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Abstract

A zig-zag (or fence) order is a special partial order on a (finite) set. In this paper, we consider the semigroup
T, of all order-preserving transformations on an n-element zig-zag ordered set. We determine the rank of
TF, and provide a minimal generating set for TF,. Moreover, a formula for the number of idempotents in
TF,, is given.

1 Introduction

Let n € N and denote by T, the monoid (under composition) of all full transformations on the set m = {1,...,n}
of the first n natural numbers. Let < be any partial order on 7. Let o € T,,. We say that « is an order-preserving
transformation (with respect to <) if x < y implies za < ya, for all x,y € m. Clearly, the subset of T;, of all
order-preserving transformations (with respect to a fixed partial order) forms a submonoid of T,.

A very important particular and natural case occurs when a linear order (for instance the one induced by
the usual order on the natural numbers) is considered. The monoid O,, of all order-preserving transformations
on 7, endowed with a linear order, has been extensively studied since the early 1960s. In fact, in 1962, Aizenstat
[1, 2] showed that all non-trivial congruences of O,, are Rees congruences and gave a monoid presentation for
Op, in terms of 2n — 2 idempotent generators, from which it can be deduced that, for n > 1, O,, only has one
non-trivial automorphism. In 1971, Howie [13] calculated the cardinal and the number of idempotents of O,, and
later (1992), jointly with Gomes [11], determined its rank and idempotent rank. More recently, Fernandes et
al. [9] described the endomorphisms of the semigroup O,, by showing that there are three types of endomorphism:
automorphisms, constants, and a certain type of endomorphism with two idempotents in the image. The monoid
0,, also played a main role in several other papers [3, 7, 8, 10, 12, 16, 17, 19], where the central topic concerns
the problem of the decidability of the pseudovariety generated by the family {O,, | n € N}. This question was
posed by J.-E. Pin in 1987 in the “Szeged International Semigroup Colloquium” and, as far as we know, is still
open.

A non-linear order (in some sense) close to a linear order is the so-called zig-zag order. The pair (7, <) is
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called a zig-zag poset or fence if

1<2%=3<---<n—1»mn, ifnisodd, and
1<2%=3<--+>=n—1=<n, ifniseven, or dually
1-2<3>=--->=n—1=<n, ifnisodd, and
1-=2<3=---<n—1>=mn, ifniseven.

The definition of the partial order < is self-explanatory. For instance, for n = 5 and n = 6, we have the
following fences (given by Hasse diagrams):

@ ©) ® d ©, 6, ©) @ ©) @ ©
Observe that, every element in a fence is either minimal or maximal.

Order-preserving transformations of (finite) fences were first investigated by Currie and Visentin [5] and
by Rutkowski [18]. In [5], by using generating functions, the authors calculate the number of order-preserving
transformations of a fence with an even number of elements. On the other hand, an exact formula for the
number of such transformations, for any natural number n, was given in [18].

Recently, several properties of monoids of order-preserving transformations of a fence were studied. In [4]
the authors discussed the regular elements in these monoids. So-called coregular elements of this monoids were
determined in [15]. On the other hand, in [6] Dimitrova and Koppitz investigated the monoid of all partial
permutations preserving a zig-zag order on a set with n elements, by studing Green’s relations and generating
sets of this monoid.

Without loss of generality, we will assume that (7, <) is an up-fence, i.e.
1<2=3<--.

Let z,y € m. We say that x and y are comparable if x < y or x = y or y < x. Otherwise, z and y are said
incomparable. Clearly, z and y are comparable if and only if x € {y — 1,y,y + 1}.

Denote by TF,, the submonoid of T, of all order-preserving transformations of the fence (7, <).

In this paper, we determine the rank and count the number of idempotents of TF,,.

Recall that the rank of a (finite) semigroup S is defined by

rank S = min{|A| | A C S generates S},

i.e. the rank of S is the minimal size of a generating set of S. For general background on Semigroup Theory
and standard notation, we refer the reader to Howie’s book [14].

We begin, in the next section, by giving a characterization of the elements of TF,. Clearly, the identity
mapping id,, on 7 is order-preserving. Also, all the n constant mappings are order-preserving. Moreover, for an
even n, id, is the unique permutation of n belonging to T7F,, and, on the other hand, if n is odd then TF,, has
exactly two permuations, namely the identity mapping and the reflection

(1 9 on
m=\p n-1 .. 1)

The rest of Section 2 is dedicated to counting the idempotents of TF,. Notice that, it is easy to show that an
element o € T, is idempotent if and only if Ina = {x € 7 | za = =}, i.e. the image of a coincides with the set
of its fix points. In the third section of this paper, we determine the rank of JF,,. In particular, we provide a
minimal size generating set for TF,.

Notice that TF; coincides with T7 and TF5 coincides with the monoid Os of all order-preserving transfor-
mations on a two-element chain. Hence, from now on, we always consider n > 3.



2 Idempotents

The aim of this section is to provide a formula for the number of idempotents of TF,,. In order to accomplish this,
it is useful to know the form of the elements of TF,,. We have the following characterization of a transformation
in TF,.

Theorem 2.1. Let a € Ty,. Then o € TF, if and only if
(i) lxa— (z+ 1V)a| <1, forallz € {1,...,n—1};
(ii) x and xa have the same parity or (x — 1)a = za = (z + D)o, for allz € {2,...,n — 1}.

Proof. First, suppose that a € TF,,. Let € {1,...,n—1}. Then z and z+ 1 are comparable, which implies that
za and (x 4+ 1)a are also comparable and so |xa — (z + 1)a| < 1. This shows (i). Now let z € {2,...,n — 1}.
Assume that x is even. Then z —1 < z > z+ 1 and so (z — 1)a = za > (z + 1)a. If (x — 1)a # xa or
za # (x + 1)a then (x — 1)aw < za or zav = (x 4 1), which implies in both cases that za is even. Similarly, if
z is odd we may deduce that z« is also odd or (x — 1)a = xa = (x + 1)a. This shows (ii).

Conversely, suppose that (i) and (ii) are satisfied. Let x,y € T be such that x < y. Then z is odd and
y is even. Moreover y € {x — 1,2 + 1}. Admit that za # ya. f y = 2 — 1 then 2 < y < n — 1 and so
lya — za| = |[ya — (y + 1)a] = 1 and y and ya have the same parity. If y = x + 1 then 1 <z < n —1 and
so |za — ya| = |za — (x + 1)a| = 1. Furthermore, in this last case, if > 1 then = and z« have the same
parity; otherwise y = 2 < n and so y and ya have the same parity (since (y — 1)a = xa # ya). Therefore, we
have ya € {xa — 1,za + 1} and, on the other hand, ya is even or xz«a is odd. Thus, in all cases, za < ya, as
required. O

As a consequence of Theorem 2.1 we have that the image of a transformation in T, is an interval of 7@
(with the usual order).

