
Daniel Lobato Vieira Magro

BSc in Computer Science

Cache-conscious Splitting of MapReduce Tasks
and its Application to Stencil Computations

Dissertação para obtenção do Grau de Mestre em

Engenharia Informática

Orientador: Prof. Doutor Hervé Miguel Cordeiro Paulino,
Prof. Auxiliar, Universidade Nova de Lisboa

Júri

Presidente: Prof. Doutor Miguel Pessoa Monteiro
Arguente: Prof. Doutor João Pedro Barreto

Vogal: Prof. Doutor Hervé Miguel Cordeiro Paulino

November, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/344685245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Cache-conscious Splitting of MapReduce Tasks and its Application to Stencil
Computations

Copyright © Daniel Lobato Vieira Magro, Faculdade de Ciências e Tecnologia, Universi-

dade NOVA de Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

Este documento foi gerado utilizando o processador (pdf)LATEX, com base no template “unlthesis” [1] desenvolvido no Dep.
Informática da FCT-NOVA [2]. [1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

Acknowledgements

Quero agradecer ao meu orientador, Prof. Hervé Paulino, por me ter dado a possibilidade

de trabalhar com ele, pela atenção, paciência e apoio na realização desta dissertação.

Também quero agradecer ao Departamento de Informática da Faculdade de Ciências

e Tecnologia da Universidade Nova de Lisboa, pelas condições de trabalho oferecidas

ao nível de infreastruturas e ambiente de trabalho proporcionado, pela oportunidade

de participação no apoio pedagógico que me ajudou a desenvolver novas capacidades e

mostrou-me o outro lado do ensino.

Para terminar, quero agradecer a todos aqueles que estiveram comigo ao longo da

realização desta dissertação, família, amigos e colegas, sendo que sem o seu apoio esta

tarefa teria sido muito mais díficil.

v

Abstract

Modern cluster systems are typically composed by nodes with multiple processing

units and memory hierarchies comprising multiple cache levels of various sizes. To lever-

age the full potential of these architectures it is necessary to explore concepts such as

parallel programming and the layout of data onto the memory hierarchy. However, the

inherent complexity of these concepts and the heterogeneity of the target architectures

raises several challenges at application development and performance portability levels,

respectively. In what concerns parallel programming, several model and frameworks

are available, of which MapReduce [16] is one of the most popular. It was developed

at Google [16] for the parallel and distributed processing of large amounts of data in

large clusters of commodity machines. Although being very powerful tools, the reference

MapReduce frameworks, such as Hadoop and Spark, do not leverage the characteris-

tics of the underlying memory hierarchy. This shortcoming is particularly noticeable in

computations that benefit from temporal locality, such as stencil computations.

In this context, the goal of this thesis is to improve the performance of MapReduce

computations that benefit from temporal locality. To that end we optimize the mapping

of MapReduce computations in a machine’s cache memory hierarchy by applying cache-

aware tiling techniques. We prototyped our solution on top of the framework Hadoop

MapReduce, incorporating a cache-awareness in the splitting stage.

To validate our solution and assess its benefits, we developed an API for expressing

stencil computations on top the developed framework. The experimental results show

that, for a typical stencil computation, our solution delivers an average speed-up of 1.77

while reaching a peek speed-up of 3.2. These findings allows us to conclude that cache-

aware decomposition of MapReduce computations considerably boosts the execution of

this class of MapReduce computations.

Keywords: Application Decomposition, Cache-Conscious, Stencil Computations, MapRe-

duce, Hadoop

vii

Resumo

Os sistemas de cluster modernos são tipicamente compostos por nós com várias uni-

dades de processamento e hierarquias de memória que contêm vários níveis de cache de

vários tamanhos. Para aproveitar o potencial destas arquiteturas é necessário explorar

conceitos como programação paralela e o layout de dados na hierarquia de memória. No

entanto, a complexidade inerente a estes conceitos e a heterogeneidade dos arquiteturas

alvo levantam diversos desafios aos níveis de desenvolvimento de aplicações e ao nível da

sua portabilidade de desempenho. No que diz respeito à programação paralela, existem

vários modelos e ferramentas disponíveis, das quais o MapReduce [16] é um dos mais

populares. Este foi desenvolvido pela Google [16] para o processamento paralelo e distri-

buído de grandes quantidades de dados em grandes aglomerados de máquinas. Apesar

de serem muito poderosas, as ferramentas MapReduce de referência, como o Hadoop e

o Spark, não aproveitam as características da hierarquia de memória subjacente. Esta

lacuna é particularmente visível em computações que beneficiam da localidade temporal,

tais como as computações stencil.

Neste contexto, o objetivo deste trabalho é melhorar o desempenho de computações

MapReduce que beneficiem da localidade temporal. Para esse fim otimizamos o ma-

peamento das computações MapReduce na hierarquia de memória cache do uma má-

quina, aplicando técnicas de tiling cache-conscious. dado isto, desenvolvemos um protó-

tipo da nossa solução sobre a ferramenta Hadoop MapReduce, introduzindo medidas

cache-conscious na fase de decomposição de dados.

Para validar a nossa solução e avaliar os seus benefícios, também desenvolvemos uma

API para expressar computações stencil sobre a estrutura desenvolvida. Os resultados

experimentais mostram que para uma computação stencil típica, a nossa solução oferece

uma média de aumento de speed-up de 1.77, chegando-se mesmo a alcançar um pico de

aumento de speed-up de 3.2. Estes resultados permitem-nos concluir que a decomposição

cache-conscious de computações MapReduce aumenta consideravelmente a execução desta

classe de computações MapReduce.

Palavras-chave: Decomposição de Aplicações, Cache-Conscious, Computações Stencil,

MapReduce, Hadoop

ix

x

Contents

List of Figures xiii

List of Tables xv

Listagens xvii

1 Introduction 1

1.1 Motivation . 1

1.1.1 The MapReduce Programming Model and Framework 2

1.1.2 Motivational Example . 3

1.2 Problem . 6

1.3 Proposed Solution . 8

1.4 Contributions . 9

1.5 Document Structure . 9

2 State of the Art 11

2.1 MapReduce . 11

2.1.1 Programming Model . 11

2.1.2 Generic Execution Model . 13

2.1.3 Apache Hadoop . 14

2.1.4 In-Memory and Multicore MapReduce 18

2.1.5 Discussion . 24

2.2 Cache-Optimizations . 25

2.2.1 Compiler Optimizations for Sequential Code 25

2.2.2 Cache-Oblivious Algorithms . 28

2.2.3 Memory Hierarchy Aware Programming Models 29

2.2.4 Cache-Conscious Decomposition of Data-parallel Computations . 31

2.2.5 Discussion . 33

3 Cache-Friendly Tiling for MapReduce Tasks 35

3.1 Approach . 35

3.2 Decomposition Implementation . 38

3.2.1 Implementation Overview . 38

xi

CONTENTS

3.2.2 Implementation Details . 40

3.3 Programming Model . 44

3.3.1 What has to be Implemented? . 44

3.3.2 Configuration Requirements . 45

3.3.3 Implementation Example . 46

3.4 Final Remarks . 50

4 A Programming Model for Stencil MapReduce Computations 51

4.1 Stencil Computations . 51

4.1.1 Optimization of Stencil Computations 52

4.1.2 Stencil Applications with MapReduce 52

4.2 Stencil API . 54

4.2.1 API Classes . 55

4.2.2 Programming Model . 61

4.3 Execution Model . 67

5 Experimental Results 71

5.1 Methodology . 71

5.2 Application . 72

5.3 Test Infrastructure . 73

5.4 Experimental Results . 74

5.4.1 Performance Evaluation . 74

5.4.2 Breakdown . 77

5.5 Discussion . 80

6 Conclusions 81

6.1 Final Conclusions . 81

6.2 Future Work . 82

Bibliography 83

A Stencil API Applications 87

A.1 SOR Stencil . 87

A.2 Jacobi Method Stencil . 91

xii

List of Figures

1.1 Simple stencil with range = 1. Comparison between using lines (on the left)

and using blocks (on the right) as input in the map phase. 5

2.1 Simple MapReduce data flow. 11

2.2 MapReduce pipeline. 12

2.3 Hadoop tier architecture model. 15

2.4 HDFS architecture from [8]. 16

2.5 Hadoop in-node Execution Model from [37]. 18

2.6 Sibling Round-Robin Clustering from [26]. 33

3.1 Difference of using a line approach and a block approach, on the beginning of

the map phase of a stencil application. 37

3.2 RecordReader block decomposition with a cache-concious support. 39

3.3 Solution RecordReader execution model. 42

3.4 BlockedMatrixRecordReader block decomposition. 47

3.5 Block Matrix RecordReader pair production example. 48

4.1 Example of stencil computation applied to a matrix. The neighbourhood is

composed with elements that are within a element reach. 54

4.2 API classes layer model. In the first column are the driver application classes;

On the second column are the classes related to the map phase; Third column

has the classes related to the reduce phase; Fourth column is related to the

stencil computation classes. 56

4.3 API classes layer model with application classes in green 62

5.1 S1 speed-ups of the block oriented application (with range = 1). 76

5.2 S2 speed-ups of the block oriented application (with range = 1). 76

5.3 S1 speed-ups of the block oriented application (with range = 2). 76

5.4 S2 speed-ups of the block oriented application (with range = 2). 76

5.5 S1 speed-ups of the block oriented application (with range = 4). 77

5.6 S2 speed-ups of the block oriented application (with range = 4). 77

5.7 S1 average MapReduce phases weight for both approaches. 78

5.8 S1 average time division for both approaches. 78

xiii

List of Figures

5.9 Phases weight for the best configuration for both approaches. 79

5.10 Time division for the best configuration for both approaches. 79

5.11 Phases weight for the worst configuration for both approaches. 79

5.12 Time division for the worst configuration for both approaches. 79

xiv

List of Tables

2.1 Map and Reduce function prototypes. 12

3.1 BlockSequenceFileRecordReader class methods (not included methods in-

herited from the base RecordReader). 41

3.2 BlockedMatrixRecordReader class methods (not included methods inherited

from the base BlockSequenceFileRecordReader class). 50

4.1 StencilMapper class methods. 57

4.2 MatrixStencilMapper class methods. 58

4.3 StencilComputation class methods. In these method the C generic class

stands for the class that identifies the position of an element in relation to

the others. The T generic class represents the class type used for the elements,

And finally, the N generic class is related to the intermediate values stored in

the internal cache like data structure. 59

4.4 StencilReducer class method. 60

4.5 MatrixStencilReducer class method. 60

4.6 StencilMapReduce class methods. 61

4.7 MatrixStencilMR class methods. 61

5.1 S1 performance results in seconds, with the last column being the original

Hadoop version. 75

5.2 S2 performance results in seconds, with the last column being the original

Hadoop version. 75

xv

Listagens

2.1 The Distribution interface from [26]. 31

3.1 JSON file with the cache memory hirarchy. 46

4.1 RangedStencilMapper class. 63

4.2 RangedComputation class. 65

4.3 BlockRangedStencil class. 66

4.4 Configuration text file. 67

A.1 SORMapper class. 87

A.2 SORComputation class. 88

A.3 SOR class. 89

A.4 JacobiMapper class. 91

A.5 JacobiComputation class. 91

A.6 Jacobi class. With some iterative attempt. 93

xvii

C
h
a
p
t
e
r

1
Introduction

1.1 Motivation

Multi-core processors are the current de-facto standard in commodity computers, tablets,

smartphones and other devices. This approach has been the trend for some years and it is

supported by the well-known Moore’s Law, which observes that the number of transistors

in a chip doubles every two years. With this trend, the horizontal scaling of processing

cores led us to ever increasing computational power and brought us to one of the most

relevant computer architecture paradigm, the multicore architectural model. Alongside

with the horizontal expansion of CPU architectures, the memory hierarchy is scaled

vertically resulting in more levels of cache memory to improve the data and instruction

access by the processing cores. This two-dimensional scaling has flooded the market

with a very heterogeneous offer in what concerns the number of cores/memory hierarchy

configurations.

To benefit more from these architectures it is necessary to explore and combine con-

cepts such as parallel programming and the mapping of applications onto the memory

hierarchy. The first concept is closely linked to the usage of multiple processing units

to produce faster computations, while the second is directly bonded to the leveraging of

cache memories, in order to take advantage of the locality principle. The cache mem-

ory hardware available in these architectures can only guarantee spatial locality, which

means that only data located close together is reused. The algorithms used to achieve

this spatial locality are based only on the recent history of data access, and do not take

into account the application’s behaviour. Given that, the hardware only guarantees that

the most recently accessed data is in the cache memory. Normally this behaviour is suffi-

cient to improve the performance of computations that take advantage of spatial locality.

However, this may not be enough for computations that benefit from temporal locality,

1

CHAPTER 1. INTRODUCTION

because this behaviour can lead to the eviction of cache lines that contain data which

may be needed in a near future and, hence, important to a given application. With this,

it is up to the application to express the data access patterns that minimize the eviction

of useful data from the cache. The definition of these patterns can be delegated to the

compiler, to the runtime or even to the programmer.

In order to explore the locality concepts and to efficiently avail the hardware in the

current CPU’s, a software developer must have some non-trivial knowledge about parallel

programming and advanced computer architecture, which can transcend the skills of the

common software developer. Moreover, with the heterogeneity of these architectures a

question that may arise is related to the portability of the performance gains. The solu-

tions developed to cope with these problems have to fulfil the performance expectations

for different combinations of cores, cache memories and affinities between the two.

All these problems can add-up and produce the cumbersome task of ensuring the

paralellization and the efficient mapping of applications onto the memory hierarchy.

Thus, a system that could handle these tasks autonomously would be a great contribution

to fully take advantage of the available hardware.

In this thesis we are particularly interested on investigating how to leverage cache

hardware in the increasingly popular parallel and distributed big data processing frame-

works, of which MapReduce is the basis and the most prominent model.

1.1.1 The MapReduce Programming Model and Framework

MapReduce [16] is a programming model and framework that processes large amounts

of data in distributed environments. The model was developed at Google, by Jeffrey Dean

and Sanjay Ghemawat, whose motivation was to conceive a resilient (in the presence of

faults), scalable and efficient system for the distributing computing of Google’s index for

the World Wide Web search engine. The result was a very simple programming model

backed up by a powerful runtime system, that subsumes the aforementioned resilience,

scalability, and efficiency requirements. In this programming model a programmer does

not have to hold deep knowledge of parallel or distributed programming. This model

allows the development of a system that automatically parallelizes and distributes large-

scale computations with good processing efficiency on different environments, such as:

common multicore architectures, small clusters or large data-centers. These character-

istics led to the utilization of this model in many different areas, such as distributed

searching, distributed sorting, document clustering and even machine learning [15].

Crucial to this popularity has also been the Hadoop [2] open source implementa-

tion made available by Apache. Hadoop MapReduce is a widespread framework for

distributed storage and processing, used by companies such as Yahoo!, Facebook, among

others [6], and is present in some of the more relevant cloud services, such as Microsoft

Azure and the Amazon Web Services.

As the scope of MapReduce applications has largely surpassed the one for which it

2

1.1. MOTIVATION

was designed for, several limitations of both the original programming and execution

model were identified. This limitations are visible in paradigms such as stream process-

ing, real time processing, or simply the mapping of some problems to a map or reduce

task. To overcome such limitations, many special-purpose Hadoop-based frameworks

have been proposed throughout the years. Prominent examples are: Pig [4], for data

analysis programs and, for a simpler way of dealing with complex tasks related to data

transformations; Twister [23], a lightweight framework with no more than 5600 lines of

code for the efficient implementation of iterative MapReduce computations; Hive [3], for

a better management and analysis of datasets using some relational operations allowed

by an SQL-like language. Complementary, alternative systems have been proposed alto-

gether. The most noticeable is Spark [5], a data processing framework or, as described in

its website, a general processing engine that can perform batch processing as MapReduce,

but it has the advantage of also supporting stream processing.

1.1.2 Motivational Example

The benefits of bearing the cache features in mind when developing applications can

mean better performances, mainly through the exploitation of the locality principle. To

make this concept clearer, we present a simple example of a situation where the use of a

strategy that takes into account the cache features brings some benefit to the application.

We draw our example from the stencil computations that are important in several

scientific fields, such as (a) image processing and scientific computations where the vector

calculation of two or more dimensions is particularly important for the extraction and

analysis of scientific data, and (b) for applying image manipulation masks. Generally,

this kind of computations calculate the new position vector by making operations that

are directly dependent of a given element’s neighbourhood. These calculations have

the particularity of having (often) temporal locality properties, by revisiting data over

the computation. Examples of stencil computations can be found in some scientific

computations such as the SOR and Jacobi method, used to solve linear equations, but

also in simple image processing techniques such as a image blur. To better understand

the usual behaviour of a stencil computation, consider a simple stencil example that

transforms a given integer matrix M by applying the following formula:

M[i, j] = M[i, j]× percentage+
r∑

ni=−r

r∑
nj=−r

M[i +ni, j +nj]×
1− percentage

(2r + 1)2 − 1

where i and j denote the index of the elements in the matrix, r denotes the range of the

stencil and (2r + 1)2 − 1 gives the number of neighbours of the element to be transformed

(denoted by M[i,j]). For the sake of readability we only consider the indexes inside of the

matrix limits, the remainder are simply discarded.

In this formula it can be seen that the stencil has two major components, the element

to be transformed or mainElement component (in the first part of the addition) and the

3

CHAPTER 1. INTRODUCTION

neighbourhood component. From the first component we obtain the contribution of the

mainElement in the computation of its new value, where the percentage variable indicates

the percentage used of the old value. In the second part of the formula, we have the sum of

the contributions of neighbourhood values to the result of the mainElement, where these

contributions depend on the remaining percentage divided by the number of neighbours.

The neighbourhood of each element is defined by the elements within a range r of the

mainElement.
A more concrete example can be found in a situation where we have a 6x6 matrix that

is submitted to our stencil which works with a range r=1. This means that each elements

is dependent of its immediately adjacent neighbours. If each element contributes with

50% of its own value to the final result, the remaining 50% is divided by the number of

immediately adjacent neighbours and it is used to get the neighbours contributions. With

this set-up and considering the element at the (0,0) matrix position, then we can say that

each neighbour of that element will contribute with around 16.67% of their values.

Consider this stencil example in a MapReduce context. To express stencil computa-

tions with the current MapReduce model, we have to decompose these computations into

the map and reduce phases of this model. As mentioned earlier in this section, to com-

pute the new value of a given element we must have all the elements that compose the

element’s neighbourhood. However, the most common way to receive the input in MapRe-

duce is in the form of a line of data, which can be a simple line of text, a line of numbers or

a line of other data type. In either case, a line of data for the majority of stencils does not

contain all the elements required for a element’s computation. For example, considering

an input matrix, the input of the map phase will probably be a matrix line that limits the

work in this phase. This approach lead us to the regular model for MapReduce, where

the map phase receives a given input and, after some optional pre-processing, distributes

the input data by the reducers, in order for them to perform the actual computations. The

left-hand side of Figure 1.1 depicts the execution of a MapReduce stencil computation

where the mapper receives as its input a matrix line. With this line, the mapper determines

to which reducers are sent the line’s elements and finally sends them. The part of deter-

mining to which reducers an element has to be sent is related to the "construction" of a

element’s neighbourhood. For example, considering this situation for a given element A,

the mapper must send this element to the reducer responsible for its stencil computation,

and to send this element to the reducers which are responsible for the elements of A’s
neighbourhood, so that the neighbour’s computations can be completed. The reducers
have the task of receiving an element and its neighbourhood, and apply the stencil to the

received elements to produce the final results.

As in many MapReduce applications, a stencil computation has its number of parti-

tions predefined (may have been set by the programmer) without any regard about the

memory hierarchy. A consequence that may arise from this predefined number of par-

titions is related to the size of each partition, which can be too big for the cache and,

hence, can lead to workers of different cores competing for shared cache space. This

4

1.1. MOTIVATION

Figure 1.1: Simple stencil with range = 1. Comparison between using lines (on the left)
and using blocks (on the right) as input in the map phase.

situation can be disregarded if the computation does not make use of temporal locality,

as in situations such as sequential iteration of an array or reading a file. However, this

is not true for stencil computations that iterate multiple times the same data. In this

example, the temporal locality is of great importance, because, as its definition says, there

is a need of reusing data in a short span of time. If the input matrix data cannot remain

long enough in cache because of its size, then this can result in a higher number of cache

misses. This indicates that the cache hardware is not being fully used and consequently

the computations are slower.

There are techniques to improve temporal locality in these situations, which are called

blocking/tiling strategies. In our stencil example, blocking/tiling can be applied to keep

5

CHAPTER 1. INTRODUCTION

the matrix data longer in cache by dividing the matrix into smaller blocks/tiles, as de-

picted in the right-hand side of Figure 1.1, allowing more reuse of data. A measure that

can improve further more this optimization, is the inclusion of cache related information

in the process of choosing the block/tile size. Adapting the size of the blocks/tiles to

the cache dimension can lead to better temporal locality by reducing the eviction of data

from cache, derived from data location conflicts.

1.2 Problem

The efficient mapping of MapReduce tasks onto the memory hierarchy of a given CPU is

a problem with some complexity that if treated correctly has the potential to be rewarded

with significant performance gains. This problem is mainly caused by the lack of support

of MapReduce for cache friendly strategies, by that we mean that this model does not

take into account any cache feature that could be used to better map its tasks onto the

memory hierarchy.

The efficient mapping of computations onto the underlying memory hierarchy is a con-

cern that has driven a considerable amount of research. The proposed strategies may be

divided into the following three groups: (i) loop transformations [10, 24] which consists

of loop manipulation at the compiler level to improve cache locality and performance of a

sequential or parallel programs; (ii) cache-oblivious algorithms [21] which try to improve

the mapping of applications to memory hierarchy by determining the workloads and data

movements of cache levels without depending or taking into account any cache feature

(cache size, cache-line length and others) to tune the application for better performance,

and; (iii) explicit programming of the memory hierarchy [18, 20] which abstracts the

memory hierarchy of some given machine for the programmer, in order to let him/her

choose where the computations are to be done in the hierarchy.

None of these strategies can be seamlessly integrated in the MapReduce execution

model. The loop transformations are confined to loops, and parallelism in MapReduce

computations are not, normally, found at the cycle level, but in the parallel implemen-

tation of a computation on disjoint partitions of input dataset. The same goes for the

cache-oblivious and explicit memory hierarchy programming. These two apply divide-

and-conquer strategies in which the domain partition is close tied with the expression of

the computation. Moreover, both these approaches require modifications in the applica-

tion’s original code, which is something that was out of this thesis context.

To address this application mapping onto the memory hierarchy in the context of

MapReduce, it is important to understand or at least know the two main phases of this

programming model, being these the map phase where a computation is applied to the

multiple partitions in parallel, generating some results, and finally the reduce phase that

take the results of the map phase and reduces them into a final result. Although it is not

considered a main phase of MapReduce, the split phase is of great importance and should

6

1.2. PROBLEM

be taken into account, mainly because its where the input data is decomposed into a well

defined number of partitions.

Besides the poor use of cache friendly strategies, another problem related with the

MapReduce model has to do with lack of support of some computations that naturally

have the tendency of benefit from temporal locality. Examples of this kind of computa-

tions are the matrix multiplication or even the stencil computations. The matrix multi-

plication is a good example of the excessive complexity inherent in the development of

an application with MapReduce, where the programming model does not express this

computation as well as the regular iterative version. The iterative version of the matrix

multiplication only requires some loop instructions to express the computation, where

its contra part requires the implementation of special classes and strategies only to adapt

this computation to the MapReduce model. Regarding the stencil computations, they

can be adapted to the MapReduce model with some effort. However, the incapacity of

performing computations in the map phase, as explained in Section 1.1.2, makes this

model unattractive to express these computations. The main reason for this is in the

way that the two main phases are executed, where the map phase is mainly performed in

parallel, but the reduce phase performs its computations in a sequential way. With this,

it becomes clear that the lack of computation in the map phase can become a constrain

when implementing stencil computations with MapReduce.

