
Received May 16, 2020, accepted June 5, 2020, date of publication June 10, 2020, date of current version June 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3001505

A Study of Generalization and Fitness
Landscapes for Neuroevolution
NUNO M. RODRIGUES 1, (Graduate Student Member, IEEE),
SARA SILVA1, AND LEONARDO VANNESCHI1,2
1LASIGE, Departamento de Informática, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
2NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa, Portugal

Corresponding author: Nuno M. Rodrigues (nmrodrigues@fc.ul.pt)

This work was supported in part by FCT, Portugal, through funding of LASIGE Research Unit under Grant UIDB/00408/2020
and Grant UIDP/00408/2020, in part by BINDER under Grant PTDC/CCI-INF/29168/2017, in part by GADgET under
Grant DSAIPA/DS/0022/2018, in part by AICE under Grant DSAIPA/DS/0113/2019), and in part by PREDICT under
Grant PTDC/CCI-CIF/29877/2017.

ABSTRACT Fitness landscapes are a useful concept for studying the dynamics of meta-heuristics. In the
last two decades, they have been successfully used for estimating the optimization capabilities of different
flavors of evolutionary algorithms, including genetic algorithms and genetic programming. However, so far
they have not been used for studying the performance of machine learning algorithms on unseen data, and
they have not been applied to studying neuroevolution landscapes. This paper fills these gaps by applying
fitness landscapes to neuroevolution, and using this concept to infer useful information about the learning
and generalization ability of the machine learning method. For this task, we use a grammar-based approach
to generate convolutional neural networks, and we study the dynamics of three different mutations used to
evolve them. To characterize fitness landscapes, we study autocorrelation, entropic measure of ruggedness,
and fitness clouds. Also, we propose the use of two additional evaluation measures: density clouds and
overfitting measure. The results show that these measures are appropriate for estimating both the learning
and the generalization ability of the considered neuroevolution configurations.

INDEX TERMS Autocorrelation, convolutional neural networks, density clouds, entropic measure of
ruggedness, fitness clouds, fitness landscapes, generalization, neuroevolution, overfitting.

I. INTRODUCTION
The concept of fitness landscapes (FLs) [1], [2] has been used
many times to characterize the dynamics of meta-heuristics in
optimization tasks. Particularly, several measures have been
developed with the goal of capturing essential characteristics
of FLs that can provide useful information regarding the diffi-
culty of different optimization problems. Among these mea-
sures, autocorrelation [3], fitness clouds [4], [5], and entropic
measure of ruggedness (EMR) [6]–[8] have been intensively
studied, revealing to be useful indicators of the ruggedness
and difficulty of the FLs induced by several variants of local
searchmeta-heuristics and evolutionary algorithms (EAs) [9].
However, to the best of our knowledge, despite existing few
works on Fls where measures such as EMR, Fitness Distance
Correlation and gradient analysis were applied to standard
neural networks [10], [11], nomeasure related to FLs has ever

The associate editor coordinating the review of this manuscript and

approving it for publication was F. K. Wang .

been used for studying the performance of machine learn-
ing (ML) algorithms on unseen data, nor for characterizing
the dynamics of neuroevolution. In this work, we adapt the
well-known definitions of autocorrelation, fitness clouds and
EMR to neuroevolution. We also use two other measures,
density clouds and overfitting measure, not only to study the
optimization effectiveness of various neuroevolution config-
urations, but also to characterize their performance on unseen
data. We also introduce our own grammar-based neuroevolu-
tion approach, inspired by existing systems.

Neuroevolution is a branch of evolutionary computation
that has been around for almost three decades, with appli-
cation in multiple areas such as supervised classification
tasks [12] and agent building [13]. In neuroevolution, an EA
is used to evolve weights, topologies and/or hyper-parameters
of artificial neural networks. In this study, we focus on
the evolution of convolutional neural networks (CNNs),
because they are one of the most popular deep neural
network architectures with applications including computer

108216 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5312-8276
https://orcid.org/0000-0003-4563-945X

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

vision [14], [15], gestures recognition [16] and activity recog-
nition [17]. They have a vast amount of tunable parameters
that are difficult to set, which makes them perfect for testing
the capabilities of neuroevolution. For testing the reliability
of the studied measures in predicting the performance of
neuroevolution of CNNs on training and unseen data, we con-
sider three different types of mutations and four different
multiclass classification problems, with different degrees of
known difficulty. For each type of mutation, and for each one
of the studied problems, we calculate the value of these mea-
sures and we compare them to the results obtained by actual
simulations performed with our neuroevolution system.

We consider this work as the first proof of concept in
a wider study, aimed at establishing the use of measures
to characterize neuroevolution of CNNs. If successful, this
study will be extremely impactful. CNNs normally have a
slow learning phase, which makes neuroevolution a very
intensive computational process, as it requires the evaluation
of several CNNs in each generation. For this reason, the task
of executing simulations to choose among different types of
genetic operators, and/or among several possible parameter
settings, is normally prohibitively expensive. This may result
on the adoption of sub-optimal configurations that not only
will require a tremendous amount of training time due to
learning difficulty, but also will perform sub-optimally after
training because of poor generalization ability. On the other
hand, the calculation of the studied measures is much faster,
and therefore it can help us find appropriate neuroevolu-
tion configurations much more efficiently, with one such
example being presented in section IV-B1. The end result
may be that the time spent on calculating the measures will
be largely compensated with optimized configurations that
will learn faster and generalize better. Computational con-
straints have also prompted us to choose simple measures that
are both quick to calculate and, as our results demonstrate,
effective.

The paper is organized as follows: in Section II, we intro-
duce the concept of FL and the used measures. Section III
introduces neuroevolution and presents our grammar-based
approach to evolve CNNs. In Section IV, we present our
experimental study, first discussing the test problems used,
then the experimental settings, and finally presenting and
discussing the obtained results. Finally, Section V concludes
the paper and suggests ideas for future research.

Public repository for reproducibility:
https://github.com/NMVRodrigues/TFNE

II. FITNESS LANDSCAPES
Using a landscape metaphor to gain insight about the work-
ings of a complex system originates with the work of Wright
on genetics [1]. Probably, the simplest definition of FL is the
following one: a FL can be seen as a plot where the points
in the horizontal direction represent the different individual
genotypes in a search space and the points in the vertical
direction represent the fitness of each one of these individ-
uals [18]. If genotypes can be visualized in two dimensions,

the plot can be seen as a three-dimensional ‘‘map’’, which
may contain peaks and valleys. The task of finding the best
solution to the problem is equivalent to finding the highest
peak (for maximization problems) or the lowest valley (for
minimization). The problem solver is seen as a short-sighted
explorer searching for those optimal spots. Crucial to the
concept of FL is that solutions should be arranged in a way
that is consistent with a given neighborhood relationship.
Indeed, a FL is completely defined by the triple:

(S, f ,N)

where S is the set of all admissible solutions (the search
space), f is the fitness function, a function used to measure
the quality of the solutions found by the algorithm, and, N is
the neighborhood. Generally, the neighborhood should have a
relationship with the transformation (mutation) operator used
to explore the search space. A typical example is to consider
as neighbors two solutions a and b if and only if b can be
obtained by applying mutation to a.
The FL metaphor can be helpful for understanding the

difficulty of a problem, i.e., the ability of a searcher to find
the optimal solution for that problem. However, in practical
situations, FLs are impossible to visualize, both because
of the vast size of the search space and because of the
multi-dimensionality of the neighborhood. For this reason,
researchers have introduced a set of mathematical measures,
able to capture some characteristics of FLs and express them
with single numbers [19]. Although none of these measures
is capable of expressing completely the vast amount of
information that characterizes a FL, some of them revealed
to be reliable indicators of the difficulty of problems, for
instance: autocorrelation [3], entropic measure of rugged-
ness (EMR) [6]–[8], density of states [20], fitness-distance
correlation [19], [21], length of adaptive walks [2], and
basins of attraction size [22], plus various measures based
on the concepts of fitness clouds [19] and local optima
networks [23].

