The rank of the semigroup of all order-preserving transformations on a finite fence

V.H. Fernandes, J. Koppitz ${ }^{\dagger}$ and T. Musunthia ${ }^{\ddagger}$

October 21, 2019

Abstract

A zig-zag (or fence) order is a special partial order on a (finite) set. In this paper, we consider the semigroup $\mathcal{T F}_{n}$ of all order-preserving transformations on an n-element zig-zag ordered set. We determine the rank of $\mathcal{T F}_{n}$ and provide a minimal generating set for $\mathcal{T F}_{n}$. Moreover, a formula for the number of idempotents in $\mathcal{T F}_{n}$ is given.

1 Introduction

Let $n \in \mathbb{N}$ and denote by \mathcal{T}_{n} the monoid (under composition) of all full transformations on the set $\bar{n}=\{1, \ldots, n\}$ of the first n natural numbers. Let \preceq be any partial order on \bar{n}. Let $\alpha \in \mathcal{T}_{n}$. We say that α is an order-preserving transformation (with respect to \preceq) if $x \preceq y$ implies $x \alpha \preceq y \alpha$, for all $x, y \in \bar{n}$. Clearly, the subset of \mathcal{T}_{n} of all order-preserving transformations (with respect to a fixed partial order) forms a submonoid of \mathcal{T}_{n}.

A very important particular and natural case occurs when a linear order (for instance the one induced by the usual order on the natural numbers) is considered. The monoid \mathcal{O}_{n} of all order-preserving transformations on \bar{n}, endowed with a linear order, has been extensively studied since the early 1960s. In fact, in 1962, Aǐzenštat [1, 2] showed that all non-trivial congruences of \mathcal{O}_{n} are Rees congruences and gave a monoid presentation for \mathcal{O}_{n}, in terms of $2 n-2$ idempotent generators, from which it can be deduced that, for $n>1, \mathcal{O}_{n}$ only has one non-trivial automorphism. In 1971, Howie [13] calculated the cardinal and the number of idempotents of \mathcal{O}_{n} and later (1992), jointly with Gomes [11], determined its rank and idempotent rank. More recently, Fernandes et al. [9] described the endomorphisms of the semigroup \mathcal{O}_{n} by showing that there are three types of endomorphism: automorphisms, constants, and a certain type of endomorphism with two idempotents in the image. The monoid \mathcal{O}_{n} also played a main role in several other papers $[3,7,8,10,12,16,17,19]$, where the central topic concerns the problem of the decidability of the pseudovariety generated by the family $\left\{\mathcal{O}_{n} \mid n \in \mathbb{N}\right\}$. This question was posed by J.-E. Pin in 1987 in the "Szeged International Semigroup Colloquium" and, as far as we know, is still open.

A non-linear order (in some sense) close to a linear order is the so-called zig-zag order. The pair (\bar{n}, \preceq) is

[^0]called a zig-zag poset or fence if
\[

$$
\begin{aligned}
& 1 \prec 2 \succ 3 \prec \cdots \prec n-1 \succ n, \quad \text { if } n \text { is odd, and } \\
& 1 \prec 2 \succ 3 \prec \cdots \succ n-1 \prec n, \quad \text { if } n \text { is even, or dually } \\
& 1 \succ 2 \prec 3 \succ \cdots \succ n-1 \prec n, \quad \text { if } n \text { is odd, and } \\
& 1 \succ 2 \prec 3 \succ \cdots \prec n-1 \succ n, \quad \text { if } n \text { is even. }
\end{aligned}
$$
\]

The definition of the partial order \preceq is self-explanatory. For instance, for $n=5$ and $n=6$, we have the following fences (given by Hasse diagrams):

Observe that, every element in a fence is either minimal or maximal.
Order-preserving transformations of (finite) fences were first investigated by Currie and Visentin [5] and by Rutkowski [18]. In [5], by using generating functions, the authors calculate the number of order-preserving transformations of a fence with an even number of elements. On the other hand, an exact formula for the number of such transformations, for any natural number n, was given in [18].

Recently, several properties of monoids of order-preserving transformations of a fence were studied. In [4] the authors discussed the regular elements in these monoids. So-called coregular elements of this monoids were determined in [15]. On the other hand, in [6] Dimitrova and Koppitz investigated the monoid of all partial permutations preserving a zig-zag order on a set with n elements, by studing Green's relations and generating sets of this monoid.

Without loss of generality, we will assume that (\bar{n}, \preceq) is an up-fence, i.e.

$$
1 \prec 2 \succ 3 \prec \cdots .
$$

Let $x, y \in \bar{n}$. We say that x and y are comparable if $x \prec y$ or $x=y$ or $y \prec x$. Otherwise, x and y are said incomparable. Clearly, x and y are comparable if and only if $x \in\{y-1, y, y+1\}$.

Denote by \mathcal{F}_{n} the submonoid of \mathcal{T}_{n} of all order-preserving transformations of the fence (\bar{n}, \preceq).
In this paper, we determine the rank and count the number of idempotents of $\mathcal{T F}_{n}$.
Recall that the rank of a (finite) semigroup S is defined by

$$
\operatorname{rank} S=\min \{|A| \mid A \subseteq S \text { generates } S\}
$$

i.e. the rank of S is the minimal size of a generating set of S. For general background on Semigroup Theory and standard notation, we refer the reader to Howie's book [14].

We begin, in the next section, by giving a characterization of the elements of $\mathfrak{T F}{ }_{n}$. Clearly, the identity mapping id_{n} on \bar{n} is order-preserving. Also, all the n constant mappings are order-preserving. Moreover, for an even n, id_{n} is the unique permutation of \bar{n} belonging to $\mathcal{T F}_{n}$ and, on the other hand, if n is odd then $\mathcal{T} \mathcal{F}_{n}$ has exactly two permuations, namely the identity mapping and the reflection

$$
\gamma_{n}=\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
n & n-1 & \cdots & 1
\end{array}\right) .
$$

The rest of Section 2 is dedicated to counting the idempotents of $\mathcal{T F}_{n}$. Notice that, it is easy to show that an element $\alpha \in \mathcal{T}_{n}$ is idempotent if and only if $\operatorname{Im} \alpha=\{x \in \bar{n} \mid x \alpha=x\}$, i.e. the image of α coincides with the set of its fix points. In the third section of this paper, we determine the rank of $\mathcal{T} \mathcal{F}_{n}$. In particular, we provide a minimal size generating set for $\mathcal{T F}_{n}$.

Notice that $\mathcal{F F}_{1}$ coincides with \mathcal{T}_{1} and $\mathcal{T F}_{2}$ coincides with the monoid \mathcal{O}_{2} of all order-preserving transformations on a two-element chain. Hence, from now on, we always consider $n \geq 3$.

2 Idempotents

The aim of this section is to provide a formula for the number of idempotents of $\mathcal{T} \mathcal{F}_{n}$. In order to accomplish this, it is useful to know the form of the elements of $\mathcal{T} \mathcal{F}_{n}$. We have the following characterization of a transformation in $\mathcal{T F}_{n}$.

Theorem 2.1. Let $\alpha \in \mathcal{T}_{n}$. Then $\alpha \in \mathcal{T F}_{n}$ if and only if
(i) $|x \alpha-(x+1) \alpha| \leq 1$, for all $x \in\{1, \ldots, n-1\}$;
(ii) x and $x \alpha$ have the same parity or $(x-1) \alpha=x \alpha=(x+1) \alpha$, for all $x \in\{2, \ldots, n-1\}$.

Proof. First, suppose that $\alpha \in \mathcal{T F}_{n}$. Let $x \in\{1, \ldots, n-1\}$. Then x and $x+1$ are comparable, which implies that $x \alpha$ and $(x+1) \alpha$ are also comparable and so $|x \alpha-(x+1) \alpha| \leq 1$. This shows (i). Now let $x \in\{2, \ldots, n-1\}$. Assume that x is even. Then $x-1 \prec x \succ x+1$ and so $(x-1) \alpha \preceq x \alpha \succeq(x+1) \alpha$. If $(x-1) \alpha \neq x \alpha$ or $x \alpha \neq(x+1) \alpha$ then $(x-1) \alpha \prec x \alpha$ or $x \alpha \succ(x+1) \alpha$, which implies in both cases that $x \alpha$ is even. Similarly, if x is odd we may deduce that $x \alpha$ is also odd or $(x-1) \alpha=x \alpha=(x+1) \alpha$. This shows (ii).

Conversely, suppose that (i) and (ii) are satisfied. Let $x, y \in \bar{n}$ be such that $x \prec y$. Then x is odd and y is even. Moreover $y \in\{x-1, x+1\}$. Admit that $x \alpha \neq y \alpha$. If $y=x-1$ then $2 \leq y \leq n-1$ and so $|y \alpha-x \alpha|=|y \alpha-(y+1) \alpha|=1$ and y and $y \alpha$ have the same parity. If $y=x+1$ then $1 \leq x \leq n-1$ and so $|x \alpha-y \alpha|=|x \alpha-(x+1) \alpha|=1$. Furthermore, in this last case, if $x>1$ then x and $x \alpha$ have the same parity; otherwise $y=2<n$ and so y and $y \alpha$ have the same parity (since $(y-1) \alpha=x \alpha \neq y \alpha$). Therefore, we have $y \alpha \in\{x \alpha-1, x \alpha+1\}$ and, on the other hand, $y \alpha$ is even or $x \alpha$ is odd. Thus, in all cases, $x \alpha \prec y \alpha$, as required.

As a consequence of Theorem 2.1 we have that the image of a transformation in $\mathcal{T F}_{n}$ is an interval of \bar{n} (with the usual order).

Corollary 2.2. Let $\alpha \in \mathcal{T F}_{n}$. Then $\operatorname{Im} \alpha=\{k, k+1, \ldots, \ell\}$, for some $1 \leq k<\ell \leq n$.
Proof. Let $k=\min \operatorname{Im} \alpha$ and $\ell=\max \operatorname{Im} \alpha$ (with respect to the usual order of \mathbb{N}). Assume that there exists $p \in\{k, k+1, \ldots, \ell\}$ such that $p \notin \operatorname{Im} \alpha$. Let $x=\max \{i \in \bar{n} \mid i \alpha<p\}$. If $x<n$ then $(x+1) \alpha>p$ and so $|x \alpha-(x+1) \alpha|>1$, a contradiction. Then $y=\max \{i \in \bar{n} \mid i \alpha>p\}<n$ and $(y+1) \alpha<p$, whence $|y \alpha-(y+1) \alpha|>1$, which again is a contradiction. Thus $\operatorname{Im} \alpha=\{k, k+1, \ldots, \ell\}$, as required.

Next we will give a formula for the number of idempotents in $\mathcal{T F}_{n}$. Let $m \in \bar{n}$ and $0 \leq p \leq n-m$. For $r \in\{0, \ldots, m-1\}$, let

$$
P(p, r)=\left\{\left(p_{0}, \ldots, p_{t}\right) \mid t \in \mathbb{N} \cup\{0\} ; p_{1}, \ldots, p_{t} \in \mathbb{N} ; p_{0}=0 ; 0 \leq \sum_{i=1}^{s}(-1)^{i+1} p_{i} \leq p, \text { for } 1 \leq s \leq t ; \sum_{i=1}^{t} p_{i}=r\right\}
$$

and

$$
K(m, r)=\left\{\left(k_{0}, \ldots, k_{r}\right) \mid k_{0}+r+2 \sum_{i=1}^{r} k_{i}=m-1, k_{0}, \ldots, k_{r} \in \mathbb{N} \cup\{0\}\right\}
$$

Further, define

$$
A(m, p)=\sum_{r=0}^{m-1}|P(p, r)| \cdot|K(m, r)|
$$

Lemma 2.3. Let $\alpha \in \mathcal{T F}_{n}$ with $\operatorname{Im} \alpha=\{k, \ldots, k+p\}$, for some $k \in \bar{n}$ and some $p \in\{0, \ldots, n-k\}$. Let $a_{0} \in\{k, k+p\}$ and $r \in\{0, \ldots, k-1\}$. Then, there exists a bijection between the set $P(p, r)$ and the set of all sequences $a_{0}, a_{1}, \ldots, a_{r} \in \operatorname{Im} \alpha$ such that $\left|a_{i-1}-a_{i}\right|=1$, for all $i \in\{1, \ldots, r\}$, and there exists a partition $A_{0}>A_{1}>\cdots>A_{r}$ of $\{1, \ldots, k\}$, if $a_{0}=k$, or a partition $A_{0}<A_{1}<\cdots<A_{r}$ of $\{k+p, \ldots, n\}$, if $a_{0}=k+p$, verifying $A_{i} \alpha=\left\{a_{i}\right\}$, for $i \in\{0, \ldots, r\}$.

