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ABSTRACT
A linear mixed model whose variance-covariance matrix is a linear
combination of known pairwise orthogonal projection matrices that
add to the identitymatrix, is amodel with orthogonal block structure
(OBS). OBS have estimators with good behavior for estimable vec-
tors and variance components, moreover it may be interesting that
the least squares estimators give the best linear unbiased estimators,
for estimable vectors. We can achieve it, requiring commutativity
between the orthogonal projectionmatrix, on the space spanned by
themean vector, and the orthogonal projectionmatrices involved in
the expression of the variance-covariancematrix. This commutativity
condition defines a more restrict class of OBS, named COBS (model
with commutative orthogonal block structure). With this work we
aim to present a commutativity condition, resorting to a special class
of matrices, named U-matrices.

ARTICLE HISTORY
Received 17 November 2018
Accepted 30 April 2020

KEYWORDS
U-matrices; best linear
unbiased estimators; mixed
models; models with
commutative orthogonal
block structure

1. Introduction

Linear mixed models play an important role in the design and analysis of experiments and
have a wide use in several fields.

In the framework of the design of experiments in agricultural trials, Nelder [13,14]
introduced models with orthogonal block structure (OBS), which are linear mixed models
whose variance-covariance matrix is a linear combination of known pairwise orthogonal
projection matrices (POPM) that add up to the identity matrix. OBS continue to play a
central part in the theory of randomized block designs, (see [2,3]), which highlights the
interest on the adequacy of the estimators, see e.g. [1,6].

OBS allow optimal estimation for variance components of blocks and contrasts of treat-
ments [8] moreover wemay be interested in that least squares estimators (LSE), giving best
linear unbiased estimators (BLUE), for estimable vectors. For this purpose, wemust impose
a commutativity condition on OBS, as it was done in Fonseca et al. [10] when introducing
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models with commutative orthogonal block structure (COBS). COBS has been the subject
of extensive research, addressing, e.g. estimation, inference and operations with models,
see e.g. [4–6,8,12,15].

This paper is structured as follows. A framework for models with COBS and some of
their interesting results is provided in Section 2. Section 3 is dedicated to our main goal,
which is to present a commutativity condition and other results enabling the obtention of
BLUE. A real data application, considering an experiment with grapevines, is presented
in Section 4 to illustrate the usefulness of the methodology. We conclude this work in
Section 5, with some comments.

2. Models with commutative orthogonal block structure

To study COBS we resort to an approach based on their algebraic structure, since this leads
to interesting results on the estimation of variance components and on the building up of
models, see [10].

Let us consider a linear mixed model

Y =
w∑
i=0

Xiβ i, (1)

where β0 is fixed and β1, . . . ,βw are random vectors with null mean vectors, variance-
covariance matrices σ 2

1 Ic1 . . . σ 2
wIcw , where ci = rank(Xi), i = 1, . . . ,w, and null cross-

covariance matrices.
The mean vector of Y is

μ = X0β0 (2)

and the variance-covariance matrix is given by

V(σ 2) =
w∑
i=1

σ 2
i Mi, (3)

whereMi = XiXT
i , i = 1, . . . ,w.

The space spanned by the mean vector μ is � = R(X0), so the orthogonal projection
matrix (OPM), on �, is

T = X0(XT
0X0)

+XT
0 = X0X+

0 ,

see e.g. [5], where+denotes the Moore–Penrose inverse.
When the matricesM1, . . . ,Mw commute, they generate a commutative Jordan algebra

of symmetric matrices, CJAS, , this is, a linear space constituted by symmetric matrices
that commute and containing the squares of its matrices [11]. The CJAS, has a unique
basis, its principal basis, Q, constituted by known pairwise orthogonal orthogonal projec-
tion matrices, POPM, Q1, . . . ,Qm, see [17]. Thus the matricesMi, i = 1, . . . ,w, are linear
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combinations of the matrices of the principal basis of the CJAS, which means that