Corollary 2.2. Let o € TF,. Then Ima = {k,k+1,..., L}, for some 1 <k </l <n.

Proof. Let k = minIm o and ¢ = maxIm«a (with respect to the usual order of N). Assume that there exists
p € {k,k+1,...,¢} such that p ¢ Ima. Let * = max{i € | i < p}. If x < n then (x + 1)a > p and
so |zra — (x + 1)al > 1, a contradiction. Then y = max{i € 7 | i« > p} < n and (y + 1)a < p, whence
lya — (y + 1)a| > 1, which again is a contradiction. Thus Ima = {k,k + 1,...,¢}, as required. O

Next we will give a formula for the number of idempotents in TF,. Let m € m and 0 < p < n — m. For
re{0,...,m— 1}, let

s t
P(p,r) ={(po,....,pt) |t ENU{0};p1,...,pr € Nipp = 0;0 < > (=) 'p; <p, for I<s <t py=r}
i=1 =1

and .
K(m,r) ={(ko,... . k) | ko+71+2> ki=m—1k,... .k € NU{0}}.
=1

Further, define

m—1
A(m,p) =Y [P(p,r)| - | K (m,7)].
r=0

Lemma 2.3. Let a € TF, with Ima = {k,...,k + p}, for some k € m and some p € {0,...,n — k}. Let
ap € {k,k+p} and r € {0,...,k — 1}. Then, there exists a bijection between the set P(p,r) and the set of
all sequences ap,ai,...,a, € Ima such that |aj—1 — a;| = 1, for all i € {1,...,r}, and there exists a partition
Aoy > A1 > > Ay of {1,...,k}, if ap = k, or a partition Ay < Ay < --- < A, of {k+p,...,n}, if ap =k +p,
verifying A;a = {a;}, fori € {0,...,r}.



Proof. Fix a sequence ag,ai,...,a, € Ima verifying the conditions of the lemma. Notice that, if » = 0 then
P(p,0) = {(0)} and ag is the only possible sequence. Then, we may admit that » > 0. Let j = 1, if ap = k, or
j =2, if ap =k + p. Put pg = 0 (by technical reasons).

Then, there exists p; € {1,...,7} such that (=1)**p; € {0,...,p}, a; = ap + (=1)7 i, for 1 <i < py, and
either 7 = py or ap, 11 = ap + (—=1)7Tlp; + (=1)772.

If » > p; then there exists ps € {1,...,7 — p1} such that (—=1)'*1p; + (=1)2T1py € {0,...,p}, ap,+i = ap +
(=1)71py +(—1)7%2i, for 1 < i < po, and either r = p1 +pa O Ap, 4pp+1 = a0+ (—1)7TLpy + (=17 2py+(—1)713,

Continuing in this way, we obtain ¢,p;...,p; € N such that

S

t
Zpi =r, Z(—l)”lpi €{0,...,p}, forl<s<t,
i=1

i=1
and
q—1
a 41 =ap+ Z(—l)]Mm + (=1)1%, for1<i<p,and1<qg<t.
i+ Zpé /=1
=1
Hence, the sequence ag,ay,...,a, is uniquely determined by the t-uple (po,...,pt). O

Let us denote by E,, the set of all idempotents of TF,,, for all m > 1. It is clear that Fy = 79, = T = {G)}
and Ey = 79, = 1o\ { (1)} = {(12), (01))> (52) }-

Theorem 2.4. We have

n n—=k

|Enl =YY A(k,p)- A(n+1— (k+p),p).

k=1p=0

Proof. Let o € E,,. Then, by Corollary 2.2, there exist k € m and p € {0,...,n — k} such that
Ima={kk+1,....,k+p}.
Since « is idempotent, we have (k + i)a = k + 4, for i € {0,...,p}. Let
A ={1,...,k} and AT ={k+p,...,n}.

First, we consider the set A~. By Theorem 2.1, we have |[za— (z + 1)a| < 1 for all z € {1,...,k — 1}.
Hence, there exist r € {0,...,k — 1}, a sequence ag,...,a, € Ima and a partition Ag > A; > --- > A, of A~

such that |a;—1 —a;| = 1, for 1 < i < r, and A;ja = {a;}, for 0 < i < r. Moreover, za and x have the same

parity or (z — 1)a = za = (z + 1)a, for all z € A~ \ {1,n}. It follows that there exist ko, k1,...,k € NU {0}
r—1

such that |A;| =1+ 2k;, for 0 <i<r—1, and |A,| =k, + 1. Then k, + 7+ 2> k; = k — 1 and so the sequence
i=0

Ayp > Ay > --- > A, is uniquely determined by an element of K (k,r).

If r = 0 then A~ = Ap and P(p,0) = {(0)}. On the other hand, admit that » > 0. Then, by Lemma 2.3
(with a9 = k), we have that the sequence ag,...,a, is uniquely determined by an element of the set P(p,r).
Hence, a|4- is uniquely determined by an element of the set

k—1

B~ (k,p) = UK(k,T) x P(p,r) x {r}.
r=0

Dually, there exist s € {0,...,n—(k+p)}, a sequence ay, . ..,as € Im a and a partition Ay < 41 < --- < Agof

AT such that |a;—1 — a;] = 1,for 1 <i < s, and A;a = {a;}, for 0 < i < s. Also, there exist £y, ¢1, ..., Ls € NU{0}
s—1

such that |A;| = 1+2¢;, for 0 < i < s—1, and |As| = £s+1. Then b, +r+2> " ¢; = n—(k+p) = (n+1)—(k+p)—1,
i=0

7=
whence the sequence Ay < A; < -+ < A is uniquely determined by an element of K(n + 1 — (k + p), s).