Proof. Fix a sequence $a_{0}, a_{1}, \ldots, a_{r} \in \operatorname{Im} \alpha$ verifying the conditions of the lemma. Notice that, if $r=0$ then $P(p, 0)=\{(0)\}$ and a_{0} is the only possible sequence. Then, we may admit that $r>0$. Let $j=1$, if $a_{0}=k$, or $j=2$, if $a_{0}=k+p$. Put $p_{0}=0$ (by technical reasons).

Then, there exists $p_{1} \in\{1, \ldots, r\}$ such that $(-1)^{1+1} p_{1} \in\{0, \ldots, p\}, a_{i}=a_{0}+(-1)^{j+1} i$, for $1 \leq i \leq p_{1}$, and either $r=p_{1}$ or $a_{p_{1}+1}=a_{0}+(-1)^{j+1} p_{1}+(-1)^{j+2}$.

If $r>p_{1}$ then there exists $p_{2} \in\left\{1, \ldots, r-p_{1}\right\}$ such that $(-1)^{1+1} p_{1}+(-1)^{2+1} p_{2} \in\{0, \ldots, p\}, a_{p_{1}+i}=a_{0}+$ $(-1)^{j+1} p_{1}+(-1)^{j+2} i$, for $1 \leq i \leq p_{2}$, and either $r=p_{1}+p_{2}$ or $a_{p_{1}+p_{2}+1}=a_{0}+(-1)^{j+1} p_{1}+(-1)^{j+2} p_{2}+(-1)^{j+3}$.

Continuing in this way, we obtain $t, p_{1} \ldots, p_{t} \in \mathbb{N}$ such that

$$
\sum_{i=1}^{t} p_{i}=r, \quad \sum_{i=1}^{s}(-1)^{i+1} p_{i} \in\{0, \ldots, p\}, \quad \text { for } 1 \leq s \leq t
$$

and

$$
a_{i+\sum_{\ell=1}^{q-1} p_{\ell}}=a_{0}+\sum_{\ell=1}^{q-1}(-1)^{j+\ell} p_{\ell}+(-1)^{j+q} i, \quad \text { for } 1 \leq i \leq p_{q} \text { and } 1 \leq q \leq t
$$

Hence, the sequence $a_{0}, a_{1}, \ldots, a_{r}$ is uniquely determined by the t-uple (p_{0}, \ldots, p_{t}).
Let us denote by E_{m} the set of all idempotents of $\mathcal{F F}_{m}$, for all $m \geq 1$. It is clear that $E_{1}=\mathcal{T F}_{1}=\mathcal{T}_{1}=\left\{\binom{1}{1}\right\}$ and $E_{2}=\mathcal{T F}_{2}=\mathcal{T}_{2} \backslash\left\{\binom{12}{21}\right\}=\left\{\binom{12}{12},\binom{12}{11},\binom{12}{22}\right\}$.

Theorem 2.4. We have

$$
\left|E_{n}\right|=\sum_{k=1}^{n} \sum_{p=0}^{n-k} A(k, p) \cdot A(n+1-(k+p), p) .
$$

Proof. Let $\alpha \in E_{n}$. Then, by Corollary 2.2, there exist $k \in \bar{n}$ and $p \in\{0, \ldots, n-k\}$ such that

$$
\operatorname{Im} \alpha=\{k, k+1, \ldots, k+p\} .
$$

Since α is idempotent, we have $(k+i) \alpha=k+i$, for $i \in\{0, \ldots, p\}$. Let

$$
A^{-}=\{1, \ldots, k\} \quad \text { and } \quad A^{+}=\{k+p, \ldots, n\}
$$

First, we consider the set A^{-}. By Theorem 2.1, we have $|x \alpha-(x+1) \alpha| \leq 1$ for all $x \in\{1, \ldots, k-1\}$. Hence, there exist $r \in\{0, \ldots, k-1\}$, a sequence $a_{0}, \ldots, a_{r} \in \operatorname{Im} \alpha$ and a partition $A_{0}>A_{1}>\cdots>A_{r}$ of A^{-} such that $\left|a_{i-1}-a_{i}\right|=1$, for $1 \leq i<r$, and $A_{i} \alpha=\left\{a_{i}\right\}$, for $0 \leq i \leq r$. Moreover, $x \alpha$ and x have the same parity or $(x-1) \alpha=x \alpha=(x+1) \alpha$, for all $x \in A^{-} \backslash\{1, n\}$. It follows that there exist $k_{0}, k_{1}, \ldots, k_{r} \in \mathbb{N} \cup\{0\}$ such that $\left|A_{i}\right|=1+2 k_{i}$, for $0 \leq i \leq r-1$, and $\left|A_{r}\right|=k_{r}+1$. Then $k_{r}+r+2 \sum_{i=0}^{r-1} k_{i}=k-1$ and so the sequence $A_{0}>A_{1}>\cdots>A_{r}$ is uniquely determined by an element of $K(k, r)$.

If $r=0$ then $A^{-}=A_{0}$ and $P(p, 0)=\{(0)\}$. On the other hand, admit that $r>0$. Then, by Lemma 2.3 (with $a_{0}=k$), we have that the sequence a_{0}, \ldots, a_{r} is uniquely determined by an element of the set $P(p, r)$. Hence, $\left.\alpha\right|_{A^{-}}$is uniquely determined by an element of the set

$$
B^{-}(k, p)=\bigcup_{r=0}^{k-1} K(k, r) \times P(p, r) \times\{r\} .
$$

Dually, there exist $s \in\{0, \ldots, n-(k+p)\}$, a sequence $a_{0}, \ldots, a_{s} \in \operatorname{Im} \alpha$ and a partition $A_{0}<A_{1}<\cdots<A_{s}$ of A^{+}such that $\left|a_{i-1}-a_{i}\right|=1$, for $1 \leq i<s$, and $A_{i} \alpha=\left\{a_{i}\right\}$, for $0 \leq i \leq s$. Also, there exist $\ell_{0}, \ell_{1}, \ldots, \ell_{s} \in \mathbb{N} \cup\{0\}$ such that $\left|A_{i}\right|=1+2 \ell_{i}$, for $0 \leq i \leq s-1$, and $\left|A_{s}\right|=\ell_{s}+1$. Then $\ell_{r}+r+2 \sum_{i=0}^{s-1} \ell_{i}=n-(k+p)=(n+1)-(k+p)-1$, whence the sequence $A_{0}<A_{1}<\cdots<A_{s}$ is uniquely determined by an element of $K(n+1-(k+p), s)$.

If $s=0$ then $A^{+}=A_{0}$ and $P(p, 0)=\{(0)\}$. So, admit that $s>0$. Then, by Lemma 2.3 (with $a_{0}=k+p$), we have that the sequence a_{0}, \ldots, a_{s} is uniquely determined by an element of the set $P(p, s)$. Consequently, $\left.\alpha\right|_{A^{+}}$is uniquely determined by an element of the set

$$
B^{+}(k, p)=\bigcup_{s=0}^{n-(k+p)} K(n+1-(k+p), s) \times P(p, s) \times\{s\} .
$$

Notice that, it is easy to verify that $\left|B^{-}(k, p)\right|=A(k, p)$ and $\left|B^{+}(k, p)\right|=A(n+1-(k+p), p)$. Moreover, $\left.\alpha\right|_{\operatorname{Im} \alpha}$ is the identity mapping on $\operatorname{Im} \alpha$ and $\operatorname{Im} \alpha$ is uniquely determined by an element k of the set \bar{n} and an element p of the set $\{0, \ldots, n-k\}$. Thus, the transformation $\alpha \in E_{n}$ is uniquely determined by an element of the set

$$
\bigcup_{k=1}^{n} \bigcup_{p=0}^{n-k} B^{-}(k, p) \times B^{+}(k, p) \times\{(k, p)\}
$$

Conversely, as the construction of this set clearly justifies that each of its elements determines uniquely an idempotent in $\mathcal{T F}_{n}$, we have

$$
\begin{aligned}
\left|E_{n}\right| & =\left|\bigcup_{k=1}^{n} \bigcup_{p=0}^{n-k} B^{-}(k, p) \times B^{+}(k, p) \times\{(k, p)\}\right|=\sum_{k=1}^{n} \sum_{p=0}^{n-k}\left|B^{-}(k, p) \times B^{+}(k, p) \times\{(k, p)\}\right| \\
& \left.=\sum_{k=1}^{n} \sum_{p=0}^{n-k}\left|B^{-}(k, p)\right| \cdot \mid B^{+}(k, p)\right\}|\cdot|\{(k, p)\} \mid=\sum_{k=1}^{n} \sum_{p=0}^{n-k} A(k, p) \cdot A(n+1-(k+p), p),
\end{aligned}
$$

as required.
The table below gives us an idea of the size of the monoids $\mathcal{T F}_{m}$ and of their number of idempotents.

m	$\left\|E_{m}\right\|$	$\left\|\mathfrak{T \mathcal { F }}_{m}\right\|$
1	1	1
2	3	3
3	8	11
4	19	31
5	44	99
6	98	275
7	218	811
8	474	2199

m	$\left\|E_{m}\right\|$	$\left\|\mathcal{T \mathcal { F }}_{m}\right\|$
9	1039	6187
10	2243	16459
11	4901	44931
12	10591	117831
13	23190	315067
14	50335	817323
15	110651	2152915
16	241457	5537839

These numbers were calculated by the formula of Theorem 2.4 and by the formulas given by Rutkowski [18].

3 The rank of $\mathcal{T} \mathcal{F}_{n}$

This section is devoted to determine the rank of $\mathcal{T F}_{n}$. In the process we give an explicit minimal size set of generators of $\mathfrak{T F}_{n}$. The cases n odd and n even will be treated separately.

The following general observation will be frequently used without reference.
Lemma 3.1. Let $\alpha, \alpha^{\prime} \in \mathcal{T F}_{n}$ be such that $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha^{\prime}$ and $\operatorname{rank} \alpha>1$. Then $x \alpha$ and $x \alpha^{\prime}$ have the same parity, for all $x \in \bar{n}$.

Proof. Let $x \in \bar{n}$. Since $\operatorname{rank} \alpha>1$, there exists $y \in x \alpha \alpha^{-1}$ such that $y+1 \in \bar{n} \backslash y \alpha \alpha^{-1}$ or $y-1 \in \bar{n} \backslash y \alpha \alpha^{-1}$. Therefore we may consider four cases. For instance, if $y+1 \in \bar{n} \backslash y \alpha \alpha^{-1}$ and $y \prec y+1$ then $x \alpha=y \alpha \prec(y+1) \alpha$ and $x \alpha^{\prime}=y \alpha^{\prime} \prec(y+1) \alpha^{\prime}$, whence $x \alpha$ and $x \alpha^{\prime}$ have the same parity. The other three cases are similar.

Next, we define a series of transformations of $\mathcal{T F}_{n}$. Let (for any n)

$$
\begin{aligned}
& \alpha_{1,2}=\left(\begin{array}{ccccc}
\overline{1,2} & 3 & 4 & \cdots & n \\
2 & 3 & 4 & \cdots & n
\end{array}\right) \text {, } \\
& \alpha_{k, k+2}=\left(\begin{array}{ccccccc}
1 & \cdots & k-1 & \overline{k, k+2} & \overline{k+1, k+3} & k+4 & \cdots \\
n \\
1 & \cdots & k-1 & k & k+1 & k+2 & \cdots \\
n-2
\end{array}\right) \text {, for } 2 \leq k \leq n-4 \text {, } \\
& \alpha_{n-2, n}=\left(\begin{array}{ccccc}
1 & \cdots & n-3 & \overline{n-2, n} & n-1 \\
1 & \cdots & n-3 & n-2 & n-1
\end{array}\right) \text {, for } n \geq 4 \text {, } \\
& \alpha_{k, k+1, k+2}=\left(\begin{array}{ccccccc}
1 & \cdots & k-1 & \overline{k, k+1, k+2} & k+3 & \cdots & n \\
1 & \cdots & k-1 & k & k+1 & \cdots & n-2
\end{array}\right) \text {, for } 1 \leq k \leq n-2 \text {, } \\
& \alpha_{1,2 k+1}=\left(\begin{array}{cccccccc}
k+1 & \overline{k, k+2} & \cdots & \overline{2,2 k} & \overline{1,2 k+1} & 2 k+2 & \cdots & n \\
k+1 & k+2 & \cdots & 2 k & 2 k+1 & 2 k+2 & \cdots & n
\end{array}\right) \text {, for } 1 \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor \text {, and } \\
& \beta_{k, m}=\left(\begin{array}{cccccc}
1 & \cdots & k-1 & \overline{k, k+2 m} & \overline{k+1, k+2 m-1, k+2 m+1} & \cdots \\
1 & \cdots & k-1 & k & k+1 & \cdots
\end{array}\right. \\
& \left.\begin{array}{ccccc}
\cdots & \overline{k+(m-1), k+2 m-(m-1), k+2 m+(m-1)} & \overline{k+m, k+3 m} & k+3 m+1 & \cdots \\
\cdots & k+(m-1) & k+m & k+m+1 & \cdots \\
n-2 m
\end{array}\right),
\end{aligned}
$$

