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Abstract

A zig-zag (or fence) order is a special partial order on a (finite) set. In this paper, we consider the semigroup
TFn of all order-preserving transformations on an n-element zig-zag ordered set. We determine the rank of
TFn and provide a minimal generating set for TFn. Moreover, a formula for the number of idempotents in
TFn is given.

1 Introduction

Let n ∈ N and denote by Tn the monoid (under composition) of all full transformations on the set n = {1, . . . , n}
of the first n natural numbers. Let � be any partial order on n. Let α ∈ Tn. We say that α is an order-preserving
transformation (with respect to �) if x � y implies xα � yα, for all x, y ∈ n. Clearly, the subset of Tn of all
order-preserving transformations (with respect to a fixed partial order) forms a submonoid of Tn.

A very important particular and natural case occurs when a linear order (for instance the one induced by
the usual order on the natural numbers) is considered. The monoid On of all order-preserving transformations
on n, endowed with a linear order, has been extensively studied since the early 1960s. In fact, in 1962, Aı̌zenštat
[1, 2] showed that all non-trivial congruences of On are Rees congruences and gave a monoid presentation for
On, in terms of 2n − 2 idempotent generators, from which it can be deduced that, for n > 1, On only has one
non-trivial automorphism. In 1971, Howie [13] calculated the cardinal and the number of idempotents of On and
later (1992), jointly with Gomes [11], determined its rank and idempotent rank. More recently, Fernandes et
al. [9] described the endomorphisms of the semigroup On by showing that there are three types of endomorphism:
automorphisms, constants, and a certain type of endomorphism with two idempotents in the image. The monoid
On also played a main role in several other papers [3, 7, 8, 10, 12, 16, 17, 19], where the central topic concerns
the problem of the decidability of the pseudovariety generated by the family {On | n ∈ N}. This question was
posed by J.-E. Pin in 1987 in the “Szeged International Semigroup Colloquium” and, as far as we know, is still
open.

A non-linear order (in some sense) close to a linear order is the so-called zig-zag order. The pair (n,�) is
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called a zig-zag poset or fence if

1 ≺ 2 � 3 ≺ · · · ≺ n− 1 � n, if n is odd, and
1 ≺ 2 � 3 ≺ · · · � n− 1 ≺ n, if n is even, or dually
1 � 2 ≺ 3 � · · · � n− 1 ≺ n, if n is odd, and
1 � 2 ≺ 3 � · · · ≺ n− 1 � n, if n is even.

The definition of the partial order � is self-explanatory. For instance, for n = 5 and n = 6, we have the
following fences (given by Hasse diagrams):

1

2

3

4

5 1

2

3

4

5

6 1

2

3

4

5 1

2

3

4

5

6

Observe that, every element in a fence is either minimal or maximal.

Order-preserving transformations of (finite) fences were first investigated by Currie and Visentin [5] and
by Rutkowski [18]. In [5], by using generating functions, the authors calculate the number of order-preserving
transformations of a fence with an even number of elements. On the other hand, an exact formula for the
number of such transformations, for any natural number n, was given in [18].

Recently, several properties of monoids of order-preserving transformations of a fence were studied. In [4]
the authors discussed the regular elements in these monoids. So-called coregular elements of this monoids were
determined in [15]. On the other hand, in [6] Dimitrova and Koppitz investigated the monoid of all partial
permutations preserving a zig-zag order on a set with n elements, by studing Green’s relations and generating
sets of this monoid.

Without loss of generality, we will assume that (n,�) is an up-fence, i.e.

1 ≺ 2 � 3 ≺ · · · .

Let x, y ∈ n. We say that x and y are comparable if x ≺ y or x = y or y ≺ x. Otherwise, x and y are said
incomparable. Clearly, x and y are comparable if and only if x ∈ {y − 1, y, y + 1}.

Denote by TFn the submonoid of Tn of all order-preserving transformations of the fence (n,�).
In this paper, we determine the rank and count the number of idempotents of TFn.
Recall that the rank of a (finite) semigroup S is defined by

rankS = min{|A| | A ⊆ S generates S},

i.e. the rank of S is the minimal size of a generating set of S. For general background on Semigroup Theory
and standard notation, we refer the reader to Howie’s book [14].

We begin, in the next section, by giving a characterization of the elements of TFn. Clearly, the identity
mapping idn on n is order-preserving. Also, all the n constant mappings are order-preserving. Moreover, for an
even n, idn is the unique permutation of n belonging to TFn and, on the other hand, if n is odd then TFn has
exactly two permuations, namely the identity mapping and the reflection

γn =

(
1 2 · · · n
n n− 1 · · · 1

)
.

The rest of Section 2 is dedicated to counting the idempotents of TFn. Notice that, it is easy to show that an
element α ∈ Tn is idempotent if and only if Imα = {x ∈ n | xα = x}, i.e. the image of α coincides with the set
of its fix points. In the third section of this paper, we determine the rank of TFn. In particular, we provide a
minimal size generating set for TFn.

Notice that TF1 coincides with T1 and TF2 coincides with the monoid O2 of all order-preserving transfor-
mations on a two-element chain. Hence, from now on, we always consider n ≥ 3.
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2 Idempotents

The aim of this section is to provide a formula for the number of idempotents of TFn. In order to accomplish this,
it is useful to know the form of the elements of TFn. We have the following characterization of a transformation
in TFn.

Theorem 2.1. Let α ∈ Tn. Then α ∈ TFn if and only if

(i) |xα− (x+ 1)α| ≤ 1, for all x ∈ {1, . . . , n− 1};

(ii) x and xα have the same parity or (x− 1)α = xα = (x+ 1)α, for all x ∈ {2, . . . , n− 1}.