If s =0 then A* = Ay and P(p,0) = {(0)}. So, admit that s > 0. Then, by Lemma 2.3 (with ay = k + p),
we have that the sequence ay,...,as is uniquely determined by an element of the set P(p,s). Consequently,
a4+ is uniquely determined by an element of the set

n—(k+p)
BT (k,p) = U Kn+1—(k+p),s) x P(p,s) x {s}.
s=0

Notice that, it is easy to verify that |B~(k,p)| = A(k,p) and |B*(k,p)| = A(n+ 1 — (k + p), p). Moreover,
@i« 18 the identity mapping on Im« and Im « is uniquely determined by an element k of the set m and an

element p of the set {0,...,n — k}. Thus, the transformation o € F,, is uniquely determined by an element of
the set

n n—k

U U B (k.p) x B (k,p) x {(k.p)}.

k=1p=0

Conversely, as the construction of this set clearly justifies that each of its elements determines uniquely an
idempotent in TF,,, we have

B = |00 B o) x B < (k)| = é”gr (ki) X B* (ki) x {(k,p)]
= S En G Wk = 5 A Al 1= 40).p)
as required. O

The table below gives us an idea of the size of the monoids TF,,, and of their number of idempotents.

m | |Enl | [TFm] m | |Em| 1T |
1 1 1 9 | 1039 6187
2 3 3 10| 2243 16459
3 8 11 11| 4901 44931
41 19 31 12| 10591 | 117831
5| 44 99 13 | 23190 | 315067
6| 98 275 14 | 50335 | 817323
7T 218 | 811 151 110651 | 2152915
8 | 474 | 2199 16 | 241457 | 5537839

These numbers were calculated by the formula of Theorem 2.4 and by the formulas given by Rutkowski [18].

3 The rank of TF,

This section is devoted to determine the rank of TF,. In the process we give an explicit minimal size set of
generators of TF,,. The cases n odd and n even will be treated separately.

The following general observation will be frequently used without reference.

Lemma 3.1. Let a, o’ € TF, be such that Kera = Kero' and ranka > 1. Then xza and xo' have the same
parity, for all x € 7.

Proof. Let x € m. Since rank o > 1, there exists y € zaa~! such that y + 1 € n\ yaa™t ory — 1 € W\ yaa L.
Therefore we may consider four cases. For instance, if y +1 € 7\ yaa~! and y < y+1 then za = ya < (y+1)a

and za/ = yo/ < (y + 1)/, whence za and xa’ have the same parity. The other three cases are similar. O



Next, we define a series of transformations of TF,. Let (for any n)

(1,2 3 4 -+ n
W2=\ 2 34 . )
1 - k-1 kk+2 k+1,k+3 k+4 --- n
— ) ) < < _
Whok+2 <1 o k=1 k E+1l k+2 - n—2>’for2—k—” 4
1 -+ n=3 n—-2,n n—-1
O‘”‘z’”_<1 =3 n-2 n—1>’f°r”24’
1 k-1 kk+1,k+2 E4+3 - n
ak,k+1,k+2:<1 k1 I kel .. n_2>,f0r1§k§n—2,
k+1 kk+2 -+ 22k 1,2k+1 2k+2 -+ n 1
— ) ) ) < < n—i
1.2%k+1 <k;+1 k+2 - 2k 2%k+1 2%k+2 .- n>’f°r1—k—t2j’and
B, = 1 -+ k=1 kk+2m k+1LEk+2m—-1,k+2m+1
bm =\ 1 k-1 k k+1
E+(m-1),k+2m—(m—1),k+2m+(m—-1) k+m,k+3m k+3m+1
k4 (m—1) k+m E+m+1
for 2 < k,m < n such that k +3m <n — 1.
Moreover, for an odd n, recall that
(1 2 - n—1 n
m=\n on-1 - 2 1)
and, for an even n, let
(T2 3 4 o
227\ n n-1 n-2 ... 2 )
_ 1 2 s m—2 n—1,n
Wn-ln =\ pn-1 n-2 ... 2 1 ’
I - 2k=1 S5+k §+k-1,5+k+1 S+k-2,5+k+2 -+ 2kn
a2kn: n n n Y
’ I - 2k—-1 S5 +k 5+k—1 5+k—2 e 2k
for 1 <k < 234 and
k+1 kk+2 -+ 22k 1,2k+1 2k+2 --- n _9
e = ' ’ ) <k <02
“12k+1 <k—1 koo 2%k—2 2k—1 2k - n—2>’f0r2—k— 2
Now, for an odd n, define
Gn = {12t U{arpia | 2<k <23 U{agpipse |1 <k <2HYU

{a10p1 |1 <k <%} U{Brm |2 < k,m < %51 and 2k 4+ 3m < n + 1}
and, for an even n, define

n
n—2m /)’

Gn = {idp,afg,013,0n-1n,0n—2nf U{apk2 [2 <k <n—4}U{agrr1p2|2<k<n-3}U

{a‘i%ﬂ\QSkgg—l}U{agkm\lng"T_‘l}U{Bk,m]2§k,m§nandk+3m§n—l}.

From now on, our main aim is to prove that G, is a generating set for 7F,, of minimal size.

The following lemma shows that all the transformations above defined belong to the subsemigroup (G,,) of

TF,, generated by G,. Frequently, we will use it without reference.



Lemma 3.2. We have:
(i) {okptrhr2 |1 <k <n—2} C(Gn);
(ii) {onokr1 |2 <k < [2FH]} C(Gn);
fiii) {anpsz |2 <k <n—4} C (Ga);

() {Brm |2<k,m<nandk+3m<n—1} C(Gy);

1 - 2 2k+1.n --- nT—l knT3+k RTH‘Hf -
n = ’ ’ €(Gn), dd and 1 < k < 52,
(v) o, ( 1 o 2% 2%k+1 - nl ) ntl oy (Gu), Jorm odd an 2

(Vi) a2y € (Gp).

Proof. (i) For n odd and 5= < k < n — 2, we have o p4+1k4+2 = YnOn—k—1n—kn—k+1Yn@1,23. On the other
hand, for n even, we have oz172,3 = a1’2an_17n and ap_2 -1 = an_l,namal,gs

(i) For n even and 2 < k < %52, we have oy gp 1 = O ok 4109 20 2309 5.

(iii) For n odd and "Tfl <k <n—4, we have o 42 = YnQn—k—2.n—kVnQ1,2,3.

(iv) Let n be an odd number and let k,m € @ be such that k +3m < n —1 and 2k +3m > n + 1. Then
2(n — (k+3m) +1) <n+1and we have Brm = YnBn—(kt+3m)+1,mVn(a1,23)"

(v) For 1 <k < 252, we have aagn = Ym0 2(k4+1)+1Vn-

(vi) Finally, we have a,,—2, = 01,37, whenever n is odd. O

In order to prove that the set GG, generates TF,, our first step is to show that, for any transformation in
TF,, there exists a transformation in (G,) with the same kernel. For any set A C 7, define

Rel(A) = {z € m\ A| z and a are comparable, for some a € A}.