for $2 \leq k, m \leq n$ such that $k+3 m \leq n-1$.
Moreover, for an odd n, recall that

$$
\gamma_{n}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
n & n-1 & \cdots & 2 & 1
\end{array}\right),
$$

and, for an even n, let
$\alpha_{1,2}^{e}=\left(\begin{array}{ccccc}\overline{1,2} & 3 & 4 & \cdots & n \\ n & n-1 & n-2 & \cdots & 2\end{array}\right)$,
$\alpha_{n-1, n}=\left(\begin{array}{ccccc}1 & 2 & \cdots & n-2 & \overline{n-1, n} \\ n-1 & n-2 & \cdots & 2 & 1\end{array}\right)$,
$\alpha_{2 k, n}=\left(\begin{array}{ccccccc}1 & \cdots & 2 k-1 & \frac{n}{2}+k & \bar{n}+k-1, \frac{n}{2}+k+1 & \bar{n}+k-2, \frac{n}{2}+k+2 & \ldots \\ \hline 1 & \cdots & 2 k-1 & \frac{n}{2}+k & \frac{n}{2}+k-1 & \frac{n}{2}+k-2 & \cdots \\ 2 k\end{array}\right)$,
for $1 \leq k \leq \frac{n-4}{2}$, and
$\alpha_{1,2 k+1}^{e}=\left(\begin{array}{cccccccc}k+1 & \overline{k, k+2} & \cdots & \overline{2,2 k} & \overline{1,2 k+1} & 2 k+2 & \cdots & n \\ k-1 & k & \cdots & 2 k-2 & 2 k-1 & 2 k & \cdots & n-2\end{array}\right)$, for $2 \leq k \leq \frac{n-2}{2}$.
Now, for an odd n, define

$$
\begin{aligned}
G_{n}= & \left\{\gamma_{n}, \alpha_{1,2}\right\} \cup\left\{\alpha_{k, k+2} \left\lvert\, 2 \leq k \leq \frac{n-3}{2}\right.\right\} \cup\left\{\alpha_{k, k+1, k+2} \left\lvert\, 1 \leq k \leq \frac{n-1}{2}\right.\right\} \cup \\
& \left\{\alpha_{1,2 k+1} \left\lvert\, 1 \leq k \leq \frac{n-1}{2}\right.\right\} \cup\left\{\beta_{k, m} \mid 2 \leq k, m \leq \frac{n-1}{2} \text { and } 2 k+3 m \leq n+1\right\}
\end{aligned}
$$

and, for an even n, define

$$
\begin{aligned}
G_{n}= & \left\{\operatorname{id}_{n}, \alpha_{1,2}^{e}, \alpha_{1,3}, \alpha_{n-1, n}, \alpha_{n-2, n}\right\} \cup\left\{\alpha_{k, k+2} \mid 2 \leq k \leq n-4\right\} \cup\left\{\alpha_{k, k+1, k+2} \mid 2 \leq k \leq n-3\right\} \cup \\
& \left\{\alpha_{1,2 k+1}^{e} \left\lvert\, 2 \leq k \leq \frac{n}{2}-1\right.\right\} \cup\left\{\alpha_{2 k, n} \left\lvert\, 1 \leq k \leq \frac{n-4}{2}\right.\right\} \cup\left\{\beta_{k, m} \mid 2 \leq k, m \leq n \text { and } k+3 m \leq n-1\right\} .
\end{aligned}
$$

From now on, our main aim is to prove that G_{n} is a generating set for $\mathfrak{T \mathcal { F }}_{n}$ of minimal size.
The following lemma shows that all the transformations above defined belong to the subsemigroup $\left\langle G_{n}\right\rangle$ of $\mathcal{T F}_{n}$ generated by G_{n}. Frequently, we will use it without reference.

Lemma 3.2. We have:
(i) $\left\{\alpha_{k, k+1, k+2} \mid 1 \leq k \leq n-2\right\} \subseteq\left\langle G_{n}\right\rangle$;
(ii) $\left\{\alpha_{1,2 k+1} \left\lvert\, 2 \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor\right.\right\} \subseteq\left\langle G_{n}\right\rangle$;
(iii) $\left\{\alpha_{k, k+2} \mid 2 \leq k \leq n-4\right\} \subseteq\left\langle G_{n}\right\rangle$;
(iv) $\left\{\beta_{k, m} \mid 2 \leq k, m \leq n\right.$ and $\left.k+3 m \leq n-1\right\} \subseteq\left\langle G_{n}\right\rangle$;
(v) $\alpha_{2 k, n}=\left(\begin{array}{ccccccc}1 & \cdots & 2 k & \overline{2 k+1, n} & \ldots & \overline{\frac{n-1}{2}+k, \frac{n+3}{2}+k} & \frac{n+1}{2}+k \\ 1 & \cdots & 2 k & 2 k+1 & \cdots & \frac{n-1}{2}+k & \frac{n+1}{2}+k\end{array}\right) \in\left\langle G_{n}\right\rangle$, for n odd and $1 \leq k \leq \frac{n-5}{2}$;
(vi) $\alpha_{n-2, n} \in\left\langle G_{n}\right\rangle$.

Proof. (i) For n odd and $\frac{n-1}{2}<k \leq n-2$, we have $\alpha_{k, k+1, k+2}=\gamma_{n} \alpha_{n-k-1, n-k, n-k+1} \gamma_{n} \alpha_{1,2,3}$. On the other hand, for n even, we have $\alpha_{1,2,3}=\alpha_{1,2}^{e} \alpha_{n-1, n}$ and $\alpha_{n-2, n-1, n}=\alpha_{n-1, n} \alpha_{1,2}^{e} \alpha_{1,2,3}$.
(ii) For n even and $2 \leq k \leq \frac{n-2}{2}$, we have $\alpha_{1,2 k+1}=\alpha_{1,2 k+1}^{e} \alpha_{1,2}^{e} \alpha_{1,2,3} \alpha_{1,2}^{e}$.
(iii) For n odd and $\frac{n-1}{2} \leq k \leq n-4$, we have $\alpha_{k, k+2}=\gamma_{n} \alpha_{n-k-2 . n-k} \gamma_{n} \alpha_{1,2,3}$.
(iv) Let n be an odd number and let $k, m \in \bar{n}$ be such that $k+3 m \leq n-1$ and $2 k+3 m>n+1$. Then $2(n-(k+3 m)+1) \leq n+1$ and we have $\beta_{k, m}=\gamma_{n} \beta_{n-(k+3 m)+1, m} \gamma_{n}\left(\alpha_{1,2,3}\right)^{m}$.
(v) For $1 \leq k \leq \frac{n-5}{2}$, we have $\alpha_{2 k, n}=\gamma_{n} \alpha_{1,2(k+1)+1} \gamma_{n}$.
(vi) Finally, we have $\alpha_{n-2, n}=\gamma_{n} \alpha_{1,3} \gamma_{n}$, whenever n is odd.

In order to prove that the set G_{n} generates $\mathcal{T F}_{n}$, our first step is to show that, for any transformation in $\mathcal{T F}_{n}$, there exists a transformation in $\left\langle G_{n}\right\rangle$ with the same kernel. For any set $A \subseteq \bar{n}$, define

$$
\operatorname{Rel}(A)=\{x \in \bar{n} \backslash A \mid x \text { and } a \text { are comparable, for some } a \in A\}
$$

Lemma 3.3. For any $\alpha \in \mathcal{T F}_{n}$ there exists $\alpha^{\prime} \in\left\langle G_{n}\right\rangle$ such that $\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha$.
Proof. Let $\alpha \in \mathcal{T F}_{n}$. We make the proof by induction on the rank of α.
If $\operatorname{rank} \alpha=n$ then $\operatorname{Ker} \alpha=\operatorname{Ker~id}_{n}$ and we have $\operatorname{id}_{n} \in G_{n}$, for n even, and $\operatorname{id}_{n}=\gamma_{n}^{2} \in\left\langle G_{n}\right\rangle$, for n odd.
Assume that rank $\alpha=n-1$. Then, there exists $i \in \operatorname{Im} \alpha$ such that $\left|i \alpha^{-1}\right|=2$ and $\left|j \alpha^{-1}\right|=1$, for all $j \in \operatorname{Im} \alpha \backslash\{i\}$. This implies $\left|\operatorname{Rel}\left(i \alpha^{-1}\right)\right| \leq 2$, i.e. $i \alpha^{-1}=\{1,2\}$ or $i \alpha^{-1}=\{1,3\}$ or $i \alpha^{-1}=\{n-2, n\}$ or $i \alpha^{-1}=\{n-1, n\}$. By noticing that, for an odd n, we have $\alpha_{n-1, n}=\gamma_{n} \alpha_{1,2}$ and $\alpha_{n-2, n}=\gamma_{n} \alpha_{1,3} \gamma_{n}$, it follows that there exists $\alpha^{\prime} \in\left\langle G_{n}\right\rangle$ such that $\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha$.

Admit now that $\operatorname{rank} \alpha=n-2$. Then, for some $i \in \operatorname{Im} \alpha$, we have $2 \leq\left|i \alpha^{-1}\right| \leq 3$.
If $\left|i \alpha^{-1}\right|=3$ then there exists $k \in\{1, \ldots, n-2\}$ such that $i \alpha^{-1}=\{k, k+1, k+2\}$ and $\left|j \alpha^{-1}\right|=1$, for all $j \in \operatorname{Im} \alpha \backslash\{i\}$, i.e. $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha_{k, k+1, k+2}$, with $\alpha_{k, k+1, k+2} \in\left\langle G_{n}\right\rangle$.

Now, suppose that $\left|i \alpha^{-1}\right|=2$. Then $\left|j \alpha^{-1}\right|=2$, for some $j \in \operatorname{Im} \alpha \backslash\{i\}$.
Admit that $\left|\operatorname{Rel}\left(i \alpha^{-1}\right)\right| \leq 2$. Then $i \alpha^{-1}=\{1,2\}$ or $i \alpha^{-1}=\{1,3\}$ or $i \alpha^{-1}=\{n-2, n\}$ or $i \alpha^{-1}=\{n-1, n\}$. Since $\operatorname{rank} \alpha=n-2$, we conclude that $\left|\operatorname{Rel}\left(j \alpha^{-1}\right)\right| \leq 2$ or $i \alpha^{-1} \subseteq \operatorname{Rel}\left(j \alpha^{-1}\right)$. So, we have $j \alpha^{-1}=\{n-2, n\}$ or $j \alpha^{-1}=\{n-1, n\}$, if $i \alpha^{-1}=\{1,2\}$ or $i \alpha^{-1}=\{1,3\}$, or $j \alpha^{-1}=\{2,4\}$, if $i \alpha^{-1}=\{1,3\}$, or $j \alpha^{-1}=\{n-3, n-1\}$, if $i \alpha^{-1}=\{n-2, n\}$. Hence, we get $\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha$, with $\alpha^{\prime}=\alpha_{1,2} \alpha_{n-1, n}$ (and $\alpha^{\prime}=\left(\alpha_{1,2} \gamma_{n}\right)^{2}$, whenever n is odd) or $\alpha^{\prime}=\alpha_{1,2} \alpha_{n-2, n}$ or $\alpha^{\prime}=\alpha_{1,3} \alpha_{n-1, n}$ (and $\alpha^{\prime}=\alpha_{1,3} \gamma_{n} \alpha_{1,2} \gamma_{n}$, whenever n is odd) or $\alpha^{\prime}=\alpha_{1,3} \alpha_{n-2, n}$ or $\alpha^{\prime}=\alpha_{1,3} \alpha_{1,5}$ or $\alpha^{\prime}=\alpha_{n-2, n} \alpha_{n-4, n}$. Observe $\alpha_{n-4, n}=\gamma_{n} \alpha_{1,5} \gamma_{n} \in\left\langle G_{n}\right\rangle$, whenever n is odd (since $\alpha_{1,5} \in\left\langle G_{n}\right\rangle$ by Lemma 3.2), and $\alpha_{1,2}=\alpha_{1,2}^{e} \alpha_{1,2}^{e}$, whenever n is even. Since all the other transformations used belong to $\left\langle G_{n}\right\rangle$, we have $\alpha^{\prime} \in\left\langle G_{n}\right\rangle$. Dually, in the case $\left|\operatorname{Rel}\left(j \alpha^{-1}\right)\right| \leq 2$, we can show that there exists $\alpha^{\prime} \in\left\langle G_{n}\right\rangle$, with $\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha$.