Proof. First, suppose that α ∈ TFn. Let x ∈ {1, . . . , n−1}. Then x and x+1 are comparable, which implies that
xα and (x + 1)α are also comparable and so |xα− (x+ 1)α| ≤ 1. This shows (i). Now let x ∈ {2, . . . , n − 1}.
Assume that x is even. Then x − 1 ≺ x � x + 1 and so (x − 1)α � xα � (x + 1)α. If (x − 1)α 6= xα or
xα 6= (x+ 1)α then (x− 1)α ≺ xα or xα � (x+ 1)α, which implies in both cases that xα is even. Similarly, if
x is odd we may deduce that xα is also odd or (x− 1)α = xα = (x+ 1)α. This shows (ii).

Conversely, suppose that (i) and (ii) are satisfied. Let x, y ∈ n be such that x ≺ y. Then x is odd and
y is even. Moreover y ∈ {x − 1, x + 1}. Admit that xα 6= yα. If y = x − 1 then 2 ≤ y ≤ n − 1 and so
|yα − xα| = |yα − (y + 1)α| = 1 and y and yα have the same parity. If y = x + 1 then 1 ≤ x ≤ n − 1 and
so |xα − yα| = |xα − (x + 1)α| = 1. Furthermore, in this last case, if x > 1 then x and xα have the same
parity; otherwise y = 2 < n and so y and yα have the same parity (since (y − 1)α = xα 6= yα). Therefore, we
have yα ∈ {xα − 1, xα + 1} and, on the other hand, yα is even or xα is odd. Thus, in all cases, xα ≺ yα, as
required.

As a consequence of Theorem 2.1 we have that the image of a transformation in TFn is an interval of n
(with the usual order).

Corollary 2.2. Let α ∈ TFn. Then Imα = {k, k + 1, . . . , `}, for some 1 ≤ k < ` ≤ n.

Proof. Let k = min Imα and ` = max Imα (with respect to the usual order of N). Assume that there exists
p ∈ {k, k + 1, . . . , `} such that p /∈ Imα. Let x = max{i ∈ n | iα < p}. If x < n then (x + 1)α > p and
so |xα− (x+ 1)α| > 1, a contradiction. Then y = max{i ∈ n | iα > p} < n and (y + 1)α < p, whence
|yα− (y + 1)α| > 1, which again is a contradiction. Thus Imα = {k, k + 1, . . . , `}, as required.

Next we will give a formula for the number of idempotents in TFn. Let m ∈ n and 0 ≤ p ≤ n − m. For
r ∈ {0, . . . ,m− 1}, let

P (p, r) = {(p0, . . . , pt) | t ∈ N ∪ {0}; p1, . . . , pt ∈ N; p0 = 0; 0 ≤
s∑
i=1

(−1)i+1pi ≤ p, for 1 ≤ s ≤ t;
t∑
i=1

pi = r}

and

K(m, r) = {(k0, . . . , kr) | k0 + r + 2
r∑
i=1

ki = m− 1, k0, . . . , kr ∈ N ∪ {0}}.

Further, define

A(m, p) =
m−1∑
r=0

|P (p, r)| · |K(m, r)| .

Lemma 2.3. Let α ∈ TFn with Imα = {k, . . . , k + p}, for some k ∈ n and some p ∈ {0, . . . , n − k}. Let
a0 ∈ {k, k + p} and r ∈ {0, . . . , k − 1}. Then, there exists a bijection between the set P (p, r) and the set of
all sequences a0, a1, . . . , ar ∈ Imα such that |ai−1 − ai| = 1, for all i ∈ {1, . . . , r}, and there exists a partition
A0 > A1 > · · · > Ar of {1, . . . , k}, if a0 = k, or a partition A0 < A1 < · · · < Ar of {k+ p, . . . , n}, if a0 = k+ p,
verifying Aiα = {ai}, for i ∈ {0, . . . , r}.
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Proof. Fix a sequence a0, a1, . . . , ar ∈ Imα verifying the conditions of the lemma. Notice that, if r = 0 then
P (p, 0) = {(0)} and a0 is the only possible sequence. Then, we may admit that r > 0. Let j = 1, if a0 = k, or
j = 2, if a0 = k + p. Put p0 = 0 (by technical reasons).

Then, there exists p1 ∈ {1, . . . , r} such that (−1)1+1p1 ∈ {0, . . . , p}, ai = a0 + (−1)j+1i, for 1 ≤ i ≤ p1, and
either r = p1 or ap1+1 = a0 + (−1)j+1p1 + (−1)j+2.

If r > p1 then there exists p2 ∈ {1, . . . , r − p1} such that (−1)1+1p1 + (−1)2+1p2 ∈ {0, . . . , p}, ap1+i = a0 +
(−1)j+1p1+(−1)j+2i, for 1 ≤ i ≤ p2, and either r = p1+p2 or ap1+p2+1 = a0+(−1)j+1p1+(−1)j+2p2+(−1)j+3.

Continuing in this way, we obtain t, p1 . . . , pt ∈ N such that

t∑
i=1

pi = r,

s∑
i=1

(−1)i+1pi ∈ {0, . . . , p}, for 1 ≤ s ≤ t,

and

a
i+

q−1∑̀
=1
p`

= a0 +

q−1∑
`=1

(−1)j+`p` + (−1)j+qi, for 1 ≤ i ≤ pq and 1 ≤ q ≤ t.

Hence, the sequence a0, a1, . . . , ar is uniquely determined by the t-uple (p0, . . . , pt).

Let us denote by Em the set of all idempotents of TFm, for all m ≥ 1. It is clear that E1 = TF1 = T1 =
{(

1
1

)}
and E2 = TF2 = T2 \

{(
12
21

)}
=
{(

12
12

)
,
(
12
11

)
,
(
12
22

)}
.

Theorem 2.4. We have

|En| =
n∑
k=1

n−k∑
p=0

A(k, p) ·A(n+ 1− (k + p), p).

