1,2/1,3-arabinose) ranging from DP-3 to DP-6, 8 linear α1,5-arabinan of DP range from 2 to 9 
and 2 branched α1,5-arabinan(α1,2/1,3-arabinose) of DP-5 and DP-6. Carbohydrate sequence information 
on these probes is in Table S2.1. (B) The sequences of the mixed-linked linear and branched probes are 
depicted by microarrays position. 

The analysis of the C. thermocellum CBM from family 22 (CtCBM22-2Cthe_0912), which has a 

reported binding specificity for β1,4-linked xylose oligosaccharides136, showed binding to the 

linear β-xylan probes, exhibiting a chain-length dependency from DP-3 up to DP-8. 

CtCBM22-2Cthe_0912 also bound, albeit weakly, to the branched arabinoxylan probes that present 

a tetrasaccharide backbone and internal α1,2- or α1,3-arabinose substitutions (probes 168, 169 

and 171, Figure 2.3B). 

The α1,5-arabinose-specific monoclonal antibody LM6137 was also used to validate the arabinose 

containing oligosaccharide probes. The antibody showed strong binding to the linear 

α1,5-arabinose sequences with a chain-length dependency from DP-3 up to DP-6. Binding was 

also observed to the branched arabinan probe presenting a mixture of α1,2- and α1,3-arabinose 

substituted tetrasaccharide and α1,3-arabinose substituted pentasaccharide (probe 181, 



CHAPTER 2. DEVELOPMENT OF GLUCAN AND HEMICELLULOSE OLIGOSACCHARIDE MICROARRAYS 
 

44 
 

 

Figure 2.3B). As this antibody showed a chain-length dependency, the binding observed is likely 

to the latter.   

2.2.2.3 Differential recognition of linear β1,4-mannans and branched galactomannans  

The β1,4-mannose containing NGL probes were prepared from oligosaccharide fractions 

obtained by partial hydrolysis of β1,4-mannans and α1,6-galactose substituted carob 

galactomannans (Tables S2.1 and S2.2, probes 182 to 199). The latter comprised 

oligosaccharides obtained from two different sources: 1) after size exclusion fractionation of a 

carob galactomannan hydrolysate mixture (Elicityl preparation), designated as e-series (DP-2 to 

DP-11, probes 186-192 and 197-199); 2) after HPTLC purification of the NGLs derived from a 

carob di-galactosyl mannose pentasaccharide (Megazyme preparation), designated as m-series 

(DP-5 to DP-8, probes 193 to 196).  

To corroborate their backbone sequences, the microarrays were probed with the well 

characterised monoclonal antibodies 400-4 and LM21, which are specific for linear β1,4-mannose 

oligosaccharides138,139. These antibodies were initially analysed for their binding to guar and carob 

galactomannan polysaccharides, which present different degrees of α1,6-galactose substitution 

of the β1,4-mannan backbone, that is, Man:Gal ratios of 2:1 and 4:1, respectively (Figure 2.4A). 

The 400-4 and LM21antibodies bound to both polysaccharides, but the lower binding intensity 

showed by LM21 to guar galactomannan, revealed a lower tolerance of this antibody for Gal 

substitutions. In the NGL-microarrays, the 400-4 and LM21 exhibited the predicted binding to the 

linear β1,4-manno-oligosaccharides (Figure 2.4B), with 400-4 showing a chain-length 

dependency up to DP-8 and LM21 binding with similar intensities to these probes. The antibodies 

also bound to the galactomannan-derived NGLs of the e-series, but with different binding profiles:  

400-4 only bound to probes with DP-5 and higher and LM21 bound to probes with DP-3 up to 

DP-11. This in accord with the β1,4-mannose chain-length requirements of these antibodies. 

Remarkably, none of the antibodies bound to the NGLs of the m-series. These results suggest a 

different ratio of α1,6-galactose substitutions of the β1,4-mannan backbone in the fractions from 

e-series and m-series of the same DP.  

Aiming at gaining more information about the possible differential recognition of the 

galactose-substituted oligosaccharide fractions of these series, the microarrays were also probed 

with the guar galactomannan-directed antibody CCRC-M70140, which to our knowledge has no 

oligosaccharide-specificity reported to date. In contrast with the other anti-mannan antibodies, 

CCRC-M70 showed a highly restricted binding profile and bound only to the galactomannan DP-8 

probe of the m-series (probe 196), and DP-9 to DP-11 probes of the e-series (probes 197-199). 

This showed evidence for a lower Man:Gal ratios in their oligosaccharide sequences and 

recognition of a galactosylated epitope by CCRC-M70 that is only present in these NGL probes. 

In accordance to this, CCRC-M70 antibody showed a strong binding to guar galactomannan, but  
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Figure 2.4. Microarray analysis of mannan-binding proteins. (A) Microarray binding results of 
mannan- and galactomannan-specific antibodies LM21, 400-4, CCRC-M70 and CtCBM35 to guar and carob 
galactomannan polysaccharides. (B) The binding signals of β1,4-mannan-specific monoclonal antibodies 
400-4, LM21 and CtCBM35, and anti-galactomannan CCRC-M70 are depicted as means of fluorescence 
intensities of duplicate spots at 5 fmol of oligosaccharide probe arrayed (with error bars) and are 
representative of at least two independent experiments. Numerical scores are given in Table S2.4. The 
different carbohydrate groups are indicated in the coloured panels. The microarrays included 4 linear 
β1,4-mannan-NGLs of DP-4, to DP-6 and DP-8, 14 β1,4-xylan(α1,6-galactose)-NGLs from two different 
sources, e-series with sizes ranging from DP-2 to DP-11, and m-series with range from DP-5 to DP-8. 
Carbohydrate sequence information on these probes is in Table S2.1.  

only marginal binding to carob galactomannan (Figure 2.4A), which emphasize its requirement 

for highly galactose-substituted sequences. 

The C. thermocellum CBM of family 35 (CtCBM35 Cthe_2811) was also selected for analysis, as this 

CBM binds to β1,4-linked mannose sequences in galactomannan and glucomannan 

polysaccharides, with higher affinity for the latter141, but no oligosaccharide-specificity has been 

reported to our knowledge. In this analysis, CtCBM35Cthe_2811 was shown to bind to linear 

β1,4-linked mannose oligosaccharides, exhibiting a chain-length dependency up to DP-6. 

CtCBM35Cthe_2811 also bound to the e-series DP-7 galactomannan oligosaccharide (probe 191), and 

with stronger intensities to the DP-9 to DP-11 sequences (probes 197 to 199), but not to the 

galactomannan probes of the m-series.  
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In sum, the results of the microarray analysis corroborated the presence of β1,4-linked mannose 

oligosaccharides in the isolated fractions, and the higher degree of Gal substitutions in the 

galactomannan from the m-series and in the fractions of longer DPs from the e-series.  

2.2.2.4 Recognition studies of xyloglucan oligosaccharides using complex 
oligosaccharide mixtures and a deconvolution strategy 

The xyloglucan NGL probes included in the glucan and hemicellulose oligosaccharide 

microarrays comprised xyloglucan oligosaccharide sequences from two different sources: 

1) tamarind xyloglucans, which are β1,4-glucans with α1,6-linked xylose branches that can also 

be substituted with a β1,2-linked galactose; and 2) apple fucosylated-xyloglucans, in which the 

branch terminal β1,2-galactose is substituted with an α1,2-linked fucose (probes 200-204, 

Figure 2.1 and S2.1 and Tables S2.1 and S2.2). The NGLs were prepared from oligosaccharide 

mixtures with multiple components as shown by the MALDI-MS analysis in Figures 2.5A and 

S2.2A.  Although with the derivatization to the lipid a second level of purification was possible 

using HPTLC or silica columns, multiple components were still observed in some of the AO-NGLs 

prepared (Table 2.1): e.g. for probe 202 a major component with DP-8 was observed, therefore 

was designated Xyl-Glucan-8, but a component with DP-7 was also present; for the 

fucosylated-xyloglucan NGL probes, Fuc-Xyl-Glucan-6 (probe 203) and Fuc-Xyl-Glucan-9 

(probe 204) were also mixtures and both fucosylated and non-fucosylated components were 

present. Despite the fact that NGL probes were arrayed as multiple components, the binding they 

elicited with the well characterised anti-xyloglucan monoclonal antibodies LM24 and LM25 were 

in accordance with their reported specificities92 (Figure S2.1 and Table S2.3). Both antibodies 

required the substitution of the β1,4-glucose backbone chain: LM25 bound to all the xyloglucan 

NGLs probes that are substituted with α1,6-linked xylose, whereas LM24 showed more restricted 

binding requiring at least substitution with one β1,2-linked galactose (probes 200-204). 

Furthermore, the analysis with the anti-xyloglucan antibody CCRC-M1 that requires the α-linked 

fucose142, and the α-fucose-specific Aleuria aurantia lectin (AAL)143, could distinguish for the 

presence of these epitopes as they bound only to the probes derived from the 

fucosylated-xyloglucan (probes 203-204).  

Using the xyloglucan oligosaccharide mixture as an example, a deconvolution strategy was 

applied to obtain more homogeneous and sequence-defined NGL probes for investigation of their 

interaction with proteins. The method involved conjugation of the oligosaccharides with a 

bi-functional UV/fluorescence tag 1,5-diaminonaphthalene (DAN, Figure 2.5B) aiming at sensitive 

detection in HPLC to allow detailed fine separation/purification of the structurally similar 

oligosaccharides, before its conversion into NGL probes for microarray construction using the 

second functional group. To this end, the reducing tamarind xyloglucan oligosaccharide mixture 

was conjugated to DAN. HPLC analysis showed that each DP component of the mixtures could 

be resolved as discrete individual peaks (Figure 2.5C). MS analysis prior (Figure 2.5A) and after 
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Figure 2.5. Deconvolution of the xyloglucan oligosaccharides from tamarind. (A) MALDI-MS spectrum 
of xyloglucan oligosaccharides investigated from tamarind comprising DP-7 to DP-9. (B) Schematic 
representation of bi-functional derivatization of by 1,5-diaminonaphthalene (DAN) conjugation used for 
fluorescence tagging of xyloglucan oligosaccharides. (C) HPLC separation of DAN-conjugated fractions of 
xyloglucan (DP-7, DP-8 and DP-9). (D) Positive-ion ESI-MS spectra of the HPLC fractions obtained.  
Xyloglucan oligosaccharides are depicted. The red link represents the oligosaccharides reducing end 
conjugated to DAN. 
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DAN-conjugation (Figure 2.5D) allowed to assess the decrease on sample heterogeneity upon 

purification and confirmed the molecular mass of each of the individual components. Xyloglucan-

DAN DP-8 fraction (Figure 2.5D, HPLC-2) was selected for sequencing by positive-ion 

ESI-MS/MS (Figure 2.6), prior to NGL probes preparation. The purified xyloglucan-DAN 

oligosaccharides were then used for preparation of NGLs by reductive amination with the 

aldehyde functionalized lipid N-(4-formylbenzamide)-1,2-dihexadecyl-sn-glycero-3-

phosphoethanolamine (DHPA) (Figure 2.7A). The analysis of the NGL products by HPTLC 

showed a single NGL product (Figure 2.7B). MALDI-MS of the purified NGL products corroborated 

the assignment of their molecular masses, as shown in Table 2.2 and Figure 2.7C. The same 

strategy was then applied for fucosylated-xyloglucan oligosaccharides from apple (Figures S2.2 

and S2.3), however, is still under optimization for obtaining more homogeneously enriched NGL 

fractions.  

 

Figure 2.6. Positive-ion ESI-MS/MS product-ion spectra used for sequencing of xyloglucan-DAN 
DP-8. Xyloglucan-DAN DP-8 fraction (Figure 2.5D, HPLC-2) was used for sequencing and branching points 
are represented. The symbolic oligosaccharide structure is depicted representing the fragmentation ions 
obtained. (*) represent double cleavage product-ions. 

To interrogate the recognition of the xyloglucan-DAN-DHPA NGLs, microarrays were constructed 

of 10 xyloglucan probes (Table S2.5): newly xyloglucan-DAN-DHPA-NGLs (probes 1 to 3, 7 and 

8) and the AO-NGLs arrayed in the hemicellulose platform as controls (probes 4 to 6, 9 and 7, 

corresponding to probes 200-204 in Table S2.1). The microarrays were probed with the 

monoclonal antibodies LM24, LM25 and CCRC-M1 and the lectin ALL, as shown in Figure 2.8A. 

Remarkably, the analysis showed in overall similar binding profiles of the proteins to the 

xyloglucan-DAN-DHPA-NGLs and AO-NGL controls. LM24 bound only to the NGL probes that 

were substituted with β1,2-linked galactose, showing stronger binding to the di-galactosylated 

probe. This antibody also bound to the Fuc-Xyloglucan probes, suggesting that substitution of the 

galactose residue with α1,2-linked fucose could be tolerated.  LM25 showed a different tendency 

and bound preferentially to the probes substituted with α1,6-linked xylose, and exhibited less  
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Figure 2.7. Preparation of the xyloglucan-DAN-NGL probes from tamarind included in the new 
xyloglucan microarrays. (A) Schematic representation of preparation of xyloglucan-DAN-DHPA-NGLs 
after HPLC separation of DAN-conjugated DP-7, DP-8 and DP-9 fractions (Figure 2.5, HPLC-1, -2 and -3). 
(B) HPTLC analysis of conjugation mixtures DAN-DHPA-NGLs of xyloglucan fractions revealed by 
primulin-staining. (C) MALDI-MS analysis of the xyloglucan-DAN-DHPA NGL probes printed and validated 
in the xyloglucan microarrays. Xyloglucan oligosaccharides are depicted. The red link represents the 
oligosaccharides reducing end conjugated to DAN. 
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Table 2.2. MALDI-MS analysis of xyloglucan-DAN-DHPA NGLs investigated. 

Xyloglucan probes DPa [M-H]- calculatedb  [M-H]- detectedc 

Xyl-Glucan-7-DAN-DHPA 7 1983.12 1983.1 
Xyl-Glucan-8-DAN-DHPA 8 2145.17 2145.5 

Xyl-Glucan-9-DAN-DHPA 9 2307.23 2307.4 

Fuc-Xyl-Glucan-7-DAN-DHPA 7 1997.14 1997.9 (1869.9, 2007.9, 2178.9)d 
Fuc-Xyl-Glucan-10-DAN-DHPA 10 2453.28 2453.2 (2327.2) 

aDegree of polymerization (DP) for the major components in each fraction; bCalculated masses for major components are 
given; cNegative-ion MALDI-MS was used for the analysis of DAN-DHPA-NGLs and [M-H]- were detected; dWhere multiple 
components were detected, relative intensities of ions greater than 20% are shown in brackets. 

tolerance for galactose and fucose substituents near the non-reducing end (probes 3 and 7). 

CCRC-M1 bound equally well to the Fuc-Xyloglucan probes 7 to 10, pointing to a single 

α-Fuc-(1,2)-β-Gal epitope as the minimum requirement for carbohydrate recognition by this 

antibody. 

Aiming to increase the diversity of xyloglucan sequences included in microarray platforms and to 

gain information about the fucosylated-xyloglucan fractions used as start materials, a highly 

heterogeneous xyloglucan oligosaccharide mixture from apple was investigated. After 

deconvolution by size exclusion chromatography, the obtained fractions were converted to 

AO-NGLs (DP range 4 to 13) for preparation of microarrays and their analysis with the 

anti-xyloglucan antibodies. Upon purification of the NGL products and MALDI-MS analysis, 10 

new xyloglucan-AO-NGL fractions were obtained and printed on nitrocellulose-coated glass slides 

at 2 and 5 fmol/spot (probes 11 to 21, Table S2.5). The compositions of the major components in 

these fractions, including acetyl groups, are proposed in Table 2.3, based on MALDI-MS analysis 

of the NGLs and the microarray results. While probing with the xyloglucan-directed antibodies 

and ALL was successful, the binding profiles showed high heterogeneity of the new AO-NGLs 

(Figure 2.8B), as all the probes were recognized by the antibodies and AAL. Given these results, 

further deconvolution steps will be required prior to DAN-conjugation to obtain less 

heterogeneous mixtures.  

2.3 Discussion 

Aiming at addressing the need for increased structural diversity and to cover a wide range of 

plant-oligosaccharide chain-length in microarray platforms developed to date, we report here an 

oligosaccharide-NGL microarray platform, comprised of naturally-derived hemicellulose-related 

oligosaccharides. The microarray of these sources further extended and complemented the 

previously constructed glucan microarray platform32. The microarray analysis with the different 

carbohydrate-binding proteins investigated validated the glucan and hemicellulose 

oligosaccharide microarrays for their application to plant cell wall carbohydrate recognition. The 
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Figure 2.8. Validation and analysis of the new xyloglucan microarrays. Binding signals of 
non-fucosylated- and fucosylated-xyloglucan-specific monoclonal antibodies LM24, LM25 and CCRC-M1 
and α-fucose-specific lectin ALL are depicted as means of fluorescence intensities of duplicate spots at 
5 fmol of oligosaccharide probe arrayed (with error bars) and are representative of at least two independent 
experiments. The different xyloglucan sources are indicated in the coloured panels. (A) The microarrays 
included the xyloglucan-DAN-DHPA-NGLs probes 1 to 3, 7 and 8, as controls and the initially arrayed 
AO-NGLs 4 to 6, 9 and 10 (probes 1 to 10). (B) The new xyloglucan-AO-NGLs derived from the 
deconvolution of xyloglucan oligosaccharide mixture from apple were also included for analysis (probes 11 
to 21). Carbohydrate sequence information of the DAN-DHPA- and AO-NGL probes is in Table S2.5.  

results showed robust binding signals and differing patterns with respect to oligosaccharide 

structural type, linkage and sources by the anti-plant carbohydrate antibodies, lectins and 

bacterial CBMs. The results were in overall consistent with data obtained previously on the 

specificity of these proteins using different techniques. Additionally, the wide range of 

oligosaccharide sequences covered in the microarrays allowed to broaden the knowledge on their 

carbohydrate binding and specificities.  
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Table 2.3. MALDI-MS analysis of the new xyloglucan-AO-NGL probes generated. 

Xyloglucan probes DPa [M-H]-

calculatedb  [M-H]- detectedc,d  Main compositione 

Xyl-Glucan DP4-AO 4 1353.77 1354.0 (1690.2) Hex3Xyl1 (Hex4Xyl2(Ac)) 

Xyl-Glucan DP5-AO 5 1485.81 1486.1 (1354.0) Hex3Xyl2 (Hex3Xyl1) 

Xyl-Glucan DP6a-AO 6 1647.86 1648.1 Hex4Xyl2  

Xyl-Glucan DP6b-AO 6 1689.86 1690.1 (1836.2) Hex4Xyl2(Ac) (Hex4Xyl2Fuc(Ac)) 

Xyl-Glucan DP7-AO 7 1779.90 1780.1 Hex4Xyl3 

Xyl-Glucan DP8a-AO 8 1941.96 1942.3 (2089.4, 
2147.4, 2293.5) 

Hex5Xyl3 (Hex5Xyl3Fuc, 

Hex6.Xyl3(Ac), Hex6Xyl3Fuc(Ac)) 

Xyl-Glucan DP8b-AO 8 1941.96 1942.2 (2105.3, 
2251.4) 

Hex5Xyl3 (Hex6Xyl3, Hex5Xyl3Fuc) 

Xyl-Glucan DP9-AO 9 2104.01 2105.2 (2251.4) Hex6Xyl3 (Hex6Xyl3Fuc) 

Xyl-Glucan DP11/12-AO 11 2454.12 2454.6 (2586.6) Hex7Xyl3Fuc(Ac) (Hex7Xyl4Fuc(Ac)) 

Xyl-Glucan DP13-AO 13 2706.21 2707.7 Hex8Xyl4Fuc 

aDegree of polymerization (DP) for the major components in each fraction; bCalculated masses for major components are 
given; cNegative-ion MALDI-MS was used for the analysis of the AO-NGLs and [M-H]- were detected; dWhere multiple 
components were detected, relative intensities of ions greater than 20% are shown in brackets; eProposed composition 
of the major components as detected by negative-ion MALDI-MS. 
 

The binding recognition of linear α1,2-, α1,3-, α1,4- and α1,6-glucan-oligosaccharides was 

differentiated for α-glucan recognising proteins, where the glucan-binding property of human 

malectin was shown predominantly to linear α1,3-glucan oligosaccharides, exhibiting a 

chain-length dependency up to the tetrasaccharide. The additional binding to α1,4-, α1,6- and 

β1,3-linked glucose oligosaccharides highlights the plasticity of the malectin binding site to 

accommodate other glucose linkages dependent of their conformation and linkage. The 

ligand-specificity of CtCBM25Cthe_0956 was assigned to α1,4-linked glucose epitopes in linear or 

mixed-linked glucan-oligosaccharides. The chain-length dependency observed for sequences 

longer than DP-4 points to a type B topology of this CBM’s binding site, able to accommodate a 

minimum of 4 α1,4-glucose units. The microarray analysis also enabled to discriminate specific 

binding towards linear β1,3-, β1,4- or mixed-linked β1,3-β1,4-glucans and the chain-length 

requirements of β-glucan recognising proteins. The broader binding patterns exhibited by 

CmCBM6-2 emphasize the plasticity of its type B and C binding sites to a wide range of β-linked 

hexoses. The analysis also showed the influence of the spacing and positioning of β1,3-linkages 

within mixed-linked β1,3-β1,4-glucan chains for binding by the antibody 400-3 and 

CtCBM11Cthe_1472.  

The carbohydrate-binding proteins analysed on the new hemicellulose-related microarrays 

developed, allowed not only to increase knowledge on the carbohydrate-specificities for the 

proteins analysed, but also to shed light into the sequence of some of the NGL-oligosaccharides 

derived from heterogeneous mixtures, for which sequence is still under full assignment.  

The binding patterns of β1,4-linked xylan-specific antibodies LM10 and LM11 and 

CBM22-2Cthe_0912 highlighted the differences in the binding mode by these proteins, which can 
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relate to their binding sites topology. LM10 showed a specificity towards the non-reducing end of 

β-linked xylose oligosaccharides, although being able to accommodate to some extent 

α1,2-/1,3-arabinose terminal branches at this position, which points to a cavity-type antibody. 

LM11 on its turn required the internal β-xylose backbone accommodating longer epitopes of at 

least 3 xylose monomers, suggesting a groove-type antibody. The binding of CtCBM22-2Cthe_0912 

to linear β-linked xylan oligosaccharides with a chain-length dependency from DP-4 up to DP-8 

depicts the typical binding profile observed for a groove-type B CBM. Remarkably, the fact that 

both the anti-β1,4-xylan antibodies and CtCBM22-2Cthe_0912 bound strongly to the extent of the 

mixed-linked  β1,3-β1,4-xylose probes (probes 153 to 164), allows to infer that the β1,3-linkage, 

if present, might be positioned at the reducing end of the smaller DP probes, and hence not 

exposed to the proteins. On the one hand, in longer DP fractions, β1,3-linkages could be present 

every 4 to 5 xylose monomers144, exposing β1,4-linked xylose stretches available for binding. On 

the other hand, binding to these sequences might also not be influenced by the presence of a 

β1,3-linkage. While the microarray analysis allows to infer about these oligosaccharide 

sequences, their defined sequence needs to be confirmed, recurring for example to diagnostic 

fragmentation method by negative-Ion ESI-CID-MS/MS32.  

The microarray analysis with mannan-directed proteins showed the specific and different 

chain-length requirement for binding to linear β1,4-mannose sequences or the requirement of the 

α-galactose substitutions, highlighting proteins that selectively bind to linear mannans or 

galactomannans. While 400-4 showed a chain-length dependency of the β1,4-linked mannan 

backbone, pointing to a groove-type antibody, LM21 bound to shorter chains, pointing to 

recognition of the non-reducing end of the β1,4-linked mannans and to a cavity-type antibody. 

The assignment of the specificity for CtCBM35Cthe_2811 to the β1,4-linked mannose backbone of 

mannans with a chain-length of at least 4 residues is in agreement with a type B CBM, as 

generally observed for family 35141. In contrast with these proteins, the antibody CCRC-M7 

requires the α-galactose substitutions of β1,4-mannose backbone for binding. The lack of binding 

to the di-galactosyl-mannopentaose probe (probe 195) and the higher binding intensity to probe 

196 (DP-8), may indicate that, for recognition to occur, CCRC-M70 requires either more than 

2 α-galactose residues or a β1,4-mannose backbone of more than 5 residues. The integration of 

the microarray data showed that probes from the e-series are composed mainly by linear 

β1,4-mannose up to the DP-9 probe, and that the m-series comprise sequences with a higher 

ratio of α-galactose substitutions. Using the same rationale, the binding profiles to the longer 

e-series probes of DP-9 to DP-11, points to longer DPs of the β1,4-mannose backbone and the 

presence of at least 2 or higher α-galactose substitutions in these sequences. Sequencing of 

these galactomannan-derived oligosaccharide sequences is under way using the established 

ESI-MS/MS method and NMR analysis32. 

The analysis with the xyloglucan microarrays revealed the different binding features and epitopes 

for 3 anti-xyloglucan antibodies: LM24 towards β1,2-linked galactose substituted xyloglucans; 
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LM25 towards α1,6-linked xylose substituted xyloglucans, exhibiting less tolerance for highly 

substituted β1,2-linked galactose or α1,2-linked fucose xyloglucans; and CCRC-M1 towards 

fucosylated xyloglucans requiring a single α-Fuc-(1,2)-β-Gal as the minimum recognition  epitope. 

Deconvolution of the detailed oligosaccharide epitopes recognized by these antibodies is 

detrimental for their application as research tools for detection and characterization of specific 

carbohydrate sequences present in plant polysaccharides. 

Aiming at diversifying the microarrays with sequence-defined NGL-oligosaccharides, the 

deconvolution method with conjugation to the bi-functional DAN, followed by derivatization to an 

aldehyde-functionalized lipid, was attempted to separate the neutral xyloglucan oligosaccharides 

and to achieve a relatively homogenous population of DAN-DHPA-NGL probes. This strategy 

showed potential to enrich each of the tamarind xyloglucan oligosaccharide fractions. However, 

application of the method to more heterogeneous oligosaccharide mixtures, like the 

fucosylated-xyloglucans from apple, requires further optimisation in order to improve the 

conjugation yields and chromatographic resolution. Additionally, as the purified oligosaccharides 

from complex plant polysaccharides are frequently obtained in limited amounts, this precludes 

the use of conventional NMR method for sequencing, which is currently ongoing for xyloglucan 

fractions, as well as for galactomannans from the m-series and e-series. 

2.4 Conclusions 

This work demonstrated the effectiveness and versatility of the NGL oligosaccharide microarrays 

to assess the binding profiles of glucan- and hemicellulose-recognition systems with wide 

specificities for oligosaccharide sequences, linkages, and anomeric configurations. Additionally, 

the development of the method of bi-functional conjugation allowing for oligosaccharide 

purification and NGL probe derivatization, proved its potential for the deconvolution of neutral 

oligosaccharide mixtures and is under optimisation to prepare sequence-defined plant 

oligosaccharides derived from natural sources. This can be achieved by combining methods of 

depolymerisation of the polysaccharides and multistage purification of the oligosaccharides with 

the use of specific enzymes to reduce heterogeneity. Furthermore, mass spectrometry and NMR 

can be combined to perform detailed structural analysis of these oligosaccharides. 

While the goal of the work developed in this Chapter was to construct naturally-derived plant 

oligosaccharide microarrays, new specificities and epitope-level information was also obtained 

for antibodies and CBMs. These microarrays will be a valuable tool for functional analyses of 

proteins encoded by plant cell wall polysaccharide-degrading genes, while assisting the 

classification of newly identified CBMs or CBMs assigned to known families in the CAZy database. 

Towards this aim, the CBMs described here will be analysed in parallel with other C. thermocellum 

and Ruminococcus flavefaciens CBMs in the comparative CBM screening analyses presented in 

Chapter 3. 



CHAPTER 2. DEVELOPMENT OF GLUCAN AND HEMICELLULOSE OLIGOSACCHARIDE MICROARRAYS 

 

55 
 

 

2.5 Experimental procedures 
2.5.1 Monoclonal antibodies, CBMs and lectins used for probe structural 

validation and microarray quality control 

The information on the plant cell wall carbohydrate-directed monoclonal antibodies, CBMs and 

lectins used for microarray quality control is given in Table S2.3. Carbohydrate-directed 

monoclonal antibodies 400-2, 400-3, and 400-4 were purchased from Biosupplies (Yagoona, 

Australia); LM5, LM6, LM10, LM11, LM21, LM24 and LM25 were purchased from Plant probes 

(Leeds, UK); and CCRC-M1 and CCRC-M70 were purchased from Agrisera (Vännäs, Sweden). 

Biotinylated lectin ALL was purchased from Vector Laboratories (Burlingame, California, US). 

Human malectin and CBMs were produced as recombinant proteins in Escherichia coli. 

Experimental procedure on the production of family 22, 25 and 35 CBMs from C. thermocellum 

(CtCBM22-2Cthe_0912, CtCBM25Cthe_0956 and CtCBM35Cthe_2811, respectively) will be detailed in 

Chapter 3, and Family 11 CBM from C. thermocellum (CtCBM11Cthe_1472) in Chapter 4. Family 6 

CBM from the Cellvibrio mixtus (CmCBM6-2) was provided by Harry Gilbert (University of 

Newcastle, UK). The recombinant CtCBM22-2 Cthe_0912, CtCBM25Cthe_0956, CtCBM35Cthe_2811 and 

CmCBM6-2 contained N-terminal hexa-histidine tags (His-tag), and CtCBM11Cthe_1472 a 

C-terminal His-tag. 

2.5.2 Sources of carbohydrates 

The sources of the glucan oligosaccharides to construct the glucan oligosaccharide microarrays 

were described in Palma et al.32 and are indicated in Table S2.1. A range of plant-related hexose 

and pentose oligosaccharides or oligosaccharide mixtures with different DPs and glycosidic 

linkages on linear or branched chains were used to construct the hemicellulose microarrays. 

These were obtained from the commercial suppliers Megazyme (Bray, Ireland) and Elicityl 

(Elicityl, Crolles, France) and were prepared by chemical or enzymatic partial depolymerisation 

of polysaccharides. The sources and analysis performed for the preparation of the AO-NGL 

probes are given in Table S2.1 and Table S2.2.  

2.5.3 Preparation of oligosaccharide fractions 

To prepare the oligosaccharide fractions of different degrees of polymerization (DP), the 

oligosaccharide mixtures of Palmaria palmata xylan, Ivory nut mannan, carob galactomannan, 

and tamarind xyloglucan were reconstituted in the smallest volume possible of deionized water 

(20 mg in 2 mL as reference) and fractionated by size-exclusion chromatography on a Bio-Gel P4 

column (1.6×90 cm) eluted with deionized water at a flow rate of 15 mL/h. The column was 

previously calibrated with a standard dextran hydrolysate mixture (4 mg in 1mL water) containing 

0.1 mg dextran polysaccharide (as the marker of the exclusion volume). The mixture was eluted 

with deionized water at a flow rate of 15 mL/h. The eluates were monitored on-line by refractive 

index and pooled according to their average DP, as determined by MALDI-MS. Quantitation of 
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oligosaccharide fractions was by dot-orcinol hexose assay72 using glucose as standard. The 

solutions (1 μL) of oligosaccharides and standards were spotted on to a TLC plate using an 

accurate syringe. Visualization of hexose on TLC was made by orcinol staining after colour 

development followed heating at 105 °C in a vented oven.  The hexose content in samples is 

determined from the calibration curve of density vs (μg) hexose derived from the glucose standard 

samples.  

2.5.4 Preparation of AO-NGLs by oxime-ligation 

The reducing oligosaccharides were converted to AO-NGLs by oxime-ligation using the 

aminooxy-functionalized (AO) lipid reagent 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine 

(DHPE), resulting in the AOPE lipid, following the Liu et al method86, and its modified procedure 

for the oligosaccharides with DP > 7 described in Zhang et al. 201696. In brief, 100 nmol of 

oligosaccharides with DP < 7 were dried and incubated with 200 nmol AOPE in a solvent of 

CHCl3/MeOH/H2O (10:10:1, by volume) at ambient temperature for 16 h before slow solvent 

evaporation (over the course of 1 h) at 60 °C. Purification of the NGLs from reaction mixtures was 

carried out by semi-preparative HPTLC145 for oligosaccharides in the range of DP-2 to DP-6, and 

silica gel cartridge for DP > 7. The purified NGLs were analyzed by MALDI-MS and HPTLC before 

quantitation by primulin staining on HPTLC plates145. Molecular masses of the NGLs were 

determined by MALDI-TOF-MS. The sizes and compositions of the oligosaccharide fractions 

obtained are indicated in Tables 2.1 and 2.3, which give the results of MALDI-MS analyses of the 

NGL probes derived from each of the oligosaccharide fractions. 

2.5.5 Preparation of DAN-conjugated xyloglucan oligosaccharides by reductive 
amination 

Xyloglucan oligosaccharide mixtures were resolved through bi-functional derivatization by 

1,5-diaminonaphthalene (DAN) conjugation, followed by HPLC separation. Briefly, 280 µL of DAN 

at 100 nmol/µL in methanol (MeOH) was added to 400 nmol of dried oligosaccharide mixture and 

then dried under a nitrogen stream. Reduction was carried out by addition of 120 µL of 

tetrabutylammonium cyanoborohydride (TBA) at 20 µg/µL, freshly prepared in MeOH, followed 

by addition of 20 µL glacial acetic acid and 60 µL of MeOH. Incubation of the reaction mixture 

was at 80 °C for 3 h, upon which the mixture was dried under a nitrogen stream. Removal of 

excess DAN was done by chloroform extraction after addition of CHCl3/H2O 1:1. The water phase 

was washed up to 6 times using 400 µL of CHCl3 to ensure complete removal of reaction agents. 

The water phase was freeze-dried, and the DAN-conjugated product was then resuspended in 

100 µL of ACN/H2O 1:1 for HPLC loading. HPLC was carried out using a normal-phase X-Bridge 

amide column (3.5 μm, 4.6×250 mm, Waters, Elstree, UK) for purification of the DAN-conjugated 

oligosaccharides prepared. Elution was performed by a gradient of ACN/H2O (from 80:20 to 

20:80) at a flow rate of 0.7 mL/min and detection by UV absorption at 328 nm. Each fraction 
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collected was analysed by ESI-MS or MALDI-MS (Figures 2.5A and S2.2). Given the purple colour 

of the DAN solution, DAN-conjugated oligosaccharides could not be quantified by the standard 

dot-orcinol assay72. To this end, quantitation of the purified xyloglucan-DAN fractions was carried 

out by UV spectrophotometry at 328 nm, using a calibration curve of DAN serial dilutions in 

ACN/H2O 1:1 (Figure S2.4). 

2.5.6  Preparation of DHPA-NGLs by reductive amination 

DAN-conjugated amino-terminating xyloglucan oligosaccharides were converted to NGLs by 

reductive amination using an aldehyde-functionalized phospholipid reagent 

N-(4-formylbenzamide)-1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPA) (Chunxia 

Li, Angelina S. Palma, Pengtao Zhang et al., 2020, submitted). 40 µL of DHPA at 10 nmol/µL in 

CHCl3/MeOH/ 1:1 was added to 100 nmol of dried oligosaccharides, followed by 10 µL of TBA at 

20 µg/µL, freshly prepared in MeOH, as a reducing agent, and 60 µL of CHCl3/MeOH/ 1:1. The 

reaction mixture was incubated for 16 h at 60 °C, upon which 200 µL of CHCl3/MeOH/H2O 25:25:8 

was added. Purification of the NGLs from reaction mixtures was carried out using silica cartridges 

(Waters, 3CC, 100 mg). The purified NGL fractions were analyzed by HPTLC145, followed by 

MALDI-MS ( Figures 2.7C and S2.3B). Quantitation of the purified DAN-DHPA-NGLs was 

performed by UV spectroscopy at 328 nm, using DAN standard solutions prepared as series 

dilutions in CHCl3/MeOH/H2O 25:25:8 (Figure S2.4). The sizes and compositions of the 

oligosaccharide fractions obtained are indicated in Table 2.2, which give the results of MALDI-MS 

analyses of the DAN-DHPA-NGL probes derived from each of the oligosaccharide fractions. 

2.5.7 MALDI Mass Spectrometry 

MALDI-MS was carried out for molecular mass determination of oligosaccharides and NGLs on 

an Axima Resonance mass spectrometer with a QIT-TOF configuration (Shimadzu, Manchester, 

UK). A nitrogen laser (with a power setting at between 80-100 V) was used to irradiate samples 

at 337 nm, with an average of 200 shots accumulated. The oligosaccharides were dissolved in 

H2O and NGLs in CHCl3/MeOH/H2O 25:25:8, at a concentration of ~10 pmol/µL, and 0.5 µL was 

deposited on the sample target together with a matrix of 2’,4’,6’,-trihydroxyaceto-phenone for 

analysis.  

2.5.8 Electrospray Mass Spectrometry 

For oligosaccharide sequence analyses, negative- and positive-ion ESI-MS and ESI-CID-MS/MS 

were carried out on a Waters Q-TOF mass spectrometer Synapt G2-S (Manchester, UK). 

Nitrogen was used as desolvation and nebulizer gas at a flow rate of 500 L/h and 150 L/h, 

respectively. Source temperature was 80 °C, and the desolvation temperature 150 °C. A cone 

voltage of 80 V was used for negative-ion detection and the capillary voltage was maintained at 

3 kV. MS/MS product-ion spectra were obtained from CID using argon as the collision gas at a 



CHAPTER 2. DEVELOPMENT OF GLUCAN AND HEMICELLULOSE OLIGOSACCHARIDE MICROARRAYS 
 

58 
 

 

pressure of 0.17 MPa. The collision energy was adjusted between 17 and 28 V for optimal 

fragmentation. For quasi-MS3 to obtain a further product-ion spectrum from a selected fragment 

ion as the precursor, the cone voltage was raised to 180 V to encourage the primary 

fragmentation. A scan rate of 1.0 s/scan and data acquisition of ~1 minute were used for both 

ES-MS and ES-CID-MS/MS experiments, and the acquired spectra were summed for 

presentation. For analysis, oligosaccharides were dissolved in ACN/H2O 1:1 (v/v), typically at a 

concentration of 15 pmol/µL, of which 2 µL was loop injected. Solvent (ACN/2 mM NH4HCO3, 1:1, 

v/v) was delivered by a Harvard syringe pump at a flow rate of 10 µL/min. 

2.5.9 Carbohydrate microarrays construction and analysis 

The microarray data and metadata provided here is described according to the MIRAGE 

(Minimum Information Required for A Glycomics Experiment) glycan microarray guidelines, as 

described by Liu et al. 2016146. 

The information on the probe ID, sequence or monosaccharide composition analysis of the 

carbohydrate probes featuring in the microarrays is shown in Tables S2.1 and S2.5. For the 

preparation of the microarray, the probes were immobilized non-covalently onto 16-pad 

nitrocellulose-coated UniSart® 3D Microarray Slide from Sartorius (Goettingen, Germany), using 

a non-contact arrayer robot Nano-Plotter 2.1 (GeSiM, Radeberg, Germany), with a spot delivery 

volume of approximately 330 pL, following established protocols32. In brief, each probe was 

printed in duplicate at two levels 5 and 15 μM (2 and 5 fmol/spot, respectively). For the 

non-covalent immobilization, the NGLs were formulated as liposomes by adding lipid carriers, 

1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) and cholesterol (both from Sigma-Aldrich, 

St. Louis, Missouri, US) at 100 pmol/µL85. To prepare the liposomes, the lipid carriers were mixed 

with the 5 pmol/mL NGL working solution and the samples are allowed to evaporate to complete 

dryness at 37 °C in an incubator for ~16 h. The dried mixture was then reconstituted in a solution 

of Cy3-water by vortex and brief centrifugation, followed by sonication for 15 minutes in a sonic 

water bath at 30 °C, and centrifugation at 8000×g. The Cy3 NHS ester fluorophore 

(GE Healthcare, Chicago, Illinois, US) Cy3 was included in the printing solution at 20 ng/mL 

(26 fmol/µL) as a marker for quality control of sample delivery while arraying and spot 

visualization, as well as for quantitation analysis.  

Microarray binding analysis was performed using AlexaFluor-647-labeled Streptavidin for 

readout, essentially as described by Palma et al. 201532. His-tagged CBMs were tested at 5 to 

10 µg/mL, and human Malectin at 15 µg/mL precomplexed with mouse monoclonal 

anti-poly-histidine (Ab1) (Sigma-Aldrich, H1029) and biotinylated anti-mouse IgG (Ab2) 

(Sigma-Aldrich, B7264) antibodies, at a ratio of 1:3:3 (by weight). The protein-antibody complexes 

were prepared by preincubating Ab1 with Ab2 for 15 minutes at room temperature, followed by 

addition of CBMs and incubation for further 15 minutes, after which the final concentration of the 

proteins was achieved by dilution in the blocking solution made of 1% (w/v) Casein (Thermo 
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Scientific, 37583) 1:50 1% BSA (Sigma-Aldrich, A8577) in HBS (Sigma-Aldrich, H0887) 

(5 mM HEPES buffer pH 7.4, 150 mM NaCl) with 5 mM CaCl2. Monoclonal antibodies  LM5, LM6, 

LM10, LM11, LM21, LM24, LM25, CCRC-M1 and CCRC-M70 were probed at 1:10 ratio, as 

described by Moller et al, 2008147, and antibodies 400-2, 400-3, and 400-4  at 10 µg/mL, diluted 

in the same blocker, followed by the biotinylated anti-mouse-IgG (Sigma-Aldrich, B7264), 

anti-rat-IgG (Sigma-Aldrich, B7139)  or anti-rat-IgM (Rockland, Gilbertsville, Pennsylvania, US, 

612-4607) as appropriate, at 10 µg/mL in the same blocker. Biotinylated lectin AAL was analyzed 

using a single step overlay at a final concentration of 2 µg/mL in blocker 3% BSA in HBS with 

5 mM CaCl2. Biotinylated anti-rat and anti-mouse IgG and IgM antibodies were analysed in 

separate as a negative control. Slides were scanned using GenePix® 4300A microarray scanner 

(Molecular Devices, San Jose, California, US), at 532 nm for Cy3 spot visualisation, prior to 

binding assays, and at 647 nm for detection of the binding. Imaging analysis and quantitation was 

carried out using GenePixPro7 Software (Molecular Devices). 

2.5.10 Microarray data analysis and presentation 

Microarray data analysis was performed using a dedicated software148, developed by Mark Stoll 

of the Glycosciences Laboratory (Imperial College London, UK), that comprises a suite of 

modules to store, retrieve and display carbohydrate microarray data. In brief, microarray results 

were entered into an in-house database that holds all of the microarray data and metadata on 

experimental conditions and information on probes and proteins. A software for retrieval and 

display, that has a comprehensive system of sorters, filters and arrangers, was then used allowing 

to customize the data presentation as charts, tables and 2D matrices (heatmaps). No particular 

normalization method or statistical analysis was used for data processing. 

After the scrutiny of all the microarray results the following decisions were made as regards 

presentation of data: 1) to modify the original printed microarray set layout excluding repeated 

probes and sorting the probes according to the nature of the sample and predominant 

oligosaccharide sequence (resulting arrangement of probes is in Tables S2.1 and S2.5); 2)  

present microarray data in the form of a matrix represented as a heatmap of the relative binding 

intensities (Figure 2.1B), in order to highlight the different binding patterns obtained for the 

proteins and antibodies analysed; 3) in order to accurately depict the binding patterns for each 

protein and antibody, the printed high level of NGLs (5 fmol/spot) were selected to generate the 

matrices and graphics (Figures 2.1 to 2.4 and 2.8 and Figure S2.1). 

2.6 Work contributions 

The preparation of the NGL probes and construction of the oligosaccharide microarrays resulted 

from the long-standing collaborative work of the Supervisor, Dr. Angelina Palma, with the group 

of Prof. Ten Feizi (Glycosciences Laboratory, Imperial College London), and the colleagues 

Dr. Hongtao Zhang, Dr. Yibing Zhang, Dr. Lisete M. Silva, Dr. Yan Liu and Dr. Wengang Chai are 
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Zhang for oligosaccharide fractionation and analysis, NGL probe preparation, MALDI-MS and 

ESI-MS analysis. The experimental planning and work reported here related to the carbohydrate 

microarray validation, binding and data analysis and interpretation, were performed by the author 

of the Thesis. Mass spectrometry analysis, oligosaccharide purification and preparation of the 

xyloglucan DAN-DHPA-NGL and xyloglucan AO-NGL probes included in the xyloglucan 

carbohydrate microarrays, as well as the microarray construction, validation, binding and data 

analysis, were performed by the author of the thesis at the Glycosciences Laboratory, Imperial 

College London, under the supervision of Prof. Ten Feizi and Dr. Wengang Chai. Dr. Lisete M. 

Silva is acknowledged for the planning and guidance in microarray printing. Protein expression 

and purification of CtCBM11, was performed by the author of the Thesis (as detailed in 

Chapter 4). CtCBM22-2Cthe_0912, CtCBM25Cthe_0956 and CtCBM35Cthe_2811, were prepared using a 

high-throughput platform at NZYTech (Lisbon, Portugal) (as detailed in Chapter 3), as result from 

a long-standing collaborative work of the Supervisor and Co-supervisor, Dr. Ana Luísa Carvalho, 

with Prof. Carlos Fontes (CIISA-FMV, ULisboa). Human malectin was kindly provided by 
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3 Cellulolytic bacteria express CBMomes that dictate their 
ecological niche polysaccharide utilization 

3.1 Introduction 

Anaerobic microbial organisms are highly efficient for plant cell wall polysaccharide 

biodegradation and have evolved a multi-enzyme complex system, the Cellulosome, where 

catalytic carbohydrate-active enzymes (CAZymes) have non-catalytic Carbohydrate Binding 

Modules (CBMs) appended. The latter exhibit different functional roles in highly potentiating the 

enzymes’ catalytic efficiency (reviewed in Chapter 1, section 1.2.1.2). Deciphering at molecular 

level the mechanisms underlying plant cell wall carbohydrate recognition and deconstruction by 

different cellulolytic bacteria is crucial to elucidate these complex biological systems, as well as 

to further promote novel potential applications. 

In the past years, genomic sequencing has promoted an exponential increase in the identification 

of CAZymes and CBM sequences, leading to a substantial number of proteins for which the 

carbohydrate binding specificities and mechanisms of ligand recognition are awaiting 

elucidation26,27. The implementation of the CAZy database22 provides a valuable tool to access 

updated lists of CBM-containing proteins, displaying characterised (with structural or biochemical 

data) and uncharacterised putative CBM domains grouped into sequence-related CBM families. 

The genome sequencing of the cellulolytic bacterium Ruminococcus flavefaciens FD-1, a rumen 

bacterium, has revealed numerous modular glycoside hydrolases (GH) and several CBMs that 

were grouped into known CAZy families by sequence homology27, but for which assignment of 

carbohydrate-binding specificity is still required; also putative protein modules, some of which 

have been classified into previously un-identified CBMs families 75 to 8059. Additionally, 

R. flavefaciens FD-1 has been reported to have one of the largest collection of 

cellulosome-associated proteins among known fibre-degrading bacteria27. A large variety of GH 

families found within R. flavefaciens FD-1 genome, can also be found in Clostridium 

thermocellum27, a thermophilic anaerobic bacterium for which the first cellulosome was 

characterized12,54. Although more extensively studied, C. thermocellum also possess various 

CBMs that await elucidation.  

With development of bioinformatics tools for annotating the available genomes, structural biology 

methods and accessible databases, predictions can be made about the probable, or possible, 

carbohydrate-binding activities of proteins on the basis of protein-sequence homologies and 

structures22,149. Nevertheless, direct binding experiments are required for validation and 

characterization of these predictions and to discover novel mechanisms of ligand binding. The 

detection and characterization of carbohydrate–protein interactions have been challenging due 

to the complexity of carbohydrate structures, availability of the sample (both proteins and 



CHAPTER 3. CELLULOLYTIC BACTERIA CBMOMES DICTATE POLYSACCHARIDE UTILIZATION 

64 
 

 

sequence-defined carbohydrates) and the need to develop miniaturized tools to study these. The 

development of the high-throughput carbohydrate microarray technology came to address some 

of these challenges and since the first proof-of-principle papers in 2002, has revolutionized the 

studies of carbohydrate-recognising systems61,74,78.     

In the present work, to broaden the understanding on the functionality of non-catalytic CBMs of 

cellulolytic organisms our approach was two-fold: 1) to implement a multi-step strategy combining 

high-throughput methods for cloning, expression and purification of proteins with carbohydrate 

microarrays, which was applied to interrogate and assign carbohydrate-binding specificities for a 

representative set of CBMs assigned into different CAZy families (here referred to as CBMomes); 

and 2) to compare the carbohydrate-binding specificities of the CBMomes from two cellulolytic 

bacteria, C. thermocellum and R. flavefaciens FD-1, which reside in different, highly dynamic and 

populated ecological niches, the soil and the rumen of mammals, respectively. To this end, 

polysaccharide microarrays and neoglycolipid (NGL)-based oligosaccharide microarrays, 

comprising mainly carbohydrate sequences present on plant cell walls, but also on fungal and 

bacterial cell walls, were used to screen the carbohydrate-binding and ligand-specificity of up to 

105 R. flavefaciens FD-1 and C. thermocellum CBMs. The groups of polysaccharides that are 

differentially recognised by the CBMs were revealed and novel CBM-ligand specificities were 

identified.  

3.2 Results and Discussion 
3.2.1 Multi-step strategy to assign carbohydrate-binding specificities of CBMs in 

a high-throughput manner 

Aiming at deciphering the repertoire of carbohydrate-binding specificities of CBMs from 

C. thermocellum and R. flavefaciens FD-1 (henceforward referred to only as R. flavefaciens), a 

multi-step strategy integrating high-throughput platforms was followed, as illustrated in Figure 3.1. 
All C. thermocellum and R. flavefaciens CBM sequences assigned into different families in the 

CAZy database (at the start of the Thesis work in 2015) – here designated the ‘CBMomes’ – were 

amplified from the genome of the bacteria and prepared as recombinant proteins using 

high-throughput methods for cloning, expression and purification. These recombinant ‘CBMomes’ 

were screened for carbohydrate binding using a microarray comprising soluble polysaccharides 

with sequences found on plant, fungal and bacterial cell walls (1st screening). The 1st screening 

microarray data obtained for each CBM was validated using semi-quantitative affinity gel 

electrophoresis (AGE). The ‘CBMomes’ were screened only for their recognition profile to soluble 

polysaccharides. Carbohydrate-binding to insoluble substrates was not assessed in the present 

study. All CBMs that gave binding patterns in the polysaccharide microarrays, were subjected to 

a 2nd screening using an NGL-microarray comprised of oligosaccharide sequences found on plant 

cell wall, fungal and bacterial polysaccharides, to assign carbohydrate binding-specificity. 
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Figure 3.1. Schematic representation of the multi-step strategy followed in this work. Bioinformatics 
analysis was carried out on annotated sequences in the bacterial genomes for selection of DNA sequences 
coding for putative CBMs assigned to different families in the CAZy database (‘CBMomes’). These were 
cloned, expressed and purified using a high-throughput platform.  Polysaccharide microarrays comprised of 
plant-, fungal- and bacterial-related sequences were developed to screen C. thermocellum and 
R. flavefaciens FD-1 CBMomes for carbohydrate binding (1st screening). The microarray data was 
cross-validated using affinity gel electrophoresis (AGE). All CBMs that gave binding patterns in the 
1st screening, were screened for ligand-specificity assignment using NGL-microarray platform composed of 
oligosaccharides sequences representative of plant and fungal cell walls (2nd screening). The 
monosaccharide symbolic representation used was according to the updated SNFG1. 
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3.2.2 Bacterial CBMomes from different ecological niches 

A total of 150 genes were amplified and cloned in an Escherichia coli expression vector, coding 

for 90 CBMs from C. thermocellum and 60 CBMs from R. flavefaciens, assigned to different CAZy 

families (Figure 3.2). The majority of the CBMs were readily expressed and purified through 

homogeneity by affinity chromatography (Figure S3.1). Modularity and sequence information of 

the CBMs for which binding patterns were obtained and for the ones that were poorly expressed 

or did not bound in the microarrays are presented in Tables S3.1 and S3.2, respectively. The 

modular architectures of both bacteria CBM’s repertoire show that while most of the CBMs are 

found associated with polysaccharide degrading CAZymes and to Dockerin (DOC) modules, 

indicating a probable association with the cellulosome, many are found as single domains or 

associated to other proteins, hinting other possible functions. Overall, C. thermocellum contains 

a broader diversity of CAZy CBMs families, showing a predominance of those described to target 

crystalline cellulose (family 3), β-xylans, β1,4-glucans, β1,3-glucans, mixed-linked 

β1,3-1,4-glucans, β1,3-glucans (family 6) and chitin or peptidoglycan (family 50). For 

R. flavefaciens a more restricted number of CBMs assigned into existing CAZy families are 

identified, with prevalence for hemicellulose-recognising families and in higher number from 

families 22 and 35, which are known to be specific for β-xylans and pectic polysaccharides or 

β1,4-mannans, respectively (Figure 3.2). 

 

Figure 3.2. Overview of the selected CBMomes of the two bacteria. The chart shows the numbers of 
C. thermocellum and R. flavefaciens FD-1 CBMs from each CAZy family that were cloned, analysed and for 
which binding in the microarrays was obtained. A total of 150 CBMs were cloned (bottom bar), 90 from 
C. thermocellum and 60 from R. flavefaciens FD-1, 105 CBMs from both bacteria were successfully 
expressed as recombinant domains in E. coli and analysed in the carbohydrate microarrays (middle bar). 
Binding patterns were obtained for 35 C. thermocellum CBMs and 24 R. flavefaciens FD-1 CBMs (top bar). 
Modularity and sequence information of the CBMs are presented in Tables S3.1 and S3.2. 
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3.2.3 Carbohydrate microarray platforms for ligand discovery 

The polysaccharide microarray platform used in the 1st screening to investigate 

carbohydrate-binding activities for the expressed CBMs, designated Plant, Fungal and Bacterial 

polysaccharide (PS) set 1, comprised 25 structurally diverse carbohydrate probes (Table S3.3). 

These are representative of major sequences found in plant cell wall β-glucans and 

hemicelluloses, such as xylans, xyloglucans, arabinoxylans and galactomannans, in fungal 

α-glucans, β-glucans and α-mannans, and in bacterial α-glucans. The validation of the 

polysaccharide microarrays was carried out using 11 carbohydrate-directed monoclonal 

antibodies, 3 CBMs of different microorganisms and 3 plant lectins, for which the carbohydrate 

binding specificities have been characterized (Chapter 2, Table S2.3). Overall, the binding 

patterns observed to the different polysaccharide samples were in agreement with the reported 

carbohydrate binding for the antibodies and proteins analysed (Figure 3.3 and Table S3.4), as 

well as the specificity observed in the NGL-microarrays presented in Chapter 2, section 2.2.2. 

α-mannans – The α-linked mannose-specific lectin Concavalin A (ConA)150 exhibited restricted 

binding to the polysaccharides with an α1,3-Man backbone or with an α1,6-linked mannose 

backbone with α1,2- or 1,3-mannose branches (probes 1-3).  

α-glucans and β-glucans – The Thermotoga maritima α1,4-linked glucose specific CBM from 

family 41 (TmCBM41)32, bound specifically to the mixed-linked α1,6-1,4-linked glucan (probe 5).  

The Cellvibrio mixtus family 6 and 32 CBMs (CmCBM6-2 and CmCBM32-2, respectively) were 

used in parallel with the β1,3-glucan-specific (400-2) and β1,3-β1,4-linked glucan-specific (400-3) 

monoclonal antibodies to validate the different β-glucan polysaccharides. CmCBM6-2 showed 

strong binding to most of the β-glucans32 (probes 6 and 9 to 13), whereas 400-2 and 400-3 

antibodies showed their preferential binding to β1,3-glucans151 (probes 6, 8 and 9) or mixed-linked 

β1,3-1,4-glucans134 (probe 12 and 14), respectively. These results were in agreement with binding 

patterns observed to related oligosaccharides in the NGL-microarrays (Chapter 2, Figure 2.2). 

The strong binding observed with CmCBM6-2 and 400-3 antibody to the arabinoxylan fractions 

(probes 20-21) showed the presence of a β1,4- or mixed-linked β1,3-1,4-glucan component in 

these heterogeneous fractions. CmCBM32-2 showed highly restricted binding to the β1,3-glucans 

with higher β1,6-glucose branching (probes 10-11), in accordance with the predicted involvement 

of the β1,6-branching for preferential recognition by this CBM32.  

Linear and branched β-xylans - The β1,4-xylan-specific monoclonal antibodies LM10 and 

LM11135, showed binding to polysaccharides of linear β1,3-1,4- and β1,4-linked xylose isolated 

from Palmaria palmata and plum (probes 15 and 16, respectively) and β1,4-linked xylose with 

α1,2- or α1,3-arabinose substitutions isolated from brewer’s spent grain (probes 20 and 21), in 

line with the specificities observed in NGL-microarrays (Chapter 2, Figure 2.3A). Remarkably, the 

α1,5-arabinose-specific monoclonal antibody LM6137 showed binding, albeit weak, to the 

arabinoxylan fraction with degree of polymerization 41 (DP41) (probe 20), which might be due to 
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Figure 3.3. Validation of the polysaccharide microarrays with sequence-specific carbohydrate-
binding proteins. The microarrays included 25 polysaccharides, for which sequences of major structural 
domains are depicted at the left. Information available for these polysaccharide samples is in Table S3.3. 
The monoclonal antibodies, plant lectins and CBMs of characterized carbohydrate-binding specificity used 
for the microarray validation are exhibited at the top. The major representative structural domain for each 
polysaccharide is depicted at the left using a tetrasaccharide backbone sequence as a reference. The 
binding results are shown as a heatmap of the relative binding intensities calculated as the percentage of 
the fluorescence signal intensity at 150 pg/spot given by the probe most strongly bound by each protein 
(normalized as 100%). Numerical scores are given in Table S3.4.  

the presence of α1,2- and α1,3-arabinose, as indicated by the binding of this antibody to the 

branched arabinan probes in NGL-microarrays (Chapter 2, Figure 2.3).  

Xyloglucans - The monoclonal antibodies LM24, LM25 directed to xyloglucans92, the CCRC-M1 

antibody that requires the α-linked fucose, and the α-fucose-specific Aleuria aurantia lectin 

(AAL)143, all bound to the plum xyloglucan polysaccharides (probes 18-19). Considering the 

specificities of these antibodies, observed in the NGL-microarrays (Chapter 2, Figure S2.1), the 

results indicated the presence of α1,6-linked xylose, β1,2-linked galactose and α1,2-linked fucose 

substitutions of the xyloglucans in these fractions. In addition, the binding observed with the 

galactose-specific Ricinus communis agglutinin I (RCA120)152 also indicated the presence of 

β1,2-linked galactose. 

Galactomannans - In accord with the binding results from the NGL-microarrays (Chapter 2, 

Figure 2.4), the β1,4-linked mannose-specific monoclonal antibodies 400-4 and LM21138,139, the 

guar galactomannan-directed antibody CCRC-M70140, and RCA120152 bound differentially to the 
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guar and carob galactomannans (probes 23-25), with the last two showing preferential binding to 

the highly α1,6-galactose-substituted guar galactomannan (probe 23).  Of note was that LM6 also 

bound to the guar galactomannans, indicating a possible α-arabinose component in these 

polysaccharide fractions. 