Notice that the case $\left|\operatorname{Rel}\left(i \alpha^{-1}\right)\right| \geq 4$ or $\left|\operatorname{Rel}\left(j \alpha^{-1}\right)\right| \geq 4$ is not possible since rank $\alpha=n-2$. So, it remains the case $\left|\operatorname{Rel}\left(i \alpha^{-1}\right)\right|=\left|\operatorname{Rel}\left(j \alpha^{-1}\right)\right|=3$. This provides $i \alpha^{-1}=\{1, k\}$, for some $k \in 2 \mathbb{N}+3$, or $i \alpha^{-1}=\{n-k, n\}$,
for some $k \in 2 \mathbb{N}+2$, or $i \alpha^{-1}=\{k, k+2\}$ for some $k \in\{2, \ldots, n-3\}$. Then there are two elements in $\operatorname{Rel}\left(j \alpha^{-1}\right)$ with the same image, which is i since $\operatorname{rank} \alpha=n-2$. This shows that $i \alpha^{-1} \subseteq \operatorname{Rel}\left(j \alpha^{-1}\right)$. By the same argumentation, we obtain $j \alpha^{-1} \subseteq \operatorname{Rel}\left(i \alpha^{-1}\right)$.

Suppose that $i \alpha^{-1}=\{1, k\}$, for some $k \in 2 \mathbb{N}+3$. Assume that $k \geq 7$. Then $j \alpha^{-1} \subseteq \operatorname{Rel}\left(i \alpha^{-1}\right)=\{2, k-1, k+$ $1\}$ and $i \alpha^{-1} \subseteq \operatorname{Rel}\left(j \alpha^{-1}\right)$ implies $\left|\operatorname{Rel}\left(j \alpha^{-1}\right)\right|=4$, a contradiction. Hence, we have $i \alpha^{-1}=\{1,5\}$. Then, once again $i \alpha^{-1} \subseteq \operatorname{Rel}\left(j \alpha^{-1}\right)$ and $\left|\operatorname{Rel}\left(j \alpha^{-1}\right)\right|=3$ implies $j \alpha^{-1}=\{2,4\}$. Thus $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha_{1,5}$ and $\alpha_{1,5} \in\left\langle G_{n}\right\rangle$. Dually, we can show the existence of $\alpha^{\prime} \in\left\langle G_{n}\right\rangle$ with $\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha$, if $i \alpha^{-1}=\{n-k, n\}$, for some $k \in 2 \mathbb{N}+2$. Similarly, we obtain $\alpha^{\prime} \in\left\langle G_{n}\right\rangle$ with $\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha$, if $j \alpha^{-1}=\{1, k\}$, for some $k \in 2 \mathbb{N}+3$, or $j \alpha^{-1}=\{n-k, n\}$, for some $k \in 2 \mathbb{N}+2$.

Finally, we consider the case $i \alpha^{-1}=\{k, k+2\}$ and $j \alpha^{-1}=\{\ell, \ell+2\}$, for some $k, \ell \in\{2, \ldots, n-3\}$. Notice that $\{k, k+2\}=i \alpha^{-1} \subseteq \operatorname{Rel}\left(j \alpha^{-1}\right)=\{\ell-1, \ell+1, \ell+3\}$ and so $k=\ell-1$ or $k=\ell+1$. Therefore, we have $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha_{m, m+2}$, with $m=k$, if $k=\ell-1$, or $m=\ell$, if $k=\ell+1$. Hence, $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha_{m, m+2}$ and $\alpha_{m, m+2} \in\left\langle G_{n}\right\rangle$.

Next, we suppose that $p=\operatorname{rank} \alpha<n-2$ and assume that for all $\beta \in \mathcal{T F}_{n}$ with $\operatorname{rank} \beta>p$, there exists $\beta^{\prime} \in\left\langle G_{n}\right\rangle$ such that $\operatorname{Ker} \beta^{\prime}=\operatorname{Ker} \beta$. Further, there exist a unique $m \in \bar{n}$, a sequence $a_{1}, \ldots, a_{m} \in \operatorname{Im} \alpha$ and a partition $A_{1}<\cdots<A_{m}$ of \bar{n} with $\left|a_{i}-a_{i+1}\right|=1$, for $1 \leq i<m$, and $A_{i} \alpha=\left\{a_{i}\right\}$, for $1 \leq i \leq m$. Notice that the elements in the sequence a_{1}, \ldots, a_{m} have not to be pairwise distinct and $\operatorname{Im} \alpha=\left\{a_{1}, \ldots, a_{m}\right\}$. Put $\chi(\alpha)=m$. Observe that this construction can be applied to any element of $\mathcal{T F}_{n}$ and so we have a well defined mapping $\chi: \mathcal{T F}_{n} \rightarrow \bar{n}$.

Let

$$
a_{0}= \begin{cases}0 & \text { if } a_{1} \text { is odd } \\ 1 & \text { if } a_{1} \text { is even }\end{cases}
$$

and define

$$
\beta=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{m} \\
1+a_{0} & 2+a_{0} & \cdots & m+a_{0}
\end{array}\right) .
$$

It is clear that $\beta \in \mathcal{T F}_{n}$.
First, consider the case $m=p$ (i.e. $\operatorname{Ker} \alpha=\operatorname{Ker} \beta$). Take $i \in\{1, \ldots, p\}$ such that $\left|A_{i}\right| \geq 3$ and $A_{i}=$ $\{k, k+1, \ldots, k+s\}$, with $k \in\{1, \ldots, n-2\}$ and $s \in\{2, \ldots, n-k\}$. Define

$$
\alpha_{1}=\left(\begin{array}{ccccccccc}
A_{1} & \cdots & A_{i-1} & k & k+1 & \overline{k+2 \cdots k+s} & A_{i+1} & \cdots & A_{p} \\
1+a_{0} & \cdots & i-1+a_{0} & i+a_{0} & i+1+a_{0} & i+2+a_{0} & i+3+a_{0} & \cdots & p+2+a_{0}
\end{array}\right)
$$

for $i>1$, and

$$
\alpha_{1}=\left(\begin{array}{cccccc}
\overline{1 \cdots k-2+s} & k-1+s & k+s & A_{2} & \cdots & A_{p} \\
1+a_{0} & 2+a_{0} & 3+a_{0} & 4+a_{0} & \cdots & p+2+a_{0}
\end{array}\right)
$$

if $i=1$. Since $p<n-2$, we have $p+2+a_{0} \in \bar{n}$. By using Theorem 2.1, we can verify that $\alpha_{1} \in \mathcal{T F}_{n}$. Since $\operatorname{rank} \alpha_{1}>p$, there is $\alpha_{1}^{*} \in\left\langle G_{n}\right\rangle$ with $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \alpha_{1}$. Suppose that $\operatorname{Im} \alpha_{1}^{*}=\left\{a_{1}^{*}, \ldots, a_{p+2}^{*}\right\}$ such that $a_{j}^{*}\left(\alpha_{1}^{*}\right)^{-1}=\left(j+a_{0}\right) \alpha_{1}^{-1}$ for $j \in\{1, \ldots, p+2\}$. Let

$$
\alpha_{2}=\left\{\begin{array}{lll}
\alpha_{a_{i}^{*}, a_{i+1}^{*}, a_{i+2}^{*}} & \text { if } & a_{i}^{*}<a_{i+1}^{*} \\
\alpha_{a_{i+2}^{*}, a_{i+1}^{*}, a_{i}^{*}} & \text { if } & a_{i+1}^{*}<a_{i}^{*} .
\end{array}\right.
$$

It is a routine matter to verify that $\operatorname{Ker} \alpha_{1} \alpha_{2}=\operatorname{Ker} \beta$ and so there exists $\alpha^{\prime} \in\left\langle G_{n}\right\rangle$ such that $\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \beta=$ Ker α.

Now, admit that $m>p$. Then, there exist $i \in\{1, \ldots, m-1\}$ and $s \in\{i, \ldots, m-i\}$ such that the elements of $\left\{a_{i}, \ldots, a_{i+s}\right\}$ are pairwise distinct, $a_{i+2 s}=a_{i}$ and one of the following five conditions is satisfied:
(a) $i+a_{0}=1$;
(b) $i+a_{0} \geq 2, i+2 s=m$ and $a_{0}+i+2 s=n$;
(c) $i+a_{0} \geq 2, i+2 s=m, a_{0}+i+2 s<n$ and $n-m<i$;
(d) $i+a_{0} \geq 2, i+2 s=m, a_{0}+i+2 s<n$ and $n-m \geq i$;
(e) $a_{i+3 s}=a_{i+s}$ and $i+3 s<n$.

We will define in each of these five cases transformations ρ_{1} and ω_{1}. Let $\rho_{1}=\alpha_{1,2 s+1}$, in the case (a); let $\rho_{1}=\alpha_{2\left\lfloor\frac{n-2 s}{2}\right\rfloor, n}$, in the case (b); let $\rho_{1}=\alpha_{2\left\lfloor\frac{2(i+s)-n}{2}\right\rfloor, n}$, in the case (c), where $2(i+s)-n=i+m-n>i-i=0$; let ρ_{1}^{*} be defined by

$$
x \rho_{1}^{*}= \begin{cases}2\left(i+s+a_{0}\right)-x & \text { if } 1 \leq x \leq i+s+a_{0} \\ x & \text { otherwise }\end{cases}
$$

in the case (d); and let $\rho_{1}=\beta_{i, s}$, in the case (e). It is easy to verify that $\rho_{1} \in\left\langle G_{n}\right\rangle$ in the cases (a), (b), (c) and (e). In the case (d), we observe that $q=\operatorname{rank} \rho_{1}^{*}=n-\left(i+s+a_{0}\right)+1>p$. Then there exists $\rho_{1} \in\left\langle G_{n}\right\rangle$ such that $\operatorname{Ker} \rho_{1}=\operatorname{Ker} \rho_{1}^{*}$. Suppose that $\operatorname{Im} \rho_{1}=\left\{d_{1}, \ldots, d_{q}\right\}$ such that $j\left(\rho_{1}^{*}\right)^{-1}=d_{j-\left(s+i+a_{0}\right)+1} \rho_{1}^{-1}$ for $i+s+a_{0} \leq j \leq n$. Let ω_{1} be defined by

$$
x \omega_{1}= \begin{cases}a_{1+s} & \text { if } 1 \leq x \leq 1+s \\ a_{x} & \text { if } 1+s<x<m \\ a_{m} & \text { otherwise }\end{cases}
$$

in the case (a); let ω_{1} be defined by

$$
x \omega_{1}= \begin{cases}a_{x-a_{0}} & \text { if } 1+a_{0} \leq x<i+s+a_{0} \\ a_{i+s} & \text { if } i+s+a_{0} \leq x \leq n \\ a_{1} & \text { otherwise },\end{cases}
$$

in the cases (b) and (c). Since ℓ and $a_{\ell-a_{0}}$ have the same parity for all $1+a_{0} \leq \ell \leq m+a_{0}$, we conclude that $\omega_{1} \in \mathcal{T F}_{n}$. Let ω_{1} be defined by

$$
x \omega_{1}= \begin{cases}a_{i+s} & \text { if } 1 \leq x \leq d_{1}<d_{2} \text { or } d_{2}<d_{1} \leq x \leq n \\ a_{i+s-\ell+1} & \text { if } x=d_{\ell} \text { and } 1 \leq \ell \leq i+s \\ a_{1} & \text { otherwise }\end{cases}
$$

in the case (d). Let $l \in\{1, \ldots, i+s\}$. Then there exists $j \in\left\{i+s+a_{0}, \ldots, n\right\}$ such that $\ell=j-\left(i+a+a_{0}\right)-1$. From $j\left(\rho_{1}^{*}\right)^{-1}=d_{\ell} \rho_{1}^{-1}, d_{\ell} \omega_{1}=a_{i+s-\ell+1}$ and the fact that j and $a_{j+a_{0}}$ have the same parity, we conclude that d_{ℓ} and $d_{\ell} \omega_{1}$ have the same parity. This shows that $\omega_{1} \in \mathcal{T} \mathcal{F}_{n}$. Moreover, $\operatorname{rank} \omega_{1}=\operatorname{rank} \alpha=p$ and $\chi(\alpha)=\chi\left(\omega_{1}\right)+s$. Consider now the case (e) and define ω_{1} by

$$
x \omega_{1}= \begin{cases}a_{x-a_{0}} & \text { if } 1+a_{0} \leq x \leq i+s+a_{0} \\ a_{2 s+x-a_{0}} & \text { if } i+s+a_{0}+1 \leq x \leq m-2 s+a_{0} \\ a_{m} & \text { if } m-2 s+a_{0}<x \leq n \\ a_{1} & \text { if } x=1\end{cases}
$$

It is easy to verify that $\operatorname{rank} \alpha=\operatorname{rank} \omega_{1}$ and $\chi(\alpha)=\chi\left(\omega_{1}\right)+2 s$. Moreover, it is a routine matter to show that $\omega_{1} \in \mathcal{T F}_{n}$ and $\alpha=\beta \rho_{1} \omega_{1}$.