Lemma 3.3. For any o € TF,, there exists o/ € (G,,) such that Ker o/ = Ker av.

Proof. Let a € TF,,. We make the proof by induction on the rank of a.
If rank & = n then Ker o = Kerid,, and we have id,, € G,,, for n even, and id,, = 72 € (G,,), for n odd.

Assume that ranka = n — 1. Then, there exists ¢ € Im « such that ‘z’a‘l} = 2 and {ja‘l} = 1, for all
j € Ima\ {i}. This implies |Rel(icx 1)| < 2, ie ia”t = {1,2} or ia™! = {1,3} or ia”! = {n —2,n} or
T = {n — 1,n}. By noticing that, for an odd n, we have a,_1,, = Ypa12 and a,—2, = Yn01,3Vn, it follows

that there exists o € (G,) such that Ker o/ = Ker a.

Admit now that rank o = n — 2. Then, for some 7 € Im «, we have 2 < ‘iofl‘ <3.

If ‘z’oz_l} = 3 then there exists k € {1,...,n — 2} such that ia~! = {k,k + 1,k + 2} and ’ja‘1| =1, for all
j €Ima \ {Z}, i.e. Kera = Ker Ok k41,425 with Ok k41,42 S <Gn>

Now, suppose that ‘ioz_l‘ = 2. Then ‘ja‘l‘ = 2, for some j € Ima\ {i}.

Admit that |Rel(ia™!)| < 2. Then ia! = {1,2} or ia™! = {1,3} oria™* = {n—2,n} oria™! = {n—1,n}.
Since rank v = n — 2, we conclude that [Rel(jo™!)| <2 or ia™! C Rel(ja™?). So, we have jo~! = {n—2,n} or
ja~l ={n—1,n},ifia"t = {1,2} oria™' = {1,3}, or ja~! = {2,4}, ifia~! = {1,3}, or ja~ ! = {n—-3,n—1},
if ia=t = {n — 2,n}. Hence, we get Kero/ = Ker a, with o/ = a1 2051, (and o/ = (a1,27,)%, whenever n is
odd) or o = a1 2052, Or & = 1301, (and & = a1 37,0127, whenever n is odd) or @ = o 3a,—2,, or
o =ag3005 or & = ap_gp0n_ay. Observe ay_4, = Ypo1 57, € (Gr), whenever n is odd (since a5 € (Gp)
by Lemma 3.2), and a2 = af 5af 5, whenever n is even. Since all the other transformations used belong to
(Gy), we have o/ € (Gp). Dually, in the case |[Rel(ja')| < 2, we can show that there exists o/ € (G,), with
Kera/ = Ker a.

Notice that the case |Rel(ia™!)| >4 or |Rel(ja™!)| > 4 is not possible since rank v = n — 2. So, it remains
the case |Rel(ia™1)| = !Rel(ja_l)‘ = 3. This provides ia~! = {1,k}, for some k € 2N+ 3, or ia~! = {n —k,n},



for some k € 2N + 2, or ia™! = {k,k + 2} for some k € {2,...,n — 3}. Then there are two elements in
Rel(ja~!) with the same image, which is i since rank & = n — 2. This shows that ia~! C Rel(ja~!). By the
same argumentation, we obtain ja~! C Rel(ia™1).

Suppose that ia~! = {1, k}, for some k € 2N+3. Assume that k > 7. Then ja~! C Rel(ia™!) = {2,k—1,k+
1} and ia~! C Rel(ja~t) implies ‘Rel(ja_lﬂ = 4, a contradiction. Hence, we have ia~! = {1,5}. Then, once
again i ' C Rel(ja™!) and |Rel(jo')| = 3 implies jo~' = {2,4}. Thus Kera = Keray 5 and a1 5 € (Gy).
Dually, we can show the existence of o’ € (G,) with Ker o/ = Ker o, if ia™ = {n — k,n}, for some k € 2N + 2.
Similarly, we obtain o/ € (G,,) with Ker o/ = Ker a, if ja~! = {1, k}, for some k € 2N+3, or ja~ ' = {n—k,n},
for some k € 2N + 2.

Finally, we consider the case ia~! = {k,k + 2} and ja~! = {¢, ¢ + 2}, for some k,¢ € {2,...,n — 3}. Notice
that {k,k + 2} = ia™! C Rel(ja™') = {{ -1,/ +1,/+3} and so k = £ — 1 or k = £+ 1. Therefore, we
have Ker o = Ker o 42, with m =k, if k =/ -1, or m = ¢, it k = £ + 1. Hence, Ker a = Ker a, ;42 and
Omm+2 € <Gn>

Next, we suppose that p = ranka < n — 2 and assume that for all § € TF,, with rank 3 > p, there exists

p' € (G,) such that Ker 8’ = Ker 3. Further, there exist a unique m € 7, a sequence aq,...,a, € Ima and
a partition A; < -+ < A, of m with |a; — aj+1| = 1, for 1 < i < m, and A;a = {a;}, for 1 < i < m. Notice
that the elements in the sequence ay,...,a,; have not to be pairwise distinct and Ima = {ay,...,a,}. Put

Xx(a) = m. Observe that this construction can be applied to any element of TJ,, and so we have a well defined
mapping x : TF, — 7.

Let
a — 0 if ay is odd
Y71 1 ifayis even
and define
5 — Ay As A
“\l4+a 2+a -+ miay )’

It is clear that 8 € TF,.

First, consider the case m = p (i.e. Kera = Ker3). Take i € {1,...,p} such that |4;] > 3 and A4; =
{k,k+1,...,k+s}, withke {1,...,n—2} and s € {2,...,n — k}. Define

Ay A4 k k+1 k+2---k+s At Ap
a1 = . . . . . )
1+ay -+ t—14ay 24+ap t+1+ag 1+ 2+ ag i+34+ay -+ p+2+ag
for i > 1, and
o — 1---k—2+s k—14+s k+s Ay A,
1= 1+ ag 24ay 3+ay 4+a - p+2+ay )’

if i = 1. Since p < n — 2, we have p + 2 4+ a9 € n. By using Theorem 2.1, we can verify that a; € TF,.
Since rank oy > p, there is af € (G,) with Keraj = Keray. Suppose that Imaj = {aj,...,a; 5} such that

a;(a’{)*l = (j +ag)ay ' for j € {1,...,p+2}. Let

3 * *
ag = Qafaiiy,0i;y if a; < Qg
o if aj,, <aj.