Among the previously mentioned measures, in this paper
we investigate autocorrelation, EMR, and fitness clouds,
for two related reasons. Firstly, they are the simplest mea-
sures available which, for a very first study on this subject,
makes them the most appropriate first choice. If these simple
measures were to fail their purpose, we would have used
more complex ones. Secondly, they can be quicky calculated,
which for a computationally intensive method such as neu-
roevolution of CNNs, is an important advantage. Other mea-
sures could be so computationally demanding as to render
the study of fitness landscapes unfeasible for neuroevolution.
Additionally, we introduce a new measure that is an alter-
native to the density of states, called density clouds, and we
also use a measure of overfitting [24] to analyze the results.
Both of these are also simple and easily calculated. All these
measures are defined and discussed in the remainder of this
section, including how their respective results will be reported
later in the experimental section.

VOLUME 8, 2020 108217

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

A. AUTOCORRELATION
The autocorrelation coefficient is used tomeasure the rugged-
ness of a FL [3]. In the context of Fitness Landscapes,
the ruggedness of a landscape is related to the amount of
present elements, such as hills, slopes and plateaus, and gives
and indication of the difficulty of the problem. It is applied
over a series of fitness values, determined by a walk on
the landscape. A walk on a FL is a sequence of solutions
(s0, s1, . . . , sn) such that, for each t = 1, 2, . . . , n, st is a
neighbor of st−1 or, in other words, st is obtained by applying
a mutation to st−1. For walks of a finite length n, autocorre-
lation with step k is defined as:

ρ̂(k) =

∑n−k
t=1 (f (st)− f̄)(f (st+k)− f̄)√∑n

t=1(f (st)− f̄)2
√∑n

t=1(f (st+k)− f̄)2
,

where f̄ = 1
n

∑n
t=1 f (st).

Given the huge size of the search space created by neu-
roevolution, and in the attempt to generate walks that are,
as much as possible, representatives of the portions of the
search space actually explored by the evolutionary algorithm,
in this work we calculate autocorrelation using selective
walks [19]. In selective walks, for each t = 1, 2, . . . , n, st is
a selected solution from the neighborhood of st−1. To apply
selection pressure to the neighbors, tournament selection is
used; in other words, st is the best solution (i.e., the one with
the best fitness on the training set) in a sample ofm randomly
generated neighbors of st−1.

We study the autocorrelation both on the training and on
the test set, by using the same selective walk. In both cases,
selection acts using only training data, but in the former case
the individuals are evaluated on the training set, while in
the latter case they are evaluated on the test set. Because
of the large complexity of neuroevolution, and given the
relatively short length of thewalks that we are able to generate
with the available computational resources1 (n = 30 in
our experiments), we calculate ρ̂(k) several times (10 in our
experiments), using independent selective walks, and report
boxplots of the results obtained over these different walks.

In order to broadly classify the ruggedness of the land-
scape, we adopt the heuristic threshold suggested by Jones
for fitness-distance correlation [21], where ρ̂(k) > 0.15
corresponds to a smooth landscape (and thus, in principle,
an easy problem), and ρ̂(k) < 0.15 corresponds to a rugged
hard landscape. To visualize the results, the threshold will
be shown as a horizontal line in the same diagram as the
boxplots of the autocorrelation, and the position of the box
compared to the threshold will allow us to classify problems
as easy or hard. The situation in which the boxplot lays across
the threshold (i.e., the case in which ρ̂(k) ≈ 0.15) will
be considered as an uncertain case, in which predicting the
hardness of the problem is a difficult task. One of the typical
situations in which we have an uncertain case is when sev-
eral different neuroevolution runs yield significantly different

1 Our experiments were performed on a machine with a gtx 970,
a gtx 2070 and 16GB of RAM.

results (for instance, half of the runs converge towards good
quality solutions and the other half stagnate in bad quality
ones). Finally, several values of the step k are compared
(k = 1, 2, 3, 4 in our experiments).

B. ENTROPIC MEASURE OF RUGGEDNESS
The EMR is an indicator of the relationship between rugged-
ness and neutrality. In the context of Fitness Landscapes,
we define neutrality, or neutral degree, as the capacity of the
algorithm to generate solutions with different fitness values.
If multiple solutions have different neighbors with the same
fitness, the landscape is deemed to have a high degree of
neutrality. It was introduced byVassilev [6]–[8] and is defined
as follows: assuming that a walk of length n, performed
on a landscape, generates a time series of fitness values
{ft }nt=0, that time series can be represented as a string S(ε) =
{x1x2 . . . xn}, where, for each i = 1, 2, . . . , n, xi ∈ {1̄, 0, 1}.
For each i = 1, 2, . . . , n, xi ∈ S(ε) is obtained using the
following function:

xi = 9ft (i, ε) =


1̄, if fi − fi−1 < −ε
0, if |fi − fi−1| ≤ −ε
1, if fi − fi−1 > −ε

where ε is a real number that determines the accuracy of
the calculation of S(ε), and increasing this value results in
increasing the neutrality of the landscape. The smallest pos-
sible ε for which the landscape becomes flat is called the
information stability, and is represented by ε∗. Using S(ε),
the EMR is defined as follows [6]:

H (ε) = −
∑
p6=q

P[pq] log6 P[pq],

where p and q are elements from the set {1̄, 0, 1}, and
P[pq] =

n[pq]
n , where n[pq] is the number of pq sub-blocks

in S(ε) and n is the total number of sub-blocks. The output
of H (ε) is a value in the [0, 1] range, and it represents an
estimate of the variety of fitness values in the walk, with
a higher value meaning a larger variety and thus a more
rugged landscape. In this definition, for each walk that is
performed, H (ε) is calculated for multiple ε values, usu-
ally {0, ε∗/128, ε∗/64, ε∗/32, ε∗/16, ε∗/8, ε∗/4, ε∗/2, ε∗},
and then the mean of H (ε), represented as H̄ (ε), over all
performed walks is calculated for each value of ε. In this
work, we employ the adaptations suggested by Malan [25],
aimed at reducing the characterization of the landscape to a
single scalar. To characterise the ruggedness of a function f ,
the following value is proposed:

Rf = max
∀ε∈[0,ε∗]

H (ε)

To approximate the theoretical value of Rf , the maximum
of H̄ (ε) is calculated for all ε values.

C. FITNESS CLOUDS
Fitness clouds [4] consist of a scatterplot that maps the fit-
ness of a sample of individuals against the fitness of their

108218 VOLUME 8, 2020

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

neighbors, obtained by the application of a genetic operator.
The shape of this scatterplot can provide an indication of the
evolvability of the genetic operators used, and thus offers
some hints about the difficulty of the problem. Using the
loss as fitness, a plot where most points fall below (above)
the identity line is considered to be easy (difficult), as most
genetic operators generate individuals that are better (worse)
than their parents. Comparing the shape of the plots obtained
for the training set and for the test set, it is also possible to
obtain an indication regarding the difficulty of generalization
on unseen data as models that fail to generalize will produce
a test cloud much more concentrated in lower fitness values.