In order to reach a solution that is based on a in-memory, cache optimized MapReduce,

some changes have to be performed in the split/map phase. The reason why this phase is

chosen to be modified is related to its function, namely the decomposition of the domain

that greatly influences the mapping of the subsequent tasks. On the other hand, the lack

of support for computations which benefit from temporal locality can be solved by the

creation of a new layer that supports computations such as the stencil computations.

The main challenges that arise from a cache optimized MapReduce which gives some

support to stencil computations, are:

1. – The implementation of a cache friendly split phase

2. – In-node work-flow modification, transferring more computations to the map phase

3. – The development of support for stencil computations as an API

The implementation of a cache friendly split phase must handle data in a manner

that fits the cache dimensions, either in the situation where it receives data or when it

produces results. The modification of in-node work-flow its performed by the inclusion of

more computations in the map phase. In turn, this transference of computations is closely

related with the modifications made in the split phase and it is used in the development

of a stencil API, which abstracts many of the complex strategies used to express this

computations in the MapReduce model.

7

CHAPTER 1. INTRODUCTION

Some of these challenges are addressed by frameworks, such as Tiled-MapReduce

[11] that take advantage of the dimensions of the memory/cache hierarchy by partition-

ing large jobs into smaller ones to get better locality and less contentions, in which the

problem of choosing the size of the partition/tile is present. The Metis platform [25] that

uses some data structures to handle different workloads of MapReduce or Phoenix [31]

that also tries to approach an in-memory MapReduce, being one of the first attempts.

Even though these are in-memory MapReduce approaches for multicore machines,

none of these by itself addresses all the challenges. There are some efforts to take advan-

tage of better data locality, but neither one does a cache-conscious decomposition. By

that we mean that these approaches do not take into account the depth, capacity and

organization of the cache hierarchy. Hence, there is some space for improvement at the

data and computation decomposition, taking into account the cache features and at the

same time keeping these burdens out of the programmer shoulders.

The same can be said about the support of stencil computations which is currently

non-existent. Therefore, development of such support can be relevant not just for the

creation of the support itself, but also to test our strategies that try to take advantage of

predisposition to temporal locality of an application.

In this thesis we propose an approach that delegates the responsibility of distributing

the application across the memory hierarchy to the runtime system in a in-node context,

in order to optimize the main phases of MapReduce. And also the implementation of

an API which supports the development of stencil computations in a more programmer

friendly way.

1.3 Proposed Solution

As said in the previous sections, both the lack of support of strategies that take advantage

of the cache memory hardware and also that benefit from concepts such as temporal

locality are relevant problems in MapReduce frameworks, such as Hadoop [2]. This

framework has been one of the most used implementations of this programming model,

either for applications designed for clusters system, where its use is more predominant,

or for single nodes.

With that said, in this thesis it is proposed a solution that helps to integrate block-tiling

strategies in the programmer’s Hadoop MapReduce application, where the dimensions

of the blocks produced by this decomposition are influenced by some cache hierarchy

characteristics. This integration is mainly made by the extension of abstract classes that

are offered to the programmer so that he/she can express the decomposition logic of its

application’s data. These abstract classes are related to the split phase, where besides

performing the normal problem’s domain decomposition that is based in the number

of processing units, it also performs a second decomposition at the in-node level. This

second decomposition controls the size of the tasks by taking into account the cache char-

acteristics to decompose the received data blocks into smaller tasks. These modifications

8

1.4. CONTRIBUTIONS

also affect the map phase, bringing more computations to this phase which means more

parallelized computations. With more computations being performed in the map phase,

the reduce phase that is completely sequential gets less work, which can lead to better

performances.

Another aspect of the proposed solution is related to the validation of the proposed

decomposition that, as said in the previous sections, can benefit some applications that

have some temporal locality. Given that, to validate our decomposition solution and

to verify how applications that benefit from temporal locality are influenced by it, this

document presents the integration of a Hadoop MapReduce API for the development

of stencil computations in this programming model. This API is composed by some

classes that try to abstract some concepts of the implementation of stencil computations

in MapReduce, in order to make this task less complex for the programmer. With this

API are also integrated some optimizations that aim to leverage the temporal locality

principle in this kind of computations. The creation of a stencil API widens the type of

applications supported by Hadoop Mapreduce, and provides us applications in which

the increase of computations in the map phase is easier to perceived.

To sum up, this thesis tries to show that it is possible to obtain performance gains

in a programming model with two main phases, such as MapReduce, that decomposes

an application and maps it onto the memory hierarchy in an cache friendly approach,

with little or no special effort for the programmer. Validating these concepts by the

development of stencil applications with an equally programmer-friendly API.

1.4 Contributions

The contributions of this dissertation are the following:

• An integration of block-tiling decomposition strategies in Hadoop in an in-node

context.

• Use of the cache memory hierarchy features to define the block/tile size, with little

or no programmer intervention

• Assessment of the usefulness of our approach by applying it to the context of stencil

computations. For that purpose, we designed and implemented an API for stencil

computations to Hadoop MapReduce.

• A comparison between the performance of the original Hadoop and the perfor-

mance of the one implemented by us.

1.5 Document Structure

The remainder of this document is organized as follows:

9

CHAPTER 1. INTRODUCTION

Chapter 2 – Presents the state of the art with regard to MapReduce frameworks, more

specifically to the Hadoop MapReduce and other frameworks linked to the in-

memory and multicore context. Besides that, are presented some strategies related

to cache optimization;

Chapter 3 – Introduces our decomposition solution integrated in Hadoop MapReduce,

including the theoretical solution, programming model and an example;

Chapter 4 – Specification of the MapReduce solution for stencil applications, showing

our Hadoop API, the programming model and a implementation example;

Chapter 5 – Presentation and discussion of the result of the performance evaluation;

Chapter 6 – Closes this thesis by exposing our conclusions about the work accomplished

and with some suggestions of possible future work in this topic.

10

C
h
a
p
t
e
r

2
State of the Art

In this chapter we explore the state-of-the-art of MapReduce-based computing. Start-

ing with the description of the programming model and execution of this framework,

followed by the presentation of Apache Hadoop, the evaluated framework that imple-

ments a form of MapReduce. Finally, we discuss some works in the field of in-memory

MapReduce.

2.1 MapReduce

2.1.1 Programming Model

The MapReduce model can be viewed as a pipeline of data-processing phases, two of

which - map and reduce - have to be user-defined. Both the data source and sink assume

the form of files as depicted in Figure 2.1, a simplified version of the execution pipeline.

Additionally to map and reduce, the MapReduce pipeline comprises other phases, for

which the framework provides implementations by default (that may be overridden by

the programmer).

Figure 2.1: Simple MapReduce data flow.

The MapReduce programming model is based on two user implemented functions,

11

CHAPTER 2. STATE OF THE ART

the map and reduce functions. These two functions are respectively associated with the

map and reduce phase and are the core of the user defined behaviour of the MapReduce

model, where the prototypes of these functions are presented in Table 2.1. Both functions

manipulate key/value pairs of user-specified data types. In particular, the map function

receives as input one of such pairs and returns a set of pairs, entitled intermediate pairs.

The results generated by the application of the map function are grouped together by a

common intermediate key, generating pairs (key, list of values) that are passed to the next

phase. In turn, the purpose of the reduction function is, as the name implies, to apply a

reduction upon the received list of pairs (key, list of values), so that it produces a single

value for each pair received (key, list of values).

map < IK,IV ,OK,OV > (IKin_key, IV in_value) −→ List < OK,OV >

reduce < OK,OV > (OKintermediate_key,List < OV > out_values) −→ List < OV >)

Table 2.1: Map and Reduce function prototypes.

Both the input data and the final results are held in separate files, each one of the

latter related to a reduce task. One way of controlling how many result files are created is

to set the number of map and reduce tasks, respectively M and R.

Figure 2.2: MapReduce pipeline.

Figure 2.2 presents a more comprehensive version of the MapReduce pipeline, fea-

turing all the user-controllable phases. The first phase that can be overridden is the split
phase. The default logic of the split phase is to divide the input data, which are files in a

specified directory the file system, into multiple partitions. Also this phase stores each of

the produced partitions on separate files that are subsequently fed to the map phase. To

control the behaviour of this phase, the programmer can specify a custom partitioning

function, which is the center of the splitting action and the true responsible for how the

12

2.1. MAPREDUCE

split is accomplished. One related settable option is the number of data chunks that this

function produces, meaning that the programmer can specify the number of input data

chunks that are at the disposal of the map tasks.

Another phase whose behaviour may be redefined by the programmer is the combine
phase. This intermediate phase occurs between the map and reduce phases and has the

objective of merging (or combining) the intermediate results that flow from the map tasks

to the reduce tasks. To specify the behaviour of this phase, the programmer must define

a combiner function that allows a partial merging of repetitive keys that come from the

map phase. An advantage provided by this phase is that it prevents sending the same

key/value pair multiple times to the reduce phase. Often this function shares the same

code with the reduce function, but they are used in different contexts. The reduce function

output is written to a final output file, while the combiner function writes the output to

an intermediate file that is sent to a reduce task.

2.1.2 Generic Execution Model

As previously said, the focus is in the in-node execution model of MapReduce and in

optimizations related to memory management. However, in order to better contextualize

our work, we provide an overall description of the entire MapReduce execution model.

The model in Figure 2.2 may be implemented in several different ways, depending

on the application’s purpose and the target hardware. In this section we focus on the

original model, defined in [16] - the base upon which the others have built. Therefore,

as mentioned above, this section is dedicated to the description of the general execution

model of MapReduce, describing briefly its phases.

The execution model starts by applying the split phase to the input data. The result is

stored in M chunks of data for consumption by the subsequent map phase. Before the map
phase can begin, the system has to decide which workers of the cluster will receive map
or reduce tasks, wherein all the workers in the cluster are responsible for a chore in the

execution model. In regard to this task assignment process, the original paper [16] does

not mention how the roles are distributed in order to take advantage of the multi-core

resources that are available. This can be done in two different ways. A task can be divided

into sub-tasks in the node taking in account the available resources or the assignment

can distribute multiple tasks for each node. As soon the task assignment is over, the

map workers start reading the input data that has been appointed to them, this marks the

beginning of the map phase. Finished the data reading process, each map worker proceeds

to parse the data forming key/value pairs, which are passed to the user implemented map
function. The intermediate results produced by the map function, which are key/value

pairs, are usually stored in memory and periodically persisted in a file system. The file

system can be either local to a given node or distributed by multiple nodes. When these

results are written, the worker informs the system about their location, so that these ones

can be assigned to the reduce workers. Before the intermediate results are persisted in the

13

CHAPTER 2. STATE OF THE ART

file system, the workers apply the combine phase. This reduces the amount of repeated

key/value pairs that has to be transferred across the network.

As the map tasks complete, the reduce workers launch remote procedure calls to the

location of the intermediate data to retrieve it, beginning the reduce phase. Once the

data is read, the reduce worker sorts locally the retrieved data by their key to get the

values with the same key grouped together. The reason for this sorting is that the values

with a certain key have to be sent to the same reduce task. Next, the worker iterates the

intermediate unique keys to obtain the values for each key. As it iterates these unique

keys, the worker passes the key and its values to the user defined reduce function, that

starts producing the final results. In the original implementation instead of passing the

entire list of values, what is actually passed is an iterator for these. The reason for using

an iterator instead is because of the possibility that these values can be too big to fit in

memory. After the data is processed in this phase, the results are written in one of the

R output files. Typically, these results are written in a output file corresponding to the

processed partition by a reduce task.

Finally, when all the workers have finished their work, the system returns the execu-

tion to the user program. The result of the MapReduce computation is a collection of R

files, one per reduce task, that can be used by another computation or another distributed

application.

2.1.3 Apache Hadoop

Apache Hadoop [2] is a distributed data processing framework developed for the purpose

of running applications on clusters of low-cost machines. This framework offers reliable,

fault-tolerant and high throughput data flow to its client applications in a transparent way.

Hadoop offers one of the more popular implementations of the MapReduce programming

model [5]. This component is responsible for parallel and distributed data processing

of large data-sets using the cluster of resources to execute the two main phases of this

programming model, map and reduce. Besides the MapReduce implementation, Hadoop

has more components such as its own distributed file system (HDFS [8]) that provides

the storage for the application data in the cluster nodes. It also provides YARN [36], a job

scheduler and resource manager for the cluster. In this section is presented an overview

of this framework, discussing its architecture and some of its more relevant components

to this context.

2.1.3.1 Overview of the System

Hadoop can be viewed as a three tier framework as depicted in Figure 2.3, with the lowest

tier being the HDFS as the borderline with the cluster hardware. On top of HDFS is YARN

the resource manager, and on top of YARN there are data processing components, one of

them being MapReduce.

14

2.1. MAPREDUCE

Figure 2.3: Hadoop tier architecture model.

HDFS [8] is a distributed file system based on Google File System [22] that was de-

veloped to support Hadoop. As a distributed file system HDFS aims to run on hundreds

or more nodes, but it is distinguished by the fact that it does it on top of low-cost hard-

ware. Fault tolerance is a important goal of this system, mainly because when targeting

clusters of large dimensions the probability of machine failure increases, requiring so

the ability to support the problems that this failures provoke such as data loss. This file

system has some characteristics that are relevant to mention, namely the accessing and

processing of the data comprised in such files. For starters HDFS supports large files,

typically from gigabytes to terabytes in size being ideal to applications with large data

sets. A feature that fits MapReduce applications is the handling of files that are accessed

in a write-once-read-many model, simplifying the data coherency process. Another very

important feature of this file system is the way computations are carried out. Instead of

moving data from node to node, HDFS moves computations, as it is more efficient in a

system with large datasets to execute the computations nearer to the data than to move it

to a specific node. With this approach the system can minimize network congestion and

increase the throughput of the processing. For example, in a MapReduce program the

map tasks are assigned to nodes that store the data relative to that tasks. However, yet in

the MapReduce case, there are some transferences of data, mainly when the reduce task

fetch the key/values pairs that have to process from another node.

As stated earlier, YARN [36] is Hadoop’s resource manager. YARN was developed

to decouple the programming model of data processing components from the resource

management of the system. The latter has the responsibility of managing and monitoring

the workloads and data access of data processing components such as MapReduce. This

task was previously a responsibility attributed to the data processing components.

15

CHAPTER 2. STATE OF THE ART

Figure 2.4: HDFS architecture from [8].

The MapReduce implementation provided by Hadoop is targeted to clusters environ-

ments. The execution model is very close to the original [16]. It is worth to mention that

this is the only communication step in MapReduce, neither the map tasks communicate

with each other, nor the reduce tasks. When the worker receives the intermediate pairs,

it sorts them to feed them to the reduce task. Finally, the reduce phase starts and the

intermediate pairs are passed to the user defined reduce function that processes this pairs

and write them in the output in its local HDFS.

2.1.3.2 Splitting

In this section we describe how the splitting phase is done in the Hadoop framework,

diving in the programming interfaces and relating them to the different steps of this phase.

The splitting phase is reviewed in more detail mainly because it is one of the points in

which our work is focused, as it is the case of the in-node execution model. Being the major

objective adapting this two in order to optimize the memory management advantages

that a cache support may bring to this programming model. This phase is of immense

importance not just for the load balancing of the work attributed to map workers, but for

the data processing efficiency in general.

In the Hadoop framework the HDFS divides the input data files into multiple data

blocks that are stored in the work nodes. Each of these nodes has stored locally different

data blocks to be processed. When all the nodes have the data blocks in theirs file system,

they start the MapReduce job by the splitting phase. This phase is done in each node

individually and the input data blocks stored locally are divided in multiple chunks that

are fed to the map workers as tasks.

To fulfil this splitting task there are three major classes in the Hadoop’s MapReduce

16

2.1. MAPREDUCE

implementation, the InputFormat class, the InputSplit class and the RecordReader

class. These classes base their work on data read from input files that generally reside in

the HDFS.

The InputFormat class is responsible for how these input files are split. This class can

be one of three types, TextInputFormat, KeyValueInputFormat or SequenceFile Input-

Format. These three classes are differentiated by the way that they handle the split of the

input files and how they define their types of key/value pairs. Hence, the InputFormat

class selects the input files from a user specified directory and according to the split type

and files size, defines the splits that break this input files into chunks that are fed to

tasks. These splits are merely logical and the resulting information from these is stored

in another class, the InputSplit class. Thereby, the input files are divided into one or

more InputSplit instances, according to their size and on the type of splitting specified

by the InputFormat. So the InputSplit class describes a map task in a MapReduce job as

described in [37]. After the splitting as occurred, the InputFormat defines the tasks that

compose the map phase and these are assigned to the workers based on the location of the

input files chunks, without taking into account the resources of the node. Consequently,

a worker may have many tasks assigned to it, processing them in parallel as much as it

can. A worker accesses the data associated to a given task via the RecordReader class,

which converts the original data described by an InputSplit into key/value pairs.

2.1.3.3 Node Execution Model

A node stores locally chunks of the input files to be processed. As mentioned in the

previous section each node takes some map tasks that are directly related to the parts

of the input data stored in the node file system. These parts of input data files are used

by the InputFormat class to do the splitting process and create the data splits. After

this splitting process is done in the node, as depicted in Figure 2.5, calls an instance of

RecordReader for each split and starts reading the data and producing the key/value

pairs that are fed to the map tasks. The number of map tasks in a node can be defined

by altering the mapred.tasktracker.map.tasks.maximum global parameter, mainly to

control the level of the node parallelism of the system.

The map tasks in the node process the pairs produced by each RecordReader and

produce intermediate key/value pairs that are passed to a Combiner, which can be a

instance of the Reducer interface, to combine the intermediate results produced by a

map task. When the intermediate reduce is done, the Combiner passes the resulting

key/values pairs to a Partitioner. The job of the Partitioner is to exchange the produced

pairs with other nodes in the system so that these pairs can be processed by the correct

reduce tasks, as can be seen in Figure 2.5. When this exchange of pairs is over the node

starts shuffling the pairs to be fed to its reduce task, so that this task can be executed as

sequentially as possible. Finally the reduce tasks starts to produce the final key/value

pairs and writes them back in the node local file system.

17

CHAPTER 2. STATE OF THE ART

Figure 2.5: Hadoop in-node Execution Model from [37].

As can be seen in Figure 2.5, a node is responsible by doing all the MapReduce flow

on the data stored locally. For this, it uses its parallel computation capacity to execute as

much splits and consequently as much map tasks as possible.

2.1.4 In-Memory and Multicore MapReduce

As stated previously in this document our main focus is in the in-node execution of

MapReduce and for that it is crucial to understand and review the concepts behind

some frameworks that perform memory related node-level optimization. These are com-

monly referred to as In-Memory MapReduce, such as [34] and [33], or are pure multicore-

directed implementations of the model, such as [11] and [25]. In either case, these frame-

works share a common objective: to optimize the execution of MapReduce model in a

single machine taking advantage of its resources, such as the multiple core power and

the storage capacity of memory. To achieve this goal several distinct strategies have been

proposed that have some basic common ground, namely distribution ruled by the number

of cores and usage of shared memory mainly for intermediate results. For the rest of this

18

2.1. MAPREDUCE

section we will discuss the main challenges addressed by these In-Memory and multicore

directed MapReduce implementations and how they are tackled.

2.1.4.1 Data Structures

A point that has been subject to great scrutiny and therefore subject to some improve-

ments has been the data structures that store the key/value pairs produced by the map
tasks. These data structures can be shared by multiple workers or be private to a single

one. In the first case of shared data structures some problems can arise, probably the

most evident are the classic problems from parallel/concurrent programming, data-races

and deadlocks. Hence to avoid this type of problems it is common to use individual

data structures for each worker. With these, a worker can handle its data without the

complexity of locks and synchronization through messages with other workers.

A framework that uses the multicore MapReduce and per worker data structures for

intermediate key/value pairs is Phoenix [31]. Phoenix has a simple runtime, it attributes

a worker for each available core, assigns the tasks to these workers after the splitting of

the input data, sorts the intermediate pairs produced by the map workers before passing

them to the reduce workers, applies the reduce function and then merges the reduce results

sorted by key. This framework uses per worker buffers, to accommodate the intermediate

pairs, that are initially sized with a default value that it is updated as needed. Each of

these buffers are described in [25] as cells in a matrix where a row of these are associated

with a split and the columns refer to the pairs of entries with the same key hash function

result. This column strategy has an advantage for the reduce tasks, with it a reduce worker

has only to read columns of the buffers of a map worker, simplifying the communication

of the pairs from map to reduce task. Each one of these buffers are hash tables sorted

by key that have as values a list of values of each pair with a given key. This solution

has some computational costs. The cost of hashing a key is always O(1), but the cost to

calculate the correct column of the hash table can be O(log k), being k the number of

distinct keys in a entry if the table already has a entry for it, otherwise the cost becomes

O(k).

The costs of these data structures can influence the performance of a MapReduce pro-

gram, so it is important to choose carefully the trade-off of each data structure. Choosing

a data structure can be largely influenced by the properties of a given problem, such as

workloads. For instance in the solution provided by Metis [25] they conclude that there

is no single data structure that always get good performances regardless of the problem’s

workload. Three different data structures are described. A similar approach to the one im-

plemented in Phoenix is an hash table per map worker that is used to store the produced

pairs. All the hash tables have the same size and the same hash function to facilitate

the partition of the work tasks for the reduce workers. For this hash table the entries

are composed by a hash of pairs of the form key/value as key, and a list of these ones as

values. This data structure can have a low computational costs of O(1) for inserting and

19

CHAPTER 2. STATE OF THE ART

looking up entries, being that these costs are only possible if the hash table has enough

entries so that the probability of collisions is low, which makes it suitable for workloads

with many repeated keys. Another data structure mentioned is a append-only buffer of

key/value pairs that is sorted before the reduce workers start reading the contents of this

buffer. The most expensive operation over this type of data structure is the sorting, whose

cost is proportional to the number of pairs produced. The weight of the operation is most

noticeable when the map worker produces too many repeated keys, being that the data

structure loses the advantage of producing key sorted results. Hence the append-only

buffer could be a good data structure for cases that have workloads with few repeated

keys. The third option is a tree that uses the keys as index. With a computational cost for

the lookup of O(log k)(k being the number of keys), this data structure is suitable for

workloads with repeated keys and with an unpredictable number of keys.

The Metis platform [25] implements a conjunction of the hash table and tree data

structures, with the goal of performing good for a wide range of workloads. To that

end, it combines this hybrid implementation with a prediction phase, that through some

heuristics based on the number of keys of a portion of the input can reach good perfor-

mances for a wide range of workloads. The produced data structure is an hash table with

a b+tree in each entry, to achieve the best of both data structures in different situations.

When the number of keys is predictable and there are enough entries to avoid collisions,

the costs of O(1) of the hash table will be applied. If the number of predicted keys is not

large enough or the keys do not hash uniformly, which implies large b+trees in hash table

entries, then the costs of a tree are applied O(log k) (k being the number of keys).

2.1.4.2 Workload Optimizations

From the previous subsection, can be concluded that the workload highly conditions

and influences the performance of a MapReduce program in a single-node. The work-

load determines both the data structures to be used, which can perform better or worse

depending of its computational costs, and the ability of expressing efficiently a given prob-

lem in a shared-memory MapReduce model. In [34] the authors characterize a workload

according to three characteristics that relate map tasks to intermediate keys:

1. – the map task to intermediate key distribution,

2. – the number of values emitted per key,

3. – the amount of per task computation.

As previously mentioned, the key distribution affects the intermediate storage of the

key/value pairs produced by map tasks. This is easy to see in some distributions where a

hash table can get better costs than a tree and vice-versa. The number of values per key

affects directly the implementation of the combine function that processes the intermedi-

ate pairs for a reduction of the number of pairs passed to the reduce tasks. Depending on

20

2.1. MAPREDUCE

the characteristics of a problem the combine function may have simpler or more complex

implementations that can cost more or less memory. With this consumption of memory

allocation the advantage of having a combine function that reduces the communication

of pairs may be concerned. The third characteristic mentioned to define a workload refers

to the overhead that a library of a framework may impose, in that it forces the user to use

bad, or at least not ideal strategies for a problem.