* * *
i+2%i4+1%

It is a routine matter to verify that Ker ajay = Ker § and so there exists o’ € (G,,) such that Kero/ = Ker § =
Ker a.

Now, admit that m > p. Then, there exist i € {1,...,m — 1} and s € {4,...,m — i} such that the elements
of {aj,...,a;s} are pairwise distinct, a;;2s = a; and one of the following five conditions is satisfied:

(a) i+ap=1;

(b) i+a9>2,i+2s=mand ag + i+ 2s = n;



(¢c)i+ap>2,1+2s=m,a+i+2s<nandn—m <i;
(d) i+ap>2,i+2s=m,ap+i+2s<nandn—m>i
(e) aj+3s = ajy+s and i + 3s < n.

We will define in each of these five cases transformations p; and wy. Let p1 = o241, in the case (a); let
PL= Qg oz | in the case (b); let p; = aZF(HS)_nJ » in the case (c), where 2(i+s) —n =i+m—n>i—i=0;
2 1 — s  |»

let p7 be defined by
oot — 20 +s+ag)—z ifl<z<i+s+ap
PL=1 2 otherwise,

in the case (d); and let p; = B, 5, in the case (e). It is easy to verify that p; € (Gy) in the cases (a), (b), (c) and
(e). In the case (d), we observe that ¢ = rank pj = n—(i+s+ap)+1 > p. Then there exists p; € (G,,) such that
Ker p; = Ker p}. Suppose that Im p; = {dy,...,d,} such that j(p})~! = dj_(s+z-+a0)+1p1_l fori+s+ag <j<n.
Let w1 be defined by
a14s fl1<x<1+s
TW1 =< Qg ifl+s<z<m
a,,  otherwise,

in the case (a); let wy be defined by
p—q, fl4+as<z<i+s+ap

Tw) =1 Gips fi+s+ay<axz<n
aq otherwise,

in the cases (b) and (c). Since ¢ and ay_,, have the same parity for all 1 + ag < ¢ < m + ag, we conclude that
wy € TF,. Let wy be defined by

Qjts if1§x§d1<d20rd2<d1§x§n
w1 =< Giyspr1 Hfrx=dpand 1 <l<i+s
ay otherwise

in the case (d). Let I € {1,...,i+ s}. Then there exists j € {i +s+ap,...,n} such that { = j — (i+a+ap) — 1.
From j(p’f)*1 = dgpl_l, dew1 = ajrs—r+1 and the fact that j and a;i4, have the same parity, we conclude
that dy and dyw; have the same parity. This shows that w; € TF,. Moreover, rankw; = ranka = p and
X(a) = x(w1) + s. Consider now the case (e) and define w; by

Az—aqq ifl4+ay<z<i+s+ag
A254g—ay fi+s+ag+1<2<m—2s+ag
am ifm-—2s+agp<z<n

al ifzx=1.

TW, =

It is easy to verify that rank o = rankw; and x(«) = x(w1) + 2s. Moreover, it is a routine matter to show that
wy € TF, and a = Bprwi.

Next, we can focus on w; and end up getting a sequence p1,...,ps € (Gp) (for a suitable t € N) and an
element w € TF,, such that rank a = rankw, x(w) =p and a = Bp; - - - prw.

By the case m = p, there exists w’ € (G,,) such that Kerw’ = Kerw, whence Ker p; - - - piw’ = Ker a.

On the other hand, since m > p, there exists p € (G,,) such that Keru = {Ay,..., Ay}, say

(A Ay - Ay
'LL - c1 Cco e Cm, ?
by our inductive assumption. Clearly, by Theorem 2.1, either ¢; > --- > c¢cporcg < --- <cpm. Ilf g > - > ¢
then we take e; = aiz, if n is even, and we take €1 = 7, if n is odd. Since £; € G,,, whence ue; € (Gy,), we



can assume that ¢y < --- < ¢y,. If 1 +ag < ¢; then there exists s € m such that 1+ ag = ¢1 — 2s. It follows that

B = p(arz3)® and so B € (Gy).
Altogether, we have shown that Sp; - - pyw’ € (Gy,) and Ker Sp; - - - pyw’ = Ker v, as required. O

Now, we are able to prove that G, is a generating set for TF,,.
Proposition 3.4. We have (G,) = TF,.

Proof. Let a € TF,.
Admit that ranka = n. If n is even then o = id,, € G,. If n is odd then o = id, or a = v, € G,, with
YnYn = id,. Thus a € (G,).
Suppose now that 2 < m = ranka < n. By Lemma 3.3, there exists o/ € (G,) such that Kera = Ker /.
Take
Ima={ay,...,an} and Imd' ={d},...,a,},

with a1 < ag < -+ < a and @} < @) < -+ < @, and define A; = a;a~!, for 1 < i < m. Observe that
A; = a;o/_l, for 1 <i<m,or A; = a%_i+1a’_1, for1 <i<m.

Let m=n—1.Thenn ¢ Imaor 1 ¢ Ima as well asn ¢ Ima’ or 1 ¢ Im <.

If A, = a;o/_l, for 1 <i <mn—1then a; = d}, since a1 and a} have the same parity, by Lemma 3.1. Hence,
a; =aj, for 1 <i<n-—1,and so a =d.

Next consider the case 4; = a! 7”10/_1, for 1 <i<n—1.Let

b — 0 ifa; =1
- 1 ifa =2.

Then, a; =i+ k and
, [ n—k—-i+1 ifnisodd
Im—it1 =\ pk—i if n is even,

fori=1,...,n— 1. If nis odd, then we have

1 1

1

ai(@ya) ™ = (i 4+ k™ = (n = (4 k) + D)o’ = a0 = A= e

for 1 <4 < n— 1. Since Kera = Kera' = Ker a/y,, this shows that o = o'y, € (Gy,). If n is even then put
po = a1, € (Gn) and p1 = af 5 € (Gy). Observe that py restricted to Im o is an injection. Hence, we have
Ker a = Ker o/ = Ker o’py, and

1

ai(a'pr) = (i + k)p,;lo/_ =(Mn—1i+ k)o/_1 =A; = a;a”t,

for 1 <i<n-—1. Thus a=d'p; € (G).
Admit now that 2 < m < n — 2 and suppose that 3 € (G,,), for all § € TF,, such that rank 8 > m.
Suppose that A; = a/ _Z-Ho/_l, for 1 < i < m. Take

m

Yn if n is odd
p=1q o, if nis even and 1 ¢ Im«
ap—1,n, ifnisevenand 1€ Ima.