Considering a set of individuals S = {s1, s2, . . . , sn},
for each i = 1, 2, . . . , n, a set of neighbors of each indi-
vidual si,V(si) = {vi1, v

i
2, . . . , v

i
mi} and a fitness function f ,

the set of points that form the fitness cloud can be defined as
follows:

C = {(f (si), f (vik)),∀i ∈ [1, n],∀k ∈ [1,mi]} (1)

As explained by [26], fitness clouds also implicitly provide
information about the genotype to phenotype mapping. The
set of genotypes that have the same fitness is called a neutral
set [27], which can be represented by one abscissa in the
fitness/fitness plane. According to this abscissa, a vertical
slice from the cloud represents the set of fitness values that
could be reached from this set of neutrality. For a given
offspring fitness value f , an horizontal slice represents all the
fitness values from which one can reach f .

D. DENSITY CLOUDS
We propose the use of a newmeasure called density clouds as
an alternative to the density of states. Density clouds allows
us to use the same sample that is used for fitness clouds,
whereas density of states would require amuch larger sample,
since we would need to find neighbours in that sample, a very
hard task in such a large space of possibilities. Density clouds
uses the same points as the fitness clouds to produce a visual
representation of the shape and density of that distribution.
The visual interpretation of density clouds is essentially the
same as for fitness clouds, but concentrated on the areas with
the largest density of points, with the added advantage that the
plots will still be easily interpretable in a space of thousands
of samples.

Let {X1,X2, . . . ,Xn} be a univariate independent and iden-
tically distributed sample drawn from some distribution with
an unknown density f . The kernel density estimator is:

f̂h(x) =
1
nh

n∑
i=1

K (
x − xi
h

), (2)

where K is a kernel function and h is the bandwidth.

E. SAMPLING METHODOLOGY
Many of the previously discussed measures can be calculated
using a sample of the search space. However, as discussed
in [19], the sampling methodology used to generate this set

of individuals may be crucial in determining the usefulness
of the measures. As in [19], also in this work we use a
Metropolis-Hastings [28] approach. Similarly to selective
walks, this methodology has a selection pressure. This char-
acteristic makes Metropolis-Hastings sampling preferable
compared to a simple uniform random sampling. Particularly
in our study, given the huge size of the neuroevolution search
space, uniform random sampling is unlikely to generate a
sample that may represent the search space portion actually
explored by the EA. A good example is a plateau: with uni-
form random sampling, multiple points with the same fitness
could be re-sampled, while using Metropolis-Hastings, only
one point would be sampled and then the algorithm would
look for better solutions. Since neuroevolution works with
loss values that are unbounded, we have performed some
changes on the Metropolis-Hastings algorithm, compared to
the version used in [19]. The method we use is described in
Algorithm 1.

Algorithm 1Metropolis-Hastings Sampling

1 Sample size = n
2 Generate a random individual x1
3 for t = 1,2,. . . ,n do
4 Generate a random candidate individual x ′

5 Calculate the acceptance ratio α = norm(x ′)
norm(xt)

6 if α ≥ u ∈ σ (0, 1) then
7 Accept the candidate, xt+1 = x ′

8 else
9 Reject the candidate, xt+1 = xt

We normalize the fitness values using the following
expression: norm(x) = 1

1+f (x) , where f (x) is the fitness of the
individual x. This normalization is done since we are working
with loss values in the range [0,∞].

F. OVERFITTING DETECTION
In [24], Vanneschi et al. proposed a measure to quantify
overfitting during the evolution ofGP algorithms.We propose
using this measure with slight modifications and apply it to
selective walks in order to predict the generalization ability of
the models. Algorithm 2 describes the measure, that will be
called OverFitting Measure (OFM) from now on. Intuitively,
the amount of overfitting measured at a given moment is
based on the difference between training and test fitness, and
how much this difference has increased since the best test
point (btp), i.e., the moment in which the test fitness was at its
best (lines 12–14). The btp is set at the beginning of the walk,
with overfitting being 0 at that moment (lines 2–3). Every
time a new best test fitness is found, the btp is updated to that
point of the walk, and overfitting is again set to 0 (lines 8–10).
Overfitting is also set to 0 when the training fitness is
worse than the test fitness (lines 5–6). Because the selective
walk does not use elitism, we are bounding the amount of

VOLUME 8, 2020 108219

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

Algorithm 2Method Used to Measure Overfitting

1 Length of the walk = n
2 Best test point, btp = 0
3 overfit(btp) = 0
4 for i = 1,2,. . . ,n do
5 if training_fit(i) > test_fit(i) then
6 overfit(i) = 0

7 else
8 if test_fit(i) < test_fit(btp) then
9 btp = i
10 overfit(btp) = 0

11 else
12 diff_now = |training_fit(i)−test_fit(i)|
13 diff_btp = |training_fit(btp)−test_fit(btp)|
14 overfit(i) = max(0, diff_now−diff_btp)

overfitting to 0, otherwise it would be possible to arrive at
negative values (max at line 14).

III. NEUROEVOLUTION
Neuroevolution is usually employed to evolve the topology,
weights, parameters and/or learning strategies of artificial
neural networks. Some of the most well known neuroevolu-
tion systems include EPNet [29], NEAT [13], EANT [30],
and hyperNEAT [31]. Most recently, works have appeared
that apply neuroevolution to other types of neural networks,
such as CNNs [32]–[34]. In this section we describe how we
represent networks using a grammar-based approach, and we
discuss the employed genetic operations.

A. GRAMMAR-BASED NEUROEVOLUTION
We have decided on a grammar-based approach because of its
modularity and flexibility. The grammar we have developed
is based on existing systems, and it is reported in Fig. 1.
It contains all the possible values for the parameters of each
available layer. This way, adding and removing types of
layers or changing their parameters is simple and requires
minimal changes. Using this grammar, we are discretizing
the range of the possible values that each parameter can
take. This greatly reduces the search space, while keeping
the quality of the solutions under control, as in most cases,
intermediate values can have little to no significant influence
on the effectiveness of the solutions, as reported in [12].

1) GENOTYPE ENCODING
In our representation, genotypes are composed by two dif-
ferent sections, S1 and S2, that are connected using the so
called Flatten gene. The Flatten gene implements the con-
version (i.e., the ‘‘flattening’’) of multidimensional feature
matrices from the convolutional layers into a one dimensional
array that is fed to the following fully connected layer. On S1
we have genes that encode the layers that deal with feature

FIGURE 1. Grammar used to evolve CNNs.

extraction from the images, convolutional and pooling layers,
and on S2 we have genes that encode the classification and
pruning parts of the network, dense and dropout layers.
Separating the network into these two segments helps make
the implementation more modular and expandable, provided
that when adding or removing new layers will only affect
interactions within their segment. Besides the flatten layer,
the only other layer that is the same for all possible individuals
is the output layer, which is a fully connected (i.e., dense)
layer with softmax activation and a number of units equal to
the number of classes to be predicted. The genetic operators
cannot modify this layer, except for the bias parameter.
Before evaluation, a genotype is mapped into a pheno-
type (Fig. 2), that is a neural network itself, and all weights
are initialized following the Glorot initialization method [35].