Proof. Let α ∈ En. Then, by Corollary 2.2, there exist k ∈ n and p ∈ {0, . . . , n− k} such that

Imα = {k, k + 1, . . . , k + p}.

Since α is idempotent, we have (k + i)α = k + i, for i ∈ {0, . . . , p}. Let

A− = {1, . . . , k} and A+ = {k + p, . . . , n}.

First, we consider the set A−. By Theorem 2.1, we have |xα− (x+ 1)α| ≤ 1 for all x ∈ {1, . . . , k − 1}.
Hence, there exist r ∈ {0, . . . , k − 1}, a sequence a0, . . . , ar ∈ Imα and a partition A0 > A1 > · · · > Ar of A−

such that |ai−1 − ai| = 1, for 1 ≤ i < r, and Aiα = {ai}, for 0 ≤ i ≤ r. Moreover, xα and x have the same
parity or (x− 1)α = xα = (x + 1)α, for all x ∈ A− \ {1, n}. It follows that there exist k0, k1, . . . , kr ∈ N ∪ {0}

such that |Ai| = 1 + 2ki, for 0 ≤ i ≤ r− 1, and |Ar| = kr + 1. Then kr + r+ 2
r−1∑
i=0

ki = k− 1 and so the sequence

A0 > A1 > · · · > Ar is uniquely determined by an element of K(k, r).
If r = 0 then A− = A0 and P (p, 0) = {(0)}. On the other hand, admit that r > 0. Then, by Lemma 2.3

(with a0 = k), we have that the sequence a0, . . . , ar is uniquely determined by an element of the set P (p, r).
Hence, α|A− is uniquely determined by an element of the set

B−(k, p) =
k−1⋃
r=0

K(k, r)× P (p, r)× {r}.

Dually, there exist s ∈ {0, . . . , n−(k+p)}, a sequence a0, . . . , as ∈ Imα and a partition A0 < A1 < · · · < As of
A+ such that |ai−1 − ai| = 1, for 1 ≤ i < s, and Aiα = {ai}, for 0 ≤ i ≤ s. Also, there exist `0, `1, . . . , `s ∈ N∪{0}

such that |Ai| = 1+2`i, for 0 ≤ i ≤ s−1, and |As| = `s+1. Then `r+r+2
s−1∑
i=0

`i = n−(k+p) = (n+1)−(k+p)−1,

whence the sequence A0 < A1 < · · · < As is uniquely determined by an element of K(n+ 1− (k + p), s).
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If s = 0 then A+ = A0 and P (p, 0) = {(0)}. So, admit that s > 0. Then, by Lemma 2.3 (with a0 = k + p),
we have that the sequence a0, . . . , as is uniquely determined by an element of the set P (p, s). Consequently,
α|A+ is uniquely determined by an element of the set

B+(k, p) =

n−(k+p)⋃
s=0

K(n+ 1− (k + p), s)× P (p, s)× {s}.

Notice that, it is easy to verify that |B−(k, p)| = A(k, p) and |B+(k, p)| = A(n+ 1− (k + p), p). Moreover,
α|Imα is the identity mapping on Imα and Imα is uniquely determined by an element k of the set n and an
element p of the set {0, . . . , n− k}. Thus, the transformation α ∈ En is uniquely determined by an element of
the set

n⋃
k=1

n−k⋃
p=0

B−(k, p)×B+(k, p)× {(k, p)}.

Conversely, as the construction of this set clearly justifies that each of its elements determines uniquely an
idempotent in TFn, we have

|En| =

∣∣∣∣∣ n⋃k=1

n−k⋃
p=0

B−(k, p)×B+(k, p)× {(k, p)}

∣∣∣∣∣ =
n∑
k=1

n−k∑
p=0
|B−(k, p)×B+(k, p)× {(k, p)}|

=
n∑
k=1

n−k∑
p=0
|B−(k, p)| · |B+(k, p)}| · |{(k, p)}| =

n∑
k=1

n−k∑
p=0

A(k, p) ·A(n+ 1− (k + p), p),

as required.

The table below gives us an idea of the size of the monoids TFm and of their number of idempotents.

m |Em| |TFm|
1 1 1
2 3 3
3 8 11
4 19 31
5 44 99
6 98 275
7 218 811
8 474 2199

m |Em| |TFm|
9 1039 6187
10 2243 16459
11 4901 44931
12 10591 117831
13 23190 315067
14 50335 817323
15 110651 2152915
16 241457 5537839

These numbers were calculated by the formula of Theorem 2.4 and by the formulas given by Rutkowski [18].

3 The rank of TFn

This section is devoted to determine the rank of TFn. In the process we give an explicit minimal size set of
generators of TFn. The cases n odd and n even will be treated separately.

The following general observation will be frequently used without reference.

Lemma 3.1. Let α, α′ ∈ TFn be such that Kerα = Kerα′ and rankα > 1. Then xα and xα′ have the same
parity, for all x ∈ n.

Proof. Let x ∈ n. Since rankα > 1, there exists y ∈ xαα−1 such that y + 1 ∈ n \ yαα−1 or y − 1 ∈ n \ yαα−1.
Therefore we may consider four cases. For instance, if y+ 1 ∈ n\yαα−1 and y ≺ y+ 1 then xα = yα ≺ (y+ 1)α
and xα′ = yα′ ≺ (y + 1)α′, whence xα and xα′ have the same parity. The other three cases are similar.
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Next, we define a series of transformations of TFn. Let (for any n)

α1,2 =

(
1, 2 3 4 · · · n
2 3 4 · · · n

)
,

αk,k+2 =

(
1 · · · k − 1 k, k + 2 k + 1, k + 3 k + 4 · · · n
1 · · · k − 1 k k + 1 k + 2 · · · n− 2