Then, we have Ker a = Ker o/ = Kera/p and

1

Ay = dpy_ g = (@ pp)p” = (ag, i) (@'p)

for 1 < i < m, with o/p € (Gyn) and a;,_; 1p < aj,_;1p, for 1 < i < j < m. Thus, we can assume that
A = a;o/_l, for1 <i<m.
If a; = @} =1 then we immediately obtain that a; = a}, for 1 <i <m, ie. a = € (G,).
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Consider a; = 1, @} > 1 and a],, # n. This implies a,,,, a,, < n and so we put

/8 _ ]_a/1 a/2 a{rn a;n_{_]_n
0 a1 as - G am +1 ’

It is easy to show that Sy € TF,, with rank 5y = rank o + 1, whence 5y € (G,). For 1 <i < m, we have

ai(a'Bo) " = aify e = dia T = Ay = a0,

as a; is the unique element in Ima’ N a; 3, . Since the restriction of By to Ima’ is injective, we also have
Ker a = Ker o/ = Ker o/3y. Thus a = o/ € (G,).

Next, consider a; = 1, a} > 1 and a],, = n. Then a} > 3, since a; and a) have the same parity. Further, we
have a; = i, forl <i < m. So, we obtain

5, = 1,3 2,4 5 - n | a1zafs € (Gn) if n is even
L= 1 2 3 -+ n—2 o 13001 50123 € <Gn> if n is odd.

Moreover, let

G (L Zoa—1 d o ay an
1 2 3 - m+l m+2

It is easy to verify that fo € TF,, with rank S = rank a + 2 > m, whence By € (G,). Hence

_ 11 -1 11 -1 1 -1 -1 -1 _
al(o/ﬁgﬁl)l:alBllBQIa' :16116210/ :{1,3}[3210/ ={l,d}}" =dldT = A = a1« 1

ag(a’ﬁgﬁl)_l = 2[31_152_10/_1 = {2,4}52_10/_1 ={2,...,d] — 1,&'2}0/_1 = a/20/_1 = Ay = asa”

and, for 3 <i < m,
_ o1 a1 1—1 . 1 -1 -1 _
ai(a'B21) b= iy 152 o7 = (i+2)5, o7 = a;a” = A = aia g

Notice that 3, restricted to Ima/ and B; restricted to Ima/By = {3,...,m + 2} are injective. It follows that
Kera = Ker /8231 and so o = o/ 8281 € (Gy,).
Now, consider a; > 1. Suppose that a] = 1. Then a], < n — 1, since rank o/ < n — 2. Take

By = 1 2 - n—-3 n—-2,n—-1,n
57 \3 4 -+ n-1 n ’

If n is even then B3 = an,l,nai% whence 83 € (Gy,). On the other hand, if n is odd then 83 = vpa1.237, € (Gp).
Thus, we have o/83 € (G,,). Clearly, 1 ¢ Im 33 and so 1 ¢ Ima/f5. Since n,n — 1 ¢ Im«’/, we have that (3
restricted to Im«/ is injective. Hence Ker o/ = Ker o/ 3. Therefore, we can assume that aj > 1. Take

/ / / /
64: 1---&1—1 al “ e a’m—l a/m-..n )
a; — 1 air o Q-1 Am

It is easy to verify that 84 € TF,, with rank 84 = ranka + 1 > m, whence 84 € (G,). Since 4 restricted to
Im o is injective, we obtain Ker o = Ker o/ = Ker o/, and, for i € {1,...,m}, we have

_ —1
ai(@By) " = aify o T = dia’ = Ay = a0

Thus a = o/B4 € (Gp).
Finally, let m = 1, i.e. there exists a € @ such that ia = a, for all ¢ € m. Without loss of generality,

suppose that a > 1. Clearly, 85 = ( 1 22n > € (Gy) and either 35 = < 1;2 ?;_? ) € (Gy) (if a is
even) or g = (11’3 ) 2. o > € (Gy) (if a is odd). Then 506 is the constant mapping with image {a}, i.e.
a = B506 € (Gr), as required. O
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It remains to show that G,, is a generating set for TF,, of minimal size. With this goal in mind, in the next
two lemmas, we determine a lower bound for the minimal size of a generating set for TF,, (for n odd as well as
for n even) and find it coincides with the cardinality of G}, (which gives us an upper bound).

First, we consider an odd n.

n—>5

2
Lemma 3.5. Let n be an odd number. Then rank(TF,) > 2(n —1) + kZQ (L%—%J —1) = |Gyl
Proof. Let A be a generating set of TF,.
Since {a € TF,, | ranka = n} = {v,,id,}, we have 7, € A. Let A® = {5,,}. Then ‘A(O)’ = 1.
Let a € TF,, be such that rank o < n—1. Then, for some natural number p, there exist a1, ..., a, € A\{id,},
with a1 # vy, such that & = a1 -~ a) or o = ypaq1 - - . Take

o — o1 ifa=ar---op
1= e
Yoo if a = ypaq .

Clearly, Ker a] C Kera and rankaj <mn — 1.

If o = a2 then Kera] = Ker a1 2 or Ker ] = Ker vy, 2, i.e. there exists p; 2 € A with Ker p; 2 = Ker o »
or Kerp; o2 = Kervy,ai2 (namely p12 = ap). Take A = A0) y {p12}. Then ‘A(1)| = ‘A(O)‘ + [{p12}] = 2.
Analogously, there exists p1 3 € A with Ker p; 3 = Keraq 3 or Ker p; 3 = Kery,aq 3. Clearly, p13 ¢ A and we
take A = AW U {p; 3}. Then }A(Q)‘ = |A(1)‘ +H{p13} =2+1=3.