FIGURE 2. Example of a genome built by the grammar and the network it
produces when decoded.

2) GENETIC OPERATORS
Due to the difficulty of defining a crossover-based neigh-
borhood for studying FLs [36], we consider only mutation
operators. Given the vast amount of mutation choices in
neuroevolution, we restrict our study to three different types
of operators:
• Topological mutations: Mutations that add or delete a
gene, except for the flatten gene, changing the topol-
ogy of the genotype and, consequently, the one of the
phenotype.

108220 VOLUME 8, 2020

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

• Parameter mutations: Mutations that change the
parameters encoded in a gene. They cover all parameters
of all gene types, excluding the flatten gene (which has
no parameters).

• Learning mutations: Mutations that change the
Optimizer’s parameters that guide the learning of
the networks. These parameters are encoded in the
Optimizer gene (see Fig. 1).

3) EVALUATION
Evaluation involves training the network and calculating its
performance on the given data. During the evolutionary pro-
cess, we use the loss value on the training set as a fitness
function to evaluate the networks. Regarding the optimizer
used for training the networks, we have chosen Stochastic
Gradient Descent (SGD) over ADAM [37] due to two impor-
tant factors: the range of values for the SGD parameters has
been extensively tested, so the value choice could be done
more accurately; although ADAM is more common nowa-
days due to achieving better overall results, SGD outperforms
ADAM when it comes to generalization ability [38]. Also,
since we are working with multiclass classification problems
that are not one-hot encoded, we used Sparse Categorical
Cross-Entropy as a loss function, which motivates the need
to have the fixed number of neurons and activation function
in the output layer. To evaluate the generalization ability of
the individuals, we also measure the accuracy and loss in a
separate test set.

IV. EXPERIMENTAL STUDY
A. DATASETS AND EXPERIMENTAL SETTINGS
Table 1 describes the main characteristics of the datasets used
as test cases in our experiments. The partition into training
and test set is made randomly, and it is different at each
run. For all datasets,2 a simple image scale adjustment was
done, setting pixel values in the [0, 1] range. No further
data pre-processing or image augmentation was applied
to the datasets. The MNIST dataset consists in a set of
gray scale images of handwritten digits from 0 to 9 [39].
Fashion-MNIST (FMNIST) is similar to MNIST, but instead
of having digits from 0 to 9, it contains images of 10 differ-
ent types of clothing articles [40]. CIFAR10 contains RGB
pictures of 10 different types of real world objects [41].
SVHN contains RGB pictures of house numbers, containing
digits from 0 to 9 [42]. SM (small and mislabelled) is a

2all of the datasets are public and freely available

TABLE 1. Number of training and test observations, and number of
classes of each dataset.

hand-tailored dataset that we have artificially created to have
a case in which neuroevolution clearly overfits. It was created
by taking the last 30% of samples from MNIST and chang-
ing half of the values from each odd label to another label
(more specifically, label 1 was changed into a 3, 3 became 9,
5 became 0, 7 became 4, and 9 became 1).

All of the previously mentioned datasets, besides SM, are
public and freely available. For each one of these datasets
and for each one of the three studied mutation operators, we
perform sampling using the Metropolis-Hastings method (for
all the measures related to, and including, fitness clouds),
selective walks (that allow us to have all the needed infor-
mation to calculate the autocorrelation and the EMR) and
we execute the neuroevolution. From now on, we will use
the term configuration to indicate an experiment in which a
particular type of mutation was used on a particular dataset.
For each configuration, we generate a sample of 500 indi-
viduals using Metropolis-Hastings, 10 independent selective
walks and 10 independent neuroevolution runs. All neuroevo-
lution runs are performed starting with a randomly initialized
population of individuals, and all the selective walks are
constructed starting with a randomly generated individual.

To determine the values of the main parameters (e.g., pop-
ulation size and number of generations for neuroevolution,
length of the walk and number of neighbors for selective
walks, etc.) we have performed a preliminary experimental
study with multiple values, and selected the ones that allowed
us to obtain results in ‘‘reasonable’’ time3 with our available
computational resources.1 However, we do acknowledge that
as with any evolutionary algorithm, higher values for these
parameters produce stronger and more accurate results.

The employed parameter values are reported in Table 2.
The first column contains the parameters used to perform
the selective walks and sampling, while the second column
contains the parameters of the neuroevolution. One should
keep in mind that, in order to evaluate all the neural networks
in the population, all the networks need to go through a
learning phase at each generation of the evolutionary process.
The third column reports the values used by each one of those
networks for learning.

TABLE 2. Parameter values used in our experiments.

B. EXPERIMENTAL RESULTS
We now describe the results obtained in our experiments.
We analyse the predictive value of the different measures we
use to characterize fitness landscapes, observing the results

3On average, 5 hours per run and 26 hours per sampling.

VOLUME 8, 2020 108221

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 3. MNIST dataset. Plots (a), (b) and (c): neuroevolution results; plots (d), (e) and (f): autocorrelation results; plots (g), (h) and (i):
results of the measure of overfitting (OFM). Plots (a), (d) and (g): results for the learning mutation; plots (b), (e) and (h) for the parameters
mutation; plots (c), (f) and (i) for the topology mutation. Remarks: plots (a), (b) and (c) report the evolution of the best fitness in the
population at each generation (one curve for each performed neuroevolution run). Each plot is partitioned into two subfigures: training loss
on the left and test loss on the right. Plots (d), (e) and (f) report the boxplots of the autocorrelation, calculated over 10 independent selective
walks. Plots (g), (h) and (i) report the evolution of the OFM value for each of the 10 independent selective walks.

obtained in each problem, and then we briefly comment on
the general performance of the different types of mutation
used.

1) AUTOCORRELATION AND OVERFITTING MEASURE
We begin by analyzing the ability of autocorrelation to
characterize training and test performance of neuroevolu-
tion of CNNs, as well as the ability of OFM to detect and
measure overfitting. Fig. 3 reports the evolution of the loss,
the autocorrelation and the OFM for the MNIST problem.
The first line of plots reports the evolution of the loss against
generations for the three studied mutation operators. Each
plot in the first line is partitioned into two halves: the leftmost
one reports the evolution of the training loss of the best
individual, while the rightmost one reports the loss of the
same individual, evaluated on the unseen test set. Each curve

in these plots reports the results of one neuroevolution run.
The second line contains the boxplots of the autocorrelation
values, calculated over 10 independent selective walks, both
on the training and on the test set. The third line reports the
evolution of the OFM value against the length of a selective
walk for each different mutation type. Each curve reports the
results of a single walk. Each column of plots reports the
results for a different type of mutation, allowing us to easily
compare the outcome of the neuroevolution and the one of the
studied measures for the different configurations.