Overall, the results showed that the polysaccharide microarray presented the different structural 

domains as highlighted in Figure 3.3 and was functional for carbohydrate-binding screening 

analysis of C. thermocellum and R. flavefaciens CBMomes, which are described in section 3.2.4 

below. 

For the 2nd screening to assign carbohydrate-binding specificities for the CBMs, the microarray 

platform used comprised glucan, hemicellulose, chitin and chitosan oligosaccharides prepared as 

NGL probes (Chapter 2, Table S2.1). The glucan and hemicellulose oligosaccharide microarrays 

were described in Chapter 2 (probes 1-204). The additional probes investigated in this Chapter 

included sequence-defined β1,4-linked-N-acetylglucosamine (GlcNAc, chitin) oligosaccharides 

ranging from DP-2 to DP-8 (probes 205-211) and β1,4-linked glucosamine (GlcN, chitosan) 

oligosaccharides from DP-4 to DP-6 (probes 213-215. Also included were 4 miscellaneous probes 

(disaccharides and trisaccharides) (probes 215-218).  

3.2.4 Screening C. thermocellum and R. flavefaciens FD-1 CBMomes for 
carbohydrate-binding specificity 

Of the 150 CBMs clones, a total of 105 proteins from both bacteria were successfully expressed 

and screened for carbohydrate binding using the polysaccharide microarrays (1st screening). The 

heatmap in Figure 3.4 highlights the different patterns of polysaccharide recognition observed for 

the CBMs of the two bacteria (binding scores in Tables S3.5 and S3.6). The microarray results 

were representative of the analysis of two protein batches and two microarray platforms of similar 

carbohydrate composition, prepared independently. The carbohydrate recognition of each CBM 

was validated using AGE with the respective polysaccharides (Figures 3.5 and 3.6). The results 

are from at least two experiments carried out using two different batches of CBMs. For the majority 

of the CBMs, the interaction data obtained by AGE was in agreement with the screening results 

obtained in the polysaccharide microarrays. However, for the following CBM interactions this 

could not be observed: CtCBM3Cthe_3077 with xyloglucans; CtCBM25Cthe_0956 with pullulan; 

RfCBM63747 RfCBM132326, RfCBM13694, RfCBM222649 and RfCBM22-13270 with arabinoxylans. 

This could relate with a weak affinity of the CBMs for the polysaccharides tested, as microarrays 

are a highly sensitive technique, and weak binding could be detected and not in the AGE analysis. 

Additionally, the electrophoretic mobility of the CBMs may also influence the migration in the AGE, 

hindering discrete protein bands to be observed when the binding to the polysaccharide is weak. 

Upon validation of the polysaccharide binding patterns, the CBMs were screened for their 

oligosaccharide ligand-specificity using the oligosaccharide NGL-microarray platform (2nd  
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Figure 3.4. Analysis of C. thermocellum and R. flavefaciens FD-1 CBMs using polysaccharide 
microarrays – 1st screening for carbohydrate-binding activities. CBMs for which binding was obtained 
are depicted at the top for each bacterium and organised by CAZy family. The heatmap representation 
highlights the different polysaccharide binding patterns revealed by the microarray analysis. The relative 
binding intensities were calculated as the percentage of the fluorescence signal intensity at 150 pg/spot, 
with exception of CtCBM4-3Cthe_2809, CtCBM25Cthe_0956 and CtCBM62Cthe_2193 at 30 pg/spot, given by the 
probe most strongly bound by each protein (normalized as 100%). Numerical scores are given in 
Tables S3.5 and S3.6. 

screening). The heatmap in Figure 3.7 highlights the different patterns of oligosaccharide 

recognition observed for the CBMs of the two bacteria (binding scores in Tables S3.7 and S3.8). 

From both microarray screening analysis, carbohydrate binding was identified for 59 CBMs, 35 

from C. thermocellum and 24 from R. flavefaciens (Figures 3.2).  

Overall, the polysaccharide and oligosaccharide binding patterns observed were in accordance 

and are supported by the specificities reported in the literature for the respective CBMs and CBM 

families. C. thermocellum CBMs showed broader binding patterns, more specific for β-glucans, 

while also exhibiting binding to β-xylans, α-arabinans, β-mannans and β1,4-linked GlcNAc. 

R. flavefaciens on its turn, showed more restricted carbohydrate binding patterns, with a greater 

number of CBMs targeting the hemicelluloses β-xylans, and fewer CBMs recognising β-glucans, 

β-mannans and α-arabinans. A summary of the CBM’s carbohydrate recognition and specificity 

obtained from both microarray screenings, its validation through electrophoretic methods and 

cross-referenced with available literature, is presented in Tables 3.1 and 3.2. The main binding 

patterns validated for each CBM family is interpreted in the following sections. 
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Figure 3.5. Validation of the C. thermocellum CBMs microarray binding patterns using affinity gel 
electrophoresis. The AGE analysis is presented in a rational order grouping the CBMs by CAZy family. 
CBMs were subjected to non-denaturing electrophoresis in a gel containing 0.1% (w/v) the soluble 
polysaccharide: a) Xyloglucan (boiled plum), b) PGG-β-glucan, c) Barley β-glucan, d) Arabinoxylan (DP41), 
e) Arabinoxylan (DP24), f) Xylan (Palmaria p.), g) Pullulan, h) Galactomannan (guar); NC) control 
non-denaturing electrophoresis gel without the ligand was ran simultaneously. Bovine serum albumin (BSA 
lanes) was used as a marker.  
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Figure 3.6. Validation of the R. flavefaciens CBMs microarray binding patterns using affinity gel 
electrophoresis. The AGE analysis is presented in a rational order grouping the CBMs by CAZy family. 
CBMs were subjected to non-denaturing electrophoresis in a gel containing 0.1% (w/v) the soluble 
polysaccharide: a) Arabinoxylan (DP41), b) Arabinoxylan (DP24), c) PGG-β-glucan, d) Barley β-glucan, e) 
Xylan (Palmaria p.), f) Pectic galactan (lupin), g) Galactomannan (guar), h) Pectin (apple); NC) control 
non-denaturing electrophoresis gel without the ligand was ran simultaneously. Bovine serum albumin (BSA 
lanes) was used as a marker.  
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Figure 3.7. Analysis of C. thermocellum and R. flavefaciens FD-1 CBMs using oligosaccharide 
microarrays – 2nd screening for assigning carbohydrate-binding specificities. The microarray 
comprises 218 NGL probes with a wide degree of polymerization (DP) range of linear and branched 
oligosaccharide sequences of α- and β glucans32, β-xylans, α-arabinans, β-mannans, xyloglucans, chitin 
and chitosan. The major representative structural domain for each probe series is depicted at the left using 
a tetrasaccharide backbone sequence as a reference. Carbohydrate sequence information on these probes 
is in Chapter 2, Table S2.1. CBMs for which binding was obtained are depicted at the top for each bacterium 
and organised by CAZy family. The heatmap representation highlights the different oligosaccharide binding 
patterns revealed by the microarray analysis. The relative binding intensities were calculated as the 
percentage of the fluorescence signal intensity at 5 fmol given by the probe most strongly bound by each 
protein (normalized as 100%). Numerical scores are given in Tables S3.7 and S3.8. 
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Table 3.1. Summary of the C. thermocellum CBMs ligand recognition and specificity obtained in the 
carbohydrate microarray screenings and affinity gel electrophoresis (AGE), cross-referencing with 
the available literature.  

Family CBM 
1st screening 2nd screening 

Reported specificity3 
(PDB/Reference) Polysaccharide 

microarrays1 AGE2 NGL-microarrays 

3 

CtCBM3Cthe_3077 Xyloglucans - 

- 

Cellulose  
(Tormo et al. 1996153) 

CtCBM3Cthe_0059 
Xyloglucans** 

Xylans** 
Arabinoxylans 

++ 
NT 
NT 

Cellulose 
(Yaniv et at. 201441) 

CtCBM3-2Cthe_0040 Xyloglucans NT Cellulose 
(Petkun et at. 2015154) 

CtCBM3Cthe_0433 
Xyloglucans** 

Mixed-linked β-glucans 
-/+ 
NT NA 

4 

CtCBM4-1Cthe_2809 
Curdlan** 

PGG-β-glucan* 
NT 
+ - NA 

CtCBM4-3Cthe_2809 
PGG-β-glucan** 

Curdlan 
Mixed-linked β-glucans* 

+ 
NT  
++ 

β1,3-Glc NA 

CtCBM4Cthe_0413 
Mixed-linked β-glucans** 

Xyloglucans 
Arabinoxylans 

+++ 
NT 
NT 

β1,4-Glc Cellobiose (3K4Z) 
(Alahuhta et al. 2010155) 

6 

CtCBM6-2Cthe_1271 

Xylans 
Arabinoxylans 

+++ 
++ 

β1,4-Xyl/ 
β1,3-1,4-Xyl 

NA 

CtCBM6Cthe_1963 
+++ 
++ NA 

CtCBM6Cthe_3012 
+++ 
++ NA 

CtCBM6Cthe_2972 
+++ 
++ 

Xylopentaose (1UXX) 
(Pires et al. 200438) 

CtCBM6Cthe_2197 
Arabinoxylans** 

Glucurono-xyloMannan* 
-/+ 
- NA 

CtCBM6Cthe_2194 
Arabinoxylans** 

Glucurono-
XyloMannan** 

-/+ 
- - NA 

CtCBM6Cthe_2195 
Arabinoxylans 

Glucurono-XyloMannan 
-/+ 
-/+ 

β1,4-Xyl/ 
β1,3-1,4-Xyl NA 

11 CtCBM11Cthe_1472 Mixed-linked β-glucans NT# β1,3-1,4-Glc 

β1,3-1,4-gluco-
oligosaccharides (6R31, 

6R3M) 
(Palma et al. 201532, 
Ribeiro et al., 201934) 

13 CtCBM13Cthe_0661 Xyloglucan** + Gal-β1,3-Ara; 
β1,6-Glc# 

Galactose (3VSZ, 3VT1) 
(Jiang et al. 2012156) 

22 

CtCBM22Cthe_2590 

Xylans 
Arabinoxylans 

+++ 
NT 

β1,4-Xyl/ 
β1,3-1,4-Xyl 

NA 

CtCBM22Cthe_1838 
+++ 
NT NA 

CtCBM22-1Cthe_0912 
+++ 
NT NA 

CtCBM22-2Cthe_0912 
+++ 
NT 

Xylan 
(Charnock et al. 2000136) 

25 CtCBM25Cthe_0956 Pullulan - α1,4-Glc NA 

30 CtCBM30Cthe_0624 
Mixed-linked β-glucans** 

Xyloglucans 
+++ 
++ - 

Mixed-linked β-glucans, 
Xyloglucan  

(Najmudin et al. 2006157) 
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Table 3.1. (cont.)  

Family CBM 
1st screening 2nd screening 

Reported specificity3 
(PDB/Reference) Polysaccharide 

microarrays1 AGE2 NGL-microarrays 

32 CtCBM32Cthe_0821 
Lentinan** 
Pullulan* 

NT 
-/+ β1,4-Man 

β1,4-mannose 
oligosaccharides 

(Mizutani et al. 2012158) 

35 CtCBM35Cthe_2811 Galactomannans ++ β1,4-Man Galactomannan 
(Ghosh et al. 2014141) 

42 
CtCBM42Cthe_2139 

Arabinoxylans 
+++ α1,5-Ara; 

α1,5-Ara-
(α1,2/α1,3-Ara) 

NA CtCBM42Cthe_2138 +++ 
CtCBM42Cthe_1273 +++ 

50 

CtCBM50Cthe_0300 

- - β1,4-GlcNAc# NA 

CtCBM50Cthe_2387 
CtCBM50-2Cthe_3006 
CtCBM50-3Cthe_3006 
CtCBM50-1Cthe_3005 
CtCBM50-1Cthe_1800 
CtCBM50-1Cthe_3007 

62 CtCBM62Cthe_2193 
Galactomannans** 

Xyloglucans 
++ 
+ 

Gal-β1,3-Ara; 
Gal-Xyloglucan; 
Gal-α1,3-Gal-
β1,3-GlcNAc 

Galactosyl-mannotriose, 
Xyloglucan XLXG 

(2YB7, 2YFZ) 
(Montanier et al. 2011159) 

1**Major binding; *Weak binding (below 30%); 2+++, strong binding; ++, significant binding; +, weak binding; -/+, very weak 
binding; -, no binding; NC, not conclusive; NT, not tested; NA, not available; 3CBMs for which carbohydrate-binding and 
structural characterization was already reported are referenced; #Binding specificity of CtCBM11Cthe_1472 to mixed-linked 
β1,3-1,4 glucans is detailed in Chapter 4; Binding of CtCBM13Cthe_0661 to β1,6-linked-glucose was assessed by ITC with 
pustulan polysaccharide (Figure S3.2); Binding of CtCBM50Cthe_0300 to insoluble chitin polysaccharide was assessed by 
co-precipitation assay by SDS-PAGE and to β1,4-GlcNAc oligosaccharides by ITC (data shown in Chapter 5). 
 

3.2.4.1 Recognition of α-glucans and β-glucans with linear or branched chains 

Among the CBM families investigated of both bacteria, only one CBM showed binding to 

α-glucans, the C. thermocellum family 25 CtCBM25Cthe_0956. This CBM showed a moderate but 

restricted binding to the pullulan polysaccharide (mixed-linked α1,6-1,4-glucose). This protein was 

described in Chapter 2 for validation of the NGL-screening microarrays, and was shown to be 

highly specific for linear α1,4-linked glucose, exhibiting a chain-length dependency for sequences 

longer than DP-4 (Figures 2.2 and Table S2.1, probes 23-32). This CBM is a new member of 

starch-binding family CBM25 characterised as a α1,4-glucan binding domain, in accordance with 

CBM25 from Bacillus halodurans which has also been reported to bind α1,4-linked maltose or 

amylose oligosaccharides126.  

The specific recognition of β-glucans with different linear or branched sequences was identified 

for CBMs of both bacteria, which is exemplified in C. thermocellum by CBMs of families 3, 4, 11 

and 30 and in R. flavefaciens by CBMs of family 4.   

Four out of the nineteen family 3 CtCBMs analysed, showed binding to xyloglucan polysaccharide 

fractions (probes 18-19). These included the characterised CBM3 from cellulosomal scaffoldin 

CipA CtCBM3Cthe_3077, the anti-σ-cell surface cellulose sensor RsgI1 CtCBM3Cthe_0059, the 

CtCBM3-2Cthe_0040 from endoglucanase 9I (Cel9I) and the uncharacterised CtCBM3Cthe_0433. Of 
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Table 3.2. Summary of the R. flavefaciens FD-1 CBMs ligand recognition and specificity obtained in 
the carbohydrate microarray screenings and affinity gel electrophoresis (AGE). 

Family CBM 
1st screening 2nd screening 

Polysaccharide microarrays1 AGE2 NGL-microarrays 

4 

RfCBM42836 PGG-β-glucan + - 

RfCBM43259 
Mixed-linked β-glucans** 

Arabinoxylans 
Curdlan 

+++ 
- 

NT 
β1,3-Glc 

RfCBM4776 
Mixed-linked β-glucans** 

Arabinoxylans 
+++ 
-/+ β1,3-1,4-Glc 

RfCBM43995 
Xylans** 

Arabinoxylans 
+ 

-/+ 
β1,4-Xyl/ 

β1,3-1,4-Xyl 

6 RfCBM63747 Arabinoxylans NC β1,4-Xyl/β1,3-1,4-Xyl; 
β1,4-Xyl(α1,3-Ara) 

13 
RfCBM13-12115 

Arabinoxylans* 
Galactomannans* 

-/+ 
NT α1,5-Ara 

RfCBM132326 Arabinoxylans NC α1,5-Ara-(α1,2/α1,3-Ara) 
RfCBM13694 Arabinoxylans**# -# Gal-β1,3-Ara 

22 

RfCBM22-21878 

Xylans 
Arabinoxylans 

+++ 

β1,4-Xyl/ 
β1,3-1,4-Xyl 

RfCBM222649 NC 
RfCBM221615 ++ 
RfCBM221272 ++ 
RfCBM222646 ++ 
RfCBM223180 +++ 
RfCBM222002 +++ 
RfCBM22-13077 +++ 
RfCBM22-23077 +++ 
RfCBM223190 +++ 
RfCBM221766 +++ 
RfCBM22-21737 +++ 
RfCBM22-13270  NC# - 

35 

RfCBM35-21364 

Galactomannans 

-/+ - 
RfCBM352302 + β1,4-Man 

RfCBM35933 ++ α1,5-Ara; 
β1,4-Xyl(α1,3-Ara) 

1**Major binding; *Weak binding (below 30%); 2+++, strong binding; ++, significant binding; +, weak binding; -/+, very weak 
binding; -, no binding; NC, not conclusive; NT, not tested; NA, not available; #Binding of RfCBM13694 was observed to 
pectin polysaccharides using a different microarray (Figure S3.3) and those results were validated by AGE (Figure 3.6); 
RfCBM22-13270 presented a stability issue which reflected in an non-conclusive AGE analysis. 

 

these, only CtCBM3Cthe_0433 showed binding to mixed-linked β1,3-β1,4-glucans (probes 12-13). 

The main binding reported for the characterised family 3 CBMs is to crystalline cellulose160–162. 

These CBMs have a planar hydrophobic binding surface that makes apolar interactions with 

stretches of β1,4-Glc sequences, typical of type A CBMs. But these CBMs could also bind to 

xyloglucan or other plant cell wall β-glucans with weaker affinity. This explains why only four of 

the nineteen family 3 CBMs analysed were able to bind to the soluble polysaccharide fractions 

that share a β1,4-linked glucose backbone, while no binding was observed to oligosaccharides in 

the 2nd screening NGL-microarrays.  

The family 4 CBMs showed a broad binding to β1,3-, β1,4- or mixed-linked β1,3-β1,4-glucans, 

and to β1,3-β1,4-xylans or arabinoxylans. These CBMs are associated with glycoside hydrolases 
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of family 16 (GH16), which is reported to be active on β1,4- or β1,3-glycosidic linkages of 

glucans163, or family 9 (GH9) with main cellulase activity, but also can exhibit xylanase activity164 

(proteins modular architecture in Table S3.1). The analysis in the 2nd screening NGL-microarrays 

could differentiate the carbohydrate-binding specificities of the CBMs from both bacteria. The 

C. thermocellum CtCBM4-1Cthe_2809 and CtCBM4-3Cthe_2809 associated in tandem with a GH16, 

exhibited a restricted specificity towards β1,3-glucans, but only the latter could bind to 

oligosaccharides, whereas CtCBM4Cthe_0413 of a GH9 bound only to β1,4-glucose 

oligosaccharides. The R. flavefaciens RfCBM4776 and RfCBM43955, which are associated to GH9 

enzymes, bound specifically to β1,4-glucose oligosaccharides or to β1,3-β1,4-xylan 

oligosaccharides, respectively. On its turn, the RfCBM43259 associated with a GH16 showed 

restricted binding to β1,3-linked glucose oligosaccharides. Thus, the screening microarray results 

shows that the specificity identified for these CBMs may resemble the substrate specificity of the 

associated enzymes and agree with what has been reported for CBM4 family, which targets 

primarily β1,3-glucans, β1,4-glucans or xylans155. In addition, the analysis in the NGL-microarrays 

showed increased binding intensities with the oligosaccharide chain-length for all the CBMs, 

indicating their endo-binding mode as type B CBMs.  

CtCBM11Cthe_1472 is the archetypal member of family 11 and the only C. thermocellum CBM 

assigned to family 11. This CBM exhibited binding to mixed-linked β1,3-1,4-glucans, and to the 

range of β-xylans and xyloglucan polysaccharide fractions included in the microarrays. But in the 

2nd screening NGL-microarrays, this CBM exhibited preferential binding to mixed-linked 

β1,3-1,4-glucose oligosaccharides, as previously reported by Palma et al. 201532, showing only 

a weak binding to β1,4-glucose oligosaccharides. The molecular basis for the unique binding 

specificity of this CBM towards mixed-linked β1,3-1,4-glucans will be further explored in Chapter 

4. The family 30 CtCBM30Cthe_0624 also showed strong binding to mixed-linked β1-3,1-4-glucans, 

but bound in addition to xyloglucan polysaccharide fractions and no binding was detected to 

oligosaccharides. The results are in accord with the data reported for this CBM by Najmudin et al. 

2006165, which showed binding to barley β-glucan and xyloglucan sequences. 

3.2.4.2 Recognition of linear β1,4 mannans and branched galactomannans  

The recognition of mannans was identified for family 35 CBMs of both bacteria, which showed 

main binding to galactomannan polysaccharides. CtCBM35Cthe_2811 and RfCBM352302 exhibited a 

similar binding pattern in the 2nd screening NGL-microarrays, which was restricted to β1,4-linked 

mannose oligosaccharides and dependent on the oligosaccharide chain-length up to DP-8. The 

substitution of the backbone with an α1,6-galactose prevented the binding (Chapter 2, Table S2.1, 

probes 193-196). Evidence for CtCBM35Cthe_2811 affinity for carob galactomannan and konjac 

glucomannan has been demonstrated previously by Ghosh et al. 2014141, and reflects the binding 

recognition of β1,4-mannans, galactomannans and glucomannans, reported for other CBM 

members of family 35166,167. Unexpectedly, in the NGL-microarrays RfCBM35933 showed binding 
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to oligosaccharides containing α-linked arabinose, including arabinoxylan, linear and branched 

arabinan oligosaccharides (probes 165-181). Thus, the microarray results reported here for this 

CBM are not conclusive and further analyses will be required to clarify the carbohydrate binding 

specificity of this CBM.  

The family 32 CtCBM32Cthe_0821 showed main binding to β1,4-linked-mannose oligosaccharides, 

in accordance with the specificity reported by Mizutani et al. 2014168 using isothermal titration 

calorimetry (ITC). However, for this CBM divergent polysaccharide binding patterns to both α- and 

β-glucans were observed: binding to the branched β1,3(1,6)-branched glucans lentinan and 

grifolan, to mixed-linked α1,6-1,4 glucan pullulan, and no binding to the galactomannan 

polysaccharides. Given these results, the specificity of this CBM needs to be further explored in 

order to fully understand its binding capabilities. 

3.2.4.3 Recognition of α-arabinose- and galactose-containing sequences in different 
polysaccharides 

Remarkably, the family 13 CBMs of the two bacteria exhibited distinct binding profiles. The 

RfCBM13-12115 showed main binding to linear α1,5-linked arabinose oligosaccharides (probes 

173-179), whereas RfCBM132326 bound exclusively to the α1,2(1,3)-branched arabinose 

oligosaccharide (probe 181) and RfCBM13694 didn’t show binding to any of the α-arabinose 

containing oligosaccharides, but bound, albeit weakly, to the Galβ1,3Ara disaccharide (probe 

216). These results explain why only RfCBM132326 showed a stronger binding to arabinoxylan 

polysaccharide fractions (arabinans were not included in polysaccharide microarrays) but results 

with AGE were inconclusive. The CtCBM13Cthe_0661 showed main binding to xyloglucan 

polysaccharides, while in NGL-microarray this CBM bound, albeit weakly to the Galβ1,3Ara 

disaccharide (probe 216). Results reported by Jiang et al., 2012 showed that CtCBM13Cthe_0661 

bound to galactose and β-galactose-containing oligosaccharides. Thus, the binding pattern for 

this CBM in the polysaccharide microarray may be explained by the presence of β-galactose in 

the xyloglucans. Overall, family 13 CBMs have been described to have multivalent 

carbohydrate-binding ability, being found in distinct GHs such as β-xylanases, α-galactosidases 

and endo-β1,3-1,4-glucanases169, which seem to be supported by the results reported here.  

The restricted binding of both CtCBM13Cthe_0661 and RfCBM13694 to the non-reducing β-galactose 

sequences, raised the possibility for recognition of a β-galactose epitope in pectic 

polysaccharides, which were not included in the screening microarrays. Indeed, in a more recent 

analysis using a microarray of pectin polysaccharides, these CBMs showed differential and 

possible specific binding to pectic β-galactans (Figure S3.3 and Tables S3.9). CtCBM13Cthe_0661 

showed restricted binding to pectic β-galactans from Lupin, whereas RfCBM13694 showing a 

broader binding to both lupin and potato β-galactans (also observed by AGE in Figure 3.6), and 

also to Soybean rhamnogalacturonan and other pectin fractions. The quality control of these 

microarrays is ongoing and the specificity of these CBMs towards these types of structures require 
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further investigation. The binding specificity of R. flavefaciens family 13 will be further explored in 

Chapter 6 with the 3-D structure determination of RfCBM13-12115. 

The C. thermocellum CBMs from family 42, CtCBM42Cthe_2139, CtCBM42Cthe_2138 and 

CtCBM42Cthe_1273, showed a restricted strong binding to arabinoxylan polysaccharide fractions 

and a binding-specificity towards α-linked arabinose in branched arabinoxylan, arabinan or linear 

α1,5-linked arabinose oligosaccharide sequences. CtCBM42Cthe_2139 could also bind to albeit 

weakly to unsubstituted β-xylans. These results reflect the ligand-specificities reported for CBMs 

of this family and activities of their associated GH43 catalytic modules towards arabinoxylans and 

arabinans36.  

C. thermocellum family 62 CtCBM62Cthe_2193 showed binding to galactomannan and xyloglucan 

polysaccharides. This binding may be explained by a common galactose epitope in the 

galactomannan and xyloglucan that is being recognised. In line with this, the CBM exhibited a 

restricted binding to the Galβ1,3Ara disaccharide (probe 216) and to the β-galactose substituted 

xyloglucan oligosaccharides (probes 202-205). Indeed, when analysed in the pectin 

polysaccharide microarrays CtCBM62Cthe_2193 showed restricted binding to the pectic 

β1,4-galactans from Lupin. These binding patterns are in accordance with the data previously 

reported by Montanier et al., 2011 for this CBM  binding to the terminal D-galactose residues in 

xyloglucan, galactomannan and arabinogalactan polysaccharides159 . Although carbohydrate 

binding could not be detected for R. flavefaciens family 62 RfCBM62-13398, this CBM was 

analysed in parallel with the other proteins in the pectin polysaccharide microarrays (Figure S3.3 

and Tables S3.9). In this analysis, the CBM showed a restricted binding to the pectin fractions 

from Vernonia kotschyana (Vk100-Fr.I) and Sambucus nigra (100WSnFl-S2) and weak binding 

to the pectic galactans from lupin. AGE analysis with pectin from apple and pectic galactan from 

lupin, evidenced a slight reduction of the CBM’s electrophoretic migration (Figure 3.6). The 

binding patterns exhibited by the proteins analysed in the pectin microarrays, suggest a 

galactose-containing epitope that is being differentially recognised by RfCBM62-1 in these pectin 

fractions. Further work will be needed to clarify the binding specificity of family 62 CBMs in 

R. flavefaciens.  

3.2.4.4 Assignment of C. thermocellum family 50 CBMs ligand specificity towards 
β1,4-GlcNAc oligosaccharides   

For C. thermocellum family 50 CBMs, binding was not observed in the 1st microarray screening. 

Given the high number of these CBMs in the genome of C. thermocellum and the predicted 

binding of this CBM family to β1,4-GlcNAc residues in bacterial peptidoglycans and in chitin42, all 

the 11 expressed CBMs were analysed in the 2nd screening NGL-microarrays, which included 

β1,4-GlcNAc and β1,4-GlcN sequence-defined oligosaccharides (Table S2.1, probes 205-214). 

The validation of these NGL probes in the microarrays was carried out using the plant lectins 

Wheat Germ agglutinin (WGA) and Datura stramonium lectin (DSL), which showed the reported 
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specificity and chain-length requirements towards β1,4-GlcNAc oligosaccharides (Figure S3.4). 

The microarray analyses identified binding for 7 CBMs, which showed restricted binding to 

β1,4-GlcNAc oligosaccharides. The binding intensities observed increased with the 

oligosaccharide chain-length, indicating an endo-binding mode of a type B CBM. The binding 

specificity of CtCBM50s, chain-length requirement and the molecular determinants that govern 

the carbohydrate recognition, with insights into their function will be further explored in Chapter 5. 

3.2.4.5 Assignment of ligand specificity and chain-length requirement for families 6 and 
22 CBMs towards β-xylans   

The main binding obtained to β-xylans and arabinoxylans is exemplified by families 6 and 22 

CBMs from both bacteria (Figure 3.8A). Remarkably C. thermocellum showed a higher number 

of family 6 CBMs, which exhibited binding to β-xylans and arabinoxylans, whereas R. flavefaciens 

showed a higher number of family 22 CBMs highly specific to β-xylans and arabinoxylans. In 

overall, the results reflect the reported specificity for members of family 6 to non-reducing termini 

of xylo-oligosaccharides, xylans and arabinoxylans38,170–172, as well as the preferential binding of 

family 22 CBMs to β-xylans and xylo-oligosaccharides136.  

Comparing the oligosaccharide binding patterns, family 22 CBMs exhibited a binding specificity 

restricted to linear β1,4- or β1,3-β1,4-xylose sequences, with a chain-length dependency from 

DP-5 up to DP-13, displaying a mono-specific carbohydrate recognition in both bacteria. 

Additionally, CtCBM22Cthe_1838 showed binding to β1,4-xylose tetrasaccharides with a single 

internal α1,2- or α1,3-arabinose branching (Figure 3.8B, probes 168-169). CBMs from family 6 

however, presented distinct binding patterns between the two bacteria. C. thermocellum family 6 

CBMs showed similar binding specificities to β1,4- or β1,3-β1,4-xylose sequences in the range of 

DP-3 to DP-13, also recognising β1,4-xylose oligosaccharides with α-arabinose substitutions. 

R. flavefaciens RfCBM63747 bound predominantly to arabinoxylan-derived oligosaccharides with 

α1,2-arabinose substitutions in the non-reducing terminal xylose (probes 166 and 167).  

The binding patterns of family 6 CBMs to the arabinoxylan-derived oligosaccharides evidenced 

the importance of the free non-reducing β1,4-xylose terminal for recognition, but also the influence 

of the α-arabinose branching. Although the majority of the CBMs bound only sequences exhibiting 

the free non-reducing xylose terminal, CtCBM6Cthe_2195 and CtCBM6Cthe_2197 were able to 

accommodate sequences with α-arabinose branches in the non-reducing terminal xylose 

(Figure 3.8A, probes 165 to 167). When comparing the binding intensities, it becomes evident 

that these two CBMs were able to bind sequences exhibiting α1,2-arabinose substitutions in the 

non-reducing terminal xylose, whereas the α1,3 configuration was disfavoured. The same binding 

trend could be observed for probes 168 and 169.  

Interestingly, out of the three family 6 CBMs expressed by R. flavefaciens, two are found in large 

modular proteins associated with family 22 CBMs, RfCBM62649 which did not bind in the 

microarrays and RfCBM61737 which did not express. These CBMs are also associated with GH43  



CHAPTER 3. CELLULOLYTIC BACTERIA CBMOMES DICTATE POLYSACCHARIDE UTILIZATION 

81 
 

 

 

Figure 3.8. Comparison of carbohydrate-binding specificities of families 6 and 22 CBMs from 
C. thermocellum and R. flavefaciens FD-1 to xylan sequences. (A) The binding signals of representative 
CBMs from each bacterium are depicted as means of fluorescence intensities of duplicate spots at 5 fmol of 
oligosaccharide probe arrayed (with error bars) and are representative of at least two independent 
experiments (correspondending to the binding patterns shown in Figure 3.7). Numerical scores are given in 
Tables S3.7 and S3.8. The different carbohydrate groups are indicated in the coloured panels. (B) The 
sequences of the branched β1,4-xylan(α1,2-arabinose) probes are depicted by microarrays position. 
Carbohydrate sequence information on these probes is in Chapter 2, Table S2.1. 

catalytic modules, which are reported to have α-arabinofuranosidase, β-xylosidase, 

α-arabinanase and β-galactosidase activity in the degradation of hemicelluloses and pectins, and 

are frequently found in association with family 6 CBMs173. Given the poly-specificity of CBMs from 

family 6 and family 43 GH’s, it is not surprising that R. flavefaciens family 6 CBMs might exhibit 
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distinct binding specificities than those from C. thermocellum, and for which the target sequences 

were not included in the microarrays.  

In the context of R. flavefaciens cellulosome, the small number of family 6 CBMs and its 

association with family 22 CBMs, of distinct binding specificities, might point to a complementary 

function of these modules, evidencing a crucial role of family 6 CBMs in R. flavefaciens.  

3.2.5 CBM families for which carbohydrate binding was not identified in the 
microarray analyses 

C. thermocellum CBMs from families 34, 44, 48 and 54 were not successfully expressed using 

the high-throughput strategy and were not analysed in the screening microarrays. Of those CBMs 

that were expressed and analysed, none of the C. thermocellum CBMs from family 16 or 

R. flavefaciens CBMs from families 3, 48 or 63 showed binding in the microarrays (Table S3.2). 

The family 16 CBMs from Caldanaerobius polysaccharolyticus (formerly Thermoanaerobacterium 

polysaccharolyticum) were reported to bind both β1,4-linked glucose and β1,4-linked mannose 

sequences, suggesting the linear β1,4-glucomannan as natural substrate174. The C. thermocellum 

CBMs from this family may share similar carbohydrate-binding specificity, explaining why no 

binding was observed, as glucomannan polysaccharides or oligosaccharides were not included 

in the microarrays. Although binding was observed with 4 out of the 19 C. thermocellum family 3 

CBMs to soluble glucans with a β1,4-linked backbone, these CBMs are characterized to bind to 

crystalline cellulose with higher affinity160–162. The analysed RfCBM3929, which is associated to a 

GH9 cellulase, could be involved in the recognition of insoluble β1,4-glucans154. Family 48 CBMs 

have reported activities towards starch and glycogen, binding to linear and cyclic sequences of 

α1,4- and α1,6-linked glucose175. As only linear α-glucans were included in the microarrays, might 

be possible that the RfCBM48s require branched or cyclic sequences for binding recognition. The 

Bacillus subtilis CBM63 is reported to be associated with expansin module EXLX1 and to mediate 

the expansin binding to cell wall cellulose176. The analysed RfCBM632821, being also linked to an 

expansin module, may have similar activity towards different forms of cellulose. 

3.2.6 CBMs spectrum of carbohydrate recognition reflects the bacteria’s 
ecological niche 

C. thermocellum CBMs showed broader binding patterns, while having a larger repertoire of CAZy 

families that include a higher number of CBMs specific for recognition of β-glucans. This larger 

cohort of C. thermocellum CBMs, not only from different CAZy families but within the same family 

(such as the high numbers of family 3 and 6 CBMs), may contribute for its high efficiency in 

degradation of a wide range of plant cell wall polysaccharides. In addition, the elevated number 

of family 50 CBMs (LysMs) may confer to C. thermocellum an advantage for survival in the 

extreme conditions of the ecological niche it resides,as LysMs have also been reported to play a 

role in the development of spores in other spore-forming bacteria, such as Bacillus subtilis42,177. 
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R. flavefaciens exhibited a more restricted carbohydrate binding recognition and, although 

apparently expressing less CAZy families, holds a greater number of CBMs targeting 

hemicelluloses β-xylans, β-mannans and pectic α-arabinans and galactans.  Noteworthy, is the 

evidence that R. flavefaciens cellulosome contains a large number protein modules of unknown 

sequence homology to assigned CAZy families, six of which were in the course of this thesis 

reported by Venditto and colleagues59 to exhibit carbohydrate binding and were assigned to the 

new CBM families 75 to 80. These CBMs target as major substrates the hemicelluloses 

xyloglucan and β-mannans, β1,4- and mixed-linked β1,3-1,4-glucans, and pectins. In this context, 

the data reported here complements this study in that the complex R. flavefaciens cellulosome 

seems to incorporate an extended CBM repertoire that promotes the efficient plant cell wall 

hemicellulose and pectin degradation, even though expressing a small number of CBMs that 

specifically target crystalline cellulose. Considering its highly dynamic and populated ecological 

niche, R. flavefaciens may also benefit from a cooperative relationship with other members of the 

mammalian rumen microbiome, such as Ruminococcus albus and Fibrobacter succinogenes 

responsible for the breakdown of the recalcitrant structure of cellulose178, ensuring its substrate 

acquisition and survival. 

3.3 Conclusions 

In the present work, different patterns of polysaccharide and oligosaccharide binding by 

C. thermocellum and R. flavefaciens CBMs were revealed and novel specificities were assigned. 

Although C. thermocellum CBMs have been more extensively studied and characterized, new 

CBM carbohydrate binding specificities were identified for CBMs families 25, 42 and 50. For 

R. flavefaciens, ligand-specificities were obtained for 21 CBMs from families 4, 6, 13, 22 and 35. 

Aiming to decipher the complete CBMome of R. flavefaciens, analysis of the remaining CBM 

families in the oligosaccharide microarrays described in this Chapter and Chapter 2, is required. 

Overall, the combined use of high-throughput methodologies allowed to explore the function of 

C. thermocellum and R. flavefaciens CBMomes, revealing that the two bacteria present CBMs 

expressing different carbohydrate-binding specificities, which reflect at some extent the different 

polysaccharides that each bacterium may encounter in its ecological niche. This comparative 

study of two bacteria residing in different ecological niches, provides experimental evidence 

supporting that substrate availability in different habitats may modulate the evolutionary selection 

of CAZymes to present modules with distinct carbohydrate ligand specificities.  

This study also highlights the importance of developing high-throughput methodologies to study 

these complex systems and unravel carbohydrate recognition. The approach of using in parallel 

polysaccharide and oligosaccharide microarrays, allows detailed characterization of the 

specificities of CBMs. While polysaccharide microarrays enable carbohydrate-binding to be 

assigned, oligosaccharide microarrays can reveal subtle differences in binding profiles and 

chain-length dependencies, which enables to differentiate between the different topologies of 
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CBMs binding sites and their functional types. The information obtained from the carbohydrate 

microarray analyses is crucial to assess the structural characterization of the interactions of CBMs 

with their oligosaccharide ligands. These integrative studies will be important to elucidate 

cellulolytic capabilities of these bacteria at the molecular level. To this end, up to 13 CBMs 

belonging to different CAZy families of both bacteria were selected for large-scale protein 

expression and purification. Preliminary conditions were obtained for CBMs of families 25 and 50 

from C. thermocellum and families 6, 13, and 62 from R. flavefaciens. Structural characterization 

of the carbohydrate-binding specificity of CBMs from C. thermocellum family 11 and 50 and 

R. flavefaciens family 13 will be explored in Chapters 4, 5 and 6, respectively. 

3.4 Experimental procedures 
3.4.1 Monoclonal antibodies, CBMs and lectins used for microarray quality 

control 

Details on the plant cell wall carbohydrate-directed monoclonal antibodies, CBMs with 

characterised carbohydrate-binding specificities and plant lectins used for microarray quality 

control are given in Table S2.3 and section 2.5.1 in Chapter 2. 

3.4.2 High-throughput cloning, expression and purification of C. thermocellum 
and R. flavefaciens FD-1 CBMs 

The bioinformatics sequence analysis of the bacterial genomes for CBM domain selection and 

the high-throughput gene cloning, protein expression and purification was performed through 

collaboration with NZYTech Ltd (Lisbon, Portugal), following their established or proprietary 

protocols. Information on the CBMs protein sequences and protein modularity is described in 

Tables S3.1 and S3.2. Briefly, the selected genes encoding the CBMs sequences were amplified 

by PCR from C. thermocellum ATCC 27405 (NCBI:txid203119) and R. flavefaciens FD-1 

(NCBI:txid641112) genomic DNA, using specific primers for ligation independent cloning (LIC) 

into pHTP1-A57, a pET24a derived vector containing a kanamycin resistance cassette for 

selection179. For recombinant protein expression, E. coli BL21 harbouring each CBM encoding 

gene, containing an N-terminal hexa-histidine tag, were cultured in NZY AutoInduction 

Luria-Bertani (LB) medium (NZYTech, Portugal) at 37 °C until OD600nm reached 1.5, at which point 

temperature was lowered to 25 °C for overnight incubation. Protein purification was achieved by 

ion metal affinity chromatography (IMAC) using a high-throughput column system. Purified CBMs 

were in a 50 mM sodium HEPES buffer, pH 7.5, containing 1 M NaCl, 5mM CaCl2 and 300 mM 

imidazole.  In order to lower the concentration of imidazole for the analysis in the microarrays, a 

dilution of each CBM solution was performed using the same buffer without imidazole, reaching 

a final concentration of approximately 170 mM imidazole.  

For quality control, CBMs were subjected to SDS-PAGE on 13% (w/v) acrylamide gels, stained 

with Coomassie Brilliant Blue, in order to assess the purity of recombinant proteins (Figure S3.1). 
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All proteins were assessed as >95% pure as judged by SDS-PAGE and their concentrations were 

determined from their calculated molar extinction coefficient using the Protparam tool 

(http://www.expasy.org/tools/protparam.html) at 280 nm using a SpectraDrop Micro-Volume 

Microplate (Molecular Devices, USA). From the purified, 105 were selected for microarray 

screening analysis. 

3.4.3 Sources of carbohydrates 

Hemicellulose polysaccharide fractions included in the polysaccharide microarrays isolated from 

different sources were obtained through collaboration with Prof. Manuel Coimbra (University of 

Aveiro, Portugal). These included xylans and xyloglucans from plum; arabinoxylans from brewer’s 

spent grain; arabinogalactan from spent coffee grounds; and mannoprotein isolated from brewers 

spent yeast. Pectin fractions isolated from medicinal plants found in Africa included in the pectin 

microarrays were obtained through collaboration with Prof. Berit Paulsen (University of Oslo, 

Norway). Pectin from apple was purchased from Sigma-Aldrich (St. Louis, MO, USA). The 

remaining polysaccharides included in the microarrays and used for AGE analysis, some of which 

had been previously analysed32, were purchased from Megazyme (Bray, Ireland) and Elicytil 

(Crolles, France). The sources of the soluble polysaccharides its monosaccharide composition 

can be found in Tables S3.3 and S3.9.  Information on the oligosaccharides and sources included 

in the NGL-microarrays are given in Tables S2.1 and S2.2 and section 2.5.2, in Chapter 2. 

3.4.4 Carbohydrate microarray analysis 

The microarray data and metadata provided here is described according to the MIRAGE  glycan 

microarray guidelines, as described by Liu et al. 2016146. 

The polysaccharide microarray constructed for the 1st screening analysis of the CBMs was 

designated Plant, Fungal and Bacterial Polysaccharide (PS)  set 1 and was comprised of a total 

of 25 structurally diverse polysaccharide samples with major sequences found in plant cell walls 

β-glucans and hemicelluloses, in fungal α-glucans, β-glucans and α-mannans, and in bacterial 

α-glucans. The 2nd microarray screening was performed using the glucan and hemicellulose 

oligosaccharide microarray platform comprising 204 neoglycolipid (NGL) probes described in 

Chapter 2, to which were added  7 β1,4-linked-N-acetylglucosamine (chitin) and 3 β1,4-linked 

glucosamine (chitosan) sequence-defined oligosaccharides, and 4 miscellaneous disaccharides 

and trisaccharides prepared as NGL probes. Some of the CBMs were also analysed in a pectin 

polysaccharide microarray designated Pectin PS set 1, comprised of 26 pectic polysaccharide 

fractions. 

The information on the probe ID, sequence or monosaccharide composition of the carbohydrate 

probes featuring in the different types of microarray platforms is shown in Table S2.1 (Glucan, 

hemicellulose, chitin and chitosan NGL microarray), Table S3.3 (Plant, Fungal and Bacterial PS  

set 1) and Table S3.9 (Pectin PS set 1).  

http://www.expasy.org/tools/protparam.html
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For the preparation of the microarrays, the carbohydrate probes were immobilized non-covalently 

onto 16-pad nitrocellulose-coated FASTTM glass slides (Z721158, Sigma), using a non-contact 

arrayer robot (Piezorray, Perkin Elmer, Sear Green, UK), with a spot delivery volume of 

approximately 330 pL, following established protocols32. In brief, each carbohydrate probe was 

printed in duplicate at two levels: polysaccharides at 0.1 and 0.5 mg (dry weight) /mL (30 and 

150 pg/spot) and NGLs at 5 and 15 μM (2 and 5 fmol/spot). The Cy3 fluorophore was included in 

the printing solution as a marker for quality control of sample delivery while arraying and spot 

visualization, as well as for quantitation analysis.  

Microarray binding analyses were performed using AlexaFluor-647-labeled Streptavidin for 

readout, essentially as described by Palma et al. 201532. His-tagged CBMs were tested at 5 µg/mL 

for the 1st screening and at 20 µg/mL for the 2nd screening, precomplexed with mouse monoclonal 

anti-poly-histidine (Ab1) (Sigma, H1029) and biotinylated anti-mouse IgG (Ab2) (Sigma, B7264) 

antibodies, at a ratio of 1:3:3 (by weight). The protein–antibody complexes were prepared by 

preincubating Ab1 with Ab2 for 15 minutes at room temperature, followed by addition of CBMs 

and incubation further for 15 min, after which the final concentration of the proteins was achieved 

by dilution in the blocking solution made of 1% (w/v) Casein (Thermo Scientific, 37583) 1:50 1% 

BSA (Sigma, A8577) in HBS (Sigma, H0887) (5 mM HEPES buffer pH 7.4, 150 mM NaCl) with 

5 mM CaCl2. Monoclonal antibodies from Plant probes and Agrisera were probed at 1:10 ratio, 

as described by Moller et al, 2008147, and antibodies from Biosupplies at 10 µg/mL, diluted in the 

same blocker, followed by the biotinylated anti-mouse-IgG (Sigma, B7264), anti-rat-IgG (Sigma, 

B7139)  or anti-rat-IgM (Rockland, 612-4607) as appropriate, at 10 µg/mL in the same blocker. 

Biotinylated lectins AAL (Vector, B-1395) was analyzed using a single step overlay at a final 

concentration of 2 µg/mL in blocker 3% BSA in HBS with 5 mM CaCl2. DSL (Vector B-1185) was 

analyzed at a final concentration of 25 µg/mL in blocker 3% BSA and 0.5% Casein in HBS with 

5 mM CaCl2. Biotinylated anti-rat and anti-mouse IgG and IgM antibodies were analysed in 

separate as a negative control. Slides were scanned using GenePix® 4300A microarray scanner 

(Molecular Devices), at 532 nm for Cy3 spot visualisation, prior to binding assays, and at 647 nm 

for detection of the binding. Imaging analysis and quantitation was carried out using GenePixPro7 

Software (Molecular Devices). 

3.4.5 Microarray data analysis and presentation 

Microarray data analysis was performed using a dedicated software148, developed by Mark Stoll 

of the Glycosciences Laboratory. 

After the scrutiny of all the microarray results the following decisions were made as regards 

presentation of data: 1) to modify the original printed microarray set excluding repeated probes 

and sorting the probes according to the nature of the sample and predominant oligosaccharide 

sequence (resulting arrangement of probes is in Tables S2.1, S3.3 and S3.9.); 2)  present 

microarray data in the form of a matrix represented as a heatmap of the relative binding intensities 



CHAPTER 3. CELLULOLYTIC BACTERIA CBMOMES DICTATE POLYSACCHARIDE UTILIZATION 

87 
 

 

(Figures 3.3, 3.4 and 3.7 and Figure S3.3), in order to highlight the different binding patterns 

obtained for the proteins and antibodies analysed; 3) in order to accurately depict the binding 

patterns for each protein and antibody, the probes printed high level (5 fmol/spot) were selected 

to generate the matrices and graphics (Figures 3.3, 3.4, 3.7 and 3.8, and Figures S3.3 and S3.4). 

3.4.6 Affinity gel electrophoresis with soluble polysaccharides 

All CBMs from each family that gave binding patterns in the 1st screening were used to validate 

the microarray results through affinity gel electrophoresis (AGE) with the respective ligand for 

which major binding was observed, following the method described by Abbott et al, 200062. 

Soluble polysaccharides were prepared in Mili-Q water at 1% (w/v). CBMs at 5 µg were subjected 

to non-denaturing electrophoresis in gels containing 13% (w/v) acrylamide and the soluble 

polysaccharide at 0.1% (w/v). Bovine serum albumin (BSA) was used as a non-binding negative 

control. A control non-denaturing electrophoresis gel without the ligand was ran simultaneously. 

3.5 Work contributions 

The printing of the polysaccharide microarrays was carried out the the Glycosciences Laboratory 

(Imperial College London) with the help of Dr. Lisete M. Silva. Mannoprotein, xylan, arabinoxylan 

and arabinogalactan polysaccharide fractions were obtained through a collaboration with Prof. 

Manuel Coimbra (Universidade de Aveiro, Portugal). Pectin fractions were obtained from Prof. 

Berit Paulsen (Oslo University, Norway). Protein expression and purification of the CBMs using 

the high-throughput platform was performed by Dr. Joana Brás at NZYTech (Lisbon, Portugal), 

as result from a long-standing collaborative work of the Supervisors, with Prof. Carlos Fontes. 

The experimental planning and work reported here related to the, carbohydrate microarray 

validation, binding and data analysis and interpretation, protein and AGE analysis analyses were 

performed by the author of the Thesis.  
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CHAPTER 4 
MOLECULAR BASIS FOR THE PREFERENTIAL 

RECOGNITION OF β1,3-1,4-GLUCANS BY THE FAMILY 11 

CBM FROM CLOSTRIDIUM THERMOCELLUM2 
 

                                                      

 
2Partially reproduced from Ribeiro, D.O., Viegas, A., Pires, V.M.R., Medeiros-Silva, J., Bule, P., 
Chai, W., Marcelo, F., Fontes, C.M.G.A., Cabrita, E.J., Palma, A.S., Carvalho, A.L., Molecular 
basis for the preferential recognition of β1,3-1,4-glucans by the family 11 Carbohydrate-Binding 
Module from Clostridium thermocellum. FEBS J. (2019) (DOI: 10.1111/febs.15162). 
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4 Molecular basis for the preferential recognition of 
β1,3-1,4-glucans by the family 11 CBM from Clostridium 
thermocellum 

4.1 Introduction 

Plant cell walls are composed of structurally diverse and complex polysaccharides presenting 

many biological and biotechnological applications43,61,127,128. The mixed-linked β1,3-1,4-glucan 

polysaccharides (or mixed-linked glucans) are unevenly distributed across the plant kingdom but 

are abundant in the cell walls of most Poaceae members. These include the endosperm of cereals 

and grasses, which are of considerable economic importance as storage tissues180–182. 

Mixed-linked glucans are also found in the walls of algae, pathogenic fungi, and lichen-forming 

ascomycete symbionts. These glucans have several commercial and biotechnological 

applications and are of particular interest for the malting and brewing processes and bioenergy 

production43,183, as well as sources of dietary fibres with major health benefits184. These properties 

of β1,3-1,4-glucans make the study of their recognition by proteins of fundamental importance. 

Mixed-linked glucans are composed by a linear chain of 2 to 5 β1,4-linked D-glucopyranose 

residues separated by single β1,3 linkages (Figure 1.2, Chapter 1)185. The β1,4-linked residues 

form rigid regions while the β1,3-linkages are flexible, creating kinks within the linear backbone 

chain180,186. This results in an extended twisted conformation of the polysaccharide, which 

presents a unique binding surface for recognition by proteins185,186, including CBMs33 and GHs187. 

In addition, the backbone incorporation of β1,3-linkages renders the polysaccharide much more 

soluble than cellulose.  

In recent years, enzymatic systems employed by cellulolytic microorganisms to efficiently 

hydrolyse the plant cell wall polysaccharides have been gaining interest to reduce energy costs 

and avoid the usage of environmentally harmful chemical processes. One of these 

microorganisms is the thermophilic anaerobic bacterium Clostridium thermocellum12 that 

assembles its enzymatic machinery at the cell surface in a multi-protein complex termed the 

cellulosome (Figure 1.3, Chapter 1). Several CBMs are involved in the recognition of 

β1,3-1,4-glucans and, due to their diversity in the cellulosome, are excellent case-studies to 

rationalize molecular recognition mechanisms that determine the specificity of mixed-linked 

glucans recognition in general43,128,188–190. An archetypal example is the family 11 CBM 

(CtCBM11Cthe_1472) of the C. thermocellum Lic26A-Cel5E, an enzyme that contains GH5 and 

GH26 catalytic domains that display β1,4- and β1,3-1,4-mixed-linked endoglucanase activity33.  

Previous work has demonstrated that CtCBM11Cthe_1472, henceforward designated as CtCBM11,  

exhibited a preference for mixed-linked β1,3-1,4-glucans and lower affinity for β1,4-linked 

glucans32,33. The three-dimensional structure of CtCBM11 (PDB ID 1V0A), in harness with 
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mutagenesis studies, revealed a typical type B CBM with a β-sandwich fold with a concave side 

forming a putative single binding cleft that could accommodate β1,3-1,4- and β1,4-linked 

glucans33. Aminoacid residues Tyr22, Tyr53, and Tyr129, located in the putative binding cleft, 

were identified as playing a central role in the recognition of the ligands33,191. Interaction studies 

using STD-NMR with the β1,4-linked cellohexasaccharide, showed that CtCBM11 interacted 

preferably with the central four glucose-units, mainly through interactions with internal positions 2 

and 5 of the glucose rings191,192. Overall, these studies suggested that CtCBM11 contained four 

binding subsites (Figure 4.1), with the carbohydrate reducing end always facing the same side of 

the protein (subsite 1). The approximately four times higher affinity for the mixed-linked 

tetrasaccharide G4G4G3G, when compared to β1,4-linked cellotetrasaccharide, suggested that 

CtCBM11 displays a preference for a β1,3-linked glucose in at least one of the four subsites.  

 

Figure 4.1. Top view on the identified binding site of wild-type CtCBM11. Analysis of the 
crystal structure of unbound CtCBM11 (PDB ID 1V0A)33, together with mutagenesis and interaction studies 
using ITC, NMR and molecular docking allowed to pinpoint the protein’s binding site (englobed by the 
β-strands in orange) and identify some key residues involved in ligand recognition (e.g.: Tyr22, Tyr53, Asp99, 
Arg126, Tyr129, Asp146 or Tyr152, here represented as sticks and depicted with yellow carbon 
atoms)33,191,192. The polypeptide chain of CtCBM11 is depicted in white ribbon, with stretches Tyr53-Ser59, 
Arg86-Ser93, Asp99-Ser106, Arg125-Tyr129, Asn144-Tyr152 coloured in orange and numbered. The 
individual glucose binding subsites are schematized as transparent grey circles, numbered from 1 to 4. 
Subsite 1 accommodates the carbohydrate reducing end191. Calcium atoms are represented as green 
spheres. Images generated using UCF Chimera40. 

In recent studies, the ability of CtCBM11 to bind to β1,4- and with higher affinity β1,3-1,4-linked 

glucans, has been exploited for its use as a tool for the biotransformation of lignocellulosic 

materials. Fonseca-Maldonado et al. investigated the β1,3-1,4 glucanase activity of a chimeric 

Bacillus subtilis endo-β1,4-glucanase (BsCel5A), after exchanging its CBM3 domain by 

CtCBM11, which resulted in an increase of the hydrolytic efficiency of the enzyme towards 

β1,3-1,4-glucans193. Cattaneo et al., have designed a chimeric protein by adding a CtCBM11 
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module to the C-terminus of a hyperthermostable endoglucanase from Dictyoglomus turgidum 

(Dtur CelA). The resulting chimeric enzyme displayed enhanced stability at extreme pHs, with 

higher affinity and activity on insoluble cellulose194. Furthermore, Furtado et al., combined directed 

protein evolution and phage display approaches to obtain engineered CtCBM11 mutants that 

would exhibit high affinity to xyloglucans195. 

In the present work, and following the microarrays analysis data presented in Chapter 3, an 

integrated approach combining carbohydrate microarrays, NMR, X-ray crystallography, 

site-directed mutagenesis and ITC was conducted to extend the knowledge on the molecular 

determinants that enable CtCBM11 to distinguish between linear and mixed-linked β-glucans. 

The results now reported demonstrate the preference of CtCBM11 for mixed-linked glucans via a 

conformation-selection mechanism, in which CH-π stacking and hydrogen bonding interactions 

contribute for the specific ligand chain conformation and orientation in the binding clef. The 

optimal conformation is achieved by having a β1,3-linkage at the reducing end of the saccharide, 

while the central units are linked by β1,4 glycosidic linkages. Ultimately, the structural and affinity 

data confirmed the sequence G4G4G3G as the minimum binding epitope and evidenced that 

recognition by CtCBM11 is not only dependent on the ligand chain-length and the β1,3-linked 

glucose in the reducing end, but also on its specific position between the β1,4-linked glucose 

units.  

4.2 Results and Discussion 

Previous studies identified Tyr22, Tyr53, Asp129, Arg126, Asp128, Tyr129 and Asp146 as key 

residues in ligand recognition by CtCBM1133,191,192 and suggested that the binding cleft contained 

four binding subsites (Figure 4.1), with a preference for a β1,3-linked glucose residue in at least 

one of those subsites. In the present work, complementary studies were carried to characterize 

CtCBM11’s selectivity for the β1,3-linked glucose and to elucidate the molecular determinants of 

the specificity towards mixed-linked glucans. In the combined approach employed, NMR 

experiments were also performed. These were carried out by collaborators from the laboratory of 

(Bio)molecular Structure and Interactions by NMR (UCIBIO, FCT-NOVA). These studies are not 

presented here but can be consulted in the peer-reviewed publication from which this chapter is 

adapted. 

4.2.1 Specificity assignment using carbohydrate microarrays 

To resume carbohydrate binding specificity at oligosaccharide level, the CtCBM11 was first 

analysed using carbohydrate microarrays comprising diverse sequence-defined 

gluco-oligosaccharides prepared as NGL probes32. These microarrays were validated and applied 

for analysis of protein binding in Chapters 2 and 3. The gluco-oligosaccharides highlighted here 

(positions 1 to 153, Table S2.1 in Chapter 2) encompassed different chain lengths (from DP-2 up 

to DP-16) and linear or branched sequences with α- or β-configurations (Figure 4.2).  
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Figure 4.2. Analysis of carbohydrate binding specificity using a microarray of sequence-defined 
gluco-oligosaccharides. (A) CtCBM11 was analysed using serial dilutions at the indicated concentrations; 
(B) CmCBM6-2 was analysed as a positive control. The validated microarray encompassed 153 
gluco-oligosaccharide probes prepared as NGLs32. The DP and glucose linkages are indicated on top of the 
coloured panels. Some relevant carbohydrate probe sequences are highlighted for binding to CtCBM11 in 
panel A; G, Glucose; AO, NGLs prepared from reducing oligosaccharides by oxime ligation with an aminooxy 
(AO) functionalized lipid DHPE (1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine)8632. The sequence 
information on the oligosaccharide probes is depicted in Chapter 2, Table S2.1. The binding signals are 
means of fluorescence intensities of duplicate spots at 5 fmol of oligosaccharide probe arrayed (with error 
bars) and are representative of at least two independent experiments.  
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CtCBM11 showed a narrow binding profile, exhibiting strong binding to barley-derived 

β1,3-1,4-mixed-linked oligosaccharides (DP-7 to DP-16, probes 111-120, Figure 4.2A) and 

displaying only a weak binding to β1,4-linked cello-oligosaccharides (DP-9 to DP-13, probes 

84-88). The binding of CtCBM11 contrasted with the broad β-glucan binding profile observed with 

CBM6-2 of Cellvibrio mixtus (CmCBM6-2) used as a control protein (Figure 4.2B), in accord with 

the reported specificity attributed to its two binding clefts32,39. The serial dilution of CtCBM11 

concentration highlighted its specificity for β1,3-1,4-mixed-linked glucose sequences 

(Figure 4.2A), in accord with previous carbohydrate microarray data32. The observed 

oligosaccharide chain-length dependency for CtCBM11 binding is in agreement with the current 

knowledge on type B CBMs. These CBMs bind the carbohydrate chains internally (endo-type), 

hence requiring a minimum chain-length for the recognition event to take place.  