The same work [34] proposed Phoenix++, a rewrite of the Phoenix framework, which

enhances some aspects related to the described characteristics of a workload. The pro-

posed solution grows from the concepts of container and combiners. Containers are a way

of adapting the framework to various types of workloads and combiners allow the pro-

gram to handle workloads with high number of values per key. These two improvements

allow to address the problem related to the cost of a fixed data structure and the problem

of memory allocation. A container is a group-by functionality that it is present between

map and reduce phases and groups emitted key/values pairs by key, much as a data struc-

ture, that are passed to the combiners. Phoenix++ supplies 3 container implementations

to meet the different workloads. These implementations include a variable width hash ta-

ble for each map that it is present in the hash container, ideal for workload with previously

unknown number of key. A fixed-size array per worker with the requirement of the keys

being well known integers is present in the array container. And lastly a non-blocking

array shared by all workers, to workloads where tasks only output a single, unique key.

In this framework a combiner is not just a function, but an object that is invoked every

time a key/value pair is emitted by a map task. If this invocation is not done at every

emit, a problem related to the combine invocation at the end of a map task may arise,

mainly because of the great memory allocation that is caused by the produced key/value

pairs that have to be stored. At the end of the map task when the combiner is executed

the pairs may no longer be in cache, meaning that it has to access to a higher memory

tier which brings more costs. This framework already has available two implemented

combiners, the buffer combiner and the associative combiner. The buffer combiner is a

approximation to the standard in the MapReduce, it buffers all the produced pairs until

the end of the map task. The associative combiner as the name indicates aggregates all

the emitted values into a single one, meaning that when a new value is received it is

combined with the previously received an therefore already aggregated.

2.1.4.3 Memory Management

Another challenge to address in the efficient execution of MapReduce computations on

a single computational node is the memory management. Bad memory management in

this programming model normally comes from large data-parallel applications that tend

to use a lot of tasks, which can lead to pressures that not only affect memory itself but

also CPU utilization and consequently can lead to poor performances. A situation that

contributes to this problem and it is present in some frameworks that use In-Memory

21

CHAPTER 2. STATE OF THE ART

multicore MapReduce, such as Phoenix [31], is the persistence of intermediate data in

memory not just until the tasks are finished, but until all the processing is finished.

This problem is more evident in applications that are more memory-intensive and, to

deal with this, some solutions propose the sharing of resources by the tasks, to ease the

allocation of memory or even to take advantage of cache/memory locality. One solution

that tries to take advantage of cache/memory locality is the Tiled-MapReduce [11]. This

solution extends the basic MapReduce with a tiling strategy whose main premise is to

reduce the consumption of resources by partitioning big jobs into smaller ones that are

processed sequentially. Hence, these small jobs only require fractions of the resources

that a bigger job would require and being sequential executed the allocation of memory

for intermediate data structures is done only once, allowing the smaller jobs to share the

data structures. Besides that, due to the small size of the jobs, the input is obviously

smaller and this brings the opportunity to explore the principle of locality inherent to

memory hierarchy.

Another measure described in [11] is the reduction of the idle time of the multiple

cores. This is described as a problem that comes from the original implementation of

MapReduce, in that a reduce phase must wait for a map phase to end, and just then

the reduce phase may start doing useful work. To treat this problem Tiled-MapReduce

overlaps a reduce phase from a small job with a map phase of the next small job to be

executed. This not only reduces the idle time of the working cores but also improves the

performance of the "bigger" job. To get these solutions the data-flow of MapReduce in

Tiled-MapReduce is a little different from the original. This data-flow is based on multiple

iterations that represent the small jobs and are compose by consecutive map and combine
phases, the latter behaving like a intermediate reduce. Is in these iterations that lies the

advantage of this solution, because it allocates memory for a common intermediate buffer

such as the described in Phoenix [31] at the first job. At the same time it allocates memory

for a more specific, but equally shared iteration buffer that harnesses the intermediate

results of the iterations that are used by the next reduce phase. After these smaller jobs

are done, it takes place a "global" reduce phase and then the merge of the results.

A similar problem related to the management of memory is described in [39], where

the allocation of a lot of Java Virtual Machine (JVM) per machine, one per task, in the

Hadoop MapReduce [2] results in bad memory utilization. This happens mainly because

of the duplication of data structures across these JVMs. Another problem that is described

and it is related with the use of these JVM, is the way key/value pairs are processed by

the map function. This function is handle by a JVM, as it exists one per task, and just

processes one pair at a time, which means that to start processing a new pair the task

must have already processed the previous pair, implying a sequential pair processing

flow. These problems affect both the memory allocation and program performances,

causing unnecessary memory pressures and do not take advantage of the potential of

the multicores. To deal with these problems [39] presents HJ-Hadoop, a extension of

Hadoop [2] that implements the Map and Reduce classes using Habanero Java [39], a

22

2.1. MAPREDUCE

Java implementation for multicore parallelism. This framework aims to the reduction of

the number of JVMs created per node, in order to better parallelize the map tasks and

buffering key/value pairs that have to be processed by the map function. It has to be

said that the focus of this solution is in a intra-JVM context. Hence,the major difference

between Hadoop and HJ-Hadoop in the number of tasks, is because the latter subdivides

the tasks into asynchronous tasks that are run in parallel on a intra-JVM context. The

presented solution starts by allocation of a new buffer per asynchronous task to better

take advantage of those resources. When the allocation is over, it is started a buffering

of a variable number of key/value pairs to be processed by the map function. The actual

number of pairs to be buffered is dynamically set by a main thread that tests some samples

to identify the optimal number of pairs. The buffering is done by an asynchronous task

that fetches from a task queue the pairs to the buffer while other tasks do the processing

of these pairs. When the task has completed its work, it frees the buffer.

There is yet another problem in memory use that it is related with the size of the inter-

mediate data structures. This data structures can become too large for the available main

memory or just require too much memory, which implies more costly communications

with the hard disk. MapReduce has some situations where this can happen, namely in

map phase at the production and storing of intermediate pairs in the intermediate data

structures, at the start of a reduce phase when fetching the pairs or even after this phase at

the merge phase. A solution to relive the pressure from the main memory and to control

the accesses to the hard disk is described in [19]. In this solution the the accesses to disk

are controlled by a mechanism that verifies if the main memory has enough space to han-

dle the new tasks. For this mechanism to work a buffer-like data structure has been added

to MapReduce, mainly between the major phases. This data structure is presented as spill

buffer that when some limits of the main memory occupation are reached it stores the

last column of the intermediate data structure (generally represented in MapReduce by

an matrix where each row is relative to a map worker and the column to a reduce worker).

The spill buffer stores the key/value pairs in which they are fetched. Thus, this data

structure can sometimes be seen as a buffer for disk writing operations, namely because

the buffer is filled with pairs until it is full (the size of the buffer is the number of columns

of the matrix), in the map phase. When the buffer is full, the thread responsible for the

buffer starts writing the pairs on the hard disk. In turn, this buffer may also serve the

purpose of a loading buffer, for example, to control the space that the to-be-processed

pairs occupy in the main memory, in the reduce phase. In such case, the buffer is loaded

with the necessary pairs.

2.1.4.4 Others

To close this section we present a new implementation of Hadoop MapReduce [2]. This

implementation does not solve a well define problem, but promises better performances

23

CHAPTER 2. STATE OF THE ART

than Hadoop in In-Memory environments. The engine is called M3R [33] and imple-

ments the Hadoop MapReduce APIs aiming to provide better in-memory support. For

this, M3R launches multiple JVMs, and each of these handles multiple map and reduce
workers, which share the heap-state between jobs. This not only improves the memory

management of the cluster but it has the potential to parallelize multiple jobs. However it

has the limitation of the size of memory that a cluster can provide, which limits the scala-

bility of the system. Another limitation of the system is the absence of a fault-tolerance

system, which means that the failure of a node causes the engine to fail. The authors

discuss this problem and conclude that M3R is not suited to jobs that take long hours to

run, but are more indicated to commodity clusters.

2.1.5 Discussion

The most straightforward approach to take advantage of the parallel processing hard-

ware In-Memory MapReduce is to do a decomposition of the problem’s input domain,

distributing the result by the processing hardware. However, this approach does not take

advantage of the growing hardware dedicated to caching that, if taken into account, can

improve the performance of the applications, by making use of the principle of locality.

In the current state of the art some of the presented MapReduce frameworks show

some concern about locality. For example, Phoenix++ [34] tries to take advantage of

locality by invoking the combiner after every emitted value of a map task.

There are, however, some frameworks that not only make some effort to benefit from

locality, but also use strategies that could be used in order to better take advantage of

the cache hardware. Tiled-MapReduce [11] employs a pipeline of map and reduce tasks

that make use of the same memory spaces and reduces idle time of the processing units,

promoting locality. Another feature of Tiled-MapReduce is its usage of tiling strategies

for the domain split, but this tiling is not cache friendly. Phoenix [31] adjusts the size

of the input and output data of a map tasks, so that the data can fit in L1 cache, which

reveals a concern about the utilization of the cache. However, Phoenix does not take into

account the cache organization.

Some solutions presented by the previous frameworks can be further applied to our

problem. For example, the tiling strategies can be integrated and explored in the context

of our problem. On the contrary, the solution to improve locality used by Phoenix++ is

limited to the combiner, which does not enter in our work plan. The same can be said

about the strategy of dimensioning the output of map tasks of Phoenix. However, the

part of that strategy that is related to the map tasks input dimensioning presents a similar

approach that we idealize.

24

2.2. CACHE-OPTIMIZATIONS

2.2 Cache-Optimizations

Being the thesis focussed in cache-directed optimizations of MapReduce, it is of a major

importance to explore which strategies have been used to perform such kind of optimiza-

tions in other types of computations. This overview is important not only to contextualize

our work but also to understand what strategies can serve as inspiration. This section

starts by giving a general overview on compiler optimizations that can be used to im-

prove the usage of the memory-hierarchy specially in terms of cache usage. Next, in

Section 2.2.2, we present some cache-oblivious algorithms that take advantage of caches

without knowing the characteristics of these. Before moving into this section, it should

be mentioned the principal types of cache, which are the direct mapped cache, n-way

set associative cache and fully associative cache. In a direct mapped cache each main

memory block is mapped to only one cache line and it does not have a replacement pol-

icy. The n-way set associative cache differs from a direct mapped cache in that a main

memory block can be mapped to n cache lines and replacement policy depends of the n

possible cache locations. The last type is the fully associative cache, which allows each

main memory block to be mapped to any cache line.

2.2.1 Compiler Optimizations for Sequential Code

Compiler Optimizations can influence the performance and the usage of the memory-

hierarchy by improving the locality, either data locality or instruction locality. Leaving

these optimizations to the compiler, frees the programmer of the burden of writing pro-

grams with special characteristics to achieve good locality, which can be time consuming

and error-prone. These optimizations can be done by applying code transformations

based on the analysis of data dependences. It should be noted that there are some opti-

mizations for parallelization of loops with cache awareness. However, due to the sequen-

tial execution flow of MapReduce, we chose to just talk about sequential optimizations.

2.2.1.1 Loop Transformations

Loop transformation presented in [29], [10] and [24] is the most common type of cache-

directed program transformation. These transformations may be applied to any loop

statement, provided that no dependencies are violated, and may significantly improve

cache locality and performance of a program, mainly because of the large usage of these

statements and specially due to its link to data structure traversal. The most well known

loop transformations that leverage locality are loop permutation, loop fusion, loop distri-

bution, loop reversal, loop blocking/tiling and loop skewing. We briefly describe each one

of them to get a sense of how these transformations work and how they can be applied.

Loop permutation can improve cache locality by modifying how a program traverses

the data in cache. For example, assuming a scenario where a program traverses a matrix

first by column and then by row, but the matrix is stored in row-major order. This way

25

CHAPTER 2. STATE OF THE ART

of traversing the matrix will cause many misses in the cache, which prevent the reuse of

the data and consequentially prevent cache locality. If no dependences between loops

are violated, loop permutation can be applied in this situation by swapping the order

of the traversal loops, where it starts by traversing the rows and then goes through the

columns. This transformation is used in situations such as the latter, where the traversal

of data structures are altered to adapt to the memory layout, reducing the number of

cache misses. However this transformation has other purposes [29], for example, inner

loops paralellization and "persisting" some data into registers.

Loop blocking/tiling increases the depth of a loop nest, which means adding more

loops to the nest. As described in [24], this strategy enables more data reuse in cache to

improve data locality. Matrix multiplication is a problem that can be improved in terms

of data locality by applying loop blocking.

Another strategy is loop fusion. A strategy that combines two adjacent loops, which

use the same iteration space traversal. This transformation reduces the overhead of

multiple loops with common iteration space. Also, in terms of cache optimization, it

improves locality when these loops share accesses to the data structure, such as an array.

In the case of multiple loops accessing the same array(s) in the same order, the number of

cache misses are reduced by taking advantage of the fact that a single loading of the data

may serve several loops. This may not happen when the loops are separated, resulting in

multiple loads of the same data from main memory in the second loop.

The reverse of the fusion transformation is loop distribution, which disperses the

statements of a single loop into multiple loops. This strategy by itself can help to syn-

chronize accesses with the memory data layout. However, loop distribution can also be a

mean to enable loop permutation.

Yet another strategy that enables optimizations is loop reversal that reverses the traver-

sal order in which a loop iterates, if the dependences are not violated. For example, this

transformation can allow the utilization of loop permutation. Loop skewing rearranges

the accesses to a multidimensional array of a nested loop where the inner loop depends

on the its predecessors in order to move the dependencies to the outermost loops.

Loop transformations can be combined, either to enable utilization of others, or to

better adapt the data problem to the way the cache has to be populated, in order to

achieve better locality. Compound [10] is an algorithm to reduce the number of cache lines

accesses that combines these loop transformations. This algorithm uses loop permutation,

fusion, distribution and reversal together with a cost model to reduce the number of cache

lines accessed, or improving the utilization of the data in cache.

2.2.1.2 Data Placement

Some optimizations to the memory hierarchy can be done via data placement. Data

placement is a compiler optimization that assigns addresses to data objects, such as global

variables, stack variables, heap and constants defining the location in memory of these.

26

2.2. CACHE-OPTIMIZATIONS

It is a NP-complete problem that consists on the allocation of data onto certain locations,

such as the cache memories, in order improve locality and to eliminate interference cache

misses [28]. In this section we present some solutions that use data placement strategies

to improve the locality in cache, which then can translate into better performance for the

application. These do not thrive for optimal solutions but have demonstrated that good

results are possible if the cache features are take into account.

An example of a data placement optimization is Cache-Conscious Data Placement

(CCDP) [9], which has the objective of reducing the frequency of the data cache misses.

CCDP execution comprises three phases in order to optimize data placement, the profiler

phase, the data placement optimizer phase and the run-time support for allocation of

heap objects phase. The first part of the CCDP, the profiler, consists in the characteri-

zation of how a given program uses its data. The characterization of a program, treats

each heap, stack, global or constant variable as an object, and produces two profiles, the

Name and the Temporal Relationship Graph, that are composed by data structures of

these objects to determine an estimation of the number of cache conflicts that would arise

if two of these objects were overlapped in the same cache line. When the characterization

is over, the produced profiles are fed to a data placement optimizer in the compiler, which

reorders the global data segment and the stack to their new starting locations. If heap

optimization is performed at this phase, then are created some custom allocation routines

for posterior placement of heap objects. In the last phase, the routines created in the

previous phase are used to allocate the data at the preferred locations indicated by the

data placement algorithm. The data placement algorithm used in CCDP uses the profiles

data structures together with the dimensions of the target cache to achieve its objective

of reducing cache conflicts and increase the cache utilization.

Another approach of the data placement concept is Cache-Conscious Structure Layout

(CCSL) [12]. CCSL provides a mechanism to improve the cache locality and the perfor-

mance of pointer-manipulating programs by exploring data placement techniques such

as clustering and coloring. These techniques are focused in increasing the temporal and

spatial locality of pointer structures, hence, improving cache utilization and reducing

cache-conflicts. The clustering technique tries to group data structure elements that are

likely to be used at the same time into the same cache block, in order to improve the

locality, either temporal or spatial, and at the same time provides a form of prefetching.

Coloring handles the problem of caches with finite associativity, which is the limit of

the number of concurrently accessed data elements that can be mapped onto the same

cache block. To cope with this, its done the coloring of the partition’s cache space into

regions of frequently accessed elements and unfrequently accessed elements, so that the

data accesses of the last do not conflict with others, reducing the number of cache misses.

CCSL uses these two techniques to implement two strategies of data placement, the cache-

conscious data reorganization and cache-conscious heap allocation. Cache-conscious data

reorganization, as the name indicates reorganizes the layout of the data structures in mem-

ory, mainly because the layout produced by the first data structure allocation may not

27

CHAPTER 2. STATE OF THE ART

be the most appropriate for the program’s data access patterns, reducing the probability

of cache misses. The cache-conscious heap allocation complements the previous and, as

also the name indicates, performs cache-conscious data placement at the allocation of the

elements. CCSL [12] reports performance benefits.

The work in [13] addresses the issue of choosing the size of a tile when aiming to

improve cache miss rates. This algorithm named Tile Size Selection chooses the size for

tile, in a give problem, by taking into account the data placement, cache size and cache

line size in a directed-mapped cache. As stated in Section 2.2.1.1 the utilization of tiling

enables reused data to be moved closer together, thus eliminating capacity misses that

occur when the workload it is too big for the cache. The present solution also covers

misses resulting from replacement of data elements by another data elements of the

same data set, being called self-interference misses. To choose the tile size the proposed

solution first computes a set of tile sizes that do not cause self interference or other type

of misses, then it chooses the tile by the cross interferences and the size of the workload.

A restriction that it is imposed for the selection of a tile size based on the cache size, line

size and array column dimension, is that the column dimension must be multiple of the

cache line size. This solution shows that the usage of a compiler optimization strategy

such as tile size selection algorithm can provide to a program good performances on

directed-mapped caches.

2.2.2 Cache-Oblivious Algorithms

Another approach to improving the mapping of a program onto a memory hierarchy

is cache-oblivious algorithms. The oblivious qualifier relates to the fact that these al-

gorithms use asymptotically optimal workloads and move data between multiple cache

levels in a asymptotically optimal manner without the need to be tuned to the features of

a given hardware configuration, such as cache size and cache-line length.

The objective of these algorithms is to minimize the utilization of the hardware con-

figurations while improving or at least getting low cache miss rates. These algorithms

were first mentioned in [21], where to analyse them and to assess its complexities was

introduced an ideal-cache model. This model is composed by a two-level memory hierar-

chy comprising a full associative cache and a large main memory. In [21] are described

algorithms for matrix multiplication and transposition, and even sorting algorithms that

are asymptotically optimal with cache-oblivious approaches, using recursive divide and

conquer strategies. However, probably the most important proof is the fact that if an

cache-oblivious algorithm yields good performances in a full associative cache setting, it

is likely that it will achieve such kind of of performances in other cache models, such as

two-level models, multilevel ideal caches, hierarchy memory model and serial uniform

memory hierarchy (SUMH).

The design of these algorithms led Erik D. Demaine [17] to the exploration of data

structures that are based in the cache-oblivious concept. The work shows the possibilities

28

2.2. CACHE-OPTIMIZATIONS

of using cache-oblivious design to create static data structures, such as static search trees,

and dynamic data structures, such as b-trees and linked lists, with good performances in

data locality.

2.2.3 Memory Hierarchy Aware Programming Models

Along with the cache-conscious approaches, there is some work in the field of memory

hierarchy aware models. To better handle and represent communication between memory

hierarchy elements this type of models need to represent the memory hierarchy in an

abstract manner.

At the base of memory hierarchy-aware programming models is the Parallel Memory

Hierarchy (PMH) model [1]. This model abstracts a parallel architecture into a tree-like

memory hierarchy, modelling the communication in this hierarchy and its costs.

Sequoia [18] was the first system to instantiate and extend the PMH model, followed

by other, such as Hierarchical Tiled Arrays [20] and Hierarchical Place Trees [38]. In this

section will briefly describe Sequoia and Hierarchically Tiled Arrays for being those more

closely to what we intend to do in this thesis.

2.2.3.1 Sequoia

Sequoia [18] is a programming language designed to ease the development of memory

hierarchy aware programs and to address the problem of communication between tiers

of the memory hierarchy. Moreover, it aims to produce programs that can be portable

and hence independent of the hierarchy of one machine.

Sequoia abstracts the concept of hierarchical memory by mapping it to a tree-like

model, so it can differentiate the various memory models of a hierarchy. However, it is

the job of the programmer to define such model with the language’s mechanisms. The

result does not only describes the data communications between tiers but also contains

the location where the data is stored. Consequently, it yields gains in portability and even

performance. Portability gains can be seen mainly in the separation between problem

solving logic, or algorithmic expressions, and machine-specific optimizations.

More efficient executions can be achieved by partitioning computations into smaller

ones, mainly because of the increased probability of using concepts such as locality and

also by increasing the utilizations of the available hardware. Some techniques for com-

putation optimization are explored by Sequoia, such as the tiling for cache locality or

problem decomposition in a more broader context for minimizing network communica-

tions in clusters. The computations themselves are represented via the task abstraction,

which describes the communications and workloads of the computation. In order to en-

able parallelism these tasks are isolated in their local address space without any form of

communication with other tasks besides the calling of sub-tasks and returning to parent,

similarly to MapReduce tasks. Also, as in MapReduce it should be noted that the only

form of data communication in Sequoia is expressed by passing arguments to a tasks.

29

CHAPTER 2. STATE OF THE ART

Sequoia has the possibility to define many implementations of a task in order to

specify the better implementation for a given context, for example, a implementation of

a task can be useful in a L2 cache, but not suitable for a L1 cache in a computation. To

achieve this separation of implementations, Sequoia defines a task in one of two variants,

inner and leaf. The inner variant of a task implementation has the job of calling sub-tasks

that can be inner or leaf tasks and handles the communication of the data blocks to

these sub-tasks. It is also worth mention that inner tasks cannot access the data blocks

directly, this is a measure to enable code portability preventing tiers of the hierarchy that

do not have access to processing units to perform computation on the data nodes. The

leaf variant is responsible for doing the computations on the data blocks that are local

to that tier.

With regard to the control of the program structure and execution in a memory

hierarchy-aware approach, the programmer must specify an independent file that de-

scribes which tasks have to be executed in determinate memory level and which im-

plementations should be used. Additionally, the programmer may have to specify the

parameters values, called tunable, to adapt the task execution to its execution context,

in order to control the computations. An example of a tunable parameter is the number

of elements of an array that must reside in the target cache level. Another way to control

the execution of a program is through the constructs offered by the language for task im-

plementation, such as mapper, that maps tasks in a parallel iteration, creating sub-tasks

that are executed in parallel, and mapreduce, which maps tasks onto blocks and performs

a reduction operation to these tasks to reduce the number of subtasks produced.

Sequoia places some burden in the datasets’ communication up and down the hier-

archy levels. This burden is caused by the divide and conquer strategy employed that

splits the data set into smaller chunks until these can fit the lower, smaller and faster

levels of the hierarchy. Besides this possible communication burden, Sequoia uses a static

approach to hierarchically partition the data that as stated in [35] can be insufficient

for some cases, where the best approach is to do the partitioning dynamically. Recently,

to handle these situations, an approach based in the Legion programming model [35]

proposes a solution that incorporates static and dynamic partitioning and offers a more

relaxed view in the partitions, where they are called regions and can overlap each other

and are even possibles alias.

2.2.3.2 Hierarchically Tiled Arrays

Tiled Arrays are a class of data structures that boosted the creation of a memory hierarchy

aware programming model called Hierarchically Tilled Arrays [20]. This model permits

the development of single-threaded programs that use the operations of tiled arrays to

perform the computation and communication between processing elements in parallel.