As we can observe from plots (a) and (b) of Fig. 3,
when we employ learning mutation and parameters mutation,
the MNIST problem is easy to solve, both on training and test
set. This is confirmed by the fact that 14 out of 20 runs have
a loss value below 0.2 which translates in accuracy values
ranging from 94% up to 98%. Furthermore, the evolution of

108222 VOLUME 8, 2020

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 4. FMNIST dataset. The organization of the plots is analogous to Figure 3.

the loss suggests that given more generations these values
would improve since the majority of the runs was still, slowly,
converging towards zero. Now, looking at plots (d) and (e),
we observe that the autocorrelation captures the fact that the
problem is easy. In fact, in both cases, practically the whole
autocorrelation box stands above (and the medians never go
below) the 0.15 threshold. When the topology mutation is
used, the situation changes: the number of runs in which the
evolution does not have a regular trend is larger. This may not
be obvious by looking at plot (c), because of the scale of the
y-axis, but the lines are nowmuchmore rugged than theywere
for the other two cases. The problem is now harder than it
was, and as we can see in plot (f), the autocorrelation catches
this difficulty. In particular, we can observe that when the step
is equal to 4, the whole autocorrelation boxes are below the
threshold. Finally, looking at plots (g) to (i), we observe that
OFM captures the fact that neuroevolution does not overfit
for the MNIST dataset. In fact, the OFM values are always
low, and keep returning to 0.

The partial conclusion that we can draw for the MNIST
dataset is that learning and parameter mutations are more
effective operators than topology mutations, and this is cor-
rectly predicted by the autocorrelation. Furthermore, we can
observe that the neuroevolution results obtained on the test
set are very similar to the ones on the training set, practically
for all the runs we have performed. Also this feature is
captured by the autocorrelation, since the training and test
boxes are very similar to each other for practically all the
configurations. This is an indication of lack of overfitting, and
this feature is correctly measured by the OFM.

Now we consider the results obtained for the FMNIST
dataset, reported in Fig. 4. Describing the results for this
dataset is straightforward: observing the neuroevolution
plots, we can see that for the three configurations the problem
is easy, both on training and test set. In fact, all the curves
are steadily decreasing and/or close to zero. For the learning
operator, all runs ended with loss values below 0.5, which
translates in accuracy values ranging from 85% up to 92%.

VOLUME 8, 2020 108223

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 5. CIFAR10 dataset. The organization of the plots is analogous to Figure 3.

For both parameter and topology operators, a total of 12 out
of 20 runs report loss values under 0.5. Observing the scale on
the left part of the plots, we can also observe that when topol-
ogy mutation is used (plot (c)), the problem is slightly harder
than when the other mutations are used, since the achieved
values of the loss are generally higher. All this is correctly
measured by the autocorrelation, given that the boxes are
above the threshold for all the configurations, and, in the case
of the topology mutation (plot (f)), they are slightly lower
than in the other cases. Last but not least, also in this case
training and test evolution of loss are very similar between
each other, and this fact finds a precise correspondence in
the autocorrelation results, given that the training boxes are
generally very similar to the test boxes. This also indicates
no overfitting, and this fact is correctly captured by the OFM,
that shows values that keep returning to 0. All in all, we can
conclude that also for the FMNIST dataset, autocorrelation
is a reliable indicator of problem hardness and the OFM
correctly predicts lack of overfitting.

The results for the CIFAR10 dataset are reported in Fig. 5.
Observing the neuroevolution results, we can say that when
the learning mutation is used, the problem is substantially
easy (almost all the loss curves have a smooth decreasing
trend); however, at the same time, among the three types of
mutation, learning mutation is the one in which there is a
more marked difference between training and test evolution,
which indicates the possibility of overfitting, at least in some
runs. Interestingly, on the learning operator, in the training
plot only half of the runs present loss below 0.5, but in the test
plot, despite the clear overfitting, we have six runs below that
threshold, one more than in training. At the same time, when
the parameters mutation is used, the problem is uncertain (in
some runs the loss curves have a decreasing trend, while in
others they have an increasing trend), but the training and test
evolution are rather similar between each other in every run.
For this operator, loss values are in the range of [1, 2.3], which
translates into accuracy values in the range of [62%, 10%].
Finally, when the topology mutation is used, the problem is

108224 VOLUME 8, 2020

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 6. SVHN dataset. The organization of the plots is analogous to Figure 3.

hard (almost all the loss curves have an increasing trend),
but once again no substantial difference between training and
test behaviors can be observed. This operator produced loss
values highly similar to the ones produced by the parameters
mutation, with only a slight change in the lower bound. Loss
values are in the range of [1.3, 2.3], which translates into
accuracy values in the range of [63%, 10&]. Looking at the
autocorrelation results, we find a reasonable correspondence:
for the learning mutation all the boxes are clearly above the
threshold, for the parameters mutation the boxes are not as
high as for the learning mutation, beginning to cross the
threshold with steps 3 and 4, and finally for the topology
mutation the boxes are even lower, with the medians below
the threshold for steps 3 and 4, and more than half the
height of the boxes also below the threshold for step 4. As
already observed in plot (f) of Fig. 4, longer steps seem to
be better indicators, when the autocorrelation is applied to
hard problems. The different behavior between training and
test set also finds a correspondence in the autocorrelation

results (plot (d)), given that the test boxes are taller than the
training boxes, in particular for step 4. At the same time,
the potential presence of overfitting is clearly detected by
the OFM (plot (g)), that assumes growing values in some
cases. As for plots (h) and (i), they reflect absence of over-
fitting for parameters and topology mutations, as expected.
All in all, also for the CIFAR10 dataset the autocorrelation is
a reasonable indicator of problem difficulty, while the OFM
reveals to be a good measure of overfitting.

The results for the SVHN dataset are reported in Figure 6.
In this case, the plots of the loss evolution indicate that
the problem is uncertain when learning mutation is used
(given that approximately half of the curves have a decreasing
trend, while the other half have an oscillating trend), easy
when parameters mutation is used (with the majority of the
curves having a decreasing trend) and hard when topology
mutation is used (with most curves exhibiting an oscilla-
tory behaviour, which indicates poor optimization ability).
On the learning operator we have loss values in the range

VOLUME 8, 2020 108225

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 7. SM dataset. The organization of the plots is analogous to Figure 3.

of [0.56, 2.23], which translates into accuracy values in the
range of [84%, 19%], and only four runs ended with a loss
value below 1.0. Both parameter and topology operators have
very close boundary values, both having all runs in the range
of [0.23, 2.23] loss wise and [93%, 19%] accuracy wise, with
only three runs below 1.0 loss each.

At the same time, some differences, although minimal, can
be observed between training and test evolution. Specifically,
when a run has an oscillatory behavior, the oscillations tend
to be larger on the test set than on the training set (for
instance, but not only, in the dark blue curves on plot (a),
the violet curves in plot (b) and the red curves in plot (c)).
Also in this case, autocorrelation is confirmed as a reasonable
indicator of problem difficulty. In fact, for learning mutation,
the boxes are crossing the threshold for steps 3 and 4, for
parameters mutation they are above the threshold, and for
topology mutation they are almost completely below the
threshold for steps 3 and 4. The medians are lower and the
dispersion of values is larger for step 4, which reflects well

the neuroevolution behavior observed in plot (c) (unstable
and often returning to high values of the loss). The highest
step size is once again the most reliable. Regarding OFM,
it reveals several peaks but no clear trend, either because
there is no overfitting or because both training and test fitness
values oscillate too much to reveal a trend.

There was also an interesting finding regarding the topol-
ogy of the best network obtained by the topology operator.
Earlier in section I we claimed that FL analysis of neuroevo-
lution could help find configurations better and faster than
manually tailored ones. The previously mentioned solution
serves as an example of such, where a network composed
only by six different size convolutional layer and two small
dense layers can outperform solutions with more common
topologies that include pooling and dropout layers.