For immobilization on the array surface the oligosaccharides were conjugated via the reducing 

end glucose to an aminooxy-functionalised lipid by oxime-ligation (Figure 1.6C, Chapter 1)32.  

Although, the oxime-linked NGLs have a significant proportion of the lipid-linked monosaccharide 

core in a ring closed form, the conjugation and presentation in the microarray may have hindered 

access of the CBM to the binding epitope presented in short mixed-linked oligosaccharides with 

a 3-linkage at the reducing end. This would explain the lack of binding to the mixed-linked 

tetrasaccharide G4G4G3G (probe 103, Figure 4.2A), for which high affinity was previously 

reported33, and the weak binding observed to the pentasaccharide G4G4G4G3G (probe 107) and 

to the hexasaccharide G4G3G4G4G3G (probe 109). These results, together with the binding to 

the cellooligosaccharides, where binding was not detected to probes shorter that DP-9, hinted 

that both the sequence of β1,4-linkages adjacent to a β1,3-linked glucose and the chain-length 

are important for ligand recognition by this CBM. The higher binding intensities observed to the 

mixed-linked heptasaccharide G4G4G3G4G4G3G and longer chain probes (probes 111-120), 

where the sequence G4G4G3G is preserved for interaction, suggested this tetrasaccharide as 

the minimum epitope recognised by CtCBM11. 

4.2.2 Crystal structure of CtCBM11 bound to β1,3-1,4-gluco-oligosaccharides 

To obtain atomic detail on the CtCBM11-ligand interactions that promote the recognition of 

mixed-linked β-glucans and the preference for the β1,3-linked glucose, the crystal structures of 

CtCBM11 were determined in complex with mixed-linked oligosaccharides featuring a 

β1,3-linkage at the reducing end (tetrasaccharide G4G4G3G) and both at the reducing end and 

at an internal position (hexasaccharide G4G3G4G4G3G). The linkages and sequence were 

determined by negative-ion ESI-CID-MS/MS sequencing32 (Figure S4.1).  

The bound structures of CtCBM11 were solved at a resolution of 1.45 Å and 2.6 Å for complexes 

with G4G4G3G (PDB ID 6R3M) and G4G3G4G4G3G (PDB ID 6R31), respectively (Figure 4.3). 

Statistics of data processing and model refinement and validation are presented in Tables 4.1 

and S4.1. Both structures presented a classical distorted β-jelly roll fold already revealed for the  



CHAPTER 4. MOLECULAR BASIS FOR THE LIGAND-SPECIFICITY OF CTCBM11 

96 
 

 

 

Figure 4.3. Ribbon representation of the three-dimensional crystal structures of CtCBM11 
complexes. Representation of the overall structure of CtCBM11 in complex with the ligands, exhibiting the 
typical distorted β-barrel conformation. Left panel – CtCBM11-G4G4G3G (PDB ID 6R3M). Right 
panel - CtCBM11-G4G3G4G4G3G (PDB ID 6R31); (A) and (B) Cartoon and surface representation of the 
CtCBM11 complexes; The concave side of CtCBM11 forms the binding cleft where the ligands are 
accommodated; (C) Initial mFo-DFc electron density maps for the complexes of CtCBM11 with G4G4G3G 
and G4G3G4G4G3G  calculated in the absence of ligand and with resolutions of 1.45 Å and 2.60 Å, 
respectively. The ligands are overlaid in the picture for reference. The electron density maps are shown in 
green mesh, contoured at 2.5 σ; Calcium ions are indicated as green spheres. Images generated using UCF 
Chimera40. 
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Table 4.1. X-ray diffraction and structure refinement parameters and statistics for 
CtCBM11-G4G4G3G and CtCBM11-G4G3G4G4G3G structures. 

 CtCBM11-G4G4G3G CtCBM11-G4G3G4G4G3G 
Data collection   
Beamline Diamond Light Source, I02 ESRF, ID23-2 
Space Group H 3 H 3 
Cell parameters   
a, b (Å) 103.2 104.9 
c (Å) 39.6 39.5 
Wavelength, Å 0.9763 0.8729 
Resolution of data (outer shell), Å 51.62-1.45 (1.48-1.45) 29.83-2.60 (2.72-2.60) 
Total number of reflections (outer shell) 101660 (4271) 11893 (1320) 
Number of unique reflections 27701 (1373) 4803 (590) 
Rpim (outer shell), % a 4.6 (22.0) 13.7 (32.0) 
Rmerge (outer shell), % b 7.0 (30.0) 18.9 (40.8) 
Mean I/σ(I) (outer shell) 10.0 (3.5) 3.7 (2.0) 
CC(1/2) 0.996 (0.637) 0.927 (0.697) 
Completeness (outer shell), % 99.8 (97.2) 96.2 (96.9) 
Redundancy (outer shell) 3.7 (3.1) 2.5 (2.5) 
Structure refinement   
No. of protein atoms 1414 1451 
No. of solvent waters 212 57 
Resolution used in refinement, Å 51.62-1.45 29.83-2.60 
No. of reflections 26308 4290 
Rwork / Rfree c 0.177 / 0.208 0.190 / 0.254 
rms deviation bonds (Å) 0.013 0.010 
rms deviation angles (degrees) 1.662 1.624 
rms deviation chiral volume (Å3) 0.133 0.083 
Avg B factors (Å2)   
Main chain 6.5 18.8 
Side chain 10.1 18.9 
Calcium 1 7.9 27.5 
Calcium 2 9.5 31.4 
 G4G4G3G G4G3G4G4G3G 
Glucose 1 17.8 22.0 
Glucose 2 10.0 21.1 
Glucose 3 11.0 21.1 
Glucose 4 21.3 22.2 
Glucose 5 - 23.3 
Glucose 6 - 23.6 
Phosphate ion 1 9.4 30.0 
Phosphate ion 2 16.1 38.6 
Phosphate ion 3 17.5 - 
Phosphate ion 4 21.7 - 
Acetate ion 1 15.6 - 
Water molecules 23.5 27.3 
Ramachandran statistics   
favored 99.4 98.2 
allowed 0.6 1.8 
generously allowed 0 0 
forbidden 0 0 
PDB deposition code 6R3M 6R31 

a  , where  is the average of symmetry-related observations 
of a unique reflection. 

b , where  is the average of symmetry-related observations of a 
unique reflection. 

c  , where  and  are the calculated and observed structure factor 

amplitudes, respectively.  is calculated for a randomly chosen 10% of the reflections. 
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unbound CtCBM1133, consisting of two six-stranded anti-parallel β-sheets, which form a convex 

side, and a concave side that constitutes the binding cleft where each ligand is accommodated 

(Figure 4.3A and B). In the CtCBM11-G4G4G3G structure, the anomeric carbon of Glc1 was 

observed in both α and β configuration, as supported by residual mFo-DFc electron density map 

and was modelled in both anomers (Figure 4.3C). The overall fold of the two bound structures 

was similar to the fold of native CtCBM11 (PDB ID 1V0A)33, with a root-mean-square deviation 

(rmsd) value of 0.435 Å over 141 C𝛼𝛼 atoms, for the tetrasaccharide-bound structure, and 0.509 Å 

over 150 C𝛼𝛼 atoms, for the hexasaccharide-bound structure (Figure 4.4). The high similarity 

between the free and bound conformations of CtCBM11, is in good agreement with the relaxation 

and internal mobility data obtained previously by NMR191 that showed only minor dynamical 

variations upon cello-tetrasaccharide binding. This is consistent with a rigid protein backbone that 

selects a defined oligosaccharide conformation, i.e., CtCBM11 recognizes its ligands by a 

conformation-selection mechanism. 

 

Figure 4.4. Comparison of unbound and ligand-bound CtCBM11 structures. Superposition of CtCBM11 
unbound structure (PDB ID 1V0A) (orange) with the bound structures of CtCBM11-G4G4G3G (PDB ID 
6R3M) (grey) and CtCBM11-G4G3G4G4G3G (PDB ID 6R31) (blue), with a root-mean-square deviation 
(rmsd) value of 0.435 and 0.509, respectively. Images generated using UCF Chimera40. 

4.2.3 CtCBM11 binding mode 

The identified residues that constitute the binding cleft of CtCBM11 are solvent-exposed and 

interact with the ligands through hydrophobic CH-π stacking interactions, hydrogen bonds and 

van der Waals contacts (Figure 4.5, and Tables S4.2 and S4.3). The ligand G4G4G3G interact 

with the CBM by direct hydrogen bonds of the equatorial OH groups of all the 4 glucose monomers 

with residues Tyr152, Arg126, Asp99 and Asp146, as well as water-mediated contacts with 

residues Asp51, Glu25, Tyr22, Tyr53, Tyr129, His149, Ser147 and Ser59 (Figure 4.5A and Table 



CHAPTER 4. MOLECULAR BASIS FOR THE LIGAND-SPECIFICITY OF CTCBM11 

99 
 

 

 

Figure 4.5. CtCBM11-ligand interactions. Close-up view on the CtCBM11 binding site, evidencing the 
protein-ligand contacts between the CBM and (A) the tetrasaccharide G4G4G3G and (B) the 
hexasaccharide G4G3G4G4G3G, as listed in Tables S4.2 and S4.3.The carbohydrate chains and the side 
chains of the aminoacid residues inside the binding cleft that interact with the ligands are shown as stick 
models. Water molecules are represented by red spheres and calcium ion as green sphere. Hydrogen 
bonding is indicated by dashed lines and CH-π stacking interactions are represented as double arrows. 
Images generated using UCF Chimera40. 

S4.2). For the hexasaccharide G4G3G4G4G3G ligand, the same direct hydrogen bonds were 

observed, although, due to the lower resolution of the hexasaccharide complex, no 

water-mediated hydrogen bonds were identified as the water molecules could not be 
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unequivocally modelled (Figure 4.5B and Table S4.3). The CH-π stacking interactions between 

residues Tyr22, Tyr53 and Tyr129 with the glucose rings at the centre of the cleft (Glc2 and Glc3) 

were evident, which validated our previous models using computational studies (molecular 

docking and molecular dynamics)192 and confirmed these residues to play a key role by guiding 

and stabilizing the ligand chain for recognition by CtCBM11.  

The structures of the bound CtCBM11 provided clear evidence for a conformation-selection 

mechanism. While the central β1,4-linked glucose units appear to be pivotal for CtCBM11 

recognition through CH-π stacking with the tyrosine residues, the flanking β1,3-linked glucose at 

the reducing end (Glc1) seems to impose a specific ligand chain conformation and, consequently, 

its orientation in the binding cleft. This is probably due to the hydrogen bond between Asp146 and 

the OH of the Glc1 methylene group. If, at this position, a β1,4 glycosidic bond was present 

instead of the β1,3 glycosidic bond (as in the case of cellotetrasaccharide), the glucose ring would 

be in a different orientation, with the CH2OH group rotated by about 180° (Figure S4.2). Although 

in this conformation a hydrogen bond is still possible between the OH group of carbon 2 and 

Asp146, the OH group would sit further away from Asp146 and the hydrogen bond would be 

weaker, thus explaining the lower affinity to β1,4-linked oligosaccharides. This is in very good 

agreement with the specificity observed in carbohydrate microarrays (Figure 4.2) as well as with 

the STD-NMR data (please see Ribeiro et al., 201934) that showed that for the 

cellotetrasaccharide the most affected proton of Glc1 was H2, whereas for the mixed-linked 

tetrasaccharide G4G4G3G the methylene protons were the ones showing more saturation.  

The superposition of the bound structures highlighted that the Glc2 and Glc3 stacked by the 

tyrosine residues were almost completely coincident (Figure 4.4), which provides further evidence 

for the importance of the positioning of these two β1,4-linked monosaccharides at the central 

subsites 2 and 3 (Figure 4.1). Comparing the two bound structures, the Glc5 and Glc6 of the 

hexasaccharide were mostly exposed to the solvent, not establishing significant contacts with the 

protein residues (Figure 4.4), other than the direct hydrogen bond  between Glu25 and the CH2OH 

group of the β1,3-linked Glc5 (Figure 4.5B). This observation provides evidence for the major 

contribution of subsites 1-3 in CtCBM11 binding and confirms the sequence G4G4G3G as a 

minimum binding epitope, whereas a second β1,3-linked glucose (putative subsite 5) may affect 

affinity or ligand specificity. Superimposing also the unbound structure (PDB ID 1V0A)33 (which 

exhibited the C-terminus residues of a symmetry-related molecule in the binding cleft), showed 

that the residues previously identified in the binding cleft to interact with the C-terminus tail were 

coincident with the ones now identified to be responsible for the ligand stabilization (Figure 4.4). 

The majority of these residues suffered only minimal changes in the bound CtCBM11 structures, 

in accordance with a conformation-selection model mechanism.  

 



CHAPTER 4. MOLECULAR BASIS FOR THE LIGAND-SPECIFICITY OF CTCBM11 

101 
 

 

4.2.4 The CH-π stacking and hydrogen bonding network as determinants of the 
ligand-specificity 

The structural data allowed not only the identification of key residues involved in CtCBM11 

binding, but also structural features of the oligosaccharide ligands that were able to modulate 

binding. With this structure-based rationale, mutant alanine derivatives of residues involved in 

direct hydrogen bonds with the ligand (Ser59, Asp99, Arg126, Asp146) were produced to analyse 

influence of hydrogen bonding on CtCBM11 binding affinity towards different carbohydrates 

(polysaccharides and oligosaccharides), for which chain-length as well as the presence and 

position of β1,3 linkages varied (Figure 4.6 and Table 4.2). 

 

Figure 4.6. Representative isothermal calorimetry titrations of binding of CtCBM11 and its mutants 
to oligosaccharides. The top portion of each panel shows the raw power data while the bottom parts show 
the integrated and heat of dilution corrected data. The solid lines show the non-linear curve fits to a one site 
binding model with the stoichiometry fixed at 1. Thermodynamic parameters are given in Table 4.2. 

In agreement with the structural data, the comparison of the binding affinity of CtCBM11 wild-type 

(WT-CtCBM11) to the three tetrasaccharides analysed (G4G4G4G, G4G3G4G and G4G4G3G) 

showed that the marked affinity effect occurred when introducing the β1,3 glycosidic bond at the 

central part of the ligand (i.e., for ligand G4G3G4G). When compared with the 

cellotetrasaccharide (G4G4G4G), this modification caused a decrease in the affinity of about 

4.4-fold. Inversely, when placing the β1,3 bond at subsite 1 (G4G4G3G) the increase in the affinity 

was about 2.4-fold, supporting the preference CtCBM11 for a β1,3 linkage at the reducing end. 
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Table 4.2. Thermodynamic parameters of the binding of CtCBM11 and its mutant derivatives to 
polysaccharides and oligosaccharides. 

 

The CtCBM11 Arg126Ala mutant bound to β-glucans with a 100-fold lower affinity than wild type 

CtCBM11. This corroborated what was observed in the CtCBM11-G4G4G3G structure, where 

atoms Nη1 and Nη2 of Arg126 are hydrogen bonded to the O3 and O2 atoms, respectively, of 

the glucose residue located at subsite 3. Thus, the two hydrogen bonding contacts of Arg126, 

together with the CH-π stacking with the tyrosines, are fundamental for holding the ligand. The 

affinity of the Asp99Ala and Asp146Ala mutants for β-glucan and the oligosaccharides tested was 

reduced by approximately 4 to 10-fold. While Asp146 is hydrogen bonded to the OH group of the 

methylene group from the glucose residue at subsite 1, Asp99 established polar contacts with O6 

CtCBM11 
variant Ligand Ka 

(M-1) 
ΔG 

(kcal.mole-1) 
ΔH 

(kcal.mole-1) 
TΔS 

(kcal.mole-1) n 

WT 
 

β-Glucan 4.94 (± 0.23) ×105 -7.77 -11.23 ± 0.09 -3.46 1.02 ± 0.00 
Lichenan 3.08 (± 0.36) ×105 -7.49 -8.41 ± 0.23 -0.92 1.04 ± 0.02 

G4G4G4G4G4G 1.11 (± 0.04) ×105 -6.88 -12.30 ± 0.15 -5.43 1.11 ± 0.01 
G4G4G4G 5.86 (± 0.16) ×104 -6.49 -11.18 ± 0.18 -4.68 1.08 ± 0.01 
G4G4G3G 1.41 (± 0.03) ×105 -7.01 -10.95 ± 0.07 -3.94 1.11 ± 0.00 
G4G3G4G 1.32 (± 0.09) ×104 -5.61 -12.62 ± 0.04 -7.01 1.00 ± 0.00 

HEC 4.45 (± 0.07) ×103 -4.98 -6.20 ± 0.06 -1.23 1.00 ± 0.00 

Asp99Ala 
 

β-Glucan 3.06 (± 0.20) ×104 -6.11 -10.97 ± 0.49 -4.86 1.11 ± 0.04 
G4G4G4G4G4G 1.19 (± 0.09) ×104 -5.56 -7.76 ± 0.30 -2.19 1.00 ± 0.00 

G4G4G4G 2.19 (± 0.13) ×103 -4.55 -8.25 ± 0.27 -3.69 1.00 ± 0.00 
G4G4G3G 3.88 (± 0.45) ×104 -6.26 -5.18 ± 0.22 -1.09 1.00± 0.06 
G4G3G4G 2.67 (± 0.05) ×103 -4.68 -9.16 ± 0.11 -4.47 1.00 ± 0.00 

Arg126Ala 

β-Glucan 8.46 (± 0.10) ×103 -5.35 -8.48 ± 0.06 -3.13 1.00 ± 0.00 
G4G4G4G4G4G Weak binding 

G4G4G4G No binding 
G4G4G3G No binding 
G4G3G4G No binding 

Asp146Ala 

β-Glucan 3.31 (± 0.23) ×104 -6.15 -10.89 ± 0.57 -4.74 1.10 ± 0.04 
G4G4G4G4G4G 5.08 (± 0.20) ×104 -6.41 -9.12 ± 0.27 -2.71 0.93 ± 0.02 

G4G4G4G 1.36 (± 0.12) ×104 -5.64 -9.99 ± 0.41 -4.35 1.00 ± 0.00 
G4G4G3G 2.63 (± 0.08) ×104 -6.04 -10.54 ± 0.52 -4.50 0.95 ± 0.04 
G4G3G4G 2.53 (± 0.14) ×103 -4.59 -6.81 ± 0.24 -2.21 1.00 ± 0.00 

Asp99Ala/ 
Asp146Ala 

β-Glucan 3.09 (± 0.09) ×104 -6.12 -6.77 ± 0.17 -0.66 1.14 ± 0.02 
G4G4G4G4G4G 1.14 (± 0.02) ×104 -5.53 -7.59 ± 0.40 -2.06 0.90 ± 0.04 

G4G4G4G 3.56 (± 0.27) ×103 -4.86 -10.23 ± 0.46 -5.37 1.00 ± 0.00 
G4G4G3G 6.22 (± 0.32) ×103 -5.17 -14.98 ± 0.04 -9.81 1.00 ± 0.00 
G4G3G4G No binding 

Val57Ala 

β-Glucan 3.12 (± 0.24) ×105 -7.49 -10.15 ± 0.16 -2.65 1.13 ± 0.01 
G4G4G4G4G4G 1.01 (± 0.02) ×105 -6.82 -10.04 ± 0.09 -3.22 0.94 ± 0.00 

G4G4G4G 5.62 (± 0.16) ×104 -6.48 -10.06 ± 0.17 -3.58 1.12 ± 0.01 
G4G4G3G 1.12 (± 0.03) ×105 -6.89 -10.03 ± 0.10 -3.13 0.99 ± 0.00 
G4G3G4G 1.33 (± 0.05) ×104 -5.62 -8.66 ± 0.14 -3.04 1.10 ± 0.00 

Ser59Ala 

β-Glucan 4.48 (± 0.20) ×104 -6.35 -7.43 ± 0.25 -1.09 1.06 ± 0.02 
G4G4G4G4G4G 5.09 (± 0.28) ×104 -6.43 -9.71 ± 0.46 -3.28 0.91 ± 0.02 

G4G4G4G 2.74 (± 0.11) ×104 -5.99 -12.55 ± 0.24 -6.56 1.00 ± 0.01 
G4G4G3G 3.08 (± 0.07) ×104 -6.12 -8.66 ± 0.22 -2.54 1.08 ± 0.02 
G4G3G4G Weak binding 

Glu25Ala β-Glucan 2.75 (± 0.50) ×105 -7.32 -8.18 ±0.36 -0.86 1.00 ± 0.03 
HEC Weak binding 

Asp51Ala β-Glucan 2.31 (± 0.36) ×105 -7.43 -7.35 ±0.34 0.08 1.01 ± 0.03 
HEC Weak binding 

Ser59Ala/ 
Asp146Ala 

β-Glucan Very weak binding 
HEC Very weak binding 
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of the glucose residue located at subsites 2 and O4 of the glucose residue located at subsite 1 

and 2 (Figure 4.5). The cumulative effect of the double mutation Asp99Ala/Asp146Ala resulted in 

a similar trend, although leading to an overall lower affinity. This suggested that these residues 

are equally important for binding both β1,3-1,4-mixed-linked and β1,4-linked glucans. 

Furthermore, the hydrogen bond interactions of Asp146 may also contribute to the higher affinity 

observed towards G4G4G3G. The β1,3 glycosidic linkage brings the CH2OH group of Glc1 in 

closer proximity to the sidechain of Asp146 when compared with a β1,4 bond in the same position 

as observed in the structure of the complex, making a stronger hydrogen bond. As such, a β1,3 

glycosidic linkage towards the reducing end of the oligosaccharide is preferred. Replacement of 

Ser59 by an Ala led also to a significant loss in binding affinity, which corroborated the disruption 

of an important hydrogen bond established with the endocyclic oxygen of Glc1. The cumulative 

effect of Ser59Ala/Asp146Ala results in an almost complete loss of binding to both β-glucan and 

HEC, highlighting the importance of subsite 1 for substrate recognition. The CtCBM11 Val57Ala 

mutation, which was produced to assess the influence of hydrophobic interactions at subsite 1, 

showed no significant effect in the binding affinity to the mixed-linked ligands. This result highlights 

that the major contributions of subsite 1 for CtCBM11 binding are mediated by hydrogen bonding 

interactions.   

The hexasaccharide complex showed Glu25 making a hydrogen bond to the CH2OH group of the 

β1,3-linked Glc5 (Figure 4.5B). As a β1,4-linked Glc5 would have its CH2OH group facing away 

from Glu25 and Asp51, these two residues could play an important role in CtCBM11 preference 

for β1,3-1,4-mixed-linked over β1,4-linked glucans. Glu25Ala and Asp51Ala mutants were 

produced to test this hypothesis. Although there was a slight decrease in the ability of both 

mutants to bind β-glucan, the affinity for HEC was also affected. This means that although 

important for binding to the ligand, this putative subsite 5 does not seem to be key for substrate 

specificity. 

In summary, the structural and affinity data demonstrate the contribution of CH-π stacking and 

hydrogen bonding interactions for specific ligand chain conformation and orientation in the binding 

cleft are determinant for the specificity of CtCBM11 towards mixed-linked β-glucans. The 

conformational change in the orientation of the glucose residues by the introduction of a β1,3 

glycosidic bond, leads to key hydrogen bonds with Asp 146 and Ser 59 (subsite 1) and Asp99 

(subsite 1 and 2), which have a direct impact on CtCBM11 specificity and on the affinity displayed 

towards the different ligands. The data also show evidence that the central part of the 

oligosaccharide (the residues that bind at subsites 2 and 3) must be planar (β1,4-linked), in order 

to take full advantage of the CH-π stacking interactions with tyrosine residues 22, 53 and 129, 

and hydrogen bonding with Arg126 (subsite 3). The hydrogen bonding mediated by Glu25 and 

Asp51 (subsite 4 and 5) contribute to increase the affinity to the ligands, but not to the specificity 

towards the mixed-liked glucans.   
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4.2.5 CtCBM11 ligand specificity in the context of CAZy CBMs 

The analysis of conservation of the interacting protein residues by sequence alignment of six 

family 11 CAZy CBMs, revealed that only Tyr129 was invariant, whereas Arg126 was conserved 

in five out of the six sequences (Figure 4.7), which highlights the critical role of these residues in 

the ligand recognition by CAZY family 11 CBMs. In its turn, Tyr22, Tyr53, Tyr152 and Asp99 were 

conserved in only two of the six CBMs. However, the lack of conservation of other key residues 

involved in the ligand recognition by CtCBM11 is not totally unexpected as plasticity of specificities 

is often observed within type B CBM families. 

 

Figure 4.7. Alignment of CBM11 family members. Primary sequences aligned from Clostridium 
thermocellum (CtCBM11, P16218), Clostridium cellulolyticum (CcCBM11, P25472), Fibrobacter 
succinogenes (FsCBM11, C9RQE4), Streptomyces avermitilis (SaCBM11, Q82JP6), Kribbella flavida 
(KfCBM11, D2PWV9), Salinispora tropica (StCBM11, A4X7P1) and Streptomyces bingchenggensis 
(SbCBM11, D7BY98). Identity to CtCBM11 is indicated with blue boxes. Residue numbers refer to the 
corresponding CBM11 sequence. The (*) identifies the CtCBM11 residues involved in the CH-π stacking of 
the oligosaccharide ligands and the (x) identifies the residues that establish hydrogen bonds with the ligand. 
The sequence alignment was calculated with the program Clustal Omega196, and the picture was produced 
with the program Jalview197. 

In general, the ligand specificity of type B CBMs reflects the substrate specificity of the associated 

catalytic modules. CtCBM11 is comprised in the celH gene, which also encodes two functional 

catalytic domains, a GH from family 5 (GH5, Cel5E) and a second from family 26 (GH26, Lic26A). 

While Cel5E is a bifunctional β-1,4-endoglucanase/xylanase198, Lic26A has lichenase activity, 

specific for β1,3-1,4 mixed-linked glucans, accommodating in its binding cleft substrates that 

comprise the G4G4G3G sequence 199. The observed preference of CtCBM11 for a β1,4 glycosidic 

bond in the central part of the ligand and β1,3-linked glycosidic bond at a reducing end provides 

evidence that this CBM mimics the specificity of the associated GH26 mixed-linked 

endoglucanase. 

CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans, 

mixed-linked β1,3-1,4-glucans and xyloglucan, by targeting the β1,4-glucan backbone common 

to these polysaccharides. According to the information deposited in the CAZy database, besides  
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family 11, CBMs from families 4, 6, 22, 2822, 46200 and 65201 have been reported to bind 

mixed-linked glucans. However, to our knowledge, only CtCBM11 has been described to have a 

more restricted binding specificity and affinity to mixed-linked glucans. Noteworthy, CtCBM11 is 

the only CBM from family 11 found in C. thermocellum, which might point to a crucial role played 

by CtCBM11 in the metabolism of mixed-linked glucans of this cellulosome-expressing bacterium.  

4.3 Conclusions 

In this work, a combined approach of methodologies was used to unravel, at a molecular level, 

the ligand recognition of CtCBM11. The analysis of the interaction by carbohydrate microarrays 

and NMR and the crystal structures of CtCBM11 bound to β1,3-1,4-linked glucose 

oligosaccharides, showed that both the chain-length and the position of the β1,3-linkage are 

important for recognition, and identified the tetrasaccharide Glcβ1,4Glcβ1,4Glcβ1,3Glc sequence 

as a minimum epitope required for binding. The structural data, along with site-directed 

mutagenesis and ITC studies, demonstrated the specificity of CtCBM11 for the twisted 

conformation of mixed-linked β1,3-1,4-glucans. This is mediated by a conformation-selection 

mechanism of the ligand in the binding cleft through CH-π stacking and a hydrogen bonding 

network, which is dependent not only on ligand chain length, but also on the presence of a 

β1,3-linkage at the reducing end and at specific positions along the β1,4-linked glucan chain.  

In the context of the cellulosome, the structural details here revealed on the CtCBM11 

ligand-recognition site may influence the planning and development of efficient and low-cost 

mechanisms for the conversion of biomass into usable sources of energy, as well as, into nutrients 

for animal feedstock. Additionally, the understanding, at the molecular level, of the detailed 

mechanism by which CtCBM11 can distinguish between linear and mixed-linked β-glucans, may 

inspire the design of new biomolecules with improved capabilities to be explored in health and 

agriculture applications.  

4.4 Experimental procedure 
4.4.1 Gene cloning, mutagenesis and protein purification 

Plasmid pAG1, a pET21a (Novagen, Darmstadt, Germany) derivative encoding CtCBM11, was 

selected for these experiments33. Recombinant CtCBM11 generated by pAG1 contains a 

C-terminal hexa-histidine tag. Site-directed mutants were generated using the NZYMutagenesis 

kit (NZYTech, Lisbon, Portugal) according to the manufacturer’s instructions using pAG1 as 

template. Primers used to generate the mutant DNA sequences are listed in Table S4.4. 

Recombinant sequences of all mutant plasmid derivatives were verified by sequencing to ensure 

that only the appropriate mutations were incorporated into the nucleic acids.  

To express CtCBM11 in Escherichia coli, the CtCBM11 encoding gene was constructed as 

described previously33. E. coli BL21 harbouring the CtCBM11 encoding gene containing a 
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C-terminal His6 tag was cultured in LB containing 100 µg/mL ampicillin at 37 °C until 

mid-exponential phase (OD600nm = 0.6), at which point isopropyl-β-D-thiogalactopyranoside (IPTG) 

was added to a final concentration of 1 mM. Cultures were then further incubated overnight at 

30 °C. Cells were collected by centrifugation and the cell pellet resuspended in a 50 mM sodium 

HEPES buffer, pH 7.5, containing 1 M NaCl and 10 mM imidazole. CtCBM11 was purified by 

Ni2+-immobilized ion metal affinity chromatography (IMAC). Fractions containing the purified 

complex were buffer-exchanged into Milli-Q water containing 2 mM CaCl2 and concentrated with 

Amicon 10-kDa molecular-mass centrifugal membranes to a final protein concentration of 

40 mg/mL.  

4.4.2 Sources of carbohydrates 

The soluble barley β-glucan, the cellooligosaccharides and the β1,3-1,4-mixed-linked 

tetrasaccharides were purchased from Megazyme international (Bray, Ireland). The hydroxyethyl 

cellulose (HEC) and lichenan were purchased from Sigma-Aldrich (St. Louis, MO, USA). For the 

NMR studies, the cellotetrasaccharide was obtained from Seikagaku Corporation (Tokyo, Japan). 

The barley hexasaccharide fraction used for X-ray crystallography was obtained as described32 

by enzymatic hydrolysis of barley β-glucan with a cellulase (Novozymes, Copenhagen, Denmark) 

and purified by repeated gel filtration chromatography on a Bio-Gel P4 column.  

4.4.3 Mass spectrometry analysis of barley hexasaccharide 

Sequence analysis of β1,3-1,4-mixed-linked tetrasaccharides (G4G4G3G and G4G3G4G)  and 

of the barley-derived hexasaccharide fraction used in the co-crystallization studies was carried 

out by negative-ion electrospray tandem mass spectrometry with collision induced dissociation 

(ESI-CID-MS/MS) on a Synapt G2-S instrument (Waters, Manchester, U.K.), essentially as 

described32. Cone voltage was kept at 80 eV for MS and CID-MS/MS. For peudo-MS3 to 

encourage in-source fragmentation, the cone voltage was increased to 180 eV. Collision gas (Ar) 

at a pressure of 7.3 x 10-3 mbar. The collision energy was between 15-17 eV for optimal 

fragmentation. The ESI-CID-MS/MS confirmed the sequences of the tetrasaccharides as reported 

previously32, and showed that the barley-derived hexasaccharide fraction  contains mainly the 

sequence Glcβ1,4Glcβ1,3Glcβ1,4Glcβ1,4Glcβ1,3Glc (G4G3G4G4G3G) (Figure S4.1).  

4.4.4 Carbohydrate microarray analysis 

The binding specificity of CtCBM11 was analysed using carbohydrate microarrays that included 

153 gluco-oligosaccharide-NGL probes prepared as previously described in Chapter 2. 

Carbohydrate sequence information of these probes is in Table S2.1 (positions 1 to 153). The 

quality control of these microarrays was described in Chapter 2.   

Microarray binding analyses were performed essentially as described in Chapter 2 

(section 2.5.10). CtCBM11 was analysed at a final concentration of 2, 10 or 20 µg/mL. The 
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CmCBM6-2 was included as a protein control and analysed at final concentration of 2 µg/mL. The 

microarray data and metadata, including details of the gluco-oligosaccharide probe library, the 

generation of the microarrays, imaging, and data analysis are in accordance with the MIRAGE 

guidelines for reporting glycan microarray-based data146. 

4.4.5 Crystallization and X-ray Diffraction Data Collection 

The complexes of CtCBM11 were produced by overnight incubation of the protein (15-20 mg/mL) 

with β1,3-1,4 mixed-linked tetrasaccharide (G4G4G3G) and hexasaccharide (G4G3G4G4G3G) 

ligands at 1:10 molar ratio, respectively. Crystals of each complex were grown in hanging drops, 

using the vapor diffusion method. Crystals grew from precipitant solutions containing 20-28% 

(m/v) polyethyleneglycol (PEG) 3350 and 0.2 M potassium phosphate in 0.1 M sodium acetate 

buffer, pH 4.6. For the CtCBM11-G4G4G3G complex, although sea urchin-like crystals appeared 

in the drops in one or two days, hexagonal crystals grew later over a period of three weeks. 

Crystals of the CtCBM11-G4G3G4G4G3G complex appeared after a period of two weeks, 

although affected by significant multiplicity. All crystals were harvested using a 0.1 M sodium 

acetate-buffered solution (pH 4.6) containing 30% (m/v) PEG 3350 and 0.2 M potassium 

phosphate. Crystals grown in 20-24% (m/v) PEG 3350 were flash-cooled frozen in liquid nitrogen 

using 30% (v/v) glycerol as cryoprotectant added to the harvesting solution, while crystals grown 

with 28% (m/v) PEG 3350 were flash-cooled using paratone oil. 

X-ray diffraction data from a single crystal of the CtCBM11-G4G4G3G complex was collected 

under a nitrogen stream at 100K in I02 beamline at Diamond Light Source (Oxfordshire, UK), to 

a maximum resolution of 1.45 Å and using radiation of 0.9763 Å wavelength. The 

CtCBM11-G4G4G3G crystal indexed in space group H3 (R3:H), with cell constants 

a = b = 103.2 Å, and c = 39.6 Å, corresponding to a calculated Matthews coefficient of 2.05 Å3/Da 

and a solvent content of 40%, suggesting the presence of one molecule of CtCBM11 in the 

asymmetric unit. Data for the CtCBM11-G4G3G4G4G3G complex were collected, from a crystal 

protected with paratone oil and flash-cooled in nitrogen stream at 100 K, in ID23-2 beamline at 

the ESRF (Grenoble, France) to a maximum resolution of 2.6 Å and using X-ray radiation at a 

fixed wavelength of 0.8729 Å. The CtCBM11-G4G3G4G4G3G crystals indexed in space group 

H3 (R3:H), with cell constants a = b = 104.9 Å, and c = 39.5 Å. Data collection, processing, model 

building and validation statistics are shown in Table 4.1. 

4.4.6 Phasing, model building, and refinement 

Data sets were processed using MOSFLM202 and SCALA203 from the CCP4 suite204. Phasing for 

the CtCBM11-G4G4G3G complex was performed by molecular replacement with Phaser MR205 

from CCP4 using the CtCBM11 polypeptide chain of the PDB ID 1V0A structure33 to position the 

protein model in the indexed H3 space group. After model building and refinement, the 

polypeptide chain of this new structure (PDB ID 6R3M) was used, in a similar procedure, to solve 
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the structure of the CtCBM11-G4G3G4G4G3G complex (PDB ID 6R31). Models completion, 

editing, and initial validation were carried out in COOT206. Automatic addition of water molecules 

and restrained refinement of the full models were done using REFMAC5207. Phenix.elBOW from 

the PHENIX suite208 was used to generate restraints for β-D-glucose monomers used in 

refinement of G4G4G3G.  

Structure validation was performed using MolProbity209 and PDB-REDO210 was used to generate 

the final models. PRIVATEER120 was used for the validation of the stereochemistry and 

conformation of the carbohydrate ligands (Table S4.1). The CtCBM11-G4G4G3G complex, with 

R = 15.7% (Rfree = 18.8%), consists of 178 amino acid residues, two calcium ions, one acetate 

and four phosphate ions, 212 water molecules, and one G4G4G3G ligand. The side chain of 

Leu172 was omitted due to disorder and consequent absence of meaningful electron density. For 

the CtCBM11- G4G3G4G4G3G complex a final R = 18.8% (Rfree = 24.6%), consisting of 

173 amino acid residues, two calcium ions, two phosphate ions, 57 water molecules, and one 

G4G3G4G4G3G ligand. Residues Asp79 to Ser81 were omitted from the model due to 

poorly-defined electron density.  

In the CtCBM11-G4G4G3G structure, the anomeric carbon of Glc1 could be observed in both α 

and β conformation, as supported by the mFo-DFc electron density map (Figure 4.3C). As such, 

the hydroxyl group was hence modelled in both positions, with partial occupancy. 

4.4.7 Isothermal titration calorimetry  

Isothermal titration calorimetry (ITC) was performed essentially as described previously33, using 

a MicroCal VP-ITC calorimeter (Northampton, MA, USA) at 25 ºC. Before the experiment, purified 

proteins were buffer-exchanged against 50 mM phosphate buffer, pH 7.0, containing 0.1 mM 

CaCl2. The reaction cell contained protein at 35-50 µM, while the syringe contained either the 

oligosaccharides at 0.5-10 mM or the soluble polysaccharides at 1-6 mg/mL. The ligands were 

dissolved in the dialysis buffer (separately) to minimize heats of dilution. Titrations were performed 

by a first injection of 2 µL followed by 28 subsequent injections of 10 µL aliquots of either 

polysaccharide or oligosaccharide at 220-s intervals into ITC sample cell (volume 1.4467 mL) 

containing different enzyme samples. The stirring speed and reference power were set at 307 rpm 

and 15 µcal/s, respectively. The heat background was measured under the same conditions by 

serial injections of buffer into protein. The molar concentration of CBM binding sites present in 

polysaccharide ligands was determined as described previously211. Data analysis was performed 

by non-linear regression using a single binding model (MicroCal Origin 7.0 software), and 

thermodynamic parameters, such as the association constant (Ka), number of binding sites in the 

protein (n) and the binding enthalpy change (ΔH) were determined (Table 4.2). Gibbs free energy 

change (ΔG) and the entropy change (ΔS) were calculated according to Equation 4.1:  
 

−RTln𝐾𝐾𝑎𝑎  =  ΔG =  ΔH− TΔS                                                                         (4.1)    
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where R is the gas constant and T represents the absolute temperature. 

4.5 Work contributions 

Experimental planning and work here reported related to the carbohydrate microarrays validation, 

binding and data analysis, crystallographic structure determination and sequence similarity 

analysis, as well as protein expression and purification, were performed by the author of the 

thesis. Mutagenesis experiments and ITC assays were performed by Dr. Virgínia Pires and 

Dr. Pedro Bule (CIISA-FMV, ULisboa), upon discussion and planning with Prof. Carlos Fontes, 

as well as data analysis by the author. Barley hexasaccharide preparation and mass spectrometry 

analysis was performed by Dr. Wengang Chai (Glycosciences Laboratory, Imperial College 

London). The preparation of the NGL probes and construction of the microarrays resulted from 

the long-standing collaborative work of the Supervisor, Dr. Angelina Palma, with the group of 

Prof. Ten Feizi (Glycosciences Laboratory, Imperial College London), and Dr. Hongtao Zhang, 

Dr. Yibing Zhang, Dr. Lisete M. Silva, Dr. Yan Liu and Dr. Wengang Chai are acknowledged for 

their contribution to this work. Various barley hydrolysates as sources of oligosaccharides to 

prepare the NGL probes were provided by Barry V. McCleary (Megazyme International, Ireland) 

NMR work mentioned in this chapter were executed and analysed by Dr. Aldino Viegas, MSc João 

Silva, Dr. Filipa Marcelo and Prof. Eurico Cabrita (UCIBIO, NOVA). 

 

  



CHAPTER 4. MOLECULAR BASIS FOR THE LIGAND-SPECIFICITY OF CTCBM11 

110 
 

 

 

 



 

 

CHAPTER 5 
UNRAVELLING FAMILY 50 CBMS OF CLOSTRIDIUM 

THERMOCELLUM: STRUCTURAL AND FUNCTIONAL 

CHARACTERIZATION OF A NEW LYSM DOMAIN 
 
  



CHAPTER 5. STRUCTURAL-FUNCTIONAL CHARACTERIZATION OF A NEW LYSM DOMAIN 

112 
 

 



CHAPTER 5. STRUCTURAL-FUNCTIONAL CHARACTERIZATION OF A NEW LYSM DOMAIN 
 

113 
 

 

5 Unravelling family 50 CBMs of Clostridium thermocellum: 
Structural and functional characterization of a new LysM 
domain 

5.1 Introduction 

Members of CAZy family 50 are also known as Lysin Motif domains (LysMs)212. LysMs are 

widespread protein modules found in prokaryotes and eukaryotes that are highly conserved 

across all kingdoms of life. They were first identified in the lysozyme of Bacillus phage ϕ29 by 

Garvey et al. in 1986213. These domains are approximately 40 amino acid residues long and 

present a canonical three-dimensional structure consisting of a βααβ-fold, in which the two 

α-helices are packed against one side of the two-stranded antiparallel β-sheet42. LysMs were first 

classified as a CBM in 2008, upon demonstration that an N-terminal LysM domain from Pteris 

ryukyuensis chitinase-A bound to β1,4-linked N-acetylglucosamine (GlcNAc) residues42,214–216 

present in chitin, a polysaccharide that is the main constituent of fungal cell walls. LysMs also 

recognise different types of bacterial cell wall peptidoglycan (PG), an alternating polymer of 

GlcNAc and β1,4-linked-N-acetyl-muramic acid (MurNAc)217. As chitin and PG display an helical 

structure217, LysMs are suggested to be type B CBMs215 (for CBM classification see section 

1.2.1.1 in Chapter 1).  

LysM domains are found individually or in multiple tandem copies (up to 12), mainly at the N- or 

C-terminal, in modular proteins42,214. In bacteria, LysMs have been reported to mediate 

recognition of chitin and PG sequences, where multiple LysM domains act additively to increase 

the binding affinity215,218. While GlcNAc seems to be the common monosaccharide bound by all 

the characterised LysM domains, these modules are present in proteins involved in diverse 

biological functions42. LysMs are present in bacterial extracellular proteins, such as hydrolases 

and adhesins, acting in bacterial cell wall degradation, but also in bacteriophage lysins, 

peptidases, chitinases, esterases, reductases and nucleotidases. Numerous LysM 

domain-containing proteins are virulence factors of human bacterial pathogens, such as 

Staphylococcus aureus (S. aureus) that expresses five LysM domains42,214,215. They are also 

found in proteins produced by fungal pathogens as modulators of host immunity, but also in plants 

involved in defence against pathogens and in symbiotic signalling between bacteria and plants, 

such as in Nod factors secreted by Rhizobium species recognized by the LysMs of plant 

receptors42,215. Furthermore, LysMs also play a role in the development of spores in sporulating 

bacteria, such as Bacillus subtilis42,177.  

Given their binding properties, LysM domains have been explored for various medical and 

industrial applications. These domains have been applied for binding to and detection of microbial 

cells, using LysM-containing proteins or chimeric fusions with other proteins to visualize the cell 
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wall architecture of Gram-positive bacteria and for display of heterologous proteins on bacterial 

cell surfaces219. LysMs are also used in cell immobilization, to entrap industrially relevant 

microorganisms in an inert matrix for the production of enzymes, proteins, antibiotics and 

chemical compounds219. The potential to use non-genetically modified bacteria as vectors in 

vaccine development have also been explored, where LysMs allow the immobilization of purified 

fusion proteins to Gram-positive bacteria219,220. The LysM domain of an N-acetylglucosaminidase 

from Lactococcus lactis has been used to bind antigens to non-genetically modified Gram-positive 

bacteria for immunization purposes220.  

The Clostridium thermocellum genome expresses a high number of family 50 CBMs for which a 

carbohydrate-binding function is yet to be assigned. These CtCBMs are found in tandem or 

isolated in LysM-containing proteins, associated with putative catalytic modules, including a family 

18 glycoside hydrolase (GH18), and some unidentified proteins (Figure 5.1). Given the high 

number of family 50 CBMs in this bacterium (15 CBMs), the second highest after family 3 CBMs 

(Figure 3.2, Chapter 3), and the potential biotechnological applications of LysM domains, we 

sought to determine the structure and ligand-binding specificity of these modules.  

The carbohydrate microarray analysis presented in Chapter 3 revealed the carbohydrate binding 

for these CBMs and showed that these are highly specific for GlcNAc oligosaccharides exhibiting 

a chain-length dependency. In this chapter, the binding specificity of C. thermocellum family 50 

CBMs was further explored along with the structural characterization of one LysM domain in 

complex with its GlcNAc trisaccharide ligand. Binding capability to insoluble chitin and to PGs 

from different bacteria was also assessed using co-precipitation assays. Mutagenesis, ITC and 

molecular dynamics simulation studies allowed to identify the molecular determinants of 

carbohydrate recognition to chitin and PG sequences. The understanding of the carbohydrate 

recognition mechanism by these modules to chitin and peptidoglycan, will contribute to elucidating 

their role in C. thermocellum and will also potentiate the development of novel strategies using 

LysM domains in industrial and therapeutic applications. 

5.2 Results and Discussion 
5.2.1 Oligosaccharide specificity of C. thermocellum family 50 CBMs 

To assign the carbohydrate binding specificity at oligosaccharide level, 11 out of the 15 family 50 

CtCBMs (Figure 3.2 and Tables S3.1 and S3.2 in Chapter 3) were analysed using a 

NGL-microarray comprised of diverse sequence-defined oligosaccharides, which included 

β1,4-GlcNAc or β1,4-glucosamine (GlcN) oligosaccharides with different chain lengths 

(Table S2.1 in Chapter 2, probes 205 to 214). Binding patterns were obtained for 7 CtCBMs 50, 

which showed these to be highly specific for β1,4-GlcNAc sequences with increased binding 

intensities with the oligosaccharide chain-length (Figures 5.2 and 5.3, and Table S3.7 in 

Chapter 3). The narrow binding of CtCBMs 50 was supported by the binding patterns of GlcNAc-

specific plant lectins Datura stramonium (DSL) and wheat germ agglutinin (WGA) and contrasted  
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Figure 5.1. Modular architecture of proteins containing family 50 CBMs in the genome of 
C. thermocellum. Signal peptides (SP) are coloured grey, unknown amino acid sequences are coloured 
light blue and family 50 CBMs are coloured green. The associated enzymes and domains are coloured 
according to sequence homology: YkwD - subgroup of cysteine-rich secretory proteins, antigen 5, and 
pathogenesis-related 1 proteins (CAP); YkuD - L,D-transpeptidase/carboxypeptidase; SH3 - SRC homology 
3 domain; GH18 - family 18 glycoside hydrolase; PGBD - Peptidoglycan binding domain; M14 - Peptidase 
M14. The predicted linker sequences are depicted by a line. The modular proteins are identified by gene ID 
(left panel) and the annotated protein names are shown (right panel). Sequence homology search was 
performed using Basic Local Alignment Search Tool from NBCI221, Uniprot222 and InterProScan223. 

with the broad binding to β-linked sequences by CmCBM-6-2 (Figure 5.2 and Table S2.4 in 

Chapter 2). While CtCBM50Cthe_0300, CtCBM50Cthe_2387 and CtCBM50-3Cthe_3006 exhibited a 

minimum chain-length requirement of 3 GlcNAc residues, CtCBM50-2Cthe_3006 and 

CtCBM50-1Cthe_3005 and CtCBM50-1Cthe_1800 seem to require longer epitopes for GlcNAc 

recognition, binding from DP-4 and DP-5 onwards, respectively (note that for CtCBM50-1Cthe_1800, 

both low and high levels are represented, as there was a misprint of DP-8 high level). 

CtCBM50-1Cthe_3007, showed weak binding signal and bound only to the GlcNAc probe with DP-5. 

Although all the CtCBMs 50 seem to require the N-acetyl group for binding, as none bound to the 

β1,4-GlcN probes, the fact that some showed different chain-length requirements may suggest 

subtle differences in their ligand recognition mechanisms. 
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Figure 5.2. Oligosaccharide microarray analysis of C. thermocellum family 50 CBMs. The microarray 
highlighted comprises 214 NGL probes with a wide degree of polymerization (DP) range of linear and 
branched oligosaccharide sequences of α- and β-glucans32, β-xylans, α-arabinans, β-mannans, xyloglucans, 
chitin and chitosan. Carbohydrate sequence information on these probes is shown in Chapter 2, Table S2.1. 
The proteins analysed are depicted at the left: plant lectins WGA and DSL, and CmCBM6-2, used in the 
comparative validation of the microarrays (upper panel); and CtCBMs 50 (bottom panel). The relative binding 
intensities were calculated as the percentage of the fluorescence signal intensity at 5 fmol given by the probe 
most strongly bound by each protein (normalized as 100%). Numerical scores are given in Chapter 3, 
Table S3.7. The monosaccharide symbolic representation used was according to the updated SNFG1. 

Given that CtCBM50Cthe_0300 (henceforward designated as CtCBM50) exhibited a higher binding 

avidity to β1,4-GlcNAc sequences in the microarrays, and is associated as a single LysM domain 

on a putative spore coat assembly protein, interest arose in the structural characterization of its 

carbohydrate recognition interface and associated mechanisms, which will be explored in the 

following sections. 

5.2.2 CtCBM50 structure in complex with β1,4-GlcNAc trisaccharide 

Crystallization experiments were carried out for CtCBM50 both as isolated and after incubation 

with β1,4-linked N-acetyl GlcNAc trisaccharide (GlcNAc3) for protein-ligand complex formation, 

as this was the minimum epitope recognised by the CBM in the microarrays.  

The CtCBM50 crystal structure could only be solved in the presence of GlcNAc3, at a resolution 

of 1.45 Å (Figure 5.4), as crystallization was unsuccessful for the isolated CBM. Statistics of X-ray 

diffraction data processing, model building, refinement and validation are presented in Tables 5.1, 

S5.1 and S5.2. CtCBM50 presented the typical βααβ-fold of LysM domains, with 3 molecules of 

the CBM (chains A, B and C) and one GlcNAc3 ligand (Figure 5.4A) in the asymmetric unit. 

GlcNAc3 was accommodated at the interface between chains A and B, with minor contact of chain 

C with the reducing end of GlcNAc3. The interface between the CtCBM50 chains A and B 

(CtCBM50AB) formed a binding cleft-like site (Figure 5.4B). The unbiased mFo-DFc electron 

density map calculated in the absence of the GlcNAc3 atom coordinates (Figure 5.4C) supported 

the ligand location. 
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Figure 5.3. Comparative analysis of C. thermocellum family 50 CBMs binding to β1,4-linked GlcNAc 
oligosaccharides. (A) The binding signals of each CtCBM50 are depicted as means of fluorescence 
intensities of duplicate spots at 5 fmol (and also at 2 fmol for CtCBM50-1Cthe_1800) of oligosaccharide probe 
arrayed (with error bars) and are representative of at least two independent experiments. (B) The 
microarrays included 7 β1,4-linked GlcNAc NGL-oligosaccharides with DP-2 to DP-8.  

The identified residues that constitute the binding site of CtCBM50AB interacted with the ligand 

mostly through hydrogen bonding (Figure 5.4D). As such, GlcNAc3 established direct hydrogen 

bonds with chains A and/or B residues Trp11, Asn35, Ile37, and Gly7, and water-mediated 

hydrogen bonds with Pro34, Met10, Thr9, Asn35 and Ile37 (Table S5.3). These interactions likely 

contribute to define the specific conformation of GlcNAc3 in CtCBM50AB’s binding site. Although 

most contacts were established with the polypeptide’s main chain atoms, the direct hydrogen  
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Figure 5.4.  Ribbon representation of the three-dimensional crystal structure of the 
CtCBM50-GlcNAc3 complex. (A) Representation of the overall structure of CtCBM50 exhibiting the typical 
βααβ-fold of LysM domains, with 3 molecules of the CBM and 1 GlcNAc3 trisaccharide ligand in the 
asymmetric unit, chain A-B-C. (B) Cartoon and surface representation of the CtCBM50-GlcNAc3 complex. 
The 3 CBM chains form a binding cleft where the ligand is accommodated. (C) Initial mFo-DFc electron 
density map, calculated in the absence of GlcNAc3, at a maximum resolution of 1.45 Å. GlcNAc3 is overlaid 
in the picture for reference. The electron density map is shown in green mesh, contoured at 2.5 σ; 
(D) Close-up view on the binding site of CtCBM50 evidencing the protein-ligand contacts established 
between the CBM chains and GlcNAc3 as listed in Table S5.3. Chain A is represented in cyan, chain B in 
yellow and chain C in magenta. GlcNAc3 is represented as stick model in grey and by atom type. The 
carbohydrate chains and the side chains of the amino acid residues that interact with the ligand are shown 
as sticks coloured by atom type. Water molecules are indicated as red spheres. Hydrogen bonding is 
indicated by dashed lines and CH-π stacking interactions are represented as double arrows. 

bonding between the Oδ atom in the carboxyl group of Asn35 side chain and the amine of 

GlcNAc1 and GlcNAc2 N-acetyl groups, in chain A and B respectively, may point to a key role of 

this residue. This highlights as well the importance of the N-acetyl group for CtCBM50 binding 

recognition, as indicated in the carbohydrate microarray analysis (Figure 5.2). Key interactions 

with GlcNAc N-acetyl groups have also been reported for Enterococcus faecalis AtlA, in which 

the methyl groups fit into hydrophobic pockets while the carbonyl groups form hydrogen bonds215.  
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Table 5.1. X-ray diffraction and structure refinement parameters and statistics for CtCBM50-GlcNAc3. 

Data collection  
Beamline ESRF, ID29 
Space Group C2 
Cell parameters  
a, b, c (Å) 99.39, 41.77, 42.87 
α, β, γ (ᵒ) 90.00, 96.89, 90.00 
Wavelength, Å 0.9677 
Resolution of data (outer shell), Å 42.56-1.45 (1.48-1.45) 
Total number of reflections (outer shell) 260560 (9664) 
Number of unique reflections (outer shell) 30139 (1427) 
Rpim (outer shell), % a 0.025 (0.468) 
Rmerge (outer shell), % b 0.048 (0.735) 
Mean I/σ(I) (outer shell) 20.9 (2.20) 
CC(1/2) (outer shell) 1.00 (0.81) 
Completeness (outer shell), % 97.1 (91.7) 
Redundancy (outer shell) 8.6 (6.8) 
Structure refinement  
No. of protein atoms 
Chain A 
Chain B 
Chain C 

 
368 
373 
371 

No. of solvent waters 125 
Resolution used in refinement, Å 1.45 
No. of reflections 28591 
Rwork / Rfree c 0.176 / 0.194 
rms deviation bonds (Å) 0.014 
rms deviation angles (ᵒ) 2.277 
rms deviation chiral volume (Å3) 0.151 
Avg B factors (Å2)  
Main chain A 
Main chain B 
Main chain C 

17.8 
22.7 
18.9 

Side chain A 
Side chain B 
Side chain C 

26.8 
23.1 
24.8 

GlcNAc 1 14.9 
GlcNAc 2 13.6 
GlcNAc 3 14.5 
Acetate ion 1 21.2 
Acetate ion 2 42.9 
Sulphate ion 1 62.1 
Water molecules 35.5 
Ramachandran statistics  
favored 128 
allowed 2 
generously allowed 0 
forbidden 0 

a  , where  is the average of symmetry-related observations 
of a unique reflection. 

b , where  is the average of symmetry-related observations of a 
unique reflection. 

c  , where  and  are the calculated and observed structure 

factor amplitudes, respectively.  is calculated for a randomly chosen 10% of the reflections. 
 

The interactions created with the N-acetyl groups also explain the deviation between chains A 

and B in the ligand interface, as the alternating orientation of the GlcNAc monomers causes one 

of the CBM molecules to shift towards the N-acetyl to establish the contact with its Asn35 carboxyl 

group. Chain C established only a direct contact through Gly7 NH group and the HO-C1 of 
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GlcNAc1, and a water-mediated hydrogen bond of Asp8 carbonyl group with HO-C1 of GlcNAc1 

monomer. In the presence of a longer chain-length sequence, chain C might however re-orientate 

in order to accommodate also part of the ligand in its binding site. Additionally, a single 

hydrophobic CH-π stacking interaction was identified, between the side chain of Trp11 from chain 

B and the glucose ring in GlcNAc1.  This observation was also reported for E. faecalis AtlA, where 

only one CH-π stacking interaction involving the aromatic ring was identified215. Although in a 

rotamer conformation pointing in the ligand direction, the aromatic ring of chain A Trp11 was 

placed too far from GlcNAc3 to establish an interaction. Hypothetically, when binding to longer 

chain-length GlcNAc sequences, this residue would likely interact with the ligand, reinforcing the 

important role of Trp11 for CtCBM50’s ligand recognition. The recognition as revealed by the 

CtCBM50AB-GlcNAc3 structure, seems to result from a ligand-induced interchain LysM multivalent 

assembly event, as also reported for Thermus thermophilus P60_2LysM224, evidencing how 

single LysMs may cooperate to increase the binding affinity218.  

Aiming to a better understanding of CtCBM50 binding mechanism, co-crystallization assays were 

also performed with longer chain-length GlcNAc ligands, with DP-5 and DP-6, however crystals 

were not possible to obtain to date.  

5.2.3 Binding affinity of CtCBM50 to β1,4-GlcNAc oligosaccharides and influence 
of chain-length  

The information obtained from the oligosaccharide microarrays and the CtCBM50-GlcNAc3 crystal 

structure allowed the identification of CtCBM50 ligand-specificity and chain-length requirement, 

as well as key amino acid residues involved in its binding to GlcNAc. In order to determine the 

contribution of additional GlcNAc monomers to the interaction with CtCBM50, ITC measurements 

were performed with varying DPs (GlcNAc3 to GlcNAc6). 