Mi =
m∑
j=1

bi,jQj. (4)

Considering γj = ∑w
i=1 bi,jσ

2
i , j = 1, . . . ,m, the canonical variance components, the

variance-covariance matrix of Y will take the form

V =
m∑
j=1

γjQj. (5)

When
∑w

i=1Mi, belonging to , is invertible, is a complete CJAS and the matrices of its
principal basis add up to the identity matrix, i.e.

m∑
j=1

Qj = In, (6)

and model (1) is a model with OBS.
When dealing with OBS, inference usually involves orthogonal projections on the range

spaces of thematricesQj, j = 1, . . . ,m, which is somewhat complex due to the combination
of estimators obtained from different projections, see e.g. [4]. Imposing a commutativity
condition on the OPM on the space spanned by the mean vector, T, and the POPM Qj,
j = 1, . . . ,m, leads to a special class of OBS, those of models with COBS, see [10]. For
this class of models we do not have the difficulty associated with orthogonal projections
mentioned above, allowing, additionally, the least square estimators, for estimable vectors,
to be UBLUE. According to the version of the Gauss-Markov theorem in [18], UBLUE are
BLUE whatever the variance components.

3. Generalizing the commutativity condition

Assuming the rows of matrix X0 to correspond to the sets of levels of the fixed effects
factors, the mean values of the observations will be determined by those sets. Let us con-
sider that there are ṅ sets of levels associated to r1, . . . , rṅ, contiguous rows of X0. If the
components of β0, β0,1, . . . ,β0,ṅ, are the corresponding mean values, we can reorder the
observations to have the block diagonal matrix

X0 = D(1r1 , . . . , 1rṅ), (7)

where 1rl , corresponds to the vector with all rl components equal to 1, l = 1, . . . , ṅ. So, the
orthogonal projection matrix on the space spanned by the mean vector, is given by

T = D
(
1
r1
Jr1 , . . . ,

1
rṅ
Jrṅ

)
(8)

where Jrl = 1rl1
T
rl , l = 1, . . . , ṅ.
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The fundamental partition of Y will be constituted by the sub-vectors Y1, . . . ,Y ṅ, cor-
responding to the ṅ sets of the levels of the fixed effects factors, see [16]. Then the variance-
covariance matrix can be defined by

V =

⎡
⎢⎣
V1,1 . . . V1,ṅ
...

...
V ṅ,1 . . . V ṅ,ṅ

⎤
⎥⎦ , (9)

with V l,l the variance-covariance matrix of Y l, l = 1, . . . , ṅ, and V l,h the cross-covariance
matrix of Y l and Yh, l �= h.

When T, the OPM on the space spanned by the mean vector μ, commutes with the
POPM Qj, j = 1, . . . ,m, the OPM also commutes with the variance-covariance matrix of
Y ,V .

From (8) and (9) we have

TV =

⎡
⎢⎢⎢⎢⎣

1
r1
Jr1V1,1 . . .

1
r1
Jr1V1,ṅ

...
...

1
rṅ
JrṅV ṅ,1 . . .

1
rṅ
JrṅV ṅ,ṅ

⎤
⎥⎥⎥⎥⎦ (10)

and

VT =

⎡
⎢⎢⎢⎢⎣
V1,1

1
r1
Jr1 . . . V1,ṅ

1
rṅ
Jrṅ

...
...

V ṅ,1
1
r1
Jr1 . . . V ṅ,ṅ

1
rṅ
Jrṅ

⎤
⎥⎥⎥⎥⎦ (11)

So, the matrices T and V commute if and only if⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
r1
Jr1V1,1 = V1,1

1
r1
Jr1 . . .

1
r1
Jr1V1,ṅ = V1,ṅ

1
rṅ
Jrṅ

...
...

1
rṅ
JrṅV ṅ,1 = V ṅ,1

1
r1
Jr1 . . .