Finally, we analyse the results obtained on the SM dataset,
reported in Figure 7. Looking at plots (a), (b) and (c),
we can observe the following facts: first of all, neuroevolution
overfits in all the three cases. This was expected, since the

108226 VOLUME 8, 2020

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 8. MNIST dataset. Plots (a), (b), (c), (g), (h), and (i): fitness clouds; plots (d), (e), (f), (j), (k), and (l): density clouds. Plots (a) to (f) refer
to the training set; plots (g) to (l) refer to the test set.

SMdataset was explicitly created with the objective of having
a test case with substantial overfitting, and can be observed
looking at the large differences between training and test
evolution. In particular, we can see that in some cases the loss
curves are steadily decreasing on the training set, while they
are either increasing or oscillating on the test set. Secondly,
we observe that, for the SM dataset, evolution is harder when
using learning mutation, compared to either parameters or

topology mutations. Both these observations find a corre-
spondence in the autocorrelation boxplots. In fact, the train-
ing and test boxes are visibly different, with the test boxes
always positioned lower, and often taller, compared to the
training ones. Evenmore importantly, training boxes are often
(completely, or almost completely) above the threshold, while
test boxes are always (completely or in large part) below
the threshold. At the same time, as we can see in plot (d),

VOLUME 8, 2020 108227

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 9. FMNIST dataset. The organization of the plots is analogous to Figure 8.

for learning mutation and step size equal to 4, the median is
lower than the threshold on the training set, and this is the only
case in which this event verifies, indicating a bigger difficulty
for the learning mutation. Concerning the OFM, it correctly
detects the overfitting, producing very high results in all three
plots. This again serves as a confirmation that the OFM is
able to detect and quantify overfitting. It is also interesting to
compare the OFM values for CIFAR10 in the only case where

an overfitting trend was observed (Figure 5, plot (g)) and in
the SM dataset: OFM values are clearly larger for SM, which
correctly indicates the larger amount of overfitting observed.

2) FITNESS CLOUDS AND DENSITY CLOUDS
We now investigate the ability of fitness clouds and density
clouds to predict the difficulty of a problem. Also in this

108228 VOLUME 8, 2020

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 10. CIFAR10 dataset. The organization of the plots is analogous to Figure 8.

case, the results will be presented by showing one figure for
each test problem. In all these figures, the arrangement of the
plots is the same: the first (respectively the third) line of plots
contains a visualization of the fitness clouds on the training
set (respectively on the test set), and the second (respectively
the fourth) line contains density clouds on the training set
(respectively on the test set). As in the previous section, each
column of plots contains the results for a particular mutation
operator. Table 3 presents the percentage of points that are

below or coincident with the identity like for each problem
in training and test, which helps assess the difficulty of the
problems.

We begin by studying the results obtained on the MNIST
dataset (Figure 8). As we can see in plots (a), (b) and (c),
regardless of the chosen operator, on the training set the
problem is deemed easy by the fitness clouds, as the vast
majority of the points of the fitness clouds are below the
identity line.

VOLUME 8, 2020 108229

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 11. SVHN dataset. The organization of the plots is analogous to Figure 8.

These results are confirmed by the density clouds in plots
(d) (e) and (f). For all operators, we observe two distinct
clusters, both over the identity line, one on good (low) fitness
values and the other on bad (high) fitness values. The cluster
of highest density is the one closer to the origin, which cor-
roborates the fact that the problem is easy. In fact, themajority
of solutions generated by the Metropolis-Hastings sampling
are good quality solutions. As for the test set, results are very
similar to the ones on the training set. The majority of the

points in the fitness clouds are below the identity line, and the
highest density clusters in the density clouds are concentrated
close the origin. In agreement with the autocorrelation and
OFM results discussed previously, fitness clouds and density
clouds confirm that neuroevolution has no overfitting for the
MNIST dataset.

The results obtained on the FMNIST dataset, reported
in Figure 9, are identical to the ones of MNIST, with only one
small difference concerning the parameters operator: both on

108230 VOLUME 8, 2020

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 12. SM dataset. The organization of the plots is analogous to Figure 8.

the training and on the test set, in the density clouds we can
see that both clusters are not completely separate. They are
connected since there is a slightly higher density of samples
with an average performance.

We now study the results obtained on the CIFAR10 dataset,
shown in Figure 10. Two different facts can be observed:
first of all, in the fitness clouds, the vast majority of the
points stands below the identity line; secondly, in the density

clouds only one cluster is visible, and it is located over the
identity line but rather far from the origin. Combining these
two observations, we can conclude that sampling good solu-
tions is hard, even with a sampling method that uses selec-
tion pressure like our version of the Metropolis-Hastings.
However, the genetic operators are effective, since they are
able to improve fitness, often generating better offspring than
their parents. Although this is true for all the three studied

VOLUME 8, 2020 108231

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

FIGURE 13. Results of the Entropic Measure of Ruggedness H̄(ε) over different values of ε∗ for the the three mutation operators on the four
considered test problems.

TABLE 3. Table containing the % of points from the fitness clouds either
below or coincident with the identity line for each of the problems.

types of mutation, it is particularly prominent in the learning
operator, shown as a protuberance in the density clouds.

The results for the SVHN dataset are reported in Figure 11.
Again, in the fitness clouds the majority of the points are
below the identity line, while in the density clouds only one
cluster can be observed, and it is rather far from the origin.
However, unlike in the previous problems, the points of the
fitness clouds exhibit a very low dispersion, being highly
concentrated on bad fitness values. Therefore, on one hand
we have an indicator of easiness (points below the identity
line) while on the other hand we have an indicator of hardness
(high density of bad fitness values). SVHN was the dataset
where the results of the previous section were rather mixed,
and indeed it is difficult to draw conclusions from these plots.

The results obtained on the SM dataset are reported in
Figure 12. On the training set, we can see that the results
are similar to the ones obtained on the MNIST dataset: in
the fitness clouds the vast majority of the points are under
the identity line, while in the density clouds we have two
clusters, the one with the highest density located close to
the origin. But the scenario completely changes on the test
set, as expected: in the fitness clouds (plots (g), (h) and (i)),
the vast majority of the points are located above the identity
line, while in the density clouds (plots (j), (k) and (l)) there is
only one visible cluster, and it is located rather far from the
origin (notice the different scales between training and test).
This remarkable difference between training and test set is a
further confirmation of the presence of overfitting, as already
observed in the previous section.

3) ENTROPIC MEASURE OF RUGGEDNESS
Finally, we study the results of the EMR, reported in Fig. 13.
Each plot reports the results for one mutation type, showing
the values of H (ε) for multiple ε values (see Sect. II-B) on
the five studied datasets. These curves illustrate the trend
of how ruggedness changes with respect to neutrality. The
results show that, overall, the obtained landscapes have a low
degree of neutrality, not maintaining the value of H (ε) as ε
increases. The most neutral landscape is the one produced by
topology mutation on theMNIST dataset (plot (c) of Fig. 13).
Its highest H (ε) happens when ε = ε∗/64, but the value
suffers minimal change from ε = ε∗/128 to ε = ε∗/8.