Next, we can focus on ω_{1} and end up getting a sequence $\rho_{1}, \ldots, \rho_{t} \in\left\langle G_{n}\right\rangle$ (for a suitable $t \in \mathbb{N}$) and an element $\omega \in \mathcal{T F}_{n}$ such that $\operatorname{rank} \alpha=\operatorname{rank} \omega, \chi(\omega)=p$ and $\alpha=\beta \rho_{1} \cdots \rho_{t} \omega$.

By the case $m=p$, there exists $\omega^{\prime} \in\left\langle G_{n}\right\rangle$ such that $\operatorname{Ker} \omega^{\prime}=\operatorname{Ker} \omega$, whence $\operatorname{Ker} \beta \rho_{1} \cdots \rho_{t} \omega^{\prime}=\operatorname{Ker} \alpha$.
On the other hand, since $m>p$, there exists $\mu \in\left\langle G_{n}\right\rangle$ such that $\operatorname{Ker} \mu=\left\{A_{1}, \ldots, A_{m}\right\}$, say

$$
\mu=\left(\begin{array}{cccc}
A_{1} & A_{2} & \cdots & A_{m} \\
c_{1} & c_{2} & \cdots & c_{m}
\end{array}\right)
$$

by our inductive assumption. Clearly, by Theorem 2.1, either $c_{1}>\cdots>c_{m}$ or $c_{1}<\cdots<c_{m}$. If $c_{1}>\cdots>c_{m}$ then we take $\varepsilon_{1}=\alpha_{1,2}^{e}$, if n is even, and we take $\varepsilon_{1}=\gamma_{n}$, if n is odd. Since $\varepsilon_{1} \in G_{n}$, whence $\mu \varepsilon_{1} \in\left\langle G_{n}\right\rangle$, we
can assume that $c_{1}<\cdots<c_{m}$. If $1+a_{0}<c_{1}$ then there exists $s \in \bar{n}$ such that $1+a_{0}=c_{1}-2 s$. It follows that $\beta=\mu\left(\alpha_{1,2,3}\right)^{s}$ and so $\beta \in\left\langle G_{n}\right\rangle$.

Altogether, we have shown that $\beta \rho_{1} \cdots \rho_{t} w^{\prime} \in\left\langle G_{n}\right\rangle$ and $\operatorname{Ker} \beta \rho_{1} \cdots \rho_{t} w^{\prime}=\operatorname{Ker} \alpha$, as required.
Now, we are able to prove that G_{n} is a generating set for $\mathcal{T F}_{n}$.
Proposition 3.4. We have $\left\langle G_{n}\right\rangle=\mathcal{T F}_{n}$.
Proof. Let $\alpha \in \mathcal{T F}_{n}$.
Admit that $\operatorname{rank} \alpha=n$. If n is even then $\alpha=\operatorname{id}_{n} \in G_{n}$. If n is odd then $\alpha=\operatorname{id}_{n}$ or $\alpha=\gamma_{n} \in G_{n}$, with $\gamma_{n} \gamma_{n}=\mathrm{id}_{n}$. Thus $\alpha \in\left\langle G_{n}\right\rangle$.

Suppose now that $2 \leq m=\operatorname{rank} \alpha<n$. By Lemma 3.3, there exists $\alpha^{\prime} \in\left\langle G_{n}\right\rangle$ such that $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha^{\prime}$. Take

$$
\operatorname{Im} \alpha=\left\{a_{1}, \ldots, a_{m}\right\} \quad \text { and } \quad \operatorname{Im} \alpha^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{m}^{\prime}\right\}
$$

with $a_{1}<a_{2}<\cdots<a_{m}$ and $a_{1}^{\prime}<a_{2}^{\prime}<\cdots<a_{m}^{\prime}$, and define $A_{i}=a_{i} \alpha^{-1}$, for $1 \leq i \leq m$. Observe that $A_{i}=a_{i}^{\prime} \alpha^{\prime-1}$, for $1 \leq i \leq m$, or $A_{i}=a_{m-i+1}^{\prime} \alpha^{\prime-1}$, for $1 \leq i \leq m$.

Let $m=n-1$. Then $n \notin \operatorname{Im} \alpha$ or $1 \notin \operatorname{Im} \alpha$ as well as $n \notin \operatorname{Im} \alpha^{\prime}$ or $1 \notin \operatorname{Im} \alpha^{\prime}$.
If $A_{i}=a_{i}^{\prime} \alpha^{\prime-1}$, for $1 \leq i \leq n-1$ then $a_{1}=a_{1}^{\prime}$, since a_{1} and a_{1}^{\prime} have the same parity, by Lemma 3.1. Hence, $a_{i}=a_{i}^{\prime}$, for $1 \leq i \leq n-1$, and so $\alpha=\alpha^{\prime}$.

Next consider the case $A_{i}=a_{m-i+1}^{\prime} \alpha^{\prime-1}$, for $1 \leq i \leq n-1$. Let

$$
k= \begin{cases}0 & \text { if } a_{1}=1 \\ 1 & \text { if } a_{1}=2\end{cases}
$$

Then, $a_{i}=i+k$ and

$$
a_{m-i+1}^{\prime}= \begin{cases}n-k-i+1 & \text { if } n \text { is odd } \\ n+k-i & \text { if } n \text { is even },\end{cases}
$$

for $i=1, \ldots, n-1$. If n is odd, then we have

$$
a_{i}\left(\alpha^{\prime} \gamma_{n}\right)^{-1}=(i+k) \gamma_{n}^{-1} \alpha^{\prime-1}=(n-(i+k)+1) \alpha^{\prime-1}=a_{m-i+1}^{\prime} \alpha^{\prime-1}=A_{i}=a_{i} \alpha^{-1}
$$

for $1 \leq i \leq n-1$. Since $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha / \gamma_{n}$, this shows that $\alpha=\alpha^{\prime} \gamma_{n} \in\left\langle G_{n}\right\rangle$. If n is even then put $\rho_{0}=\alpha_{n-1, n} \in\left\langle G_{n}\right\rangle$ and $\rho_{1}=\alpha_{1,2}^{e} \in\left\langle G_{n}\right\rangle$. Observe that ρ_{k} restricted to $\operatorname{Im} \alpha^{\prime}$ is an injection. Hence, we have $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha^{\prime} \rho_{k}$ and

$$
a_{i}\left(\alpha^{\prime} \rho_{k}\right)^{-1}=(i+k) \rho_{k}^{-1} \alpha^{\prime-1}=(n-i+k) \alpha^{\prime-1}=A_{i}=a_{i} \alpha^{-1}
$$

for $1 \leq i \leq n-1$. Thus $\alpha=\alpha^{\prime} \rho_{k} \in\left\langle G_{n}\right\rangle$.
Admit now that $2 \leq m \leq n-2$ and suppose that $\beta \in\left\langle G_{n}\right\rangle$, for all $\beta \in \mathcal{T F}_{n}$ such that $\operatorname{rank} \beta>m$.
Suppose that $A_{i}=a_{m-i+1}^{\prime} \alpha^{\prime-1}$, for $1 \leq i \leq m$. Take

$$
\rho= \begin{cases}\gamma_{n} & \text { if } n \text { is odd } \\ \alpha_{1,2}^{e} & \text { if } n \text { is even and } 1 \notin \operatorname{Im} \alpha \\ \alpha_{n-1, n} & \text { if } n \text { is even and } 1 \in \operatorname{Im} \alpha .\end{cases}
$$

Then, we have $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha^{\prime} \rho$ and

$$
A_{i}=a_{m-i+1}^{\prime} \alpha^{\prime-1}=\left(a_{m-i+1}^{\prime} \rho\right) \rho^{-1} \alpha^{\prime-1}=\left(a_{m-i+1}^{\prime} \rho\right)\left(\alpha^{\prime} \rho\right)^{-1}
$$

for $1 \leq i \leq m$, with $\alpha^{\prime} \rho \in\left\langle G_{n}\right\rangle$ and $a_{m-i+1}^{\prime} \rho<a_{m-j+1}^{\prime} \rho$, for $1 \leq i<j \leq m$. Thus, we can assume that $A_{i}=a_{i}^{\prime} \alpha^{\prime-1}$, for $1 \leq i \leq m$.

If $a_{1}=a_{1}^{\prime}=1$ then we immediately obtain that $a_{i}=a_{i}^{\prime}$, for $1 \leq i \leq m$, i.e. $\alpha=\alpha^{\prime} \in\left\langle G_{n}\right\rangle$.

Consider $a_{1}=1, a_{1}^{\prime}>1$ and $a_{m}^{\prime} \neq n$. This implies $a_{m}^{\prime}, a_{m}<n$ and so we put

$$
\beta_{0}=\left(\begin{array}{ccccc}
\overline{1 \cdots a_{1}^{\prime}} & a_{2}^{\prime} & \cdots & a_{m}^{\prime} & \overline{a_{m}^{\prime}+1 \cdots n} \\
a_{1} & a_{2} & \cdots & a_{m} & a_{m}+1
\end{array}\right) .
$$

It is easy to show that $\beta_{0} \in \mathcal{T F}_{n}$, with $\operatorname{rank} \beta_{0}=\operatorname{rank} \alpha+1$, whence $\beta_{0} \in\left\langle G_{n}\right\rangle$. For $1 \leq i \leq m$, we have

$$
a_{i}\left(\alpha^{\prime} \beta_{0}\right)^{-1}=a_{i} \beta_{0}^{-1} \alpha^{\prime-1}=a_{i}^{\prime} \alpha^{\prime-1}=A_{i}=a_{i} \alpha^{-1}
$$

as a_{i} is the unique element in $\operatorname{Im} \alpha^{\prime} \cap a_{i} \beta_{0}^{-1}$. Since the restriction of β_{0} to $\operatorname{Im} \alpha^{\prime}$ is injective, we also have $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha^{\prime} \beta_{0}$. Thus $\alpha=\alpha^{\prime} \beta_{0} \in\left\langle G_{n}\right\rangle$.

Next, consider $a_{1}=1, a_{1}^{\prime}>1$ and $a_{m}^{\prime}=n$. Then $a_{1}^{\prime} \geq 3$, since a_{1} and a_{1}^{\prime} have the same parity. Further, we have $a_{i}=i$, for $1 \leq i \leq m$. So, we obtain

$$
\beta_{1}=\left(\begin{array}{ccccc}
\overline{1,3} & \overline{2,4} & 5 & \cdots & n \\
1 & 2 & 3 & \cdots & n-2
\end{array}\right)= \begin{cases}\alpha_{1,3} \alpha_{1,5}^{e} \in\left\langle G_{n}\right\rangle & \text { if } n \text { is even } \\
\alpha_{1,3} \alpha_{1,5} \alpha_{1,2,3} \in\left\langle G_{n}\right\rangle & \text { if } n \text { is odd. }\end{cases}
$$

Moreover, let

$$
\beta_{2}=\left(\begin{array}{cccccc}
1 & \overline{2 \cdots a_{1}^{\prime}-1} & a_{1}^{\prime} & \cdots & a_{m-1}^{\prime} & \overline{a_{m}^{\prime} \cdots n} \\
1 & 2 & 3 & \cdots & m+1 & m+2
\end{array}\right) .
$$

It is easy to verify that $\beta_{2} \in \mathcal{T F}_{n}$, with $\operatorname{rank} \beta_{2}=\operatorname{rank} \alpha+2>m$, whence $\beta_{2} \in\left\langle G_{n}\right\rangle$. Hence

$$
\begin{gathered}
a_{1}\left(\alpha^{\prime} \beta_{2} \beta_{1}\right)^{-1}=a_{1} \beta_{1}^{-1} \beta_{2}^{-1} \alpha^{\prime-1}=1 \beta_{1}^{-1} \beta_{2}^{-1} \alpha^{\prime-1}=\{1,3\} \beta_{2}^{-1} \alpha^{\prime-1}=\left\{1, a_{1}^{\prime}\right\} \alpha^{\prime-1}=a_{1}^{\prime} \alpha^{\prime-1}=A_{1}=a_{1} \alpha^{-1}, \\
a_{2}\left(\alpha^{\prime} \beta_{2} \beta_{1}\right)^{-1}=2 \beta_{1}^{-1} \beta_{2}^{-1} \alpha^{\prime-1}=\{2,4\} \beta_{2}^{-1} \alpha^{\prime-1}=\left\{2, \ldots, a_{1}^{\prime}-1, a_{2}^{\prime}\right\} \alpha^{\prime-1}=a_{2}^{\prime} \alpha^{\prime-1}=A_{2}=a_{2} \alpha^{-1}
\end{gathered}
$$

and, for $3 \leq i \leq m$,

$$
a_{i}\left(\alpha^{\prime} \beta_{2} \beta_{1}\right)^{-1}=i \beta_{1}^{-1} \beta_{2}^{-1} \alpha^{\prime-1}=(i+2) \beta_{2}^{-1} \alpha^{\prime-1}=a_{i}^{\prime} \alpha^{\prime-1}=A_{i}=a_{i} \alpha^{-1}
$$

Notice that β_{2} restricted to $\operatorname{Im} \alpha^{\prime}$ and β_{1} restricted to $\operatorname{Im} \alpha^{\prime} \beta_{2}=\{3, \ldots, m+2\}$ are injective. It follows that $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha^{\prime} \beta_{2} \beta_{1}$ and so $\alpha=\alpha^{\prime} \beta_{2} \beta_{1} \in\left\langle G_{n}\right\rangle$.