)
, for 2 ≤ k ≤ n− 4,

αn−2,n =

(
1 · · · n− 3 n− 2, n n− 1
1 · · · n− 3 n− 2 n− 1

)
, for n ≥ 4,

αk,k+1,k+2 =

(
1 · · · k − 1 k, k + 1, k + 2 k + 3 · · · n
1 · · · k − 1 k k + 1 · · · n− 2

)
, for 1 ≤ k ≤ n− 2,

α1,2k+1 =

(
k + 1 k, k + 2 · · · 2, 2k 1, 2k + 1 2k + 2 · · · n
k + 1 k + 2 · · · 2k 2k + 1 2k + 2 · · · n

)
, for 1 ≤ k ≤

⌊
n−1
2

⌋
, and

βk,m =

(
1 · · · k − 1 k, k + 2m k + 1, k + 2m− 1, k + 2m+ 1 · · ·
1 · · · k − 1 k k + 1 · · ·

· · · k + (m− 1), k + 2m− (m− 1), k + 2m+ (m− 1) k +m, k + 3m k + 3m+ 1 · · · n
· · · k + (m− 1) k +m k +m+ 1 · · · n− 2m

)
,

for 2 ≤ k,m ≤ n such that k + 3m ≤ n− 1.

Moreover, for an odd n, recall that

γn =

(
1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
,

and, for an even n, let

αe1,2 =

(
1, 2 3 4 · · · n
n n− 1 n− 2 · · · 2

)
,

αn−1,n =

(
1 2 · · · n− 2 n− 1, n

n− 1 n− 2 · · · 2 1

)
,

α2k,n =

(
1 · · · 2k − 1 n

2 + k n
2 + k − 1, n2 + k + 1 n

2 + k − 2, n2 + k + 2 · · · 2k, n
1 · · · 2k − 1 n

2 + k n
2 + k − 1 n

2 + k − 2 · · · 2k

)
,

for 1 ≤ k ≤ n−4
2 , and

αe1,2k+1 =

(
k + 1 k, k + 2 · · · 2, 2k 1, 2k + 1 2k + 2 · · · n
k − 1 k · · · 2k − 2 2k − 1 2k · · · n− 2

)
, for 2 ≤ k ≤ n−2

2 .

Now, for an odd n, define

Gn = {γn, α1,2} ∪ {αk,k+2 | 2 ≤ k ≤ n−3
2 } ∪ {αk,k+1,k+2 | 1 ≤ k ≤ n−1

2 }∪

{α1,2k+1 | 1 ≤ k ≤ n−1
2 } ∪ {βk,m | 2 ≤ k,m ≤

n−1
2 and 2k + 3m ≤ n+ 1}

and, for an even n, define

Gn = {idn, αe1,2, α1,3, αn−1,n, αn−2,n} ∪ {αk,k+2 | 2 ≤ k ≤ n− 4} ∪ {αk,k+1,k+2 | 2 ≤ k ≤ n− 3}∪

{αe1,2k+1 | 2 ≤ k ≤
n
2 − 1} ∪ {α2k,n | 1 ≤ k ≤ n−4

2 } ∪ {βk,m | 2 ≤ k,m ≤ n and k + 3m ≤ n− 1}.

From now on, our main aim is to prove that Gn is a generating set for TFn of minimal size.

The following lemma shows that all the transformations above defined belong to the subsemigroup 〈Gn〉 of
TFn generated by Gn. Frequently, we will use it without reference.
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Lemma 3.2. We have:

(i) {αk,k+1,k+2 | 1 ≤ k ≤ n− 2} ⊆ 〈Gn〉;

(ii) {α1,2k+1 | 2 ≤ k ≤
⌊
n−1
2

⌋
} ⊆ 〈Gn〉;

(iii) {αk,k+2 | 2 ≤ k ≤ n− 4} ⊆ 〈Gn〉;

(iv) {βk,m | 2 ≤ k,m ≤ n and k + 3m ≤ n− 1} ⊆ 〈Gn〉;

(v) α2k,n =

(
1 · · · 2k 2k + 1, n · · · n−1

2 + k, n+3
2 + k n+1

2 + k
1 · · · 2k 2k + 1 · · · n−1

2 + k n+1
2 + k

)
∈〈Gn〉, for n odd and 1 ≤ k ≤ n−5

2 ;

(vi) αn−2,n ∈ 〈Gn〉.

Proof. (i) For n odd and n−1
2 < k ≤ n − 2, we have αk,k+1,k+2 = γnαn−k−1,n−k,n−k+1γnα1,2,3. On the other

hand, for n even, we have α1,2,3 = αe1,2αn−1,n and αn−2,n−1,n = αn−1,nα
e
1,2α1,2,3.

(ii) For n even and 2 ≤ k ≤ n−2
2 , we have α1,2k+1 = αe1,2k+1α

e
1,2α1,2,3α

e
1,2.

(iii) For n odd and n−1
2 ≤ k ≤ n− 4, we have αk,k+2 = γnαn−k−2.n−kγnα1,2,3.

(iv) Let n be an odd number and let k,m ∈ n be such that k + 3m ≤ n − 1 and 2k + 3m > n + 1. Then
2(n− (k + 3m) + 1) ≤ n+ 1 and we have βk,m = γnβn−(k+3m)+1,mγn(α1,2,3)

m.

(v) For 1 ≤ k ≤ n−5
2 , we have α2k,n = γnα1,2(k+1)+1γn.

(vi) Finally, we have αn−2,n = γnα1,3γn, whenever n is odd.

In order to prove that the set Gn generates TFn, our first step is to show that, for any transformation in
TFn, there exists a transformation in 〈Gn〉 with the same kernel. For any set A ⊆ n, define

Rel(A) = {x ∈ n \A | x and a are comparable, for some a ∈ A}.

Lemma 3.3. For any α ∈ TFn there exists α′ ∈ 〈Gn〉 such that Kerα′ = Kerα.

Proof. Let α ∈ TFn. We make the proof by induction on the rank of α.