Let o = ay o, for some k € {2,...,%52}. Then (k,k +2) € Keraj or (k+ 1,k + 3) € Keraj. From
2 < k < 253 it follows that k + 3 < n. Hence, |Rel({k,k +2})| = |Rel({k + 1,k + 3})| = 3 and there exist
a,ben\{k,k+2}oraben\{k+1,k+ 3} such that (a,b) € Keraj. But Ker of C Ker oy, ;12 implies that
(a,b) € Keray 2. Since rank oy, 12 = n — 2, we have Ker of = Keray, ;12. Hence, there exists pj 12 € A
with Ker py p1o = Keray g2 or Kerpy 12 = Kerynay p+o. Moreover, we have py 12 ¢ A®@ . On the other
hand, assume there exist 2 < k < £ < ”7_3 such that Keray o = Kery,apepo. Then K =n — (0 +3) +1
andson=k+/4+3—-1< %_3 + "T_g +2=n—-3+4+2=n—1, a contradiction. Hence pj, 42 # pre+2, for
2§k:<€§"773. Take

B = {pppi2 | k€{2,...,75%}}

and A®) = A® U BG®)_ Since A® N BG) = (), we obtain ‘A(?’)’ = }AQ)‘ + |B(3)| =3+ "775 = "TH

Let o = oy 41,142, for some k € {2,...,”7_1}. Then k£ + 2 < n and, by Theorem 2.1, there exists no
B € JF, with rank3 = n — 1 such that Ker 8 C Keray p11x+2. Hence, Kera] = Keray py1 42 and so
there exists p py1,k42 € A with Ker pg g1 542 = Ker ag py1,k42 or Ker pg pi1 k12 = Ker ypay py1,k42. Clearly,
Pkt pre & AB.

Let a = ajp3. If ranka] = n — 2 then Kera] = Keraj 23 or Keraj = Kery,a123. Now, admit that
rank aj = n — 1. Then there exists j € {2,...,p} such that rankajas...aj—1 =n —1 and rankajos ... a5 =
n — 2. Observe that either Imajas...a;—1 = {1,...,n — 1}, with {1,2,3}ajas...aj—1 = {n —2,n — 1}, or
Imofas...aj—1 ={2,...,n}, with {1,2,3}ajas...aj—1 = {2,3}. Suppose that Imajas... ;1 = {2,...,n}.
Then {1,2,3}ajas...aj—1 = {2,3} and we conclude that (2,3) € Kera;. By Theorem 2.1, this implies that
(1,2) € Kera or (3,4) € Ker ;. The case (3,4) € Ker ¢ is not possible since otherwise rank afas ... a; < n—3,
a contradiction. Thus (1,2) € Kera; and so Kera; = Kerajo3. If Imajas...o5—1 = {1,...,n — 1} then,
similarly, we obtain Ker o; = Ker ap—2.5,—1,n = Ker y,a1,2,3. Therefore, there exists p123 € A with Ker py 23 =
Ker 23 or Kerpi o3 = Kervy,ai23. Clearly, p1a3 ¢ AB) . Assume there exist 1 < k < £ < "T_l such that
Ker ovg 1 2 = Ker yaagp1,042. Then k =n—((+2)+1andson = (+k+1 <2242 41 =n—141=n,
a contradiction. Hence pg k41,k+2 7 peo+1,042, for 1 <k <€ < %‘1 Take

B(4) = {pk,k+1,k+2 ’ ke {17 ce nTil}}

and AW = A®) U B@W_ Since, A®) N B®W = (), we obtain ‘A(‘l)‘ = ‘A(?’)} + ‘3(4)‘ =ntl ool —
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Let a = o 241, for some k € {2,...,"771}. Then
Kerojop1 ={(1+4,2k+1—-4) |0<i<k—-1}U{(z,2) |z €n}.
Given i € {1,...,k — 2} such that (1 44,2k + 1 —1i) € Keraj, we have
Rel({1+i,2k+1—i}) ={l+i—1,2k+1—i—1,1+i+1,2k+1—i+1}.

Since Keraj C Ker oy op41, we have (1 4+ (i +1),2k+1—(i+1)),(1+ (i —1),2k+1— (i —1)) € Keraj. If
(k,k+2) € Ker aj then Rel({k,k+2}) = {k—1,k+1,k+3} and so we have (k—1,k+3) € Keraj. Now, assume
that (14+4,2k+1—1) ¢ Keraj, for alli € {1,...,k—1}. Then Ker of C Ker o o541 implies (1,2k+1) € Ker o}
and rank a] = n — 1, which is not possible by Theorem 2.1. Therefore, Ker a] = Ker ay 2141 and so there exists
prok+1 € A with Ker pyopr1 = Kerag o1 or Kerpyopy1 = Kery,aq 9r41. Since (1,2k + 1) € Ker pyop 41 or
(n,n — 2k) € Ker py o511, we have p; o411 ¢ AW For k,l € {2,..., "Tfl}, we have (1,2k + 1) € Ker aq o+1 and
(1,2k + 1) & Ker o1 2¢4+1. Hence py opt1 # pr2es1, for 2 <k <4< ”T_l Take

B® = {piapr | k€ {2,....,%1})

and A®) = A® U B®), Since A® N BO) = (), we obtain ‘A(E’)’ = |A(4)‘ + ‘B(E’)} =n+ ”T_?’ = 3”2_3 = %(n —1).

Finally, let o = B, for some k,m € {2,..., "Tfl} such that 2k 4+ 3m < n + 1. It is easy to verify that
{k+i,k+2m —1i,k+2m+ i}, for 0 < i < m, are all the non-singleton Ker S} n,-classes. If i € {1,...,m — 1}
is such that (k +i)af = (k +2m —i)aj = (k + 2m +i)a] then

Rel({k+i,k+2m—i,k+2m+i}) = {k+i—1,k+2m—i—1,k+2m+i—1,k+i+ 1, k+2m—i+1,k+2m+i+1}
implies
(k+@G—1)aj=(k+2m—(i—1)a]=(k+2m+ (i—1))]

and
(k+(@+1)a]=(k+2m—(i+1)a] = (k+2m+ (i+1))o],

since Ker aj C Ker B, . If (k, k 4+ 2m) € Ker o] then, similarly, we have
(k+1)al =(k+2m—1)a] = (k+2m+1)a].
Moreover, we obtain
(k+m—1)a] = (k+2m—(m—1))a] = (k+2m+ (m —1))a],

whenever (k +m, k + 3m) € Ker aj. Therefore Ker o] = Ker 3}, ,, and so there exists 0y, € A with Ker 6y, =
Ker By or Ker 6y ., = Ker vy, Bk, m. Moreover, it is easy to verify that oy, ¢ A®) | Take

B(G):{5k’m|k,m€{2,...,%} and 2k +3m <n + 1}.