Now, consider $a_{1}>1$. Suppose that $a_{1}^{\prime}=1$. Then $a_{m}^{\prime}<n-1$, since rank $\alpha^{\prime} \leq n-2$. Take

$$
\beta_{3}=\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-3 & \overline{n-2, n-1, n} \\
3 & 4 & \cdots & n-1 & n
\end{array}\right) .
$$

If n is even then $\beta_{3}=\alpha_{n-1, n} \alpha_{1,2}^{e}$, whence $\beta_{3} \in\left\langle G_{n}\right\rangle$. On the other hand, if n is odd then $\beta_{3}=\gamma_{n} \alpha_{1,2,3} \gamma_{n} \in\left\langle G_{n}\right\rangle$. Thus, we have $\alpha^{\prime} \beta_{3} \in\left\langle G_{n}\right\rangle$. Clearly, $1 \notin \operatorname{Im} \beta_{3}$ and so $1 \notin \operatorname{Im} \alpha^{\prime} \beta_{3}$. Since $n, n-1 \notin \operatorname{Im} \alpha^{\prime}$, we have that β_{3} restricted to $\operatorname{Im} \alpha^{\prime}$ is injective. Hence $\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha^{\prime} \beta_{3}$. Therefore, we can assume that $a_{1}^{\prime}>1$. Take

$$
\beta_{4}=\left(\begin{array}{ccccc}
\overline{1 \cdots a_{1}^{\prime}-1} & a_{1}^{\prime} & \cdots & a_{m-1}^{\prime} & \overline{a_{m}^{\prime} \cdots n} \\
a_{1}-1 & a_{1} & \cdots & a_{m-1} & a_{m}
\end{array}\right) .
$$

It is easy to verify that $\beta_{4} \in \mathcal{T F}_{n}$, with $\operatorname{rank} \beta_{4}=\operatorname{rank} \alpha+1>m$, whence $\beta_{4} \in\left\langle G_{n}\right\rangle$. Since β_{4} restricted to $\operatorname{Im} \alpha^{\prime}$ is injective, we obtain $\operatorname{Ker} \alpha=\operatorname{Ker} \alpha^{\prime}=\operatorname{Ker} \alpha^{\prime} \beta_{4}$ and, for $i \in\{1, \ldots, m\}$, we have

$$
a_{i}\left(\alpha^{\prime} \beta_{4}\right)^{-1}=a_{i} \beta_{4}^{-1} \alpha^{\prime-1}=a_{i}^{\prime}{\alpha^{\prime}}^{-1}=A_{i}=a_{i} \alpha^{-1}
$$

Thus $\alpha=\alpha^{\prime} \beta_{4} \in\left\langle G_{n}\right\rangle$.
Finally, let $m=1$, i.e. there exists $a \in \bar{n}$ such that $i \alpha=a$, for all $i \in \bar{n}$. Without loss of generality, suppose that $a>1$. Clearly, $\beta_{5}=\left(\begin{array}{cc}1 & \overline{2 \cdots n} \\ 1 & 2\end{array}\right) \in\left\langle G_{n}\right\rangle$ and either $\beta_{6}=\left(\begin{array}{cc}\overline{1,2} & \overline{3 \cdots n} \\ a & a-1\end{array}\right) \in\left\langle G_{n}\right\rangle$ (if a is even) or $\beta_{6}=\left(\begin{array}{ll}\overline{1,2} & \overline{3 \cdots n} \\ a-1 & a\end{array}\right) \in\left\langle G_{n}\right\rangle$ (if a is odd). Then $\beta_{5} \beta_{6}$ is the constant mapping with image $\{a\}$, i.e. $\alpha=\beta_{5} \beta_{6} \in\left\langle G_{n}\right\rangle$, as required.

It remains to show that G_{n} is a generating set for $\mathcal{T F}_{n}$ of minimal size. With this goal in mind, in the next two lemmas, we determine a lower bound for the minimal size of a generating set for $\mathcal{T F}_{n}$ (for n odd as well as for n even) and find it coincides with the cardinality of G_{n} (which gives us an upper bound).

First, we consider an odd n.
Lemma 3.5. Let n be an odd number. Then $\operatorname{rank}\left(\mathcal{T F}_{n}\right) \geq \frac{3}{2}(n-1)+\sum_{k=2}^{\frac{n-5}{2}}\left(\left\lfloor\frac{n+1-2 k}{3}\right\rfloor-1\right)=\left|G_{n}\right|$.
Proof. Let A be a generating set of $\mathcal{T} \mathcal{F}_{n}$.
Since $\left\{\alpha \in \mathcal{T F}_{n} \mid \operatorname{rank} \alpha=n\right\}=\left\{\gamma_{n}, \operatorname{id}_{n}\right\}$, we have $\gamma_{n} \in A$. Let $A^{(0)}=\left\{\gamma_{n}\right\}$. Then $\left|A^{(0)}\right|=1$.
Let $\alpha \in \mathcal{T F}_{n}$ be such that rank $\alpha \leq n-1$. Then, for some natural number p, there exist $\alpha_{1}, \ldots, \alpha_{p} \in A \backslash\left\{\mathrm{id}_{n}\right\}$, with $\alpha_{1} \neq \gamma_{n}$, such that $\alpha=\alpha_{1} \cdots \alpha_{p}$ or $\alpha=\gamma_{n} \alpha_{1} \cdots \alpha_{p}$. Take

$$
\alpha_{1}^{*}= \begin{cases}\alpha_{1} & \text { if } \alpha=\alpha_{1} \cdots \alpha_{p} \\ \gamma_{n} \alpha_{1} & \text { if } \alpha=\gamma_{n} \alpha_{1} \cdots \alpha_{p} .\end{cases}
$$

Clearly, $\operatorname{Ker} \alpha_{1}^{*} \subseteq \operatorname{Ker} \alpha$ and $\operatorname{rank} \alpha_{1}^{*} \leq n-1$.
If $\alpha=\alpha_{1,2}$ then $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \alpha_{1,2}$ or $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \gamma_{n} \alpha_{1,2}$, i.e. there exists $\rho_{1,2} \in A$ with $\operatorname{Ker} \rho_{1,2}=\operatorname{Ker} \alpha_{1,2}$ or Ker $\rho_{1,2}=\operatorname{Ker} \gamma_{n} \alpha_{1,2}$ (namely $\rho_{1,2}=\alpha_{1}$). Take $A^{(1)}=A^{(0)} \cup\left\{\rho_{1,2}\right\}$. Then $\left|A^{(1)}\right|=\left|A^{(0)}\right|+\left|\left\{\rho_{1,2}\right\}\right|=2$. Analogously, there exists $\rho_{1,3} \in A$ with $\operatorname{Ker} \rho_{1,3}=\operatorname{Ker} \alpha_{1,3}$ or $\operatorname{Ker} \rho_{1,3}=\operatorname{Ker} \gamma_{n} \alpha_{1,3}$. Clearly, $\rho_{1,3} \notin A^{(1)}$ and we take $A^{(2)}=A^{(1)} \cup\left\{\rho_{1,3}\right\}$. Then $\left|A^{(2)}\right|=\left|A^{(1)}\right|+\left|\left\{\rho_{1,3}\right\}\right|=2+1=3$.

Let $\alpha=\alpha_{k, k+2}$, for some $k \in\left\{2, \ldots, \frac{n-3}{2}\right\}$. Then $(k, k+2) \in \operatorname{Ker} \alpha_{1}^{*}$ or $(k+1, k+3) \in \operatorname{Ker} \alpha_{1}^{*}$. From $2 \leq k \leq \frac{n-3}{2}$, it follows that $k+3<n$. Hence, $|\operatorname{Rel}(\{k, k+2\})|=|\operatorname{Rel}(\{k+1, k+3\})|=3$ and there exist $a, b \in \bar{n} \backslash\{k, k+2\}$ or $a, b \in \bar{n} \backslash\{k+1, k+3\}$ such that $(a, b) \in \operatorname{Ker} \alpha_{1}^{*}$. But $\operatorname{Ker} \alpha_{1}^{*} \subseteq \operatorname{Ker} \alpha_{k, k+2}$ implies that $(a, b) \in \operatorname{Ker} \alpha_{k, k+2}$. Since rank $\alpha_{k, k+2}=n-2$, we have $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \alpha_{k, k+2}$. Hence, there exists $\rho_{k, k+2} \in A$ with $\operatorname{Ker} \rho_{k, k+2}=\operatorname{Ker} \alpha_{k, k+2}$ or $\operatorname{Ker} \rho_{k, k+2}=\operatorname{Ker} \gamma_{n} \alpha_{k, k+2}$. Moreover, we have $\rho_{k, k+2} \notin A^{(2)}$. On the other hand, assume there exist $2 \leq k<\ell \leq \frac{n-3}{2}$ such that $\operatorname{Ker} \alpha_{k, k+2}=\operatorname{Ker} \gamma_{n} \alpha_{\ell, \ell+2}$. Then $k=n-(\ell+3)+1$ and so $n=k+\ell+3-1<\frac{n-3}{2}+\frac{n-3}{2}+2=n-3+2=n-1$, a contradiction. Hence $\rho_{k, k+2} \neq \rho_{\ell, \ell+2}$, for $2 \leq k<\ell \leq \frac{n-3}{2}$. Take

$$
B^{(3)}=\left\{\rho_{k, k+2} \left\lvert\, k \in\left\{2, \ldots, \frac{n-3}{2}\right\}\right.\right\}
$$

and $A^{(3)}=A^{(2)} \cup B^{(3)}$. Since $A^{(2)} \cap B^{(3)}=\emptyset$, we obtain $\left|A^{(3)}\right|=\left|A^{(2)}\right|+\left|B^{(3)}\right|=3+\frac{n-5}{2}=\frac{n+1}{2}$.
Let $\alpha=\alpha_{k, k+1, k+2}$, for some $k \in\left\{2, \ldots, \frac{n-1}{2}\right\}$. Then $k+2<n$ and, by Theorem 2.1, there exists no $\beta \in \mathcal{T F}_{n}$ with $\operatorname{rank} \beta=n-1$ such that $\operatorname{Ker} \beta \subseteq \operatorname{Ker} \alpha_{k, k+1, k+2}$. Hence, $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \alpha_{k, k+1, k+2}$ and so there exists $\rho_{k, k+1, k+2} \in A$ with $\operatorname{Ker} \rho_{k, k+1, k+2}=\operatorname{Ker} \alpha_{k, k+1, k+2}$ or $\operatorname{Ker} \rho_{k, k+1, k+2}=\operatorname{Ker} \gamma_{n} \alpha_{k, k+1, k+2}$. Clearly, $\rho_{k, k+1, k+2} \notin A^{(3)}$.