The ITC results corroborated that the affinity of CtCBM50 to GlcNAc oligosaccharides is 

chain-length dependent (Figure 5.5A and Table 5.2). CtCBM50 exhibited a chain-length 

dependency up to DP-5, with a 100-fold increase of the Ka from DP-3 to DP-5 (3.10×104 to 

1.21×106 M-1). The affinity seemed to stabilise, not increasing significantly from DP-5 to DP-6 (with 

a Ka of 1.31×106 M-1 for DP-6). These results point to a binding site comprised of at least five 

binding subsites, each accommodating an individual monosaccharide, in accordance with what 

was previously reported for P. ryukyuensis LysM domain (PrLysM2)225. Additionally, the increase 

in the enthalpy observed is indication that new interactions are being established with the addition 

of the fourth and the fifth monosaccharide to GlcNAc3. Interestingly, from GlcNAc4 to GlcNAc6 it 

is observed a decrease in the calculated n value from 1 to 0.8/0.7, suggesting that a quarter of 

the oligosaccharide molecules may be involved in bivalent binding by the CBM. This suggests the 

existence of two distinct binding epitopes in GlcNAc oligosaccharides for DP greater than 4, and 

that the increase in affinity observed from GlcNAc3 to GlcNAc5, is possibly a result of positive 

cooperativity between them. This assumption is supported by the substantial decrease in entropy  
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Figure 5.5.  Isothermal calorimetry titrations of binding of CtCBM50 and its mutant derivatives to 
β1,4-linked GlcNAc oligosaccharides. (A) Analysis of chain-length dependency of CtCBM50 binding to 
GlcNAc tri- to hexaccharides; (B) Analysis of the binding of CtCBM50 wild type and its mutants to 
trisaccharide GlcNAc3 and hexasaccharide GlcNAc6. The top portion of each panel shows the raw power 
data while the bottom parts show the integrated and heat of dilution corrected data. The solid lines show the 
non-linear curve fits to a one site binding model with the stoichiometry fixed at 1. Thermodynamic parameters 
are given in Table 5.2. 

that is observed from GlcNAc3 to GlcNAc4, and more pronounced to GlcNAc5. The decrease in 

entropy is an indication of an increase in the rigidity of the system, suggesting that conformational 

rearrangement may be occurring upon binding, as already had been reported for the E. faecalis 

LysM domains215. This could point to an interchain multivalent assembly of LysM modules induced 

by the longer GlcNAc sequences, where the number of binding sites (CBM molecules) measured 

increase with the longer chain-length ligands. This is in line with what has been suggested, that 

individual LysM domains bind in a cooperative manner to long ligand chains, but not to short  
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Table 5.2. Thermodynamic parameters of the binding of CtCBM50 and its mutant derivatives to 
polysaccharides and oligosaccharides. 

 

oligosaccharides215. These results suggest that the interchain assembly already observed in the 

CtCBM50-GlcNAc3 structure, although possibly induced by the packing in the crystal, could be 

observed in solution for the longer ligands.  

5.2.4 Molecular determinants of CtCBM50 ligand recognition and chain-length 
dependency 

Failing to produce a crystal structure of CtCBM50 complexed with longer GlcNAc 

oligosaccharides, simulation approaches using Molecular Dynamics (MD) calculations were used 

to study the molecular interactions underlying CtCBM50 ligand recognition to these ligands. To 

validate the approach, simulated complexes of CtCBM50 with GlcNAc oligosaccharides with DP-3 

were produced and studied using MD calculations in parallel with complexes of DP-4 to DP-6. 

The various CtCBM50AB-GlcNAc complexes resulting from the simulations are illustrated in 

Figure 5.6, and the respective calculated binding energies are presented in Table 5.3. The 

CBM-carbohydrate interactions obtained for the various oligosaccharides simulated are listed in 

Table S5.4. Only those complexes showing the most favorable binding energies for each 

oligosaccharide are shown and discussed (the other tested poses can be found in Figure S5.1 

and Tables S5.5 to S5.6). For these calculations, only chains A and B of CtCBM50 were 

considered based on the structural evidence that chain C has no significant contacts with the 

GlcNAc3 ligand. In agreement with the ITC results, and as foreseen in the microarray analysis, 

CtCBM50AB bound with higher affinity to GlcNAc oligosaccharides with chain-lengths higher than 

DP-3, with a more pronounced effect observed when the monosaccharide is added to the 

non-reducing end of GlcNAc3 (Figure 5.7A). The additional monosaccharide of GlcNAc4, was 

recognized by chain B’s NH of Gly7 and the carbonyl of Ile37 (designated subsite 2). The binding 

of the additional unit of GlcNAc5, was stabilized by a hydrophobic contact with the Trp11 of chain 

A (subsite 6), as well as via additional water-mediated hydrogen bonds with the CBM 

(Table S5.4). The side chain of Tyr38 from chain B interacted with the N-acetyl group of the extra  

CtCBM50 
variant Ligand Ka  

(M-1) 
ΔG 

(kcal.mol-1) 
ΔH 

(kcal.mol-1) 
TΔS 

(kcal.mol -1) n 

WT 
 

GlcNAc3 3.10 (± 0.36) ×104 -6.13 -5.22 ± 0.43 0.91 1.08 ± 0.06 
GlcNAc4 2.48 (± 0.15) ×105 -7.35 -12.84 ± 0.19 -5.49 0.81 ± 0.01 
GlcNAc5 1.21 (± 0.10) ×106 -8.30 -16.05 ± 0.16 -7.75 0.73 ± 0.01 
GlcNAc6 1.31 (± 0.15) ×106 -8.35 -16.22 ± 0.25 -7.87 0.80 ± 0.01 

Trp11Ala  GlcNAc3 9.90 (± 0.35) ×103 -5.44 -9.22 ± 0.28 -3.79 1.11 ± 0.03 
GlcNAc6 1.74 (± 0.14) ×105 -7.16 -14.49 ± 0.11 -7.33 1.25 ± 0.01 

Asn35Ala GlcNAc3 No binding 
GlcNAc6 2.03 (± 0.05) ×105 -7.26 -12.92 ± 0.78 -5.66 0.84 ± 0.00 

Tyr38Ala GlcNAc3 Not tested 
GlcNAc6 8.62 (± 0.19) ×105 -8.10 -9.07 ± 0.22 -0.97 1.40 ± 0.00 

Trp11Ala/ 
Tyr38Ala 

GlcNAc3 No binding 
GlcNAc6 8.59 (± 4.42) ×103 -5.36 -10.04 ± 0.19 -4.68 3.66 ± 0.38 



CHAPTER 5. STRUCTURAL-FUNCTIONAL CHARACTERIZATION OF A NEW LYSM DOMAIN 
 

123 
 

 

 

Figure 5.6.  Representation of the last simulation structure of the various GlcNAc oligosaccharides 
bound to the CtCBM50 complex of chains A and B. (A) GlcNAc3; (B) GlcNAc4; (C) GlcNAc5; and (D) 
GlcNAc6. Chain A is represented in blue cartoon and chain B in yellow. GlcNAc oligosaccharides are 
represented as sticks and coloured by atom type. All residues involved in the binding interface and that 
established hydrogen bonds or hydrophobic contacts with the various oligosaccharides are represented as 
sticks and coloured purple. The binding subsites (1-6) are also represented in (D). 

unit of GlcNAc6 (subsite 1, Figure 5.7B). From this analysis, 6 binding subsites (1 to 6) could be 

suggested (Figure 5.7A). The study of the hydrogen bonds established between the protein 

chains A and B and the GlcNAc sequences, along the last 30 ns of MD simulations, revealed that 

the N-acetyl and the HO-C6 groups are the ones that interact more with the CtCBM50 chains 

(Table S5.4). Furthermore, the N-acetyl groups also mediate dispersive contacts through the 

methyl group that fit into hydrophobic pockets of both chains, Val4, Ile37 and Pro39 in subsites 1 

and 2, and Ile21, Ile25 and Pro34 in subsites 4 and 5.  

To assess if a single CtCBM50 chain is sufficient to bind the GlcNAc oligosaccharides, several 

MD simulations with the various ligands bound to CtCBM50 chains A or B were also carried out 

(Table S5.6). The lower binding free-energies obtained for the CtCBM50AB, in relation with each  
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Table 5.3. Binding enthalpies and binding free-energies of the GlcNAc ligands to the CtCBM50 chains 
A and B. The results are shown relative to the CtCBM50AB-GlcNAc3 complex. 

Ligand ΔΔHbinding (kcal∙mol-1) ΔΔGbinding (kcal∙mol-1) 
GlcNAc3 0.0 ± 0.7 0.0 ± 0.1 
GlcNAc4 -21.0 ± 0.7 -14.4 ± 0.1 
GlcNAc5 -27.3 ± 0.7 -17.1 ± 0.1 
GlcNAc6 -30.2 ± 0.7 -19.2 ± 0.1 

 

individual chain, suggested that the intermolecular assembly with symmetry-related chains of 

CtCBM50 facilitated the carbohydrate binding. This fact is in accordance with what has been 

suggested for LysM domains, in which multiple domains cooperate to enhance binding to GlcNAc 

polymers and with the ITC results discussed above. Although chain C was not considered for the 

present simulations, as it did not seem to establish any direct contacts with GlcNAc3 in its binding 

site, it would be of interest to evaluate the contribution of this chain for the binding of longer 

chain-length ligands. 

Considering the simulations results and the structure-based rationale, mutant alanine derivatives 

of residues involved in direct hydrogen bonds and CH-π interactions with the ligand (Trp11, and 

Asn35 and Tyr38) were produced to analyse the role of the interacting amino acid residues for 

CtCBM50 ligand recognition and chain-length dependency (Figure 5.5B and Table 5.2). The wild 

type CBM and mutants were analysed by ITC against GlcNAc3 and GlcNAc6. Asn35Ala mutant, 

produced to study the influence of the hydrogen bonding it established with GlcNAc ligands, 

abolished binding to GlcNAc3, while decreasing the affinity for GlcNAc6 by 10-fold. The mutants 

Trp11Ala and Tyr38Ala were produced to assess the influence of longer chain ligands to the 

interaction.  Trp11Ala led to a significant decrease in the affinity for GlcNAc6 of 10-fold, while 

having only a small effect in the affinity for GlcNAc3 (with a Ka of 9.90×103 from 3.10×104 M-1). 

Tyr38Ala mutant, led only to a small decrease of CtCBM50 affinity to GlcNAc6 (with a Ka of 

8.62×105 from 1.31×106 M-1). However, the double mutant Trp11Ala/Tyr38Ala showed a 

cumulative effect in the affinity for both ligands, by abolishing binding to GlcNAc3 and significantly 

decreasing the affinity for GlcNAc6 by over 100-fold. These results corroborate that these residues 

and the interactions they are mediating play a key role in CtCBM50 ligand recognition. While 

Trp11 and Tyr38 by itself seem not to dictate GlcNAc binding, their combined effect appears to 

be essential for the stabilization of the ligand in the binding site. Asn35 on its turn seems to be 

particularly crucial for the binding of smaller chain-length GlcNAc sequences.  

5.2.5 CtCBM50 interaction with peptidoglycan sequences  

Given that LysM domains are known to recognise PG polysaccharides, studies were carried out 

to address the binding capabilities of CtCBM50 to such sequences. Co-precipitation assays were 

performed with PG fractions isolated from S. aureus and Escherichia coli (E. coli) (Figure 5.8). 

The binding to the insoluble polysaccharide chitin was also analysed. CtCBM50 exhibited strong  
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Figure 5.7.  Molecular dynamics simulations of CtCBM50 chain-length dependency. (A) Schematic 
representation of the position of the GlcNAc3, GlcNAc4, GlcNAc5 and GlcNAc6 ligands into the CtCBM50AB 
structure as well as their binding affinities. The interacting protein residues are represented. The binding 
subsites (1-6) are also indicated. (B) Close-up of the ligand binding site accommodating GlcNAc6. Chain A 
is depicted in blue and B in yellow. GlcNAc6 is represented by sticks and coloured by atom type. All residues 
involved in the complex interface and that established hydrogen bonds or hydrophobic interactions with 
GlcNAc6 are represented by balls-and-sticks, coloured by atom type.  
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Figure 5.8.  Binding of CtCBM50 to insoluble chitin and peptidoglycan. Qualitative co-precipitation 
assays of (A) CtCBM50 and (B) Peptidoglycan Recognition Protein (PGRP-SA), used as control protein, 
with insoluble chitin and with peptidoglycan from two different sources, Staphylococcus aureus (S. aureus) 
and Escherichia coli (E. coli). Bound fractions corresponding to the precipitated material: 1) protein control 
with no ligand; 2) chitin; 3) S. aureus peptidoglycan and 4) E. coli peptidoglycan; Ligand controls without 
protein: 5) chitin; 6) S. aureus peptidoglycan and 7) E. coli peptidoglycan; Unbound fractions corresponding 
to the supernatants: 8) protein control with no ligand; 9) chitin; 10) S. aureus peptidoglycan and 11) E. coli 
peptidoglycan; M) Nzytech protein marker II. 

binding to both PGs, thus the CBM does not seem to distinguish between PGs derived from 

Gram-positive or Gram-negative bacteria (Figure 5.8A). Binding to insoluble chitin was also 

confirmed. The binding of S. aureus Peptidoglycan Recognition Protein (PGRP-SA), used as 

positive control, to both PGs (Figure 5.8B) as previously described226, supported the results 

observed for CtCBM50. 

The molecular determinants for PG binding were also assessed by MD simulations. 

Oligosaccharide sequences with alternating GlcNAc and MurNAc units, from DP-3 to DP-6, were 

investigated and the ones showing the most favorable binding energies for each oligosaccharide 

are discussed (the other tested poses can be found in the supplementary information 

Figures S5.2 and S5.3 and Tables S5.7 to S5.9). Only the coordinates of CtCBM50 chains A and 

B were considered for this analysis. As previously shown for GlcNAc ligands, CtCBM50AB binding 

affinities also increased with PG oligosaccharide chain-length (Table 5.4 and Figure S5.2), where 

five monomers seem to have the optimal binding (Table S5.7). The results also showed that the 

substitution of GlcNAc residues by MurNAc decreased CtCBM50AB affinity. This was also 

highlighted by the reduced number of hydrogen bonds between the ligands and the CBM along 

the last 30 ns of MD simulations (Table S5.8). On the one hand, some HO-C6 groups of GlcNAc 

monomers lost interaction with CtCBM50 chain B residues Asn35 and/or Ile37 and established 

intra-molecular hydrogen bonds with the carboxylic groups of MurNAc instead (Figure 5.9, 

Table S5.8). On the other hand, the presence of the bulky lactyl groups at MurNAc units reduces 

the interfacial contacts with the adjacent chain of CtCBM50 due to steric hindrance. This induces 

conformational rearrangements of the protein as well as modifications in CtCBM50 chains 
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Figure 5.9.  Close-up of inter- and intra-chain hydrogen bonds involving the HO-C6 group of the 
GlcNAc residue in simulations with GlcNAc and MurNAc-GlcNAc pentasaccharides. 
(A) CtCBM50-GlcNAc5 and (B) CtCBM50-MurNAc-GlcNAc5. Chain A is depicted in blue and B in yellow. 
GlcNAc5 is represented by sticks and coloured by atom type. Asp35 is represented by balls-and-sticks, 
coloured by atom type.  

positioning (Figure S5.3). These structural movements were also evident in the simulations with 

the PG sequences bound to a single CtCBM50 chain (Table S5.9). For example, the lactyl groups 

of the GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc ligand are directed to CtCBM50 chain A and 

have a lower number of protein-ligand interactions, which supports the reduced affinity with this 

domain (∆∆Gbinding of 13.8 ± 0.1 kcal∙mol-1 in relation to chain B). This higher binding affinity for 

GlcNAc sequences than for PG, has also been reported for E. faecalis AtlA LysM215. In addition 

to the amino acid residues mentioned in the previous section, Thr9 of chain A also contributed to 

the binding to PG oligosaccharides, pointing to an important role in PG recognition by CtCBM50. 

The influence of PG’s peptide stems on the binding to CtCBM50AB was also evaluated. MD 

simulations showed that the peptides do not interact with the interfacial residues of CtCBM50AB 

 
Table 5.4. Binding enthalpies and binding free-energies of the peptidoglycan ligands to CtCBM50. 
Results shown are relative to the corresponding CtCBM50AB-GlcNAc complex with the same number of 
units. 

Ligands ΔΔHbinding  
(kcal∙mol-1) 

ΔΔGbinding  
(kcal∙mol-1) 

GlcNAc3 0.00 ± 0.7 0.0 ± 0.1 
[GlcNAc-Mur2Ac-GlcNAc] 8.9 ± 0.7 12.9 ± 0.1 
[Mur2Ac-GlcNAc-Mur2Ac] 27.8 ± 0.9 28.5 ± 0.1 
GlcNAc4 0.0 ± 0.7 0.0 ± 0.1 
Mur2Ac-[GlcNAc-Mur2Ac-GlcNAc] 10.2 ± 0.8 11.2 ± 0.1 
GlcNAc-[Mur2Ac-GlcNAc-Mur2Ac] 14.8 ± 0.8 14.6 ± 0.1 
GlcNAc5 0.0 ± 0.8 0.0 ± 0.1 
Mur2Ac-[GlcNAc-Mur2Ac-GlcNAc]-Mur2Ac 4.9 ± 1.0 7.9 ± 0.1 
GlcNAc-[Mur2Ac-GlcNAc-Mur2Ac]-GlcNAc 17.3 ± 1.0 16.8 ± 0.1 
GlcNAc6 0.0 ± 0.8 0.0 ± 0.1 
GlcNAc-Mur2Ac-[GlcNAc-Mur2Ac-GlcNAc]-Mur2Ac 17.9 ± 0.8 15.5 ± 0.1 
Mur2Ac-GlcNAc-[Mur2Ac-GlcNAc-Mur2Ac]-GlcNAc 18.7 ± 0.8 18.5 ± 0.1 
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binding site (Figure S5.4). This observation is in agreement with previous studies that indicated 

that the monosaccharide residues are essential for LysM recognition, whereas the peptide stems 

might not be recognized by the protein residues215,224. 

5.2.6 Clostridium thermocellum family 50 CBMs in the context of LysM domains  

Analysis of protein residue conservation of C. thermocellum family 50 CBMs (Figure 5.10A) 

revealed that the interacting residues identified in CtCBM50 (CtCBM50Cthe_0300) were poorly 

conserved except for Gly7 and Asp8. Trp11 and Tyr38 are only present in 7 and 9 of the 15 

CtCBM50s, respectively. Asn35 only occurs in 4 CBMs, while being replaced by other polar or 

charged amino acids that could still be involved in hydrogen bonding. Ile37, although only found 

in 5 CBMs, is substituted by a Leu in the remaining proteins, retaining the hydrophobic effect at 

this position. These observations are not completely unexpected, as the consensus sequence of 

LysM domains shows that, while the motif is well conserved over the first 16 amino acid residues 

and slightly less over the last 10, the central region is poorly conserved except for an Asn 

residue214. 

 

 

Figure 5.10. Alignment of CBM50 family members. Primary sequence alignment of (A)  C. thermocellum 
family 50 CBMs and (B) CtCBM50Cthe_0300 (CtCBM50) with LysMs from other microorganisms: Bacillus 
subtilis (BsSafA)177, Thermus thermophilus (TthP60)224, Enterococcus faecalis (EfAtlA)215, Cladosporium 
fulvum (CfECP6)227, Pteris ryukyuensis (PrLysM2)225 and Volvox carteri (VcLysM2)228. Identity to 
CtCBM50Cthe_0300 is indicated with red and yellow boxes. Residue numbers refer to the corresponding CBM 
sequence. CtCBM50Cthe_0300 secondary structure prediction is presented above. Red triangles identify 
CtCBM50Cthe_0300 residues involved in the interaction with GlcNAc3 ligand. The sequence alignment was 
generated with Clustal Omega196 and rendered using Espript server229. 
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When in comparison with LysMs from other microorganisms (Figure 5.10B), the same trend is 

observed, with only CtCBM50 interacting residues Gly7 and Asp8 being conserved. By 

superimposing CtCBM50-GlcNAc3 (chain B) structure with TthP60_2LysM bound to a GlcNAc6, 

the interacting residues identified for TthP60 LysM1 are found at the same positions as those of 

CtCBM50 (Figure 5.11). With a primary sequence identity of 37%, the only identified interacting 

residues conserved are Thr9 and Gly7. However, the remaining residues that interact with the 

ligands seem to establish the same type of contacts, with most of the hydrogen bonding also 

strongly established with the protein’s main chain at the same positions, and with the aromatic 

ring of a Tyr, which corresponds to Trp11 in the CtCBM50 structure.  

 

Figure 5.11. Superposition of CtCBM50 with Thermus thermophilus LysM1. Chain B of CtCBM50 
bound to GlcNAc3 was superposed with LysM1 of TthP60_2LysM bound to a GlcNAc6 (PDB ID 4UZ3)224. 
CtCBM50 is represented as cartoon in yellow and TthP60_2LysM in green. GlcNAc3 and GlcNAc6 are shown 
as stick models in light grey and dark grey, respectively, and by atom type. Residues of each protein involved 
in the interactions with its ligand are represented by sticks and coloured by atom type. Alignment was 
performed using MatchMaker tool from UCF Chimera40, with an rmsd value of 0.786.  

Similar with what was observed for TthP60_2LysM, CtCBM50 seems to adopt an interchain 

assembly behaviour where multiple CBM modules bind to the same GlcNAc oligosaccharide. The 

results reported here, point to an interchain multivalent assembly induced by longer GlcNAc 

sequences, where the individual CBM modules bind in a cooperative manner to long ligand 

chains, but not to short oligosaccharides (Figure 5.12). We hypothesize that individual CtCBM50 

molecules bind to longer DP GlcNAc oligosaccharides by rearranging their position, so that each 

module binds an optimal binding epitope that contains at least two interacting N-acetyl groups.  

Based on the MD calculations with PG oligosaccharides, a similar behaviour could be predicted 

upon the binding of CtCBM50 to PG sequences, where the CBM chains dislocate to better 

accommodate the ligand (Figure S5.3).  

The modular protein containing CtCBM50 (Figure 5.1) shares 48% of sequence identity with 

B. subtilis SafA, a LysM-containing spore coat assembly protein involved in the formation of the 

multiprotein coat that encases bacterial spores177. Given that C. thermocellum also produces  
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Figure 5.12. Schematic representation illustrating the hypothesized cooperative binding by CtCBM50 
to (A) short and (B) long GlcNAc oligosaccharides. Experimental data points to an interchain CBM 
multivalent assembly induced by longer GlcNAc sequences, where individual CBM molecules bind in a 
cooperative manner to long ligand chains. CtCBM50 modules would bind to longer DP GlcNAc 
oligosaccharides by rearranging their position, so that each module binds an optimal binding epitope that 
contains at least two interacting N-acetyl groups. Black triangles represent the alternating N-acetyl groups. 

spores, conferring for instance its elevated resistance to heat and other unfavourable growth 

conditions230, this can point to a possible role of family 50 CBMs in this bacterium, as well as a 

reasoning for expressing such high number of these CBMs. 

5.3 Conclusions 

With the present work the carbohydrate specificity of C. thermocellum family 50 CBMs was 

assigned to β1,4-linked GlcNAc sequences, revealing a chain-length dependency with a 

trisaccharide as a minimum epitope for recognition. Additionally, the first structure of a CtCBM50 

was solved and in complex with a GlcNAc trisaccharide, revealing an intermolecular interaction 

of two CBM molecules with the GlcNAc ligand. Besides binding to chitin and chitin-derived 

oligosaccharide sequences, peptidoglycan binding was also attested for CtCBM50, although with 

less affinity. The present results suggest that CtCBM50, acting in a multimodular way, is able to 

form a ligand binding site comprised of up to 6 binding subsites. Key residues were identified to 

mediate both chitin and peptidoglycan oligosaccharide recognition by CtCBM50, with Gly7, Asp8, 

Asn35 and Ie37 residues providing important hydrogen bonding network mediated by main chain 

atoms; aromatic residues Trp11 and Tyr38 contributing to binding by stacking interactions; and 

relevant dispersive contacts mediated by Val4, Ile21, Ile25, Pro34 and Pro39 residues. Given the 

identified residues responsible for CtCBM50 ligand recognition are poorly conserved among LysM 

domains, our observations point out to a coherent yet adaptable recognition mechanism, dictated 

by the protein’s structural motifs through a critical hydrogen bonding network which results from 

interactions with main chain atoms and provide a contact surface with the ligand monomers. 

Furthermore, our results also suggest that ligand binding is favored by the multivalent assembly 

of CtCBM50 modules, supporting the notion of LysM domains cooperative binding. 
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The integrative information derived from this work will allow to understand mechanisms of 

carbohydrate recognition to chitin and peptidoglycan by other members of family 50 CtCBMs, 

contributing to elucidating their role in C. thermocellum. Moreover, the characterization of the 

carbohydrate recognition by these LysMs, opens the possibility of their potential biotechnological 

applications. 

5.4 Experimental procedure 
5.4.1 Gene cloning, mutagenesis and protein purification 

Family 50 CBMs were cloned, expressed and purified using the same procedure as described in 

section 3.4.2 of Chapter 3. For the structural studies, CtCBM50Cthe_0300 was cloned in a pET28a 

plasmid (Novagen), in which the recombinant protein was generated containing a C-terminal 

hexa-histidine tag (His-tag). Site-directed mutants were generated using the NZYMutagenesis kit 

(NZYTech Ltd) according to the manufacturer’s instructions using pET28a as template. Primers 

used to generate the mutant DNA sequences are listed in Table S5.10. Recombinant sequences 

of all mutant plasmid derivatives were confirmed by sequencing to ensure that only the 

appropriate mutations were incorporated.  

E. coli BL21 harbouring the CtCBM50Cthe_0300 encoding gene was cultured in LB containing 

50 µg/mL kanamycin at 37 °C until mid-exponential phase (OD600nm = 0.6), at which point IPTG 

was added to a final concentration of 1 mM. Cultures were then further incubated for 5h at 37 °C, 

at 150 rpm in a Gallenkamp Orbital Shaker. Cells were collected by centrifugation at 5000×g for 

15 minutes at 4 ºC and the cell pellet resuspended in a 50 mM sodium HEPES buffer, pH 7.5, 

containing 1 M NaCl, 2 mM CaCl2 and 10 mM imidazole. CtCBM50Cthe_0300 was purified from the 

cleared cell-lysate by Ni2+-immobilized IMAC. The eluted protein fractions were subjected to 

SDS-PAGE on 13% (w/v) acrylamide gels, stained with Coomassie Brilliant Blue, in order to 

assess the purity of recombinant proteins. The fractions containing pure protein were pooled and 

buffer-exchanged into 50 mM MOPS buffer, pH 6, containing 50 mM NaCl and 2 mM CaCl2, for 

protein stability. Amicon 3-kDa molecular-mass centrifugal membranes were used to achieve 

higher protein concentration.  

All proteins were >95% pure as judged by SDS-PAGE and their concentrations determined from 

their calculated molar extinction coefficient using the Protparam tool 

(http://www.expasy.org/tools/protparam.html) at 280 nm using a SpectraDrop Micro-Volume 

Microplate (Molecular Devices, USA). 

5.4.2 Sources of carbohydrates 

Information on the GlcNAc oligosaccharides and sources included in the NGL-microarrays are 

given in Table S2.1. Insoluble chitin polysaccharide from shrimp shell was purchased from 

http://www.expasy.org/tools/protparam.html
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Sigma-Aldrich. Peptidoglycan samples from E. coli231 and S. aureus232 were kindly provided by 

Professor Sérgio Filipe (UCIBIO, NOVA). 

5.4.3 Carbohydrate microarray analysis 

The NGL-microarrays results exhibited correspond to the experiments presented in Chapter 3, 

performed as described in section 3.2.4. The results reported here, correspond to at least two 

independent experiments, performed with different batches of CBMs. 

5.4.4 Crystallization and X-ray Diffraction Data Collection 

CtCBM50Cthe_0300 complex with GlcNAc was produced by overnight incubation of the protein 

(3.5 mg/mL) with β1,4-linked GlcNAc trisaccharide (GlcNAc3) at 1:2 molar ratio. Crystallization 

assays were performed using an automated nano-drop dispenser Oryx8 (Douglas Instruments) 

and commercial screenings JBScreen Classic 2-5 (Jena Bioscience) and Structure 1 & 2 

(Molecular Dimensions). 192 conditions with and without ligand were tested using the sitting-drop 

vapor diffusion method (SWISSCI 'MRC' 2-Drop Crystallization Plates – 96 wells, Douglas 

Instruments), in a 2 μL drop (containing 50% protein). Crystals of the CtCBM50-GlcNAc3 complex 

grew through the course of three weeks, at 20 °C, in a crystallization condition composed of 0.1 M 

sodium acetate buffer, pH 4.6, and 2 M ammonium sulphate. Crystals were harvested using a 

solution of 0.1 M sodium acetate buffer, pH 4.6, and 2.5 M ammonium sulphate, and then 

flash-cooled in liquid nitrogen using 30% (v/v) glycerol as cryoprotectant added to the harvesting 

solution. 

X-ray diffraction data from a single crystal of the CtCBM50-GlcNAc3 complex was collected under 

a nitrogen stream at 100 K in ID29 beamline at the ESRF (Grenoble, France) to a maximum 

resolution of 1.45 Å and using X-ray radiation at a fixed wavelength of 0.9677 Å. The 

CtCBM50-GlcNAc3 crystal indexed in space group C2, with cell constants a = 99.39, b = 41.77, 

and c = 42.87 Å and β = 96.89°, corresponding to a calculated Matthews coefficient of 2.28 Å3/Da 

and a solvent content of 46%. Data collection, processing, model building and validation statistics 

are shown in Table 5.1. 

5.4.5 Phasing, Model Building, and Refinement 

CtCBM50-GlcNAc3 complex X-ray data sets were processed using MOSFLM202 and SCALA203 

from the CCP4 suite204. Phasing was performed by molecular replacement with Phaser MR205 

from CCP4 using the polypeptide chain of Volvox carteri LysM2 structure (PDB ID 5K2L)228 . 

Models completion, iterative building, and initial validation were carried out in COOT206. Automatic 

addition of water molecules and restrained refinement of the full models were done using 

REFMAC5207. Structure validation was performed using ProCheck233 and SfCheck234. 

PRIVATEER120 was used for the validation of the stereochemistry and conformation of the 

carbohydrate ligands (Table S5.1). The CtCBM50-GlcNAc3 asymmetric unit, obtained with final 
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R = 17.6% (Rfree = 19.4%), consists of 3 CBM chains of 46 amino acid residues in chains A and 

B and 47 in chain C, 2 acetate ions and 1 sulphate, 125 water molecules, and 1 GlcNAc3 ligand.  

Molecular graphics images corresponding to the crystallographic structure were produced using 

the UCSF Chimera package from the Computer Graphics Laboratory, University of California, 

San Francisco40.  

5.4.6 Isothermal titration calorimetry 

ITC assays were performed as described previously in Chapter 4, section 4.4.7. Before the 

experiments, purified CBMs were buffer-exchanged into 50 mM MOPS buffer, pH 6, containing 

50 mM NaCl and 2 mM CaCl2. Thermodynamic parameters are shown in Table 5.2.  

5.4.7 Molecular modelling 

The X-ray structure of the CtCBM50 in complex with GlcNAc3 derived from this work (1.45 Å 

resolution) was used as a starting geometry for the subsequent modelling studies. For the present 

analysis, chain C was not considered, since it did not establish significant contacts with GlcNAc3. 

Three different CBM50 systems were considered: 1) the assembly of coordinates for chains A 

and B, 2) chain A only, and 3) chain B only. The tetrasaccharide (GlcNAc4), pentasaccharide 

(GlcNAc5) and hexasaccharide (GlcNAc6) ligands were modelled by superposition with a 

T. thermophilus LysM domain structure co-crystallized with a β1,4-linked hexasaccharide (PDB 

ID 4UZ3, 1.75 Å resolution)224. Starting from the GlcNAc3, two, three, and four different poses of 

GlcNAc4, GlcNAc5 and GlcNAc6 were modelled, respectively. These poses differed in terms of 

the position of the oligosaccharides in the binding cleft. Figure S5.1 schematizes the position of 

the different ligands in the CtCBM50AB binding interface as well as their computed relative binding 

energies (see computational details below).  

For each of the modelled oligosaccharides, the poses with the highest binding affinities were 

chosen to model the corresponding ligands composed of alternating MurNAc and GlcNAc units. 

Initially, only the lactyl group was considered in the MurNAc residues (i.e. without the peptide 

stem). The various molecular systems created were: i) CtCBM50AB complexed with GlcNAc3, 

GlcNAc4, GlcNAc5, GlcNAc6, MurNAc-GlcNAc-MurNAc, GlcNAc-MurNAc-GlcNAc-MurNAc, 

GlcNAc-MurNAc-GlcNAc-MurNAc-GlcNAc and MurNAc-GlcNAc-MurNAc-GlcNAc-MurNAc-

GlcNAc; and ii) CtCBM50-A or CtCBM50-B chains complexed with GlcNAc3, GlcNAc4, GlcNAc5, 

GlcNAc6, MurNAc-GlcNAc-MurNAc, GlcNAc-MurNAc-GlcNAc-MurNAc, GlcNAc-MurNAc-

GlcNAc-MurNAc-GlcNAc and MurNAc-GlcNAc-MurNAc-GlcNAc-MurNAc-GlcNAc. For the 

peptidoglycan fragments we also tested the complementary sequences considering the 

CtCBM50AB: GlcNAc-MurNAc-GlcNAc, MurNAc-GlcNAc-MurNAc-GlcNAc, MurNAc-GlcNAc-

MurNAc-GlcNAc-MurNAc and GlcNAc-MurNAc-GlcNAc-MurNAc-GlcNAc-MurNAc. 

The physiological protonation state of all protein residues was considered. Each protein:sugar 
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complex was inserted in a 15 Å rectangular TIP3P water periodic box. Three and six Cl- 

counter-ions were added to neutralize the charge of the monomeric and dual-chain systems, 

respectively. LEAP program was used to assemble the systems. 

5.4.8 Minimization, molecular dynamics simulations and binding energies 

The Amber 12 simulation package235 was used to carry out a two-step minimization and MD 

simulations. AMBER force field parameters set were used to describe the protein, 

peptidoglycan-peptide and oligosaccharides (ff99SB, GAFF and Glycam06)236,237. Firstly, only the 

solvent and counter-ions positions were optimized (500 cycles of steepest descent algorithm and 

1500 cycles of conjugate gradient algorithm). Secondly, the position of all atoms was optimized 

(4000 cycles of steepest descent algorithm and 6000 cycles of conjugate gradient algorithm). The 

system was then equilibrated with an MD simulation of 100 ps in the NVT ensemble and using 

periodic boundaries conditions. This was followed by 40 ns of production MD simulation in the 

NPT ensemble. To control the pressure and the temperature of the systems, Berendsen barostat 

and the Langevin thermostat were used238. The systems were simulated at 1 atm and at 328 K 

(optimal growth temperature of C. thermocellum)239. Non-bonded interaction pairs were 

calculated within a 10 Å. Beyond that, Coulomb interactions were treated with the Particle-Mesh 

Ewald (PME) method240 and vdW interactions were truncated. The SHAKE algorithm241 was 

employed to constrain the bond lengths involving hydrogen atoms, and the equations of motion 

were integrated with a 2 fs time step using the Verlet leapfrog algorithm. The MD trajectories were 

saved every 10 ps and analysed with the CPPTRAJ module242 of Amber 12, allied to the visual 

molecular dynamics (VMD 1.9.2) program for visualization and image rendering243. 

The Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) approach244 was 

employed to determine the binding energy of each oligosaccharide and the CtCBM50 models 

(dual-chain or monomers). A total of 120 structures extracted from the last 30 ns of each MD 

simulation were used for the analysis. Entropic effects were also determined using normal mode 

analysis. We present the results as the relative binding energies (ΔΔHbinding or ΔΔGbinding) in 

respect to the ligand with the smallest number of sugar units. The binding energies of each 

oligosaccharide and CtCBM50 chain were determined by two different strategies: i) using the 

trajectory of the CtCBM50AB complexed to the GlcNAc ligands and deleting the atoms from one 

of the chains (A or B); and ii) using the trajectories from the simulations of CtCBM50-A or 

CtCBM50-B chains complexed with the GlcNAc oligosaccharides.  

5.4.9 Binding to insoluble polysaccharides by co-precipitation assays 

The co-precipitation assays were performed essentially as described by Vaz et al. 2019226. 

CtCBM50 (0.17 mg/mL) in 50 mM MOPS buffer, pH 6, 50 mM NaCl and 2 mM CaCl2 were mixed 

with the polysaccharides suspensions, at 0.2% (w/v) chitin and 0.1% (w/v) peptidoglycans, to a 

final volume of 200 µL. S. aureus Peptidoglycan Recognition Protein (PGRP-SA)232 (0.3 mg/mL), 
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kindly provided by Professor Sérgio Filipe (UCIBIO, NOVA), was used as a positive control for 

the assay. Negative controls of the proteins without the polysaccharides and the polysaccharides 

without the proteins were also prepared. The mixtures were incubated for 30 minutes at 25 °C at 

1000 rpm, followed by 10 minutes centrifugation at 3000 rpm, upon which the supernatants 

(unbound fractions) were carefully removed. The pellets were washed with 200 μL of buffer and 

centrifuged for 5 minutes at 6000 rpm, followed by a second wash with 200 μL of buffer and 

centrifuged for 2 minutes at 13,200 rpm. The pellets (bound fractions) and 30 μL of the unbound 

fractions were then mixed with 30 μL of 2x SDS loading buffer (10% (w/v) SDS containing 

10% (v/v) β-mercaptoethanol) and boiled for 5 minutes, after which the samples were centrifuged 

for 3 minutes at room temperature, at 13,200 rpm, and the supernatants were recovered (20 μL) 

into a fresh tube. The bound and unbound fractions full supernatant volume was loaded on a 13% 

SDS-PAGE acrylamide gel and the resulting bands were visualized by Coomassie Blue Staining. 

5.5 Work contributions 

All work related to the results reported here, were executed by the author of this thesis, except 

for the molecular modelling and dynamics simulations which were performed by Dr. Natércia Brás 

(UCIBIO, REQUIMTE, Porto), upon discussion and planning with the author. PhD student Raquel 

Costa has also contributed for the experimental work, as part of her Master thesis work. 

Mutagenesis and ITC studies were planned and performed with the assistance of Dr. Benedita 

Pinheiro (UCIBIO, NOVA). Co-precipitation assays with insoluble PG and chitin were performed 

upon discussion and planning with Professor Sérgio Filipe (UCIBIO, NOVA) and PhD student 

Gonçalo Covas. 
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CHAPTER 6 
ASSIGNING THE CARBOHYDRATE SPECIFICITY OF            

RUMINOCOCCUS FLAVEFACIENS FAMILY 13 CBMS: 
RECOGNITION OF PECTIC ARABINANS 

BY A NOVEL CBM13  
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6 Assigning the carbohydrate specificity of Ruminococcus 
flavefaciens family 13 CBMs: Recognition of pectic arabinans 
by a novel CBM13 

6.1 Introduction 

Plant cell walls are composed in its majority by highly diverse and complex polysaccharides, 

including cellulose, glucans, hemicelluloses and pectins61 (Chapter 1, section 1.1 and Figure 1.1). 

Pectins are one of the major plant cell wall components and the most structurally complex and 

heterogeneous group of polysaccharides4,10,245. While its composition and fine structure vary 

depending on the plant source and tissue, and even on the extraction conditions applied, these 

galacturonic acid-rich polysaccharides are structurally divided into three major groups: 

homogalacturonan (HG), rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II) 

(Figure 6.1). The HG backbone can be substituted by β1,3-linked xylose comprising the 

xylogalacturonan (XGA) domain4,10,245,246. The RG-I, is the second most predominant group of 

pectic polysaccharides after α1,4-linked HG,  and is composed of a backbone of alternating units 

of α1,2-linked rhamnose and α1,4-linked galacturonic acid units substituted with neutral side 

chains, such as arabinans and galactans10,61,245,247. Galactans are comprised of β-linked 

galactopyranose units, which can be partially branched with galactopyranose and 

arabinofuranose units, comprising arabinogalactan  domains (AG-I or AG-II)245. Pectic arabinans 

are comprised of an α1,5-linked arabinofuranose backbone, that can be ramified at position O3 

and/or O2 by single arabinosyl residues or short side chains10,245,248.  

Several cellulolytic bacteria evolved to degrade the recalcitrant plant cell wall polysaccharides by 

employing an extracellular multi-protein complex machinery, the Cellulosome, where the catalytic 

modules (CAZymes) have non-catalytic CBMs appended. CBMs play a crucial role in enhancing 

the catalytic efficiency of the enzymes, hence contributing for the biodegradation of plant 

polysaccharides by the bacteria (reviewed in more detail in Chapter 1, section 1.2.1)27,58. With 

sequencing of bacterial genomes, information on newly identified CBMs deposited and organized 

by sequence similarity into different families in the CAZy database22 is continually growing, 

opening new research for their characterization and structure-function analysis. 

CBMs assigned to family 13 belong to the β-trefoil fold family 2, also designated ricin B-like 

domains after being first identified in several plant lectins, such as ricin toxin B-chain23,249. These 

modules are comprised of approximately 150 amino acid residues, in which 40-52 residues 

appear as a 3-fold internal repeat, resulting in a pseudo-3-fold axis that confers a globular 

structure to the protein23,169. These structural repeats comprise 3 subdomains, termed α, β and γ, 

each one containing a putative pocket-like ligand binding site. Family 13 CBMs generally bind  
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Figure 6.1. Schematic representation of the major pectic polysaccharide structural domains. The 
different types of polysaccharide structures that are present in pectins are represented: RG-I, 
rhamnogalacturonan I, including arabinan, galactan and arabinogalactans type I and II (AG-I and AG-II, 
respectively); XGA, xylogalacturonan; HG, homogalacturonan; and RG-II, rhamnogalacturonan II. The 
polysaccharide structures are based on Mohnen et al. 200810. Structures of RG-I side chains are 
representative and not comprehensive. The monosaccharide symbolic representation used was according 
to the updated SNFG1. 

one or two monosaccharide residues within a polysaccharide, hence they are usually classified 

as Type C CBMs169. 

CBMs  from family 13 exhibit a variety of carbohydrate-binding specificities and are found in 

several CAZymes, such as β-xylanases, β-glucanases, α-galactosidases and 

α-arabinofuranosidases, from GHs families 10, 11 and 43, but also in polysaccharide lyases (PL) 

such as rhamnogalacturonan lyases, carbohydrate esterases (CE) and glycosyltransferases22,169. 

Streptomyces olivaceoviridis E-86 endo-β1,4-xylanase SoXyl10 possesses a GH10 and CBM13 

(SoCBM13) that binds β1,4-xylose oligosaccharides250. Streptomyces avermitilis 

β-L-arabinopyranosidase SaArap27, has a GH from family 27 and a CBM13 (SaCBM13) which 

binds arabinopyranose monomers251. Clostridium thermocellum exo-β1,3-galactanase 

1,3Gal43A, on its turn possesses a GH43 and a CBM13 (CtCBM13Cthe_0661) that bind β-galactose 

oligosaccharides156 (Chapter 3, section 3.2.3.4). 

The recent genome sequencing of Ruminococcus flavefaciens FD-1 (henceforward referred to 

only as R. flavefaciens), a cellulolytic ruminal bacteria found in the digestive tract of bovines, has 

revealed one of the largest collection of cellulosome-associated proteins among known 

fibre-degrading bacteria14,27, including a significant number of family 13 CBM sequences 

(Figure 3.2, Chapter 3) for which carbohydrate binding specificities and mechanisms of ligand 

recognition are awaiting elucidation. R. flavefaciens possesses 8 family 13 CBM sequences, 
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found associated with different CAZymes, from GHs from family 43 (GH43), PL from family 11 

(PL11) and a CE from family12 (CE12) (Figure 6.2). 

 

Figure 6.2. Modular architecture of R. flavefaciens proteins containing family 13 CBMs. Schematic 
representation of the assigned CBMs, CAZymes and dockerins is shown.  Family 13 and family 35 CBMs 
are coloured in shades of green and the associated enzymes and domains are coloured according to 
sequence identity: GH43, family 43 glycoside hydrolases; PL11, family 11 polysaccharide lyase; CE12, 
family 12 carbohydrate esterases; and DOC1, type 1 dockerin. The modular proteins are identified by an 
in-house protein ID (left panel). Sequence similarity search was performed using Basic Local Alignment 
Search Tool221 and Conserved Domain Database252 from NBCI, Uniprot222 and InterProScan223. 

The carbohydrate microarray analysis of family 13 CBMs of R. flavefaciens described in 

Chapter 3, revealed the binding specificity for 3 of these RfCBMs (Figure 3.7), to 

α-arabinofuranose sequences in pectic arabinan-derived oligosaccharides and to β-galactose 

containing oligosaccharides. To our knowledge, binding to arabinofuranose oligosaccharides is 

yet to be described for family 13 CBMs. 

In the work presented in this chapter, the binding specificity of R. flavefaciens family 13 CBMs 

was further explored, with determination of the structure of RfCBM13-12115 along with 

identification of the potential molecular determinants of arabinan recognition using site-directed 

mutagenesis and interaction studies by isothermal titration calorimetry (ITC). The results reported 

here will promote the characterization of R. flavefaciens family 13 CBMs and their functional role, 

as well as to contribute for the information deposited into the CAZy database. 
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6.2 Results and Discussion 
6.2.1 Ligand specificity of R. flavefaciens family 13 CBMs 

Aiming to assign the carbohydrate binding specificity at oligosaccharide level, family 13 of 

RfCBMs (Figure 6.2 and Tables S3.1 and S3.2 in Chapter 3) were analysed using the 

NGL-microarray comprised of diverse sequence-defined oligosaccharides, including β-xylans, 

β-arabinoxylans, β-mannans, β-galactomannans, α-arabinans, xyloglucans and a pectin-related 

disaccharide Galβ1,3Ara (Tables S2.1, Chapter 2), as presented in Chapter 3. Binding patterns 

were obtained for 3 RfCBMs 13, which revealed the carbohydrate binding to α-arabinofuranose 

(Araf) and β-galactopyranose oligosaccharide sequences (Figures 6.3 and 6.4 and Table S3.8 in 

Chapter 3). The binding patterns of RfCBMs 13 were supported by the specific binding of the 

anti-α1,5-arabinan monoclonal antibody LM6 used as a protein control of the microarray analysis 

(Figures 6.3 and 2.3 and Table S2.3 in Chapter 2).  

 

Figure 6.3. Carbohydrate microarray analysis of R. flavefaciens family 13 CBMs. The microarrays 
included 219 NGL-oligosaccharides of a wide DP range of linear and branched oligosaccharide-NGL probes 
of α- and β-glucans32, β-xylans, α-arabinans, β-mannans, xyloglucans, chitin and chitosan (top panel). 
Carbohydrate sequence information on these probes is shown in Chapter 2, Table S2.1. Proteins for which 
binding was obtained are presented at the left: monoclonal antibodies LM6, LM10 and LM11, used in the 
validation of the microarrays (upper panel); and RfCBMs 13 (bottom panel). The relative binding intensities 
were calculated as the percentage of the fluorescence signal intensity at 5 fmol given by the probe most 
strongly bound by each protein (normalized as 100%). Numerical scores are given in Chapter 3, Table S3.8. 

The 3 R. flavefaciens family 13 CBMs exhibited distinct binding patterns. While RfCBM13-12115 

showed main binding to linear α1,5-linked Araf sequences, RfCBM132326 bound exclusively to the 

probe presenting a mixture of branched α1,2(1,3) Araf sequences with DP-6 (probe 181). 

Interestingly, RfCBM13694 didn’t show binding to any of the arabinofuranose probes, but bound, 

albeit weakly, to the NGL probe of the disaccharide Galβ1,3Ara (probe 216). Although it is 

described that CBMs from family 13 generally recognize one or two monosaccharide units within 

its ligands, RfCBM13-12115 binding pattern hints a chain-length dependency to linear α1,5 Araf 

sequences from DP-3 up to DP-7. The restricted binding of RfCBM132326 to the branched arabinan 

probe presenting both α1,2 and α1,3 Araf branches (probe 181), and not the sequence with only 

α1,3 Araf branch at the penultimate non-reducing end arabinose (probe 180), points to a crucial 

role of the α1,2-linked Araf or the α1,3 Araf branch at a more internal position, on the specificity 

of this CBM. RfCBM13-12115 and RfCBM132326 binding specificity to Araf sequences is in  
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Figure 6.4.  Binding analysis of R. flavefaciens family 13 CBMs arabinan-derived oligosaccharides 
included in the carbohydrate microarrays. (A) The binding signals of each RfCBM13-1 is depicted as 
means of fluorescence intensities of duplicate spots at 5 fmol of oligosaccharide probe arrayed (with error 
bars) and are representative of at least two independent experiments. The α1,5 arabinan-specific 
monoclonal antibody LM6 used in the validation of the microarrays was included as a control. The 
microarrays here represented included 8 linear α1,5-linked Ara NGL-oligosaccharides from DP-2 to DP-9, 
2 α1,5-linked Ara sequences with α1,2(1,3) branches of DP-5 and DP-6, and the Galβ1,3Ara disaccharide. 
(B) The sequences of the branched arabinose probes and the Galβ1,3Ara disaccharide are depicted 
indicating the position in the binding charts. 

accordance with the associated family 43 GHs (Figure 6.2), for which an α-arabinofuranosidase 

is a major activity reported on CAZy database22,26. The binding detected with RfCBM13694 to the 

disaccharide with a β1,3-linked Gal residue at the non-reducing end (probe 216) points to 

recognition of a β-Gal epitope in pectic polysaccharides, possibly found in galactan or 

arabinogalactan branches of RG-I (Figure 6.1). This is in accordance with the strong binding of 

this CBM to lupin and potato pectic galactans and to soy bean rhamnogalacturonan in the 

pectin-related polysaccharide microarrays presented in Chapter 3 (Figure S3.3). The recognition 

of pectic sequences by this CBM is not unexpected as it is associated with a family 11 PL 

(Figure 6.2), annotated to have activity on rhamnogalacturonan22.  

Given that RfCBM13-12115 (henceforward designated as RfCBM13-1) showed strong binding 

intensity in the microarrays exhibiting an unpredicted chain-length dependency, interest arose to 

structurally characterize its carbohydrate recognition, which will be explored in the following 

sections.  
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6.2.2 Crystal structure of RfCBM13-1 revealing the putative binding sites 

Crystallization assays were first carried out for RfCBM13-1 in its unbound state and its structure 

was then solved at a resolution of 1.80 Å (Figure 6.5).  Statistics of data processing and model 

refinement and validation are presented in Table 6.1. RfCBM13-1 3D structure presented the 

typical β-trefoil fold of family 13 CBMs, composed by the subdomains α, β, and γ (Figure 6.5A). 

At the centre of the trefoil a magnesium atom is coordinated by the side chains of Asn34, Asn82 

and Asn130, and main chain atoms of Ile35, Val83 and Val131, of subdomain α, β, and γ, 

respectively. As observed for other CBMs of this family, the protein surface revealed 3 putative 

binding sites, one in each subdomain, with a glycerol molecule observed in the putative binding 

site γ (Figure 6.5B). The side chains of residues Asp119, Trp123, Asn132, Phe134, Tyr139 and 

Gln42 were identified as potential key residues for ligand recognition, forming a putative binding 

pocket in subdomain γ where the glycerol molecule was accommodated (Figure 6.5C and D). 

Aiming to structurally characterize the ligand recognition by RfCBM13-1, co-crystallization assays 

were initially carried out for the CBM in complex with Araf trisaccharide (Ara3), as this was the 

minimum epitope recognised by the CBM in the microarrays. Although crystals were obtained and 

several data sets were collected, the structures solved evidenced unexplained residual electron 

density in up to 2 of the 3 putative binding sites that could not be attributed to the Ara3 trisaccharide 

or to individual Araf monomers (Figure S6.1).  As the putative binding sites are exposed to the 

solvent channels, the ligand could be disordered, impairing unequivocal positioning in the electron 

density. Co-crystallization using Araf disaccharide Ara2, a smaller ligand, was also attempted, 

however, the structures solved revealed the same untraceable electron density segments in the 

putative binding sites. Although family 13 CBMs generally recognize one or two monosaccharide 

units, co-crystallization and soaking experiments were also pursued with a longer chain-length 

ligand using the hexasaccharide Ara6, as foreseen in the microarrays results. Although overall up 

to 576 conditions were tested, either in manual set ups or using the automated nanodrop 

dispenser (crystallization robot), and complete X-ray diffraction data were collected from several 

RfCBM13-1 crystals grown in different conditions, the unidentified electron density segments 

were always present at the putative binding sites and could not be unequivocally attributed to the 

ligands used for crystallization. 

The unexplained and unmodelled residual electron density segments observed in the putative 

binding sites of RfCBM13-1 could result from simple ligand disorder (due to solvent exposition) 

or might be attributed to different binding modes of recognition by this CBM, as seen previously 

for other CBMs from this familly156,253. Multiple binding modes would enhance the activity of the 

associated enzymes by recruiting a variety of potential ligands or accommodating their structures 

in different manners. For instance, RfCBM13-1 could be recognising Ara3 in a non-reducing end-in 

manner and simultaneously binding to the middle Araf unit, as observed for CtCBM13Cthe_0661156, 
resulting in variable partial occupancy in the crystal lattice that culminates in disordered electron 

density. 
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Figure 6.5. Ribbon representation of RfCBM13-1 three-dimensional structure. (A) and (B) cartoon and 
surface representation of the overall structure of RfCBM13-1 exhibiting the typical β-trefoil fold of family 13 
CBMs, exhibiting the 3 subdomains α (green), β (orange) and γ (purple). A magnesium ion (blue sphere) is 
coordinated at the centre of the trefoil. A sulphate ion (yellow), 3 acetate ions (grey) and a glycerol molecule 
(white) present in the structure are represented; (C) and (D) close-up view on subdomain γ putative binding 
site, showing the bound glycerol molecule and the CBM’s aminoacid side chains that might be determinant 
in ligand recognition. The surface representation evidences the putative binding pocket where the glycerol 
has bound. Molecules and aminoacid residues’ side chains are shown as sticks coloured by atom type. The 
magnesium ion is represented by a blue sphere.  

6.2.3 Characterization of RfCBM13-1-ligand interaction 

Although the crystal structure of the RfCBM13-1-ligand complex couldn’t be accomplished, the 

unliganded structure allowed the identification of potential binding sites and key amino acid 

residues for ligand recognition. This structural information was used to design and generate by 

site-directed mutagenesis mutant derivatives of potentially relevant amino acids. The analysis of 

the mutations effect was carried out by thermodynamic characterization of RfCBM13-1 

carbohydrate interaction using ITC. 
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Table 6.1. X-ray diffraction and structure refinement parameters and statistics for RfCBM13-1. 

Data collection  
Beamline SLS, X06DA - PXIII 
Space Group P41212 
Cell parameters  
a, b, c (Å) 65.43, 65.43, 102.79 
α, β, γ (ᵒ) 90.00, 90.00, 90.00 
Wavelength, Å 0.9795 
Resolution of data (outer shell), Å 21.34-1.80 (1.84-1.80) 
Total number of reflections (outer shell) 213481 (13237) 
Number of unique reflections (outer shell) 21423 (1241) 
Rpim (outer shell),a 0.031 (0.202) 
Rmerge (outer shell),b 0.072 (0.480) 
Mean I/σ(I) (outer shell) 23.5 (5.5) 
CC(1/2) (outer shell) 0.99 (0.95) 
Completeness (outer shell), % 99.9 (100.0) 
Redundancy (outer shell) 10.0 (10.7) 
Structure refinement  
No. of protein atoms   1173 
No. of solvent waters 237 
Resolution used in refinement, Å 21.34-1.80 
No. of reflections 19251 
Rwork / Rfree c 0.159 / 0.197 
rms deviation bonds (Å) 0.012 
rms deviation angles (ᵒ) 8.435 
rms deviation chiral volume (Å3) 0.086 
Avg B factors (Å2)  
Main chain 18.49 
Side chain 22.96 
Magnesium ion 14.43 
Sulphate ion 76.31 
Acetate ion 1 64.50 
Acetate ion 2 51.70 
Acetate ion 3 53.50 
Glycerol 44.03 
Water molecules 36.87 
Ramachandran statistics  
favored 128 
allowed 7 
generously allowed 0 
forbidden 0 

a  , where  is the average of symmetry-related observations 
of a unique reflection. 

b , where  is the average of symmetry-related observations of a 
unique reflection. 

c  , where  and  are the calculated and observed structure 

factor amplitudes, respectively.  is calculated for a randomly chosen 10% of the reflections. 
 

ITC measurements with arabinan polysaccharide and Araf oligosaccharides of varying DPs (Ara2 

to Ara8), corroborated the binding specificity of RfCBM13-1 to pectic arabinan and the increase 

of affinity with the chain-length of Araf sequences (Figure 6.6 and Table 6.2), as observed in the 

carbohydrate microarrays (Figure 6.4). The affinity displayed by the CBM to Araf sequences 

below DP-4 was relatively weak (with a Ka of 0.47×104 M-1 for Ara4), although still detectable for 

DP-2 (below 103 M-1). The Ka of the interaction increased significantly to DP-6 (2.64×104 M-1) and 

stabilised up to DP-8 (Ka of 2.87×104 M-1), with similar affinities as to the arabinan polysaccharide 

(with a Ka of 2.77×104 M-1). The ability of the CBM to bind, albeit weakly, to Ara2 is in accordance  
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Figure 6.6.  Isothermal calorimetry titrations of binding of RfCBM13-1 to α1,5-linked arabinan 
sequences. Chain-length dependency analysis of RfCBM13-1 to arabinan polysaccharide and linear 
α1,5-arabinose oligosaccharide sequences with DP-2 to DP-8; The top portion of each panel shows the raw 
power data while the bottom parts show the integrated and heat of dilution corrected data. The solid lines 
show the non-linear curve fits to a one site binding model with the stoichiometry fixed at 1. Thermodynamic 
parameters are given in Table 6.2. 

with the RfCBM13-1 structure that shows a putative binding cleft that could accommodate up to 

2 ligand monomers (Figure 6.5B). However, the higher affinity to longer chain-length 

oligosaccharides points to important additional interactions being established between the 

surface of the CBM and the remaining sequence of the ligand that is not accommodated in the 

binding cleft. These results suggest that up to 6 Araf units might be required for the CBM function 

in accordance with the lowest entropic contribution for the RfCBM13-1 binding to Ara6, reflecting 

the most favourable interaction.  

Given that aromatic and polar amino acid residues are known to play important roles in the binding 

recognition by CBMs, a set of amino acid residues present in RfCBM13-1 predicted binding sites 
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Table 6.2. Thermodynamic parameters of the binding of RfCBM13-1 wild type and its mutant 
derivatives to polysaccharides and oligosaccharides. 

 

that could contribute to the ligand binding, either by providing hydrophobic stacking interactions 

or by direct hydrogen bonding, were selected to produce mutant alanine derivatives: Trp38, 

Gln86, Asp119, Phe121, Glu122, Trp123, Asn132, Phe134, Glu138, Tyr139 and Gln142. The 

binding affinities, determined by ITC, of these mutant forms to arabinan and Ara8 were compared 

with those from the wild type form. Representative results are shown in Figure 6.7. From all the 

mutants analysed, only residues located in subdomain γ had impact in RfCBM13-1 binding. 