Tiled arrays are arrays partitioned into tiles of the same dimensions. In turn a hier-

archically tiled array (HTA) is a tiled array where each tile can either be a normal array

30

2.2. CACHE-OPTIMIZATIONS

or another HTA. These HTAs can be created in two forms, one form simply partitions an

array using well defined delimiters for its dimensions, for example, indicating in which

columns and rows the tiles start and end. The second form partitions the array by defining

the exact dimensions of the tiles. With the partitioning of the arrays into tiles, HTAs can

help in the improvement of locality and even facilitate the usage of parallel approaches.

This improvements can be achieved by distributing the outermost tiles by the processors

for parallelism and the innermost for locality.

In this programming model a program runs on a main thread that is connected to a

distributed memory served by multiple processors, called servers, which are associated

with the top-level tiles. It should be noted that the subsequent tile sizes must be explicitly

defined by the programmer, in other words, the program has to compute the tile size

along the hierarchy. There are some distinct execution situations that can occur in this

model. One, where a computation involves some distributed tiles of a HTA is handled

by broadcasting the computation to the related servers in order to do this computation

in parallel. Another situation may arise when a computation only make reference to

tiles that are stored in a single server, then the server does the computation locally. Yet

another situation can be described when a server needs tiles stored in other servers, in

this situation the server must first request the tiles and then execute the computation. A

pattern that can be extracted from this situations is that the computations related with

tiles of a HTA control the communications and the parallelism of a program.

2.2.4 Cache-Conscious Decomposition of Data-parallel Computations

The work proposed in [26] aims at automatizing the cache-conscious decomposition of

data-parallel, where it removes from the programmer the burden of programming cache-

oblivious algorithms or explicitly programming the memory hierarchy. This solution

determines the optimal partition size of a domain, and controls the whole execution of an

application in an automated manner relieving the programmer of the hardware related

burden With this, the programmer can focus just on the decomposition itself and on the

application logic.

The main difference between the approach presented in [26] and the programming

models presented in the previous section, without considering the execution automation,

is that the first only requires some information about the data layout to calculate the

optimal partition size for a better cache fit. To get this information this model requires

that the programmer instantiates the interface Distribution shown in Listing 2.1.

1 publicinterface Distribution<T> {

2 /**

3 * Partitions the input domain into nParts partitions .

4 * @param nParts the number of partitions to be produced

5 * @return the partitions

6 */

7 T[] partition (int nParts);

31

CHAPTER 2. STATE OF THE ART

8 /**

9 * Returns the average size of a partition of T (in number of elements)

10 * @return size of P

11 */

12 float getAveragePartitionSize(int nParts);

13 /**

14 * Returns the average size of line of a partition of T (in number of elements)

15 * @return size

16 */

17 float getAverageLineSize(int nParts);

18 /**

19 * Returns the size of an element of T (in bytes)

20 * @return size

21 */

22 int getElementSize();

23 }

Listing 2.1: The Distribution interface from [26].

The instantiation of the Distribution interface, helps the model to estimate the

optimal partition size, but this estimation is done with an iterative algorithm based

on the target cache level (TCL). The main idea of this work is to iteratively try new

partitions sizes, so that the optimal size is achieved. To accomplish this, the methods in

the Distirbution interface help to validate this partitions sizes. In order to validate a

partition size this one has to comply with some conditions regarding the TCL dimensions.

The main condition says that the sum of quotients between the size of the domain(s) and

the number of partitions has to be equal or less than the TCL size. At each iteration of the

algorithm uses the method getAverageLineSize, which validates whether a dataset may

be decomposed into the number of partitions passed as argument and, if its valid, the

method returns the average line size of the partitions. With this validation the method

is used to stop the partition size search when the value of the number of partitions is not

valid.

In [26] are discussed some static scheduling strategies that are based on the idea of

an initial distribution of the tasks by the workers in a way that these workers receive a

sufficiently large group of tasks to balance the difference between the number of tasks

and the number of processing cores. The strategies used are Contiguous Clustering and

Sibling Round-Robin Clustering (SRR). The first explores locality by assigning contiguous

tasks that have contiguous data to the same task. The SRR is based on the concept of

round-robin, as can seen by its name, and how the processing cores use the memory

hierarchy or how these cores share the Last Level Cache (LLC). In this scheduling strategy

there are two levels of task assignment, the cluster-assignment that assigns clusters of

tasks to groups of workers which share the LLC, and the tasks-assignment that distributes

the tasks within the groups by the workers in a round-robin way, as depicted in Figure 2.6

b).

These strategies are used taking into account the trade-off between the execution

32

2.2. CACHE-OPTIMIZATIONS

Figure 2.6: Sibling Round-Robin Clustering from [26].

overhead of these approaches and the usage of the memory hierarchy, more specifically

the cache hierarchy.

2.2.5 Discussion

As can be perceived from the previous sections, there is a lot of work that can lead to the

statement that the proper use of cache memory can greatly improve the computations

of a given application, mainly through data locality. However, none of the studied and

documented approaches in this section can be applied to the MapReduce model. In fact,

as far as we know, there is no solution in this context that addresses these four big topics:

• Compiler Optimizations;

• Cache-Oblivious algorithms;

• Cache-aware programming models;

• Automated decomposition;

Not all these topics are applicable to the solution presented in this document, such as

the compiler optimizations and cache-oblivious algorithms. The compiler optimizations

are limited to solutions that are performed before the execution of a program, which does

not fit in the context of our work. The cache-oblivious algorithms try to improve com-

putations that take advantage of the cache without knowing anything about its features,

unlike our objective that is based on these to try to achieve better performances.

33

CHAPTER 2. STATE OF THE ART

Although the studied solutions cannot be directly applied to our context, there are

several concepts that can serve as inspiration. An example of useful concepts that can

be found is the block-tiling strategies, as seen in the Tile Size Selection Using Cache

Organization and Data Layout [13]. This solution takes into account the features of the

memory hierarchy, specially of the cache memories and also use some tiling strategies,

both can be applied to our decomposition solution so that it takes into account these

features.

Our work is the logical follow-up of the one previously conducted in [26]. This work

was developed under the concepts of Sequoia and Hierarchically Tiled Arrays, but it

also keeps the memory hierarchy management transparent to the programmer. However,

this work aims only embarrassingly parallel computations and was implemented in the

context of an experimental platform [27] [32], which is not in the context of a framework

with the generality and complexity of Hadoop [2].

We intend to build upon the strategies developed in [26] for the split and map phase

optimizations. Therefore, the strategies that include partition’s size and the cache memory

hierarchy informations will be refined to the reality of MapReduce computations, which

do not exist in the current state of the art. For instance, the gathering of the information

of the memory hierarchy and the utilization of this information to the decomposition in

a MapReduce application.

34

C
h
a
p
t
e
r

3
Cache-Friendly Tiling for MapReduce Tasks

The main objective of this work is to improve the performance of MapReduce computa-

tions that benefit from the concept of temporal locality. This concept predicts that if we

maintain in memory a data set that is accessed multiple times in a short span of time, the

performance of the application that uses that set can improve just by avoiding moving

data between different memory levels. In order to improve the performance of applica-

tions that benefit from this concept, we focus on improving the mapping of MapReduce

computations in a machine’s cache memory hierarchy. This mapping has to be portable,

meaning that the performance of MapReduce applications that benefit from temporal

locality should be portable across distinct architecture, mainly distinct cache hierarchies,

with little or none intervention from the programmer. Therefore, the final form of our ob-

jective can be described as an in-node approach of a cache-conscious Hadoop MapReduce

extension.

To this extent, in the present chapter we first present the concepts of our approach

and how they fit in the MapReduce execution model. Followed by an explanation of how

these strategies were applied, presenting the actual changes to the Hadoop MapReduce

phases and all the components added. Finally, we analyse the impact of our solution in

the programming model, showing what the programmer has to do differently to use our

solution.

3.1 Approach

To develop our temporal locality approach of MapReduce tasks we had to analyse which

phases of this model were better candidates for the enhancement of the mapping of an

application’s data into the memory hierarchy. Given our objective, we wanted to modify

the way the input data is partitioned and distributed, so that we could harness the full

35

CHAPTER 3. CACHE-FRIENDLY TILING FOR MAPREDUCE TASKS

potential of the underlying hardware. A modification like that has to be done so that the

application data can be partitioned in a way that enables the exploitation of the concept

of temporal locality. Besides leveraging the cache memory hardware, a computation can

obtain better performances by taking advantage of its machine’s processing resources.

Given that, if this partitioning is performed also by taking into account the number of

cores available in a machine, then some conditions can be created for the parallelization

of computations. Howeverm, this parallelization is only possible if the application does

not have a lot of data coupling, so that the tasks resulting from the created partitions

could be processed in parallel and then later aggregated in a final result. Thus leading

to some more application parallelization and consequentially to some computation time

improvement.

From the presentation of the MapReduce model in Section 2.1.1, the natural candidate

phases to handle the decomposition and mapping of an application’s data are the split
and map phases. Both phases have some data distribution control. Although the map
phase could be modified to integrate the desired decomposition before the map function

is applied, the conceptual idea of this phase was not to include data decomposition of

operations. Therefore the split phase presents itself as the best option to implement some

modifications to the application’s data decomposition, which can leverage the usage of

temporal locality and better avail the hardware.

In order to improve the temporal locality of the computations performed by the map-
pers, the split phase must produce key/value pairs that are best suited to that end. The

normal key/value pair contains as its value field units such as a line or even a single

value. However, these units are not always the best for computations that benefit from

temporal locality. As seen in Chapter 2, the usage of block-tiling strategies can benefit

the computations that benefit from the concept of temporal locality. With this in mind,

Figure 3.1 shows the two different decomposition approaches: one that uses a line as its

value field, the line approach; and a second that uses a block as its value field, the block

approach.

The line approach is one of the most used approaches, where the pairs produced by

the split phase are composed by a given key and a line of input data. This approach is

mainly used for text input, wherein the value can be a sentence from a document or a line

of numbers to be analysed. As an example, consider the stencil computation presented

in Section 1.1.2. With the line approach a mapper that receives a line of data is limited to

compute a partial value, mainly because the line does not contain enough information to

complete the computation. With only partial values in the map phase, the application will

have to do extra data transfers which implies more performance costs. By transferring

these partial results to the reduce phase to perform the full computations, it is likely that

the application’s performance will suffer some degradation. The main reason for that is

related with the fact that the reduce phase is performed completely sequentially. This

situation can happen if the logic of the application is not taken into account or, in other

words, the value of a key/value pair is not the best fit for a given computation.

36

3.1. APPROACH

Figure 3.1: Difference of using a line approach and a block approach, on the beginning of
the map phase of a stencil application.

Applications that benefit from temporal locality, such as stencil computations, can

gain from block-tiling strategies. Given that, the alternative block approach is based on

the block-tiling strategies and only differs from current approaches in the content of the

value that composes the key/value pairs. To the best of our knowledge, this approach

has not yet been studied in the context of the generic MapReduce model. However, as

can be inferred from Figure 3.1, if a data block is received as a value by a mapper, it

is more probable that this block includes the needed neighbourhood for the element’s

computation. If this neighbourhood data can be maintained in memory, then there can

be some improvement in the avail of temporal locality at the map phase. Therefore,

by getting more neighbourhoods completed in the map phase, there can be more final

results in this phase. Getting these results at the map phase not only can reduce the

costs of data transferring, but also reduce the amount of computation done in the reduce
phase. The reduction of the computation in the latter phase will contribute to improve

the application’s overall performance. Adding to this the usage of cache-conscious sizes

and we can further reduce the number of data transfers between cache memory levels.

The previous example showed the benefits of using block-tiling strategies to produce

key/value pairs that leverage temporal locality, but in order to map the application’s

data onto the cache memory hierarchy these pairs have to be cache-friendly. This means

that we have to introduce some cache memory hierarchy information in the production

of key/value pairs. By producing data blocks using information such as the cache size,

cache line size and others, we can improve the data transferences between cache levels

and adapt the data to the cache geometry.

In sum, some modifications have to be applied to the split and map phase to cope with

37

CHAPTER 3. CACHE-FRIENDLY TILING FOR MAPREDUCE TASKS

the introduction of data blocks with sizes that fit a target cache level. Being our focus

in the in-memory optimizations, it is desirable that our modifications do not affect the

cluster level, either in its configuration, execution model or even at the programming

model. This is due to the objective of maintaining compatibility with the current frame-

work, so that our solution can be easily integrated. Therefore, our focus was always on

the local execution, in-node, of MapReduce which means that its execution model stays

unchanged on the cluster level, hence the compatibility with the current version it is not

called into question. Nonetheless, is important to mention that our approach supports

heterogeneous clusters, since the modifications are made at an in-node context, and thus

the optimizations are made according to the memory architecture of each target machine.

3.2 Decomposition Implementation

In this section we will detail how our approach is implemented using the Hadoop MapRe-

duce framework. First we start by giving an overview of the implementation, mainly to

identify the components that had to be modified. Subsequently, we go through the details

of our implementation.

In order to see how an application can be mapped onto the cache memory hierarchy

with our solution and also to understand the modifications that were made at the in-node

level of Hadoop MapReduce, we must remember the in-node execution model shown in

Figure 2.5. There, we can see that each node/machine receives a partition of the original

input dataset, being this partition locally handled by an instance of the InputFormat class.

The latter decomposes the received partition into several splits, which are subsequently

parsed into key/value pairs (by RecordReaders) to be consumed by the mappers. With

this model it can be perceived that to address the application mapping and, hence, its

data decomposition into data blocks that fit a given cache level, we have to modify the

way the data is read from the split and how the key/value pairs are build. In this context,

our modifications to the framework target the two main classes of the split phase: the

InputFormat and RecordReader classes.

3.2.1 Implementation Overview

The integration of our solution in the Hadoop MapReduce framework was done by de-

veloping some classes as an extension of what exists, instead of modifying the classes

currently available in the framework. These classes are related mainly with the split
phase, where our solution decomposes the splits produced by the Hadoop MapReduce

classes into multiple data blocks that are supposed to be fed to the mapper of each split.

As mentioned in the previous sections of this chapter, the objective of this decomposition

is to provide to the mappers data blocks that have enough data to produce computations

that take advantage of the parallel executions of this phase. At the same time, the size of

data used to produce these blocks is dependent of some cache memory hierarchy features.

38

3.2. DECOMPOSITION IMPLEMENTATION

Figure 3.2: RecordReader block decomposition with a cache-concious support.

To apply this solution we had to target the RecordReader class, which is the cen-

tral class of the split phase of Hadoop MapReduce. The main idea for our class, which

performs a cache-friendly block-tiling decomposition, can be divided in two parts: the

reading of a partition with a size influenced by some cache memory hierarchy informa-

tions, and the integration of an application’s decomposition logic.

As can be seen in Figure 3.2, the first part of our decomposition is focused in reading

data from a mapper’s split. This is represented by the ReadPartion action in Figure 3.2. The

main idea of this action is to read a partition of a split that has a size that is dependent of

some cache memory hierarchy features. Given that, our RecordReader class reads from

a configuration file information of the cache hierarchy, such as a given cache size, cache

line sizes, or even the level of cache sharing (how many processor share a cache level). A

given algorithm uses this information and produces a value that is the size of the partition

read from the split. However, one thing that we have tried to achieve was the possibility

of modifying this algorithm, so that the programmer could choose the hierarchy features

that were more relevant for its application. With this, the algorithm can be implemented

by the programmer. For example, we can use the size of a target cache level to limit the

partition size. This approach assures that the blocks produced from a partition of that

size will fit in the target cache, which can help in the mapping of the applications data

onto the cache hierarchy.

The second part is related with the integration of block-tiling strategies in the ex-

tended RecordReader by the definition of an application’s decomposition logic. This

logic will receive the partition’s data and use it to produce the data blocks that are fed to

39

CHAPTER 3. CACHE-FRIENDLY TILING FOR MAPREDUCE TASKS

the mappers. However, this decomposition logic is subjective to each different application,

wherein each application may require different kinds of blocks. With that in mind, the

programmer implements a decomposition logic to adapt our RecordReader to a given

application. The result of the implementation of these methods is represented in Figure

3.2 by the Build Blocks action, where it can be seen that these actions take the partition’s

data and produce blocks that are then passed to the map phase.

In the next section we will present in more detail the implementation of the decompo-

sition approach and its cache-friendly support in the abstract RecordReader and explore

the possibilities that can be drawn from the proposed methods.

3.2.2 Implementation Details

As previously discussed in Section 3.2.1, different applications may require different

decomposition logics, hence the developed classes were idealized with two intentions in

mind. The first is related with the main objective of this work, optimize the usage of

the locality principles. The second intention was tied to the importance of developing

these classes to be as extensible and easy to modify as possible, without losing the main

decomposition principle. Given that, we developed classes for the split phase that could

be used by every kind of application where the use of data blocks makes sense. Next

we describe the classes that we have extended to integrate our solution into Hadoop

MapReduce by first explaining the details of the block decomposition and then discussing

the support for cache-concious approaches.

3.2.2.1 Block-Tiling

The solution is composed by the implementation of the two main classes of the split phase,

the InputFormat and the RecordReader. In this section we go through the details of each

class implementation.

We start by the InputFormat class, where we have extended the class Sequence-

FileInputFormat. The choice of using this class as base for the extended InputFormat

is related to its requirement of a type of binary input file, which is composed by key and

value objects. This type of files are called SequenceFiles and are offered by the Hadoop

MapReduce, as a file that is easier to manipulate by RecordReader. With this, our Input-

Format class is called BlockSequenceFileInputFormat and it only differs from a regular

SequenceFileInputFormat in the implementation of the createRecordReader method,

where its implementation returns an instance of BlockSequenceFileRecordReader (our

RecordReader implementation).

The BlockSequenceFileRecordReader class targets the production of key/value pairs

whose value field is a data blocks. As the other RecordReader classes, the BlockSequence-

FileRecordReader gets a data partition from its InputSplit, which is passed to a pro-

grammer’s decomposition algorithm that produces the key/value pairs. Depending on

the programmer’s decomposition, the data partition can produce more than one pair, but

40

3.2. DECOMPOSITION IMPLEMENTATION

Method Description

HierarchyLevel getHierarchyLevel() Returns an HierarchyLevel, that repre-
sents a level of the cache hierarchy

long getPartitionSize() Returns the size of split’s partitions, tak-
ing into account the cache level given by
the user

Tuple<K,V> buildBlock(
List<Tuple<K,V>> pairsList)

Abstract method that builds a pair com-
posed by a Key and a Value, where the
value is a block of input data

Object copyKey(Object o) Auxiliary abstract method to prevent er-
rors in the modification of key objects

Object copyValue(Object o) Auxiliary abstract method to prevent er-
rors in the modification of value objects

boolean hasMoreBlocks() Boolean abstract method that indicates if
there is any more blocks in the chosen
data structure to be consumed

Tuple<K,V> getNextBlock() Abstract method to get the next block
from the chosen data structure

int size() Abstract method to get size of the chosen
data structure

Table 3.1: BlockSequenceFileRecordReader class methods (not included methods inher-
ited from the base RecordReader).

only one pair is handed to the mapper at a time. Accordingly, the remainder pairs have

to be stored somewhere, so we introduced a set of methods that interact with a storing

entity that keeps these surplus pairs, which can be a simple data structure or a even a data

base. Following the same idea of the RecordReader extensibility, the choice of how and

where the surplus pairs must be stored is delegated to the programmer. The motivation

for this design decision arises from the fact that different decomposition algorithms (or

even applications) have different orders in which the pairs are outputted to the mapper.

Using a default data structure independently of the decomposition logic, could hamper

the task of expressing this logic. Given that, we created a set of abstract methods that

the programmer must implement when extending the BlockSequenceFileRecordReader

class. These methods are presented in Table 3.1, and are divided into two groups: the

methods to express the application’s decomposition logic of a given application that pro-

duces data blocks; and the methods that are used as the communication interface between

the BlockSequenceFileRecordReader and the programmer’s data structure. The first set

of methods is composed by the copyKey, copyValue and the buildBlock. The methods

related to the data structure are the hasMoreBlocks, getNextBlock and the size.

In order to introduce the decomposition logic methods and to get a more precise view

of what happens under the hood of the BlockSequenceFileRecordReader, we present

Figure 3.3. This figure shows what happens when a mapper asks for a new key/value

pair from its RecordReader. The latter starts by verifying if the data structure that stores

41

CHAPTER 3. CACHE-FRIENDLY TILING FOR MAPREDUCE TASKS

Figure 3.3: Solution RecordReader execution model.

the surplus pairs has some pairs available, by invoking the method hasMoreBlocks. This

method is therefore responsible for verifying if the data structure is empty. Depending

on the value returned by the hasMoreBlocks, there can be two scenarios: where the data

structure is empty (most probable at the first call); and a the second case which implies

that are at least one pair ready to be sent to the mapper.

The first case can be interpreted as there is no more pairs to hand to the mapper, or it

was the first request. The first request for a key/value pair, as the majority of the requests,

starts with RecordReader reading a InputSplit partition. This partition is not read at

once, instead the RecordReader reads it pair by pair until the pre-determined amount of

bytes is read. This amount is determined with the help of some information of the cache

memory hierarchy, but that it is left for discussion in Section 3.2.2.2. As each key/value

pair is read from the split, the copyKey and copyValue produce a copy of the pairs and

stores the copies in a internal list. The act of copying the keys and values is necessary to

avoid errors, such as the ones related with adding references of the key and value objects

to the internal list. This problem can happen mainly because of the split read mechanism

offered by the Hadoop API. Given that, the RecordReader is agnostic of how the data is

handled, it is of the programmer’s responsibility to specify how to copy the key and value

objects.

42

3.2. DECOMPOSITION IMPLEMENTATION

After the partition’s size reaches the limit, the list of key/value pairs is passed as

a parameter to the invocation of the buildBlock method. Is in this method that the

programmer must express the application’s decomposition logic by implementing the

algorithm that produces the data blocks and consequently the key/value pairs. As this

method can produce more than one pair for a given partition, it is also the buildBlock

responsibility to handle the surplus pairs. This behaviour can be seen in Figure 3.3, where

buildBlock uses the input key/value pairs and produces new data blocks that are stored.

In reality, what is stored are key/value pairs and not the blocks, the figure presents them

as blocks to emphasize the usage of blocks in the value field. However, even with the

storing of the surplus key/values pairs, the programmer’s implementation has to return

a pair. This pair can be one produced at the time, or one stored at the data structure.

Hence, the programmer also has the power to choose in which order the key/value pairs

are handed to the mappers.

The second case is closely related with the end of the InputSplit. When the Recor-

dReader finishes reading the respective InputSplit there may still exist some pairs to be

processed by the mapper. Hence, after the InputSplit is fully read the control of the order

in which the pairs are sent is passed to the getNextBlock method. The control changes

to this method because it is the responsible for returning the next block from the data

structure. Therefore, this method is responsible by returning the stored pairs produced

by the RecordReader, doing it in a order specified by the programmer’s implementation

of this method.

For both cases the mapper call to its RecordReader end with the return of a key/value

pair that contains a data block as its value field.

3.2.2.2 Domain Splitting

The decomposition of the application’s data onto the cache memory hierarchy its done

mainly by the determination of the size of the partition read from the InputSplit. This

is done in method getPartitionSize, also present in Table 3.1. The implementation of

this method joins the information retrieved from a configuration file and an algorithm

that determines the desired partition size. The configuration file provides a specifica-

tion of the cache memory hierarchy an its features, such as the cache size or line size.

With this information some strategies can be employed to produce partitions that conse-

quently give rise to cache-friendly data blocks. Perhaps the simplest example is to use a

target cache level size as the size limit for a partition. This approach ensures that all the

blocks produced from these partitions will fit on the target cache, which is the default

implementation in the BlockSequenceFileRecordReader.