Let $\alpha=\alpha_{1,2,3}$. If $\operatorname{rank} \alpha_{1}^{*}=n-2$ then $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \alpha_{1,2,3}$ or $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \gamma_{n} \alpha_{1,2,3}$. Now, admit that $\operatorname{rank} \alpha_{1}^{*}=n-1$. Then there exists $j \in\{2, \ldots, p\}$ such that $\operatorname{rank} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j-1}=n-1$ and $\operatorname{rank} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j}=$ $n-2$. Observe that either $\operatorname{Im} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j-1}=\{1, \ldots, n-1\}$, with $\{1,2,3\} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j-1}=\{n-2, n-1\}$, or $\operatorname{Im} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j-1}=\{2, \ldots, n\}$, with $\{1,2,3\} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j-1}=\{2,3\}$. Suppose that $\operatorname{Im} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j-1}=\{2, \ldots, n\}$. Then $\{1,2,3\} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j-1}=\{2,3\}$ and we conclude that $(2,3) \in \operatorname{Ker} \alpha_{j}$. By Theorem 2.1, this implies that $(1,2) \in \operatorname{Ker} \alpha_{j}$ or $(3,4) \in \operatorname{Ker} \alpha_{j}$. The case $(3,4) \in \operatorname{Ker} \alpha_{j}$ is not possible since otherwise $\operatorname{rank} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j} \leq n-3$, a contradiction. Thus $(1,2) \in \operatorname{Ker} \alpha_{j}$ and so $\operatorname{Ker} \alpha_{j}=\operatorname{Ker} \alpha_{1,2,3}$. If $\operatorname{Im} \alpha_{1}^{*} \alpha_{2} \ldots \alpha_{j-1}=\{1, \ldots, n-1\}$ then, similarly, we obtain $\operatorname{Ker} \alpha_{j}=\operatorname{Ker} \alpha_{n-2, n-1, n}=\operatorname{Ker} \gamma_{n} \alpha_{1,2,3}$. Therefore, there exists $\rho_{1,2,3} \in A$ with $\operatorname{Ker} \rho_{1,2,3}=$ $\operatorname{Ker} \alpha_{1,2,3}$ or $\operatorname{Ker} \rho_{1,2,3}=\operatorname{Ker} \gamma_{n} \alpha_{1,2,3}$. Clearly, $\rho_{1,2,3} \notin A^{(3)}$. Assume there exist $1 \leq k<\ell \leq \frac{n-1}{2}$ such that $\operatorname{Ker} \alpha_{k, k+1, k+2}=\operatorname{Ker} \gamma_{n} \alpha_{\ell, \ell+1, \ell+2}$. Then $k=n-(\ell+2)+1$ and so $n=\ell+k+1<\frac{n-1}{2}+\frac{n-1}{2}+1=n-1+1=n$, a contradiction. Hence $\rho_{k, k+1, k+2} \neq \rho_{\ell, \ell+1, \ell+2}$, for $1 \leq k<\ell \leq \frac{n-1}{2}$. Take

$$
B^{(4)}=\left\{\rho_{k, k+1, k+2} \left\lvert\, k \in\left\{1, \ldots, \frac{n-1}{2}\right\}\right.\right\}
$$

and $A^{(4)}=A^{(3)} \cup B^{(4)}$. Since, $A^{(3)} \cap B^{(4)}=\emptyset$, we obtain $\left|A^{(4)}\right|=\left|A^{(3)}\right|+\left|B^{(4)}\right|=\frac{n+1}{2}+\frac{n-1}{2}=n$.

Let $\alpha=\alpha_{1,2 k+1}$, for some $k \in\left\{2, \ldots, \frac{n-1}{2}\right\}$. Then

$$
\operatorname{Ker} \alpha_{1,2 k+1}=\{(1+i, 2 k+1-i) \mid 0 \leq i \leq k-1\} \cup\{(x, x) \mid x \in \bar{n}\} .
$$

Given $i \in\{1, \ldots, k-2\}$ such that $(1+i, 2 k+1-i) \in \operatorname{Ker} \alpha_{1}^{*}$, we have

$$
\operatorname{Rel}(\{1+i, 2 k+1-i\})=\{1+i-1,2 k+1-i-1,1+i+1,2 k+1-i+1\} .
$$

Since $\operatorname{Ker} \alpha_{1}^{*} \subseteq \operatorname{Ker} \alpha_{1,2 k+1}$, we have $(1+(i+1), 2 k+1-(i+1)),(1+(i-1), 2 k+1-(i-1)) \in \operatorname{Ker} \alpha_{1}^{*}$. If $(k, k+2) \in \operatorname{Ker} \alpha_{1}^{*}$ then $\operatorname{Rel}(\{k, k+2\})=\{k-1, k+1, k+3\}$ and so we have $(k-1, k+3) \in \operatorname{Ker} \alpha_{1}^{*}$. Now, assume that $(1+i, 2 k+1-i) \notin \operatorname{Ker} \alpha_{1}^{*}$, for all $i \in\{1, \ldots, k-1\}$. Then $\operatorname{Ker} \alpha_{1}^{*} \subseteq \operatorname{Ker} \alpha_{1,2 k+1}$ implies $(1,2 k+1) \in \operatorname{Ker} \alpha_{1}^{*}$ and $\operatorname{rank} \alpha_{1}^{*}=n-1$, which is not possible by Theorem 2.1. Therefore, $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \alpha_{1,2 k+1}$ and so there exists $\rho_{1,2 k+1} \in A$ with $\operatorname{Ker} \rho_{1,2 k+1}=\operatorname{Ker} \alpha_{1,2 k+1}$ or $\operatorname{Ker} \rho_{1,2 k+1}=\operatorname{Ker} \gamma_{n} \alpha_{1,2 k+1}$. Since $(1,2 k+1) \in \operatorname{Ker} \rho_{1,2 k+1}$ or $(n, n-2 k) \in \operatorname{Ker} \rho_{1,2 k+1}$, we have $\rho_{1,2 k+1} \notin A^{(4)}$. For $k, l \in\left\{2, \ldots, \frac{n-1}{2}\right\}$, we have $(1,2 k+1) \in \operatorname{Ker} \alpha_{1,2 k+1}$ and $(1,2 k+1) \notin \operatorname{Ker} \gamma_{n} \alpha_{1,2 \ell+1}$. Hence $\rho_{1,2 k+1} \neq \rho_{1,2 \ell+1}$, for $2 \leq k<\ell \leq \frac{n-1}{2}$. Take

$$
B^{(5)}=\left\{\rho_{1,2 k+1} \left\lvert\, k \in\left\{2, \ldots, \frac{n-1}{2}\right\}\right.\right\}
$$

and $A^{(5)}=A^{(4)} \cup B^{(5)}$. Since $A^{(4)} \cap B^{(5)}=\emptyset$, we obtain $\left|A^{(5)}\right|=\left|A^{(4)}\right|+\left|B^{(5)}\right|=n+\frac{n-3}{2}=\frac{3 n-3}{2}=\frac{3}{2}(n-1)$.
Finally, let $\alpha=\beta_{k, m}$, for some $k, m \in\left\{2, \ldots, \frac{n-1}{2}\right\}$ such that $2 k+3 m \leq n+1$. It is easy to verify that $\{k+i, k+2 m-i, k+2 m+i\}$, for $0 \leq i \leq m$, are all the non-singleton $\operatorname{Ker} \beta_{k, m}$-classes. If $i \in\{1, \ldots, m-1\}$ is such that $(k+i) \alpha_{1}^{*}=(k+2 m-i) \alpha_{1}^{*}=(k+2 m+i) \alpha_{1}^{*}$ then
$\operatorname{Rel}(\{k+i, k+2 m-i, k+2 m+i\})=\{k+i-1, k+2 m-i-1, k+2 m+i-1, k+i+1, k+2 m-i+1, k+2 m+i+1\}$
implies

$$
(k+(i-1)) \alpha_{1}^{*}=(k+2 m-(i-1)) \alpha_{1}^{*}=(k+2 m+(i-1)) \alpha_{1}^{*}
$$

and

$$
(k+(i+1)) \alpha_{1}^{*}=(k+2 m-(i+1)) \alpha_{1}^{*}=(k+2 m+(i+1)) \alpha_{1}^{*},
$$

since $\operatorname{Ker} \alpha_{1}^{*} \subseteq \operatorname{Ker} \beta_{k, m}$. If $(k, k+2 m) \in \operatorname{Ker} \alpha_{1}^{*}$ then, similarly, we have

$$
(k+1) \alpha_{1}^{*}=(k+2 m-1) \alpha_{1}^{*}=(k+2 m+1) \alpha_{1}^{*} .
$$

Moreover, we obtain

$$
(k+m-1) \alpha_{1}^{*}=(k+2 m-(m-1)) \alpha_{1}^{*}=(k+2 m+(m-1)) \alpha_{1}^{*},
$$

whenever $(k+m, k+3 m) \in \operatorname{Ker} \alpha_{1}^{*}$. Therefore $\operatorname{Ker} \alpha_{1}^{*}=\operatorname{Ker} \beta_{k, m}$ and so there exists $\delta_{k, m} \in A$ with $\operatorname{Ker} \delta_{k, m}=$ $\operatorname{Ker} \beta_{k, m}$ or $\operatorname{Ker} \delta_{k, m}=\operatorname{Ker} \gamma_{n} \beta_{k, m}$. Moreover, it is easy to verify that $\delta_{k, m} \notin A^{(5)}$. Take

$$
B^{(6)}=\left\{\delta_{k, m} \mid k, m \in\left\{2, \ldots, \frac{n-1}{2}\right\} \text { and } 2 k+3 m \leq n+1\right\} .
$$

Assume there exist $k, m, p, q \in\left\{2, \ldots, \frac{n-1}{2}\right\}$ such that $\beta_{k, m}=\gamma_{n} \beta_{p, q}$, with $2 k+3 m, 2 p+3 q \leq n+1$ and $k \neq p$ or $m \neq q$. Then $k=n-(p+3 q)+1$. If $k<p$ then $n=k+p+3 q-1<2 p+3 q-1 \leq n+1-1=n$, a contradiction. Admit that $p<k$. From $\beta_{k, m}=\gamma_{n} \beta_{p, q}$ it follows that $\beta_{p, q}=\gamma_{n} \beta_{k, m}$ and so $p=n-(k+3 m)+1$. This provides again $n<n$, as in the previous case. Suppose now that $p=k$. Then $q \neq m$ and we have $p=n-(p+3 m)+1 \neq n-(p+3 q)+1=k$, i.e. $p \neq k$, a contradiction. This allows us to conclude that $\delta_{k, m} \neq \delta_{p, q}$, whenever $k, m, p, q \in\left\{2, \ldots, \frac{n-1}{2}\right\}$, with $2 k+3 m, 2 p+3 q \leq n+1$ and $k \neq p$ or $m \neq q$. Thus $\left|B^{(6)}\right|=\sum_{k=2}^{\frac{n-5}{2}}\left(\left\lfloor\frac{n+1-2 k}{3}\right\rfloor-1\right)$.

Take $A^{(6)}=A^{(5)} \cup B^{(6)}$. Since $A^{(5)} \cap B^{(6)}=\emptyset$, we obtain

$$
\left|A^{(6)}\right|=\left|A^{(5)}\right|+\left|B^{(6)}\right|=\frac{3}{2}(n-1)+\sum_{k=2}^{\frac{n-5}{2}}\left(\left\lfloor\frac{n+1-2 k}{3}\right\rfloor-1\right)=\left|G_{n}\right| .
$$

Since $A^{(6)} \subseteq A$, we have $|A| \geq\left|A^{(6)}\right|=\frac{3}{2}(n-1)+\sum_{k=2}^{\frac{n-5}{2}}\left(\left\lfloor\frac{n+1-2 k}{3}\right\rfloor-1\right)$, which allows us to deduce that $\operatorname{rank}\left(\mathcal{T F}_{n}\right) \geq \frac{3}{2}(n-1)+\sum_{k=2}^{\frac{n-5}{2}}\left(\left\lfloor\frac{n+1-2 k}{3}\right\rfloor-1\right)=\left|G_{n}\right|$, as required.

Next, we consider the even case.
Lemma 3.6. Let n be an even number. Then $\operatorname{rank}\left(\mathcal{T \mathcal { F }}_{n}\right) \geq 3 n-8+\sum_{k=2}^{n-7}\left(\left\lfloor\frac{n-1-k}{3}\right\rfloor-1\right)=\left|G_{n}\right|$.
Proof. Let A be a generating set of $\mathcal{T F}_{n}$.
Since $\left\{\alpha \in \mathcal{T F}_{n} \mid \operatorname{rank} \alpha=n\right\}=\left\{\operatorname{id}_{n}\right\}$, we have $\operatorname{id}_{n} \in A$. Let $A^{(0)}=\left\{\operatorname{id}_{n}\right\}$. Then $\left|A^{(0)}\right|=1$.
Let $\alpha \in \mathscr{T} \mathcal{F}_{n}$ be such that $\operatorname{rank} \alpha \leq n-1$. Then, there exist $\alpha_{1}, \ldots, \alpha_{p} \in A \backslash\left\{\mathrm{id}_{n}\right\}$ such that $\alpha=\alpha_{1} \ldots \alpha_{p}$, for some natural number p. Clearly, $\operatorname{Ker} \alpha_{1} \subseteq \operatorname{Ker} \alpha$ and $\operatorname{rank} \alpha_{1} \leq n-1$.

If $\alpha \in B^{(1)}=\left\{\alpha_{1,2}, \alpha_{1,3}, \alpha_{n-1, n}, \alpha_{n-2, n}\right\}$ then it is easy to verify that $\alpha=\alpha_{1}$. Hence $B^{(1)} \subseteq A$ and we define $A^{(1)}=A^{(0)} \cup B^{(1)}$. We have $\left|A^{(1)}\right|=\left|A^{(0)}\right|+\left|B^{(1)}\right|=1+4=5$.