Table 4, which reports the values of Rf for each type of
mutation, and for each studied test problem, corroborates
the previous discussion: the maximum value for learning
mutation is 0.45, while for parameters mutation is 0.47 and
for topology mutation is 0.5. Again, we can see that learning
mutations induce the smoothest landscapes, while topology
mutations induce the most rugged ones. Also in this case,
the prediction of the EMR is compatible with what we
observe from the actual neuroevolution runs.

TABLE 4. Rf for each mutation on the studied test problems.

4) CONSIDERATIONS ON MUTATION TYPES
From the three mutation types used in our study, the topology
mutation is clearly the worst for both learning and generaliza-
tion ability, on all the problems addressed. As for the other
two mutation types, while the learning mutation achieves
better fitness, it is the parameters mutation that induces the
smoothest landscapes. Although some experiments produce
a high variability of behaviors, the predictive value of the
different measures used to characterize fitness landscapes is
maintained for all of the three mutation types.

108232 VOLUME 8, 2020

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

V. CONCLUSIONS AND FUTURE WORK
Five different measures (autocorrelation, overfittingmeasure,
fitness clouds, density clouds and entropic measure of
ruggedness) were used to characterize the performance of
neuroevolution of convolutional neural networks for the first
time. The results were obtained on five different test prob-
lems, and confirm that these measures are reasonable indica-
tors of problem hardness, both on the training set and on the
test set for the three types of mutation used.

Future work involves the study of other measures of fitness
landscapes, on more test problems, with the objective of
developing well established, theoretically motivated predic-
tive tools for neuroevolution, that can significantly simplify
the configuration and tuning phases of the algorithm. We are
currently studying the negative slope coefficient [5], [19],
in order to quantify the information captured by the fitness
clouds with a single number. However, to be calculated in a
reliable way, this measure needs larger samples of individu-
als. Being able to use more powerful computational archi-
tectures, so that we are able to calculate the measures on
larger and more significant samples of solutions, is crucial for
achieving this and other ambitious goals. Another interesting
aspect to confirm is related to the results obtained by the
topological mutation. Among the studied operators, in fact,
topological mutation was the one that returned the poorest
results. If these results are originated from the stacking of
layers, we hypothesise that they might be due to the degrada-
tion of the training error, as proposed in [43]. To confirm this
hypothesis, a thorough analysis of the weights and gradients
will be necessary.

REFERENCES
[1] S.Wright, ‘‘The roles ofmutation, inbreeding, crossbreeding, and selection

in evolution,’’ in Proc. 6th Int. Cong. Genet., vol. 1. Chicago, IL, USA:
Univ. of Chicago, 1932.

[2] P. F. Stadler, Fitness Landscapes. Berlin, Germany: Springer, 2002,
pp. 183–204.

[3] E. Weinberger, ‘‘Correlated and uncorrelated fitness landscapes and
how to tell the difference,’’ Biol. Cybern., vol. 63, no. 5, pp. 325–336,
Sep. 1990.

[4] S. Verel, P. Collard, and M. Clergue, ‘‘Where are bottlenecks in NK fitness
landscapes?’’ in Proc. Congr. Evol. Comput. (CEC), vol. 1, Dec. 2003,
pp. 273–280.

[5] L. Vanneschi, M. Tomassini, P. Collard, and S. Vérel, ‘‘Negative slope
coefficient: A measure to characterize genetic programming fitness land-
scapes,’’ in Genetic Programming, P. Collet, M. Tomassini, M. Ebner,
S. Gustafson, and A. Ekárt, Eds. Berlin, Germany: Springer, 2006,
pp. 178–189.

[6] V. K. Vassilev, ‘‘Fitness landscapes and search in the evolutionary design of
digital circuits,’’ Ph.D. dissertation, Napier Univ., Edinburgh, U.K., 2000.

[7] V. K. Vassilev, T. C. Fogarty, and J. F. Miller, ‘‘Information characteristics
and the structure of landscapes,’’ Evol. Comput., vol. 8, no. 1, pp. 31–60,
Mar. 2000.

[8] V. K. Vassilev, T. C. Fogarty, and J. F.Miller, ‘‘Smoothness, ruggedness and
neutrality of fitness landscapes: From theory to application,’’ in Advances
in Evolutionary Computing, A. Ghosh and S. Tsutsui, Eds. Berlin,
Germany: Springer, 2003.

[9] S. Vérel, ‘‘Fitness landscapes and graphs:Multimodularity, ruggedness and
neutrality,’’ in Proc. Genetic Evol. Comput. Conf. (GECCO), C. Blum and
E. Alba, Eds., 2013, pp. 591–616, doi: 10.1145/2464576.2480804.

[10] A. Rakitianskaia, E. Bekker, K. M. Malan, and A. Engelbrecht, ‘‘Analysis
of error landscapes in multi-layered neural networks for classification,’’ in
Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2016, pp. 5270–5277.

[11] M. Gallagher, ‘‘Fitness distance correlation of neural network error sur-
faces: A scalable, continuous optimization problem,’’ in Machine Learn-
ing: ECML, L. De Raedt and P. Flach, Eds. Berlin, Germany: Springer,
2001, pp. 157–166.

[12] A. Baldominos, Y. Saez, and P. Isasi, ‘‘Evolutionary convolutional neural
networks: An application to handwriting recognition,’’ Neurocomputing,
vol. 283, pp. 38–52, Mar. 2018.

[13] K. O. Stanley and R. Miikkulainen, ‘‘Evolving neural networks through
augmenting topologies,’’ Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002.

[14] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, ‘‘Deep
learning for visual understanding: A review,’’ Neurocomputing, vol. 187,
pp. 27–48, Apr. 2016.

[15] A. Ghazvini, S. N. H. S. Abdullah, and M. Ayob, ‘‘A recent trend in indi-
vidual counting approach using deep network,’’ Int. J. Interact. Multimedia
Artif. Intell., vol. 5, no. 5, pp. 7–14, 2019.

[16] E. Tsironi, P. Barros, C. Weber, and S. Wermter, ‘‘An analysis of con-
volutional long short-term memory recurrent neural networks for gesture
recognition,’’ Neurocomputing, vol. 268, pp. 76–86, Dec. 2017.

[17] F. Ordóñez and D. Roggen, ‘‘Deep convolutional and LSTM recurrent
neural networks for multimodal wearable activity recognition,’’ Sensors,
vol. 16, no. 1, p. 115, Jan. 2016.

[18] W. B. Langdon and R. Poli, Foundations of Genetic Programming. Berlin,
Germany: Springer-Verlag, 2002.

[19] L. Vanneschi, ‘‘Theory and practice for efficient genetic programming,’’
Ph.D. dissertation, Fac. Sci., Univ. Lausanne, Lausanne, Switzerland,
2004.

[20] H. Rosé, W. Ebeling, and T. Asselmeyer, ‘‘The density of states—A
measure of the difficulty of optimisation problems,’’ in Proc. 4th Int.
Conf. Parallel Problem Solving Nature (PPSN). New York, NY, USA:
Springer-Verlag, 1996, pp. 208–217.

[21] T. Jones and S. Forrest, Fitness Distance Correlation as a Measure of
ProblemDifficulty for Genetic Algorithms, L. J. Eshelman, Ed. Burlington,
MA, USA: Morgan Kaufmann, 1995, pp. 184–192.

[22] G. Ochoa, S. Verel, and M. Tomassini, ‘‘First-improvement vs. best-
improvement local optima networks of NK landscapes,’’ in Parallel Prob-
lem Solving From Nature, PPSN XI, R. Schaefer, Ed. Berlin, Germany:
Springer, 2010, pp. 104–113.