Nonetheless, there are more complex strategies that cannot be expressed just by the

size of the partition. For example, a vertical decomposition approach that basically par-

titions the input data throughout the cache hierarchy, as explained in [26]. This more

43

CHAPTER 3. CACHE-FRIENDLY TILING FOR MAPREDUCE TASKS

complex approach can be expressed in the buildBlock method as the programmer’s de-

composition logic by starting with a partition with the size of the last level cache (LLC),

and using the cache memory hierarchy information available by the getHierarchyLevel

method, to decompose the partition through the cache hierarchy.

3.2.2.3 Other Details

One of the work premisses was to explore the locality and decomposition concepts in an

in-memory environment. However, as mentioned in Chapter 2, the Hadoop framework

was developed mainly for a cluster environment and uses disk-oriented approaches to

store intermediate results. Besides the in-node context, each task is executed on its own

JVM (Java Virtual Machine), which means that the tasks cannot share a process-level heap.

These two features of the Hadoop framework represent a obstacle to an in-memory ap-

proach as is ours. To solve these problems we used the GridGain In-Memory Accelerator

6.6.4 extension. This extension was developed to optimize the Hadoop MapReduce jobs

by replacing its HDFS for an in-memory HDFS, which means that the interactions with

the hard drive are replaced with interaction with the remaining of the memory hierarchy.

Furthermore, the GridGain extension enables a JVM to have more than one task, or even

use a single JVM for all the tasks.

3.3 Programming Model

In this section we describe what the programmers have to implement, so that they can

use our cache-conscious block tiling support and adapt it to their applications. Hence,

we describe in more detail the implementation of a class that extends BlockSequence-

FileRecordReader abstract class, by explaining what should be used and which extra

requirements are needed so that they can be integrated into an Hadoop MapReduce ap-

plication.

3.3.1 What has to be Implemented?

A programmer that wants to use our approach has to extend the BlockSequenceFileRe-

cordReader class. In order to do it and to express the application’s decomposition logic

the programmer must implement the methods presented in Table 3.1.

To use BlockSequenceFileRecordReader as the base RecordReader for an Hadoop

MapReduce application, the programmer has to implement the methods related to the

reading of the data from the InputSplit. These methods are the copyKey and copyValue

methods. The implementation of these methods is strictly required, because our approach

does not assume any type either for the key or value fields in a pair. Given that, the

programmer must implement these two methods so that from an Object general type

it can produce a copy of the received object. They were made many experiences that

included generic versions of these method, but the resulting performances were very bad.

44

3.3. PROGRAMMING MODEL

In order to express the decomposition algorithm of the programmer’s application, the

programmer must implement the buildBlock method. This method is the responsible

for receiving the data and produce the pairs, therefore this method generally is the most

complex to implement in our approach. Since this method is also responsible for man-

aging the data structure that stores the surplus blocks, it is recommended to separate

the logic of build the cache concious blocks and consequently the pairs, from the data

structure logic.

The data structure for the surplus pairs is of the programmer’s responsibility, both its

choice and management. The BlockSequenceFileRecordReader only interacts with this

data structure by three methods that the programmer must implement. The first method

is called hasMoreBlocks, and can be implemented has a query to the data structure so

that our class knows whether there are pairs remaining to send to the mapper. The second

method is the getNextBlock and returns the next pair to be processed. This method does

not need to follow the data structure order of retrieving its objects, but the programmer

can implement the order which better fits the application needs. The same cannot be said

about the third method, size. This is a more strict method, but easier to implement, that

can use the data structure methods to get the information about the number of elements

stored in the data structure.

The basic solution we propose only takes into account the size of a chosen cache level

to see the size of the data partition read from the split, but other approaches might be

desired. To modify this logic of our solution the programmer can modify the getParti-

tionSize method. In this method the programmer can access any variable setted in the

Hadoop Configuration of its application by using the variable conf and with it imple-

ment the desired algorithm to find the optimal partition size. It is worth to mention that

this implementation is completely optional, so any modification is of the programmer’s

responsibility.

3.3.2 Configuration Requirements

The implementation and utilization of these classes requires some extra information, so

that the cache-conscious decomposition is possible. With this, the programmers must

add some more information about the cache hierarchy of a given machine to the Job

Context, enabling the use of our classes in their applications. These additions are related

to the definition of two fields in the Context object and their names are cache.level and

hierarchy.file. The first field, cache.level, informs our classes which cache level is the target

for a given application. This is a optional field that can be used in some implementations

to target a specific cache level. The hierarchy.file field gives the path of a JSON file. This

file is inspired in the ones defined in [26], which contains the cache hierarchy of the

machine in use, as can be seen in Listing 3.1. The cache hierarchy files are composed by a

well defined structure of JSON nested objects that include the fields:

• child - main object that represents a memory level and contains all its information.

45

CHAPTER 3. CACHE-FRIENDLY TILING FOR MAPREDUCE TASKS

1 {

2 "siblings": [[0,1,2,3,4,5,12,13,14,15,16,17],

3 [6,7,8,9,10,11,18,19,20,21,22,23]],

4 "size": 15728640,

5 "cacheLineSize": 64,

6 "child": {

7 "siblings": [[0,12],[1,13],[2,14],[3,15],[4,16],[5,17],[6,18],

8 [7,19],[8,20],[9,21],[10,22],[11,23]],

9 "size": 262144,

10 "cacheLineSize": 64,

11 "child": {

12 "siblings": [[0,12],[1,13],[2,14],[3,15],[4,16],[5,17],[6,18],

13 [7,19],[8,20],[9,21],[10,22],[11,23]],

14 "size": 32768,

15 "cacheLineSize": 64,

16 "child": null

17 }

18 }

19 }

Listing 3.1: JSON file with the cache memory hirarchy.

If its value is null then the current memory level is the bottom-most one

• siblings - represents the siblings cores that share a memory level

• size - size of the memory level (in bytes)

• cacheLineSize - size of the cache coherency line (in bytes), used only for memory

levels that represent a cache level

Listing 3.1 shows the representation of a cache memory hierarchy composed by three

levels. On the more general level, the L3 level, we have two caches of 15 megabytes with

cache line of 64 bytes, wherein each cache is shared by half the cores. The L2 cache level

has 12 cache each shared by two cores and has a capacity of 256 kilobytes and a cache

line of 64 bytes. The level closer to the processing cores, the L1 cache, is also shared by

two cores at a time and has a capacity of 32 kilobytes with a 64 bytes cache line.

Both of these fields are very important in our solution either in the decomposition

solution, presented in this chapter, or in the stencil API presented in Chapter 4, but in

different contexts. In this solution they have to be specified by the programmer. How-

ever, the stencil API integrates these fields in the configuration of the applications, via a

configuration file such as the one presented in Listing 4.4.

3.3.3 Implementation Example

To give a better idea of how a decomposition algorithm can be implemented using our

Recordreader as a base class, we present one implementation that is used to decom-

pose input data represented as a matrix. With this, we have implemented and extended

46

3.3. PROGRAMMING MODEL

Figure 3.4: BlockedMatrixRecordReader block decomposition.

47

CHAPTER 3. CACHE-FRIENDLY TILING FOR MAPREDUCE TASKS

the BlockSequenceFileRecordReader that handles matrices that is called BlockedMa-

trixRecordReader. The objective of this class is to handle matrix-like inputs and pro-

duce key/value pairs, where the value field represents a block of matrix’s elements. This

class can be used in applications/computaions that have as its input a single matrix,

for example stencil applications or single matrix operations. In the implementation

of BlockedMatrixRecordReader, only the required abstract methods (and some auxil-

iary) were implemented, which means that the getPartionSize remained remained un-

touched. Given that, to better understand how we have implemented the extended class,

we go through the execution presented in Figure 3.4.

The BlockedMatrixRecordReader class was developed for inputs that represent ma-

trices of float values, mainly to get a more concrete example. However, the developed

class can be adjusted in order to support any other type of elements without modifying

its main concept. The input is represented by a SequenceFile that is composed by two

types objects, one for the key and the other for the value. The key objects are of the type

LongWritable and represent a number of the matrix line. For the values, these objects

are BytesWritable which store the content of a line in bytes. As can be seen in Figure 3.5,

the actual content of the BytesWritable objects are n floats for this concrete example.

Figure 3.5: Block Matrix RecordReader pair production example.

The normal execution of the BlockedMatrixRecordReader class starts by reading a

partition from the respective InputSplit, as shown in Figure 3.4. The process of getting

this partition is performed by reading key/value objects until a limit is reached. This limit

48

3.3. PROGRAMMING MODEL

represents a quantity of bytes that is determined by the getPartitionSize method. For

the BlockedMatrixRecordReader class, it is used the default implementation that gets

the size of a given target cache level. A mechanism that is not represented in Figure 3.4 is

the process copying the objects read from the split to the pairs internal list that is passed

to the decomposition algorithm. This process is applied to every pair read from the split

using the copyKey and copyValue methods. In this case, the copyKey method receives an

Object object and copies a LongWritable from it, then this copy is returned as a Object

object to the BlockSequenceFileRecordReader base class. The copyValue method works

in the same way, but instead of getting a LongWritable, it gets a BytesWritable object.

After getting the list of pairs that amount to at most the target cache level size in

bytes, the decomposition algorithm is triggered through the invocation of the build-

Block method. The decomposition algorithm for BlockedMatrixRecordReader is based

on two previously calculated values, the number of rows and columns for a desired block-

/tile of the input matrix. These dimensions are used together with the internal list of

pairs to produce the key/value pairs that are handed to the mappers. As shown in Figure

3.4, we have to read n rows of our matrix which really means reading n pairs from the

list, because of the content of value field is indeed a line. In Section 3.3 we advised the

programmer to separate and decouple each part of the decomposition algorithm, and

also to separate most of this logic from the data structure management. The decision of

maintaining a single method was taken due to the unpredictability of possible implemen-

tations. In other words, we could not assume any structure either for the decomposition

logic or for the data structure and its management, as it could limit the range of possible

implementations. For our approach, we have separated the decomposition into two main

methods presented in Table 3.2. As a result, the process of reading n lines is implemented

by the getNLines method.

To produce the actual blocks the implemented solution passes the n lines to the

createBlocks method, which decomposes the set of lines according to the number of

columns for the regular tile/block of the input matrix. When a tile/block with the speci-

fied dimensions is produced, the createBlocks method builds a key/value pair, whose

key field contains the block dimensions and whose value field is the data tile/block it-

self. The resulting blocks may have different dimensions (as is exemplified in Figure

3.5). Hence, the mappers that will process these blocks have to know theirs dimensions.

To tackle this problem we use the key field of the handed key/value pairs to store the

dimensions of the produced blocks, thus avoiding possible errors in the application level.

In the end of the decomposition logic, the produced key/value pairs are added to

the data structure that stores the surpluses pairs. This data structure chosen for this

implementation is a FIFO queue, mainly because it seemed the most natural behaviour for

the applications that would use our class. The name used for data structure management

method getNextBlock.

Something that is very important when extending and using the BlockSequence-

FileRecordReader is the type of the objects used for the key/value pairs, which must be

49

CHAPTER 3. CACHE-FRIENDLY TILING FOR MAPREDUCE TASKS

Method Description

List<Tuple<LongWritable,BytesWritable>>
getNLines(long n,Queue<Tuple<K,V>>
pairsQueue)

This method reads n lines of
a matrix. Each element of
keysQueue represent a line in
a matrix and the its values are
stored in the same position in
the valuesQueue.

void createBlocks(List<Tuple<LongWritable,
BytesWritable>> blocksLines)

CreateBlocks it is the method
responsible for the actual cre-
ation of the blocks. This
is done by receiving n lines
of matrix and according with
the given regular block di-
mensions these blocks are cre-
ated.

Table 3.2: BlockedMatrixRecordReader class methods (not included methods inherited
from the base BlockSequenceFileRecordReader class).

in accordance with the types received by mappers. This situation must be carefully done,

mainly to prevent application malfunctions. For our example, we chose both for the key

and the values the BytesWritable type, mainly because this type is easily read and its

does not add more dependences. This is not a problem created by our solution, but a

inherited problem from the version of the framework used at the time of development.

3.4 Final Remarks

In this section we have presented our solution for the decomposition of the application’s

data using block-tiling strategies, with some support for the inclusion cache friendly

strategies. This approach was implemented in the Hadoop MapReduce framework which

proved to be well fitted for our experimentation, even with the need to add the GridGain

In-Memory Accelerator extension to take Hadoop to an in-memory context. This frame-

work revealed itself to be easy extensible, wherein the development of new classes where

always based on base classes made available by the framework. Moreover, the frame-

work’s popularity and extended community helped in numerous situations, which could

have delayed the work.

The next chapter will present our study case to test and validate our decomposition

solution. As our objective targets applications that have a natural tendency to benefit from

the concept of temporal locality, we choose the case of stencil computations to experiment

our solution. In addition to the reasons already mentioned, the choice of using stencil

computations derives from its great importance in many scientific applications and also

because of the absence of support to this kind of computations in the Hadoop context.

50

C
h
a
p
t
e
r

4
A Programming Model for Stencil

MapReduce Computations

Stencil computations are quite important in the field of scientific computing, which by

itself makes the construction of an API dedicated to this type of computations useful.

Moreover, stencil computations also posses characteristics that can be used to validate the

cache-conscious block-tiling decomposition solution we have proposed in the previous

chapter. These computations are generally embarrassingly parallel which is suitable

for MapReduce, and also they benefit from temporal locality, where a computation of a

element’s stencil has to visit its neighbours in a short span of time. Expressing stencil

computations using MapReduce in order to make the most of its computing in the map
phase can be a non trivial task, due to the management of the neighbourhoods. Moreover,

these tasks do not get any easier when we try to map these neighbourhoods into the

memory hierarchy of a given machine. In this context, the development of a stencil

directed API that makes use of our locality enhanced MapReduce framework is a relevant

and useful contribution. Hence, as a way to validate our solution and to test our concepts

we developed an API that expresses stencil computations in the Hadoop MapReduce

model.

4.1 Stencil Computations

In general, stencil computations can be described as a piece of code which represents a

given pattern to be applied to an array of elements. In other words, a stencil is a compu-

tation based on a pattern that is applied to all the elements of a multi-dimensional vector,

such as a matrix (including images), and that generally depends of the neighbourhood of

each element. We begin this section be presenting some relevant work in the paralleliza-

tion and optimization of this kind of computations. Then we discuss the way that the

51

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

stencil computations can be mapped to the context of a MapReduce application.

4.1.1 Optimization of Stencil Computations

The optimization of stencil computations has been a topic of some research that tries to

find better mechanisms or strategies to improve the performance of this kind of compu-

tations, so that the hardware is better availed whether in terms of memory, or in terms of

processing units. Herewith, this type of research has these similarities with our work, as

can be seen in studies such as [14], or [30].

In the study presented in [14], shows that the low performance of this kind of com-

putations can be related to the disparity of speed between the main memory and the

processing units. With this, the study evaluates the usage of strategies such as block-

tiling and time-skewing as an attempt to exploit some cache locality, trying to exploit

both temporal locality and spatial locality. However, some cache-oblivious algorithms are

used and compared with cache-aware algorithms. This is done mainly by comparing the

stencil performance with both approaches and to verify if the cache-oblivious algorithms

can be a feasible strategy. In this work it is done a extensive evaluation on the type of

stencil used, testing the impacts of the mentioned strategies to single iteration stencils

and multiple iterations stencils, wherein the first type does not possess the characteristics

to employ a time-skewing strategy.

A more recent study presented in [30], shows a similar approach to the above men-

tioned where the block tiling and time-skewing strategies are used to study the perfor-

mance improvement of stencil computations. However, in this study the main focus goes

to the combination of strategies that not only improve locality, but also try to improve

parallelization. Whence some strategies such as wavefront parallelization or pipeline

parallelization are employed for multi-iteration stencils.

Both the aforementioned works resort to strategies such as block-tiling or time-skewing,

but in the context of this work only block-tiling is useful. The time-skewing strategies are

only useful for iterative stencils and the focus of this work is in the optimization of a sin-

gle iteration, mainly because it is this behaviour that allows us to validate the developed

solution. However, as reported in both papers the block-tiling strategy can achieve some

good results, improving the stencil computations performance and therefore the usage of

this strategy can be useful for a better avail of the memory hierarchy.

4.1.2 Stencil Applications with MapReduce

Since the stencil computations operate on neighbourhoods, they benefit substantially

from temporal locality. Thus they become good candidates to take advantage of our

block-tiling approach that produces key/value pairs containing data blocks, improving its

memory usage and consequentially its performance. Yet, if we want stencil computations

as the type of applications that can test and validate our solution, then it is necessary to

find a way to express this kind of computations in the MapReduce model.

52

4.1. STENCIL COMPUTATIONS

From the characteristics of the stencil computations, we can extract some actions, such

as the construction of an element’s neighbourhood and the application of an operation

to those elements. These actions could be expressed in a way where the neighbourhood

construction is done in the map phase and the computations of the values could be made

in the reduce phase, as explained in Section 1.1.2. However, this approach can deteriorate

the application’s performance just by the amount of data transference between the map
and reduce phase. Besides, this approach would not explore much the concept of temporal

locality.

Another way of expressing stencil computations is to decompose the stencil opera-

tions into an element’s value and to its neighbourhood values partial computations. In

other words, we could have the computation divided into the main element part and the

neighbourhood part, being the latter an operation applied to each neighbour value. If

these operations are applied at the iteration of the elements, then they could be expressed

in the map phase. With this, for each data block received, our application would try to

compute the stencil of its elements based on the partial computations it could accomplish.

However, the attainment of complete stencil computations is limited by the elements that

each data block contains. It may happen that for a given element the current data block

does not contain all the elements needed for that stencil computation. Hence, the map
phase tries to do as much computations as it can, and sends the partial and complete

computations to the reducers in charge of a given element computation. Still in this sec-

ond approach, the reducers are still responsible for the final computation of an element’s

value. Being that each reducer has multiple elements assigned to it, but only computes

each element value at a time. Given that, a reducer receives a set of partial results related

to a given main element and then aggregates them into a final result, later moving on to

the next main element computation.

These strategies can be applied either for the line approach or the block approach, as

mentioned in Section 3.1. However, if the mapper receives a data block, it can perform

more computations, which on one hand will increase parallelism and on the other will

allow us to use the cache-conscious block-tiling decomposition to leverage the cache

hardware and so improving the temporal locality of the map phase. To effectively benefit

from temporal locality, the data read from the input must persist in memory across the

execution of multiple map functions. Only so it will be revisited multiple times.

The purpose of this part of our work is to validate the developed decomposition solu-

tion using a single iteration of stencil computations, mainly because it is this best suited

context to do it. However, stencil computations are iterative by nature. Even though this

is not the focus of our work, the iterative behaviour of a stencil can be emulated by the

chaining of multiple MapReduce jobs, where the input of a job is the output of the previ-

ous one. This can be done with a single loop that has a stopping condition, dependent of

the specific stencil, and also with some intermediate data structures if necessary. Yet, has

said before this is not the context of our work, so we will not delve into it further.

53

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

4.2 Stencil API

A stencil computation in MapReduce can be concisely expressed with a full or partial

computation of an element’s stencil in the map phase, leaving the aggregation of the

possible partial computations and the output of the final results to the reduce phase. The

map phase has the responsibility of receiving the data blocks and compute the stencil of as

many elements as possible. However, the block received by the map phase only contains

enough data to compute the stencil of the elements that have all their neighbourhoods in

the block. When this situation occurs then there are two possibilities: 1 - the necessary

elements for the full computations of stencil’s element was already processed and, hence,

they are cached in a intermediate data structure; 2 - the elements need for a given element

stencil are not available, and in this case the stencil computation is left to the reduce phase.

Figure 4.1: Example of stencil computation applied to a matrix. The neighbourhood is
composed with elements that are within a element reach.

In both previous cases the the element for which the stencil is being computed has to

be sent to the reduce phase, mainly because it is needed for the completion of the stencil

computations of the elements that are out of the block currently being processed and

which have this element in their neighbourhood, as shows in Figure 4.1. In the first

possibility, the portion of the neighbourhood that is out of the current block has already

54

4.2. STENCIL API

been read and cached in an intermediate data structure. This means that the stencil of

these elements were left for the reduce phase, since they needed the block that is only now

being processed.

The second possibility happens when the current block is read before the neighbour

and, hence, this block has already been cached in the intermediate data structure. This

may be true for many situations, but is not guaranteed because several mappers can be

running in parallel. The fact that the mappers are executed in parallel influences the

behaviour related with the intermediate data structure. This data structure is shared by

all the mappers and, as a block arrives to a mapper, the elements in that block are stored so

that more computations can be achieved in the map phase. With this, it is necessary to do

some concurrency control to the data structure access, which means that the parallelism

of the computations is decreased.

The reduce phase is less complicated or, in other words, more thin than the map phase.

This phase has to distinguish the partial computations from the full computations, so the

two scenarios can happen. The first derives from an incomplete or partial computation

of an element’s stencil. In this situation the reducer has to iterate over all the partial

computations or elements, compute the final result and do its output. In the second

situation we have a simpler scenario, where the reducer has to identify the final result and

do its output. Yet, with the optimizations and the cache-like data structure, the second

scenario is the most usual. Hence, the overhead of iterating over partial results happens

mainly for the elements of the first processed data blocks, therefore being a minority.

Being the concepts applied in map phase intrinsic to the majority of stencil computa-

tions, we can refer to them as the stencil logic. Hence, to abstract this stencil logic, in order

to reach the majority of stencil computations, the programmer has to provide to our API

the way a stencil computation applies a stencil to an element and to its neighbours, and

which elements of a given input are subjected to this stencil. To achieve this, we devel-

oped some abstract classes that help to translate a stencil computation into a MapReduce

computation.

4.2.1 API Classes

In Figure 4.2 it can be seen the layer model of our solution. The first layer is related

to the original Hadoop, where our solution is based on. The second layer represents the

classes added to Hadoop to handle our cache-concious decomposition solution, presented

in Chapter 3. The last three layers are related with classes developed for our stencil API.

The first layer shows the base classes, which represent the base for all MapReduce stencil

computations. In the second layer we have the classes needed for a stencil application that

receives a matrix as its input. Finally the last layer, the application layer, which is where

the programmer’s application classes are contained. To use our API the programmer has

to extend three major classes related to the map phase, to the stencil computation logic

and to the stencil driver application. In the next sections we present the API classes, by

55

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

Figure 4.2: API classes layer model. In the first column are the driver application classes;
On the second column are the classes related to the map phase; Third column has the
classes related to the reduce phase; Fourth column is related to the stencil computation
classes.

going through the columns presented in Figure 4.2.

4.2.1.1 Map Phase Classes

The API classes related to the map phase are depicted in the second column of Figure

4.2. The base class for the map phase is the StencilMapper abstract class that extends the

Hadoop Mapper class and overrides its main methods: setup, cleanup and map. Its main

objective is to offer a way to read the data blocks and a basic set up for the map phase. As

shown in Table 4.1, this abstract class asks the programmer to implement some methods

such as the readElement which tells the class how to read the value of an element from a

ByteBuffer, the stencilMapLogic that tells how the data block has to be iterated and the

compute method which basically applies the stencil computation logic to each element.

Being a generic class for the map phase, StencilMapper does not embed information

about how the input data is organized or, in other words, how the elements are arranged

and how to apply its computation correctly. The corresponding class in the Matrix sup-

port layer, MatrixStencilMapper, is responsible for setting up two processes: setting up

the environment of the map phase and also includes all generic behaviours required to

apply stencil logic to a matrix.