If rankα = n then Kerα = Ker idn and we have idn ∈ Gn, for n even, and idn = γ2n ∈ 〈Gn〉, for n odd.

Assume that rankα = n − 1. Then, there exists i ∈ Imα such that
∣∣iα−1∣∣ = 2 and

∣∣jα−1∣∣ = 1, for all
j ∈ Imα \ {i}. This implies

∣∣Rel(iα−1)
∣∣ ≤ 2, i.e. iα−1 = {1, 2} or iα−1 = {1, 3} or iα−1 = {n − 2, n} or

iα−1 = {n − 1, n}. By noticing that, for an odd n, we have αn−1,n = γnα1,2 and αn−2,n = γnα1,3γn, it follows
that there exists α′ ∈ 〈Gn〉 such that Kerα′ = Kerα.

Admit now that rankα = n− 2. Then, for some i ∈ Imα, we have 2 ≤
∣∣iα−1∣∣ ≤ 3.

If
∣∣iα−1∣∣ = 3 then there exists k ∈ {1, . . . , n− 2} such that iα−1 = {k, k + 1, k + 2} and

∣∣jα−1∣∣ = 1, for all
j ∈ Imα \ {i}, i.e. Kerα = Kerαk,k+1,k+2, with αk,k+1,k+2 ∈ 〈Gn〉.

Now, suppose that
∣∣iα−1∣∣ = 2. Then

∣∣jα−1∣∣ = 2, for some j ∈ Imα \ {i}.
Admit that

∣∣Rel(iα−1)
∣∣ ≤ 2. Then iα−1 = {1, 2} or iα−1 = {1, 3} or iα−1 = {n− 2, n} or iα−1 = {n− 1, n}.

Since rankα = n− 2, we conclude that
∣∣Rel(jα−1)

∣∣ ≤ 2 or iα−1 ⊆ Rel(jα−1). So, we have jα−1 = {n− 2, n} or
jα−1 = {n−1, n}, if iα−1 = {1, 2} or iα−1 = {1, 3}, or jα−1 = {2, 4}, if iα−1 = {1, 3}, or jα−1 = {n−3, n−1},
if iα−1 = {n − 2, n}. Hence, we get Kerα′ = Kerα, with α′ = α1,2αn−1,n (and α′ = (α1,2γn)2, whenever n is
odd) or α′ = α1,2αn−2,n or α′ = α1,3αn−1,n (and α′ = α1,3γnα1,2γn, whenever n is odd) or α′ = α1,3αn−2,n or
α′ = α1,3α1,5 or α′ = αn−2,nαn−4,n. Observe αn−4,n = γnα1,5γn ∈ 〈Gn〉, whenever n is odd (since α1,5 ∈ 〈Gn〉
by Lemma 3.2), and α1,2 = αe1,2α

e
1,2, whenever n is even. Since all the other transformations used belong to

〈Gn〉, we have α′ ∈ 〈Gn〉. Dually, in the case
∣∣Rel(jα−1)

∣∣ ≤ 2, we can show that there exists α′ ∈ 〈Gn〉, with
Kerα′ = Kerα.

Notice that the case
∣∣Rel(iα−1)

∣∣ ≥ 4 or
∣∣Rel(jα−1)

∣∣ ≥ 4 is not possible since rankα = n− 2. So, it remains
the case

∣∣Rel(iα−1)
∣∣ =

∣∣Rel(jα−1)
∣∣ = 3. This provides iα−1 = {1, k}, for some k ∈ 2N+ 3, or iα−1 = {n−k, n},
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for some k ∈ 2N + 2, or iα−1 = {k, k + 2} for some k ∈ {2, . . . , n − 3}. Then there are two elements in
Rel(jα−1) with the same image, which is i since rankα = n − 2. This shows that iα−1 ⊆ Rel(jα−1). By the
same argumentation, we obtain jα−1 ⊆ Rel(iα−1).

Suppose that iα−1 = {1, k}, for some k ∈ 2N+3. Assume that k ≥ 7. Then jα−1 ⊆ Rel(iα−1) = {2, k−1, k+
1} and iα−1 ⊆ Rel(jα−1) implies

∣∣Rel(jα−1)
∣∣ = 4, a contradiction. Hence, we have iα−1 = {1, 5}. Then, once

again iα−1 ⊆ Rel(jα−1) and
∣∣Rel(jα−1)

∣∣ = 3 implies jα−1 = {2, 4}. Thus Kerα = Kerα1,5 and α1,5 ∈ 〈Gn〉.
Dually, we can show the existence of α′ ∈ 〈Gn〉 with Kerα′ = Kerα, if iα−1 = {n− k, n}, for some k ∈ 2N + 2.
Similarly, we obtain α′ ∈ 〈Gn〉 with Kerα′ = Kerα, if jα−1 = {1, k}, for some k ∈ 2N+3, or jα−1 = {n−k, n},
for some k ∈ 2N + 2.

Finally, we consider the case iα−1 = {k, k + 2} and jα−1 = {`, `+ 2}, for some k, ` ∈ {2, . . . , n− 3}. Notice
that {k, k + 2} = iα−1 ⊆ Rel(jα−1) = {` − 1, ` + 1, ` + 3} and so k = ` − 1 or k = ` + 1. Therefore, we
have Kerα = Kerαm,m+2, with m = k, if k = ` − 1, or m = `, if k = ` + 1. Hence, Kerα = Kerαm,m+2 and
αm,m+2 ∈ 〈Gn〉.

Next, we suppose that p = rankα < n − 2 and assume that for all β ∈ TFn with rankβ > p, there exists
β′ ∈ 〈Gn〉 such that Kerβ′ = Kerβ. Further, there exist a unique m ∈ n, a sequence a1, . . . , am ∈ Imα and
a partition A1 < · · · < Am of n with |ai − ai+1| = 1, for 1 ≤ i < m, and Aiα = {ai}, for 1 ≤ i ≤ m. Notice
that the elements in the sequence a1, . . . , am have not to be pairwise distinct and Imα = {a1, . . . , am}. Put
χ(α) = m. Observe that this construction can be applied to any element of TFn and so we have a well defined
mapping χ : TFn → n.