[23] G. Ochoa, M. Tomassini, S. Vérel, and C. Darabos, ‘‘A study of
NK landscapes’ basins and local optima networks,’’ in Proc. 10th
Annu. Conf. Genetic Evol. Comput. (GECCO), 2008, pp. 555–562, doi:
10.1145/1389095.1389204.

[24] L. Vanneschi, M. Castelli, and S. Silva, ‘‘Measuring bloat, overfitting and
functional complexity in genetic programming,’’ in Proc. 12th Annu. Conf.
Genetic Evol. Comput. (GECCO), New York, NY, USA: Association for
Computing Machinery, 2010, pp. 877–884.

[25] K. M. Malan and A. P. Engelbrecht, ‘‘Quantifying ruggedness of con-
tinuous landscapes using entropy,’’ in Proc. IEEE Congr. Evol. Comput.,
May 2009, pp. 1440–1447.

[26] L. Vanneschi, M. Clergue, P. Collard, M. Tomassini, and S. Vérel, ‘‘Fitness
clouds and problem hardness in genetic programming,’’ in Proc. Genetic
Evol. Comput. (GECCO). Berlin, Germany: Springer, 2004, pp. 690–701.

[27] M. Kimura, The Neutral Theory of Molecular Evolution. Cambridge, U.K.:
Cambridge Univ. Press, 1983.

[28] N. Madras, Lectures on Monte Carlo Methods (Fields Institute Mono-
graphs). Providence, RI, USA: American Mathematical Society, 2002,
pp. 2472–4173.

[29] X. Yao and Y. Liu, ‘‘A new evolutionary system for evolving artificial
neural networks,’’ IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 694–713,
May 1997.

[30] Y. Kassahun and G. Sommer, ‘‘Efficient reinforcement learning through
evolutionary acquisition of neural topologies,’’ in Proc. 13th Eur. Symp.
Artif. Neural Netw. (ESANN), 2005, pp. 259–266.

[31] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci, ‘‘A hypercube-based
encoding for evolving large-scale neural networks,’’ Artif. Life, vol. 15,
no. 2, pp. 185–212, Apr. 2009.

[32] P. Verbancsics and J. Harguess, ‘‘Image classification using generative
neuro evolution for deep learning,’’ in Proc. IEEE Winter Conf. Appl.
Comput. Vis. (WACV). Washington, DC, USA: IEEE Computer Society,
Jan. 2015, pp. 488–493.

[33] C. Fernando, D. Banarse, M. Reynolds, F. Besse, D. Pfau,
M. Jaderberg, M. Lanctot, and D. Wierstra, ‘‘Convolution by evolution:
Differentiable pattern producing networks,’’ in Proc. Genetic Evol.
Comput. Conf. (GECCO), 2016, pp. 109–116.

VOLUME 8, 2020 108233

http://dx.doi.org/10.1145/2464576.2480804
http://dx.doi.org/10.1145/1389095.1389204

N. M. Rodrigues et al.: Study of Generalization and Fitness Landscapes for Neuroevolution

[34] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, ‘‘Evolving
deep neural networks,’’ in Artificial Intelligence in the Age of Neural
Networks and Brain Computing, R. Kozma, C. Alippi, Y. Choe, and
F. C. Morabito, Eds. Amsterdam, The Netherlands: Elsevier, 2018.

[35] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. Int. Conf. Artif. Intell. Statist. Soc.
Artif. Intell. Statist. (AISTATS), 2010, pp. 249–256.

[36] S. Gustafson and L. Vanneschi, ‘‘Operator-based distance for genetic
programming: Subtree crossover distance,’’ in Proc. 8th Eur. Conf.
Genetic Program. (EuroGP). New York, NY, USA: Springer-Verlag, 2005,
pp. 178–189.

[37] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-
mization,’’ 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.
org/abs/1412.6980

[38] A. C.Wilson, R. Roelofs,M. Stern, N. Srebro, andB. Recht, ‘‘Themarginal
value of adaptive gradient methods in machine learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 4148–4158.

[39] Y. LeCun and C. Cortes. (2010). MNIST Handwritten Digit Database.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[40] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747. [Online]. Available: https://arxiv.org/abs/1708.07747

[41] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
Univ. Toronto, Toronto, ON, Canada, Tech. Rep., May 2012.

[42] Y. Netzer, T.Wang, A. Coates, A. Bissacco, B.Wu, andA. Y. Ng, ‘‘Reading
digits in natural images with unsupervised feature learning,’’ in Proc. NIPS
Workshop Deep Learn. Unsupervised Feature Learn., 2011.

[43] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ 2015, arXiv:1512.03385. [Online]. Available: https://arxiv.
org/abs/1512.03385

NUNO M. RODRIGUES (Graduate Student
Member, IEEE) received the B.S. and M.S.
degrees in computer engineering from the Fac-
ulty of Sciences, University of Lisbon, Portugal,
in 2018. He is currently pursuing the Ph.D. degree.

Since 2018, he has been a member with
LASIGE, Faculty of Sciences, University of
Lisbon, Portugal. His research interests are mostly
related to evolutionary computation/algorithms
with a strong emphasis on neuroevolution, genetic

programming, and fitness landscapes, but also including deep learning appli-
cations to medical data such as radiomics.

SARA SILVA received the M.Sc. degree from the
University of Lisbon and the Ph.D. degree from the
University of Coimbra, Portugal. She is currently a
Principal Investigator with the Faculty of Sciences,
University of Lisbon, Portugal, and a member of
the LASIGE research center. She is the author
of more than 80 peer-reviewed publications. Her
research interests are mainly in machine learning
with a strong emphasis in genetic programming
(GP), where she has contributed with several new

methods, and applied them in projects related to such different domains
as remote sensing, biomedicine, systems biology, maritime security, and
radiomics, among others. She has received more than ten nominations and
awards for best paper and best researcher. In 2018, she received the EvoStar
Award for Outstanding Contribution to Evolutionary Computation in Europe.
She has been a Program Chair of different conferences, tracks, workshops,
and thematic areas related to GP, including the role of Program Chair of
EuroGP, in 2011 and 2012, an Editor-in-Chief of GECCO, in 2015, and
a GP Track Chair of GECCO, in 2017 and 2018. She is the Creator and
Developer of GPLAB—A Genetic Programming Toolbox for MATLAB,
and a Co-Creator of GSGP—A Geometric Semantic Genetic Programming
Library.

LEONARDO VANNESCHI is currently a Full
Professor with the NOVA Information Manage-
ment School (NOVA IMS), Universidade Nova
de Lisboa, Portugal. His main research interests
involve machine learning, data science, complex
systems, and in particular evolutionary computa-
tion. His work can be broadly partitioned into the-
oretical studies on the foundations of evolutionary
computation, and applicative work. The former
covers the study of the principles of functioning of

evolutionary algorithms, with the final objective of developing strategies able
to outperform the traditional techniques. The latter covers several different
fields among which computational biology, image processing, personalized
medicine, engineering, economics. and logistics. He has published more
than 200 contributions, and he has led several research projects in the area.
In 2015, he was honored with the Award for Outstanding Contributions to
Evolutionary Computation in Europe, in the context of EvoStar, the leading
European Event on Bio-Inspired Computation.

108234 VOLUME 8, 2020