For the configuration of the map phase, the MatrixStencilMapper uses the setup

method (inherited from the Hadoop’s Mapper class) to: 1 - initialize the cache-like data

56

4.2. STENCIL API

Method Signature Description

void map(BytesWritable blockDims,
BytesWritable value, Context context)

Method inherited from Hadoop’s Mapper
class

T readElement(ByteBuffer inputBuffer) Abstract method that should define the
way that an element is read from a Byte-

Buffer, where T is the generic type that
represents the type of values handle by
the stencil

void stencilMapLogic(Context context) Abstract method that should implement
the stencil logic, therefore the sending
of pairs to the reducers must also be
included in the implementation of this
method

void compute(C coordinate,
boolean maintainValue)

Abstract method that applies the compu-
tations implemented by user classes to the
input elements and writes the complete or
partial results to the reducers, The type
use to represent the coordinates of ele-
ment are represented by a class C

int getFirstLineIdx() Returns the index of the line where the
block starts

int getLastLineIdx() Returns the index of the line where the
block ends

int getFirstColumnIdx() Returns the index of the column where
the block starts

int getLastColumnIdx() Returns the index of the column where
the block ends

Table 4.1: StencilMapper class methods.

structure with a value returned by a programmer implemented method called getMa-

trixInitialValue; 2 - perform a instantiation of the class that offers the logic of the

stencil computation, which is presented later in this section.

The core of the stencil logic has to be expressed in the compute method, presented in

Table 4.2. This method is inherited from the StencilMapper and, depending on the exten-

sion of the latter class, can have different implementations. However, independently of

the logic implemented by a class that extends StencilMapper (as the MatrixStencilMap-

per) the programmer has to implement methods such as: the getMatrixInitialValue

that tells the class with which value initializes the elements of the data structure; and

the isInitialValue which helps to verify if a given value is the default. These methods

have to be implemented by the programmer’s class that extends MatrixStencilMapper.

However, the most important dependence of this class is related to the programmer’s

extension of the class StencilComputation.

57

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

Method Signature Description

M getMatrixInitialValue() Abstract method that has to
give the default value for the
empty matrix

boolean isInitialValue(T value) Abstract method that must
verify if a given value is equal
to the default value for a
empty matrix, where T is the
type of the value handled by
the stencil

T readElement(ByteBuffer inputBuffer) Method inherited from Sten-

cilMapper class, that uses
the StencilComputation

method with the same name
to read from a ByteBuffer,
where T is the type of the
value handled by the stencil

void compute(Tuple<Integer, Integer> coordi-
nates, boolean maintainValue)

Abstract method inherited
from StencilMapper class

Table 4.2: MatrixStencilMapper class methods.

4.2.1.2 Stencil Computation Classes

The StencilComputation abstract class, whose interface is presented in Table 4.3, offers

to the map class the stencil logic. As mentioned in Section 1.1.2, this logic can be expressed

in two components: the main element component and the neighbourhood component.

However, the way to aggregate these components it is not always the same. Hence, to

express the stencil logic we have the main element component, the neighbour element com-

ponent and the aggregation component, which specifies how the first two components are

aggregated to get the final result. With this, the programmer must extend the StencilCom-

putation in order to express its stencil logic, mainly by implementing the mainElement-

Computation, neighbourComputation and aggregateComputations method, which are

related with three perspectives mentioned earlier in this section. Besides offering the sten-

cil computation logic to the compute method, the StencilComputation class offers the

auxiliary methods such as the readElement and writeElement which translate elements

used in the compute method from and to byte form.

As can be perceived in Table 4.3, there are two remaining methods, the serConfigu-

ration method and the newInstance method. The first is related with the setting of the

application’s Configuration object that may contain some programmer specified field

useful for the stencil computation. The newInstance method provides the means for the

framework to create new instances of the class by using the factory pattern.

58

4.2. STENCIL API

Method Signature Description

void setConfiguration(Configuration configura-
tion)

Method responsible for set-
ting the Configuration ob-
ject for the computation class

StencilComputation<C, N, T> newInstance() Abstract method that has to
create a instance of the class
that extends the StencilCom-
putation

T mainElementComputation(C mainElement-
Coord,T mainElementValue)

Abstract method that is re-
sponsible for the partial cal-
culations made with the main
element of a stencil for this
same element

T neighbourComputation(C mainElementCo-
ord,T mainElementValue, C neighborCoord, T
neighborValue,int numberOfNeighbors)

Abstract method that imple-
ments the partial calculation
applied to a neighbour for the
stencil calculation of the main
element

T aggregateComputations(Tuple<Integer, Inte-
ger> mainCoords, T finalResult, Tuple<Integer,
Integer> neighborCoords, T partialComputa-
tion)

Abstract method that imple-
ments the operation that al-
lows the "sum up" of the par-
tial calculation

T readElement(ByteBuffer inputBuffer) Abstract method that should
define the way that an ele-
ment is read from a Byte-

Buffer

byte[] writeElement(T element) Abstract method that should
define the way that an ele-
ment is turned into a byte ar-
ray

Table 4.3: StencilComputation class methods. In these method the C generic class stands
for the class that identifies the position of an element in relation to the others. The T
generic class represents the class type used for the elements, And finally, the N generic
class is related to the intermediate values stored in the internal cache like data structure.

4.2.1.3 Reduce Phase Classes

With regard to the reduce phase, our API offers the classes presented on the third column

in Figure 4.2. The presented hierarchy starts with the base abstract class StencilReducer

that basically extends the Hadoop Reducer class and defines the types that should be used

for the input key/value pairs and the types for the output pairs in the reduce method,

as can be seen in Table 4.4. As for the classes of the map phase, we have implemented

an abstract class called MatrixStencilReducer. This class employs a strategy that distin-

guishes the received pairs as complete stencil computations or only partial computations.

Table 4.5 presents the method that can be modified. The reduce method evaluates the

59

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

Method Signature Description

void reduce(StencilPair.Key key,
Iterable<StencilPair.Value> values,
Reducer<StencilPair.Key, StencilPair.Value,
Text, Text>.Context context)

Abstract method that prede-
fines the types of the keys
and values the reduce phase re-
ceives. This method overrides
the reduce method from the
Hadoop’s Reducer class

Table 4.4: StencilReducer class method.

Method Signature Description

void reduce(StencilPair.Key key,
Iterable<StencilPair.Value> values,
Context context)

Method inherited from
Hadoop’s Reducer class

Table 4.5: MatrixStencilReducer class method.

type of the received value and if it is received a complete computation it goes right to

the output part of the method. Otherwise, it iterates over the partial computations to

aggregate them and get the final result. In the MatrixStencilReducer implementation

only the setup method (inherited from the Hadoop’s Reducer class) has some relevant re-

sponsibilities. As its homonym from the map phase, the setup method has to instantiate

and configure an object of the StencilComputation.

4.2.1.4 Driver Application Classes

Apart from the MapReduce main phases, it is necessary to have a driver application that

configures and launches the stencil computation MapReduce job. Therefore, our API has

the abstract classes presented on the first column in Figure 4.2 to help with this task.

The base abstract class StencilMapReduce, has the job of defining the classes and

the file system paths that are to be used by the application job. The classes defined

in the StencilMapReduce class are mainly composed by the ones we developed for our

decomposition solution, for example the BlockSequenceFileInputFormat class from

Chapter 3. Besides, as can be seen in Table 4.6, this class offers a method called launch

that uses some parameters to help configuring the job and, consequently, launch it.

Proceeding with the same reasoning used for the map and reduce phase, the support

for matrix input applications it is offered by the abstract class MatrixStencilMR. The

constructor presented in Table 4.7 receives some information about the input matrix, a

configuration file (that we will talk about later), and about the main MapReduce classes

to be used in the job. Using its parent constructor, the MatrixStencilMR constructor

configures the job by setting some global variables and getting some information about

the environment in which the application will run such as the number of processing cores

available. The configuration done in this class includes the calculation of the normal

60

4.2. STENCIL API

Method Signature Description

<Mapper extends StencilMapper<C, T>,
Reducer extends StencilReducer<T>>
StencilMapReduce(Class<Mapper> mapperClass,
Class<Reducer> reducerClass)

Class constructor which sets
the fields related to the appli-
cation map and reduce classes,
where C stands for the class
type that identifies the posi-
tion of an element in relation
to the others and T for the
type of values handled by the
stencil

Configuration launch(String id, String inputPath,
String outputPath)

Method responsible for set-
ting up the application job
and launching it according to
the received parameters

Table 4.6: StencilMapReduce class methods.

Method Signature Description

<S extends StencilComputation<Tuple<Integer,
Integer>, M[][], T>, Mapper extends
MatrixStencilMapper<M, T, S>>
MatrixStencilMR(long numberOfLines,
long numberOfColumns, long inputSize,
Configuration othersConfigs,
Class<Mapper> mapperClass,
Class<S> computationClass, String pathConfig)

Class constructor that uses its
parent class constructor and
the received parameter to con-
figure the application’s job.
The M generic class stands
for the class type used for the
values store in the internal
cache-like data structure. The
T is related to the type used
for the stencil values, both for
the input and output. The
S generic type provides to
the framework the class type
of the class that extends the
StencilComputation class

Table 4.7: MatrixStencilMR class methods.

dimensions of a data block for our application, taking always into account the character-

istics of both the architecture and the input.

4.2.2 Programming Model

In this section we present our API programming model, explaining what must be imple-

mented and extended with an example of the stencil computation that we presented in

Section 1.1.2, which has its classes represented in Figure 4.3. To close this section we go

through the configurations that can and have to be done.

61

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

Figure 4.3: API classes layer model with application classes in green

4.2.2.1 Implementation Example

The present section serves to show what it takes for a programmer to develop a stencil

application whose input is matrix based. To start with, as already said, the program-

mer must extend three types of classes, these being the MatrixStencilMapper for the

map phase, the StencilComputation to express the stencil computation and also the

MatrixStencilMR to configure and launch the stencil application.

In order to better understand the programming model of our API, we show the im-

plementation of the mentioned classes for the example presented in Section 1.1.2. The

example application uses a stencil that applies a computation to all the elements of a ma-

trix. For each element, the stencil is calculated based on a percentage of the neighbours

values and on a percentage of its on value. Remembering the equation from Section 1.1.2

we have:

M[i, j] = M[i, j]× percentage+
r∑

ni=−r

r∑
nj=−r

M[i +ni, j +nj]×
1− percentage

(2r + 1)2 − 1

For our example we assume that the input is composed by a matrix of float number

values that are stored in binary SequenceFiles, where each pair is composed by a num-

ber representing a matrix’s line number and a sequence of bytes that represents n float

62

4.2. STENCIL API

1 public class RangedStencilMapper extends MatrixStencilMapper <Float,

2 Float, RangedComputation > {

3

4 @Override

5 protected void stencilMapLogic(Context context)

6 throws IOException, InterruptedException {

7

8 for(int i = getFirstLineIdx(); i <= getFirstLastIdx(); i++)

9 for(int j = getFirstColumnIdx; j <= getLastColumnIdx; j++)

10 compute(new Tuple<Integer, Integer>(i,j), false);

11 }

12

13 @Override

14 protected Float getMatrixInitialValue() {

15 return Float.NaN;

16 }

17

18 @Override

19 protected boolean isInitialValue(Float value){

20 return Float.isNaN(value);

21 }

22 }

Listing 4.1: RangedStencilMapper class.

numbers of that line. With this set up we will start first by analyse the class related with

the map phase, then we see an example of StencilComputation extended class and lastly

we present the driver class for the application.

The programmer must implement three methods to extend our MatrixStencilMapper

class, as the example in Listing 4.1 shows. Two of those methods are trivial to implement

and are related to the default value with which our caching data structure of the map
phase is initialized. The first of those two methods is getMatrixInitialValue, which

basically indicates to the mappers the value to be used in the data structure initialization.

The second method is isInitialValue method that simply compares a given value with

our default value. This method is very important for the mapper to verify if a given

element is cached. In Listing 4.1, we can see that we are using floats for the input elements,

because of this we use the NaN float value to initialize the data structure and use its

comparator method to implement our isInitialValue method. The choice of using the

NaN value is due to the fact that we do not want to limit the range of numbers used as

input.

The most important method in the class that extends MatrixStencilMapper is sten-

cilMapLogic. As mentioned in previous sections this method indicates to the mapper
to which elements will be applied the stencil, or in other words, which elements in the

received data block are to be applied the method compute offered by the MatrixSten-

cilMapper class. Depending on the stencil logic some specific elements can be ignored,

as can be seen in Listing A.1. However, our stencil computation is applied to all input

elements, therefore we only have to iterate over the indexes of the elements present in

the data block. For this, as can be seen in Listing 4.1, we use the block limits methods,

63

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

presented in Table 4.1, to indicate the set of elements used. It is worth mentioning that

the boolean value in the compute method indicates if the element must maintain its

original value. This addition to the compute method can be very handy in some stencil

computations such as the SOR computation, which its implementation using our API

can be seen in Section A.1. With the implementation of these methods the programmer

expresses one part of the stencil computation logic, but there is some more details in this

class that deserve our attention. In the class signature the programmer must indicate

the type of the input elements and the type of the elements stored in our caching data

structure. This measure is necessary so that our abstract classes remain as extensible as

possible. In our example we indicate both types as Float and an extra type that is also

required that enunciates the type of the class that extends the StencilComputation.

For the programmer to extend our StencilComputation, he/she has to decompose its

stencil computation into three methods that express the stencil for the main element, for

its neighbours and how these partial computations are aggregated into the final result. To

better understand this decomposition we look at our implementation in Listing 4.2. There

we can see that our implementation of the method mainElementComputation represents

the partial computation of the simple stencil for the main element, wherein the method

provides the element’s coordinates in the input matrix and its value. Our implementation

is quite simple, as is the stencil, and the method only returns the multiplication between

the element’s value and its assigned percentage.

The neighbourComputation, as the name implies, expresses the neighbour part of the

computation, wherein the main element’s information, the neighbour’s information and

the number of total neighbours is passed, so that the programmer can implement this par-

tial computation. In our example, once again our computation is fairly straightforward

and it does a simple multiplication of the given neighbour’s value and the percentage re-

sultant from the division of the neighbourhoods assigned percentage by the total number

of neighbours.

The last of these three methods, the method aggregateComputations, must express

how to aggregate partials results. This method receives the coordinates of the main

element of the computation, a partial computation that generally is the aggregation of

the partial results until then, and the coordinates and computation partial result for a

given neighbour. In our specific implementation of this method we only have to sum the

two values, but there are more complicated cases that will be shown in Section A.1.

These were the main methods of the StencilComputation class. However, this class

must also offer the implementation of the auxiliary methods readElement and writeEle-

ment. As the names suggest, these methods show to the mappers and reducers how to

translate the elements values from bytes to the chosen type and back again to bytes.

With this, the implementation of these methods basically can be handle by some simple

ByteBuffer operations.

In order for the mappers and reducers to use the StencilComputation methods, the

programmer has to implement the newInstance method, so that they can instantiate it.

64

4.2. STENCIL API

1 public class RangedComputation extends StencilComputation <Tuple<

2 Integer, Integer>, Float[][], Float> {

3

4 private final float elementPercentage;

5 private final float neighborsPercentage;

6

7 public RangedComputation(float elementPercentage ,

8 float neighborsPercentage) {

9 this.elementPercentage = elementPercentage;

10 this.neighborsPercentage = neighborsPercentage;

11 }

12

13 @Override

14 public StencilComputation <Tuple<Integer, Integer>,

15 Float[][], Float> newInstance() {

16 return new RangedComputation(0.5f, 0.5f);

17 }

18

19 @Override

20 public Float mainElementComputation(

21 Tuple<Integer, Integer> mainElementCoord, Float mainElementValue) {

22

23 return mainElementValue * this.elementPercentage;

24 }

25

26 @Override

27 public Float neighbourComputation(Tuple<Integer, Integer> mainElementCoord,

28 Float mainElementValue , Tuple<Integer, Integer> neighborCoord,

29 Float neighborValue, int numberOfNeighbors) {

30

31 return neighborValue *

32 (this.neighborsPercentage/((float)numberOfNeighbors));

33 }

34

35 @Override

36 public Float aggregateComputations(Tuple<Integer, Integer> mainCoords,

37 Float finalResult,

38 Tuple<Integer, Integer> neighborCoords, Float partialComputation) {

39

40 return finalResult + partialComputation;

41 }

42

43 @Override

44 protected Float readElement(ByteBuffer inputBuffer) {

45 return inputBuffer.getFloat();

46 }

47

48 @Override

49 protected byte[] writeElement(Float element) {

50 ByteBuffer buffer = ByteBuffer.wrap(new byte[Float.SIZE/8]);

51 buffer.putFloat(element);

52 return buffer.array();

53 }

54 }

Listing 4.2: RangedComputation class.

65

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

1 public class BlockRangedStencil extends MatrixStencilMR<Float, Float> {

2

3 public BlockRangedStencil(int numberOfLines, int numberOfColumns,

4 long inputSize, Configuration othersConfigs, String pathConfig)

5 throws IOException {

6 super (numberOfLines, numberOfColumns, inputSize, othersConfigs,

7 RangedStencilMapper.class, RangedComputation.class, pathConfig);

8 }

9

10 public static void main(String args[]) throws IOException, ParseException{

11 if(args.length < 6){

12 System.out.println("[nLines] [nColumns] [input size]

13 [input dir] [output dir] [config]");

14 System.exit(0);

15 }

16 //For Optional Configs

17 Configuration conf = new Configuration();

18

19 BlockRangedStencil brs = new BlockRangedStencil(

20 Integer.parseInt(args[0]), Integer.parseInt(args[1]),

21 Long.parseLong(args[2]), conf, args[5]);

22

23 brs.launch("brs", args[3], args[4]);

24 }

25 }

Listing 4.3: BlockRangedStencil class.

This approach was reached after some consideration about the best way to eliminate the

possible dependences related to specific stencil computations. To implement this method,

the programmer must provide some class constructor, even if it is a empty one, so that

an instance can be provided to the workers. In the RangedComputation implementation,

it can be seen that again the programmer must specify the type of the cached and input

elements. As exemplified by Float[][] for the cache examples, indicating the usage of a

two dimensional array of floats, and Float for the input elements.

Finally, regarding the driver/main application for our stencil computation the pro-

grammer has to extend the abstract class MatrixStencilMR and, as in the previous classes,

has to provide the data type for the elements cached in our data structure and for the

input data elements, as our example shows in Listing 4.3. Additionally, this class must

have some components to fully take advantage of our API. First, this class must provide

a constructor that invokes its parent class constructor, passing crucial information such

as the input matrix dimensions, the total size of the input in bytes, a Hadoop Config-

uration object with some specific stencil application configurations/values, the classes

for the map and reduce phase plus the class of the stencil computation and also the path

to the configuration file. This constructor can do whatever the programmer want, but

the call to the parent constructor is mandatory. The main method, shown in Listing 4.3,

only requires two steps, the configuration step and stencil job launch step. The first is

related to the instantiation of our application class, where are passed the programmer

chosen parameters to the constructor to create an instance of the application ready to be

66

4.3. EXECUTION MODEL

1 Configurations

2

3 #Configuration file for the Hadoop Stencil API

4 # hirarchy_file - Path to the file that represents the cache hierarchy in JSON

5 # cache_level - Target cache level

6 # unit_size - Element size in bytes in a data block

7

8 hirarchy_file: hierarchy.json

9 cache_level: L1

10 unit_size: 20

Listing 4.4: Configuration text file.

launched. As mentioned earlier, the programmer may want to include some more config-

urations/informations specific for a given stencil job, which can be used in the extended

classes. For that reason we pass to the parent class an Hadoop Configuration object.

This situation gets clearer with more complex examples as the ones presented in Sections

A.1 and A.2. The second step uses the instantiation created in the first step to invoke the

launch method that, as the name suggests, launches the stencil job with a given name

and paths for the input/output directories.

4.2.2.2 Configuration Requirements

There are some details that have to be address and are out of the programming domain,

but are crucial for the utilization of our API. For example, in the previous sections is

mentioned a configuration file, mainly in the form of its path. This configuration file

gives to our abstract classes some information about the the environment in which the

application will run and also some information about the input data, as shown in Listing

4.4. In regard to the environment where the application will run, this configuration file

enunciates two fields, the hierarchy file path and the target cache level. The hierarchy

file path indicates to our API the file which contains the structure of the cache hierarchy

of the machine in use and it has to be a JSON file with the structure presented in [26].

The second field is related to the cache level to be used as a reference to our optimization,

that is represented by a simple string which indicates this target cache level. The last

field is related to the element size of an matrix element in a data block. These fields are

closely related to the decomposition logic presented in Chapter 3, so in order to reduce

the amount of parameters that have to be setted by the programmer’s application we

developed this configuration file.

4.3 Execution Model

In this section we present the execution of an application developed with our stencil API.

We start by describing the configuration and launching of an application. After that, we

go through all the steps of an stencil computation, from the moment a mapper receives a

data block from its RecordReader, passing by the processing of this data block until the

67

CHAPTER 4. A PROGRAMMING MODEL FOR STENCIL MAPREDUCE

COMPUTATIONS

mapper produces some results, which are then passed to the respective reducer to produce

a correct stencil result. It is worth mention that the decomposition of the input is omitted,

as it is explain in Chapter 3.

Starting at the stencil driver application, a class that extends our abstract class Ma-

trixStencilMR invokes its constructor in the main method, passing arguments such as

the dimensions of the input matrix, the size of the input file, a Hadoop Configuration

object and the path to a configuration file. Besides this information, the types of the

classes that extend our map, reduce and stencil computation API classes are passed to the

constructor of its parent class, as can be seen in Listing 4.3. The MatrixStencilMR class

uses its parent class (the StencilMapReduce) to define the variables that store the type

of classes for the two main phases of MapReduce. After that it uses the Configuration

object passed, and starts defining some global variables used by the application in each

phase of the job. Between these settings, are calculated the dimensions to be used for the

data blocks that will be fed to the mappers. This calculation takes into account the size

of the target cache, the size of an element of the matrix and the dimensions of the input

matrix. Returning to the job configuration, it is defined the number of splits that reflects

the number of mappers always taking into account the number of available processors for

a better load balancing. Also, the type of the programmer’s class that extends our Sten-

cilComputation class is defined as a global variable so that the map and reduce classes

can apply the stencil computation. After this configuration the programmer application

as to invoke the launch method that sets the classes to be used and input/output paths,

and finally launches the Hadoop application, as shown in Table 4.6.

Before the mappers start to ask for data blocks, the Hadoop Mapper setup method

is invoked to set up some configurations for all mappers, such as the instantiation of the

StencilComputation extended class, the definition of the auxiliary variables related to

the range of the neighbourhoods and matrix dimensions. Also, the initialization of the

two dimensional array, that serves as cache, is done with a default value defined by the

StencilComputation.

When a mapper receives a data block from its RecordReader the map method unpacks

the blocks dimensions that are in the BytesWritable key. With this dimensions, it iterates

the elements packed in the BytesWritable value, caching these elements in the global

caching two dimensional array. After that, the stencilMapLogic method is invoked and

the data blocks are iterated again to apply the stencil computation, as exemplified in

Section 4.2.2.1.

The computation is applied to each element by the method compute implemented in

the class MatrixStencilMapper. In this method an element is represented by its coor-

dinates on the input matrix and by its value, then with this coordinates are calculated

the limits of its neighbourhood and how many neighbours it contains. When these cal-

culations are done, the element’s neighbourhood is iterated to attempt to compute the

complete stencil value. As it iterates over the neighbours, the mapper verifies if these val-

ues are in the received block. If this is not the case, the mapper sends the main element’s

68

4.3. EXECUTION MODEL

value to the neighbour reducer, as described and justified in the beginning of Section 4.2.

Besides this verification, the mapper verifies if the neighbour’s value is cached, if it is then

proceeds to aggregate its partial computation to the final result accumulator. Otherwise,

the latter step is ignored. Later, when the mapper finishes iterating over the element’s

neighbourhood, it verifies if the complete calculation was accomplished. If that is the

case, the mapper send the complete computation to element’s reducer, if not it sends the

element initial value.

There are some points in this map execution that are fundamentally related to the Ma-

trixStencilMapper and StencilComputation extensions class of the programmer. The

first is related to the verification of the presence of a neighbour’s value in the caching

data structure, wherein this verification is done using the method isInitialValue in the

MatrixStencilMapper extended class. The second situation has to do with the Stencil-

Computation programmer’s implementation of the methods mainElementComputation,

neighbourComputation and aggregateComputations, which as the naming suggest ap-

plies and aggregates the stencil computation for a given element, as shown in Listing

4.2.