Let

a0 =

{
0 if a1 is odd
1 if a1 is even

and define

β =

(
A1 A2 · · · Am

1 + a0 2 + a0 · · · m+ a0

)
.

It is clear that β ∈ TFn.

First, consider the case m = p (i.e. Kerα = Kerβ). Take i ∈ {1, . . . , p} such that |Ai| ≥ 3 and Ai =
{k, k + 1, . . . , k + s}, with k ∈ {1, . . . , n− 2} and s ∈ {2, . . . , n− k}. Define

α1 =

(
A1 · · · Ai−1 k k + 1 k + 2 · · · k + s Ai+1 · · · Ap

1 + a0 · · · i− 1 + a0 i+ a0 i+ 1 + a0 i+ 2 + a0 i+ 3 + a0 · · · p+ 2 + a0

)
,

for i > 1, and

α1 =

(
1 · · · k − 2 + s k − 1 + s k + s A2 · · · Ap

1 + a0 2 + a0 3 + a0 4 + a0 · · · p+ 2 + a0

)
,

if i = 1. Since p < n − 2, we have p + 2 + a0 ∈ n. By using Theorem 2.1, we can verify that α1 ∈ TFn.
Since rankα1 > p, there is α∗1 ∈ 〈Gn〉 with Kerα∗1 = Kerα1. Suppose that Imα∗1 = {a∗1, . . . , a∗p+2} such that

a∗j (α
∗
1)
−1 = (j + a0)α

−1
1 for j ∈ {1, . . . , p+ 2}. Let

α2 =

{
αa∗i ,a∗i+1,a

∗
i+2

if a∗i < a∗i+1

αa∗i+2,a
∗
i+1,a

∗
i

if a∗i+1 < a∗i .

It is a routine matter to verify that Kerα1α2 = Kerβ and so there exists α′ ∈ 〈Gn〉 such that Kerα′ = Kerβ =
Kerα.

Now, admit that m > p. Then, there exist i ∈ {1, . . . ,m− 1} and s ∈ {i, . . . ,m− i} such that the elements
of {ai, . . . , ai+s} are pairwise distinct, ai+2s = ai and one of the following five conditions is satisfied:

(a) i+ a0 = 1;

(b) i+ a0 ≥ 2, i+ 2s = m and a0 + i+ 2s = n;
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(c) i+ a0 ≥ 2, i+ 2s = m, a0 + i+ 2s < n and n−m < i;

(d) i+ a0 ≥ 2, i+ 2s = m, a0 + i+ 2s < n and n−m ≥ i;

(e) ai+3s = ai+s and i+ 3s < n.

We will define in each of these five cases transformations ρ1 and ω1. Let ρ1 = α1,2s+1, in the case (a); let
ρ1 = α2bn−2s

2 c,n, in the case (b); let ρ1 = α
2
⌊
2(i+s)−n

2

⌋
,n

, in the case (c), where 2(i+s)−n = i+m−n > i− i = 0;

let ρ∗1 be defined by

xρ∗1 =

{
2(i+ s+ a0)− x if 1 ≤ x ≤ i+ s+ a0
x otherwise,

in the case (d); and let ρ1 = βi,s, in the case (e). It is easy to verify that ρ1 ∈ 〈Gn〉 in the cases (a), (b), (c) and
(e). In the case (d), we observe that q = rank ρ∗1 = n−(i+s+a0)+1 > p. Then there exists ρ1 ∈ 〈Gn〉 such that
Ker ρ1 = Ker ρ∗1. Suppose that Im ρ1 = {d1, . . . , dq} such that j(ρ∗1)

−1 = dj−(s+i+a0)+1ρ
−1
1 for i+s+a0 ≤ j ≤ n.

Let ω1 be defined by

xω1 =


a1+s if 1 ≤ x ≤ 1 + s
ax if 1 + s < x < m
am otherwise,

in the case (a); let ω1 be defined by

xω1 =


ax−a0 if 1 + a0 ≤ x < i+ s+ a0
ai+s if i+ s+ a0 ≤ x ≤ n
a1 otherwise,

in the cases (b) and (c). Since ` and a`−a0 have the same parity for all 1 + a0 ≤ ` ≤ m+ a0, we conclude that
ω1 ∈ TFn. Let ω1 be defined by

xω1 =


ai+s if 1 ≤ x ≤ d1 < d2 or d2 < d1 ≤ x ≤ n
ai+s−`+1 if x = d` and 1 ≤ ` ≤ i+ s
a1 otherwise

in the case (d). Let l ∈ {1, . . . , i+ s}. Then there exists j ∈ {i+ s+ a0, . . . , n} such that ` = j− (i+ a+ a0)− 1.
From j(ρ∗1)

−1 = d`ρ
−1
1 , d`ω1 = ai+s−`+1 and the fact that j and aj+a0 have the same parity, we conclude

that d` and d`ω1 have the same parity. This shows that ω1 ∈ T Fn. Moreover, rankω1 = rankα = p and
χ(α) = χ(ω1) + s. Consider now the case (e) and define ω1 by

xω1 =


ax−a0 if 1 + a0 ≤ x ≤ i+ s+ a0
a2s+x−a0 if i+ s+ a0 + 1 ≤ x ≤ m− 2s+ a0
am if m− 2s+ a0 < x ≤ n
a1 if x = 1.

It is easy to verify that rankα = rankω1 and χ(α) = χ(ω1) + 2s. Moreover, it is a routine matter to show that
ω1 ∈ TFn and α = βρ1ω1.