Asp119Ala abolished the binding to both arabinan and Ara8, while Trp123Ala, Asn132Ala, 

Phe134Ala and Tyr139Ala led to a significant decrease in the affinity to arabinan (from a Ka of 

2.77×104 M-1 to 0.23×104 and 0.55×104 M-1 for Trp123Ala and Tyr139Ala, and below 103 M-1 for 

Asn132Ala and Phe134Ala) (Table 6.2). Additionally, Phe134Ala and Tyr139Ala also abolished 

binding to Ara8, while Gln142Ala only led to a decrease in the binding capability to the 

oligosaccharide (from a Ka of  2.87×104 to 0.58×104 M-1), not influencing the affinity to the 

polysaccharide, which corroborates the importance of the ligand chain-length for 

RfCBM13-1 binding. Given these observations, it can be inferred that RfCBM13-1 subdomain γ 

comprises a functional binding site, where Asp119, Trp123, Asn132, Phe134 and Tyr139 seem 

RfCBM13-1 
variant Ligand Ka ×104 

(M-1) 
ΔG  

(kcal.mol-1) 
ΔH 

(kcal.mol-1) 
TΔS  

(kcal.mol -1) n 

WT 
 

Arabinan 2.77 ± 0.24 -6.01 -14.55 ± 1.27 -8.44 1.00 ± 0.07 
Arabinoxylan (Rye)  

No binding Galactomannan (Carob) 
Galactomannan (Guar) 
Ara8 2.87 ± 0.22 -6.08  -12.73 ± 0.39 -6.65 1.12 ± 0.00 
Ara6 2.64 ± 0.25 -6.03  -7.67 ± 0.29 -1.64 1.03 ± 0.00 
Ara5 1.07 ± 0.39 -5.50  -8.46 ± 0.14 -2.96 1.04 ± 0.00 
Ara4 0.47 ± 0.01 -5.02  -13.93 ± 0.17 -8.91 1.00 ± 0.00 
Ara2 Weak Interaction (<10E3) 

Trp38Ala 
Arabinan 1.02 ± 0.07 -5.47  -5.75 ± 0.85 -0.28 1.12 ± 0.15 
Ara8 2.85 ± 0.22 -5.74  -5.52 ± 0.28 -0.56 1.03 ± 0.10 
Ara6 2.26 ± 0.26 -5.94  -6.30 ± 0.28 -0.36 1.09 ± 0.00 

Gln86Ala 
Arabinan 2.48 ± 0.07 -6.01  -13.94 ± 0.26 -7.93 1.18 ± 0.02 
Ara8 1.21 ± 0.27 -5.56  -17.13 ± 0.19 -11.57 1.09 ± 0.00 
Ara6 2.87 ± 0.85 -6.40  -5.14 ± 0.54 1.26 0.93 ± 0.08 

Phe134Ala 
Arabinan Weak Interaction (<10E3) 
Ara8 No binding Ara6 

Asp119Ala Arabinan No binding Ara8 

Phe121Ala Arabinan 2.14 ± 0.26 -5.91 -6.84 ± 0.94 -0.93 1.02 ± 0.12 
Ara8 Not tested 

Glu122Ala Arabinan 4.03 ± 0.09 -6.28 -6.47 ± 0.11 -0.19 1.01 ± 0.01 
Ara8 Not tested 

Trp123Ala Arabinan 0.23 ± 0.02 -4.58 -13.61 ± 5.61 -9.03 1.04 ± 0.41 
Ara8 Not tested 

Asn132Ala Arabinan Weak Interaction (<10E3) 
Ara8 Not tested 

Glu138Ala Arabinan 5.51 ± 0.92 -6.47 -22.81 ± 1.89 -16.34 1.03 ± 0.07 
Ara8 Not tested 

Tyr139Ala Arabinan 0.55 ± 0.32 -5.10 -3.2 ± 0.75 1.87 0.99 ± 0.22 
Ara8 No binding 

Gln142Ala Arabinan 1.52 ± 0.06 -5.70 -11.01 ± 0.56 -5.31 1.08 ± 0.05 
Ara8 0.58 ± 0.02 -5.13 -6.55 ± 0.12 -1.42 1.00 ± 0.00 



CHAPTER 6. CARBOHYDRATE SPECIFICITY OF R. FLAVEFACIENS FAMILY 13 CBMS 

149 
 

 

 
Figure 6.7.  Isothermal calorimetry titrations of binding of RfCBM13-1 mutant derivatives to 
α1,5-linked arabinan sequences. Binding analysis of RfCBM13-1 wild type and mutants to arabinan 
polysaccharide and octasaccharide Ara8. The top portion of each panel shows the raw power data while the 
bottom parts show the integrated and heat of dilution corrected data. The solid lines show the non-linear 
curve fits to a one site binding model with the stoichiometry fixed at 1. Thermodynamic parameters are given 
in Table 6.2. 
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to be critical for the ligand recognition by this CBM.  

The mutant derivatives of the amino acid residues selected from subdomains α and β, however, 

mostly retained their affinity to arabinan. On the one hand, the decrease in binding affinity to 

arabinan observed from subdomain γ mutants Trp123Ala, Asn132Ala, Phe134Ala and Tyr139Ala, 

might indicate that binding is still occurring in the putative binding sites of subdomains α and β. 

On the other hand, the lack of binding to Ara8 from subdomain γ mutants Asp119Ala, Phe134Ala 

and Tyr139Ala, leaves the question of whether the putative binding sites of subdomains α and β 

are in fact functional, or can be recognising a different type of carbohydrate present as a 

contaminant in the arabinan solution used. Nonetheless, different residues of subdomains α and 

β, and multiple mutants from at least 2 binding sites, should be selected for mutation in order to 

have a better understanding of RfCBM13-1 binding sites and its ligand recognition mechanisms.  

The analysis of protein residue conservation among R. flavefaciens family 13 CMBs (Figure 6.8A) 

using primary sequence alignment revealed that several residues of subdomain γ are highly 

conserved, including the interacting residues Asp119 and Gln146 identified in the binding site γ 

of RfCBM13-1 (RfCBM13-12115). The comparison with CBMs 13 from other microorganisms 

(Figure 6.8B), which show different binding specificities, showed the same trend, with only Asp119 

and Gln146 being conserved. Looking at the sequence identities of subdomains α and β, amino 

acid residues Asp23, Glu26, Gln36, Lys74, Asn93 and Gln94 could also be good candidates for 

site-directed mutagenesis and further ITC analysis, in order to validate these putative binding 

sites and identify their ligand-interacting residues. 

In order to better perceive the α and β putative binding sites of RfCBM13-1, a secondary structure 

matching superposition of the 3D structures of RfCBM13-1 and Streptomyces avermitilis 

SaCBM13 (with Arap monomers bound in the binding pocket) was carried out (Figure 6.9). With 

a primary sequence identity of 28%, only 2 of the interacting residues identified in RfCBM13-1’s 

binding site in subdomain γ are found in the same positions as those of SaCBM13, Asp119 and 

Phe134. Other residues displayed in the same positions were found to be not relevant for 

RfCBM13-1 ligand recognition. This difference in the interacting residues identified in both 

structures, points to different binding recognition mechanisms, which might also be dependent of 

the sugar ring conformation of furanose for RfCBM13-1 to pyranose for SaCBM13. 

6.2.4 R. flavefaciens family 13 CBMs in the context of plant cell wall recognition 

Considering the CAZymes that are known to be associated with R. flavefaciens family 13 CBMs 

(Figure 6.2), the binding of RfCBM13-1 (RfCBM13-12115), RfCBM132326 and RfCBM13694 to pectic 

arabinans and β-Gal containing sequences is not unexpected, as discussed above 

(section 6.2.1). RfCBM13-1 and RfCBM132326 may be reflecting the associated family 43 GHs 

α-arabinofuranosidase activity22,26, hence binding to Araf sequences. RfCBM13694, associated  

 



CHAPTER 6. CARBOHYDRATE SPECIFICITY OF R. FLAVEFACIENS FAMILY 13 CBMS 

151 
 

 

 

Figure 6.8. Alignment of CBM13 family members. Primary sequence alignment of (A) R. flavefaciens 
family 13 CBMs and (B) RfCBM13-12115 (RfCBM13-1) with CBMs from other microorganisms: 
C. thermocellum (CtCBM13Cthe_0661 and CtCBM13Cthe_2193)156,254, Streptomyces avermitilis (SaCBM13)251 
and Streptomyces olivaceoviridis (SoCBM13)250. Identity to RfCBM13-1 is indicated with red and yellow 
boxes. Residue numbers refer to the corresponding CBM sequence. RfCBM13-1 secondary structure 
prediction is presented above. Red triangles identify RfCBM13-1 residues identified to be involved in ligand 
recognition. The sequence alignment was generated with ClustalO196 and rendered using ESPript server229. 
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Figure 6.9. Superposition of RfCBM13-1 with Streptomyces avermitilis CBM13. RfCBM13-1 
structure was superimposed with SaCBM13 bound to arabinopyranose monomers (PDB ID 3V22)251. (A) 
The overall structures superposition evidences the putative binding sites of RfCBM13-1; Close-up view on 
subdomains (B) α, (C) β and (D) γ, showing SaCBM13 amino acid residues that interact with Arap and 
evidencing RfCBM13-1 putative binding sites and its potential residues for recognition of Araf ligands. 
RfCBM13-1 is represented as cartoon coloured by subdomain α (green), β (orange) and γ (purple) and 
SaCBM13 in light grey. Arabinopyranose monomers (Arap) and glycerol molecule (GOL) are shown as stick 
models in light grey and dark grey, respectively, and by atom type. Magnesium ion in the centre of 
RfCBM13-1 trefoil is represented by a blue sphere. Aminoacid residues of each CBM are represented by 
sticks and coloured by atom type. Structural alignment was done using MatchMaker tool from UCF 
Chimera40, with an rmsd value of 0.827. 

with a PL11 annotated as a family of rhamnogalacturonan lyases22, may recognise non-reducing 

β-Gal sequences as those found in RG-I galactan and arabinogalactan branches (Figure 6.1). 

RfCBM133704, like RfCBM13694, is associated to a PL11. RfCBM131157 on its turn, is associated 

with a CE12, reported to comprise pectin acetylesterases, rhamnogalacturonan acetylesterases 

and acetyl xylan esterases22. The lack of binding of RfCBM133704 and RfCBM131157 in the 
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polysaccharide microarrays presented in Chapter 3, is probably due to absence of the relevant 

pectic epitopes in the microarrays. 

RfCBM131875, for which binding was also not observed in the microarrays, it is not associated with 

an assigned CAZyme or other cellulosomal protein, hence it can have a distinct function and 

binding specificity or even not be a functional CBM. 

Although RfCBM13-22115 and RfCBM13939 were not possible to analyse, their modular 

organization also points to pectin recognition. RfCBM13-22115, like its counterpart RfCBM13-1, 

could eventually recognise Araf sequences as well or bind a different yet complementary epitope 

in RG-I, promoting GH43 activity. Interestingly, these are the only two family 13 CBMs found in 

tandem in R. flavefaciens. RfCBM13939, like RfCBM131157, is associated to a CE12, and hence 

might bind to epitopes in the pectin main chain or branches.  

Overall, the modular architecture of R. flavefaciens family 13 CBMs points to a role of the 

cellulosome of this bacterium directed at pectin degradation. 

6.3 Conclusions 

With the present work the carbohydrate specificity of R. flavefaciens family 13 CBMs was explored 

for 3 CBMs and assigned to distinct α1,5-linked Araf-containing sequences in pectic arabinans 

and to a yet uncharacterised β-Gal epitope in pectic galactans. Additionally, the first 3D structure 

of a RfCBM13, RfCBM13-1, was solved revealing the β-trefoil fold typical of family 13 CBMs and 

3 putative binding clefts, one in each subdomain. Ligand binding analysis allowed to establish 

RfCBM13-1 specificity to linear α1,5 arabinan sequences and a dependency of chain-length from 

DP-2 to DP-6 for affinity. Although the structure of RfCBM13-1 exhibits putative binding clefts that 

could accommodate up to 2 ligand monomers, as usually described for CBMs 13, the higher 

affinity to longer chain-length ligands might point to a recognition mode where important 

interactions are established between the surface of the CBM and the remaining ligand sequence 

that is not accommodated in the binding cleft. Key residues that mediate arabinan recognition by 

RfCBM13-1 were identified in the binding cleft of subdomain γ, where Asp119, Trp123, Asn132, 

Phe134 and Tyr139 seem to be critical for the ligand recognition. However, further studies will be 

necessary to characterize the putative binding sites of subdomains α and β and completely 

elucidate RfCBM13-1 carbohydrate recognition mechanism. 

In order to complete assignment of the carbohydrate ligand specificities for R. flavefaciens 

family 13 CBMs, further carbohydrate microarray analysis should be performed using pectin 

polysaccharide or oligosaccharide microarrays. To achieve this, the sequence diversity of the 

pectin-related oligosaccharide library needs to be much extended, either with naturally-derived or 

synthetic sequences, in order to construct sequence-defined microarrays.  

In summary, the information derived from this work points to a possible role of family 13 CBMs in 

the cellulosome of R. flavefaciens directed to pectin degradation. These results here reported will 
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also contribute for the information deposited into the CAZy database, promoting the knowledge 

of R. flavefaciens’ cellulolytic activity in its ecological niche.  

6.4 Experimental procedure 
6.4.1 Gene cloning, mutagenesis and protein purification 

R. flavefaciens family 13 CBMs analysed in the carbohydrate microarrays were cloned, expressed 

and purified according with the procedure described in Chapter 3, section 3.4.2.  

For the structural studies of RfCBM13-12115, Escherichia coli BL21 (DE3) cells were transformed 

with the desired plasmid and grown at 37 ºC in 400 mL LB medium supplemented with 50 μg/mL 

kanamycin (Sigma-Aldrich Chemical, St Louis, Missouri) up to the mid-exponential phase 

(OD600nm = 0.6). Gene expression and protein production was induced by addition of 1 mM IPTG, 

followed by 16 h culturing at 19 ºC at 150 rpm in a Gallenkamp Orbital Shaker. The cells were 

then harvested by centrifugation at 5000xg for 15 minutes at 4 ºC and stored at -20 ºC. 

Immediately before purification, cell pellets were resuspended in lysis buffer (50 mM NaHepes 

buffer, pH 7.5, supplemented with 1 M NaCl and 10 mM Imidazole), and then disrupted by 

sonication. Non-solubilized cell debris was removed by centrifugation (140000 rpm, 30 min, 4 ºC). 

RfCBM13-12115 was purified from the cleared cell-lysate by Ni2+-immobilized IMAC using buffers 

of 50 mM HEPES (pH 7.5), 1 M NaCl, with 5, 50, and 500 mM imidazole for binding, washing, 

and elution, respectively. The eluted protein fractions were subjected to SDS-PAGE on 14% (w/v) 

acrylamide gels, stained with Coomassie Brilliant Blue, in order to assess the purity of 

recombinant proteins. The fractions containing pure protein were pooled and buffer-exchanged, 

using PD-10 Sephadex G-25M gel-filtration columns (GE Healthcare), into 50 mM NaHepes 

buffer, pH 7.5, containing 200 mM NaCl and 5 mM CaCl2. Purified proteins were concentrated 

using an Amicon 10-kDa molecular mass centrifugal concentrator.  

For the X-ray crystallography studies, RfCBM13-12115 was further purified by gel filtration (size 

exclusion chromatography) using an AKTAexpress FPLC equipped with a HiLoad 16/60 

Superdex75 column (GE Healthcare Life Sciences) at a flow rate of 1 mL/min. Purified 

RfCBM13-12115 was concentrated and exchanged into 50 mM HEPES buffer, pH 7.5, containing 

1 mM CaCl2 using an Amicon 10-kDa molecular mass centrifugal concentrator.  

All proteins were >95% pure as judged by SDS-PAGE and their concentrations determined from 

their calculated molar extinction coefficient using the Protparam tool 

(http://www.expasy.org/tools/protparam.html) at 280 nm using a NanoDrop 2000c 

(ThermoScientific).  

For site-directed mutagenesis, single mutants of RfCBM13-12115 were generated using a 

PCR-based NZYMutagenesis kit (NZYtech Ltd) following the manufacturer’s instructions. The list 

of primers used to generate these mutants is provide in Table S6.1. The generated nucleic acids 

were sequenced to ensure that only the right mutations had been incorporated in the nucleic 

http://www.expasy.org/tools/protparam.html
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acids. Expression and purification of the mutants were similar with that of wild type 

RfCBM13-12115.  

6.4.2 Sources of carbohydrates 

Information on the oligosaccharide sequences and sources included in the NGL-microarrays are 

given in Table S2.1, in Chapter 2. The soluble polysaccharides and arabinose oligosaccharides 

used for crystallization assays or ITC were purchased from Megazyme International (Bray, County 

Wicklow, Ireland). All reagents, chemicals and other carbohydrates were purchased from 

Sigma-Aldrich (St. Louis, MO, USA) unless otherwise specified.  

6.4.3 Carbohydrate microarray analysis 

The NGL-microarray results here reported correspond to the experiments presented in Chapter 

3 and were performed as described in section 3.2.4. The results correspond to at least two 

independent experiments, performed with different batches of CBMs. 

6.4.4 Crystallization and X-ray Diffraction Data Collection 

RfCBM13-12115 crystallization assays were performed by means of an automated nano-drop 

dispenser Oryx8 (Douglas Instruments) using commercial screenings, namely PEG/Ion HT 

(Hampton Research), JCSG-plus (Molecular Dimensions) and an in-house prepared sparse 

matrix screen (based on the screen of Jancarik et al255). The sitting-drop vapor diffusion method 

was used (SWISSCI 'MRC' 2-Drop Crystallization Plates – 96 wells, Douglas Instruments), in a 

2 μL drop containing 50% protein. Crystals of RfCBM13-1 at 15 mg/mL grew at 20 °C in a 

crystallization condition composed of 0.1 M sodium acetate buffer, pH 4.5, and 2 M ammonium 

sulphate. Crystals were harvested using a solution of 0.1 M sodium acetate buffer, pH 4.5, and 

2.5 M ammonium sulphate, and then flash-cooled in liquid nitrogen using 30% (v/v) glycerol as 

cryoprotectant added to the harvesting solution. 

X-ray diffraction data from a single crystal were collected under a nitrogen stream at 100 K in 

X06DA - PXIII beamline at the SLS (Villigen, Switzerland) to a maximum resolution of 1.80 Å and 

using X-ray radiation at a fixed wavelength of 0.9795 Å. The RfCBM13-1 crystal indexed in space 

group P41212, with unit cell constants a = b = 65.43 and c = 102.79 Å, corresponding to a 

calculated Matthews coefficient of 3.42 Å3/Da and a solvent content of 64%. Statistics from data 

collection and processing, model building and validation are shown in Table 6.1. 

6.4.5 Phasing, Model Building, and Refinement 

RfCBM13-1 X-ray diffraction data were processed using MOSFLM202 and SCALA203 from the 

CCP4 suite204. Phasing was performed by molecular replacement with Phaser MR205 from CCP4 

using as MR model the polypeptide chain of C. thermocellum CtCBM13Cthe_0661 structure (PDB ID 
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3VSF)156. Models completion, editing, and initial validation were carried out in COOT206. 

Automatic addition of water molecules and restrained refinement of the full models were done 

using REFMAC5207. Structure validation was performed using ProCheck233 and SfCheck234. 

RfCBM13-1 structure, with R = 15.9% (Rfree = 19.7%), consists of 1 CBM chain of 145 amino acid 

residues, 1 magnesium ion, 1 sulphate ion, 3 acetate ions, 1 glycerol molecule and 237 water 

molecules. 

Molecular graphics images corresponding to the crystal structure were produced using the UCSF 

Chimera package from the Computer Graphics Laboratory, University of California, San 

Francisco40.  

6.4.6 Isothermal titration calorimetry  

ITC assays were performed as described previously in Chapter 4, section 4.4.7. Before the 

experiments, purified CBMs were buffer-exchanged against 50 mM Na-HEPES buffer, pH 7.5, 

containing 1 mM CaCl2. Thermodynamic parameters are shown in Table 6.2.  

6.5 Work contributions 

Experimental work and data interpretation here reported related to the carbohydrate microarrays, 

crystal structure determination and sequence similarity analysis, were executed by the author of 

this thesis. Site directed mutagenesis, expression and purification of wild type RfCBM13-12115 and 

its mutant derivatives, as well as the initial crystallization screenings of wild type RfCBM13-12115, 

unliganded and with Ara3, and ITC assays were performed by Dr. Virgínia Pires at Prof. Carlos 

Fontes laboratory (CIISA-FMV-ULisboa), with planning and discussion with the author of this 

thesis. 
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7 Conclusions and future perspectives 

7.1 General conclusions 
 

In the past years, genomic sequencing of bacterial genomes has promoted an exponential 

increase in information available, leading to a substantial number of CAZymes and CBM 

sequences identified that await structural and functional characterization. The development of 

miniaturized high-throughput technologies, such as carbohydrate microarrays, to systematically 

interrogate carbohydrate libraries and its combination with structural characterization 

methodologies are crucial to identify the specificity and explain, at atomic level, the biological 

roles of these carbohydrate-binding proteins. With this major goal, this Thesis describes the 

application of such integrative approach by combining high-throughput methodologies of protein 

expression and purification and carbohydrate microarrays with X-ray crystallography, contributing 

to identification and structural characterization of the carbohydrate-binding specificity of the 

CBMomes from two cellulolytic bacteria, C. thermocellum and R. flavefaciens FD-1.  

At the start of this Thesis work the carbohydrate binding for the great majority of the assigned 

CBMs encoded in the sequenced genome of R. flavefaciens was still to be identified.  Despite 

C. thermocellum CBMs had been more extensively studied as its cellulosome was the first to be 

identified, the binding specificity for several of its CBMs was also not characterized. Therefore, 

there was a clear need of molecular information regarding the function of these CAZy-classified 

modules. Increasing the microarray platforms’ diversity in naturally-derived plant cell wall 

carbohydrate probes was determinant for the characterization of these CBMs. The first major 

achievement of this Thesis was the development of novel carbohydrate microarray platforms 

constructed and validated in Chapters 2 and 3, which included polysaccharide microarrays and 

neoglycolipid (NGL)-based oligosaccharide microarrays of hemicellulose-related sequences 

representative of those found in plants cell walls, but also sequences present in fungal and 

bacterial cell walls. These microarrays were then applied to screen 150 CBMs from both bacteria 

for carbohydrate-binding. The second major achievement was the identification of carbohydrate 

ligands for up to 59 CBMs, including novel CBM-ligand specificities for 21 CBMs from 

R. flavefaciens and 23 from C. thermocellum. Overall, it was revealed that the two bacteria 

present CBMs with different carbohydrate-binding specificities, which may reflect the different 

polysaccharide sources available in their specific ecological niches, but also the complexity and 

specialization of their cellulosomes.  

Of the 59 CBMs that revealed binding, and for their representativeness in the CAZy pool of CBM 

families, several deserve further biochemical and biophysical characterization. Considering the 

timeframe of this Thesis, and their potential industrial and biotechnological relevance, 3 CBMs 

were selected for structural characterization and constitute the focus of Chapters 4 to 6. The 
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information derived from the microarrays in combination with X-ray crystallography studies 

culminated in novel 3D structures and the characterization of the binding specificities of CBMs 

from families 11, 13 and 50. The third major achievement, was the demonstration of the specificity 

of C. thermocellum family 11 CBM (CtCBM11Cthe_1472) for the twisted conformation of mixed-linked 

β1,3-1,4-glucans. This is mediated by CH-π stacking and a hydrogen bonding network, which is 

dependent not only on ligand chain length, but also on the presence of a β1,3-linkage at the 

reducing end and at specific positions along the β1,4-linked glucan chain. The fourth major 

achievement was the assignment of carbohydrate-binding specificity for 7 CBMs of 

C. thermocellum family 50 towards β1,4-linked GlcNAc sequences, which led to solving the first 

structure of a CtCBM50 (CtCBM50Cthe_0300) in complex with a GlcNAc trisaccharide. Key residues 

were identified to mediate both chitin and peptidoglycan oligosaccharide recognition through an 

hydrogen bonding network and CH-π stacking interactions.  CtCBM50Cthe_0300 binding was shown 

to be favored by an interchain multivalent assembly induced by the GlcNAc oligosaccharide 

chain-length, where the individual CBM molecules bind in a cooperative manner to longer ligand 

chains, supporting the evidence of LysM domain cooperative binding. The fifth major achievement 

was the assignment of carbohydrate specificity for 3 CBMs of R. flavefaciens family 13 towards 

distinct α1,5-linked Araf-containing sequences in pectic arabinans and to a yet uncharacterised 

β-galactose epitope in pectic galactans, which points to a possible role of family 13 CBMs in the 

cellulosome of R. flavefaciens directed to pectin degradation. These results led to solving first 

structure of a RfCBM13 (RfCBM13-12115), which revealed 3 putative binding clefts and to identify 

at least one subdomain in RfCBM13-1 (subdomain γ) comprising a functional binding site, critical 

for binding to linear α1,5-arabinan sequences.  

Overall, the work developed through this Thesis allowed to elucidate the role of CBMs and CBM 

families in their microorganisms, which lead to a better understanding of these bacteria cellulolytic 

capabilities. The combined high-throughput approach of using carbohydrate microarrays and 

X-ray crystallography, proved to be an effective strategy to attain the 3D structures of novel CBMs, 

isolated or in complex with their biologically relevant oligosaccharide ligands, which will in turn 

potentiate their biotechnological applications in diverse fields. Furthermore, it adds crucial 

information to the classification of the novel CBMs identified, in particular those from 

R. flavefaciens, eventually contributing for important resources such as the CAZy 

(www.cazy.org), CAZypedia (www.cazypedia.org), GlycoPedia (www.glycopedia.eu), GlyGen 

(www.glygen.org) and ProCarbDB (www.procarbdb.science) databases. 

  

http://www.cazy.org/
http://www.cazypedia.org/
https://www.glycopedia.eu/
https://www.glygen.org/
http://www.procarbdb.science/
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7.2 Future perspectives 

The work presented in this Thesis represents an important step towards the thorough 

characterization of carbohydrate-binding proteins, nonetheless some challenges have arisen that 

are worth following-up. 

Increasing the microarrays platforms’ diversity in naturally-derived oligosaccharide probes from 

plant, fungal and bacterial cell walls is important for characterizing microbial 

polysaccharide-recognising systems and detailed characterization of the specificity of their 

interactions. Oligosaccharide microarrays (both homogenous and sequence-defined or as 

mixtures) can reveal subtle differences in binding profiles which may not be discriminated with 

analysis using polysaccharide-based methods. Microarrays from carbohydrates derived from 

these sources have been developed, however obtaining sequence-defined and discrete 

oligosaccharide sequences from natural sources poses several challenges. Unambiguous 

determination of plant-derived oligosaccharides is hampered by the heterogeneous nature of 

polysaccharides and the difficulties in their separation and purification. 

Intending to surpass this constrain, a method that would enable the deconvolution of structurally 

similar oligosaccharide mixtures was attempted and was described in Chapter 2. This involved 

bi-functional conjugation of xyloglucan fractions with UV/fluorescence tag DAN, aiming at 

sensitive detection in HPLC to allow detailed fine separation/purification of its components. The 

method showed good yields of separation when starting with relatively simple mixtures that had 

previously been subjected to purification steps, allowing the construction of sequence-defined 

NGL-microarrays. However, conjugation was not successful when applied to large mixtures that 

had only been fractionated by size, most likely due to the high heterogeneity of each fraction. 

Although promising, this method needs to be further optimised, possibly by adding different steps 

of purification, in order to successfully generate more structurally diverse sequence-defined 

oligosaccharide probes. Such method would be of relevance, not only for the generation of 

hemicellulose-related sequence-defined microarrays, but also for the development of 

pectin-derived oligosaccharide microarrays that could be used for the characterization of 

pectin-recognising systems, such as R. flavefaciens family 13 CBMs, which were described in 

Chapters 3 and 6. Additionally, this work highlighted the important interface between 

carbohydrate microarrays and mass spectrometry, and the need for the further development of 

high-sensitivity methods for the determination of oligosaccharide linkages and sequences. 

While the microarray platforms constructed allowed to successfully assign the carbohydrate 

specificities for over half R. flavefaciens CBMs tested from families 4, 6, 13, 22 and 35, several 

questions remain open. Ligand-binding is still unassigned for members of families 3, 48 and 63, 

which would be of interest to analyse in the NGL-oligosaccharide, as well as in the xyloglucan 

microarray platforms. Additionally, further work is needed to clarify the carbohydrate ligands for 

all CBMs from families 13 and 62. These would be worth testing in the pectin polysaccharides 
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microarrays. The structural-functional characterization of the carbohydrate-binding specificities of 

families 6 and 22 CBMs to xylan- and arabinoxylan-derived sequences should also be pursued, 

hence elucidating the role of these CBM families and their possible complementary function in 

R. flavefaciens. Furthermore, in the absence of protein crystals of the ligand-bound forms, such 

as in the case of RfCBM13-1, complementary methods should be explored for the structural 

characterization of the CBM ligand specificity. A possible follow-up of the work presented for 

RfCBM13-1, would be NMR titrations of the CBM with different chain-length ligands, that could 

inform on the protein aminoacid residues involved in the binding recognition. 

The characterization of the plant cell wall carbohydrate recognition by R. flavefaciens can be an 

important step towards understanding the action of other cellulosome-producing ruminococcal 

bacteria from different biological systems, in particular from the human gut. For instance, the 

bacterium Ruminococcus champanellensis found in the human colon expresses a cellulosome 

system similar to that of R. flavefaciens256. The elucidation of R. flavefaciens cellulosome, may 

contribute to understanding R. champanellensis’ cellulolytic capabilities, and hence promote the 

development of strategies for microbial manipulation and personalized medicine. 

Moreover, the integrative approach described in this thesis, combining high-throughput 

techniques for protein expression and purification and for carbohydrate ligand discovery with 

structural biology methods, can be applied to any biological system, promoting the understanding 

of other complex systems, such as the human gut microbiome. 
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Chapter 2 - Supplementary Information 

Supplementary Figures 

 
Figure S2.1. Validation of the xyloglucan series included in the glucan and hemicellulose 
oligosaccharide microarrays. 
 

 
Figure S2.2. Deconvolution of the fucosylated-xyloglucan oligosaccharides from apple. 
(A) MALDI-MS spectra of fucosylated-xyloglucan oligosaccharides investigated from apple comprising DP-7 
and DP-10. (B) HPLC separation of the DAN-conjugated fractions. (C) MALDI-MS spectra of the HPLC 
fractions obtained.  Xyloglucan oligosaccharides are depicted. The red link represents the oligosaccharides 
reducing end conjugated to DAN.  
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Figure S2.3. Preparation of the fucosylated-xyloglucan-DAN-NGL probes from apple included in the 
new xyloglucan microarrays. (A) HPTLC analysis of conjugation mixtures DAN-DHPA-NGLs of 
fucosylated-xyloglucan DP-7 and DP-10 fractions (Figure S2.2B) revealed by primulin-staining. 
(B) MALDI-MS analysis of the fucosylated-xyloglucan-DAN-DHPA NGL-probes printed in the xyloglucan 
microarrays. Xyloglucan oligosaccharides are depicted. The red link represents the oligosaccharides 
reducing end conjugated to DAN. 

 

 
Figure S2.4.  DAN standard curve used for the quantitation of the DAN-conjugated xyloglucan 
oligosaccharides and NGLs. Serial dilutions of DAN solution were prepared at 4, 7.5, 15, 30, 60 and 
125 pmol/µL in acetonitrile/water (ACN/H2O 1:1) for quantitation of xyloglucan-DAN-conjugated samples, 
and in chloroform/methanol/water (C/M/W 25:25:258) for quantitation of the xyloglucan-DAN-DHPA NGLs 
generated. 
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Supplementary Tables 
Table S2.1. Information on the oligosaccharide neoglycolipid probes printed and validated in the glucan and hemicellulose oligosaccharide microarrays. The 
probes are sorted by linkage type and degree of polymerization. 

IDa Linkages Sourcesb Probe Designationc Probe Sequenced,e 
1 

Linear Glcα2 

 Gluco-fructoside 
(Cyanobacterium) hydrolysate 
 (Palma et al. 201532, Liu et al. 

2018131) 

Cyano-2 Glcα-2Glc-AO 

2 Cyano-3 Glcα-2Glcα-2Glc-AO 

3 Cyano-4 Glcα-2Glcα-2Glcα-2Glc-AO 

4 Cyano-5 Glcα-2Glcα-2Glcα-2Glcα-2Glc-AO 

5 Cyano-6 Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glc-AO* 

6 Cyano-7 Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glc-AO* 

7 Cyano-8 Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glc-AO* 

8 Cyano-9 Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glcα-2Glc-AO* 

9 

Linear Glcα3 

Wako Chemicals  
(Palma et al. 201532) Nigerose Glcα-3Glc-AO 

10 

Glucan (Poria cocos) 
hydrolysate 

(Palma et al. 201532, Liu et al. 
2018131) 

Poria-3 Glcα-3Glcα-3Glc-AO 

11 Poria-4 Glcα1-3Glcα1-3Glcα1-3Glc-AO 

12 Poria-5 Glcα-3Glcα-3Glcα-3Glcα-3Glc-AO 

13 Poria-6 Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glc-AO 

14 Poria-7 Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glc-AO 

15 Poria-8 Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glc-AO* 

16 Poria-9 Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glc-AO* 

17 Poria-10 Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glα-3Glc-AO* 

18 Poria-11 Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glα-3Glcα-3Glc-AO* 

19 Poria-12 Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glα-3Glcα-3Glcα-3Glc-AO* 

20 Poria-13 Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glcα-3Glα-3Glcα-3Glcα-3Glcα-3Glc-AO* 

21 

Linear Glcα4 

Sigma-Aldrich 
 (Palma et al. 201532) 

Malto-2 Glcα-4Glc-AO 

22 Malto-3 Glcα-4Glcα-4Glc-AO 

23 Malto-4 Glcα-4Glcα-4Glcα-4Glc-AO 

24 Malto-5 Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO 

25 Malto-6 Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO 

26 Malto-7 Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO 

27 
Maltodextrin (Zea mays) 

hydrolysate;  
Vector Laboratories 

(Palma et al. 201532, Liu et al. 
2018131) 

Malto-8 Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO* 

28 Malto-9 Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO* 

29 Malto-10 Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO* 

30 Malto-11 Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO* 

31 Malto-12 Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO* 

32 Malto-13 Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glcα-4Glc-AO* 

33 Linear Glcα6 Dextran (Leuconostoc 
Mesenteroides) hydrolysate 

Dext-2 Glcα-6Glc-AO 

34 Dext-3 Glcα-6Glcα-6Glc-AO 
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35 (Palma et al. 201532, Liu et al. 
2018131) 

Dext-4 Glcα-6Glcα-6Glcα-6Glc-AO 

36 Dext-5 Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

37 Dext-6 Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

38 Dext-7 Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

39 Dext-8 Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

40 Dext-9 Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

41 Dext-10 Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

42 Dext-11 Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

43 Dext-12 Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

44 Dext-13 Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glcα-6Glc-AO* 

45 

Mixed-linked 
Glcα4-6 

 Sigma-Aldrich; Megazyme 
(Palma et al. 201532) 

Pano-3 Glcα-6Glcα-4Glc-AO 

46 i-Pano-3 Glcα-4Glcα-6Glc-AO 

47 Pullu-4 Glcα-6Glcα-4Glcα-4Glc-AO 

48 Pullu-6 Glcα-4Glcα-4Glcα-6Glcα-4Glcα-4Glc-AO 

49 Pullu-7 Glcα-6Glcα-4Glcα-4Glcα-6Glcα-4Glcα-4Glc-AO 

50 

Linear Glcβ2 

 Cyclic β-glucan (Brucella spp.) 
hydrolysate  

(Palma et al. 201532, Liu et al. 
2018131) 

CβG-2 Glcβ-2Glc-AO 

51 CβG-3 Glcβ-2Glcβ-2Glc-AO 

52 CβG-4 Glcβ-2Glcβ-2Glcβ-2Glc-AO 

53 CβG-5 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

54 CβG-6 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

55 CβG-7 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

56 CβG-8 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

57 CβG-9 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

58 CβG-10 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

59 CβG-11 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

60 CβG-12 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

61 CβG-13 Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glcβ-2Glc-AO* 

62 

Linear Glcβ3 

Dextra Laboratories 
(Palma et al. 201532) 

Lam-2 Glcβ-3Glc-AO 

63 Lam-3 Glcβ-3Glcβ-3Glc-AO 

64 Lam-4 Glcβ-3Glcβ-3Glcβ-3Glc-AO 

65 Megazyme (Palma et al. 201532) Lam-5 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 

66 Lam-6 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO* 

67 Seikagaku AMS Biotechnology 
(Palma et al. 201532) Lam-7 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 

68 
Curdlan (Agrobacterium 

sp.) hydrolysate  
(Palma et al. 201532, Liu et al. 

2018131) 

Curd-8 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO* 

69 Curd-9 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO* 

70 Curd-10 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO* 

71 Curd-11 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO* 

72 Curd-12 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO* 

73 Curd-13 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO* 

74 
Neutral soluble glucan 

(S.cerevisiae) hydrolysate 
(Palma et al. 200672) 

NSG-11 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO* 
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75 Chemical synthesis 
(Palma et al. 201532) 

HE-8 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 

76 HE-9 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 

77 HE-10 Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 

78 

Linear Glcβ4 
 Cellulose hydrolysate  

(Palma et al. 201532, Liu et al. 
2018131) 

Cellobiose Glcβ-4Glc-AO 

79 Cello-4 Glcβ-4Glcβ-4Glcβ-4Glc-AO 

80 Cello-5 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

81 Cello-6 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

82 Cello-7 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

83 Cello-8 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

84 Cello-9 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

85 Cello-10 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

86 Cello-11 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

87 Cello-12 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

88 Cello-13 Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glcβ-4Glc-AO* 

89 

Linear Glcβ6 

Sigma-Aldrich  
(Palma et al. 201532) Gentiobiose Glcβ-6Glc-AO 

90 

Pustulan hydrolysate 
(Palma et al. 201532, Liu et al. 

2018131) 

Pust-3 Glcβ-6Glcβ-6Glc-AO 

91 Pust-4 Glcβ-6Glcβ-6Glcβ-6Glc-AO 

92 Pust-5 Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO 

93 Pust-6 Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO 

94 Pust-7 Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO* 

95 Pust-8 Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO* 

96 Pust-9 Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO* 

97 Pust-10 Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO* 

98 Pust-11 Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO* 

99 Pust-15 Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO* 

100 Pust-15a Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glcβ-6Glc-AO* 

101 

Mixed-linked 
Glcβ3-4 

 Barley hydrolysate 
(Palma et al. 201532, Liu et al. 

2018131) 

Barley-3 Glcβ-4Glcβ-3Glc-AO 

102 Barley-3a Glcβ-3Glcβ-4Glc-AO 

103 Barley-4 Glcβ-4Glcβ-4Glcβ-3Glc-AO 

104 Barley-4a Glcβ-3Glcβ-4Glcβ-4Glc-AO 

105 Barley-4b Glcβ-4Glcβ-4Glcβ-3Glc-AO 

106 Barley-4c Glcβ-4Glcβ-3Glcβ-4Glc-AO 

107 Barley-5 Glcβ-4Glcβ-4Glcβ-4Glcβ-3Glc-AO* 

108 Barley-5a Glcβ-3Glcβ-4Glcβ-6Glcβ-4Glc-AO 

109 Barley-6 Glcβ-4Glcβ-3Glcβ-4Glcβ-4Glcβ-3Glc-AO* 

110 Barley-6a Glcβ-3Glcβ-4Glcβ-6Glcβ-4Glcβ-3Glc-AO; and Glcβ-3Glcβ-4Glcβ-4Glcβ-4Glcβ-3Glc-AO (ratio ~1:1) 

111 Barley-7 Glcβ-4Glcβ-4Glcβ-3Glcβ-4Glcβ-4Glcβ-3Glc-AO* 

112 Barley-8 (Glcβ-4/3Glcβ)3-4Glcβ-3Glc-AO* 

113 Barley-9 (Glcβ-4/3Glcβ)4-3Glc-AO* 

114 Barley-10 (Glcβ-4/3Glcβ)4-4Glcβ-3Glc-AO* 

115 Barley-11 (Glcβ-4/3Glcβ)5-3Glc-AO* 

116 Barley-12 (Glcβ-4/3Glcβ)5-4Glcβ-3Glc-AO* 
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117 Barley-13 (Glcβ-4/3Glcβ)6-3Glc-AO* 

118 Barley-14 (Glcβ-4/3Glcβ)6-4Glcβ-3Glc-AO* 

119 Barley-15 (Glcβ-4/3Glcβ)7-3Glc-AO* 

120 Barley-16 (Glcβ-4/3Glcβ)7-4Glcβ-3Glc-AO* 

121 

Branched Glcβ3(6) 

Grifolan hydrolysate 
(Palma et al. 201532, Liu et al. 

2018131) 

Grifo-3* 

Glcß-3(Glcß-6)3-16-AO* 

122 Grifo-4* 
123 Grifo-5* 
124 Grifo-6* 
125 Grifo-7* 
126 Grifo-8* 
127 Grifo-9* 
128 Grifo-10* 
129 Grifo-11* 
130 Grifo-12* 
131 Grifo-13* 
132 Grifo-14* 
133 Grifo-15* 
134 Grifo-16* 
135 

 
Lentinan hydrolysate 

(Palma et al. 201532, Liu et al. 
2018131) 

Lentin-2 

Glcß-3(Glcß-6)2-13-AO* 

136 Lentin-3 
137 Lentin-4* 
138 Lentin-5* 
139 Lentin-6* 
140 Lentin-7* 
141 Lentin-8* 
142 Lentin-9* 
143 Lentin-10* 
144 Lentin-11* 
145 Lentin-12* 
146 Lentin-13* 

147 

 
Chemical synthesis 
(Palma et al. 201532) 

HE-9B7 
Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 
      │ 
 Glcβ-6 

148 HE-10B2 
Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 
                                          │ 
                                     Glcβ-6 

149 HE-10B3 
Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 
                                    │ 
                               Glcβ-6 

150 HE-10B5 
Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 
                        │ 
                   Glcβ-6 

151 HE-10B7 
Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 
            │ 
       Glcβ-6 
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152 Gu-6B1/3 
Glcβ-3Glcα-3Glcβ-3Glc-AO 
      │           │ 
 Glcβ-6      Glcβ-6 

153 HE-11B3/6 
Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glcβ-3Glc-AO 
                  │                       │ 
             Glcβ-6                  Glcβ-6 

154 Mixed-linked 
Xylβ3-4 

Xylan (Palmaria palmata) 
hydrolysate; Elicityl  

(Table S2.2) 

Xyl-3 Xylβ-4Xylβ-4Xyl-AO or Xylβ-4Xylβ-3Xyl-AO 

155 Xyl-4 Xylβ-4Xylβ-4Xylβ-4Xyl-AO or Xylβ-4Xylβ-3Xylβ-4Xyl-AO 

156 Linear Xylβ4 Xylopentaose mixture  
Megazyme (Table S2.2) 

Xyl-5(β4) Xylβ-4Xylβ-4Xylβ-4Xylβ-4Xyl-AO 

157 Xyl-6(β4) Xylβ-4Xylβ-4Xylβ-4Xylβ-4Xylβ-4Xyl-AO 

158 

Mixed-linked 
Xylβ3-4 

Xylan (Palmaria palmata) 
hydrolysate; Elicityl  

(Table S2.2) 

Xyl-7 (Xylβ-4/3Xylβ)3-4/3Xyl-AO* 

159 Xyl-8 (Xylβ-4/3Xylβ)4-AO* 

160 Xyl-9 (Xylβ-4/3Xylβ)4-4/3Xyl-AO* 

161 Xyl-10 (Xylβ-4/3Xylβ)5-AO* 

162 Xyl-11 (Xylβ-4/3Xylβ)5-4/3Xyl-AO* 

163 Xyl-12 (Xylβ-4/3Xylβ)6-AO* 

164 Xyl-13 (Xylβ-4/3Xylβ)6-4/3Xyl-AO* 

165 

Branched 
Xylβ4(Araα3/2) 

 Arabinoxylan (wheat flour) 
hydrolysate  

tri- to hexasaccharides 
Megazyme  

(Table S2.2) 
 

Ara-Xylan-3 
Araα-3 
     │ 
     Xylβ-4Xyl-AO 

166 Ara-Xylan-4a 

      
     Xylβ-4Xylβ-4Xyl-AO 
     │           
Araα-2 
 

167 Ara-Xylan-4b 

     Xylβ-4Xylβ-4Xyl-AO 
     │            
Araα-2 
Araα-3 
     │ 
     Xylβ-4Xylβ-4Xyl-AO 
 

168 Ara-Xylan-5a 
 Araα-3 
      │ 
Xylβ-4Xylβ-4Xylβ-4Xyl-AO 
 

169 Ara-Xylan-5b 

Xylβ-4Xylβ-4Xylβ-4Xyl-AO 
      │            
 Araα-2 
 Araα-3 
      │ 
Xylβ-4Xylβ-4Xylβ-4Xyl-AO 
 

170 Ara-Xylan-5c 

Araα-3 
     │ 
     Xylβ-4Xylβ-4Xyl-AO 
     │            
Araα-2 

171 Ara-Xylan-6 

 Araα-3 
      │ 
Xylβ-4Xylβ-4Xylβ-4Xyl-AO 
      │            
 Araα-2 

172 Linear Araα5 Ara-2(α5) Araα-5Ara-AO 
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173 

 Arabinan (sugar beet) 
hydrolysate hexa- to 

octasaccharides Megazyme 
(Table S2.2) 

Ara-3(α5) Araα-5Araα-5Ara-AO 

174 Ara-4(α5) Araα-5Araα-5Araα-5Ara-AO 

175 Ara-5(α5) Araα-5Araα-5Araα-5Araα-5Ara-AO 

176 Ara-6(α5) Araα-5Araα-5Araα-5Araα-5Araα-5Ara-AO 

177 Ara-7(α5) Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Ara-AO 

178 Ara-8(α5) Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Ara-5Ara-AO 

179 Ara-9(α5) Araα-5Araα-5Araα-5Araα-5Araα-5Araα-5Ara-5Ara-5Ara-AO* 

180 

Branched 
Araα5(Araα3/2) 

 Arabinan (sugar beet) 
hydrolysate tetra- and 

pentasaccharides Megazyme 
(Table S2.2) 

Ara-4B3 
  Ara-3 
      │ 
Araα-5Araα-5Ara-AO 

181 Ara-5B 

  Ara-3 
      │ 
Araα-5Araα-5Ara-AO 
      │ 
 Araα-2 
 
        Ara-3 
            │ 
Araα-5Araα-5Araα-5Ara-AO 

182 

Linear Manβ4 

Mannan hydrolysate  
tetra- to hexasaccharides 
Megazyme (Table S2.2) 

Man-4(β4) Manβ-4Manβ-4Manβ-4Man-AO 

183 Man-5(β4) Manβ-4Manβ-4Manβ-4Manβ-4Man-AO 

184 Man-6(β4) Manβ-4Manβ-4Manβ-4Manβ-4Manβ-4Man-AO 

185 Mannan (ivory nut) hydrolysate 
Elicityl (Table S2.2) Man-8(β4) Manβ-4Manβ-4Manβ-4Manβ-4Manβ-4Manβ-4Manβ-4Man-AO 

186 

Branched 
Manβ4(Galα6) 

 Galactomannan (carob) 
hydrolysate 

Elicityl (Table S2.2) 

Gal-Mannan-2e 

Manβ4(Galα6)2-8-AO* 

187 Gal-Mannan-3e 
188 Gal-Mannan-4e 
189 Gal-Mannan-5e 
190 Gal-Mannan-6e* 
191 Gal-Mannan-7e 
192 Gal-Mannan-8e 
193 di-Galactosyl-

mannopentasaccharide (carob) 
Megazyme (Table S2.2) 

Gal-Mannan-5m 
194 Gal-Mannan-6m 
195 Gal-Mannan-7m 
196 Gal-Mannan-8m 
197 Galactomannan (carob) 

 hydrolysate 
Elicityl (Table S2.2) 

Gal-Mannan-9e 
Manβ4(Galα6)9-11-AO* 198 Gal-Mannan-10e* 

199 Gal-Mannan-11e* 

200 Branched 
Glcβ4(Xylα6Galβ4) 

Xyloglucan (Tamarind) 
heptasaccharide 

Megazyme (Table S2.2) 
Xyl-Glucan-7 

      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO 
     │           │ 
Xylα-6      Xylα-6 
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201 

Xyloglucan (Tamarind) 
hydrolysate  

Megazyme (Table S2.2) 

Xyl-Glucan-8* 

      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO* 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 
 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO 
     │           │ 
Xylα-6      Xylα-6 

202 Xyl-Glucan-9 

      Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 

203 

Branched 
Glcβ4(Xylα6Galβ4 

Fucα2) 

 Fucosylated-xyloglucan (apple) 
XFG and XLFG oligosaccharide 

mixtures   
Elicityl (Table S2.2) 

Fuc-Xyl-Glucan-6* 

      (Fucα-2) 
           │ 
      Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glc-AO* 
     │           
Xylα-6  
      

204 Fuc-Xyl-Glucan-9* 

      Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO* 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 
                 │ 
            (Fucα-2) 

205 

Linear GlcNAcβ4 Chemical synthesis 

GlcNAc-2 GlcNAcβ-4GlcNAc-AO 

206 GlcNAc-3 GlcNAcβ-4GlcNAcβ-4GlcNAc-AO 

207 GlcNAc-4 GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-AO 

208 GlcNAc-5 GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-AO 

209 GlcNAc-6 GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-AO 

210 GlcNAc-7 GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-AO 

211 GlcNAc-8 GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAcβ-4GlcNAc-AO 

212 
Linear GlcNβ4 Chemical synthesis 

 
GlcN-4 GlcNβ-4GlcNβ-4GlcNβ-4GlcN-AO 

213 GlcN-5  GlcNβ-4GlcNβ-4GlcNβ-4GlcNβ-4GlcN-AO 
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214 GlcN-6  GlcNβ-4GlcNβ-4GlcNβ-4GlcNβ-4GlcNβ-4GlcN-AO 

215 

- Miscellaneous 

GlcNAc2(1,6) GlcNAcβ-6GlcNAc-AO 

216 GalAra(1,3) Galβ-3Ara-AO 

217 Gal2GlcNAc(1,3) Galα-3Galβ-3GlcNAc-AO 

218 GalManNAc(1,4) Galβ-4ManNAc-AO 

aID, Probe position in the microarrays matching the position in the heatmaps and binding-charts;  
bThe sources of the oligosaccharide fragments (depolymerised polysaccharides or oligosaccharides) to prepare the NGL probes with the commercial supply, as appropriate, are indicated; 
detailed information on the preparation of the oligosaccharide fragments can be found in references Palma et al. 201532, Liu et al. 2018131 for probes 1-153, and in Table S2.2 for probes 154 
to 204; probes 205 to 218 are control AO-NGL probes, from the collection of the Glycociences Laborotory (Imperial College, London), included in the microarrays, and are presented and 
validated in Chapter 3.  
cAbbreviations for oligosaccharide moieties are as follows: Cyano-, from cyanobacterium gluco-fructosides; Poria-, from β1,3-linked glucan polysaccharide isolated from Poria cocos mycelia; 
Malto-, from maltodextrins; Dext-, from dextran (MW 200 kDa); Pullu-, from Pullulan; CβG-, from cyclic β1,2-linked glucan isolated from Brucella spp; Lam-, laminarioligosaccharides; Curd-, 
from Curdlan; Cello-, from cellulose; Pust-, from pustulan; Barley-, from barley glucan; Grifo-, from branched glucan polysaccharide grifolan (95 kDa) isolated from the barmy mycelium of 
Grifola frondosa; Lenti- from branched glucan polysaccharide lentinan from Lentinus edodes; HE and Gu are synthetic oligosaccharides; Xyl-, from xylan; Ara-Xylan-, from arabinoxylan; Ara-, 
from arabinan; Man-, from mannan; Gal-Mannan-, from galactomannan; Xyl-Glucan-, from non-fucosylated tamarind xyloglucan; and Fuc-Xyl-Glucan-, from fucosylated apple xyloglucan. In 
the lentinan and poriaco derived fractions a minor 1,4-linked glucose contaminant was detected (Palma et al. 201532, Liu et al. 2018131). 
dThe oligosaccharide probes are all lipid-linked, NGLs; AO, NGLs prepared from reducing oligosaccharides by oxime ligation with an aminooxy (AO) functionalized DHPE (1,2-dihexadecyl-sn-
glycero-3-phosphoethanolamine)32,86.  
eAn asterisk indicates the major component when multiple components are present. The NGL-probes Fuc-Xyl-Glucan-6 (probe 203) and Fuc-Xyl-Glucan-9 (probe 204) are mixtures and both 
fucosylated and non-fucosylated components are present as determined by MALDI-MS analysis (see Table 2.1) and the predicted major sequences are depicted.  
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Table S2.2. Sources of plant-related oligosaccharides and analysis performed for the preparation of 
the AO-NGL probes included in the hemicellulose microarrays. 

Sample  Source and DP Analysis 
Palmaria palmata Xylan 
hydrolysate mixture 

Elicityl Xyl111; Mixture comprising DP-2 to DP-25 
(cut-off: 650Da-3kDa) 

Size exclusion chromatography  
MALDI-MS 

Arabinoxylan 
xylopentaose mixture 

Megazyme O-XPE (acid hydrolysis of 
arabinoxylan); Mixture comprising DP-5 and DP-6 

MALDI-MS 
HPTLC purification after lipid 
derivatization 

Wheat flour  
Ara-Xylan-3 

Megazyme O-A3X (acid hydrolysis of wheat flour 
arabinoxylan); DP-3 MALDI-MS 

Wheat flour  
Ara-Xylan-4a 

Megazyme O-A2XX (acid hydrolysis of wheat flour 
arabinoxylan); DP-4 MALDI-MS 

Wheat flour  
Ara-Xylan-4b 

Megazyme O-AX3MIX (acid hydrolysis of wheat 
flour arabinoxylan); DP-4 MALDI-MS 

Wheat flour  
Ara-Xylan-5a 

Megazyme O-XA3XX (acid hydrolysis of wheat flour 
arabinoxylan); DP-5 MALDI-MS 

Wheat flour  
Ara-Xylan-5b 

Megazyme O-XAXXMIX (acid hydrolysis of wheat 
flour arabinoxylan); DP-5 MALDI-MS 

Wheat flour  
Ara-Xylan-5c 

Megazyme O-A23XX  
(acid hydrolysis of wheat flour arabinoxylan); DP-5 MALDI-MS 

Wheat flour  
Ara-Xylan-6 

Megazyme O-XA23XX; (acid hydrolysis of wheat 
flour arabinoxylan); DP-6 MALDI-MS 

Sugar beet  
Arabino-hexaose 

Megazyme O-AHE (enzymatic hydrolysis of 
debranched sugar beet arabinan); DP-6 MALDI-MS 

Sugar beet 
Arabino-heptaose 

Megazyme O-AHP (enzymatic hydrolysis of 
debranched sugar beet arabinan); DP-7 MALDI-MS 

Sugar beet  
Arabino-octaose 
mixture 

Megazyme O-AOC (enzymatic hydrolysis of 
debranched sugar beet arabinan); Mixture 
comprising DP-2 to DP-9 

MALDI-MS 
HPTLC purification after lipid 
derivatization 

Sugar beet  
Ara-4B3 

Megazyme O-A4B (enzymatic hydrolysis of 
debranched sugar beet arabinan); DP4 MALDI-MS 

Sugar beet 
Ara-5B 

Megazyme O-A5BMIX (enzymatic hydrolysis of 
debranched sugar beet arabinan); DP5 MALDI-MS 

Manno-tetraose Megazyme O-MTE (enzymatic hydrolysis of 
mannan); DP-4 MALDI-MS 

Manno-pentaose Megazyme O-MPE (enzymatic hydrolysis of 
mannan); DP-5 MALDI-MS 

Manno-hexaose Megazyme O-MHE (enzymatic hydrolysis of 
mannan); DP-6 MALDI-MS 

Ivory nut Mannan 
hydrolysate mixture Elicityl Man810; Mixture comprising DP-7 to DP-13 Size exclusion chromatography  

MALDI-MS 

Carob galactomannan 
hydrolysate mixture 

Elicityl Man219 (designated e-series); Mixture 
comprising DP-2 to DP-11 

Size exclusion chromatography  
MALDI-MS 
HPTLC purification after lipid 
derivatization (DP 6-7) 

Carob galactosyl-
mannopentaose 
mixture 

Megazyme O-GGM5 (designated m-series) 
(enzymatic hydrolysis of carob galactomannan); 
Mixture comprising DP-5 to DP-8 

MALDI-MS 
HPTLC purification after lipid 
derivatization 

Tamarind Xylo-Glucan-7 Megazyme O-X3G4 (enzymatic hydrolysis of 
tamarind xyloglucan); DP-7 MALDI-MS 

Tamarind Xyloglucan 
hydrolysate mixture  

Megazyme O-XGHON; Mixture comprising DP-7 to 
DP-9 

Size exclusion chromatography 
(Difficult to separate) 
MALDI-MS 
HPTLC purification after lipid 
derivatization  

Apple Fuc-Xyl-Glucan 
XFG Elicityl GLU1110 80% XFGa oligosaccharide; DP-7 MALDI-MS 

Apple Fuc-Xyl-Glucan 
XLFG 

Elicityl GLU1160 30% XLFGa oligosaccharide;  
DP-10 MALDI-MS 

aSingle-letter code for xyloglucan oligosaccharides according to Fry et al. 1993257: G denotes an unsubstituted backbone 
Glc monomer;  X, L, and F denote Glc residues substituted with α-D-Xylp, β-D-Galp-(1,2)-α-D-Xylp, and 
α-L-Fucp-(1,2)-β-D-Galp-(1,2)-α-D-Xylp side chains, respectively. 
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Table S2.3. Carbohydrate-directed monoclonal antibodies, lectins and CBMs investigated in the glucan and hemicellulose microarrays. 

Proteins Reported carbohydrate binding Method of analysis Source Reference 
Monoclonal Antibodies 

400-2 Raised against laminarin; 
β1,3 glucose oligosaccharide sequences in β1,3-glucans (DP ≥ 2). 

Indirect competitive 
ELISA 

Biosupplies  
(400-2) Meikle et al. 1991151 

400-3 
Raised against β1,3-1,4-glucan; 
Mixed-linked β1,3-1,4-glucose oligosaccharide sequences in β1,3-1,4-glucans; maximum 
binding to the heptasaccharide with the sequence G3G4G4G3G4G4G; weak cross-
reactivity with β1,4-glucans; no cross-reactivity with β1,3-glucans. 

Indirect competitive 
ELISA 

Biosupplies  
(400-3) Meikle et al. 1994134 

LM10  
Raised against xylopentaose; 
Nonreducing end of the β1,4-xylose oligosaccharide (DP ≥ 2) backbone of xylans and 
arabinoxylans. 

ELISA  
Microarrays 

Plant probes 
(LM10) 

McCartney et al. 
2005135 
Ruprecht et al. 
2017109 

LM11  
Raised against xylopentaose; 
β1,4-xylans (e.g. wheat arabinoxylan) (DP ≥ 4); accommodates more extensive 
substitutions of the xylan backbone with α-arabinose. 

ELISA  
Microarrays 

Plant probes 
(LM11) 

McCartney et al. 
2005135 

LM6 
Raised against arabinoheptaose; 
Linear α1,5-arabinose pentasaccharide sequence in arabinans; can recognise several 
pectic polysaccharides and arabinogalactan-proteins. 

ELISA  
Microarrays 

Plant probes 
(LM6) Willats et al. 1998137 

400-4 
Raised against galactomannan oligosaccharides; 
Linear β1,4-mannose oligosaccharide sequences in β1,4-mannans and galactomannans 
(DP-3 to DP-6).  

ELISA Biosupplies 
(400-4) 

Pettolino et al. 
2001138 

LM21  
Raised against mannopentaose; 
β1,4-linked mannan, glucomannan and galactomannan polysaccharides; β1,4 manno-
oligosaccharides (DP-2 to DP-5). 

ELISA  
Microarrays 

Plant probes 
(LM21) 

Marcus et al. 
2010139 

CCRC-M70  Raised against guar galactomannan polysaccharides; 
Oligosaccharide binding not reported. ELISA Agrisera  

(AS16 3116) 
Pattathil et al. 
2010140 

LM24 
Raised against xylosylated/galactosylated xyloglucan tamarind oligosaccharides (XXLGa 
and XLLGa);  
Galactosylated xyloglucan polysaccharides and oligosaccharides, preferentially to the 
XLLGa motif of xyloglucan. 