1
rṅ
JrṅV ṅ,ṅ = V ṅ,ṅ

1
rṅ
Jrṅ

. (12)

These equalities imply that we must have

r1 = . . . = rṅ = r

and equalities (12) may be condensed into

JrV l,h = V l,hJr, l, h = 1, . . . , ṅ. (13)

Now, given a matrix

U =

⎡
⎢⎣
u1,1 . . . u1,r
...

...
ur,1 . . . ur,r

⎤
⎥⎦ (14)
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we have

JrU =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r∑
l=1

ul,1 . . .

r∑
l=1

ul,r

...
...

r∑
l=1

ul,1 . . .

r∑
l=1

ul,r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(15)

and

UJr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r∑
h=1

u1,h . . .

r∑
h=1

u1,h

...
...

r∑
h=1

ur,h . . .

r∑
h=1

ur,h

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (16)

So, to have the equality

JrU = UJr (17)

we must have
r∑

l′=1

ul′,h =
r∑

h′=1

ul,h′ = ū
r
, l, h = 1, . . . , r,

with ū = ∑r
l′=1

∑r
h′=1 ul′,h′ , which means that the sums of the elements in any row or

column of matrix U are equal. Thus, matrix U is called a U-matrix, see [16].
Going back to the product of matrices V and T, we see that these matrices commute

if and only if the sub-matrices V l,h, l, h = 1, . . . ,m, are U-matrices. We thus have the
following result.

Proposition 1: For the LSE of β0 be UBLUE it is necessary and sufficient that r1 = . . . =
rṅ = r and the sub-matrices V l,h, l, h = 1, . . . , ṅ be U-matrices.

Since we have

X0 = D(1r, . . . , 1r) = Im ⊗ 1r, (18)

where ⊗ denotes the Kronecker matrices product, and taking ṅ = m we also have

(X0
TX0)

−1 = 1
r
Im, (19)

and so (X0
TX0)

−1X0
T = (1/r)D(1r, . . . , 1r). Thus, the components of

β̃0 = (X0
TX0)

−1X0
T(Y1

T . . .Ym
T)T

will be the mean values y0,1, . . . , y0,m of the components of the sub-vectors Y1, . . . ,Ym.
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We are thus led to replace β0 and β̃0 by μ0 = (μ0,1, . . . ,μ0,m) and μ̃0 =
(μ̃0,1, . . . , μ̃0,m), respectively, which enables us to consider other parametrizations, taking

μ0 = Gβ0, (20)

where G will have linearly independent column vectors. Then μ̃0 will be the matrix of
sub-vectors means and, since

β0 = G+μ0 (21)

we have the estimator

β̃0 = G+μ̃0. (22)

We also have the following proposition.

Proposition 2: The estimator β̃0 is UBLUE.

Proof: Let β∗
0 be another unbiased estimator of β0. Then, for cTβ0 we have the unbiased

estimator cT β̃0 = aTμ̃0 with aT = cTG+ and cTβ∗
0 = aTμ∗

0, with μ∗
0 = Gβ∗

0 . Since μ∗
0 is

an unbiased estimator of μ0, and μ̃0 is UBLUE for μ0, we have Var(cT β̃0) ≤ Var(cTβ∗
0)

whatever the variance components. Given that c is arbitrary, β̃0 is BLUE. Since this holds
for all variance components β̃0 is UBLUE. �

Similarly, we may consider

λ = Uμ0, (23)

with the column vectors of U linearly independent. We now have the result.

Proposition 3: λ̃ = Uμ̃0 will be UBLUE for λ.