Assume there exist k,m,p,q € {2,..., ”Tfl} such that By, = Ynfpq, With 2k +3m,2p+3¢ <n+1and k #p
orm#¢q Thenk=n—(p+3¢)+1.Ifk<pthenn=k+p+3¢—1<2p+3¢—1<n+1—-1=n,a
contradiction. Admit that p < k. From B, = Ynfp,q it follows that 5y = ¥n0km and so p = n — (k+3m) + 1.
This provides again n < n, as in the previous case. Suppose now that p = k. Then ¢ # m and we have
p=n—(p+3m)+1#n—(p+3q) +1 =k, ie. p # k, a contradiction. This allows us to conclude that
Ok,m F Op,q, whenever k,m,p,q € {2,...,%‘1}, with 2k +3m, 2p+3¢ < n+1 and k # p or m # ¢q. Thus

n—>5

BO| = 5 (|52 ~1).
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Take A©®) = AG) U BO), Since A®) N B®) = (), we obtain
n—>5

2
[AO] = AP+ [BO] = 30— 1)+ 3 (|=57] = 1) = [Gul.

n—>5

2
Since A®) C A, we have |A| > ‘A(G)‘ =3n -1+ > (|>=%2%| - 1), which allows us to deduce that

3
k=2
nT—5
rank(TF,) > 3(n— 1) + (L%_%J — 1) = |Gy, as required. O
k=2

Next, we consider the even case.

n—7
Lemma 3.6. Let n be an even number. Then rank(TF,) >3n —8+ > (L”_TH“J —1) = |Gyl
k=2
Proof. Let A be a generating set of TF,,.
Since {a € TF,, | ranka = n} = {id, }, we have id,, € A. Let A = {id,}. Then ’A(O)‘ =1.
Let o € TF,, be such that rank o < n — 1. Then, there exist a,...,a, € A\ {id,} such that a = aq ...y,
for some natural number p. Clearly, Ker a; C Ker o and ranka; < n — 1.
Ifae BO = {a12,213,n_1n,0n—2,} then it is easy to verify that o = a;. Hence B®W C A and we define
AW = A® y BW. We have [AD| = |AQ] 4+ |BW| =1+4=5.
Let o = ay 2, for some 2 < k < n —4. Then (k,k +2) € Keray or (k+ 1,k + 3) € Kera;. Since
2 <k <n-—3, wehave Rel({k,k+2}) ={k—1,k+1,k+3} Cnor Rel{k+1,k+3}) ={k,k+2,k+4} C7,
respectively. Since Kera; C Ker ay 42, we obtain Kera; = Ker oy ,42. Hence, there exists py 42 € A such
that Ker py, 42 = Ker ay, y42. Thus, being

B(2) = {pk,k+2 ’ ke {27>n_4}}7

we have ‘B(Q)‘ =n—5. Take A® = AM U B@. Since rank Pk k+2 = n — 2, it follows that py k4o ¢ AWM Then
A®] = [AD| 4 |BO| =540 —5=n.

Let o = O‘Z,k+1,k+2= for some k € {2,...,n — 3}. Then there is no g € TF, such that rankf = n — 1
and Ker g C Ker O k41 k42 Lhus, there exists pp p4+16+2 € A with Ker p p41, 142 = Ker O k1 k42 Clearly,
Pk, k+1,k+2 §‘é A(Q). Take

B® = {prrrine | k€ {2,....,n—3}}.

Then |B(3)| = n—4. Furthermore, being A®) = A@UB®), we have ‘A(g)‘ = |A(2)‘—|— ‘3(3)‘ =n+n—4=2n—4.
Let a = o g1, for some k € {2,...,5 — 1}. It is clear that

Kerajopp1 ={(1+4,2k+1—-1):0<i<k—1}U{(z,z): x € 1}
Ifi e {1,...,k— 2} is such that (1 +1i,2k+ 1 —i) € Kera; then
Rel({1+4,2k+1—d}) ={l+i—1,2k+1—i—1,1+i+1,2k+1—7+1}

and, as Ker a; C Ker g 9541, it follows (14(i+1), 2k+1—(i+1)) € Ker oy and (14(i—1),2k+1—(i—1)) € Ker oy.
If (k,k + 2) € Kerag then Rel({k,k +2}) = {k — 1,k + 1,k + 3}, whence (k — 1,k + 3) € Kera; (since
Keray C Keraq grq1). If (1,2k + 1) € Ker ay then Rel({1,2k + 1}) = {2,2k,2k + 2} C 72 (note that £ < § — 1
implies 2k 4+ 2 < n) and, since Ker oy C Ker v 941, we have (2,2k) € Ker ay. Therefore Ker oy = Ker o 2541
and there exists p or+1 € A with Ker py o541 = Ker ay o541. Clearly, p1 2541 ¢ AB),

Let & = gy pn, for somem € {1,..., ”774} Analogously, we can show there exists pa,,», € A with Ker pay, », =
Ker ooy, n. Moreover, it is easy to verify that poy, , ¢ AB) and P2mn F P12k+1, since (2m,n) € Ker pay, ,, and
(2m,n) ¢ Ker p1op41, for k€ {2,..., 5 —1}.
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Take
BW :{P1,2k+1 ‘ ke {27--'7%_1}}U{p2m,n ‘ m e {17""717_4 }

Then ‘B(‘l)‘ = "7_4 + ”7_4 = n — 4. Furthermore, define AW = A®) U B®W _ Since A®) N B®W = 0, it follows that
|AD] = |A®| +|BW|=2n—4+n—4=3n-8.

Let o = By, for some k,m € {2,...,n} such that k+3m < n —1. Similarly to the proof of Lemma 3.5, we
can prove the existence of an element 0y, ,,, € A such that Ker 0y, ,,, = Ker f, ,,,. Clearly, we also have 0, ,,, ¢ AW,
Take

B® = {8 | k;m e {2,...,n} and k4 3m < n —1}.
n—"7

Then }B(5)| => (L"%H"’J — 1). Moreover, being A®) = A® U B®) since A® N B®) = (), we obtain
k=2

n—7
A5] = 40 +20] 30— 5+ 5 (|25 -1) = Gl

n—="7
Since A®) C A, we have |A| > ’A(5)‘ =3n—8+ ) (L”fTH“J — 1), which allows us to conclude that rank(TF,) >
k=2
n—"7
3n—8+ 3 (|25%| — 1) = |Gy, as required. O
k=2
As an immediate consequence of Proposition 3.4 and Lemmas 3.5 and 3.6, we can state our main result.

Theorem 3.7. We have

n—>5

Stn—1)+ 22: (|%272k | — 1) if n is odd
rank(TF,) = =
3n—8—|—ni7(L”_Tl_kJ -1) if n is even.
k=2
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