Next, we can focus on ω1 and end up getting a sequence ρ1, . . . , ρt ∈ 〈Gn〉 (for a suitable t ∈ N) and an
element ω ∈ TFn such that rankα = rankω, χ(ω) = p and α = βρ1 · · · ρtω.

By the case m = p, there exists ω′ ∈ 〈Gn〉 such that Kerω′ = Kerω, whence Kerβρ1 · · · ρtω′ = Kerα.
On the other hand, since m > p, there exists µ ∈ 〈Gn〉 such that Kerµ = {A1, . . . , Am}, say

µ =

(
A1 A2 · · · Am
c1 c2 · · · cm

)
,

by our inductive assumption. Clearly, by Theorem 2.1, either c1 > · · · > cm or c1 < · · · < cm. If c1 > · · · > cm
then we take ε1 = αe1,2, if n is even, and we take ε1 = γn, if n is odd. Since ε1 ∈ Gn, whence µε1 ∈ 〈Gn〉, we
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can assume that c1 < · · · < cm. If 1 + a0 < c1 then there exists s ∈ n such that 1 + a0 = c1 − 2s. It follows that
β = µ(α1,2,3)

s and so β ∈ 〈Gn〉.
Altogether, we have shown that βρ1 · · · ρtw′ ∈ 〈Gn〉 and Kerβρ1 · · · ρtw′ = Kerα, as required.

Now, we are able to prove that Gn is a generating set for TFn.

Proposition 3.4. We have 〈Gn〉 = TFn.

Proof. Let α ∈ TFn.
Admit that rankα = n. If n is even then α = idn ∈ Gn. If n is odd then α = idn or α = γn ∈ Gn, with

γnγn = idn. Thus α ∈ 〈Gn〉.
Suppose now that 2 ≤ m = rankα < n. By Lemma 3.3, there exists α′ ∈ 〈Gn〉 such that Kerα = Kerα′.

Take
Imα = {a1, . . . , am} and Imα′ = {a′1, . . . , a′m},

with a1 < a2 < · · · < am and a′1 < a′2 < · · · < a′m, and define Ai = aiα
−1, for 1 ≤ i ≤ m. Observe that

Ai = a′iα
′−1, for 1 ≤ i ≤ m, or Ai = a′m−i+1α

′−1, for 1 ≤ i ≤ m.
Let m = n− 1. Then n /∈ Imα or 1 /∈ Imα as well as n /∈ Imα′ or 1 /∈ Imα′.
If Ai = a′iα

′−1, for 1 ≤ i ≤ n− 1 then a1 = a′1, since a1 and a′1 have the same parity, by Lemma 3.1. Hence,
ai = a′i, for 1 ≤ i ≤ n− 1, and so α = α′.

Next consider the case Ai = a′m−i+1α
′−1, for 1 ≤ i ≤ n− 1. Let

k =

{
0 if a1 = 1
1 if a1 = 2.

Then, ai = i+ k and

a′m−i+1 =

{
n− k − i+ 1 if n is odd
n+ k − i if n is even,

for i = 1, . . . , n− 1. If n is odd, then we have

ai(α
′γn)−1 = (i+ k)γ−1n α′

−1
= (n− (i+ k) + 1)α′

−1
= a′m−i+1α

′−1 = Ai = aiα
−1,

for 1 ≤ i ≤ n − 1. Since Kerα = Kerα′ = Kerα′γn, this shows that α = α′γn ∈ 〈Gn〉. If n is even then put
ρ0 = αn−1,n ∈ 〈Gn〉 and ρ1 = αe1,2 ∈ 〈Gn〉. Observe that ρk restricted to Imα′ is an injection. Hence, we have
Kerα = Kerα′ = Kerα′ρk and

ai(α
′ρk)

−1 = (i+ k)ρ−1k α′
−1

= (n− i+ k)α′
−1

= Ai = aiα
−1,

for 1 ≤ i ≤ n− 1. Thus α = α′ρk ∈ 〈Gn〉.
Admit now that 2 ≤ m ≤ n− 2 and suppose that β ∈ 〈Gn〉, for all β ∈ TFn such that rankβ > m.
Suppose that Ai = a′m−i+1α

′−1, for 1 ≤ i ≤ m. Take

ρ =


γn if n is odd
αe1,2 if n is even and 1 /∈ Imα

αn−1,n if n is even and 1 ∈ Imα.

Then, we have Kerα = Kerα′ = Kerα′ρ and

Ai = a′m−i+1α
′−1 = (a′m−i+1ρ)ρ−1α′−1 = (a′m−i+1ρ)(α′ρ)−1,

for 1 ≤ i ≤ m, with α′ρ ∈ 〈Gn〉 and a′m−i+1ρ < a′m−j+1ρ, for 1 ≤ i < j ≤ m. Thus, we can assume that

Ai = a′iα
′−1, for 1 ≤ i ≤ m.

If a1 = a′1 = 1 then we immediately obtain that ai = a′i, for 1 ≤ i ≤ m, i.e. α = α′ ∈ 〈Gn〉.
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Consider a1 = 1, a′1 > 1 and a′m 6= n. This implies a′m, am < n and so we put

β0 =

(
1 · · · a′1 a′2 · · · a′m a′m + 1 · · ·n
a1 a2 · · · am am + 1

)
.

It is easy to show that β0 ∈ TFn, with rankβ0 = rankα+ 1, whence β0 ∈ 〈Gn〉. For 1 ≤ i ≤ m, we have

ai(α
′β0)

−1 = aiβ
−1
0 α′

−1
= a′iα

′−1 = Ai = aiα
−1,

as ai is the unique element in Imα′ ∩ aiβ−10 . Since the restriction of β0 to Imα′ is injective, we also have
Kerα = Kerα′ = Kerα′β0. Thus α = α′β0 ∈ 〈Gn〉.