The reducers also use the setup method offered by the Hadoop Reducers class to in-

stantiate the StencilComputation extended by the programmer. After the setup method

and when the reducer receives the values for the stencil computation of an element, the

reducer starts to iterate over the received values and starts to discriminate these values.

If the reducer finds a value marked as complete it outputs it. Otherwise, it keeps adding

the received value to a list. When the first iteration is done, the list is iterated with the

objective to do and aggregate the partial results into the final result. This two-way iter-

ation strategy has to be done because we do not know if a complete result was obtained

in the map phase and also to prepare the accumulator variable with the partial result

related to the main element, mainly to avoid null-based errors. Again as it happens in the

map implementation, the reduce implementation uses the StencilComputation extended

class methods to do the partial computations and the aggregation of these values.

69

C
h
a
p
t
e
r

5
Experimental Results

In this chapter we present the evaluation of our decomposition solution, implemented on

top of Hadoop MapReduce. We begin by presenting the methodology used for the evalua-

tion, followed by the explanation of the application used to determine the performance of

the decomposition strategy employed. Subsequently, we present the infrastructure used

for the evaluation. And finally, we present and discuss the results obtained.

5.1 Methodology

Our evaluation is based on the assessment of the performance of our solution compared to

the original Hadoop MapReduce framework. This aspect was evaluated using a synthetic

application, presented in Section 5.2, that simulates the memory access pattern of a

stencil application mentioned in in Sections 1.1.2 and 4.2.2. The implementation of such

application makes the task of studying the impact of the developed solutions in that kind

applications easier. Given that, to have a better control over our study we only have to

vary some parameter to test different scenarios, either for the version implemented with

our API, or the version developed with the original Hadoop framework. The input of both

applications is identical. Both need to have information of the input matrix dimensions

and the range of the stencil computation. The input of either application is composed by

the matrix dimensions, range of the neighbourhood and the target cache level (TCL). The

matrix parameter is always one of the three chosen matrix sizes, being these 1280x1024,

1920x1200 and 2000x2000. With regard to range of neighbourhood, we vary it with the

values 1, 2 and 4. And finally the TCL, in which we specify one of the cache levels such

as L1, L2 or L3.

In order to evaluate the performance of our decomposition in a speed-up analysis

perspective, we measure the time spent in the map and reduce phases, but also the overall

71

CHAPTER 5. EXPERIMENTAL RESULTS

time spent by the job execution of each application. To calculate the speed-up of our

solution we average the time measures of 10 jobs, to obtain not only the overall application

speed-up but also the respective speed-ups of the map and phase.

The evaluation is done with various inputs to better understand the results and to see

where are the limits of our solution. Being this a work related to the memory hierarchy,

it is worth mentioning that these inputs included a target cache level which specifies in

which cache our decomposition will be based. Also, in order to work in a in-node context

and to work only with the memory hierarchy, we had to use the GridGain In Memory

Accelerator plug-in. This plug-in was integrated in our environment so that we could

work in a shared memory environment and also, as mentioned in Section 3.2.1, this plug-

in enables us to eliminate the intermediate calls, reads and writes to the disk, inherent to

Hadoop MapReduce, which can cause great delays in the computation and are out of the

context of this work.

5.2 Application

The MapReduce computation used in our experimental evaluation is essentially the one

used as an example in Sections 1.1.2 and 4.2.2. The reason of the choice of using this

stencil in our experimental evaluation is related with its behaviour that emulates the

general idea of a stencil computation. With this stencil we can not only represent the usual

stencil computation memory access, but also control the complexity of its computation

by tweaking some parameters. As seen before, this is a stencil computation applied to

a neighbourhood defined by a certain range r. In other words, all the elements within a

range r from the main element contribute for the resulting value of that element. The

computation itself is expressed by the sum of two distinct calculations. The first part is

related to the main element own value and its contribution to the final result, wherein this

contribution is given by the product of its value and a given percentage. The second part

of the computation can be described as the sum of the products of the neighbour’s values

by a fraction of the remaining percentage. The next formula shows the computation

calculation in a more succinct way:

M[i, j] = M[i, j]× percentage+
r∑

ni=−r

r∑
nj=−r

M[i +ni, j +nj]×
1− percentage

(2r + 1)2 − 1

In this formula the M[i,j] represents the main element value and the percentage is

the related with the contribution of this value to the final result. The second part of the

calculation has the sum of the products of the neighbours, where we divide the remaining

of the percentage and calculate the contribution of each neighbour to the final result. It is

worth to mention that we decided to use a percentage equal to 50% for the applications

implementation.

72

5.3. TEST INFRASTRUCTURE

The implementations of the stencil for the original MapReduce and for our API are

naturally different. The main differences are in the input received in the map phase and

also what actually can be computed in this phase.

The version implemented with the original MapReduce receives as input a complete

line of the input matrix, wherein Section 3.1 its called line approach. This line is repre-

sented by the usual key/value pair, where the key is represented by the row number in the

matrix and the value contains the bytes of n elements. The map phase of this approach is

limited by its line input, it only calculates the main element part of the computation and

also send its own value to its neighbourhood’s reducers. With this, the reduce phase, has

the task of completing the computations of each element with the values of the neighbours

and the partial computation obtained from the main element’s mapper.

On the other hand, the version implemented with our API receives a tile/block of the

input matrix. The input of a mapper is composed by the block dimensions and the bytes of

the actual block. In the key/value pair form, this is translated to a key that is represented

by an object that contains the block dimensions and the value which is represented by

the bytes of the data block. In the map phase of this approach, depending of the stencil

range, we can obtain the final result of the majority of the elements. This is possible

mainly because of the use o blocks instead of lines, but there are some scenarios where

the mapper does not have all the necessary elements to finish the computation. For these

scenarios we have two measures, consulting the cache (presented in Section 4.2) to try to

get the missing elements or, if they are not available, the main element value is sent to its

respective reducer to finish the computation as in the line approach.

In both cases there is some degree of temporal locality. However, the stencil itself

features temporal locality because the input matrix elements are accessed multiple times

in short period of time during the stencil execution. However, having the input matrix

divided into smaller blocks that fit in cache can help avoiding memory data transfers and

so resulting in reducing the computation time in a greater measure than using lines.

5.3 Test Infrastructure

The experimental study was performed on two machines running Apache Hadoop MapRe-

duce 2.6.0 in a pseudo-distributed mode. To simulate a shared memory environment and

in order to use a single Java Virtual Machine (JVM) we use the GridGain In-Memory

Accelerator 6.6.4, as mentioned in the end of Section 3.2.1. The specifications of these

machines follows:

• System 1 (S1) - 2 Quad-Core AMD Opteron™ Processor 2376 with three cache

levels: a 64KBytes L1 data cache per core, a 64KBytes L1 instruction cache per

core, a unified 512KBytes L2 cache per core, and a unified 6MBytes L3 cache per

processor; and 8GBytes of RAM memory.

73

CHAPTER 5. EXPERIMENTAL RESULTS

• System 2 (S2) - 2 Hexa-Core Intel Xeon™ Processor E5-2620 v2 with three cache

levels: a 32KBytes L1 data cache per two cores, a 32KBytes L1 instruction cache per

two cores, a unified 256KBytes L2 cache per two cores, and a unified 15MBytes L3

cache per four cores; and 64GBytes of RAM memory.

The choosing of these two systems can be explained by their differences in terms

of cache memory architectures, but also by their differences in general at the number

of processing units or even at the memory RAM capacity. However, they were chosen

mainly because of the good representation of machines that are currently being used in

some systems.

System 1 is powered by Debian with Linux kernel 2.6.26-2-amd64, while System 2

is powered by a Debian woth Linux kernel 3.16.0-4-amd64. Both these systems have

installed the Java platform OpenJDK 7, but System 1 has the 1.7.0 71 version and System

2 has the 1.7.0 80 version.

The architecture of System 1 is a 4-core machine with 3 cache levels, where each CPU

has its own cache in every level of the cache hierarchy. On the other hand, System 2 is a

6-core machine which has the same number of cache levels as System 1, but the L1 and

L2 levels are shared by two CPUs and the L3 level is shared by four CPUs.

5.4 Experimental Results

In this section we present our experimental results. First we present the performance

results which show the speed-up of both versions of the stencil targeting the different

available memory levels of the cache memory hierarchy and using three different matrices,

in order to better understand the effect of the input size and target cache level in our

decomposition solution. In the following section, we present a breakdown study of the

time and weight division of the applications, mainly to see where the applications are

spending most of their execution time.

5.4.1 Performance Evaluation

The results presented in this section were obtained by running our test applications

on S1 and S2. Following the methodology presented in Section 5.1, the application’s

configuration varies in three main parameters: the matrix dimensions, the range of the

neighbourhood and also the target cache level (TCL). The Figures 5.1 to 5.6 present the

speed-ups of our solution (in both S1 and S2) compared with the original Hadoop solution

when varying the matrix dimensions, neighbourhood range and the TCL. The scale of

ordinate axis of the charts is not the same for the sake of readability. In Tables 5.1 and

5.2 are presented the average of the times that each execution took when varying the

mentioned parameters.

The general intuition leads us to believe that the closer a cache level is to the process-

ing unit, the better it is as a target level for the decomposition solution, implying that it

74

5.4. EXPERIMENTAL RESULTS

Range Matrix L1 L2 L3 Original

1
1280x1024 17,93 17,79 16,92 19,96
1920x1200 23,24 22,14 20,81 25,31
2000x2000 28,26 25,21 24,22 31,78

2
1280x1024 22,34 20,40 17,66 27,25
1920x1200 31,54 28,07 21,91 40,29
2000x2000 50,71 37,97 28,11 56,72

4
1280x1024 49,17 36,46 21,76 52,93
1920x1200 63,17 42,92 26,83 86,41
2000x2000 135,59 140,14 127,42 144,43

Table 5.1: S1 performance results in seconds, with the last column being the original
Hadoop version.

Range Matrix L1 L2 L3 Original

1
1280x1024 14,36 15,99 15,08 13,63
1920x1200 15,96 17,36 15,99 15,81
2000x2000 20,08 19,66 19,34 20,53

2
1280x1024 17,55 16,75 15,03 17,63
1920x1200 24,10 19,42 17,17 21,38
2000x2000 37,94 24,32 18,84 31,08

4
1280x1024 41,49 25,77 18,40 29,19
1920x1200 68,97 35,33 21,79 46,14
2000x2000 116,21 55,67 25,40 64,94

Table 5.2: S2 performance results in seconds, with the last column being the original
Hadoop version.

benefits more from the locality concepts. However, the tendency in our results is to have

better speed-ups the higher the level of the target cache is in the memory hierarchy. This

can be explained by the relation between the cache size and the input size, meaning that

if we divide our matrix according to smaller caches the result is more map tasks with less

data. The number of smaller map tasks will not compensate the set up time of each task,

as mentioned in [7]. The smaller the tasks the least computations can be done in the map
phase, which implies that they have to be done in the sequential reduce phase. Besides,

there is also the normal MapReduce data that will compete with the application data for

space in the cache.

Also it can be perceived in these results that the input size is of great importance too.

In either of the Figures from 5.1 to 5.6, it can be seen that the bigger matrices stencil

computations get better performances as we go up in the cache hierarchy. With this,

can be extracted a relation between the dimension of the input (or the input size) and

the TCL, which indicates that computations with big inputs seem to avail from the use

of higher cache levels. An exception can be seen in Figure 5.5, where the case of the

2000x2000 matrix with a range equal to 4 appears. This exception is a very particular

case that shows the breaking point, or peak in our performance gains, which means that

75

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1: S1 speed-ups of the block ori-
ented application (with range = 1).

Figure 5.2: S2 speed-ups of the block ori-
ented application (with range = 1).

Figure 5.3: S1 speed-ups of the block ori-
ented application (with range = 2).

Figure 5.4: S2 speed-ups of the block ori-
ented application (with range = 2).

the computation gets too expensive and the speed-ups drop in comparison with the other

lighter configurations. In other words the bottleneck becomes the complexity of the

computation itself. The same cannot be verified for the S2 because of its architecture

which contains more processing units. Hence, we cannot see the peak or breaking point

in S2 at the same configuration because of its greater processing power.

Something else that can be extrapolated from our charts is the influence of the range

parameter on the performance of the computation. As can be seen in the figures, our

decomposition solution benefits more from stencil computations with bigger neighbour-

hoods. By itself, this implies that the temporal locality concept is being used by the data

blocks that contain more complete neighbourhoods, which means more completed com-

putations in the map phase and, hence, less data transferred between the two main phases

of MapReduce. This situation can be understood by thinking of the computation done in

the reduce phase. For each element there is always a reduce task, but in the case of a com-

plete element’s computation in the map phase this reduce tasks is less costly, needing only

to output the final result. If the opposite situation occurs, then the reduce task is more

complex and has to iterate over the neighbourhood of the main element and compute the

final result.

For the S1 machine, the majority of the configurations reached at least a speed-up of

76

5.4. EXPERIMENTAL RESULTS

Figure 5.5: S1 speed-ups of the block ori-
ented application (with range = 4).

Figure 5.6: S2 speed-ups of the block ori-
ented application (with range = 4).

1.1, or in other words, a improvement of 10%. With the best speed-up to be achieved by

the stencil computation of the 1920x1200 matrix, with a range equal to 4 and using L3

cache as its target level. This configuration produced a 3.22 speed-up, as presented in Fig-

ure 5.5, which translates to an improvement of 222% of our approach over the approach

that uses the regular Hadoop. The worst result comes from the stencil computation with

a 2000x2000 matrix, also with a range equal to 4 and using L2 cache as its target level.

This configuration only reached a 1.03 speed-up, which means a 3% improvement.

Regarding the S2 machine, we get a completely different scenario. The best speed-

up is around 2.5 and its obtained targeting the L3 cache and running our stencil using

a 2000x2000 matrix with a range equal to 4. The worst situation is described also by

the stencil using a 2000x2000 matrix, but targeting the L1 cache with a range equal to

2. However, this system gets worst results than S1, especially when targeting cache L1.

When L1 is the TCL, the API stencil version rarely have some speed-up and when it

has does not goes beyond the 1.05 speed-up. This can be the result of the small size of

the S2 L1 cache which only has 32KBytes, this meaning that this cache size can be our

limit when trying to get some improvements in performance. Another reason that can

help understanding the results of S2 is the fact that its cache levels are always shared at

least between two different cores. This results in less space for each of the cores, which

means that our implemented decomposition strategy did not had into account this detail,

making the cores vied for the cache space. Given that, we only needed to add a simple

mechanism that would verify if a cache was shared, because this information can be

consulted in the file that represents the cache hierarchy of a given machine.

5.4.2 Breakdown

In this section we present the breakdowns of the most relevant cases in our analysis,

these being the average of all executions for S1 (which got the better results), the best

configuration with the best speed-up and the configuration with the worst speed-up. The

breakdowns were done mainly to understand how our solution influenced the execution

phases of the Hadoop MapReduce model, and also to see which phases are responsible for

77

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.7: S1 average MapReduce phases
weight for both approaches.

Figure 5.8: S1 average time division for both
approaches.

the improvement and deterioration of the application’s performance. These breakdowns

are composed by two different categories: time division, where it can be seen which phase

took the longer; and phase weight, where it can be seen which percentage of the execution

each phase takes.

The case represented by the Figures 5.7 and 5.8, show us a view over the average

situation for both the line oriented approach (implemented with the current Hadoop)

and the block oriented approach (implemented with our API). In Figure 5.7, we can

see that in average the percentages of the map and "others" phases do not change that

much. However, our approach, the block oriented, reduces the percentage in both the

map and reduce phases, but the remaining of the execution increases around 5%. This

can be explained by the added complexity of the split phase in our approach. In regard

to the time division point of view, Figure 5.8 shows that in average our solution takes 40

seconds to finish and the line approach takes around 52 seconds, which means a speed-up

of 30%. It is also worth to mentioning that although the "others" phases in our solution

take more percentage than its counterpart in the line-oriented approach, the difference

between them is only around 1.2%.

The second case represents the best execution or the execution with the best speed-up,

presenting its phase weight and time division charts in Figures 5.9 and 5.10, respectively.

This result was obtained in S1, running our stencil with a range equal to four, targeting

the L3 cache and using the 1920x1200 matrix. As can be seen in Figure 5.7, the per-

centages of the map and reduce phases decrease and consequentially the other operations

percentage increase, as also verified for the average case. Yet, the increase of our solution

other operations was of almost 23% relatively to the one of the line oriented approach.

Again, this increase can be largely related to the added complexity of our approach to

the split phase. Figure 5.10 give us the time division of the best run and shows that

the line oriented approach took much more time that our approach, wherein the latter,

as said in Section 5.4.1, reached a speed-up of around 222%. Although it is clear that

proportionally our approach takes more percentage than the line oriented approach in

the other operations, both take almost the same time with a difference of only around

78

5.4. EXPERIMENTAL RESULTS

Figure 5.9: Phases weight for the best con-
figuration for both approaches.

Figure 5.10: Time division for the best con-
figuration for both approaches.

Figure 5.11: Phases weight for the worst
configuration for both approaches.

Figure 5.12: Time division for the worst con-
figuration for both approaches.

0.02 seconds. From this case it can conclude that by performing more computations in

the map phase (which is more cache-friendly) takes less time, Consequentially, this will

decrease the amount of work done in the reduce phase, therefore we reduce the sequential

component.

The third case is presented in Figures 5.11 and 5.12, an show the breakdown of the

worst scenario. This case was the result of running our stencil in S2 with a range equal

to four, targeting the L1 cache level and using as its input the 2000x2000 matrix. From

this weight breakdown chart, we can observe that our solution increased the reduce phase

percentage by around 9%. This situation can explain the bad result, mainly because

the reduce phase is performed sequentially, which means that increasing the influence of

this phase can damage the application performance. On the other hand, the remaining

percentages were decreased, even though not in a relevant way in terms of helping the

application’s performance. From Figure 5.12, the time division, we can see that the line-

oriented approach took almost half the time to perform the stencil. This results can

be justified by the L1 caches size in S2, which are only 32KBytes and are also shared

by two cores. Given that, it is probable that our solution produced many blocks that

were too small, which mean longer reduce tasks because they have to do almost all the

computations. However, with smaller blocks we get more blocks which leads to more

79

CHAPTER 5. EXPERIMENTAL RESULTS

map tasks. In turn, the larger number of map tasks can then explain the increase of the

time took by the map phase.

5.5 Discussion

The results presented, show that our approach provides better speed-ups than the current

Hadoop based approach for the majority of the cases.

Even though we reached good speed-up results for our application with the majority

of the configurations, our application is somewhat dependent of the configurations used.

In other words, for a given machine the application’s configuration can be different in

order to achieve the same or better results. This could be verified when comparing the

performance results obtained for S1 and S2. It can also be observed that by only changing

the cache memory hierarchy file when changing machines, we obtained some reasonable

speed-ups. Although S2 did not produce as good results as S1, we can say that our solution

(with some adjustments) is fairly machine independent.

The proposed solution can adapt its decomposition to the machine with certain in-

formations, such as the input size and target cache level, but these have to picked by

the programmer. The same can be said about the applications configurations, in other

words, for different applications/computations the best configurations can be different.

Hence, this could be a flaw in our current implementation. To deal with this problem

a mechanism could be added to choose the best fit for the target cache level and other

parameters, even if this means having more information about the cache hierarchy and

application.

80

C
h
a
p
t
e
r

6
Conclusions

6.1 Final Conclusions

The contributions initially proposed for this dissertation were completely fulfilled. We in-

troduce the concepts for the cache-friendly decomposition of an application’s domain and

how these could be integrated in the in-node MapReduce model. Some strategies were

developed to integrate the support of concepts such as block-tiling decomposition and

cache memory hierarchy information in this framework. The devised strategies enable

the production of cache-friendly data blocks that can help improving the performance of

applications that benefit from the temporal locality concept.

The prototyping of our solution was integrated in a concrete MapReduce framework.

The choice of the framework fell on the popular Hadoop MapReduce. The original im-

plementation of Hadoop MapReduce does not support any of our strategies. However,

due to the fact that this framework is easily extensible we were able to use the available

classes as the base for the development of new classes that integrated our decomposi-

tion strategies. Also, the Hadoop framework makes the application parallelization as

seamless as possible, which facilitated some of our tasks. Given that, we extended this

framework with an API for expressing the application’s data decomposition into blocks

that are cache-friendly.

In order to validate our solution and subsequent prototype implementation, we ap-

plied it to the context of stencil computations. The fact that this type of computations are

quite important in the field of scientific computing, benefit from temporal locality and

generally are embarrassingly parallel, made them the perfect candidate for our purpose.

Given that, we developed a stencil computations API prototype for the Hadoop MapRe-

duce. This API was developed to be as extensible as possible and easy to use. We think

that these objectives were also achieved. To support this statement we have counted the

81

CHAPTER 6. CONCLUSIONS

number lines of code of the implemented examples, which include our simple stencil,

the SOR stencil and the Jacobi method. The number of lines of code required to express

each of these computations were, respectively 101 lines for the simple stencil, 127 lines

for SOR and 190 lines of code for the Jacobi method, each divided by the three different

classes of our API.

To assess the performance of our solution and prototype, we performed a experimental

evaluation based on the comparison between a stencil computation implemented with the

original Hadoop and with our API. The results obtained from this evaluation revealed

that our solution can achieve speed-ups that up to 222% and with an average around

77%, which for a solution based on optimizations is a reasonable result. Furthermore,

these results were obtained for two machines with two completely different memory

hierarchies, which shows that our prototype has some performance portability.

The obtained results show that our prototypes, both the decomposition and the sten-

cil computations API, can be considered good contributions to the study of the cache-

concious decompositions strategies (based on block-tiling) influence on the application’s

performance. Also, to the best of our knowledge, there is not any work that explores the

discussed concepts in the way that we did.

6.2 Future Work

The developed work served as the first attempt to combine the concepts of block-tiling

decomposition and cache memory awareness, and integrate them in the Hadoop MapRe-

duce framework. Hence, there is a lot of work that can succeed and be based on ours,

mainly in the improvement and expansion of the prototype. The developed prototype

only scratches the surface of applications that benefit from temporal locality. From this,

the development of support for other type of computations other than stencils, such as

the ones based on matrix operations, could be a useful contribution not only for the added

support itself, but also in the study of how different kinds of computations respond to

the developed approach.

In terms of the distributed component of the MapReduce model, the study of how the

implemented strategies influence the performance cluster of heterogeneous machines is

something that could be very useful. Something that arises from this study is the necessity

of a mechanism that can adjudicate which are the best configurations for the execution

of an application in a given machine, as discussed in Section 5.5.

82

Bibliography

[1] B. Alpern, L. Carter, and J. Ferrante. “Modeling parallel computers as memory

hierarchies”. In: Programming Models for Massively Parallel Computers, 1993. Pro-
ceedings. IEEE. 1993, pp. 116–123.

[2] Apache Inc. Apache Hadoop. url: http://hadoop.apache.org/.

[3] Apache Inc. Apache Hive. url: https://hive.apache.org/.

[4] Apache Inc. Apache Pig. url: http://pig.apache.org/.

[5] Apache Inc. Apache Spark. url: http://spark.apache.org/.

[6] Apache Inc. Hadoop wiki. url: http://wiki.apache.org/hadoop/PoweredBy.

[7] Apache Inc. Partitioning your job into maps and reduces. url: https://wiki.

apache.org/hadoop/HowManyMapsAndReduces.

[8] D. Borthakur. “The hadoop distributed file system: Architecture and design”. In:

Hadoop Project Website 11 (2007), p. 21.

[9] B. Calder, C. Krintz, S. John, and T. M. Austin. “Cache-Conscious Data Placement”.

In: ASPLOS-VIII Proceedings of the 8th International Conference on Architectural
Support for Programming Languages and Operating Systems, San Jose, California, USA,
October 3-7, 1998. 1998, pp. 139–149. doi: 10.1145/291069.291036. url: http:

//doi.acm.org/10.1145/291069.291036.