Proof: Since the column vectors of U are linearly independent we have μ0 = U+λ and
μ̃0 = U+λ̃ . Given λ∗ an unbiased estimator of λ, μ0

∗ = U+λ∗ will be an unbiased
estimator ofλ since itsmean vector will beU+Uμ0 = μ0.We also haveλ∗ = Uμ0

∗.More-
over, for cTλ we have the unbiased estimators cT λ̃ = cTUμ̃0 = (UTc)Tμ̃0 and cTλ∗ =
cTUμ0

∗ = (UTc)Tμ0
∗. Since μ̃0 is BLUE for μ0, we have Var(cT λ̃) ≤ Var(cTλ∗), what-

ever c, which shows that λ̃ is BLUE. Since this holds for all variance components λ̃ is
UBLUE. �

4. An application

Let’s consider an experiment with ‘Touriga Nacional’ grapevine and two fixed effects
factors:

• Location (in the experiment), with three levels;
• Origin, with two levels.

These two factors cross. Given the great number of clones, some ones were randomly
chosen and considered as the levels of a random effects factor nested in the factor Origin.
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Table 1. Production in Kg.

ORIGIN 1 ORIGIN 2

LOCATION Clone 1 Clone 2 Clone 3 Clone 1 Clone 2 Clone 3

1 3,00 1,00 1,10 1,75 1,10 1,05
1,85 1,10 1,50 3,50 1,05 1,25
0,75 1,00 1,80 2,50 0,50 2,00
1,35 1,60 1,45 2,00 1,05 1,50
1,45 1,50 1,25 0,65 1,25 2,10

2 1,80 1,60 0,85 2,00 1,20 1,00
0,70 1,75 0,65 3,00 1,35 2,70
2,50 0,50 0,55 2,55 1,20 2,15
1,70 1,35 0,90 3,00 0,30 2,10
0,40 1,10 0,09 2,65 2,50 2,70

3 1,05 0,75 0,90 1,60 1,05 1,60
1,50 0,65 0,90 3,05 1,95 1,10
1,15 0,90 0,55 0,25 2,00 2,05
0,85 0,85 0,70 1,66 2,20 1,50
1,15 1,05 0,35 2,65 2,35 3,00

For each origin, three clones were randomly chosen. Lastly five grapevines were considered
for each clone in each location. This experiment was analyzed, see [7,9], using its algebraic
structure, namely using CJA. For completeness sake we now apply our approach.

We have ṅ = 3 × 2 = 6 sub-vectors each with r = 3 × 5 = 15 observations. These
vectors are presented in Table 1.

With μ: the general mean; αi: the effect of the i-th location, i = 1, 2, 3; βj: the effect of
the j-th origin, j = 1, 2; γi,j: the interaction between the i-th location and the j-th origin,
i = 1, 2, 3, j = 1, 2; al,j: the random effect of the l-th clone of the j-th origin, l = 1, 2, 3; j =
1, 2; we have, for the sub-vectors, the model equation

Y i,j = (μ + αi + βj + γi,j)115 +
⎡
⎣a1,j
a2,j
a3,j

⎤
⎦ ⊗ 15 + ei,j; i = 1, 2, 3; j = 1, 2, (24)

where the ei,j, i = 1, 2, 3, j = 1, 2, will be normal with null mean vector and variance-
covariance matrix σ 2

l I15 independent from the vector aj, with components (a1,j,a2,j, a3,j),
j = 1, 2, which will be normal with null mean vector and covariance matrix σ 2

a I3. We can
order these sub-vectors using the index l = 2(i − 1) + j; i = 1, 2, 3; j = 1, 2.

It is straightforward to obtain the covariance and cross-covariance matrices of the sub-
vectors. We thus get

V1,1 = V2,2 = V3,3 = V4,4 = V5,5 = V6,6 = σ 2
a I3 ⊗ J5 + σ 2

l I15

V1,2 = V2,1 = V3,4 = V4,3 = V5,6 = V6,5 = 015,15

V1,3 = V3,1 = V1,5 = V5,1 = V2,4 = V4,2 = σ 2
a I3 ⊗ I5

V1,4 = V4,1 = V2,3 = V3,2 = V1,6 = V6,1 = 015,15

V1,6 = V6,1 = V2,5 = V5,2 = V3,6 = V6,3 = 015,15
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It is easy to see that all these matrices are U-matrices. Thus, the LSE estimator of the
vector μ0 with components