Microarrays Plant probes 
(LM24) 

Pedersen et al. 
201292 

LM25 

Raised against xylosylated/galactosylated xyloglucan tamarind oligosaccharides (XXLGa 
and XLLGa); 
Xyloglucan polysaccharides; XLLGa, XXLGa and XXXGa oligosaccharides; requires a 
xyloglucan epitope with at least one α-1,6-linked xylose residue linked to a β1,4-linked 
glucan backbone. 

Microarrays Plant probes 
(LM25) 

Pedersen et al. 
201292 

CCRC-M1  
Raised against sycamore rhamnogalacturonan; 
Sycamore xyloglucan polysaccharides; sycamore pectic polysaccharides;  
Oligosaccharide binding not reported but require the α-Fuc-(1,2)-β-Gal epitope of 
fucosylated-xyloglucan. 

ELISA  
Competitive 
immunoassays 

Agrisera  
(AS16 3136) 

Puhlmann et al. 
1994258 
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LM5 
Raised against galactotetrasaccharide;  
Linear β1,4-galactose tetrasaccharide sequence in galactans; can recognise several 
pectic polysaccharides; no cross-reactivity with β1,3- or β1,6-galactans. 

Microarrays Plant probes 
(LM5) Jones et al. 1997259 

Lectins 

Human Malectin Highly specific for α1,3-di-glucosylated high-mannose N-glycans; binds to linear α1,3-, 
α1,4-, α1,6- and β1,3-linked glucose sequences.   Microarrays Recombinant  

prepared in house 

Schallus et al. 
2008132 
Palma et al. 2010133 

Concavalin A (ConA) Binding to α-linked mannose oligosaccharides. ITC 
Microarrays 

Vector  
(B-1005) Wang et al. 2014150 

Aleuria aurantia (AAL) Binding to α-fucosylated oligosaccharides. 
Hemagglutination/ 
inhibiton 
Microarrays 

Vector Lab. 
(B-1395) 

Kochibe and 
Furukawa 1980143 

Wheat germ agglutinin 
(WGA) 

N-acetylglucosamine, preferentially to DP-2 and DP-3; can also bind to bacterial cell wall 
peptidoglycans, chitin, cartilage glycosaminoglycans, and glycolipids. 

Equilibrium dialysis 
Microarrays 

Vector  
(B-1025) 

Nagata et al. 
1974260 
Wang et al. 2014150  

Datura stramonium 
(DSL) 

Binding to β1,4-linked N-acetylglucosamine oligosaccharides, preferring DP-2 and DP-3; 
also binds well to N-acetyllactosamine and oligosaccharides containing repeating 
N-acetyllactosamine sequences. 

Precipitation / 
inhibition 

Vector Lab. 
(B-1185) 

Crowley et al. 
1984261 

Ricinus 
communis agglutinin I 
(RCA120) 

Binding to galactose or N-acetylgalactosamine sequences. ELISA  
Microarrays 

Vector Lab. 
(B-1085) 

Baenziger et al. 
1979262 
Wang et al. 2011152 

CBMs 

CtCBM25Cthe_0956 Putative starch-binding domain in the Clostridium thermocellum genome; 
uncharacterized protein with carbohydrate binding specificity not yet assigned. - Recombinant 

prepared in house - 

CtCBM11Cthe_1472 
High specificity towards mixed-linked β1,3-1,4-glucose oligosaccharides with DP-4 and 
longer; weak binding affinity to linear β1,4 glucose oligosaccharides. 

ITC 
Microarrays 

Recombinant  
prepared in house 

Palma et al. 201532 
Ribeiro et al. 201934 

CmCBM6-2 
Broad specificity to β-glucans; binds glucose oligosaccharides with DP-2 and longer: 
linear β1,2,  β1,3, β1,4 and β1,6; mixed-linked β1,3-1,4; also binds to β1,4-xylose and 
β1,4-mannose oligosaccharides (weak). 

Microarrays 
Harry Gilbert 
(University of 
Newcastle, UK) 

Palma et al. 201532 

CtCBM22-2Cthe_0912 Binding to oat spelt xylan and wheat and rye arabinoxylan polysaccharides and to 
β1,4-xylose oligosaccharides. 

AGE 
ITC 

Recombinant  
prepared in house 

Charnock et al. 
2000136 

CmCBM32-2 
Binding to linear β1,2- and β1,3-glucose oligosaccharides and β1,3-glucose 
oligosaccharides with β1,6-glucose branches; weaker binding to β1,4-, β1,6- and mixed-
linked β1,3-1,4-glucose oligosaccharides. 

Microarrays 
Harry Gilbert 
(University of 
Newcastle, UK) 

Palma et al. 201532 

CtCBM35Cthe_2811 
Binding to β1,4-linked mannan in galactomannan and glucomannan polysaccharides; 
higher affinity for konjac glucomannan than to carob galactomannan; no oligosaccharide-
specificity reported. 

AGE 
Fluorescence 
spectroscopy 

Recombinant  
prepared in house Ghosh et al. 2014141 

TmCBM41 Binding to linear α1,4-glucose oligosaccharides and mixed-linked α1,4-1,6-glucose 
oligosaccharides (with α1,4-linked glucose at non-reducing end). Microarrays 

Alisdair Boraston 
(University of 
Victoria, Canada) 

Palma et al. 201532 

aSingle-letter code for xyloglucan oligosaccharides according to Fry et al. 1993257: G denotes an unsubstituted backbone Glc residue;  X, L, and F denote Glc residues substituted with α-D-Xylp, 
β-D-Galp-(1,2)-α-D-Xylp, and α-L-Fucp-(1,2)-β-D-Galp-(1,2)-α-D-Xylp side chains, respectively.
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Table S2.4. Fluorescence binding intensities elicited with all the proteins investigated for validation of the glucan and hemicellulose oligosaccharide 
microarrays. The numerical scores for the fluorescence binding signals are shown as means of duplicate spots at 5 fmol probe per spot (as in Figures 2.1 to 2.4 and 2.6, 
and Figure S2.2) and are representative of at least 2 independent experiments. 

IDa Probeb hMalectin CtCBM25 400-2 400-3 CtCBM11 CmCBM6-2 LM10 LM11 CtCBM22-2 LM6 400-4 LM21 CtCBM35 CCRC-M70 LM24 LM25 CCRC-M1 AAL 

1 Cyano-2 -c - - - - - - - - - - - - - - - - - 

2 Cyano-3 - - - - - - - - - - - - - - - - - - 

3 Cyano-4 - - - - - - - - - - - - - - - - - - 

4 Cyano-5 - - - - - - - - - - - - - - - - - - 

5 Cyano-6 - - - - - - - - - - - - - - - - - - 

6 Cyano-7 - - - - - - - - - - - - - - - - - - 

7 Cyano-8 - - - - - - - - - - - - - - - - - - 

8 Cyano-9 - - - - - - - - - - - - - - - - - - 

9 Nigerose 5786 - - - - - - - - - - - - - - - - - 

10 Poria-3 10403 - - - - - - - - - - - - - - - - - 

11 Poria-4 28415 - - - - - - - - - - - - - - - - - 

12 Poria-5 29481 - - - - - - - - - - - - - - - - - 

13 Poria-6 22671 - - - - - - - - - - - - - - - - - 

14 Poria-7 34403 - - - - - - - - - - - - - - - - - 

15 Poria-8 34760 - - - - - - - - - - - - - - - - - 

16 Poria-9 13851 - - - - - - - - - - - - - - - - - 

17 Poria-10 12774 810 - - - - - - - - - - - - - - - - 

18 Poria-11 14999 1817 - - - - - - - - - - - - - - - - 

19 Poria-12 28479 3319 - - - 692 - - - - - - - - - - - - 

20 Poria-13 9917 1463 - - - - - - - - - - - - - - - - 

21 Malto-2 10895 - - - - - - - - - - - - - - - - - 

22 Malto-3 1503 - - - - - - - - - - - - - - - - - 

23 Malto-4 7490 2008 - - - - - - - - - - - - - - - - 

24 Malto-5 7035 5253 - - - - - - - - - - - - - - - - 

25 Malto-6 6596 - - - - - - - - - - - - - - - - - 

26 Malto-7 5593 5824 - - - - - - - - - - - - - - - - 

27 Malto-8 6163 7551 - - - - - - - - - - - - - - - - 

28 Malto-9 4356 4774 - - - - - - - - - - - - - - - - 

29 Malto-10 4213 7354 - - - - - - - - - - - - - - - - 

30 Malto-11 4739 9292 - - - - - - - - - - - - - - - - 

31 Malto-12 7526 9363 - - - - - - - - - - - - - - - - 

32 Malto-13 4280 3209 - - - - - - - - - - - - - - - - 

33 Dext-2 724 - - - - - - - - - - - - - - - - - 

34 Dext-3 - - - - - - - - - - - - - - - - - - 

35 Dext-4 3655 - - - - - - - - - - - - - - - - - 

36 Dext-5 2431 - - - - - - - - - - - - - - - - - 

37 Dext-6 3977 - - - - - - - - - - - - - - - - - 

38 Dext-7 4057 - - - - - - - - - - - - - - - - - 

39 Dext-8 1595 - - - - - - - - - - - - - - - - - 

40 Dext-9 5475 - - - - - - - - - - - - - - - - - 

41 Dext-10 2820 - - - - - - - - - - - - - - - - - 
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IDa Probeb hMalectin CtCBM25 400-2 400-3 CtCBM11 CmCBM6-2 LM10 LM11 CtCBM22-2 LM6 400-4 LM21 CtCBM35 CCRC-M70 LM24 LM25 CCRC-M1 AAL 

42 Dext-11 4324 - 643 - - 1121 - - - - - - - - - - - - 

43 Dext-12 5173 - - - - - - - - - - - - - - - - - 

44 Dext-13 5731 - - - - - - - - - - - - - - - - - 

45 Pano-3 3029 - - - - - - - - - - - - - - - - - 

46 i-Pano-3 537 - - - - - - - - - - - - - - - - - 

47 Pullu-4 5817 - - - - - - - - - - - - - - - - - 

48 Pullu-6 546 1322 - - - - - - - - - - - - - - - - 

49 Pullu-7 5203 - - - - - - - - - - - - - - - - - 

50 CβG-2 - - - - - 8456 - - - - - - - - - - - - 

51 CβG-3 - - - - - 25747 - - - - - - - - - - - - 

52 CβG-4 - - - - - 25788 - - - - - - - - - - - - 

53 CβG-5 - - - - - 26575 - - - - - - - - - - - - 

54 CβG-6 - - - - - 29013 - - - - - - - - - - - - 

55 CβG-7 - - - - - 21389 - - - - - - - - - - - - 

56 CβG-8 - - - - - 19145 - - - - - - - - - - - - 

57 CβG-9 - - - - - 19735 - - - - - - - - - - - - 

58 CβG-10 - - - - - 19448 - - - - - - - - - - - - 

59 CβG-11 - - - - - 17523 - - - - - - - - - - - - 

60 CβG-12 - - - - - 23896 - - - - - - - - - - - - 

61 CβG-13 - - - - - 24428 - - - - - - - - - - - - 

62 Lam-2 - - - - - 16840 - - - - - - - - - - - - 

63 Lam-3 907 - 788 - - 18838 - - - - - - - - - - - - 

64 Lam-4 3498 - 33770 - - 30839 - - - - - - - - - - - - 

65 Lam-5 4137 - 39832 - - 28217 - - - - - - - - - - - - 

66 Lam-6 4517 - 32174 - - 21840 - - - - - - - - - - - - 

67 Lam-7 4107 - 28121 - - 15705 - - - - - - - - - - - - 

68 Curd-8 3098 - 41395 - - 25561 - - - - - - - - - - - - 

69 Curd-9 5654 - 44383 - - 26357 - - - - - - - - - - - - 

70 Curd-10 5784 - 44162 - - 27613 - - - - - - - - - - - - 

71 Curd-11 4739 - 38366 - - 20897 - - - - - - - - - - - - 

72 Curd-12 4850 - 48167 876 - 28842 - - - - - - - - - - - - 

73 Curd-13 3537 - 39715 576 - 18338 - - - - - - - - - - - - 

74 NSG-11 4904 - 34940 - - 30793 - - - - - - - - - - - - 

75 HE-8 3551 - 32912 - - 20131 - - - - - - - - - - - - 

76 HE-9 1616 - 26274 - - 13392 - - - - - - - - - - - - 

77 HE-10 1562 - 23804 - - 8295 - - - - - - - - - - - - 

78 Cellobiose 748 - - - - 10886 - - - - - - - - - - - - 

79 Cello-4 762 - - 4451 - 21582 - - - - - - - - - - - - 

80 Cello-5 805 - - 4794 - 18290 - - - - - - - - - 840 - - 

81 Cello-6 - - - 3638 - 18081 - - - - - - - - - 915 - - 

82 Cello-7 - - - 3229 - 14935 - - - - - - - - - 1353 - - 

83 Cello-8 - - - 4324 - 20261 - - - - - - - - - 2060 - - 

84 Cello-9 1309 - - 7142 2306 30818 - - - - - - - - - 3174 962 - 

85 Cello-10 1572 - - 6933 3250 33677 - - - - - - - - - 2815 719 - 

86 Cello-11 994 - - 2415 4396 35561 - - - - - - - - - 1449 - - 

87 Cello-12 588 - - 4261 2035 20385 - - - - - - - - - 1191 - - 
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IDa Probeb hMalectin CtCBM25 400-2 400-3 CtCBM11 CmCBM6-2 LM10 LM11 CtCBM22-2 LM6 400-4 LM21 CtCBM35 CCRC-M70 LM24 LM25 CCRC-M1 AAL 

88 Cello-13 1115 - - 6721 3851 35688 - - - - - - - - - 2096 562 - 

89 Gentiobiose 680 - - - - 11309 - - - - - - - - - - - - 

90 Pust-3 - - - - - 23381 - - - - - - - - - - - - 

91 Pust-4 - - - - - 20850 - - - - - - - - - - - 1 

92 Pust-5 - - - - - 32800 - - - - - - - - - - - - 

93 Pust-6 - - - - - 22879 - - - - - - - - - - - - 

94 Pust-7 - - - - - 15671 - - - - - - - - - - - - 

95 Pust-8 - - - - - 7613 - - - - - - - - - - - - 

96 Pust-9 - - - - - 9744 - - - - - - - - - - - - 

97 Pust-10 - - - - - 10965 - - - - - - - - - - - - 

98 Pust-11 - - - - - 6891 - - - - - - - - - - - - 

99 Pust-15 - - - - - 6641 - - - - - - - - - - - - 

100 Pust-15a - - - - - 8906 - - - - - - - - - - - - 

101 Barley-3 - - - - - 23759 - - - - - - - - - - - - 

102 Barley-3a 2346 - 1620 - - 10059 - - - - - - - - - - - - 

103 Barley-4 - - - 2993 - 31659 - - - - - - - - - - - - 

104 Barley-4a 2357 - 602 2362 - 25544 - - - - - - - - - - - - 

105 Barley-4b - - - 3651 - 32173 - - - - - - - - - - - - 

106 Barley-4c - - - - - 29542 - - - - - - - - - - - - 

107 Barley-5 - - - 11189 1298 28143 - - - - - - - - - - - - 

108 Barley-5a 4868 - 4423 16165 - 30645 - - - - - - - - - - - - 

109 Barley-6 - - - 18752 2339 23518 - - - - - - - - - - - - 

110 Barley-6a 8370 - 3907 14646 - 44277 - - - - - - - - - - - - 

111 Barley-7 - - - 27077 16177 34423 - - - - - - - - - - - - 

112 Barley-8 - - - 15320 12698 21560 - - - - - - - - - - - - 

113 Barley-9 - - - 24979 31593 28286 - - - - - - - - - - - - 

114 Barley-10 - - - 17785 19418 11086 - - - - - - - - - - - - 

115 Barley-11 - - - 18306 21911 24647 - - - 732 - - - - - - - - 

116 Barley-12 - - - 25441 30594 28306 - - - - - - - - - - - - 

117 Barley-13 - - - 20542 18931 17174 - - - - - - - - - - - - 

118 Barley-14 - - - 25852 7868 25529 - - - - - - - - - - - - 

119 Barley-15 - - - 20235 14544 24190 - - - - - - - - - - - - 

120 Barley-16 - - - 18605 28558 18166 1541 2501 6692 - - - - - - - - - 

121 Grifo-3 - - - - - 25910 - - - - - - - - - - - - 

122 Grifo-4 - - 966 701 - 22915 - - - - - - - - - - - - 

123 Grifo-5 - - 1012 709 - 24924 - - - - - - - - - - - - 

124 Grifo-6 509 - 996 - - 24261 - - - - - - - - - - - - 

125 Grifo-7 806 - 1194 - - 28271 - - - - - - - - - - - - 

126 Grifo-8 1153 - 1234 - - 22558 - - - - - - - - - - - - 

127 Grifo-9 - - 738 - - 21603 - - - - - - - - - - - - 

128 Grifo-10 - - - - - 22190 - - - - - - - - - - - - 

129 Grifo-11 518 - - - - 21855 - - - - - - - - - - - - 

130 Grifo-12 - - 715 - - 18385 - - - - - - - - - - - - 

131 Grifo-13 - - 659 - - 22175 - - - - - - - - - - - - 

132 Grifo-14 - - 249 - - 13168 - - - - - - - - - - - - 

133 Grifo-15 - - 277 - - 17999 - - - - - - - - - - - - 
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IDa Probeb hMalectin CtCBM25 400-2 400-3 CtCBM11 CmCBM6-2 LM10 LM11 CtCBM22-2 LM6 400-4 LM21 CtCBM35 CCRC-M70 LM24 LM25 CCRC-M1 AAL 

134 Grifo-16 - - 1031 - - 17339 - - - - - - - - - - - - 

135 Lentin-2 1677 - - - - 16935 - - - - - - - - - - - - 

136 Lentin-3 1920 - 645 - - 30439 - - - - - - - - - - - - 

137 Lentin-4 2307 - 2247 - - 23914 - - - - - - - - - - - - 

138 Lentin-5 2135 - 22693 - - 35202 - - - - - - - - - - - - 

139 Lentin-6 3266 - 15125 - - 30787 - - - - - - - - - - - - 

140 Lentin-7 3117 - 11407 - - 31686 - - - - - - - - - - - - 

141 Lentin-8 4761 - 15766 - - 37287 - - - - - - - - - - - - 

142 Lentin-9 5620 - 12926 - - 22775 - - - - - - - - - - - - 

143 Lentin-10 7036 - 9988 - - 23159 - - - - - - - - - - - - 

144 Lentin-11 5961 - 8641 - - 23897 - - - - - - - - - - - - 

145 Lentin-12 3446 - 8975 - - 20509 - - - - - - - - - - - - 

146 Lentin-13 7773 - 24691 - - 30322 - - - - - - - - - - - - 

147 HE-9B7 3145 - 12463 - - 20693 - - - - - - - - - - - - 

148 HE-10B2 7089 - 38414 - - 31028 - - - - - - - - - - - - 

149 HE-10B3 7254 - 39663 - - 31276 - - - - - - - - - - - - 

150 HE-10B5 6478 - 28213 - - 28830 - - - - - - - - - - - - 

151 HE-10B7 3505 - 20849 - - 30752 - - - - - - - - - - - - 

152 Gu-6B1/3 963 - - - - 29544 - - - - - - - - - - - - 

153 HE-11B3/6 4108 - 4556 - - 25704 - - - - - - - - - - - - 

154 Xyl-3 - - - - - 4117 38464 13828 570 - - - - - - - - - 

155 Xyl-4 - - - - - 2948 28021 14098 3215 - - - - - - - - - 

156 Xyl-5(β4) - - - - - 4092 31848 16338 11406 - - - - - - - - - 

157 Xyl-6(β4) - - - - - 4944 37861 17042 17999 - - - - - - - - - 

158 Xyl-7 - - - - - 5613 56494 20098 34844 - - - - - - - - - 

159 Xyl-8 - - - - - 5184 54652 19450 39891 - - - - - - - - - 

160 Xyl-9 - - - - - 8596 49824 19699 44545 - - - - - - - - - 

161 Xyl-10 - - - - - 3489 45970 17428 33815 - - - - - - - - - 

162 Xyl-11 - - - - - 5456 39072 18654 45723 - - - - - - - - - 

163 Xyl-12 - - - - - 2328 33903 17289 32272 - - - - - - - - - 

164 Xyl-13 - - - - - 4700 38896 15291 37049 - - - - - - - - - 

165 Ara-Xylan-3 - - - - - - - - - - - - - - - - - - 

166 Ara-Xylan-4a - - - - - 3451 2763 14452 - - - - - - - - - - 

167 Ara-Xylan-4b - - - - - 3575 8688 15723 - - - - - - - - - - 

168 Ara-Xylan-5a - - - - - 5789 15896 3247 7593 - - - - - - - - - 

169 Ara-Xylan-5b - - - - - 2942 35641 9488 6572 - - - - - - - - - 

170 Ara-Xylan-5c - - - - - - - 9344 1460 - - - - - - - - - 

171 Ara-Xylan-6 - - - - - 4977 30250 1325 5944 - - - - - - - - - 

172 Ara-2(α5) - - - - - - - - - - - - - - - - - - 

173 Ara-3(α5) - - - - - - - - - 5443 - - - - - - - - 

174 Ara-4(α5) - - - - - - - - - 18306 - - - - - - - - 

175 Ara-5(α5) - - - - - - - - - 23714 - - - - - - - - 

176 Ara-6(α5) - - - - - - - - - 43262 - - - - - - - - 

177 Ara-7(α5) - - - - - - - - - 40092 - - - - - - - - 

178 Ara-8(α5) - - - - - - - - - 18672 - - - - - - - - 

179 Ara-9(α5) - - - - - - - - - 17959 - - - - - - - - 
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IDa Probeb hMalectin CtCBM25 400-2 400-3 CtCBM11 CmCBM6-2 LM10 LM11 CtCBM22-2 LM6 400-4 LM21 CtCBM35 CCRC-M70 LM24 LM25 CCRC-M1 AAL 

180 Ara-4B3 - - - - - - - - - - - - - - - - - - 

181 Ara-5B - - - - - - - - - 15133 - - - - - - - - 

182 Man-4(β4) - - - - - 5243 - - - - 10884 41819 4726 - - - - - 

183 Man-5(β4) - - - - - 7731 - - - - 10114 37066 6085 - - - - - 

184 Man-6(β4) - - - - - 8721 - - - - 20289 52247 14864 - - - - - 

185 Man-8(β4) - - - - - 764 - - - - 21759 38401 11514 - - - - - 

186 Gal-Mannan-2e - - - - - - - - - - - - - - - - - - 

187 Gal-Mannan-3e - - - - - 1322 - - - - - 7194 - - - - - - 

188 Gal-Mannan-4e - - - - - 1970 - - - - 1007 17455 - - - - - - 

189 Gal-Mannan-5e - - - - - 1897 - - - - 7435 35210 - - - - - - 

190 Gal-Mannan-6e - - - - - 1709 - - - - 5778 25781 1138 - - - - - 

191 Gal-Mannan-7e - - - - - 2172 - - - - 17254 40697 6685 - - - - - 

192 Gal-Mannan-8e - - - - - 1686 - - - - 6616 16554 1101 - - - - - 

193 Gal-Mannan-5m - - - - - 3698 - - - - - 3412 - - - - - - 

194 Gal-Mannan-6m - - - - - 3525 - - - - 4802 1430 - - - - - - 

195 Gal-Mannan-7m - - - - - 6395 - - - - - - - - - - - - 

196 Gal-Mannan-8m - - - - - 4417 - - - - 1484 - - 2022 - - - - 

197 Gal-Mannan-9e - - - - - 4818 - - - - 23010 48187 14775 1204 - - - - 

198 Gal-Mannan-10e - - - - - 2128 - - - - 16522 36671 16277 566 - - - - 

199 Gal-Mannan-11e - - - - - 3731 - - - - 21199 40755 21705 1476 - - - - 

200 Xyl-Glucan-7 - - - - - 16775 - - - - - - - - 631 44482 - - 

201 Xyl-Glucan-8 - - - - - 10370 - - - - - - - - 15406 46234 - - 

202 Xyl-Glucan-9 - - 2120 - - 10148 - - - - - - - - 43222 27642 - - 

203 FG-Xyl-Glucan-6 - - - - - 31063 - - - - - - - - 52678 37033 34433 29573 

204 FG-Xyl-Glucan-9 - - - - - 16892 - - - - - - - - 45090 36633 2806 2913 

aID, Probe position in the microarray matching the position in the heatmap, binding-charts and in Table S2.1;bIn the β1,6-linked pustulan series, fractions containing oligomers with >DP-8 as 
major components (probes 100-103) there was evidence of a minor contaminant containing α-linked mannose; In the NGLs of oligosaccharide fractions derived from branched 
β1,3(β1,6)-lentinan (probes 142-151) there was presence of an α1,4-linked glucose contaminant (not shown)32;cThe binding signals are means of fluorescence intensities of duplicate spots at 
5 fmol of probe arrayed (the respective standard deviation was calculated as the associated error, overall < 5%). ‘-‘ refers to a fluorescence intensity < 500. 



CHAPTER 2. SUPPLEMENTARY INFORMATION 

197 
 

 

Table S2.5. Information on the oligosaccharide neoglycolipid probes printed and validated in the 
xyloglucan microarrays. The NGL probes are sorted by source and degree of polymerization. 

IDa Linkages & Sources Probe Designationb Probe Sequencec,d 

1 

Branched Glcβ4(Xylα6Galβ4) 
Tamarind xyloglucan 

Xyl-Glucan-7-DAN-DHPA 

      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-DAN-
DHPA 
     │           │ 
Xylα-6      Xylα-6 

2 Xyl-Glucan-8-DAN-DHPA 

      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-DAN-
DHPA 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 

3 Xyl-Glucan-9-DAN-DHPA 

      Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-DAN-
DHPA 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 

4 Xyl-Glucan-7-AO 

      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO 
     │           │ 
Xylα-6      Xylα-6 
 

5 Xyl-Glucan-8-AO* 

      
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO* 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 
 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO 
     │           │ 
Xylα-6      Xylα-6 

6 Xyl-Glucan-9-AO 

      Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 

7 

Branched Glcβ4(Xylα6Galβ4Fucα2) 
Apple xyloglucan 

FG-Xyl-Glucan-7-DAN-DHPA 

      Fucα-2 
           │ 
      Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glc-DAN-DHPA 
     │           
Xylα-6  

8 FG-Xyl-Glucan-10-DAN-DHPA* 

      Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-DAN-
DHPA 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 
                 │ 
            Fucα-2 

9 FG-Xyl-Glucan-6-AO* 

      (Fucα-2) 
           │ 
      Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glc-AO 
     │           
Xylα-6  
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aID, Probe position in the microarray matching the position in the binding-charts.  
bAbbreviations for oligosaccharide moieties: Xyl-Glucan-, from non-fucosylated xyloglucan from tamarind; and Fuc-Xyl-
Glucan-, from fucosylated xyloglucan from apple;  
cThe oligosaccharide probes are all lipid-linked, neoglycolipids (NGLs); AO-NGLs probes 4-6 and 9-10 were used as 
controls in this microarray, corresponding to probes 202-204 in Table S2.1; and DHPA-NGLs prepared by reductive 
amination with the amino lipid N-(4-formylbenzamide)-1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (DHPA);  
dAn asterisk indicates the major component when multiple components are present. 
 

 

 

10 FG-Xyl-Glucan-9-AO* 

       Galβ-2 
           │ 
      Xylα-6 
           │ 
     Glcβ-4Glcβ-4Glcβ-4Glc-AO 
     │           │ 
Xylα-6      Xylα-6 
                 │  
            Galβ-2 
                 │ 
            (Fucα-2) 

11 

Branched 
Glcβ4(Xylα6Galβ4Fucα2) 

Apple xyloglucan 

Xyl-Glucan DP4-AO* 

Glcβ4(Xylα6Galβ4Fucα2)4-13-AO 

12 Xyl-Glucan DP5-AO* 

13 Xyl-Glucan DP6a-AO* 

14 Xyl-Glucan DP6b-AO* 

15 Xyl-Glucan DP7-AO* 

16 Xyl-Glucan DP8a-AO* 

17 Xyl-Glucan DP8b-AO* 

18 Xyl-Glucan DP9-AO* 

19 Xyl-Glucan DP11/12-AO* 

20 Xyl-Glucan DP13-AO* 
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Chapter 3 - Supplementary Information 

Supplementary Figures 

 

 
Figure S3.1. Quality control of C. thermocellum and R. flavefaciens FD-1 recombinant CBMs 
produced using the high-throughput platforms. CBMs were subjected to a denaturing gel containing 
13% (w/v) acrylamide SDS-PAGE analysis using a Tris-tricine buffer system and stained with Coomassie 
Blue. Each lane contained 5 µg of total protein. NZYColour Protein Marker II was used as marker (lanes M). 
CBMs are identified at the top using the code IDs A1-89 for C. thermocellum and B1-61 for 
R. flavefaciens FD-1, according to Tables S3.1. 
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Figure S3.2. Isothermal calorimetry titrations of binding of CtCBM13Cthe_0661 to pustulan 
polysaccharide. The top portion of each panel shows the raw power data while the bottom parts show the 
integrated and heat of dilution corrected data. The solid lines show the non-linear curve fits to a one site 
binding model with the stoichiometry fixed at 1. Thermodynamic parameters are given in the top panel. 
 

 
Figure S3.3. Analysis of C. thermocellum and R. flavefaciens CBMs on a pectin polysaccharide 
microarray. The microarrays included 26 pectin-related polysaccharides. Carbohydrate sequence 
information on these probes is in Table S3.9. CBMs for which binding was obtained are presented at the 
top, organised by CAZy family for each bacterium. Monoclonal antibodies LM5 and LM6 and plant lectin 
RCA120 used for the microarray quality control are also presented. The relative binding intensities were 
calculated as the percentage of the fluorescence signal intensity at 5 fmol given by the probe most strongly 
bound by each protein (normalized as 100%) and are representative of at least two independent 
experiments, with an error below 20%. Numerical scores are given in the heatmap, where ‘-‘ refers to a 
fluorescence intensity < 500. 
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Figure S3.4. Validation of the chitin and chitosan NGL probes included in the glucan, hemicellulose, 
chitin and chitosan NGL-microarrays. The binding signals of lectins WGA and DSL are depicted as means 
of fluorescence intensities of duplicate spots at 5 fmol of oligosaccharide probe arrayed (with error bars) and 
are representative of at least two independent experiments. The different carbohydrate groups are indicated 
in the coloured panels.  Carbohydrate sequence information on these probes is in Chapter 2, Table S2.1.  
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Supplementary Tables 
Table S3.1. Modular architecture and primary sequences of C. thermocellum and R. flavefaciens FD-1 CBMs for which carbohydrate binding patterns were 
obtained. CBMs analysed are highlighted in bold and the respective sequence of the recombinant protein expressed is shown. Each CBM is identified by organism, 
high-throughput ID code, and assigned protein ID. 

  
Family Code ID Protein ID Molecular architecturea Primary sequence 

C
. t

he
rm

oc
el

lu
m

 

3 

A3 Cthe_3077 CBM3-DOC1 
PVSGNLKVEFYNSNPSDTTNSINPQFKVTNTGSSAIDLSKLTLRYYYTVDGQKDQTFWCDHAAIIGSN
GSYNGITSNVKGTFVKMSSSTNNADTYLEISFTGGTLEPGAHVQIQGRFAKNDWSNYTQSNDYSFK
SASQFVEWDQVTAYLNGVLVWGKEP 

A20 Cthe_0433 GH9-CBM3-DOC1 
GGSYWVEAFGVDIVQSDGPKATEVTLYVRSDSRKPSKNISVRYFFDATGMSSVDPDKMEIRQLYDQ
TAAETDYAAKLTGPHHYKDNIYYVEISWEGFAIANSNKKYQFALGTYTWGNSWDPTDDWSYQELKI
EESNYTGTPARNNRICVYDAGVLVGGIEP 

A6 Cthe_0040 GH9-CBM3-CBM3  
QGIKGEVVLQYANGNAGATSNSINPRFKIINNGTKAINLSDVKIRYYYTKEGGASQNFWCDWSSAGN
SNVTGNFFNLSSPKEGADTCLEVGFGSGAGTLDPGGSVEVQIRFSKEDWSNYNQSNDYSFNPSAS
DYTDWNRVTLYISNKLVYGKEP 

A12 Cthe_0059 CBM3 
QDGTKGLKIQYYSRKPHDSAGIDFSFRMFNTGNEAIDLKDVKVRYYFKEDVSIDEMNWAVYFYSLGS
EKDVQCRFYELPGKKEANKYLEITFKSGTLSPNDVMYITGEFYKNDWTKFEQRDDYSYNPADSYSD
WKRMTAYISNKLVWGIEPN 

4 

A64 Cthe_2809 SLH-SLH-SLH-CBM54-GH16-
CBM4-CBM4-CBM4-CBM4 

IYNGGFDVDDSAAVGVDGVPYTSYWTFLTASGGAATVNVEEGVMHVQIENGGTTDYGVQLLQAPIH
LEKGAKYKASFDMKAENPRQVKLKIGGDGDRGWKDYAAIPPFTVSTEMTNYEFEFTMKDDTDVKAR
FEFNMGLDDNDVWIDNVKLIKTEDAPVI 

A62 Cthe_2809 SLH-SLH-SLH-CBM54-GH16-
CBM4-CBM4-CBM4-CBM4 

ILNGVFNGLAGWGYGAYEPGSADFESHEEQFRAIISSVGNEGWNVQLYQDNVPLEQGQTYEVSFD
AKSTIDRKIIVQLQRNGTSDNNWDSYFYQEVELTNELKTFKYEFTMSKPTDSASRFNFALGNTENKT
YAPHEIIIDNVVVRKVATPSAL 

A14 Cthe_0413 CBM4-GH9-CBM3-DOC1 
PYKNDLLYERTFDEGLCYPWHTCEDSGGKCSFDVVDVPGQPGNKAFAVTVLDKGQNRWSVQMRH
RGLTLEQGHTYRVRLKIWADASCKVYIKIGQMGEPYAEYWNNKWSPYTLTAGKVLEIDETFVMDKPT
DDTCEFTFHLGGELAATPPYTVYLDDVSLYDPEY 

6 

A30 Cthe_1271 GH43-CBM6-CBM6-DOC1 VTERSAFSKIEVEDFNDIKSSTIQKIGTPNGGSGIGYIENGDWLAYKNIDFGNGATTFKALVASTLSPNI
ELRLDSPTGTLIGTLKVAATGGFNAYEEQSCNISKVTGKHDLYLVFSGAVNIDWFTFGGSSGII 

A49 Cthe_2197 GH2-CBM6-DOC1 
PVPRSAFTRIEAESYDAQSGIQTEDCSEGGKDVGYIENGDFVVYKAIDFGRGAASFKARVASATSGG
NIELRIDSIDGPVVGICPVAGTGGWQEWADATCEVSDLKGVHDLYLKFTGGSGYLLNVNWFTFVEG
NSDED 

A52 Cthe_2194 CE1-CBM6-DOC1 RSAFTRIEAEDFDNMSGIENESCSEGGLNIGYIENGDYVAYSNIDFGNGAKEFQARVASATSGGKIEI
RLDSITGPLIGTCSVSGTGGWQQWVDVKCEVSGVSGTHDLYLKFTGGSGYLFNINWWKFTQAD 

A51 Cthe_2195 CBM6-DOC1 
EPRSAFTRIEAESYNGQSGIQTENCSEGGMDVGYIENGDYVVYKNIDFGKGAASFKARVASATSGG
NIELRIDSIDGPVVGICPVAGSGGWQQWVDATCEVSGLKGVHDLYLKFTGGSGYLLNINWFTFVEGN
NDE 

A39 Cthe_1963 CE1-CBM6-DOC1-GH10 ANTRIEAEDYDGINSSSIEIIGVPPEGGRGIGYITSGDYLVYKSIDFGNGATSFKAKVANANTSNIELRL
NGPNGTLIGTLSVKSTGDWNTYEEQTCSISKVTGINDLYLVFKGPVNIDWFTFGVESSS 
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A65 Cthe_3012 GH30-CBM6-DOC1 VERNAFSKIECEEYNATNSSTVQVVGTGTGSGLGYIENGNYFAYKNINFGNGANSFKIRAATTGTPKI
EIRLGSPTGTLAGTLQVAATGGFNAYEEQSCSINKITGVQDVYLVFGGAVNVDWFTFE 

A66 Cthe_2972 GH11-CBM6-DOC1-CE4 TPRSAFSKIEAEEYNSLKSSTIQTIGTSDGGSGIGYIESGDYLVFNKINFGNGANSFKARVASGADTPT
NIQLRLGSPTGTLIGTLTVASTGGWNNYEEKSCSITNTTGQHDLYLVFSGPVNIDYFIFDSNGVNP 

11 A36 Cthe_1472 GH26-GH5-CBM11-DOC1 
AVGEKMLDDFEGVLNWGSYSGEGAKVSTKIVSGKTGNGMEVSYTGTTDGYWGTVYSLPDGDWSK
WLKISFDIKSVDGSANEIRFMIAEKSINGVGDGEHWVYSITPDSSWKTIEIPFSSFRRRLDYQPPGQD
MSGTLDLDNIDSIHFMYANNKSGKFVVDNIKLIGATSDP 

13 A2 Cthe_0661 GH43-CBM13-DOC1 
TRYKLVNKNSGKVLDVLDGSVDNAAQIVQWTDNGSLSQQWYLVDVGGGYKKIVNVKSGRALDVKD
ESKEDGGVLIQYTSNGGYNQHWKFTDIGDGYYKISSRHCGKLIDVRKWSTEDGGIIQQWSDAGGTN
QHWKLVLVSS 

22 

A33 Cthe_1838 CBM22-GH10-DOC1 
ASAAALIYDDFETGLNGWGPRGPETVELTTEEAYSGRYSLKVSGRTSTWNGPMVDKTDVLTLGESY
KLGVYVKFVGDSYSNEQRFSLQLQYNDGAGDVYQNIKTATVYKGTWTLLEGQLTVPSHAKDVKIYV
ETEFKNSPSPQDLMDFYIDDFTAT 

A53 Cthe_2590 CBM22-GH10-DOC1 
AEGNLLFNPGFELGSTEGWYPYGECTIEAVGTEAHSGNYSVFVTDRTQDWNGVAQDMLDKLTVGM
TYQVSAWVKVAGTGSHQVKISMKKVETGKEPVYDNIASITVEGSEWYRLSGPYSYTGTNVTNLELYI
EGPQPGVSYYVDDVTVTEVGSA 

A27 Cthe_0912 CBM22-GH10-CBM22-DOC1-CE1 
ASAAALIYDDFETGLNGWGPRGPETVELTTEEAYSGRYSLKVSGRTSTWNGPMVDKTDVLTLGESY
KLGVYVKFVGDSYSNEQRFSLQLQYNDGAGDVYQNIKTATVYKGTWTLLEGQLTVPSHAKDVKIYV
ETEFKNSPSPQDLMDFYIDDFTAT 

A26 Cthe_0912 CBM22-GH10-CBM22-DOC1-CE1 
PDANGYYYHDTFEGSVGQWTARGPAEVLLSGRTAYKGSESLLVRNRTAAWNGAQRALNPRTFVP
GNTYCFSVVASFIEGASSTTFCMKLQYVDGSGTQRYDTIDMKTVGPNQWVHLYNPQYRIPSDATDM
YVYVETADDTINFYIDEAIGAVAGTVIEGPAPQPTQ 

25 A80 Cthe_0956 CBM25 FRLVYSGILAKNNPENLYAVIGYGNNLAWEDIESYSMRKIGDQKYELLFPVKRPGNINIAFKDDADNW
DNNSGMNYCFENHVYQGSH 

30 A17 Cthe_0624 CBM30-GH9-GH44-DOC1-CBM44 
SAETVAPEGYRKLLDVQIFKDSPVVGWSGSGMGELETIGDTLPVDTTVTYNGLPTLRLNVQTTVQSG
WWISLLTLRGWNTHDLSQYVENGYLEFDIKGKEGGEDFVIGFRDKVYERVYGLEIDVTTVISNYVTVT
TDWQHVKIPLRDLMKINNGFDPSSVTCLVFSKRYADPFTVWFSDIKITSEDNEK 

32 A28 Cthe_0821 GH5-CBM32-DOC1 AGSIAQNKPVYASSTEPGLGNTPEKAVDGNIATRWSSDYSDNQYIYVDLLDEYEIERVYIEWEAAYA
RQYKIQVSNDAVTWTDVYTEYNGDGDIDDIYLEARGRYVRIYCMQRATQYGNSIFELGVYPKGGIA 

35 A66 Cthe_2811 CBM35-GH26-DOC1 
INVSNAVLSDGDKYEFEDGIHKGAQIYTDYVGQNEYGEVFDLTGSTCSFIAQKGTSTSVNVEVDKEG
LYEIFICYVQPYDKNKKVQYLNVNGVNQGEISFPFTLKWREISAGIVKLNAGINNIELESYWGYTYFDY
LIVKP 

42 

A29 Cthe_1273 CBM42 
YGQFMKFESSNYRGYYIRVKSFSGRIDPYVNPVEDSMFKIVPGLADPSCISFESKTYPGYYLKHENF
RVILKKYEDTDLFREDATFRVVPGWADENMISFQSYNYPYRYIRHRDFELYIENIKTDLDRKDATFIGI
KVD 

A43 Cthe_2139 GH30-CBM42-GH43-DOC1 
VPAVGLQSYNYPNRYVRHADFDARIDENVTPLEDSQWRLVPGLANSSEGYVSIQSVNYPGYYLRH
WDYDFRLDKNDGTTIFAEDATFKLVPGLADPSCVSFQSYNYPDRYIRHYGYLLKLERISTDLDRQDA
TFLII 

A44 Cthe_2138 CBM42-GH43-DOC1 
STGADGAIAKLQSYNYSHMYIRNANFDVRIDDNVTPETDAQWVLVPGLANSGEGYVSIQSVDHLGY
YLRHWNYDFRLEKNDGTRIFAEDATFKMVPGLADPSYTSFQSYNYPTRYIRHYNYLLRLDEIVTALD
REDATFRVIDSSSV 

50 

A73 Cthe_0300 CBM50 YTVKPGDTMWKIAVKYQIGISEIIAANPQIKNPNLIYPGQKINIPNI 
A74 Cthe_2387 CBM50 YAIYYVRPGDTLYNIAGRFYTSVNSIVTANPGINPNVINIGQRLVVPYGI 
A77 Cthe_3006 CBM50-CBM50-CBM50 YEIKSGDTLSKIAAKFNTTVGDILNANPGIIPEKLYVGQKICIPQP 
A84 Cthe_3006 CBM50-CBM50-CBM50  YVIQKGDTLPAIAKIFNVTVQQLINANPGINPNALYVGQVICIPVA 
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A35 Cthe_1800 CBM50-CBM50-GH18  MWYTVQPGDSLYTISQRFGVTIAQIKSANQLTSDIIYVGQRLYIPIGIQA 
A86 Cthe_3005 CBM50-CBM50-CBM50-CBM50  YKVQSGDTFWKIGQKYNISTAALLKANNANENTVLYPGQTIVLPIK 
A83 Cthe_3007 CBM50-CBM50  YTIKAGDTLAAIARIYGTTVQDIINANPDIDPYYLRVGQQICIPLT 

62 A45 Cthe_2193 GH5-CBM6-CBM13-CBM62-DOC1 
PKLTGTVIGTQGSWNNIGNTIHKAFDGDLNTFFDGPTANGCWLGLDFGEGVRNVITQIKFCPRSGYE
QRMIGGIFQGANKEDFSDAVTLFTITSLPGSGTLTSVDVDNPTGFRYVRYLSPDGSNGNIAELQFFGT
PAGEEN 
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4 

B22 3995 CBM4-GH9 
VGLPWHIVESAPGVMDFSIDGGTYNVTIVNPGGASRGGEDRWDCQFRHRGLKIVSGHQYEVKYDIT
ATESGMYYTKIGNLDGDVELWHNNMADNGPDFNGSWDLIHIDANKTNSVSLTFTANQNMEVAEWA
FHLGGSGQYTPQDCFPEGTVISFDNMS 

B25 3259 GH16-CBM4 
GDDFAPTPVTSMALGSYIEGAEAYVANKDGCTLVHIDSVGSLEYGVMALLRGQKVQAGDTWQLEFD
AVSTAEREMTVTAEDSSYTRYLDEKVTVSSEKKHFSFDVNFAGDMSADIKFQLGNIGNAASVGSHE
VTLSNIKWTKKNGS 

B40 776 CBM4-GH9-DOC1 
QVSAAGNLISNSTFESGVKDWGTYKESGGKCSLKAEDGKLALTVSDVGKVNYAVQVFYDILPLYQN
GVYRLKYDISCTTDRFVEGMIQMNGGDYRAYTWKGLNLTSAPQTVDYEFTMEDETDIMAKLVFNCG
IQEKYEGVLPEHTIYIDNVSLELVDDS 

B45 2836 GH16-CBM4 
EALEDGNFVYNGDFAEAEDLTDDENWKFLLFEGGKGAAEIRDNMIVITTEDEGTVDYSVQLVQPEM
PIIKGKKYRVTFDAWADEERDIIVCVSAPNAGWIRYLEDTTLTITPEQTTYTYDFEMNDKDDPLGRLEF
NMGHKGSTATVYITNVRLEEVE 

6 B49 3747 CBM6-DOC1 
GSGGSTDDIIEAEKYDIQKGIQTENCSEGGSDVAYIENGDYIGFKNIDFGSGTDSISFRIGSNGAEASI
EVRLGAADGKLIGTLPVKSTGGWQTWNTQTCAIENTSGRNDVYFVFKGGDGYLFNINWWKPDKPS
EPI 

13 

B18 2326 GH43-CBM13-DOC1 
VTETVRIEEGKYTLKNVNSGLYIAEDSGNVIQSQSQPWEIKAVADGVYAIIDEKGNALTVDGSSPDDG
ANISVSTFSDAENQKFTAVLNDDGSYSFMSLVSGKVRCLDVYNISKDDGANICQWEFWGGDGQKFI
LEEA 

B43 2115 GH43-CBM13-CBM13-DOC1 
SGTELLSGVPYFITNVNSGLSLDLPEGKLDNGTNIQQWDFNKLWAQQWRIISVDKEWCRIVSLGDEG
KCIAVAKDTADDGTNVELQTYTGADNQLFKFVKSGSSYGIVSKCSGGKGALDVFEWSKENGGNVN
QFAYNEYACQLWNIAPV 

B60 694 PL11-CBM13-DOC1 
TASDIIDGQIYTFKNLNSGLYLDVEGGTAANGTNVQQAEATGKQNQFKAVAAGDGYYYLVSQLGDG
ESYALDVNAKKTADGTNIEIYTFNKGENQKFRFQKNDDGTYSILTKITDGKSALDVNEQSGNSGANIQ
QYTFSGSANQKFIIEAV 

22 

B19 1615 CBM22-DOC1-CE1 
VPVSAADNDYMLHSTFEEGKDSWSGRGSASVKTVSGKSRSGQQSLYTSGRESDWNGATLKLGSD
FKAGSDYSFSAYVMTEDEDDVSFCLTLQYKDGSGTAIYPKIAKVSGKKNEWAHLENNSFSIPEDASD
IELYVETEESKCSFYLDEVVGAAVGTEIAEPKG 

B21 1272 GH30-CBM22-DOC1 
PDSNGYYYHDTFENGTDNWEARGASELTLSGRRPYKDTNGLLVQNREKAWNGVQKSLDSNTFKG
GNSYSFSVAATMLEDTSANVFLSLQYTDTSGETKYAHIASAQSNGEYVHLANPNYKLPDGSDYVLYI
ETEEGTDNFYIDEAIVAKAGT 

B24 3180 GH11-CBM22-DOC1-GH11-CE1 
KAVEPDANGYYFNDTFESGKGSWRGRGEASAAIDNDNSAEGKSSLFVSGRTDNWNGAEMELDPA
AFIPGKTYSFGAAVMQNTESSTAMKMTLQYTDASGTEQYDEVASAAASNGKWTALGNPSYTIPEGA
SNMYLYVEAPESLTDFYIDNVMAAVKGKEATFKN 

B48 3190 CBM22-GH10-DOC1 
SVINTVNAAEEKVVYDLGFESEDDLKNWSNRGGDDTTELSITTDAKTGDGALLASGRSESWNGPAF
RLDGVLEPNTQYYVTASVKGKYYTSAMLSFQYTIDGQTSYSNLAQNLNGSDWQTVTHVPVSYSDG
MEGVYIYFEGGSDDLIIDDFKIVEA 

B51 1766 GH11-CBM22-GH10-DOC1-GH11-
CE4 

PTKQADANGYYFNSSFNSGVDGWTGRGAATVAKDSSNYAEGNGSIFVSGRTDNWNGAAIELDPSA
FGAGQTYSFGAAVMQKSESSTSMKMTLQYTDASGTEQYDEVATATASNGKWTALGNPSYTIPSGA
SNLLLYIEAPDSLTDFYVDSAFGGVKG 
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aDOC, dockerin; GH, glycoside hydrolases; CBM, carbohydrate binding module; CE, carbohydrate esterase; PL, polysaccharide lyases; SLH, S-layer homology domain. 

 
 
  

B8 2646 GH43-CBM22-DOC1-CE1 
PDPNGYLMHSTFEGKTDGWSGRGAASVESTGTEHFEGSSSVYVSGRTASWNGVTHALGSKIKSGT
EYSFSTNVKYTDGPDEQLFFFTLQYEDTDGEVKYDKIAKGYIRKGEWAQLANTNYMLPAGATNMQIY
VETEEGDGDFYIDDTIVAEAGRLIEGAAPAESG 

B28 2002 GH30-CBM22-DOC1 
DYLLHDTFETSADSWEGRGAASVSRSGGTLFCEGRTASWNGAAKNLSTSDFVPGKEYSFSVNAMH
NGTGTETFKLTLQYNDASGTANYPNIAQATASAGEWVTLKNENFLIPADATDLILYVETDDSMTDFYI
DEAVAAKGGTS 

B35 2649 GH43-CBM6-CBM22-DOC1-CE1 
ADSGNYIFNDTFESGDNDWSSRGSAKVSSSSDKKYMGSKALYCSGREASWNGALKDLGTSFKAGE
SYSFSANVLSDGGKDGDVYYLTMEYKDSSDEVHYVKIARSQPVKGEWVQLANSNFRIPADAASDIHI
YVETEKSTASFYVDDVKAAKAGTVIEGAKG 

B1 3077 GH11-CBM22-GH10-DOC1-
CBM22-CE4 

QTVKADSNGYYFNESFESGAGDWEGRGAAKVSKDTANYAEGKSSLYVSGRTDNWNGAAIQLDSS
AFVAGNTYSFGAAVMQNTESSTAMKMTLQYTDADGKEQYDEVATATASNGKWTALSNPSYTIPTG
ATGLLLYIEAPDSLTDFYVDSAMAGVKGKEVTVSGG 

B2 3077 GH11-CBM22-GH10-DOC1-
CBM22-CE4 

ATTQTPAASNKTYIAADFGSSSNSFESRGGASVELNKSTYYSAPSSLYVTGRTDNWHGASIALGSDF
VPGNTYSFSAAVLQTSGSADTVKMTLQYKDADGTEQYDEVASVKADSKTWTDLTNEKYTIPAGATD
LLLYVEMPDSLADFFVDDVTVAASGT 

B37 1737 CBM22-GH10-CBM22-DOC1-
GH43-CBM6 

PDADGYWFHSTFEGSDGGWGGRGSASVTTSGRTFYKGAEALLVQDREAAWNGASYPLSSRIFKP
GEEYSFSVNVQFLDGDDSAEYKFTLQYQGSDGEAHYDQIAVGTAPKGEWLQLANTNYKIPADATDC
QIYVETTDTDNTGNFYIDEAIGAPAGTAIDGPGQPKV 

B57 1878 CBM22-GH10-CBM22-DOC1 
PDENGWYFHSTFEDGTDGWSARGSAEILVSGRKGFESPQSLLVRERTSSWHGASYALDTRAFLPG
NEYSFSTNVTYFDGDDGDKFYLKLQYTDSEGKARYSTIAEGTGIKEQWVQLENTAYKIPDGASDMSI
YVETADTANNFYIDETIGAVAGTVINGAGQPEI 

B32 3270 CBM22-CBM22 
IIEYIPFNVTDSDGKIDGWDMRGDKGTFGFVKGWNDPYAGATNIYISGRSQDWQGAKYELATDKYS
AGHSYSFGIFARNEGDQDAKFTMTLEYFNGSKTDYTPIASATLKPGEWTEIKNPNFTIPVGATKCCVA
IETPGSKPNFRIDEFVSAQPNT 

35 

B17 1364 CBM35-CE3-DOC1-CBM35-GH26 
FLAVYEAENAVISGNIAVSDDSSASGGKAVGSFSDDGDDLAFTIEVPAAGSYCFTLTSKGMGGDKYN
EVLVDGENIGGFESKGNVYSETSLRRVMLTAGKHTVSIKKSWGWIMVDSLKVTTDDVISNSVYNVEN
KLINSN 

B29 933 CBM35-GH26-DOC1 DANKYEFEDAEFTGDVTVEEDANASGGSMLKMTDSGTITLKVNVETAGSYKLTFYALGIGGDKQQN
LTVNGDSQGAIGIPKSSEYEEISVPAIMLKAGENTITIEKSWGWSQFDYMTVTSMADAKITATQTK 

B58 2302 CBM35-GH26 YEFEEGTISNSGENEAEIISVKGASAGQAVDLKDGGNTVTVKVNAAESGMHRITLRYCQPYDEDGKY
QNVIVNGKNAGEIFCEYTGDEQFSTVSISAVLNQGENDIAVEASWGWTMIDSLLIEKGDFSAYT 
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Table S3.2. Modular architecture and primary sequences of C. thermocellum and R. flavefaciens FD-1 CBMs that were cloned but that have not expressed or 
for which no binding was detected in the microarray analysis. CBMs investigated are highlighted in bold and the respective sequence of the recombinant protein 
expressed is shown. CBM clones that have not expressed are shaded in grey. Each CBM is identified by organism, high-throughput ID code, and assigned protein ID. 