[10] S. Carr, K. S. McKinley, and C. Tseng. “Compiler Optimizations for Improving Data

Locality”. In: ASPLOS-VI Proceedings - Sixth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, San Jose, California,
USA, October 4-7, 1994. 1994, pp. 252–262. doi: 10.1145/195473.195557. url:

http://doi.acm.org/10.1145/195473.195557.

[11] R. Chen and H. Chen. “Tiled-MapReduce: Efficient and Flexible MapReduce Pro-

cessing on Multicore with Tiling”. In: TACO 10.1 (2013), p. 3. doi: 10.1145/

2445572.2445575. url: http://doi.acm.org/10.1145/2445572.2445575.

[12] T. M. Chilimbi, M. D. Hill, and J. R. Larus. “Cache-Conscious Structure Layout”. In:

Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, USA, May 1-4, 1999. 1999, pp. 1–12.

doi: 10.1145/301618.301633. url: http://doi.acm.org/10.1145/301618.

301633.

83

http://hadoop.apache.org/
https://hive.apache.org/
http://pig.apache.org/
http://spark.apache.org/
http://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/HowManyMapsAndReduces
https://wiki.apache.org/hadoop/HowManyMapsAndReduces
http://doi.acm.org/10.1145/291069.291036
http://doi.acm.org/10.1145/291069.291036
http://doi.acm.org/10.1145/195473.195557
http://doi.acm.org/10.1145/2445572.2445575
http://doi.acm.org/10.1145/301618.301633
http://doi.acm.org/10.1145/301618.301633

BIBLIOGRAPHY

[13] S. Coleman and K. S. McKinley. “Tile Size Selection Using Cache Organization and

Data Layout”. In: Proceedings of the ACM SIGPLAN’95 Conference on Programming
Language Design and Implementation (PLDI), La Jolla, California, USA, June 18-21,
1995. 1995, pp. 279–290. doi: 10.1145/207110.207162. url: http://doi.acm.

org/10.1145/207110.207162.

[14] K. Datta, S. Kamil, S. Williams, L. Oliker, J. Shalf, and K. A. Yelick. “Optimization

and Performance Modeling of Stencil Computations on Modern Microprocessors”.

In: SIAM Review 51.1 (2009), pp. 129–159. doi: 10.1137/070693199. url: http:

//dx.doi.org/10.1137/070693199.

[15] DBM2. Known applications of MapReduce. 2008. url: http://www.dbms2.com/

2008/08/26/known-applications-of-mapreduce/.

[16] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on large clus-

ters”. In: Commun. ACM 51.1 (2008), pp. 107–113. doi: 10.1145/1327452.

1327492. url: http://doi.acm.org/10.1145/1327452.1327492.

[17] E. D. Demaine. “Cache-oblivious algorithms and data structures”. In: Lecture Notes
from the EEF Summer School on Massive Data Sets 8.4 (2002), pp. 1–249.

[18] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y. Park, M. Erez, M.

Ren, A. Aiken, W. J. Dally, and P. Hanrahan. “Sequoia: programming the memory

hierarchy”. In: Proceedings of the ACM/IEEE SC2006 Conference on High Performance
Networking and Computing, November 11-17, 2006, Tampa, FL, USA. 2006, p. 83.

doi: 10.1145/1188455.1188543. url: http://doi.acm.org/10.1145/1188455.

1188543.

[19] T. Ferreira, A. Espinosa, J. C. Moure, and P. Hernández. “An Optimization for

MapReduce Frameworks in Multi-core Architectures”. In: Proceedings of the In-
ternational Conference on Computational Science, ICCS 2013, Barcelona, Spain, 5-7
June, 2013. 2013, pp. 2587–2590. doi: 10.1016/j.procs.2013.05.446. url:

http://dx.doi.org/10.1016/j.procs.2013.05.446.

[20] B. B. Fraguela, J. Guo, G. Bikshandi, M. J. Garzaran, G. Almasi, J. Moreira, and D.

Padua. “The hierarchically tiled arrays programming approach”. In: Proceedings
of the 7th workshop on Workshop on languages, compilers, and run-time support for
scalable systems. ACM. 2004, pp. 1–12.

[21] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. “Cache-Oblivious

Algorithms”. In: 40th Annual Symposium on Foundations of Computer Science, FOCS
’99, 17-18 October, 1999, New York, NY, USA. 1999, pp. 285–298. doi: 10.1109/

SFFCS.1999.814600. url: http://dx.doi.org/10.1109/SFFCS.1999.814600.

[22] S. Ghemawat, H. Gobioff, and S. Leung. “The Google file system”. In: Proceedings of
the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003, Bolton
Landing, NY, USA, October 19-22, 2003. 2003, pp. 29–43. doi: 10.1145/945445.

945450. url: http://doi.acm.org/10.1145/945445.945450.

84

http://doi.acm.org/10.1145/207110.207162
http://doi.acm.org/10.1145/207110.207162
http://dx.doi.org/10.1137/070693199
http://dx.doi.org/10.1137/070693199
http://www.dbms2.com/2008/08/26/known-applications-of-mapreduce/
http://www.dbms2.com/2008/08/26/known-applications-of-mapreduce/
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1188455.1188543
http://doi.acm.org/10.1145/1188455.1188543
http://dx.doi.org/10.1016/j.procs.2013.05.446
http://dx.doi.org/10.1109/SFFCS.1999.814600
http://doi.acm.org/10.1145/945445.945450

BIBLIOGRAPHY

[23] Indiana University. Twister Iterative MapReduce. url: http://www.iterativemapreduce.

org/.

[24] M. Kowarschik and C. Weiß. “An Overview of Cache Optimization Techniques

and Cache-Aware Numerical Algorithms”. In: Algorithms for Memory Hierarchies,
Advanced Lectures [Dagstuhl Research Seminar, March 10-14, 2002]. 2002, pp. 213–

232. doi: 10.1007/3-540-36574-5_10. url: http://dx.doi.org/10.1007/3-

540-36574-5_10.

[25] Y. Mao, R. Morris, and M. F. Kaashoek. “Optimizing MapReduce for multicore

architectures”. In: Computer Science and Artificial Intelligence Laboratory, Mas-
sachusetts Institute of Technology, Tech. Rep. Citeseer. 2010.

[26] H. Paulino and N. Delgado. “Cache-Conscious Run-time Decomposition of Data

Parallel Computations”. In: CoRR abs/1511.05778 (2015). url: http://arxiv.

org/abs/1511.05778.

[27] H. Paulino and E. Marques. “Heterogeneous programming with Single Operation

Multiple Data”. In: J. Comput. Syst. Sci. 81.1 (2015), pp. 16–37.

[28] E. Petrank and D. Rawitz. “The Hardness of Cache Conscious Data Placement”. In:

Nord. J. Comput. 12.3 (2005), pp. 275–307.

[29] A. Platzer. Lecture Notes on Loop Transformations for Cache Optimization 15-411:
Compiler Design.

[30] S. M. F. Rahman, Q. Yi, and A. Qasem. “Understanding Stencil Code Performance

on Multicore Architectures”. In: Proceedings of the 8th ACM International Conference
on Computing Frontiers. CF ’11. Ischia, Italy: ACM, 2011, 30:1–30:10. isbn: 978-

1-4503-0698-0. doi: 10.1145/2016604.2016641. url: http://doi.acm.org/10.

1145/2016604.2016641.

[31] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and C. Kozyrakis. “Eval-

uating MapReduce for Multi-core and Multiprocessor Systems”. In: 13st Interna-
tional Conference on High-Performance Computer Architecture (HPCA-13 2007), 10-14
February 2007, Phoenix, Arizona, USA. 2007, pp. 13–24. doi: 10.1109/HPCA.2007.

346181. url: http://dx.doi.org/10.1109/HPCA.2007.346181.

[32] J. Saramago, D. Mourão, and H. Paulino. “Towards an Adaptable Middleware for

Parallel Computing in Heterogeneous Environments”. In: 2012 IEEE International
Conference on Cluster Computing Workshops, CLUSTER Workshops 2012. IEEE, 2012,

pp. 143–151.

[33] A. Shinnar, D. Cunningham, B. Herta, and V. A. Saraswat. “M3R: Increased perfor-

mance for in-memory Hadoop jobs”. In: PVLDB 5.12 (2012), pp. 1736–1747. url:

http://vldb.org/pvldb/vol5/p1736_avrahamshinnar_vldb2012.pdf.

85

http://www.iterativemapreduce.org/
http://www.iterativemapreduce.org/
http://dx.doi.org/10.1007/3-540-36574-5_10
http://dx.doi.org/10.1007/3-540-36574-5_10
http://arxiv.org/abs/1511.05778
http://arxiv.org/abs/1511.05778
http://doi.acm.org/10.1145/2016604.2016641
http://doi.acm.org/10.1145/2016604.2016641
http://dx.doi.org/10.1109/HPCA.2007.346181
http://vldb.org/pvldb/vol5/p1736_avrahamshinnar_vldb2012.pdf

BIBLIOGRAPHY

[34] J. Talbot, R. M. Yoo, and C. Kozyrakis. “Phoenix++: modular MapReduce for

shared-memory systems”. In: Proceedings of the second international workshop on
MapReduce and its applications. ACM. 2011, pp. 9–16.

[35] S. Treichler, M. Bauer, and A. Aiken. “Language support for dynamic, hierarchi-

cal data partitioning”. In: Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages & Applications, OOP-
SLA 2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013. 2013,

pp. 495–514. doi: 10.1145/2509136.2509545. url: http://doi.acm.org/10.

1145/2509136.2509545.

[36] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.

Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed,

and E. Baldeschwieler. “Apache Hadoop YARN: yet another resource negotiator”.

In: ACM Symposium on Cloud Computing, SOCC ’13, Santa Clara, CA, USA, October
1-3, 2013. 2013, p. 5. doi: 10.1145/2523616.2523633. url: http://doi.acm.

org/10.1145/2523616.2523633.

[37] Yahoo Inc. Apache Hadoop Module 4: MapReduce. url: https://developer.yahoo.

com/hadoop/tutorial/module4.html.

[38] Y. Yan, J. Zhao, Y. Guo, and V. Sarkar. “Hierarchical Place Trees: A Portable Ab-

straction for Task Parallelism and Data Movement”. In: Languages and Compilers for
Parallel Computing, 22nd International Workshop, LCPC 2009, Newark, DE, USA, Oc-
tober 8-10, 2009, Revised Selected Papers. 2009, pp. 172–187. doi: 10.1007/978-3-

642-13374-9_12. url: http://dx.doi.org/10.1007/978-3-642-13374-9_12.

[39] Y. Zhang. “HJ-Hadoop: an optimized mapreduce runtime for multi-core systems”.

In: Conference on Systems, Programming, and Applications: Software for Humanity,
SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013 - Companion Volume. 2013,

pp. 111–112. doi: 10.1145/2508075.2514875. url: http://doi.acm.org/10.

1145/2508075.2514875.

86

http://doi.acm.org/10.1145/2509136.2509545
http://doi.acm.org/10.1145/2509136.2509545
http://doi.acm.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2523616.2523633
https://developer.yahoo.com/hadoop/tutorial/module4.html
https://developer.yahoo.com/hadoop/tutorial/module4.html
http://dx.doi.org/10.1007/978-3-642-13374-9_12
http://doi.acm.org/10.1145/2508075.2514875
http://doi.acm.org/10.1145/2508075.2514875

A
p
p
e
n
d
i
x

A
Stencil API Applications

A.1 SOR Stencil

1 public class SORMapper extends MatrixStencilMapper <Float, Float,

2 SORComputation> {

3

4 @Override

5 protected void stencilMapLogic(Context context)

6 throws IOException, InterruptedException {

7

8 boolean maintain = false;

9 for(int i = getFirstLineIdx(); i <= getFirstLastIdx(); i++)

10 for(int j = getFirstColumnIdx; j <= getLastColumnIdx; j++){

11 maintain = maintainValue(i, j);

12 compute(new Tuple<Integer, Integer>(i,j), maintain);

13 }

14 }

15 }

16

17 private boolean maintainValue(int i, int j){

18 return ((i==0 &&(j>=0 && j<= numberOfColumns -1)) ||

19 (j==0 && (i>=0 && i<= numberOfLines -1)) ||

20 (i==numberOfLines -1 &&(j>=0 && j<= numberOfColumns -1)) ||

21 (j==numberOfColumns -1 && (i>=0 && i<= numberOfLines -1)));

22 }

23

24 @Override

25 protected Float getMatrixInitialValue() {

26 return Float.NaN;

27 }

28

29 @Override

87

APPENDIX A. STENCIL API APPLICATIONS

30 protected boolean isInitialValue(Float value){

31 return Float.isNaN(value);

32 }

33 }

Listing A.1: SORMapper class.

1 public class SORComputation extends StencilComputation <Tuple<Integer,Integer>,

2 Float[][], Float> {

3

4 private float omega_over_four;

5 private float one_minus_omega;

6

7 public SORComputation(){

8 this(1.5f);

9 }

10

11 public SORComputation(float omega) {

12 this.omega_over_four = omega * 0.25f;

13 this.one_minus_omega = 1.0f - omega;

14 }

15 @Override

16 public StencilComputation <Tuple<Integer, Integer>, Float[][], Float>

17 newInstance() {

18 return new SORComputation(1.5f);

19 }

20

21 @Override

22 public Float mainElementComputation(

23 Tuple<Integer, Integer> mainElementCoord, Float mainElementValue) {

24

25 return one_minus_omega * mainElementValue;

26 }

27

28 @Override

29 public Float neighbourComputation(

30 Tuple<Integer, Integer> mainElementCoord, Float mainElementValue,

31 Tuple<Integer, Integer> neighborCoord, Float neighborValue,

32 int numberOfNeighbors) {

33 int mainElementX = mainElementCoord.key;

34 int mainElementY = mainElementCoord.value;

35 int neighborX = neighborCoord.key;

36 int neighborY = neighborCoord.value;

37

38 if((((neighborX == mainElementX+1) || (neighborX == mainElementX -1))&&

39 (neighborY==mainElementY))||((neighborX == mainElementX)&&

40 ((neighborY == mainElementY+1) || (neighborY == mainElementY -1)))){

41 return omega_over_four * neighborValue;

42 }

43 else

88

A.1. SOR STENCIL

44 return 0.0f;

45 }

46

47 @Override

48 public Float aggregateComputations(Tuple<Integer, Integer> mainCoords,

49 Float finalResult, Tuple<Integer, Integer> neighborCoords,

50 Float partialComputation) {

51

52 return finalResult+partialComputation;

53 }

54

55 @Override

56 protected Float readElement(ByteBuffer inputBuffer) {

57 return inputBuffer.getFloat();

58 }

59

60 @Override

61 protected byte[] writeElement(Float element) {

62 ByteBuffer buffer = ByteBuffer.wrap(new byte[Float.SIZE/8]);

63 buffer.putFloat(element);

64 return buffer.array();

65 }

66 }

Listing A.2: SORComputation class.

1 public class SOR extends MatrixStencilMR<Float, Float> {

2

3 public SOR(int numberOfLines, int numberOfColumns, long inputSize,

4 Configuration othersConfigs, String pathConfig)

5 throws IOException {

6 super (numberOfLines, numberOfColumns, inputSize,

7 othersConfigs, SORMapper.class, SORComputation.class, pathConfig);

8 }

9

10 public static void main(String args[]) throws IOException, ParseException {

11

12 if(args.length < 5)

13 {

14 System.out.println("[nLines] [nColumns] [input size] [input dir]

15 [output dir]");

16 System.exit(0);

17 }

18

19 //For Optional Configs

20 Configuration conf = new Configuration();

21

22 SOR sor = new SOR(Integer.parseInt(args[0]), Integer.parseInt(args[1]),

23 Long.parseLong(args[2]), conf, args[5]);

24

89

APPENDIX A. STENCIL API APPLICATIONS

25 sor.launch("sor", args[3], args[4]);

26

27 }

28 }

Listing A.3: SOR class.

90

A.2. JACOBI METHOD STENCIL

A.2 Jacobi Method Stencil

1 public class JacobiMapper extends MatrixStencilMapper <Float,

2 Float, JacobiComputation > {

3

4 @Override

5 protected Float getMatrixInitialValue() {

6 return Float.NaN;

7 }

8

9 @Override

10 protected boolean isInitialValue(Float value){

11 return Float.isNaN(value);

12 }

13

14 @Override

15 protected void stencilMapLogic(

16 Context context)

17 throws IOException, InterruptedException {

18

19 for(int i = getFirstLineIdx(); i <= getFirstLastIdx(); i++)

20 for(int j = getFirstColumnIdx; j <= getLastColumnIdx; j++)

21 compute(new Tuple<Integer, Integer>(i,j), false);

22 }

23

24 }

Listing A.4: JacobiMapper class.

1 public class JacobiComputation extends StencilComputation <Tuple<Integer,

2 Integer>, Float[][], Float> {

3 private ArrayList<Float> resultsList;

4 private int numberOfColumns;

5

6 public JacobiComputation() {}

7 @Override

8 public void setConfiguration(Configuration configuration) {

9 super.setConfiguration(configuration);

10 ArrayList<String> list =

11 new ArrayList<String>(Arrays.asList(

12 this.config.getStrings("prev.values")));

13

14 this.resultsList = new ArrayList<Float>();

15 for(String value:list)

16 this.resultsList.add(Float.parseFloat(value));

17

18 this.numberOfColumns = (int) this.config.getLong("number.columns", 1);

19 }

20 @Override

21 public StencilComputation <Tuple<Integer, Integer>, Float[][], Float>

91

APPENDIX A. STENCIL API APPLICATIONS

22 newInstance() {

23 return new JacobiComputation();

24 }

25 @Override

26 public Float mainElementComputation(

27 Tuple<Integer, Integer> mainElementCoord, Float mainElementValue) {

28

29 if(mainElementCoord.key == mainElementCoord.value ||

30 mainElementCoord.value == this.numberOfColumns -1)

31 return mainElementValue;

32 return mainElementValue * this.resultsList.get(mainElementCoord.value);

33 }

34 @Override

35 public Float neighbourComputation(Tuple<Integer, Integer> mainElementCoord,

36 Float mainElementValue , Tuple<Integer, Integer> neighborCoord,

37 Float neighborValue, int numberOfNeighbors) {

38

39 return mainElementComputation(neighborCoord, neighborValue);

40 }

41 @Override

42 public Float aggregateComputations(Tuple<Integer, Integer> mainElementCoord,

43 Float finalResult, Tuple<Integer, Integer> neighborCoords,

44 Float partialComputation) {

45

46 if((mainElementCoord.value == this.numberOfColumns -1) &&

47 (neighborCoords.key != neighborCoords.value) &&

48 (neighborCoords.key == mainElementCoord.key))

49 return finalResult - partialComputation;

50

51 return finalResult;

52 }

53 @Override

54 protected Float readElement(ByteBuffer inputBuffer) {

55 return inputBuffer.getFloat();

56 }

57 @Override

58 protected byte[] writeElement(Float element) {

59 ByteBuffer buffer = ByteBuffer.wrap(new byte[Float.SIZE/8]);

60 buffer.putFloat(element);

61

62 return buffer.array();

63 }

64 }

Listing A.5: JacobiComputation class.

92

A.2. JACOBI METHOD STENCIL

1 public class Jacobi extends MatrixStencilMR<Float, Float> {

2

3 public Jacobi(int numberOfLines, int numberOfColumns, long inputSize,

4 Configuration othersConfigs, String pathConfig) throws IOException {

5 super (numberOfLines, numberOfColumns, inputSize, othersConfigs,

6 JacobiMapper.class, JacobiComputation.class, pathConfig);

7 }

8

9 public static void main(String args[]) throws IOException, ParseException{

10

11 if(args.length < 6)

12 {

13 System.out.println("[nLines] [nColumns] [input size] [input dir]

14 [output dir]");

15 System.exit(0);

16 }

17 //For Optional Configs

18 Configuration conf = new Configuration();

19 float[] diagonal= {10.0f, 11.0f, 10.0f, 8.0f};

20

21 String[] Prev = {"0.0", "0.0", "0.0", "0.0"};

22 conf.setStrings("prev.values", Prev);

23

24 int n = 5;

25

26 Jacobi brs = new Jacobi(

27 Integer.parseInt(args[0]), Integer.parseInt(args[1]),

28 Long.parseLong(args[2]), conf, args[5]);

29

30

31 conf = brs.launch("jacobi", args[3], args[4]);

32

33 String outputFilePath = args[4]+"/part-r-00000";

34

35 for(int k = 1; k <= n; k++)

36 {

37 Prev = readOutput(conf, outputFilePath);

38 if(Prev != null)

39 {

40 System.out.println("OUTPUT READ");

41

42 for(int i = 0; i < Prev.length; i++)

43 {

44 Prev[i] = ""+(1.0f/diagonal[i]* Float.parseFloat(Prev[i]));

45 System.out.println(Prev[i]);

46 }

47

48 if(k == n)

49 break;

93

APPENDIX A. STENCIL API APPLICATIONS

50 conf.setStrings("prev.values", Prev);

51

52 FileSystem fs = FileSystem.get(conf);

53 fs.delete(new Path(args[4]), true);

54

55 brs = new Jacobi(

56 Integer.parseInt(args[0]), Integer.parseInt(args[1]),

57 Long.parseLong(args[2]), conf, args[5]);

58

59 conf = brs.launch("jacobi", args[3], args[4]);

60

61 }

62 else

63 System.out.println("NO FILE " + outputFilePath);

64 }

65 }

66

67 private static String[] readOutput(Configuration conf, String path)

68 throws IOException{

69 Path pt = new Path(path);

70

71 FileSystem fs = FileSystem.get(conf);

72 if(!fs.exists(pt))

73 return null;

74

75 int numberOfLines = (int)conf.getLong("number.lines", 1);

76 int numberOfColumns = (int)conf.getLong("number.columns", 1);

77

78 String regex = "\\[\\d+]\\["+(numberOfColumns -1)+"\\] (-?\\d+.\\d+)";

79 Pattern p = Pattern.compile(regex);

80 Matcher m;

81

82 BufferedReader reader=new BufferedReader(

83 new InputStreamReader(fs.open(pt)));

84 String line = "";

85

86 String[] prev = new String[numberOfLines];

87 int i = 0;

88 while (line != null) {

89 m = p.matcher(line);

90

91 if(m.matches()){

92 prev[i] = m.group(1);

93 i++;

94 }

95 line = reader.readLine();

96 }

97 for(int j = 0; j < prev.length; j++)

98 System.out.println(prev[j]);

99

94

A.2. JACOBI METHOD STENCIL

100 return prev;

101 }

102 }

Listing A.6: Jacobi class. With some iterative attempt.

95

	List of Figures
	List of Tables
	Listagens
	Introduction
	Motivation
	The MapReduce Programming Model and Framework
	Motivational Example

	Problem
	Proposed Solution
	Contributions
	Document Structure

	State of the Art
	MapReduce
	Programming Model
	Generic Execution Model
	Apache Hadoop
	In-Memory and Multicore MapReduce
	Discussion

	Cache-Optimizations
	Compiler Optimizations for Sequential Code
	Cache-Oblivious Algorithms
	Memory Hierarchy Aware Programming Models
	Cache-Conscious Decomposition of Data-parallel Computations
	Discussion

	Cache-Friendly Tiling for MapReduce Tasks
	Approach
	Decomposition Implementation
	Implementation Overview
	Implementation Details

	Programming Model
	What has to be Implemented?
	Configuration Requirements
	Implementation Example

	Final Remarks

	A Programming Model for Stencil MapReduce Computations
	Stencil Computations
	Optimization of Stencil Computations
	Stencil Applications with MapReduce

	Stencil API
	API Classes
	Programming Model

	Execution Model

	Experimental Results
	Methodology
	Application
	Test Infrastructure
	Experimental Results
	Performance Evaluation
	Breakdown

	Discussion

	Conclusions
	Final Conclusions
	Future Work

	Bibliography
	Stencil API Applications
	SOR Stencil
	Jacobi Method Stencil