Let $\alpha=\alpha_{k, k+2}$, for some $2 \leq k \leq n-4$. Then $(k, k+2) \in \operatorname{Ker} \alpha_{1}$ or $(k+1, k+3) \in \operatorname{Ker} \alpha_{1}$. Since $2 \leq k<n-3$, we have $\operatorname{Rel}(\{k, k+2\})=\{k-1, k+1, k+3\} \subseteq \bar{n}$ or $\operatorname{Rel}(\{k+1, k+3\})=\{k, k+2, k+4\} \subseteq \bar{n}$, respectively. Since $\operatorname{Ker} \alpha_{1} \subseteq \operatorname{Ker} \alpha_{k, k+2}$, we obtain $\operatorname{Ker} \alpha_{1}=\operatorname{Ker} \alpha_{k, k+2}$. Hence, there exists $\rho_{k, k+2} \in A$ such that $\operatorname{Ker} \rho_{k, k+2}=\operatorname{Ker} \alpha_{k, k+2}$. Thus, being

$$
B^{(2)}=\left\{\rho_{k, k+2} \mid k \in\{2, \ldots, n-4\}\right\},
$$

we have $\left|B^{(2)}\right|=n-5$. Take $A^{(2)}=A^{(1)} \cup B^{(2)}$. Since rank $\rho_{k, k+2}=n-2$, it follows that $\rho_{k, k+2} \notin A^{(1)}$. Then $\left|A^{(2)}\right|=\left|A^{(1)}\right|+\left|B^{(2)}\right|=5+n-5=n$.

Let $\alpha=\alpha_{k, k+1, k+2}^{e}$, for some $k \in\{2, \ldots, n-3\}$. Then there is no $\beta \in \mathcal{T F}_{n}$ such that $\operatorname{rank} \beta=n-1$ and $\operatorname{Ker} \beta \subseteq \operatorname{Ker} \alpha_{k, k+1, k+2}^{e}$. Thus, there exists $\rho_{k, k+1, k+2} \in A$ with $\operatorname{Ker} \rho_{k, k+1, k+2}=\operatorname{Ker} \alpha_{k, k+1, k+2}^{e}$. Clearly, $\rho_{k, k+1, k+2} \notin A^{(2)}$. Take

$$
B^{(3)}=\left\{\rho_{k, k+1, k+2} \mid k \in\{2, \ldots, n-3\}\right\} .
$$

Then $\left|B^{(3)}\right|=n-4$. Furthermore, being $A^{(3)}=A^{(2)} \cup B^{(3)}$, we have $\left|A^{(3)}\right|=\left|A^{(2)}\right|+\left|B^{(3)}\right|=n+n-4=2 n-4$.
Let $\alpha=\alpha_{1,2 k+1}$, for some $k \in\left\{2, \ldots, \frac{n}{2}-1\right\}$. It is clear that

$$
\operatorname{Ker} \alpha_{1,2 k+1}=\{(1+i, 2 k+1-i): 0 \leq i \leq k-1\} \cup\{(x, x): x \in \bar{n}\} .
$$

If $i \in\{1, \ldots, k-2\}$ is such that $(1+i, 2 k+1-i) \in \operatorname{Ker} \alpha_{1}$ then

$$
\operatorname{Rel}(\{1+i, 2 k+1-i\})=\{1+i-1,2 k+1-i-1,1+i+1,2 k+1-i+1\}
$$

and, as $\operatorname{Ker} \alpha_{1} \subseteq \operatorname{Ker} \alpha_{1,2 k+1}$, it follows $(1+(i+1), 2 k+1-(i+1)) \in \operatorname{Ker} \alpha_{1}$ and $(1+(i-1), 2 k+1-(i-1)) \in \operatorname{Ker} \alpha_{1}$. If $(k, k+2) \in \operatorname{Ker} \alpha_{1}$ then $\operatorname{Rel}(\{k, k+2\})=\{k-1, k+1, k+3\}$, whence $(k-1, k+3) \in \operatorname{Ker} \alpha_{1}$ (since $\left.\operatorname{Ker} \alpha_{1} \subseteq \operatorname{Ker} \alpha_{1,2 k+1}\right)$. If $(1,2 k+1) \in \operatorname{Ker} \alpha_{1}$ then $\operatorname{Rel}(\{1,2 k+1\})=\{2,2 k, 2 k+2\} \subseteq \bar{n}$ (note that $k \leq \frac{n}{2}-1$ implies $2 k+2 \leq n$) and, since $\operatorname{Ker} \alpha_{1} \subseteq \operatorname{Ker} \alpha_{1,2 k+1}$, we have $(2,2 k) \in \operatorname{Ker} \alpha_{1}$. Therefore $\operatorname{Ker} \alpha_{1}=\operatorname{Ker} \alpha_{1,2 k+1}$ and there exists $\rho_{1,2 k+1} \in A$ with $\operatorname{Ker} \rho_{1,2 k+1}=\operatorname{Ker} \alpha_{1,2 k+1}$. Clearly, $\rho_{1,2 k+1} \notin A^{(3)}$.

Let $\alpha=\alpha_{2 m, n}$, for some $m \in\left\{1, \ldots, \frac{n-4}{2}\right\}$. Analogously, we can show there exists $\rho_{2 m, n} \in A$ with Ker $\rho_{2 m, n}=$ $\operatorname{Ker} \alpha_{2 m, n}$. Moreover, it is easy to verify that $\rho_{2 m, n} \notin A^{(3)}$ and $\rho_{2 m, n} \neq \rho_{1,2 k+1}$, since $(2 m, n) \in \operatorname{Ker} \rho_{2 m, n}$ and $(2 m, n) \notin \operatorname{Ker} \rho_{1,2 k+1}$, for $k \in\left\{2, \ldots, \frac{n}{2}-1\right\}$.

Take

$$
B^{(4)}=\left\{\rho_{1,2 k+1} \left\lvert\, k \in\left\{2, \ldots, \frac{n}{2}-1\right\}\right.\right\} \cup\left\{\rho_{2 m, n} \left\lvert\, m \in\left\{1, \ldots, \frac{n-4}{2}\right\}\right.\right\}
$$

Then $\left|B^{(4)}\right|=\frac{n-4}{2}+\frac{n-4}{2}=n-4$. Furthermore, define $A^{(4)}=A^{(3)} \cup B^{(4)}$. Since $A^{(3)} \cap B^{(4)}=\emptyset$, it follows that $\left|A^{(4)}\right|=\left|A^{(3)}\right|+\left|B^{(4)}\right|=2 n-4+n-4=3 n-8$.

Let $\alpha=\beta_{k, m}$, for some $k, m \in\{2, \ldots, n\}$ such that $k+3 m \leq n-1$. Similarly to the proof of Lemma 3.5, we can prove the existence of an element $\delta_{k, m} \in A$ such that $\operatorname{Ker} \delta_{k, m}=\operatorname{Ker} \beta_{k, m}$. Clearly, we also have $\delta_{k, m} \notin A^{(4)}$. Take

$$
B^{(5)}=\left\{\delta_{k, m} \mid k, m \in\{2, \ldots, n\} \text { and } k+3 m \leq n-1\right\} .
$$

Then $\left|B^{(5)}\right|=\sum_{k=2}^{n-7}\left(\left\lfloor\frac{n-1-k}{3}\right\rfloor-1\right)$. Moreover, being $A^{(5)}=A^{(4)} \cup B^{(5)}$, since $A^{(4)} \cap B^{(5)}=\emptyset$, we obtain

$$
\left|A^{(5)}\right|=\left|A^{(4)}\right|+\left|B^{(5)}\right|=3 n-8+\sum_{k=2}^{n-7}\left(\left\lfloor\frac{n-1-k}{3}\right\rfloor-1\right)=\left|G_{n}\right| .
$$

Since $A^{(5)} \subseteq A$, we have $|A| \geq\left|A^{(5)}\right|=3 n-8+\sum_{k=2}^{n-7}\left(\left\lfloor\frac{n-1-k}{3}\right\rfloor-1\right)$, which allows us to conclude that $\operatorname{rank}\left(\mathcal{T \mathcal { F }}_{n}\right) \geq$ $3 n-8+\sum_{k=2}^{n-7}\left(\left\lfloor\frac{n-1-k}{3}\right\rfloor-1\right)=\left|G_{n}\right|$, as required.

As an immediate consequence of Proposition 3.4 and Lemmas 3.5 and 3.6, we can state our main result.
Theorem 3.7. We have

$$
\operatorname{rank}\left(\mathcal{T F}_{n}\right)= \begin{cases}\frac{3}{2}(n-1)+\sum_{k=2}^{\frac{n-5}{2}}\left(\left\lfloor\frac{n+1-2 k}{3}\right\rfloor-1\right) & \text { if } n \text { is odd } \\ 3 n-8+\sum_{k=2}^{n-7}\left(\left\lfloor\frac{n-1-k}{3}\right\rfloor-1\right) & \text { if } n \text { is even } .\end{cases}
$$

Acknowledgement

This work was produced during the visit of the second and third authors to CMA, FCT NOVA, Lisbon in January/February 2017. The second author was supported by CMA through a visiting researcher fellowship.

References

[1] A.Ya. Aizenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sibirsk. Mat. 3 (1962), 161-169 (Russian).
[2] A.Ya. Aı̆zenštat, Homomorphisms of semigroups of endomorphisms of ordered sets, Uch. Zap., Leningr. Gos. Pedagog. Inst. 238 (1962), 38-48 (Russian).
[3] J. Almeida and M.V. Volkov, The gap between partial and full, Int. J. Algebra Comput. 8 (1998), 399-430.
[4] R. Chinram, R. Srithus and R. Tanyawong, Regular subsemigroups of the semigroups of transformations preserving a fence, Asian-European Journal of Mathematics 9 (2016), 1650003.
[5] J.D. Currie and T.I. Visentin, The number of order-preserving maps of fences and crowns, Order 8 (1991), 133-142.
[6] I. Dimitrova and J. Koppitz, On the semigroup of all partial fence preserving injections on a finite set, Journal of algebra and its applications 16 (11) (2017), 1750223.
[7] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: a new class of divisors, Semigroup Forum 54 (1997), 230-236.
[8] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: another class of divisors, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, Number 3, 51-59 (Russian).
[9] V.H. Fernandes, M.M. Jesus, V. Maltcev and J.D. Mitchell, Endomorphisms of the semigroup of orderpreserving mappings, Semigroup Forum 81 (2010), 277-285.
[10] V.H. Fernandes and M.V. Volkov, On divisors of semigroups of order-preserving mappings of a finite chain, Semigroup Forum 81 (2010), 551-554.
[11] G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), 272-282.
[12] P.M. Higgins, Divisors of semigroups of order-preserving mappings on a finite chain, Int. J. Algebra Comput. 5 (1995), 725-742.
[13] J.M. Howie, Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (2) (1971), 223-236.
[14] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
[15] K. Jendana and R. Srithus, Coregularity of order-preserving self-mapping semigroups of fences, Commun. Korean Math. Soc. 30 (2015), 349-361.
[16] V.B. Repnitskiĭ and A. Vernitskii, Semigroups of order preserving mappings, Comm. in Algebra 28 (8) (2000), 3635-3641.
[17] V.B. Repnitskiĭ and M.V. Volkov, The finite basis problem for the pseudovariety \mathcal{O}, Proc. R. Soc. Edinb., Sect. A, Math. 128 (1998), 661-669.
[18] A. Rutkowski, The formula for the number of order-preserving self-mappings of a fence, Order 9 (2) (1992), 127-137.
[19] A. Vernitskii and M.V. Volkov, A proof and generalisation of Higgins' division theorem for semigroups of order-preserving mappings, Izv. Vyssh. Uchebn. Zaved. Mat., Number 1 (1995), 38-44 (Russian).

Vítor h. Fernandes, CMA, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal; e-mail: vhf@fct.unl.pt.
Jörg Koppitz, Institute of Mathematics, University of Potsdam, 14476 Potsdam, Germany; e-mail: koppitz@uni-potsdam.de. Also: Institute of Mathematics and Informatics Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 81113 Sofia, Bulgaria; e-mail address: koppitz@math.bas.bg.

Tiwadee Musunthia, Department of Mathematics, Faculty of Science, Silpakorn University, Nakorn Pathom, Thailand 73000; e-mail: tiwadee.m@gmail.com.

[^0]: *This work was developed within the FCT Project UID/MAT/00297/2013 of CMA and of Departamento de Matemática da Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.
 ${ }^{\dagger}$ This work was developed within the FCT Project UID/MAT/00297/2013 of CMA.
 ${ }^{\ddagger}$ This work is also supported by Research Fund of Faculty of Science, Silpakorn University through Grant. no. SRF-PRG-2557-02. 2010 Mathematics Subject Classification: 20M10, 20M17, 20M20
 Key words: Transformation semigroups, rank of semigroup, idempotents, order preserving, fence, zig-zag order