  
Family Code ID Protein ID Molecular architecturea Primary sequence 

C
. t

he
rm

oc
el

lu
m

 

3 

A4 Cthe_0271 CBM3  
EKKGPIITVQYKNGDSTSSVTAIYPIFKITNNGDTSVKLSDIIIRYYYTKEGNENETFWCNEFTRDGSQ
VYGTFVKMSKPKENADHYLEIGFYDKAGSLKPGESVELKVGFAKNGWTKYNQFNDYSYNRVNNRFI
NWDHITVYLSGKLVYGKEP 

A5 Cthe_0043 GH9-CBM3-DOC1  
IVEYFCRGWIIYEGYGTLNLLLQVNNRSGWPPTMKDKLSVRYFMDLTEVFESGGTVDDVQISLGQN
EGAKLIGLKHYRDNIYYFTVDFTGTMIMPAEWEMCEKDAHVTIKYRDGITGSNENDWSYQNLRKDP
DYDATSFAGLTPYIPVYDNGVLLWGEEP 

A9 Cthe_0267 CBM3  
DLLTKIELQAYNHIRTSETKELQPRIKLINTGNTPITLSEVKIRYYYTKDQVINEIYTCDWSNITSSKITGT
VVQMSNPKPNADSYVEIGFTNSAGVLNPGEYVEIISRIGNSYALSLATPPYSEWNYMYDQNSDYSFN
NSSSDFVVWDKITVYISGTLYWGIEP 

A13 Cthe_0413 CBM4-GH9-CBM3-DOC1  
DVKVQYLCENTQTSTQEIKGKFNIVNTGNRDYSLKDIVLRYYFTKEHNSQLQFICYYTPIGSGNLIPSF
GGSGDEHYLQLEFKDVKLPAGGQTGEIQFVIRYADNSFHDQSNDYSFDPTIKAFQDYGKVTLYKNG
ELVWGTPP 

A7 Cthe_0040 GH9-CBM3-CBM3   

A16 Cthe_0404 CBM3  
DGEQSVKVRFYNNNTLSETGVIYMRINVINTGNAPLDLSDLKLRYYYTIDSESEQRFNCDWSSIGAH
NVTGSFGKVNPSRNGADTYVEIGFTKEAGMLQPGESVELNARFSKTDNTQYNKADDYSFNSHYYE
YVDWDRITAYISGILKWGREP 

A18 Cthe_0578 GH9-CBM3-DOC1  
NEEIYVEATANSNNGVELKTYLYNKSGWPARVCDKLSFRYFMDLTEYVSAGYNPNDITVSIIYSAAPT
AKISKPILYDASKNIYYCEIDLSGTKIFPGSNSDHQKETQFRIQPPAGAPWDNTNDFSYQGIKKNGEV
VKEMPVYEDGILIFGVEP 

A22 Cthe_0745 GH9-CBM3-DOC1  
EDEFMVEAYVSSSDKNYVEIKTRLNNRTAWPARVSEGLSFRYFIDLTEVIEAGYGPNDLIISGGQGSS
GKVSGPHLWNKEKNIYYIEVDYTGDRLFPGGQDHYRRDSSLRIAVPGNSGCWNSENDPSFKGLSK
TSEFKKAEYIPVYEYGVKVAGIEP 

A23 Cthe_0625 GH9-CBM3-DOC1  
DDEFFVEAAINQASDHFTEIKALLNNRSSWPARLIKDLSYNYYMDLTEVFEAGYSVDDIKVTIGYCES
GMDVEISPITHLYDNIYYIKISYIDGTNICPIGQEQYAAELQFRIAAPQGTKFWDPTNDFSYQGLTRELA
KTKYMPVFDGATKIFGEVP 

A25 Cthe_1257 CBM3-CBM4  
NSANISLEFYNGDFGASVSSISMNFRITNNGSSQISLSDIKLRYYFTDDGVSPITVFIDYANNNGRGIN
NDVTYTIKDINSSGANKYIEFGFNAQAGSLEPNTSVLMRARAYQSEYKQSFTQTNDYSFCQSNNDF
AAWNKVTGYLNGVLFS 

A42 Cthe_2147 CBM3-GH5-DOC1  
GLSIHYMDGTLDVKYQSMRPYIIIHNNSGMDVDMADLRVRYYYEKEGVTEEVLTCFYTAIGADKIFAE
FHPELGYAEIGFTSDAGIIKSGGNSGQLQLVLKKISNGYYDQSNDYSYDPSYTDYAEYDKITLYYKGK
LVWGKEG 

A54 Cthe_2506 CBM3-SLH-SLH-SLH  
VKAEEVPLKLEFFNNVKDDNVTLISPYFRVINNSSSDEIYLQHVKIRYYFTLDSSDSEETMNYEIYYAG
KSNIDGTGAVEDIKPNTIVKIAKMDIPTDMADHYLEIGFDESCGTIGPDKKVEVMVSISKEKYKKFIQTN
DYSYNDSAENYVSWEKVTLYLDGELISGIEP 

A55 Cthe_2360 GH9-CBM3-CBM3-DOC1  
KPSLEVLYKYGDTTAATKDIRGSIKIKNTGTKPVNLSDVKVRYWFTKDGASSQEFVCDYAHLSESMIT
AKFVDLENPVENADNYLEIGFDSNAGILGPGSDTGEIQFRIVKGDYESYDQSNDYSCMATAKDFTAN
PNITAYVNSVLVYGNPPVD 
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A58 Cthe_2761 GH9-CBM3-DOC1  
PPVYYADAKIYEENESGITVDLNMYNIVTSPPQYESDLSCRYFVDLSEYAGENIDMSKFVTKVYYSPA
GATISELKPYDKEKNIYYVEISFPNPVYARTYVQFCIYYYENKLWDSSNDFSYQGIGDTYKTLENIPIY
KNGVLVAGKEP 

A60 Cthe_2760 GH9-CBM3-CBM3-DOC1 
TDDYFCEAKIVRETKDSTQVLLRIHNESTRPPHYETGMMARYFFNISELIENGQSIDDVIFTIEYDEQIS
MQQEPVVYRGPFKWDDAGTYYFEFDWSGRKIYGDRELQISFRVKQDSNYMTHWDSSNDYSRQGL
TNEYAISKNVPVYLNGVKVYGEEP 

A56 Cthe_2360 GH9-CBM3-CBM3-DOC1 
VEEYYVEGKIEQENKERTQVTIKIFNDTCHPPRFETGLMARYFFNISELLDAGQSIDDVKIEVYYDENK
ASYDGPAEVRGPIKYDDAGTYYVEVDWSGRIIYGKREIQLALISSLDSNYKSNWNPENDYSREGLGK
EFVRTEKIPLYLNGVKVFGNEP 

A59 Cthe_2760 GH9-CBM3-CBM3-DOC1  
DANASISVSYKCGVKDGTKNTIRATINIKNTGTTPVNLSDIKVRYWFTSDGNEQNNFVCDYAAFGTD
KVKGIVKKIENSVPGADTYCEISFTEDAGRLAPGGSTGTIPFRIEGAAEYDQTDDYSYNSEMSDDFG
DNTKITAYIKDKLKYGVEPVT 

A11 Cthe_0071 GH48-CBM3  
NNTVGRLILQYANGNGSDTTNTINPRFKLINNSGSPVKLSDVKIRYYYTIDGEKGQQFWCDWSSAGN
SNVTGKFVKLSSPKNNADYYLEIGFTEGAGSIEPGMSVEVQARFSKDDWSNYSQANDYSFSASAN
DYGNSNHIALYISGRLVSGNEP 

A19 Cthe_0543 GH9-CBM3-DOC1  
GEEFYVEAAVNAAGPGFVNIKASIINKSGWPARGSDKLSAKYFVDISEAVAKGITLDQITVQSTTNGG
AKVSQLLPWDPDNHIYYVNIDFTGINIFPGGINEYKRDVYFTITAPYGEGNWDNTNDFSFQGLEQGF
TSKKTEYIPLYDGNVRVWGKVP 

A88 Cthe_2423 CBM3 
VYVTLKNIKTGVPSDTIALKIGIINLNKAININLNDIKLRYYFTNDGCSPIQVNIKLFGTETESFNPELVKT
SVVTGLSYPGADSYVEIGFTGSVELNCDRKPIYIELDIKENSPDRNFDQSNDFSNNNYYTPFLPEEFF
ASGRVPVFMYDPKKR 

4 

A32 Cthe_1257 CBM3-CBM4 
VPNGDFESGSVFWSFYCDSLSGANATNLIHSEPSGNKMSKTSITNAGSNHWAIQLKHDGIVLENLKT
YRLTFDAKSTVPRNIRVSLQNATSSMIEYFGKIVEVEPKMKTYTCEFTFNSTTGTNVAIVFEMGKIGT
ETDKAHDIVLDNVHIEKIASPS 

A15 Cthe_0412 CBM4-GH9-DOC1 GEPGNKAFRLTVIDKGQNKWSVQMRHRGITLEQGHTYTVRFTIWSDKSCRVYAKIGQMGEPYTEY
WNNNWNPFNLTPGQKLTVEQNFTMNYPTDDTCEFTFHLGGELAAGTPYYVYLDDVSLYDP 

A61 Cthe_2809 SLH-SLH-SLH-CBM54-GH16-
CBM4-CBM4-CBM4-CBM4 

ILNGTFDDGMDHWLLYWGDGEGNCDVTDGELEINITKVGTADYMPQIKQENIALQEGVTYTLSLKAR
ALEARSIKVDILDSSYNWYGGTIFDLTTEDAVYTFTFTQSKSINNGVLTINLGTIEGKTSAATTVYLDDI
LLEQQ 

A63 Cthe_2809 SLH-SLH-SLH-CBM54-GH16-
CBM4-CBM4-CBM4-CBM4 

IYNGTFDQGPNRMGFWNFVVDSTAKATYYIGSDVNERRFETRIEKGGTSRGAIRLVQPGINIENGKT
YKVSFEASAANTRTIEVEIASNLHNSSIFATTFEISKESKIYEFEFTMDKDSDKNGELRFNLGGSNVNV
YIDNVVMKRVSTDEVE 

6 

A40 Cthe_1911 CBM6 
TGTINALSVIQAENCDENHGLEIEDCPDEGGTKNLAYIANGDYTAYYNVYFPKGTKGFIARVSSDTEG
GYIELRLDSISAEVVGRCRVENTGGWEKYEEVYCELNKSVEGVHTLYMGFAGERDGLFNVNWFRF
TKSPYEPVM 

A47 Cthe_2193 GH5-CBM6-CBM13-CBM62-DOC1 
DFDWGGNGVSYYDTDSVNVGGQYRPDEGVDIEKTSDTGGGYNVGWISEGEWLEYTIRVRNPGYY
NLSLRVAGISGSRVQVSFGNQDKTGVWELPATGGFQTWTTATRQVFLGAGLQKLRINALSGGFNL
NWIELSPI 

A50 Cthe_2196 GH43-CBM6-DOC1 
IGTLNPYVRTEAETICWSSGIETEKCSEGGMNVGFIENGDYIKVKGVNFGTGAASFEARVASATNGG
NIEIRLDSPTGKLVGTCTVTGTGGWQTWTTKSCPVSGAEGVHDLYFVFKGGSGYLFNIDWWKFTPA
NPDPTPTPM 

A31 Cthe_1271 GH43-CBM6-CBM6-DOC1 
LKYVDPYTKNLAVTMHKESGIETEECSEGGRNVAFIENGDWIQVKGVDFGNVGPTSFEARVASATN
GGNIEIRLDSPTGTLIGTCKVEGTGDWQKWVTKTCSVSKVTGVHDLFFRFTGGSGYLFNFSWWKF
NSDA 
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13 A46 Cthe_2193 GH5-CBM6-CBM13-CBM62-DOC1 
STGTIPDGTYKFLNRANGKTLQEVTGNNSIITADYKGITEQHWKIQHIGGGQYRISSAGRGWNWNW
WMGFGTVGWWGTGSSTCFIISPTGDGYYRIVLVGDGTNLQISSGDPSKIEGKAFHGGANQQWAILP
VSAP 

16 

A75 Cthe_3095 CBM16-GT39 
NLVKNPGFEEGNDESVYFWQTHCWEKAEGVTEFFIDESVYHSGGKSACIVNHSENDSRYMQPIKV
KGDTYYRLSCWVKTENVGTKTKGANISIEGSLDTSRDIRETSDNWEYLELYGKTSPNQETFTLTIGL
GGYGNTNTGKIWIDDVEVVEL 

A76 Cthe_2148 CBM16 
NLLKNPSFEEVDNNMPLGWSTWVWNYQNGVVEFKVEQEGAQSGQYYVTIENREARDARYLQEVT
VSPNSYYKLSGWIKTENVGNDVLGANLSLEGVTTYSKDIRGTVDEWQYTELYIKTGENVETIKVSLG
LGGYGNLNTGKASFDNVMLEKV 

A87 Cthe_2805 CBM16 
LPKTVFTEDFENGLSSNWEIRSSKHGNSLATVTVESGTGVNNSKCLKISSLAQDEDVGCVKTLQLAP
NSYYKLSALMKYENVTPGKSDGANICLYNNEGEDAIWIRTATATGTNTSWELVKLLFKTPDSGSVNI
GLRLGFLNCETKGTVWFDNVKVEAV 

A69 Cthe_3096 CBM16 
NYIFNGSFELLIDGEPSNWMREAYDKSPGASNFRVETEGAKFGEKYVTIINNKLNDSRYSQIVLVEEN
KKYKLSCYIKTENVSEEGKGANLSVAEQTVTSKRIKGTTDDWEYVELYVITESGVDRIKVTVGLGGY
SGMSTGKASFDNVTMEE 

25 
A70 Cthe_1080 CBM25 GENLTVMYDGLLSKSGASHVYAHVGFDRDWKHVYDYPMKRTSIGFEATIPVMEADTLNICFKDCAN

NWDNNSGANYTFDISK 

A71 Cthe_3163 CBM25 GDEVTLYYKGLLAQSGADAIFAHIGYGENWEDKTFIPMQKENDVFKATIKINHADDLNIAFKDSGDN
WDNNSWANYSFKVTKKAKPAKV 

34 A21 Cthe_0795 CBM34-GH13 MKLEAIYHKPYSEFAFPVAPDTLVIRLRTAKNDVNTCILIYHEKYDTSQRGKVKMDKVASDGMFDYY
EVELNVGIKRIKYMFYLEDNYSIKWYSSDGFFDYMPQWGHFTYS 

35 

A8 Cthe_0032 CBM35-GH26-DOC1 
AYSLPVDVEAEDCTLGNGAVVTTNVYGTQYPGYSGDGFVWVANSGTITLEVTIPENGMYELSTRC
WMYLGKEDETRMQVISINGKSHSNYFIPNKGQWIDYSFGFFYLEAGKATIEIGSSGSWGFILYDKIYF
D 

A38 Cthe_2137 GH39-CBM35-CBM35-DOC1 
RYEAEYARILGTATVSHGGHSGYSGTGFVEGYAGSNNASTNFVVTAETDGYYNVTLRYSAGPYPG
APKTRYLRMVVNGGLHKDVACIQTANWDTWESTTVKVFLQAGINRLDFKAFASDESDCVNIDYIDVE
PT 

A67 Cthe_2950 PL1-DOC1-CBM35 NGTATYQAEDAVFSGAIFETKNAGYTGTGYVNYDNVPGGYIEWTLNIANAGTYTLTLTYANGTSSNR
TVDISVNGNIVASGVVFGGTGSWTQWQTKSITASLNSGVNKIRVTGTSSDGGPNIDKLEIRRN 

A72 Cthe_3141 CE12-DOC1-CBM35-CE12 VIYQAEDAIIYNAILETVNAGYTGSCYVNYHNEVGGYIEWNVNAPSSGSYALIFRYANGTTANRPMRI
TVNGNIVKPSMDFVSTGAWTTWNEAGIVANLNQGNNVIRATAIASDGGPNVDYLKVFSANAFQPVS 

A10 Cthe_0246 DOC1-CBM35-PL11 QTQKTRYQAEDAMLYKAFEETIHAGYDGRSYVNYDNEPGGYIEWNVNVSSSGTYKLIFRYANGSNN
NRPMEIRVNSNLVAGSLDFYPTSAWTVWNDQSIVVTLNAGNNVIRATGIASDG 

A37 Cthe_2137 GH39-CBM35-CBM35-DOC1 
TLGGAAVRQRDNAASGGQYVGWIGNGSNNYLQFNNVYVPQAGTYRMVVQFANAEVFGQHSYNN
NVVDRYCSISVNGGPEKGHYFFNTRGWNTYRTDIIDVYLNAGNNTIRFYNGTSGSYAPNIDKIAIAAP
FEGGTEPT 

A41 Cthe_2179 PL1-DOC1-CBM35-PL9 DTHPSSTPTEGVVHEAESSSNHLKYAKVESNYVVFDQTKDAYIEMKKVNSPVTGEVTITIVYSNGSG
KSLPMEIKVNSTTIESNKEFPSTGAWNIWSTLSVKANMNSGSDNVIRIKTRSNDGGPRIDKVIVSAG 

42 A1 Cthe_0015 CBM42-DOC1-GH43 
TNPITKAKFQSYNYPNMYIRHANFDARIDENVTPEMDSQWELVPGLANSGDGYVSIQSVNYPGYYL
RHSNYDLSLEKNDGTSLFAESATFKIVPGLADPSYISFQSYNFPTRYIRHYNYLLRLDEIVTELDRQDA
TFKIISEDTQ 

44 A24 Cthe_0624 CBM30-GH9-GH44-DOC1-CBM44 KTDDWNEITLTLPEDVDPTWPQQMGIQVQTIDEGEFTIYVDAIDW 

48 A48 Cthe_2191 CBM48-GH13 RMTIDGVEGTLFAVWAPCAKRVSVVGNFNQWDGRRHQMRVRGSSGVWELFIPGVGEGELYKYEI
KTPHNEIYIKADPYAFYSELRPNTASIVYDIEG 

50 A34 Cthe_1800 CBM50-CBM50-GH18  PVVYTVRPGDTLYLIARRYNTTVDSLMALNNLSSTELRIGQQLTIPLYTE 
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A82 Cthe_3007 CBM50-CBM50  YYVVRPEDTLESIAAYFNITPQQLLYSNYGIDPTDLYVDQILCIPVA 
A78 Cthe_3006 CBM50-CBM50-CBM50 YTVRAGDTLYLIAGRFNTTVEAILAANPGIVPERLYIGQVICVPYA 
A85 Cthe_3005 CBM50-CBM50-CBM50-CBM50  YIVQSGDTYWNISQKYGINFKELLALNNANENSMLNVGDKVILPAT 
A90 Cthe_3005 CBM50-CBM50-CBM50-CBM50 NYTVQKGDTYWTISQKFKVNFTELLKLNGANEKSYLDIGQVIKIPVT 
A89 Cthe_3005 CBM50-CBM50-CBM50-CBM50 YTVQKGDTAWSIAEKFGISMYELMEANNINSSTVLNIGQKLKIPVH 
A79 Cthe_2489 CBM50 YHVVQPGDTLWGIAKKYYGNGNQYQKIYEANKNQIKNPNLIYPGQKLVIPR 
A81 Cthe_1611 CBM50 NTHIGFEICEPAGFSYKSGSVMVGYDAAKQEDYFFKAWQNAVELCVML 

54 A57 Cthe_2809 SLH-SLH-SLH-CBM54-GH16-
CBM4-CBM4-CBM4-CBM4 

YKNEEVAGNALINTEGVILKDTVINGDLYLAQGIQNGDVTLDGVNVKGTVFVNGGGSDSIHFINTKIN
RVVVNKTGVRIVTSGNTSVESVVVKSGAKLEEKELTGDGFKNVTVDSQLSAGNEIIFVGDFEQVDVL
ADDALLETKEAK 

R
. f

la
ve

fa
ci

en
s 

FD
-1

 

3 

B52 929 GH9-CBM3 
FWAAGYCQESPEDTGAGVTKLTFFVNTDCLEPHTDLSIRYYFDISEFEKNTDIPGSFVLQKTYDQVE
TEVTDRAATLSKPIKYKDNVYYVEIAWPDYAVANSNKKYQFIIGMYYGDKWDSSNDWSRKGIKELD
GDYDNIVGGVELAEKCENVCVYADGKLVGGTEP 

B20 938 GH9-CBM3-DOC1 
GPEFYVECTSKGAESSGMTISFKITNHSAWPARVQDNISFRYYMDLSEVKAAGANPEDVVVRCDRD
QSKMYAGVTPAEISGVKHYDGDIYYVEVTLPDGRAVLPISEGMQQCEILLALVMPNYGSGWDATND
FSNKEILGAKTTTTADGSVHGIITPYVPVYVNGKLYYGEEP 

B9 2908 GH9-CBM3-DOC1 
PTGLYISGGKNQEQTGSVQLKVVVHNRTVNPPKFESDMKARYYFNIKELLDKGYDPKEYIFARIDYD
QEKSFSNGKNEAKFTGPTKYDDNGTYYVEMQWKDCDFYGSRVYQFALGYNQDKTTYEDVVWDSK
NDYSYADLVSFEDDNAASAITEKITLYCDDKLVWGVEP 

B12 2914 GH9-CBM3-DOC1 
YWVEACGIDSRNDDGTGAVEVSLKVLSGETTPSKNLTIRYFIDASEVSDPSIIDTKKLYDQSEMEIEG
AKCTVSPLKKYKDSDSIYYVELSWEDCTIVNSGKKSQFSVGFYGKGYTDPETHKYIVYKWDPENDW
SYSHMKLGVKEDFFAVDDPPEERCDYICVYDDGVLVGGIEP 

B26 2994 GH9-CBM3-DOC1 

WPEWEVAAVINGTEGTNYTEVKAWAMNHTAWPARVAKDVEYKYFFDVSDVLAAGLSIDDIKVEGK
SQQYKEGEQGYATVSGPYKYEGDATGNTYYALIKFEDGRAIQPTGQSEHRDEVQFRISIPDAVDGQ
AVPAGAWDTSNDWSYLGGLAKATDLKKADSINEHIPMYVNGELAWGEEPDGTKFVAKPNTKDGKG
STDPQPTPSVTTTTSTATTSSATTTATTSATVQSTEGTTTTSGQGGSNSERVTLWGDANCDKAVDV
SDAVIIMQSIANPSKYKLTDEGKANGDVNKNGDGITGADALSIQKYKLNLITELPESYN 

4 

B14 2995 CBM4-GH9-DOC1 
TALPWHTCESQPAGQHFKIEGGKYKITIDENNGPAGRWDLQFRHRGITMIQGHEYTISGDITATEDG
YIYAKIGNYEGNKEYWHNLSGQEWKPYQIKAGEEFHFEDTFTLKDSPVGPTEWAFHYSDNHGQYG
NNDTGMPKGAVLTFDN 

B46 2283 CBM4-GH9-DOC1 
IILPWRLVESQPAAQGFYVDGNALKVTVYYPEGANDRSDLQLRARGLQIQAGHEYTVSGTIKTDADG
YIYSRIGNYIGNTDCWHALGGAEWMPVQMEANEPFEFSQTFTATENIEAAEWAFYYADNRGMYGN
PDTGMPAGSQIWFSDL 

B47 1485 CBM4-GH9-DOC1 
VLPWVPVSSQPAMQDFCVQDGRLEIKILNNRGPEGRWDLQLRRRGLTMIQGHEYTVKCTITADDD
GYIYSKIGNYTGEKEYWHNLGGQEWMPYHITKGETYEFEDTFVLKDSPVGPTEWSFMYADNQGMY
NNNDTGMPDGSTITFDDLE 

6 
B34 2649 GH43-CBM6-CBM22-DOC1-CE1 

LELLNPYERVEAETICWSEGIKTEECSAGGVDIGNIEKGDYIKVSGVDFGSGAAKFTASVASDTEGG
TIELHTGSKSGPIIGALQVKGTGGWQKWEEVSCDVSVSGTEDLYLVFNGGSGYLLNVDWWKFSKA
GAS 

B38 1737 CBM22-GH10-CBM22-DOC1-GH43-
CBM6 

LNPYETVQAETMSNQSKNISVSGVGNTTVKAKKGDWIKVSGVDLSNGVSSIKVKGSGNAVVKFCVG
SPTGTCIGYGDLNGSENELAAAENNVSGVKDIYMVFSGDCEFDSWSFS 

13 B11 3704 PL11-CBM13-DOC1 
PASDIVDGQIYTFKNVNSGLYLDVEGGTAANGTNIQQAAAAGKQNQFKAVSAGDGYFYLVSQLGDG
ESYALDVNGKKTADGTNIEIYTFNKGDNQKFKFVKNNDGTVSILTKITDGQSALDVNEQSKNAGANV
QQYAFNGNANQKFTIEAV 
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B53 1157 CE12-CBM13-DOC1-CBM35-CE12 
AATDIIDGQIYTFKNVNSGLYLDIEGGNGANGANVQQAANGGKASQFKAVSAGNGYYYLVSQLGDG
NSYALDVNGKKTTDGANIELYTFNKGDNQQFKFVKNNDGSYAILTKITNDASALDVNEQSKNAGANV
QQYKYSGGANQKFIIEAV 

B55 1875 CBM13 
VSDTILSGAEYNIVNKLSGKLMTADSDGNVMQSAQAEGASQSWLIIRNGNGYYRLVPGSDRSMALT
VAEPSALNGGNICIAEYTGGDAQLFSIEWDGSAYYLTTKCSEGASALDVKGKSRSDGANIHQYKYQ
GSDNQRFDITPVGH 

B41 939 CE12-CBM13-DOC1-CBM35-CE12 
KEVFAPEAGASFMIKNVNSGLYMEVGGANAEEGANVQQWGANEPAAHNTWTFTQATGDYYFVNS
NLGDGKTWYLYVDQGSRESGGNIVIAQKNGYSDQFFKFEDNGDDTYTIYTRSSRDACVVEVGSAKT
ESGANIQQWESNGNNCQKW 

B44 2115 GH43-CBM13-CBM13-DOC1 
YPKVNAGTYTLRNVNSGLYVGMNASGSLIQFAEPVAWDIDENSRFTLPIDDAIPVQPTYIAVDNGSN
GEDVAYKGVNNADSANMKLICNKDGSYSVMTGASEYKSCWDVFEKSTEAGANIGQWEFNGGDW
QKFVIEPA 

22 

B31 2288 GH11-CBM22-GH10-DOC1-GH11 
PAVEPDSEGYYFKESFEDGIGKCVPRGEAALILDSENYVDGEKSLFVTHRDDVWHGPAIELDPSAFV
PGKTYSFGAAVLQHSDTTAEVNMVLQYTDAAGYYQYSVVSSVDAEKSEWTELGNPSFTIPDDAKE
MMLFIDTPDGIADFYFDSFFGGVEG 

B33 3270 CBM22-CBM22 
NYFVNPGVGGVSVLSSAGNISPWTKNDNGLTLEYVTGANAYSKQSLRISNRNKTWNGIVQQINPSA
YIPGNKYSFTMYAMCEEPRKFQLTLQYTSKSGGTAYKCIDDRDGEAYEWIQLSNPRYQIPDDVDTT
KPMYLYVEAKHIGSNNEDDTCPFYVDEFIEAPMGYTA 

B36 1737 CBM22-GH10-CBM22-DOC1-
GH43-CBM6 

VADVTYAAEAVKNDFEVTYEGWHGSTVDVDLIAEEGTGTAGSRGMTVTNRTSPSEGAESSKGLYL
TGGINYDYSVKVYSESDETFHLSLLYIDEKTEKETVVELDSQDVKGGTWTTLSSEFKAPKDVYEFRL
SITTDSTNDFSFDDVLITNQVSK 

B56 1878 CBM22-GH10-CBM22-DOC1 
VPWTSQAAEVVYNDFEESYGGWYGNADNVVLTAEDGCGADLSRGMKVAGRTSPFDGASSAKGF
YLSGDTEYDYSVKVYSTKAEKFHVTLTYADEKTGKETTTGLLTSDTKADTWTELRASFKAPENTCGY
LLTITTDSTDDFSFDDVRITADKP 

B6 243 CE3-CBM22-DOC1-CE15 
TADASDSAKVLMSCDFESGADGWTGRGSASAAVDKSKAHSGSGSLFVSKRANDWNGAVVDLGYD
FSAGNTYGFEAYILQNSAASLDFKLSLEYSSGGTTQYDKIALSPVKQGEWTKVENPSYTIPAGAENIK
FYIEVPDDLSDFYVDDIRITGSASSAPGGPS 

B59 2539 CBM22 
MTPGSPEEARSDSHNASESSDGSQSLFVSGRTDYWNGATIMLSTETYKPGEAYHFRANVMQKSG
ETATMKMTLQYDLDGEKYDEIALAEAPSGEWITLENLAYTIPEGAENLQLYIESTDSLTDFYIDDVSGA
ERAD 

35 

B10 1368 PL11-DOC1-CBM35-CE12 
MFAYAVDQTLSDGIEESTNEGFRDKAYVNLDNKVGSNIEWKITAPIDGNYLCTFGTANGSADNRKM
KIEVNGLSDYWVQDFLTTGGWNTWQERGIVLPLKKGENTIKMTSETVQGGPNLDYLHIEWTDEPIA
QVYE 

B13 359 CBM35-GH26-DOC1 
QNVFAAEATVFPYTIEGEDMEGAELWTQNYGPAPKEWSGKGFAYLTNGTFSFTVNAPEDGMYDVS
IKAIQVLNEEGRMQTCSVNGSEKMTNMPYSADWVDFDFGTFRMNKGENTIEFPSKYGYMAIDTVTV
TK 

B54 1157 CE12-CBM13-DOC1-CBM35-CE12 
NVYFASDMKITNGAPEDTNKGFTGKSYVNLDNNDTSAIEWTVNAPQAGNYLCTFNIANGGADNRPM
KIEVNGGKDYWMQDFLTTGDWTKWEERGIVLPLKQGSNSIKMTSASAQGGPNLDYMKTELTDEPIA
QIYE 

B7 2757 CBM35-GH26 
FYSLYEAEDAKLSGDLKISFERDDYSGDGYVRGFTEKSSIVFDIKTSAAQHYDLSFSIASDTVTDCHL
SLNGEGINTFRTQEGGAFTYITVYGVYMEKGTSKLELTTAGGTIDIDYLKVTDSDVHSKSGSKTSAET
SVKKS 

B16 1364 CBM35-CE3-DOC1-CBM35-GH26 
FEFENGTVYDTGDNITTVVTLSGASGGKAVELKDSGDSVTVSVNAEKDGMQTLSIRYSQPYDENGK
YQNVIVNGENIGQIFCAYTGEGQFRTVSISAGLRSGDNTVTVEGSWGWTYLDCITIGETSVSVGANPI
I 
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a DOC, dockerin; GH, glycoside hydrolases; CBM, carbohydrate binding module; CE, carbohydrate esterase; EXPN, expansin; PL, polysaccharide lyases; SLH, S-layer homology domain. 
  

B39 2259 GH97-CBM35-DOC1 EAENAVLSGKASVTAGKQGKYCSNNAYVGYVGGDGQSAVTFNDVTVDKAGRYTIRIYYVSGERRS
LKVDINGSYVFTLNDLYANRNDWSGIRAVNLEADLKAGKNTIRLYNDKGYGPSIDRI 

B42 939 CE12-CBM13-DOC1-CBM35-CE12 
PYIFAVDQKWDQGMTETTNAGYTDQRGYLNLDNTVGSSVDFSVNAAQDGNYMTHIRFANGSAND
RKMKVTVNGDTQNYWVQSFTGTGSWTDWTEFGIVLPLKAGQNTIRFESLTAEGGPNLDYITLTQTD
EPYAET 

B50 2327 CBM35-CE3-GH5-DOC1 
YEIENGVISAAGGSGTAVVTLSGASGGKALDMKDSGDSVSIECYSENEGMQTISIRYCQPYDEDGK
YQTVIVNGQNVGDIFCAYTGEGKFSTATIKAPLIKGKNTVEIVASWGWTFLDSLTIGGQPVSASASSS
A 

B61 1366 GH97-CBM35-DOC1 AENAQLSGFASVTSDKYCSGNTYVGYVGGGRDSYITFTNVTAEKSGEYPLRIYYISGEPRSLKIDVN
GKYAAALDGLYANKNDWVGIAAVNTNVYLNEGTNTIRLYNDEGYAPSIDRI 

48 
B23 806 CBM48-GH13 GVHVRKKGRGKIFTFRVWAPNAVSVSVVGDFNNWDRTQNPMELIADGVWEAEITKLQQFDSYKYSI

ETKDGRFLMKADPYGNHFETRPATASKIYESSYEWNDAEWFEKKKVQ 

B30 934 CBM48-GH13 MDIYGFYKGESFEVYEYLGAHLTAKGTIFRTYAPNASKVSVIGDHTKWEEVPMKSVLDGNFYETVCP
DAKEGMRYKYRIYDRNGNFIDHCDPYGFGMEVRPGTCSVIRSIENY 

62 

B4 3398 GH30-CBM62-CBM62-DOC1 
TNKINVDAANVTGTKSWKDSSDNYSKVFDGSTGTFFDGLENGWVQADLGQSYDISAIGFAPRSGYE
YRCADGKFMVSDDGENWTTIYTINGKPATGMNYVSKFSASATGRYIRYEIPAGAPNNEYNKDNVYN
CNIAEIEVYGTPS 

B5 3398 GH30-CBM62-CBM62-DOC1 
KLADLNKIEILTSSVTGSASWRDSSNDFTKAFDGDINSFFDGLESGWVQADLGAVYDIDTIGFSPRKA
YEARCTDGKFLFSLDGENWTEAYTITNKPVFGMQYVTDLKGDTKARYIRYEIPSGAPANQYNSDNV
YNCNIAEIAV 

B15 3370 GH43-CBM62-DOC1 
ELLSQDRPASASISSKSNESPAKAFDGSYQSGFKAIDDNKKWPFYLQVDLERVCDLANIQTSWFIYK
GSEAYYTYTVEGSIDGQHWEKLLDRTNKNDETITKTYGFTSDMLKGKARYVRLNVQNATLQNNPNN
NWYTPNVFEVKVFGTPISEAS 

63 B3 2821 EXPN-CBM63 EDAPISFKYKEGSTEFWCGVQVRNHRYPITKLEYLDENGDFVEIPRRPYNYFESRDMGKGPFTFRIT
DIYGQVIVDKDIPLSYDDTEIIPGHVQFPE 
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Table S3.3. List of polysaccharide samples, their major sequences or monosaccharide composition and sources, included in the Plant, Fungal and Bacterial 
Polysaccharide set 1.  

IDa Polysaccharide Sourceb Predominant oligosaccharide sequence or monosaccharide composition Referencec 

1 Glucurono-XyloMannan Tremella fuciformi  
Elicityl (HGL200) α1,3-Man backbone with Xyl, GlcA and Fuc branches Khamlue et al. 2012263 

2 Mannan Saccharomyces cerevisiae  
Sigma-Aldrich (M7504) α1,6-Man backbone with oligomeric α1,2-, α1,3-Man branches Takahara et al. 2012264 

3 Mannoprotein Brewers’ spent yeast Ara (1%), Xyl (0%), Man (65%), Glc (35%) Pinto et al. 2015265 

4 Dextran Leuconostoc mesenteroides  
Sigma-Aldrich (D4876) α1,6-Glc Haworth et al. 1937266 

5 Pullulan Pullularia pullulans 
Megazyme (P-PULLN) Mixed-linked α1,6-1,4-Glc (α1,6-linked maltotriosyl repeats) McCleary et al. 1987267 

6 Curdlan* Agrobacterium sp. 
strain ATCC31749 Linear β1,3-Glc Zhang et al. 2012268 

7 Pustulan Lasallia pustulata 
Elicityl (GLU900) Linear β1,6-Glc de la Cruz et al. 1995269 

8 NSG-β-glucan 
(Neutral soluble glucan) 

Saccharomyces cerevisiae 
Biothera Linear β1,3-Glc backbone with occasional monoglucosyl β1,6-Glc branches Hong et al. 2003270 

9 
PGG-β-glucan 
(Poly-(1,6)-D-glucopyranosyl-
(1,3)-D-glucopyranose) 

Saccharomyces cerevisiae  
Biothera Linear β1,3-Glc backbone with occasional monoglucosyl β1,6-Glc branches Jamas et al. 1991271 

10 Lentinan Lentinus edodes Linear β1,3-Glc backbone with two β1,6-Glc branches every 5 residues Wang et al. 2008272 

11 Grifolan Grifola frondosa β1,3-Glc backbone with highly ramified oligomeric β1,6-Glc branches Du et al.  2004273 

12 β-glucan (Barley) Barley flour 
Megazyme (P-BGBL) Mixed-linked β1,3-1,4-Glc; 1:3-4 linkage ratio; contains Ara (2%), Xyl (0.2%) Yoo et al. 2007274 

13 β-glucan (Oat) Oat flour, 
Megazyme (P-BGOM) Mixed-linked β1,3-1,4-Glc - 

14 Lichenan Icelandic moss 
Megazyme (P-LICHN) Mixed-linked β1,3-1,4-Glc; 1:2 linkage ratio - 

15 Xylan (Palmaria p.) Palmaria palmata  
Elicityl (XYL100) Mixed-linked β1,3-β1,4-Xyl; 1:4 linkage ratio - 

16 Xylan (Plum fresh) Fresh plum Prunus domestica L. Rha (3%), Fuc (2%), Ara (11%), Xyl (67%), Man (0%), Gal (6%), Glc (5%), 
GalA (6%) Nunes et al. 2008275 

17 Xylan (Plum boiled) Boiled plum Prunus domestica L. Rha (3%), Fuc (3%), Ara (12%), Xyl (73%), Man (0%), Gal (0%), Glc (4%), 
GalA (5%) Nunes et al. 2008275 

18 Xyloglucan (Plum fresh) Fresh plum Prunus domestica L. Rha (2%), Fuc (5%), Ara (5%), Xyl (40%), Man (6%), Gal (13%), Glc (24%), Ur 
Ac (6%) Nunes et al. 2008275 

19 Xyloglucan (Plum boiled) Boiled plum Prunus domestica L. Rha (2%), Fuc (6%), Ara (6%), Xyl (46%), Man (4%), Gal (14%), Glc (22%), Ur 
Ac (1%) Nunes et al. 2008275 

20 Arabinoxylan (DP41) Brewers' spent grain Ara (40%), Xyl (54%), Man (0%), Gal (3%), Glc (3%) Coelho et al. 2016276 



CHAPTER 3. SUPPLEMENTARY INFORMATION 

213 
 

 

21 Arabinoxylan (DP24) Brewers' spent grain Ara (25%), Xyl (46%), Man (1%), Gal (3%), Glc (25%) Coelho et al. 2016276 

22 Arabinogalactan Spent coffee grounds Ara (5%), Man (29%), Gal (64%), Glc (1%) Passos et al. 2013277 

23 Galactomannan (Carob) Carob 
Megazyme (P-GALML) β1,4-Man backbone with α1,6-Gal ramifications; Gal (24%), Man (76%) - 

24 Galactomannan (Guar) Guar 
Megazyme (P-GGMM) β1,4-Man backbone with α1,6-Gal ramifications; Gal (38%), Man (62%) - 

25 Galactomannan Guar (ΔGal) Guar (Galactose depleted) 
Megazyme (P-GGM21 β1,4-Man backbone with α1,6-Gal ramifications; Gal (21%), Man (79%) - 

a Polysaccharides are grouped according to predominant oligosaccharide sequence, glycosidic linkage or monosaccharide composition. The ID corresponds to the positions in the binding 
charts or heatmap; 
b The sources are indicated for each carbohydrate sample; if commercial the code product number is indicated; 
c References for the structural analysis or recent published work for each particular sample, if available.  
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Table S3.4. Fluorescence binding intensities elicited with all the proteins investigated for the validation of the Plant, Fungal and Bacterial Polysaccharide set 1. 
The numerical scores for the fluorescence binding signals are shown as means of duplicate spots at 150 pg/spot probe per spot (as in Figure 3.2) and are representative 
of at least 2 independent experiments. 

 
aID, Probe position in the microarray matching the position in the heatmap and in Table S3.3; bThe binding signals are means of fluorescence intensities of duplicate spots at 150 pg of probe 
arrayed (the respective standard deviation was calculated as the associated error, overall < 5%). ‘-‘ refers to a fluorescence intensity < 500. 

 

IDa Probe ConA Tm CBM41 Cm CBM6-2 400-3 Cm CBM32-2 400-4 LM10 LM11 LM24 LM25 CCRC-M1 AAL LM6 LM21 400-2 CCRC-M70 RCA120

1 Glucurono-XyloMannan 39198 b- - - - - - - - - - - - - - - -
2 Mannan 24284 - 2732 - - 924 - - - - - - - - - - -
3 Mannoprotein 24199 - 8255 6032 - - - - - - - - - - - - -
4 Dextran - - - - - - - - - - - - - - - - -
5 Pullulan - 11982 1129 - - - - - - - - - - - - - -
6 Curdlan - - 22350 5677 - - - - - - - - - - - - -
7 Pustulan 4153 - 1653 - - - 2144 - - - - - - - - - -
8 NSG-β-glucan - - 7288 3520 - - - - - - - - - - - - -
9 PGG-β-glucan - - 29810 9100 - - - - - - - - - - - - -
10 Lentinan - - 59233 1337 62520 - - - - - - 1029 - - - - -
11 Grifolan - - 23264 - 14842 - - - - - - 584 - - - - -
12 β-glucan (Barley) - - 62150 - - 35387 - - - - - - - 584 617 - -
13 β-glucan (Oat) - - 63228 - - - - - - - - - - - - - -
14 Lichenan - - 6440 - - 5243 - - - - - - - - - 1017
15 Xylan (Palmaria p. ) - - - - - - - 62371 - - - - - - - - -
16 Xylan (Plum fresh) - - - - - - 1441 10463 - 55705 15721 13481 2977 878 - - -
17 Xylan (Plum boiled) 670 - 1184 1168 - 724 656 10036 - 22082 794 2069 994 6361 - - -
18 Xyloglucan (Plum fresh) - - 789 1272 - - - 2459 4674 64926 60683 46906 790 3744 - - 3239
19 Xyloglucan (Plum boiled) - - 1690 2977 - - - 2155 11529 64934 62257 39338 2932 4985 - - 7075
20 Arabinoxylan (Dreche DP41) 1494 - 36243 1522 - 18914 - 53424 - 15330 578 7652 16899 - - - 1317
21 Arabinoxylan (Dreche DP24) 2055 - 46648 1333 - 28885 4202 50207 - 24892 - 2572 1804 - - - 712
22 Arabinogalactan - - - - - - - - - - - - - 2790 1162 - 712
23 Galactomannan (Carob) - - - - - - - - - 568 - - 9620 44974 26612 64694 12710
24 Galactomannan (Guar) - - - - - - - - - - - - 1997 58687 26591 28824 1802
25 Galactomannan Guar (ΔGal) - - - - - - - - - 1031 - - 12780 47337 22983 16509 -
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Table S3.5. Fluorescence binding intensities elicited with the CBMs from C. thermocellum investigated in the Plant, Fungal and Bacterial Polysaccharide set 1. 
The numerical scores for the fluorescence binding signals are shown as means of duplicate spots at 150 pg/spot probe per spot (as in Figure 3.4) and are representative 
of at least 2 independent experiments. 

 
aID, Probe position in the microarray matching the position in the heatmap and in Table S3.3;bThe binding signals are means of fluorescence intensities of duplicate spots at 150 pg of probe 
arrayed (the respective standard deviation was calculated as the associated error, overall < 5%). ‘-‘ refers to a fluorescence intensity < 500. 

Family 11 13 25 30 32 35 62

IDa Cthe_
3077

Cthe_
0059

Cthe_
0040

Cthe_
0433

Cthe_
2809

Cthe_
2809

Cthe_
0413

Cthe_
1271

Cthe_
1963

Cthe_
3012

Cthe_
2972

Cthe_
2197

Cthe_
2194

Cthe_
2195

Cthe_
1472

Cthe_
0661

Cthe_
2590

Cthe_
1838 

Cthe_
0912

Cthe_
0912

Cthe_
0956

Cthe_
0624

Cthe_
0821

Cthe_
2811

Cthe_
2139

Cthe_
2138

Cthe_
1273

Cthe_
2193

1 b- - - - - - - - - - - 16205 59536 62494 - - - - - - 564 - - - - - - -
2 - - - - - - 1886 - - - - - - - 3431 - - - - - - 2707 - - - - - -
3 - - - - - 785 - - - - - - - - - - - - - - 1515 - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - - 5725 - 11254 - - - - -
6 - - - - 31146 7202 - - - - - - - - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - 588 - - - - - - - - - - - - -
8 - - - - - 631 - - - - - - - - - - - - - - - - - - - - - -
9 - - - - 9225 18573 - - - - - - - - - - - - - - - - 575 - - - - -

10 - - - - - 1172 - - - - - - 37210 39548 - 1873 - - - - - - 64258 - - - - -
11 - - - - - - - - - - - - 4349 4770 - - - - - - - - 12981 - - - - -
12 - - - 8694 - 989 64659 - - - - - - - 64904 - 15138 1660 795 47053 - 64329 - 745 - - - -
13 - - - 42281 - 2348 64787 7713 4673 5166 2136 11308 9002 7095 64737 - 53488 25230 17762 63211 - 64230 - 8431 1256 1521 1302 -
14 - - - - - - 14594 818 542 854 376 849 - - 10528 609 519 506 829 692 - - - - - - - 1174
15 - - - - - 3308 - 61132 63119 62592 63593 - - - 41447 - 63418 60161 62331 62899 - - - - - - - -
16 2569 64819 2969 16027 - - 12041 14162 13121 21484 9801 - - - 1917 - 3302 5349 16900 17125 - 2905 - - 1764 2143 2467 -
17 - 2932 - - - - 1379 16625 11811 29433 16154 - - - 1230 - 5977 7498 24998 26667 - 597 - - 1681 1666 1526 -
18 23114 64487 9616 63170 - - 33596 7186 7891 12498 4653 - - 1620 5637 4489 1435 3778 11027 9754 - 24441 - - 1070 1322 1288 9561
19 18661 64627 13940 64370 - 868 47586 8712 6587 15446 6405 - - 2501 5736 12330 1965 4066 10562 11916 - 28051 - - 3390 3773 4614 20418
20 - 10174 - - - - 23280 59736 62900 61912 63159 54149 63207 63025 22087 - 63372 59507 62397 60471 - 4856 - - 52429 60338 64710 1270
21 - 31788 - - - - 46355 58149 62407 60948 62952 55250 62571 63323 53839 - 63395 58344 61410 61978 - 13547 - - 32774 41022 49411 -
22 - - - - - - - - - - - - - - - 1546 - - - - - - - - - - 782 -
23 - - - - - - - - - - - - - - - 609 - - - - - - - 40914 631 1084 686 28446
24 - - - - 516 - - 6919 1066 1139 547 - - - - - 684 688 899 812 - - - 41713 - 633 - 4279
25 - - - - - - - - - - - - - - - - - - - - - - - 64647 1373 1928 1857 3995

3 22 424 6
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Table S3.6. Fluorescence binding intensities elicited with the CBMs from R. flavefaciens FD-1 investigated in the Plant, Fungal and Bacterial Polysaccharide 
set 1. The numerical scores for the fluorescence binding signals are shown as means of duplicate spots at 150 pg/spot (as in Figure 3.4) and are representative of at least 
2 independent experiments. 

 
aID, Probe position in the microarray matching the position in the heatmap and in Table S3.3; bThe binding signals are means of fluorescence intensities of duplicate spots at 150 pg of 
probe arrayed (the respective standard deviation was calculated as the associated error, overall < 5%). ‘-‘ refers to a fluorescence intensity < 500. 

Family 6
IDa 2836 3259 776 3995 3747 2115 2326 694 1878 2649 1615 1272 2646 3180 2002 3077 3077 3190 1766 1737 3270 1364 933 2302
1 b- - - - - - - - - - - - - - - - - - - - - - - -
2 - 2394 6151 - - - - - - - - - - - - - - - - - - - - -
3 - 3656 - - - - - - - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - - - - - -
6 - 19236 - - - - - - - - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - - - - - - - - - - -
8 - 784 - - - - - - - - - - - - - - - - - - - - - -
9 23886 5417 - - - - - - - - - - - - - - - - - - - - - -

10 - 5034 - - - - - - - - - - - - - 1534 - - - - - - - -
11 - - - - - - - - - - - - - - - - - - - - - - - -
12 - 39898 62972 - - - - - - - - - - - - - - - - 9960 - - - -
13 2028 40498 64872 - - - - - - - - - - 751 997 1389 - - 1147 14608 - 552 995 3799
14 - - 1062 - - - - - - - - - - - - - - - - 1281 - - - -
15 - - 14234 33072 - - - - 32571 64706 56137 29657 30598 46520 37721 64685 45397 64938 64938 63865 - - - -
16 - 655 1504 - - 1900 - - - - - - - - - - - 600 - 6435 - - - -
17 - 793 1555 - - - - - - - - - - - - 540 - - 604 5010 - - - -
18 - - 2905 - - - - - - - - - - - - - - - - 2259 - - - -
19 - 639 2088 - - 1085 - - - - - - - - - - - - - 1871 - - - -
20 - 4228 12795 18700 25761 7231 36945 1150 29278 60957 41316 10918 23251 31108 32681 64196 31423 46105 55550 61995 1218 - - -
21 - 12162 32428 5837 11091 - 16622 722 12994 36941 12751 3225 7568 12006 13686 25968 15544 15792 32904 52529 1679 - - -
22 - - - - - - - - - - - - - - - - - - - - - - - -
23 - - - - - 4621 - - - - - - - - - - - - - - - 44312 15418 64557
24 - - - - 1561 1196 - - - - - - - - - - - - - - - 41936 18024 60448
25 - - - - - 8336 - - - - - - - - - - - - - - - 64685 29647 65005

4 13 3522
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Table S3.7. Fluorescence binding intensities elicited with the CBMs from C. thermocellum investigated in the Glucan, hemicellulose, chitin and chitosan 
NGL-microarrays. The numerical scores for the fluorescence binding signals are shown as means of duplicate spots at 5 fmol probe per spot (as in Figure 3.5) and are 
representative of at least 2 independent experiments. 

 

Family 11 13 25 32 35 62

IDa Cthe_
2809

Cthe_
0413

Cthe_
1271

Cthe_
1963

Cthe_
3012

Cthe_
2972

Cthe_
2197

Cthe_
2195

Cthe_
1472

Cthe_
0661

Cthe_
2590

Cthe_
1838

Cthe_
0912

Cthe_
0912

Cthe_
0956

Cthe_
0821

Cthe_
2811

Cthe_
2139

Cthe_
2138

Cthe_
1273

Cthe_
0300

Cthe_
2387

Cthe_
3006

Cthe_
3006

Cthe_
3005

Cthe_
1800

Cthe_
3007

Cthe_
2193

1 c- - - - - - - - - - - - - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - - - - - 1054 - - - - - - -
3 - - - - - - - - - - - - - - - - - - - - 833 - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
6 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
8 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
9 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

10 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
11 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
12 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13 - - - - - - - - - - - - - - - - - - - - - - - - - 844 - -
14 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
15 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
16 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
17 - - - - - - - - - - - - - - 810 - - - - - - - - - - - - -
18 - - - - - - - - - - - - - - 1817 - - - - - - - - - - - - -
19 - - - - - - - - - - - - - - 3319 - - - - - - - - - - - - -
20 - - - - - - - - - - - - - - 1463 - - - - - - - - - - - - -
21 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
22 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
23 - - - - - - - - - - - - - - 2008 - - - - - - - - - - - - -
24 - - - - - - - - - - - - - - 5253 - - - - - - - - - - - - -
25 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
26 - - - - - - - - - - - - - - 5824 - - - - - - - - - - - - -
27 - - - - - - - - - - - - - - 7551 - - - - - - - - - - - - -
28 - - - - - - - - - - - - - - 4774 - - - - - - - - - - - - -
29 - - - - - - - - - - - - - - 7354 - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - 9292 - - - - - - - - - - - - -

4 6 22 42 50
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Family 11 13 25 32 35 62

IDa Cthe_
2809

Cthe_
0413

Cthe_
1271

Cthe_
1963

Cthe_
3012

Cthe_
2972

Cthe_
2197

Cthe_
2195

Cthe_
1472

Cthe_
0661

Cthe_
2590

Cthe_
1838

Cthe_
0912

Cthe_
0912

Cthe_
0956

Cthe_
0821

Cthe_
2811

Cthe_
2139

Cthe_
2138

Cthe_
1273

Cthe_
0300

Cthe_
2387

Cthe_
3006

Cthe_
3006

Cthe_
3005

Cthe_
1800

Cthe_
3007

Cthe_
2193

31 - - - - - - - - - - - - - - 9363 - - - - - - - - - - - - -
32 - - - - - - - - - - - - - - 3209 - - - - - - - - - - - - -
33 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
34 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
35 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
36 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
37 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
38 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
39 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
40 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
41 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
42 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
43 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
44 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
45 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
46 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
47 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
48 - - - - - - - - - - - - - - 1322 - - - - - - - - - - - - -
49 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
50 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
51 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
52 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
53 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
54 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
55 - - - - - - - 519 - - - - - - - - - - - - - - - - - - - -
56 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
57 - - 622 561 591 571 - - - - - - - - - - - - - - - - - - - - - -
58 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
59 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
60 - - - - - - - 808 - - - - - - - - - - - - - - - - - - - -
61 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
62 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
63 78.5 - - - - - - - - - - - - - - 651 - - - - - - - - - - - -

4 6 22 42 50
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Family 11 13 25 32 35 62

IDa Cthe_
2809

Cthe_
0413

Cthe_
1271

Cthe_
1963

Cthe_
3012

Cthe_
2972

Cthe_
2197

Cthe_
2195

Cthe_
1472

Cthe_
0661

Cthe_
2590

Cthe_
1838

Cthe_
0912

Cthe_
0912

Cthe_
0956

Cthe_
0821

Cthe_
2811

Cthe_
2139

Cthe_
2138

Cthe_
1273

Cthe_
0300

Cthe_
2387

Cthe_
3006

Cthe_
3006

Cthe_
3005

Cthe_
1800

Cthe_
3007

Cthe_
2193

64 809.5 - - - - - - - - - - - - - - 3897 - - - - - - - - - - - -
65 5056 - - - - - - - - - - - - - - 2424 - - - - - - - - - - - -
66 7752 - - - - - - - - - - - - - - 1623 - - - - - - - - - - - -
67 7625 - - - - - - - - - - - - - - 918 - - - - - - - - - - - -
68 2069 - - - - - - - - - - - - - - - - - - - - - - - - - - -
69 21573 - - - - - - - - - - - - - - 873 - - - - - - - - - - - -
70 28113 - - - - - - - - - - - - - - 591 - - - - - - - - - - - -
71 25935 - - - - - - - - - - - - - - 576 - - - - - - - - - - - -
72 33165 - - - - 506 - - - - - - - - - 676 - - - - - - - - - - - -
73 24100 - - - - - - - - - - - - - - - - - - - - - - - - - - -
74 17929 - - - - - - 1136 - - - - - - - 1488 - - - - - - - - - - - -
75 6932 - - - - - - - - - - - - - - 944 - - - - - - - - - - - -
76 6428 - - - - - - - - - - - - - - - - - - - - - - - - - - -
77 6943 - - - - - - - - - - - - - - - - - - - - - - - - - - -
78 - - - - - - - - - - - - - - - 3773 - - - - - - - - - - - -
79 - 6366 - - - - - - - - - - - - - 2508 - - - - - - - - - - - -
80 - 11752 - - - - - - - - - - - - - 1538 - - - - - - - - - - - -
81 - 10400 - - - - - - - - - - - - - - - - - - - - - - - - - -
82 - 9288 - - - - - - - - - - - - - - - - - - - - - - - - - -
83 1290 20301 904 469 800 1053 - - - - - - - - - 924 - - - - - - - - - - - -
84 2485 25790 - - - 594 - - 2306 - - - - - - 2718 - - - - - - - - - - - -
85 4227 27656 - - - 1035 - 811 3250 - - - - - - 3683 - - - - - - - - - - - -
86 2630 26122 - - - 1527 - 588 4396 - - - - - - 1948 - - - - - - - - - - - -
87 3748 16041 - - - - - - 2035 - - - - - - 2219 - - - - - - - - - - - -
88 4688 32325 - - - - - - 3851 - - - - - - 1933 - - - - - - - - - - - -
89 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
90 - - - - - - - - - 2354 - - - - - - - - - - - - - - - - - -
91 - - - - - - - - - 1794 - - - - - 218.5 - - - - - - - - - - - -
92 - - - - - - - - - 6391 - - - - - 1167 - - - - - - - - - - - -
93 - - - - - - - - - 7507 - - - - - - - - - - - - - - - - - -
94 - - - - - - - - - 4944 - - - - - - - - - - - - - - - - - -
95 - - - - - - - - - 1941 - - - - - - - - - - - - - - - - - -
96 - - - - - - - - - 1893 - - - - - - - - - - - - - - - - - -
97 - - - - - - - - - 2966 - - - - - - - - - - - - - - - - - -
98 - - - - - - - - - 656 - - - - - - - - - - - - - - - - - -

4 6 22 42 50
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Family 11 13 25 32 35 62

IDa Cthe_
2809

Cthe_
0413

Cthe_
1271

Cthe_
1963

Cthe_
3012

Cthe_
2972

Cthe_
2197

Cthe_
2195

Cthe_
1472

Cthe_
0661

Cthe_
2590

Cthe_
1838

Cthe_
0912

Cthe_
0912

Cthe_
0956

Cthe_
0821

Cthe_
2811

Cthe_
2139

Cthe_
2138

Cthe_
1273

Cthe_
0300

Cthe_
2387

Cthe_
3006

Cthe_
3006

Cthe_
3005

Cthe_
1800

Cthe_
3007

Cthe_
2193

99 - - - - - - - - - 752 - - - - - - - - - - - - - - - - - -
100 - - - - - - - - - 562 - - - - - - - - - - - - - - - - - -
101 - - - - - - - - - - - - - - - 1478 - - - - - 3833 - - - - - -
102 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
103 - 621 - - - - - - - - - - - - - - - - - - - - - - - - - -
104 582 - - - - - - - - - - - - - - 796 - - - - - - - - - - - -
105 - - - - - - - - - - - - - - - 582 - - - - - - - - - - - -
106 - - - - - - - - - - - - - - - 725 - - - - - - - - - - - -
107 1204 1405 - - - - - - 1298 - - - - - - 1614 - - - - - - - - - - - -
108 - - - - - - - - - - - - - - - 1679 - - - - - - - - - - - -
109 - 4907 - - - - - - 2339 - - - - - - - - - - - - - - - - - - -
110 2763 - - - - - - - - - - - - - - 3388 - - - - - - - - - - - -
111 4142 12137 - - - - - - 16177 - - - - - - - - - - - - - - - - - - -
112 5381 10929 - - - - - - 12698 - - - - - - 1028 - - - - - - - - - - - -
113 12249 15778 - - - - - - 31593 - - - - - - - - - - - - - - - - - - -
114 4551 11384 - - - - - - 19418 - - - - - - - - - - - - - - - - - - -
115 13234 13251 - - - - - - 21911 - - - - - - - - - - - - - - - - - - -
116 13060 16152 - - - - - - 30594 - - - - - - - - - - - - - - - - - - -
117 8065 11941 - - - - - - 18931 - - - - - - - - - - - - - - - - - - -
118 20452 19515 - - - - - - 7868 - - - - - - - - - - - - - - - - - - -
119 12927 11263 - - - - 1869 - 14544 - - - - - - - - - - - - - - - - - - -

120b 17421 14218 15570 16308 14666 14729 - 2264 28558 6963 13436 16021 6695 6692 - - - 3918 - 3552 - - - - - - - -
121 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
122 - - - - - - - - - - - - - - - 1031 - - - - - - - - - - - -
123 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
124 - - - - - - - - - 747 - - - - - - - - - - - - - - - - - -
125 - - - - - - - - - 702 - - - - - 969 - - - - - - - - - - - -
126 - - - - - 532 - - - 844 - - - - - 729 - - - - - - - - - - - -
127 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
128 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
129 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
130 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
131 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
132 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
133 - - - - - - - - - - - - - - - - - - - - - - - - - - - -

4 6 22 42 50
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Family 11 13 25 32 35 62

IDa Cthe_
2809

Cthe_
0413

Cthe_
1271

Cthe_
1963

Cthe_
3012

Cthe_
2972

Cthe_
2197

Cthe_
2195

Cthe_
1472

Cthe_
0661

Cthe_
2590

Cthe_
1838

Cthe_
0912

Cthe_
0912

Cthe_
0956

Cthe_
0821

Cthe_
2811

Cthe_
2139

Cthe_
2138

Cthe_
1273

Cthe_
0300

Cthe_
2387

Cthe_
3006

Cthe_
3006

Cthe_
3005

Cthe_
1800

Cthe_
3007

Cthe_
2193

134 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
135 - - - - - - - - - - - - - - - 620 - - - - - - - - - - - -
136 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
137 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
138 - - - - - - - - - - - - - - - 2624 - - - - - - - - - - - -
139 525 - - - - - - 576 - - - - - - - 1669 - - - - - - - - - - - -
140 1627 - - - - 964 - 985 - - - - - - - 967 - - - - - - - - - - - -
141 5943 - - - - 662 - 814 - - - - - - - 2027 - - - - - - - - - - - -
142 5840 - - - - 715 - 501 - - - - - - - 1656 - - - - - - - - - - - -
143 5416 - - - - 538 - 506 - - - - - - - 566 - - - - - - - - - - - -
144 10726 - - - - 859 - 892 - - - - - - - 677 - - - - - - - - - - - -
145 10775 - - - - 614 - - - - - - - - - 593 - - - - - - - - - - - -
146 22247 - - - - 1418 - 1239 - - - - - - - 2446 - - - - - - - - - - - -
147 1043 - - - - - - - - - - - - - - 1067 - - - - - - - - - - - -
148 26737 - - - - 1002 - - - - - - - - - 869 - - - - - - - - - - - -
149 22370 - - - - 1958 - 769 - - - - - - - 1594 - - - - - - - - - - - -
150 12900 - - - - - - 631 - - - - - - - 877 - - - - - 810 - - - - - -
151 11866 - - - - - - - - - - - - - - 685 - - - - - - - - - - - -
152 - - - - - - - - - - - - - - - 515 - - - - - - - - - - - -
153 11491 - - - - - - - - - - - - - - 839 - - - - - - - - - - - -
154 - - - 1834 - 3757 14636 34338 - - - 3156 - 570 - - - 1096 - - - - - - - - - -
155 - - 4388 6735 2974 10940 11750 31264 - - - 4278 646 3215 - - - - - - - - - - - - - -
156 - - 23273 38062 17167 43017 12238 35387 - - 1820 11043 8104 11406 - - - 842 - - - - - - - - - -
157 - - 49668 46691 35912 59301 21884 33666 - - 8800 38052 14534 17999 - - - 1539 - - - - - - - - - -
158 - - 33997 44878 27333 40112 26380 38666 - - 7833 59920 28132 34844 - - - 3379 - - - - - - - - - -
159 - - 58216 58662 50687 58899 30820 54509 - - 15451 37484 30698 39892 - - - 3432 - - - - - - - - - -
160 - - 58397 58786 58848 58793 47872 61897 - - 21139 47615 39566 44545 - - - 7574 - - - - - - - - - -
161 - - 54512 57867 50810 59392 27318 44125 - - 28534 45413 33640 33815 - - - 3758 - - - - - - - - - -
162 - - 48460 53196 44115 53621 25936 34355 - - 27820 59556 32356 45723 - - - 7152 - - - - - - - - - -
163 - - 53852 57788 50353 58857 20489 42478 - - 34670 34064 29560 32272 - - - 4873 - - - - - - - - - -
164 - - 53636 57485 58342 58773 19215 38825 - - 30638 35954 32992 37049 - - - 8022 - - - - - - - - - -
165 - - - - - - 624.5 13884 - - - - - - - - - 29250 44234 43808 - - - - - - - -
166 - - - - - - 21509 49587 - - - 624 - - - - - 12107 19687 25533 - - - - - - - -
167 - - 719 - - - 26315 54786 - - - 916 - - - - - 22780 34479 32213 - - - - - - - -
168 - - 4213 16219 3748 4627 3330 12348 - - - 24153 5173 7593 - - - 15971 17812 27485 - - - - - - - -
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Family 11 13 25 32 35 62

IDa Cthe_
2809

Cthe_
0413

Cthe_
1271

Cthe_
1963

Cthe_
3012

Cthe_
2972

Cthe_
2197

Cthe_
2195

Cthe_
1472

Cthe_
0661

Cthe_
2590

Cthe_
1838

Cthe_
0912

Cthe_
0912

Cthe_
0956

Cthe_
0821

Cthe_
2811

Cthe_
2139

Cthe_
2138

Cthe_
1273

Cthe_
0300

Cthe_
2387

Cthe_
3006

Cthe_
3006

Cthe_
3005

Cthe_
1800

Cthe_
3007

Cthe_
2193

169 - - 13763 25495 11829 24194 15847 46145 - - - 12322 4027 6572 - - - 17143 33879 22644 - - - - - - - -
170 - - - - - - - 1916 - - - - - 1460 - - - 23401 44820 27240 - - - - - - - -
171 - - 2817 4716 3308 1238 6436 37404 - - - 2907 1690 5944 - - - 19147 45782 26445 - - - - - - - -
172 - - - - - - - - - - - - - - - - - 10759 14419 18107 - - - - - - - -
173 - - - - - - - - - - - - - - - - - 18378 18095 25177 - - - - - - - -
174 - - - - - - - - - - - - - - - - - 14934 32191 23482 - - - - - - - -
175 - - - - - - - - - - - - - - - - - 17761 39453 27425 - - - - - - - -
176 - - - - - - - - - - - - - - - - - 33864 48928 35841 - - - - - - - -
177 - - - - - - - - - - - - - - - - - 36622 55954 39124 - - - - - - - -
178 - - - - - - - - - - - - - - - - - 17398 29816 21811 - - - - - - - -
179 - - - - - - - - - - - - - - - - - 17664 31637 24895 - - - - - - - -
180 - - - - - - - - - - - - - - - - - 38463 58396 48610 - - - - - - - -
181 - - - - - - - - - - - - - - - - - 51265 46560 60235 - - - - - - - -
182 - - - - - - - - - - - - - - - 25062 4726 - - - - - - - - - - -
183 - - - - - - - - - - - - - - - 18294 6085 - - - - - - - - - - -
184 - - - - - - - - - - - - - - - 31797 14864 - - - - - - - - - - -
185 - - - - - - - - - - - - - - - 8784 11514 - - - - - - - - - - -
186 - - - - - - - - - - - - - - - 2433 - - - - - - - - - - - -
187 - - - - - - - - - - - - - - - 11672 - - - - - - - - - - - -
188 - - - - - - - - - - - - - - - 6120 - - - - - - - - - - - -
189 - - - - - - - - - - - - - - - 10465 - - - - - - - - - - - -
190 - - - - - - - - - - - - - - - 2949 1138 - - - - 6282 - - - - - -
191 - - - - - - - - - - - - - - - 11625 6685 - - - - - - - - - - -
192 - - - - - - - - - - - - - - - 1546 1101 - - - - - - - - - - -
193 - - - - - - - - - - - - - - - 11415 - - - - - - - - - - - -
194 - - - - - - - - - - - - - - - 10691 - - - - - - - - - - - 1201
195 - - - - - - - - - - - - - - - 5060 - - - - - - - - - - - -
196 - - - - - - - - - - - - - - - 11225 - - - - - - - - - - - 690
197 - - - - - - - - - - - - - - - 36495 14775 - - - - - - - - - - -
198 - - - - - - - - - - - - - - - 12171 16277 - - - - - - - - - - -
199 - - - - - - - - - - - - - - - 15189 21705 - - - - - - - - - - 1242
200 - - - - - - - 14594 - - - - - - - - - - - - - - - - - - - -
201 - - - - - - - 6621 - - - - - - - - - - - - - - - - - - - 2519
202 - - - 727 - - - - - - - - - - - - - - - - - - - - - - - 7022
203 - - - - - - - 4024 - - - - - - - 1181 - - - - - - - - - - - 3343
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aID, Probe position in the microarray matching the position in the heatmap, binding-charts and Table S2.1 in Chapter 2; bIn the β1,3-1,4-linked barley series DP-16 fraction (probe 120) there 
was evidence of a minor contaminant containing β linked xylose (data not shown);cThe binding signals are means of fluorescence intensities of duplicate spots at 5 fmol of probe arrayed (the 
respective standard deviation was calculated as the associated error, overall < 5%). ‘-‘ refers to a fluorescence intensity < 500. 