μi,j = μ + αi + βj + γi,j; i = 1, 2, 3; j = 1, 2 (25)

will be UBLUE.
In this application we will focus in the LSE for β . The ANOVA analysis is standard. It is

interesting to point out that, since

X0 = D(1r, . . . , 1r) = Im ⊗ 1r, (26)

we have

(X0
TX0)

−1X0
T = 1

r
D(1r, . . . , 1r) = 1

r
Im ⊗ 1r. (27)

Thus, the components of β̃0 will be the means of the components of sub-vectors. We will
represent those means by μ̃i,j, i = 1, 2, 3; j = 1, 2. Taking⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

μ̃i,. = 1
2
(μ̃i,1 + μ̃i,2), i = 1, 2, 3

μ̃.,j = 1
3
(μ̃1,j + μ̃2,j + μ̃3,j), j = 1, 2

μ̃.,. = 1
6

3∑
i=1

2∑
j=1

μ̃i,j

we get the estimators⎧⎪⎨
⎪⎩

α̃i = μ̃i,. − μ̃.,., i = 1, 2, 3
β̃j = μ̃.,j − μ̃.,., j = 1, 2
γ̃i,j = μ̃i,j − μ̃i,. − μ̃.,j + μ̃.,., i = 1, 2, 3; j = 1, 2

.

According to Proposition 1 these estimators will be UBLUE.
Besides this, using software R, we carried out a standard ANOVA whose main results

are presented in Table 2.
From the results presented in Table 2, we conclude that interaction between the fixed

effects factors (Location and Origin) and Location are significant.

5. Final comments

The use of linear mixed models is suitable for correlated data due to, for example, repeated
measurements. From Nelder’s work emerged a particular class of linear mixed models,
named OBS, that took a central role in the theory of randomized block designs, giving rise
to several lines of research. As a relevant step towards the adequacy of the estimators came
a special class of OBS, called COBS, which allows the estimation of relevant parameters
to be optimized. COBS are based on commutativity between T, the OPM on the space
spanned by themean vector, and the POPMQj, j = 1, . . . ,m. The commutativity condition
we presented is easy to verify and guaranties UBLUE estimators, obtained through least
squares, for the coefficients vector and estimable vectors. Thus, we consider that our aims
were attained.
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Table 2. Model summary and ANOVA table.

Linear mixed model fit by REML. t-tests use Satterthwaite’s method [
lmerModLmerTest]
Formula: Grapevines ∼ Location * Origin + (1 | Clone/Origin)
REML criterion at convergence: 179.5

Scaled residuals:
Min 1Q Median 3Q Max
−3.2873 −0.5357 −0.0656 0.5693 2.5275

Random effects:
Groups Name Variance Std.Dev.
Origin:Clone (Intercept) 0.02634 0.1623
Clone (Intercept) 0.05287 0.2299
Residual 0.37638 0.6135
Number of obs: 90, groups: Origin:Clone, 6; Clone, 3

Fixed effects:
Estimate Std. Error df t value Pr(> |t|)

(Intercept) 1.9449 0.5952 30.7182 3.268 0.00267 **
Location −0.7187 0.2505 81.9992−2.869 0.00523 **
Origin −0.2238 0.3670 25.5218−0.610 0.54737
Location:Origin 0.4387 0.1584 81.9992 2.769 0.00695 **
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

Correlation of Fixed Effects:
(Intr) Locatn Origin

Location −0.842
Origin −0.925 0.819
Locatn:Orgn 0.798 −0.949 −0.863

Sum Sq Mean Sq NumDF DenDF F value Pr(> F)

Location 3.0988907 3.0988907 1 81.99925 8.2333400 0.005229186
Origin 0.1399722 0.1399722 1 25.52179 0.3718876 0.547368822
Location:Origin 2.8864267 2.8864267 1 81.99925 7.6688514 0.006945885
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