Family 11 13 25 32 35 62

IDa Cthe_
2809

Cthe_
0413

Cthe_
1271

Cthe_
1963

Cthe_
3012

Cthe_
2972

Cthe_
2197

Cthe_
2195

Cthe_
1472

Cthe_
0661

Cthe_
2590

Cthe_
1838

Cthe_
0912

Cthe_
0912

Cthe_
0956

Cthe_
0821

Cthe_
2811

Cthe_
2139

Cthe_
2138

Cthe_
1273

Cthe_
0300

Cthe_
2387

Cthe_
3006

Cthe_
3006

Cthe_
3005

Cthe_
1800

Cthe_
3007

Cthe_
2193

204 - - - - - - - 1145 - - - - - - - - - - - - - - - - - - - 3443
205 - - - - - - - - - - - - - - - 1983 - - - - - - - - - - - -
206 - - - - - - - - - - - - - - - 7400 - - - - 2223 669 - 2061 - - - -
207 - - - - - - - - - - - - - - - 9714 - - - - 23614 5754 21545 23342 - - - -
208 - - - - - - - - - - - - - - - 8004 - - - - 19214 6930 19759 11998 3794 1531 1612 -
209 - - - - - - - - - - - - - - - 4381 - - - - 11060 2751 4849 2457 2780 2201 - -
210 - - - - - - - - - - - 686 - - - 7107 - - - - 6499 4616 9008 6753 5776 1202 - -
211 - - - - - - - - - - - - - - - 1828 - - - - 10835 3044 12530 5828 7147 - - -
212 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
213 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
214 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
215 - - - - - - - - - - - - - - - - - - - - - - - - - - - -
216 - - - - - - - - - 5138 - - - - - - - - - - - - - - - - - 13447
217 - - - - - - - - - - - - - - - - - - - - - - - - - - - 6686
218 - - - - - - - - - 983 - - - - - - - - - - - - - - - - - 2039
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Table S3.8. Fluorescence binding intensities elicited with the CBMs from R. flavefaciens FD-1 investigated in the Glucan, hemicellulose, chitin and chitosan 
NGL-microarrays. The numerical scores for the fluorescence binding signals are shown as means of duplicate spots at 5 fmol probe per spot (as in Figure 3.5) and are 
representative of at least 2 independent experiments. 

 

Family 6
IDa 3259 776 3995 3747 2115 2326 694 1878 2649 1615 1272 2646 3180 2002 1737 3077 3077 3190 1766 933 2302
1 c- - - - - - - - - - - - - - - - - - - - -
2 - - - - - - - - - - - - - - - - - - - - -
3 - - - - - - - - - - - - - - - - - - - - -
4 - - - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - - - - - - - - - - - - - -
6 - - - - - - - - - - - - - - - - - - - - -
7 - - - - - - - - - - - - - - - - - - - - -
8 - - - - - - - - - - - - - - - - - - - - -
9 - - - - - - - - - - - - - - - - - - - - -

10 - - - - - - - - - - - - - - - - - - - - -
11 - - - - - - - - - - - - - - - - - - - - -
12 - - - - - - - - - - - - - - - - - - - - -
13 - - - - - - - - - - - - - - - - - - - - -
14 - - - - - - - - - - - - - - - - - - - - -
15 - - - - - - - - - - - - - - - - - - - - -
16 - - - - - - - - - - - - - - - - - - - - -
17 - - - - - - - - - - - - - - - - - - - - -
18 - - - - - - - - - - - - - - - - - - - - -
19 - - - - - - - - - - - - - - - - - - - - -
20 - - - - - - - - - - - - - - - - - - - - -
21 - - - - - - - - - - - - - - - - - - - - -
22 - - - - - - - - - - - - - - - - - - - - -
23 - - - - - - - - - - - - - - - - - - - - -
24 - - - - - - - - - - - - - - - - - - - - -
25 - - - - - - - - - - - - - - - - - - - - -
26 - - - - - - - - - - - - - - - - - - - - -
27 - - - - - - - - - - - - - - - - - - - - -
28 - - - - - - - - - - - - - - - - - - - - -
29 - - - - - - - - - - - - - - - - - - - - -
30 - - - - - - - - - - - - - - - - - - - - -
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Family 6
IDa 3259 776 3995 3747 2115 2326 694 1878 2649 1615 1272 2646 3180 2002 1737 3077 3077 3190 1766 933 2302
31 - - - - - - - - - - - - - - - - - - - - -
32 - - - - - - - - - - - - - - - - - - - - -
33 - - - - - - - - - - - - - - - - - - - - -
34 - - - - - - - - - - - - - - - - - - - - -
35 - - - - - - - - - - - - - - - - - - - - -
36 - - - - - - - - - - - - - - - - - - - - -
37 - - - - - - - - - - - - - - - - - - - - -
38 - - - - - - - - - - - - - - - - - - - - -
39 - - - - - - - - - - - - - - - - - - - - -
40 - - - - - - - - - - - - - - - - - - - - -
41 - - - - - - - - - - - - - - - - - - - - -
42 1156 - - - - - - - - - - - - - - - - - - - -
43 - - - - - - - - - - - - - - - - - - - - -
44 - - - - - - - - - - - - - - - - - - - - -
45 - - - - - - - - - - - - - - - - - - - - -
46 - - - - - - - - - - - - - - - - - - - - -
47 - - - - - - - - - - - - - - - - - - - - -
48 - - - - - - - - - - - - - - - - - - - - -
49 - - - - - - - - - - - - - - - - - - - - -
50 - - - - - - - - - - - - - - - - - - - - -
51 - - - - - - - - - - - - - - - - - - - - -
52 - - - - - - - - - - - - - - - - - - - - -
53 - - - - - - - - - - - - - - - - - - - - -
54 - - - - - - - - - - - - - - - - - - - - -
55 - - - - - - - - - - - - - - - - - - - - -
56 - - - - - - - - - - - - - - - - - - - - -
57 - - - - - - - - 694 - - - - - - - - - - - -
58 - - - - - - - - - - - - - - - - - - - - -
59 - - - - - - - - - - - - - - - - - - - - -
60 - - - - - - - - - - - - - - - - - - - - -
61 - - - - - - - - - - - - - - - - - - - - -
62 - - - - - - - - - - - - - - - - - - - - -
63 2213 - - - - - - - - - - - - - - - - - - - -
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Family 6
IDa 3259 776 3995 3747 2115 2326 694 1878 2649 1615 1272 2646 3180 2002 1737 3077 3077 3190 1766 933 2302
64 16321 - - - - - - - - - - - - - - - - - - - -
65 20790 - - - - - - - - - - - - - - - - - - - -
66 23469 - - - - - - - - - - - - - - - - - - - -
67 22443 - - - - - - - - - - - - - - - - - - - -
68 9723 - - - - - - - - - - - - - - - - - - - -
69 37919 - - - - - - - - - - - - - - - - 5761 - - -
70 46394 - - - - - - - - - - - - - - - - - - - -
71 34613 - - - - - - - - - - - - - - - - - - - -
72 55639 - - - - - - - - - - - - - - - - - - - -
73 36939 - - - - - - - - - - - - - - - - - - - -
74 59075 - - - - - - - - - - - - - - - - - - - -
75 20070 - - - - - - - - - - - - - - - - - - - -
76 14615 - - - - - - - - - - - - - - - - - - - -
77 10471 - - - - - - - - - - - - - - - - - - - -
78 - - - - - - - - - - - - - - - - - - - - -
79 - - - - - - - - - - - - - - - - - - - - -
80 - - - - - - - - - - - - - - - - - - - - -
81 - - - - - - - - - - - - - - - - - - - - -
82 - - - - - - - - - - - - - - - - - - - - -
83 - 1668 - - - - - - - - - - - - - - - - - - -
84 - 3860 - - - - - - - - - - - - - - - - - - -
85 - 8607 - - - - - - - - - - - - - - - - - - -
86 - 3491 - - - - - - - - - - - - - - - - - - -
87 - 7323 - - - - - - - - - - - - - - - - - - -
88 - 10372 - - - - - - - - - - - - - - - - - - -
89 - - - - - - - - - - - - - - - - - - - - -
90 - - - - - - - - - - - - - - - - - - - - -
91 - - - - - - - - - - - - - - - - - - - - -
92 - - - - - - - - - - - - - - - - - - - - -
93 - - - - - - - - - - - - - - - - - - - - -
94 - - - - - - - - - - - - - - - - - - - - -
95 - - - - - - - - - - - - - - - - - - - - -
96 - - - - - - - - - - - - - - - - - - - - -
97 - - - - - - - - - - - - - - - - - - - - -
98 - - - - - - - - - - - - - - - - - - - - -

4 13 22 35



CHAPTER 3. SUPPLEMENTARY INFORMATION 

227 
 

 

 

Family 6
IDa 3259 776 3995 3747 2115 2326 694 1878 2649 1615 1272 2646 3180 2002 1737 3077 3077 3190 1766 933 2302
99 - - - - - - - - - - - - - - - - - - - - -
100 - - - - - - - - - - - - - - - - - - - - -
101 - - - - - - - - - - - - - - - - - - - - -
102 - - - - - - - - - - - - - - - - - - - - -
103 - - - - - - - - - - - - - - - - - - - - -
104 1908 - - - - - - - - - - - - - - - - - - - -
105 - - - - - - - - - - - - - - - - - - - - -
106 - - - - - - - - - - - - - - - - - - - - -
107 387 702 - - - - - - - - - - - - - - - - - - -
108 5388 - - - - - - - - - - - - - - - - - - - -
109 428 1430 - - - - - - - - - - - - - - - - - - -
110 5770 - - - - - - - - - - - - - - - - - - - -
111 3546 9413 - - - - - - - - - - - - - - - - - - -
112 3817 10345 - - - - - - - - - - - - - - - - - - -
113 7087 35257 - - - - - - - - - - - - - - - - - - -
114 3354 22985 - - - - - - - - - - - - - - - - - - -
115 6786 22067 - - - - - - - - - - - - - - - - - - -
116 15158 47076 - - - - - - - - - - - - - - - - - - -
117 8409 34402 - - - - - - - - - - - - - - - - - - -
118 16616 37301 - - - - - - - - - - - - - - - - - - -
119 10172 27038 - - - - - - - - - - - - - - - - - - -

120b 13023 51244 16586 - - - - 21962 33348 16937 19672 11739 11275 10484 10944 12207 12255 11387 11640 - -
121 - - - - - - - - - - - - - - - - - - - - -
122 - - - - - - - - - - - - - - - - - - - - -
123 670 - - - - - - - - - - - - - - - - - - - -
124 863 - - - - - - - - - - - - - - - - - - - -
125 5114 - - - - - - - - - - - - - - - - - - - -
126 9436 - - - - - - - - - - - - - - - - - - - -
127 3337 - - - - - - - - - - - - - - - - - - - -
128 4169 - - - - - - - - - - - - - - - - - - - -
129 4241 - - - - - - - - - - - - - - - - - - - -
130 9633 - - - - - - - - - - - - - - - - - - - -
131 6117 - - - - - - - - - - - - - - - - - - - -
132 3253 - - - - - - - - - - - - - - - - - - - -
133 4900 - - - - - - - - - - - - - - - - - - - -
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Family 6
IDa 3259 776 3995 3747 2115 2326 694 1878 2649 1615 1272 2646 3180 2002 1737 3077 3077 3190 1766 933 2302
134 10127 - - - - - - - - - - - - - - - - - - - -
135 - - - - - - - - - - - - - - - - - - - - -
136 - - - - - - - - - - - - - - - - - - - - -
137 4373 - - - - - - - - - - - - - - - - - - - -
138 10073 - - - - - - - - - - - - - - - - - - - -
139 11953 - - - - - - - - - - - - - - - - - - - -
140 25145 - - - - - - - - - - - - - - - - - - - -
141 43833 - - - - - - - - - - - - - - - - - - - -
142 28156 - - - - - - - - - - - - - - - - - - - -
143 25392 - - - - - - - - - - - - - - - - - - - -
144 13665 - - - - - - - - - - - - - - - - - - - -
145 29405 - - - - - - - - - - - - - - - - - - - -
146 52988 - - - - - - - - - - - - - - - - - - - -
147 22482 - - - - - - - - - - - - - - - - - - - -
148 56868 - - - - - - - - - - - - - - - - - - - -
149 56793 - - - - - - - - - - - - - - - - - - - -
150 25453 - - - - - - - - - - - - - - - - - - - -
151 27752 - - - - - - - - - - - - - - - - - - - -
152 - - - - - - - - - - - - - - - - - - - - -
153 33902 - - - - - - - - - - - - - - - - - - - -
154 - - - 2033 - - - - - - - - - - - - - - - - -
155 - - - 2118 - - - - - - - - - - - - - - - - -
156 - - - 1856 - - - - - - - - - - - 1657 678 1996 5294 - -
157 - - - 787 - - - - - - - - - - - 6680 2919 3538 6966 - -
158 - - - 3878 - - - - - - - - - - 928 3098 569 6197 14912 - -
159 - - - 2100 - - - - - - - 630 1359 1555 4143 13385 3733 17705 24536 - -
160 - - - 19126 - - - - 679 - - 2846 4310 6129 13380 30927 9878 26693 46816 - -
161 - - 5249 - - - - - 4210 1860 6411 4808 6575 9601 13379 25837 17918 12210 36047 - -
162 - - 11348 4586 - 1081 - 786 7030 5711 14697 11183 19977 7638 21644 29436 11783 15860 44346 - -
163 - - 11673 2215 - - - 7647 9963 10548 15858 18405 16229 13969 27786 31246 24597 25559 36414 - -
164 - - 11803 7564 - - - 3330 12472 10960 11935 21570 18769 17901 24389 32678 22986 30728 46753 - -
165 - - - - 1156 - - - - - - - - - - - - - - 21849 -
166 - - - 32899 - - - - - - - - - - - - - - - 5314 -
167 - - - 25483 - - - - - - - - - - - - - - - 14434 -
168 - - - - 1091 - - - - - - - - - - - - - - 19044 -
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Family 6
IDa 3259 776 3995 3747 2115 2326 694 1878 2649 1615 1272 2646 3180 2002 1737 3077 3077 3190 1766 933 2302
169 - - - 1811 - - - - - - - - - - - - - - - 21670 -
170 - - - - 1921 - - - - - - - - - - - - - - 26958 -
171 - - - - 1214 - - - - - - - - - - - - - - 32227 -
172 - - - - - - - - - - - - - - - - - - - 1809 -
173 - - - - 2199 - - - - - - - - - - - - - - 6156 -
174 - - - - 3292 - - - - - - - - - - - - - - 8544 -
175 - - - - 11188 - - - - - - - - - - - - - - 9881 -
176 - - - - 31115 - - - - - - - - - - - - - - 18556 -
177 - - - - 39510 - - - - - - - - - - - - - - 18289 -
178 - - - - 27414 - - - - - - - - - - - - - - 8893 -
179 - - - - 24948 - - - - - - - - - - - - - - 8958 -
180 - - - - 2168 - - - - - - - - - - - - - - 20915 -
181 - - - - 6917 7403 - - - - - - - - - - - - - 28216 -
182 - - - - - - - - - - - - - - - - - - - - 9417
183 - - - - - - - - - - - - - - - - - - - - 8992
184 - - - - - - - - - - - - - - - - - - - - 24731
185 - - - - - - - - - - - - - - - - - - - - 25680
186 - - - - - - - - - - - - - - - - - - - - -
187 - - - - - - - - - - - - - - - - - - - - -
188 - - - - - - - - - - - - - - - - - - - - 2774
189 - - - - - - - - - - - - - - - - - - - - 2117
190 - - - - - - - - - - - - - - - - - - - - 4183
191 - - - - - - - - - - - - - - - - - - - - 15664
192 - - - - - - - - - - - - - - - - - - - - 5456
193 - - - - - - - - - - - - - - - - - - - - -
194 - - - - - - - - - - - - - - - - - - - - -
195 - - - - - - - - - - - - - - - - - - - - -
196 - - - - - - - - - - - - - - - - - - - - 2101
197 - - - - - - - - - - - - - - - - - - - - 47842
198 - - - - - - - - - - - - - - - - - - - - 32147
199 - - - - - - - - - - - - - - - - - - - 1136 38079
200 - - - - - - - - - - - - - - - - - - - - -
201 - - - - - - - - - - - - - - - - - - - - -
202 912 - - - - - - - - - - - - - - - - - - - -
203 - - - - - - - - - - - - - - - - - - - - -

4 13 22 35
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aID, Probe position in the microarray matching the position in the heatmap, binding-charts and in Table S2.1 in Chapter 2; bIn the 
β1,3-1,4-linked barley series, DP-16 fraction (probe 120) there was evidence of a minor contaminant containing β linked xylose (data not 
shown);cThe binding signals are means of fluorescence intensities of duplicate spots at 5 fmol of probe arrayed (the respective standard 
deviation was calculated as the associated error, overall < 5%). ‘-‘ refers to a fluorescence intensity < 500.  

Family 6
IDa 3259 776 3995 3747 2115 2326 694 1878 2649 1615 1272 2646 3180 2002 1737 3077 3077 3190 1766 933 2302
204 - - - - - - - - - - - - - - - - - - - - -
205 - - - - - - - - - - - - - - - - - - - - -
206 - - - - - - - - - - - - - - - - - - - - -
207 - - - - - - - - - - - - - - - - - - - - -
208 - - - - - - - - - - - - - - - - - - - - -
209 - - - - - - - - - - - - - - - - - - - - -
210 - - - - - - - - - - - - - - - - - - - - -
211 - - - - - - - - - - - - - - - - - - - - -
212 - - - - - - - - - - - - - - - - - - - - -
213 - - - - - - - - - - - - - - - - - - - - -
214 - - - - - - - - - - - - - - - - - - - - -
215 - - - - - - - - - - - - - - - - - - - - -
216 - - - - - - 1893 - - - - - - - - - - - - - -
217 - - - - - - - - - - - - - - - - - - - - -
218 - - - - - - - - - - - - - - - - - - - - -

4 13 22 35
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Table S3.9. List of polysaccharide samples, their major sequences or monosaccharide composition and sources included in the Pectin polysaccharide set 1.  

IDa Probe Sourceb Predominant monosaccharide composition Referencec 

1 PGA (Citrus) Citrus pectin (sodium salt) 
Megazyme (P-PGACT) 

Linear α1,4 GalA; 
Ara (0.81%), Rha (0.47%), Fuc (0.01%) Xyl (0.09%), Gal (4.51%), Glc 
(3.03%), GalA (88.6%) 

- 

2 Galacturonate LM (Apple) 
Pyrus malus (low methylated, 
sodium salt) 
OligoTech (GAT100) 

Main linear chain α1,4-linked GalA and α1,2-linked Rha units w/side chains 
of neutral sugars - 

3 Galacturonate LM (Citrus) 
Citrus aurantifolia peel (low 
methylated, sodium salt) 
OligoTech (GAT102) 

Main linear chain α1,4-linked GalA and α1,2-linked Rha units w/side chains 
of neutral sugars: 
Ara (0.21%), Rha (0.42%), Fuc (0.01%) Xyl (1.5%), Gal (3.67%), Glc 
(0.94%), UA (92.6%) 

- 

4 Pectic Galactan (Lupin) Lupin seed fiber 
Megazyme (P-PGALU) 

Linear β1,4 Gal; 
Gal: Ara: Rha: Xyl: GalA = 77: 14: 3: 0.6: 5.4 - 

5 Pectic Galactan (Potato) Potato fiber 
Megazyme (P-PGAPT) 

Linear β1,4 Gal; 
Gal: Ara: Rha: GalA = 78: 9: 4: 9 - 

6 Galactan (Lupin) Lupin seed 
Megazyme (P-GALLU) 

Linear β1,4 Gal; 
Gal:Ara:Rha:Xyl:other sugars = 82 : 5.8 : 5.1 : 1.4 : 5.7, GalA 14.6%. - 

7 Rhamnogalacturonan 
(Soybean) 

Soybean 
Megazyme (P-RHAGN) Main linear chain α1,4-linked GalA and α1,2-linked Rha units - 

8 50WSnFl-S2 (S. nigra) Sambucus nigra 
Berit S. Paulsen 

Ara (28%), Rha (4.4%), Xyl (1.3%), Man (1%), Gal (19.2%), Glc (2%), 
GlcA (0.4%), GalA (42.3%), 4-O-Me-GlcA (1.4%) Ho et al. 2016a278 

9 100WSnFl-S2 (S. nigra) Sambucus nigra 
Berit S. Paulsen 

Ara (18.2%), Rha (16.8%), Xyl (3.4%), Man (0.5%), Gal (17.8%), Glc 
(2.8%), GlcA (0.3%), GalA (40.5%), 4-O-Me-GlcA (0.9%) Ho et al. 2016a278 

10 50WSnFl-S2-EI (S. nigra) Sambucus nigra 
Berit S. Paulsen 

Ara (29.5%), Rha (14.3%), Fuc (0.4%), Xyl (1.8%), Man (2.0%), Gal 
(25.5%), Glc (3.6%), GlcA (2.3%), GalA (17.9%), 4-O-Me-GlcA (2.7%) Ho et al. 2016b279 

11 SnFl50-S2 (S. nigra) Sambucus nigra 
Berit S. Paulsen 

Ara (19.4%), Rha (5.3%), Xyl (0.7%), Man (1.1%), Gal (22.9%), Glc 
(2.8%), GlcA (2.1%), GalA (44.7%), 4-O-Me-GlcA (1%) Ho et al. 2016a278 

12 IOI-WAc (I. obliquus) Inonotus obliquus 
Berit S. Paulsen - - 

13 IOI-WN (I. obliquus) Inonotus obliquus 
Berit S. Paulsen - - 

14 BP-II (B. petersianum) Biophytum petersianum 
Berit S. Paulsen 

Ara (5.1%), Rha (8.2%), Fuc (0.5%), 2-Me-Fuc (trace), Xyl (6.3%), 
2-Me-Xyl (trace), Man (0.7%), Gal (8.3%), Glc (4.4%), GlcA (1.3%), GalA 
(65.1%) 

Grønhaug et al. 2011280  

15 GOA1 (G. oppositifolius) Glinus oppositifolius 
Berit S. Paulsen 

Ara (26.4%), Rha (4.2%), Xyl (3.9%), Man (4.3%), Gal (42.9%), Glc 
(3.5%), GalA (12.1%), 4-O-Me-GlcA (2.9%) 

Inngjerdingen et al. 
2005281 

16 GOA2 (G. oppositifolius) Glinus oppositifolius 
Berit S. Paulsen 

Ara (5.5%), Rha (10.3%), Fuc (1.3%), Xyl (0.5%), Man (0.6%), Gal (9.7%), 
Glc (3.3%), GalA (68.3%), 4-O-Me-GlcA (0.4%) 

Inngjerdingen et al. 
2005281 

17 Vk100-Fr.I (V. kotschyana) Vernonia kotschyan 
Berit S. Paulsen Ara (2%), Rha (1%), Fru (83%), Gal (2%), Glc (3%), GalA (1%) Nergard et al. 2004282 

18 Ctw-A1 (C. tinctorium) Cochlospermum tinctorium 
Berit S. Paulsen 

Ara (16.3%), Rha (17.9%), Man (1.8%), Gal (45.8%), Glc (4%), GlcA 
(8.8%), GalA (5.8%), Fru (4.9%) 

Inngjerdingen et al. 
2013283 
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19 Oc50A1.IA (O. celtidifolia) Opilia celtidifolia 
Berit S. Paulsen 

Ara (38.9%), Rha (4.2%), Man (5.8%), Gal (30.9%), Glc (5.4%), GlcA 
(trace), GalA (11.5%), 4-O-Me-GlcA (3.3%) Grønhaug et al. 2010284 

20 LPS3 (T. cordata) Tilia cordata 
Berit S. Paulsen - - 

21 LCC (C. cordifolia) Cola cordifolia bark 
Berit S. Paulsen - - 

22 CC1P1 (C. cordifolia) Cola cordifolia bark 
Berit S. Paulsen Ara (trace), Rha (32%), Gal (31%), Glc (2%), GalA (35%) Austarheim et al. 2012285 

23 CC1 (C. cordifolia) Cola cordifolia bark 
Berit S. Paulsen 

Ara (3.7%), Rha (22.1%), Gal (20.2%), Glc (0.5%), GalA (29.6%), 2-O-Me-
Gal (6.5%), 4-O-Me-GlcA (17.4%) Austarheim et al. 2012285 

24 CC2 (C. cordifolia) Cola cordifolia bark 
Berit S. Paulsen 

Ara (37.2%), Rha (8.5%), Gal (31.3%), Glc (1.1%), GalA (11.5%), GlcA 
(3.4%), 2-O-Me-Gal (0.4%), 4-O-Me-GlcA (6.6%) Austarheim et al. 2012285 

25 CC3 (C. cordifolia) Cola cordifolia bark 
Berit S. Paulsen 

Ara (3.0%), Rha (22.8%), Gal (17.3%), Glc (1%), GalA (32.8%), 
4-O-Me-GlcA (17.8%), 2-O-Me-Gal (5.3%) Austarheim et al. 2012285 

26 PBS100-II (P. biglobosa) Parkia biglobosa 
Berit S. Paulsen 

Ara (21.2%), Rha (7.3%), Xyl (0.2%), Gal (18%), Glc (6.1%), GalA 
(30.1%), GlcA (10.5%), 4-O-Me-GlcA (1.3%) Zou et al. 2014286 

a Probes are grouped according to predominant oligosaccharide sequence and glycosidic linkage. The ID corresponds to the positions in the binding heatmap; 
b The sources are indicated for each carbohydrate sample; if commercial the code product number is indicated; 
c References for the structural analysis or recent published work for each particular sample, if available.  

 
 
 



CHAPTER 4. SUPPLEMENTARY INFORMATION 

233 
 

 

 

Chapter 4 - Supplementary Information 

Supplementary Figures 

 
Figure S4.1. MS/MS sequence analysis of barley hexasaccharide. Negative-ion ESI-CID-MS/MS 
product-ion spectrum (A) MS2 and (B) quasi MS3. The characteristic 3- and 4-linkage diagnostic ions 
assigned in the spectra are as described in Palma et al. 201532. 
 

 
Figure S4.2. Crystal structures of bound G4G4G3G (top - PDB ID 6R3M) and G4G4G4G (bottom - PDB 
ID 3AMM287). The presence of the β1,3 bond causes a rotation of the consecutive glucose unit of about 
180°, positioning the hydroxymethylene group (transparent grey circles) in the opposite direction. 
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Supplementary Tables 
Table S4.1. Privateer validation results for G4G4G3G and G4G3G4G4G3G ligands bound to CtCBM11. 

Residue Name Conformation Average B-factor RSCC1 Diagnostic 
CtCBM11-G4G4G3G 

BGC 4C1 21.85 0.75 Ok 
BGC 4C1 15.87 0.92 Ok 
BGC 4C1 15.62 0.89 Ok 
BGC 4C1 20.79 0.84 Ok 

CtCBM11-G4G3G4G4G3G 
BGC 4C1 22.02 0.76 Ok 
BGC 4C1 21.14 0.82 Ok 
BGC 4C1 21.14 0.84 Ok 
BGC 4C1 22.22 0.70 Ok 
BGC 4C1 23.31 0.71 Ok 
BGC 4C1 23.58 0.73 Ok 

1RSCC, Real Space Correlation Coefficient, measures the agreement between model and positive omit density. 
 
 
Table S4.2. List of protein-ligand contacts for CtCBM11-G4G4G3G structure. 

Residue Direct hydrogen 
bonds d(Å) Water-mediated hydrogen bonds  d(Å) 

CH-π stacking/ 
Hydrophobic 
interactions 

d(Å) 

Asp51   COO-↔OH2 (W356)↔OH (C4) Glc 4 3.1; 2.7   

Glu25   COO-↔OH2 (W310)↔OH (C2) Glc 4 2.5; 2.9   

Tyr152 
COO-↔OH (C6) Glc 4 2.9 

    
COO-↔OH (C3) Glc 3 3.1 

Arg126 
NH2 ↔OH (C3) Glc 3 2.9     
NH2↔OH (C2) Glc 3 3.0 

Tyr129   COO-↔OH2 (W336)↔OH (C6) Glc 3 2.7; 2.7 Arom. ring↔Glc 2 4.3 

Tyr22   COO-↔OH2 (W318)↔OH (C2) Glc 3 2.8; 2.6 Arom. ring↔Glc 3 4.1 

Tyr53   COO-↔OH2 (W425)↔OH (C2) Glc 2 2.9; 3.1 
Arom. ring↔Glc 2 4.2 

COO-↔OH2 (W425)↔OH (C3) Glc 2 2.9; 2.9 

Asp99 COO-↔OH (C6) Glc 2 2.7 COO-↔OH2 (W314)↔OH (C4) Glc 1 2.6; 2.5   

His102     Arom. ring↔Glc 2 4.2 

His149   NH↔OH2 (W314)↔OH (C4) Glc 1 3.1; 2.5   

Ser147   OH↔OH2 (W314)↔OH (C4) Glc 1 2.9; 2.5   

Asp146 COO-↔OH (C6) Glc 1 2.7 COO-↔OH2 (W448)↔OH (C6) Glc 1 3.0; 3.0   

Ser59    OH↔OH2 (W368)↔OH (C1) Glc 1 2.8; 2.8    

 
Table S4.3. List of protein-ligand contacts for CtCBM11-G4G3G4G4G3G structure.                                 

Residue Direct hydrogen bonds d(Å) CH-π stacking d(Å) 

Glu25 COO-↔OH (C6) Glc 5 3.0   

Arg126 
NH2

 ↔OH (C2) Glc 3 3.1   
NH2↔OH (C3) Glc 3 3.1 

Tyr129   Arom. ring↔Glc 3 4.2 
Tyr53   Arom. ring↔Glc 3 4.2 
Tyr22   Arom. ring↔Glc 2 4.1 
Asp99 COO-↔OH (C6) Glc 2 3.0   

 His102    Arom. ring↔Glc 2 4.6 
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Table S4.4. Primers used to generate the CtCBM11 mutant derivatives. Mutation points are depicted in 
bold. 

Mutants Sequence (5’ - 3’) Direction 

Asp99Ala gcataaacggtgtgggagccggagaacactgg Forward 
ccagtgttctccggctcccacaccgtttatgc Reverse 

Arg126Ala ctccagctttagaagagcacttgattatcagccgc Forward 
gcggctgataatcaagtgctcttctaaagctggag Reverse 

Asp146Ala ggatcttgacaatatagcttcaattcacttcatgtatgcc Forward 
ggcatacatgaagtgaattgaagctatattgtcaagatcc Reverse 

Val57Ala ctggggaacagtatacgctttaccggacggcgat Forward 
atcgccgtccggtaaagcgtatactgttccccag Reverse 

Ser59Ala ggctactggggaacagcatacagtttaccggac Forward 
gtccggtaaactgtatgctgttccccagtagcc Reverse 

Glu25Ala ctccggtgcgggtgcaaaagtttcaacaaaaattg Forward 
cttttgcacccgcaccggagtatgaaccccaatttaa Reverse 

Asp51 gacaacggctggctactggggaacagtatac Forward 
Cagtagccagccgttgtcccggtgtagctgac Reverse 
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Chapter 5 - Supplementary Information 

Supplementary Figures 

 
Figure S5.1. Schematic representation of the position of the various GlcNAc ligands into CtCBM50AB. 
The respective binding affinities are shown as well.  
 

 
Figure S5.2.  Schematic representation of the position of the various peptidoglycan ligands into the 
binding cleft of CtCBM50AB.  

 



CHAPTER 5. SUPPLEMENTARY INFORMATION 

238 
 

 

 
Figure S5.3. Representation of CtCBM50AB complexed with the two pentasaccharides GlcNAc5 and 
GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc. Complex geometries are aligned by chain B backbone 
atoms. To simplify the visualization only the peptidoglycan fragment is represented as sticks and coloured 
by atom type. 
  

 
Figure S5.4. Representation of the CtCBM50:GlcNAc-MurNAc(peptide)-GlcNAc and  
CtCBM50:MurNAc(peptide)-GlcNAc-MurNAc(peptide) complexes. The last frame of each simulation is 
represented. Assembly interface between the chains A (depicted as blue cartoon and silver surface) and B 
(depicted as yellow cartoon and silver surface). MurNAc(peptide)-GlcNAc fragments are represented as 
balls-and-sticks and surface and coloured by atom type. 
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Supplementary Tables 
Table S5.1. Privateer validation results for the β1,4-linked GlcNAc trisaccharide bound to CtCBM50. 

Residue Name Conformation Average B-factor RSCC1 Diagnostic 

NAG 4C1 14.90 0.91 Ok 
NAG 4C1 13.56 0.92 Ok 
NAG 4C1 14.45 0.90 Ok 

1RSCC, Real Space Correlation Coefficient, measures the agreement between model and positive omit density. 

 

Table S5.2. Similarity analysis between protein chains of CtCBM50-GlcNAc3 structure. Rmsd’s 
between chain pairs is presented. Sequence alignment was performed using PDBePISA288. 

 A B C 
A - 0.70 1.05 
B - - 0.97 
C - - - 

 
Table S5.3. List of protein-ligand contacts for CtCBM50-GlcNAc3 structure.  

Res. Chain Direct hydrogen 
bonds d(Å) Water-mediated hydrogen 

bonds d(Å) CH-π stacking d(Å) 

Trp11 A 
B 

NH2
 ↔OH (NAc) GlcNAc1 

NH2
 ↔OH (NAc) GlcNAc2 

 

3.0 
2.8 

 
   

Arom. ring↔GlcNAc1 
 

4.5 

Asp8 C   COO-↔OH2 (W89)↔OH (C1) GlcNAc1 2.9; 2.8   

Pro34 A 
B   COO-↔OH2 (W80)↔OH (C3) GlcNAc1 

COO-↔OH2 (W81)↔OH (C3) GlcNAc2 
2.8; 2.8 
2.8; 2.8 

 

Met10 A 
B   NH↔OH2 (W80)↔OH (C3) GlcNAc1 

NH↔OH2 (W81)↔OH (C3) GlcNAc2 
2.9; 2.8 
2.9; 2.8 

  

Thr9 B   OH↔OH2 (W83)↔OH (C4) GlcNAc1 2.8; 2.9   

Asn35 
A COO-↔NH (NAc) GlcNAc1 

 2.8 
2.9 
2.8 
2.9 

  

  B CO-↔NH (NAc) GlcNAc2 
COO-↔OH (C3) GlcNAc2 
COO-↔OH (C6) GlcNAc3 

CO-↔OH2 (W28)↔OH (C6) GlcNAc1 
COO-↔OH2 (W48)↔OH (NAc) GlcNAc3 

2.9; 2.9 
2.9; 3.0 

Ile37 A NH2
 ↔OH (C6) GlcNAc2 

COO-↔NH (NAc) GlcNAc3 
3.0 
2.9 

 
 
COO-↔OH2 (W16)↔OH (C4) GlcNAc3 

 
 

2.7; 2.7 
  

B NH2
 ↔OH (C6) GlcNAc2 2.9 

Gly7 A 
C 

NH2
 ↔OH (NAc) GlcNAc3 

NH2
 ↔OH (C1) GlcNAc1 

2.8 
3.0 

 
    

 
Table S5.4. Hydrogen bonds involving the GlcNAc3 to GlcNAc6, and that are present during more 
than 15% of the MD simulation. CO – carbonyl group; NH – amine group; SC – side chain. 

Carbohydrate interactions in the CtCBM50:GlcNAcn system Distance (Å) % 
CtCBM50:GlcNAc3 

GlcNAc 1 (NAc) I37 - A (CO) 2.9 61.0 
GlcNAc 1 (NAc) G7 - A (NH) 2.9 38.0 
GlcNAc 1 (HO-C6) N35 - B (CO) 2.8 24.0 
GlcNAc 1 (HO-C6) D8 - B (CO) 2.8 20.0 
GlcNAc 1 (HO-C6) I37 - B (NH) 2.9 20.0 
GlcNAc 2 (NAc) W11 - B (NH) 2.9 59.0 
GlcNAc 2 (HO-C6) N35 - A (CO) 2.8 52.0 
GlcNAc 2 (HO-C6) I37 - A (NH) 2.9 33.0 
GlcNAc 2 (HO-C3) N35 - B (CO) 2.8 17.0 
GlcNAc 3 (NAc) N35 - A (SC) 2.9 47.0 
GlcNAc 3 (NAc) W11 - A (NH) 2.9 39.0 

CtCBM50:GlcNAc4 
GlcNAc 1 (NAc) I37 - B (CO) 2.9 73.0 
GlcNAc 1 (NAc) G7 - B (NH) 2.9 27.0 
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GlcNAc 2 (NAc) I37 - A (CO) 2.9 45.0 
GlcNAc 2 (NAc) G7 - A (NH) 2.9 43.0 
GlcNAc 2 (HO-C6) I37 - B (NH) 2.9 41.0 
GlcNAc 2 (HO-C6) N35 - B (CO) 2.8 32.0 
GlcNAc 2 (HO-C6) D8 - B (CO) 2.7 19.0 
GlcNAc 3 (HO-C6) N35 - A (CO) 2.8 67.0 
GlcNAc 3 (NAc) W11 - B (NH) 2.9 63.0 
GlcNAc 3 (HO-C6) I37 - A (NH) 2.9 32.0 
GlcNAc 3 (HO-C3) N35 - B (CO) 2.8 17.0 
GlcNAc 4 (NAc) N35 - A (SC) 2.9 62.0 
GlcNAc 4 (NAc) W11 - A (NH) 2.9 33.0 

CtCBM50:GlcNAc5 
GlcNAc 1 (NAc) I37 - B (CO) 2.9 29.0 
GlcNAc 1 (NAc) G7 - B (NH) 2.9 29.0 
GlcNAc 2 (NAc) I37 - A (CO) 2.9 59.0 
GlcNAc 2 (HO-C6) I37 - B (NH) 2.9 44.0 
GlcNAc 2 (NAc) G7 - A (NH) 2.9 36.0 
GlcNAc 2 (HO-C6) N35 - B (CO) 2.8 35.0 
GlcNAc 2 (HO-C6) D8 - B (CO) 2.7 15.0 
GlcNAc 3 (NAc) W11 - B (NH) 2.9 59.0 
GlcNAc 3 (HO-C6) N35 - A (CO) 2.8 53.0 
GlcNAc 3 (NAc) N35 - B (SC) 2.9 28.0 
GlcNAc 3 (HO-C3) N35 - B (CO) 2.8 16.0 
GlcNAc 4 (NAc) W11 - A (NH) 2.9 51.0 
GlcNAc 4 (NAc) N35 - A (SC) 2.9 21.0 

CtCBM50:GlcNAc6 
GlcNAc 1 (NAc) Y38 - B (SC) 2.8 27.0 
GlcNAc 2 (NAc) I37 - B (CO) 2.9 74.0 
GlcNAc 3 (HO-C6) I37 - B (NH) 2.9 52.0 
GlcNAc 3 (HO-C6) N35 - B (CO) 2.8 41.0 
GlcNAc 3 (NAc) I37 - A (CO) 2.9 40.0 
GlcNAc 3 (NAc) G7 - A (NH) 2.9 38.0 
GlcNAc 4 (HO-C6) N35 - A (CO) 2.8 68.0 
GlcNAc 4 (NAc) W11 - B (NH) 2.9 58.0 
GlcNAc 4 (HO-C6) I37 - A (NH) 2.9 30.0 
GlcNAc 4 (HO-C3) N35 - B (CO) 2.8 17.0 
GlcNAc 4 (NAc) N35 - B (SC) 2.9 16.0 
GlcNAc 5 (NAc) N35 - A (SC) 2.9 55.0 
GlcNAc 5 (NAc) W11 - A (NH) 2.9 49.0 

 
Table S5.5. Relative enthalpy energies of the individual CtCBM50 chains A and B complexed with all 
GlcNAc ligands. 

 MD simulation ΔΔHbinding (kcal∙mol-1) 

CtCBM50:GlcNAc3 chain A 0.0 ± 0.4 
chain B 12.2 ± 0.4 

CtCBM50:GlcNAc4 chain A 0.0 ± 0.4  
chain B 0.4 ± 0.4 

CtCBM50:GlcNAc5 chain A 0.0 ± 0.5 
chain B 1.6 ± 0.5 

CtCBM50:GlcNAc6 chain A 0.0 ± 0.5 
chain B 2.0 ± 0.5 
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Table S5.6. Relative enthalpy and binding free energies of the individual CtCBM50 chains complexed 
with all GlcNAc ligands. 

MD simulation ΔΔHbinding (kcal∙mol-1) ΔΔGbinding (kcal∙mol-1) 
CtCBM50-chain A:GlcNAc3 0.0 ± 0.4 0.0 ± 0.1 
CtCBM50-chain B:GlcNAc3 11.8 ± 0.5 9.4 ± 0.1 
CtCBM50-chain A:GlcNAc4 0.0 ± 0.5 0.0 ± 0.1 
CtCBM50-chain B:GlcNAc4 -4.0 ± 0.6 -3.3 ± 0.1 
CtCBM50-chain A:GlcNAc5 0.0 ± 0.5 0.0 ± 0.1 
CtCBM50-chain B:GlcNAc5 0.7 ± 0.5 2.1 ± 0.1 
CtCBM50-chain A:GlcNAc6 0.0 ± 0.6 0.0 ± 0.1 
CtCBM50-chain B:GlcNAc6 -1.8 ± 0.6 0.9 ± 0.1 

 
Table S5.7. Relative enthalpy and binding free energies of the complexes with all MurNAc-GlcNAc 
ligands in relation to the CtCBM50:MurNAcGlcNAc3 complex. 

Carbohydrate ΔΔHbinding (kcal∙mol-1) ΔΔGbinding (kcal∙mol-1) 
[MurNAc-GlcNAc-MurNAc] 0.0 ± 1.0 0.0 ± 0.1 
GlcNAc-[MurNAc-GlcNAc-MurNAc] -33.9 ± 1.0 -28.3 ± 0.1 
GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc -37.7 ± 1.1 -28.7 ± 0.1 
MurNAc-GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc -39.2 ± 1.0 -29.1 ± 0.1 
[GlcNAc-MurNAc-GlcNAc] 0.0 ± 0.7 0.0 ± 0.1 
MurNAc-[GlcNAc-MurNAc-GlcNAc] -19.6 ± 0.8 -16.1 ± 0.1 
MurNAc-[GlcNAc-MurNAc-GlcNAc]-MurNAc -31.3 ± 0.9 -22.1 ± 0.1 
GlcNAc-MurNAc-[GlcNAc-MurNAc-GlcNAc]-MurNAc -21.2 ± 0.8 -16.7 ± 0.1 

 
Table S5.8. Hydrogen bonds involving the [GlcNAc-MurNAc]n ligands tested, and that are present 
during more than 15% of the MD simulation. CO – carbonyl group; NH – amine group; SC – side chain. 

Carbohydrate interactions in the CtCBM50:[GlcNAc-MurNAc]n system Distance (Å) % 
CtCBM50:[GlcNAc-MurNAc-GlcNAc] 

GlcNAc 1 (NAc) I37 - A (CO) 2.9 66.0 
GlcNAc 1 (NAc) G7 - A (NH) 2.9 41.0 
MurNAc 2 (HO-C6) I37 - A (NH) 2.9 25.0 
GlcNAc 3 (HO-C3) N35 - A (CO) 2.8 75.0 
GlcNAc 3 (NAc) N35 - A (SC) 2.9 52.0 
GlcNAc 3 (NAc) W11 - A (NH) 2.9 16.0 

CtCBM50:MurNAc-[GlcNAc-MurNAc-GlcNAc] 
MurNAc 1 (NAc) Y38 - A (SC) 2.8 20.0 
MurNAc 1 (NAc) N35 - B (CO) 2.9 17.0 
GlcNAc 2 (NAc) I37 - A (CO) 2.9 60.0 
GlcNAc 2 (NAc) G7 - A (NH) 2.9 40.0 
MurNAc 3 (NAc) W11 - B (NH) 2.9 60.0 
MurNAc 3 (HO-C6) N35 - A (CO) 2.8 40.0 
MurNAc 3 (HO-C6) I37 - A (NH) 2.9 26.0 
MurNAc 3 (Mur) N35 - B (SC) 2.8 35.0 
GlcNAc 4 (NAc) N35 - A (SC) 2.9 44.0 
GlcNAc 4 (NAc) W11 - A (NH) 2.9 40.0 

CtCBM50:MurNAc-[GlcNAc-MurNAc-GlcNAc]-MurNAc 
MurNAc 1 (NSc) G7 - B (NH) 2.9 36.0 
MurNAc 1 (NAc) I37 - B (CO) 2.9 35.0 
GlcNAc 2 (HO-C6) MurNAc 3 (Mur) 2.7 80.0 
GlcNAc 2 (NAc) G7 - A (NH) 2.9 42.0 
GlcNAc 2 (NAc) I37 - A (CO) 2.9 39.0 
MurNAc 3 (NAc) W11 - B (NH) 2.9 60.0 
MurNAc 3 (HO-C6) N35 - A (CO) 2.8 60.0 
MurNAc 3 (HO-C6) I37 - A (NH) 2.9 29.0 
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GlcNAc 4 (NAc) N35 - A (SC) 2.9 66.0 
GlcNAc 4 (NAc) W11 - A (NH) 2.9 60.0 
GlcNAc 4 (HO-C6) MurNAc 5 (Mur) 2.7 33.0 

CtCBM50:GlcNAc-MurNAc-[GlcNAc-MurNAc-GlcNAc]-MurNAc 
GlcNAc 1 (HO-C6) MurNAc 2 (Mur) 2.7 31.0 
GlcNAc 3 (NAc) I37 - A (CO) 2.9 64.0 
GlcNAc 3 (HO-C6) MurNAc 4 (Mur) 2.7 63.0 
MurNAc 4 (HO-C6) N35 - A (CO) 2.8 37.0 
MurNAc 4 (HO-C6) I37 - A (NH) 2.9 30.0 
MurNAc 4 (Mur) N35 - B (SC) 2.8 19.0 
GlcNAc 5 (NAc) N35 - A (SC) 2.9 57.0 
GlcNAc 5 (NAc) W11 - A (NH) 2.9 51.0 
GlcNAc 5 (HO-C6) MurNAc 6 (Mur) 2.7 34.0 

CtCBM50:[MurNAc-GlcNAc-MurNAc] 
MurNAc 1 (HO-C6) N35 - B (CO) 2.8 47.0 
MurNAc 1 (HO-C6) I37 - B (NH) 2.9 29.0 
GlcNAc 2 (NAc) W11 - B (NH) 2.9 51.0 
GlcNAc 2 (NAc) AN35 - B (SC) 2.9 45.0 
GlcNAc 2 (HO-C6) MurNAc 3 (Mur) 2.7 43.0 
MurNAc 3 (NAc) N35 - A (SC) 2.9 34.0 

CtCBM50:GlcNAc-[MurNAc-GlcNAc-MurNAc] 
GlcNAc 1 (NAc) I37 - B (CO) 2.9 64.0 
GlcNAc 1 (HO-C6) MurNAc 2 (Mur) 2.7 44.0 
GlcNAc 1 (NAc) G7 - B (NH) 2.9 36.0 
MurNAc 2 (NAc) G7 - A (NH) 2.9 54.0 
MurNAc 2 (HO-C6) N35 - B (CO) 2.8 47.0 
MurNAc 2 (HO-C6) I37 - B (NH) 2.9 37.0 
GlcNAc 3 (NAc) W11 - B (NH) 2.9 59.0 
GlcNAc 3 (HO-C6) MurNAc 4 (Mur) 2.7 55.0 
GlcNAc 3 (NAc) N35 - B (SC) 2.9 44.0 
MurNAc 4 (O-C3) T9 - A(SC) 2.8 17.0 
MurNAc 4 (Mur) T9 -A (SC) 2.7 26.0 

CtCBM50:GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc 
GlcNAc 1 (NAc) I37 - B (CO) 2.9 64.0 
GlcNAc 1 (NAc) G7 - B (NH) 2.9 42.0 
GlcNAc 1 (HO-C6) MurNAc 2 (Mur) 2.7 26.0 
MurNAc 2 (HO-C6) N35 - B (CO) 2.8 49.0 
MurNAc 2 (HO-C6) I37 - B (NH) 2.9 39.0 
GlcNAc 3 (NAc) N35 - B (SC) 2.9 53.0 
GlcNAc 3 (NAc) W11 - B (NH) 2.9 46.0 
GlcNAc 3 (HO-C6) MurNAc 4 (Mur) 2.7 33.0 
GlcNAc 3 (HO-C3) N35 - B (CO) 2.8 15.0 
MurNAc 4 (Mur) T9 - A (SC) 2.8 26.0 
MurNAc 4 (NAc) W11 - A (NH) 2.9 22.0 
MurNAc 4 (Mur) N35 - A (SC) 2.8 23.0 

CtCBM50:MurNAc-GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc system 
MurNAc 1 (NAc) Y38 - B (SC) 2.8 20.0 
GlcNAc 2 (NAc) I37 - B (CO) 2.9 74.0 
GlcNAc 2 (NAc) G7 - B (NH) 2.9 24.0 
GlcNAc 2 (HO-C6) MurNAc 3 (Mur) 2.7 43.0 
MurNAc 3 (HO-C6) N35 - B (CO) 2.8 46.0 
MurNAc 3 (HO-C6) I37 - B (NH) 2.9 34.0 
GlcNAc 4 (NAc) W11 - B (NH) 2.9 61.0 
GlcNAc 4 (HO-C6) MurNAc 5 (Mur) 2.7 50.0 
GlcNAc 4 (NAc) N35 - B (SC) 2.9 34.0 
MurNAc 5 (Mur) T9 - A (SC) 0.8 61.0 
MurNAc 5 (Mur) W11 - A (NH) 2.9 15.0 
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Table S5.9. Relative enthalpy and binding free energies of the individual CtCBM50 chains complexed 
with all MurNAc-GlcNAc ligands. 

MD simulation ΔΔHbinding 
(kcal∙mol-1) 

ΔΔGbinding 
(kcal∙mol-1) 

CtCBM50-chain A:[MurNAc-GlcNAc-MurNAc] 0.0 ± 1.9 0.0 ± 0.2 
CtCBM50-chain B:[MurNAc-GlcNAc-MurNAc] -13.8 ± 1.4 -6.0 ± 0.2 
CtCBM50-chain A:GlcNAc-[MurNAc-GlcNAc-MurNAc] 0.0 ± 0.4 0.0 ± 0.1 
CtCBM50-chain B:GlcNAc-[MurNAc-GlcNAc-MurNAc] -7.0 ± 0.5 -4.7 ± 0.1 
CtCBM50-chain A:GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc 0.0 ± 1.5 0.0 ± 0.1 
CtCBM50-chain B:GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc -19.5 ± 1.1 -13.8 ± 0.1 
CtCBM50-chain A:MurNAc-GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc 0.0 ± 0.6 0.0 ± 0.1 
CtCBM50-chain B:MurNAc-GlcNAc-[MurNAc-GlcNAc-MurNAc]-GlcNAc -26.1 ± 0.6 -18.7 ± 0.1 
CtCBM50-chain A:[GlcNAc-MurNAc-GlcNAc] 0.0 ± 0.6 0.0 ± 0.1 
CtCBM50-chain B:[GlcNAc-MurNAc-GlcNAc] 37.9 ± 0.9 21.2 ± 0.1 
CtCBM50-chain A:MurNAc-[GlcNAc-MurNAc-GlcNAc] 0.0 ± 1.4 0.0 ± 0.1 
CtCBM50-chain B:MurNAc-[GlcNAc-MurNAc-GlcNAc] -24.4 ± 1.1 -15.0 ± 0.1 
CtCBM50-chain A:MurNAc-[GlcNAc-MurNAc-GlcNAc]-MurNAc 0.0 ± 0.6 0.0 ± 0.1 
CtCBM50-chain B:MurNAc-[GlcNAc-MurNAc-GlcNAc]-MurNAc 14.3 ± 0.6 4.6 ± 0.1 
CtCBM50-chain A:GlcNAc-MurNAc-[GlcNAc-MurNAc-GlcNAc]-MurNAc 0.0 ± 0.7 0.0 ± 0.1 
CtCBM50-chain B:GlcNAc-MurNAc-[GlcNAc-MurNAc-GlcNAc]-MurNAc 41.0 ± 1.1 26.5 ± 0.1 

 
Table S5.10. Primers used to generate the CtCBM50 mutant derivatives. Mutation points are depicted 
in bold. 

Mutants Sequence (5’ - 3’) Direction 

Trp11Ala gtcaagccgggagacactatggcgaaaattgctgtaaaatatcaa Forward 
ttgatattttacagcaattttcgccatagtgtctcccggcttgac Reverse 

Asn35Ala agcaaatccgcaaattaaaaaccctgccctcatttatcccggaca Forward 
tgtccgggataaatgagggcagggtttttaatttgcggatttgct Reverse 

Tyr38Ala gcaaatccgcaaattaaaaaccctaacctcattgctcccggacagaaaatta Forward 
taattttctgtccgggagcaatgaggttagggtttttaatttgcggatttgc Reverse 
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Chapter 6 - Supplementary Information 

Supplementary Figure 

 
Figure S6.1. RfCBM13-12115 putative binding sites exhibiting unassigned electron density. Two of 
RfCBM13-12115 putative binding sites are shown for crystal structures obtained from co-crystallization assays 
with (A) arabinobiose (Ara2) and (B) arabinotriose (Ara3). The 2mFo-DFc electron density map is shown in 
blue (contour at 1 σ) and the mFo-DFc electron density map is shown in green (contour at 3 σ), evidencing 
the unexplained density in one of the putative binding sites for each data set. 

Supplementary Table 
 
Table S6.1. Primers used to generate the RfCBM13-1 mutant derivatives. Mutation points are 
depicted in bold. 

Mutants Sequence (5’ - 3’) Direction 

Trp38Ala accaacatccagcaggcggacttcaacaag Forward 
cttgttgaagtccgcctgctggatgttggt Reverse 

Gln86Ala aatgtagagctcgcgacctacacaggcgca Forward 
tgcgcctatgtaggtcgcgagctctacatt Reverse 

Phe134Ala gaaacgtcaaccaggccgcctacaacgag Forward 
ctcgttgtaggcggcctggttgacgtttc Reverse 

Asp78Ala gctaaggatactgccgccgacggtacaaatgta Forward 
tacatttgtaccgtcggcggcagtatccttagc Reverse 

Asp79Ala ctaaggatactgccgacgccggtacaaatgtagag Forward 
ctctacatttgtaccggcgtggcagtatccttag Reverse 

Asp119Ala caagggcgctctggctgtattcgagtggtcc Forward 
ggaccactcgaatacagccagagcgcccttg Reverse 

Phe121Ala ggcgctctggatgtagccgagtggtccaagg Forward 
ccttggaccactcggctacatccagagcgcc Reverse 

Glu122Ala gctctggatgtattcgcgtggtccaaggaaaacgg Forward 
ccgttttccttggaccacgcgaatacatccagagc Reverse 

Trp123Ala ctggatgtattgaggcgtccaaggaaaacggc Forward 
gccgttttccttggacgcctcgaatacatccag Reverse 

Asn132Ala acggcggaaacgtcgcccagttcgcctacaacg Forward 
cgttgtaggcgaactgggcgacgtttccgccgt Reverse 

Glu138Ala cagttcgcctacaacgcgtatgcctgccagctg Forward 
cagctggcaggcatacgcgttgtaggcgaactg Reverse 

Tyr139Ala gttcgcctacaacgaggctgcctgccagctgtgg Forward 
ccacagctggcaggcagcctcgttgtaggcgaac Reverse 

Gln142Ala caacgagtatgcctgcgcgctgtggaatatcgc Forward 
gcgatattccacagcgcgcaggcatactcgttg Reverse 
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