Next, consider a1 = 1, a′1 > 1 and a′m = n. Then a′1 ≥ 3, since a1 and a′1 have the same parity. Further, we
have ai = i, for1 ≤ i ≤ m. So, we obtain

β1 =

(
1, 3 2, 4 5 · · · n
1 2 3 · · · n− 2

)
=

{
α1,3α

e
1,5 ∈ 〈Gn〉 if n is even

α1,3α1,5α1,2,3 ∈ 〈Gn〉 if n is odd.

Moreover, let

β2 =

(
1 2 · · · a′1 − 1 a′1 · · · a′m−1 a′m · · ·n
1 2 3 · · · m+ 1 m+ 2

)
.

It is easy to verify that β2 ∈ TFn, with rankβ2 = rankα+ 2 > m, whence β2 ∈ 〈Gn〉. Hence

a1(α
′β2β1)

−1 = a1β
−1
1 β−12 α′

−1
= 1β−11 β−12 α′

−1
= {1, 3}β−12 α′

−1
= {1, a′1}α′

−1
= a′1α

′−1 = A1 = a1α
−1,

a2(α
′β2β1)

−1 = 2β−11 β−12 α′
−1

= {2, 4}β−12 α′
−1

= {2, . . . , a′1 − 1, a′2}α′
−1

= a′2α
′−1 = A2 = a2α

−1

and, for 3 ≤ i ≤ m,

ai(α
′β2β1)

−1 = iβ−11 β−12 α′
−1

= (i+ 2)β−12 α′
−1

= a′iα
′−1 = Ai = aiα

−1.

Notice that β2 restricted to Imα′ and β1 restricted to Imα′β2 = {3, . . . ,m + 2} are injective. It follows that
Kerα = Kerα′β2β1 and so α = α′β2β1 ∈ 〈Gn〉.

Now, consider a1 > 1. Suppose that a′1 = 1. Then a′m < n− 1, since rankα′ ≤ n− 2. Take

β3 =

(
1 2 · · · n− 3 n− 2, n− 1, n
3 4 · · · n− 1 n

)
.

If n is even then β3 = αn−1,nα
e
1,2, whence β3 ∈ 〈Gn〉. On the other hand, if n is odd then β3 = γnα1,2,3γn ∈ 〈Gn〉.

Thus, we have α′β3 ∈ 〈Gn〉. Clearly, 1 /∈ Imβ3 and so 1 /∈ Imα′β3. Since n, n − 1 /∈ Imα′, we have that β3
restricted to Imα′ is injective. Hence Kerα′ = Kerα′β3. Therefore, we can assume that a′1 > 1. Take

β4 =

(
1 · · · a′1 − 1 a′1 · · · a′m−1 a′m · · ·n
a1 − 1 a1 · · · am−1 am

)
.

It is easy to verify that β4 ∈ TFn, with rankβ4 = rankα + 1 > m, whence β4 ∈ 〈Gn〉. Since β4 restricted to
Imα′ is injective, we obtain Kerα = Kerα′ = Kerα′β4 and, for i ∈ {1, . . . ,m}, we have

ai(α
′β4)

−1 = aiβ
−1
4 α′

−1
= a′iα

′−1 = Ai = aiα
−1.

Thus α = α′β4 ∈ 〈Gn〉.
Finally, let m = 1, i.e. there exists a ∈ n such that iα = a, for all i ∈ n. Without loss of generality,

suppose that a > 1. Clearly, β5 =

(
1 2 · · ·n
1 2

)
∈ 〈Gn〉 and either β6 =

(
1, 2 3 · · ·n
a a− 1

)
∈ 〈Gn〉 (if a is

even) or β6 =

(
1, 2 3 · · ·n
a− 1 a

)
∈ 〈Gn〉 (if a is odd). Then β5β6 is the constant mapping with image {a}, i.e.

α = β5β6 ∈ 〈Gn〉, as required.
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It remains to show that Gn is a generating set for TFn of minimal size. With this goal in mind, in the next
two lemmas, we determine a lower bound for the minimal size of a generating set for TFn (for n odd as well as
for n even) and find it coincides with the cardinality of Gn (which gives us an upper bound).

First, we consider an odd n.

Lemma 3.5. Let n be an odd number. Then rank(TFn) ≥ 3
2(n− 1) +

n−5
2∑

k=2

(⌊
n+1−2k

3

⌋
− 1
)

= |Gn|.

Proof. Let A be a generating set of TFn.
Since {α ∈ TFn | rankα = n} = {γn, idn}, we have γn ∈ A. Let A(0) = {γn}. Then

∣∣A(0)
∣∣ = 1.

Let α ∈ TFn be such that rankα ≤ n−1. Then, for some natural number p, there exist α1, . . . , αp ∈ A\{idn},
with α1 6= γn, such that α = α1 · · ·αp or α = γnα1 · · ·αp. Take

α∗1 =

{
α1 if α = α1 · · ·αp
γnα1 if α = γnα1 · · ·αp.

Clearly, Kerα∗1 ⊆ Kerα and rankα∗1 ≤ n− 1.
If α = α1,2 then Kerα∗1 = Kerα1,2 or Kerα∗1 = Ker γnα1,2, i.e. there exists ρ1,2 ∈ A with Ker ρ1,2 = Kerα1,2

or Ker ρ1,2 = Ker γnα1,2 (namely ρ1,2 = α1). Take A(1) = A(0) ∪ {ρ1,2}. Then
∣∣A(1)

∣∣ =
∣∣A(0)

∣∣ + |{ρ1,2}| = 2.

Analogously, there exists ρ1,3 ∈ A with Ker ρ1,3 = Kerα1,3 or Ker ρ1,3 = Ker γnα1,3. Clearly, ρ1,3 /∈ A(1) and we
take A(2) = A(1) ∪ {ρ1,3}. Then

∣∣A(2)
∣∣ =

∣∣A(1)
∣∣+ |{ρ1,3}| = 2 + 1 = 3.

Let α = αk,k+2, for some k ∈ {2, . . . , n−32 }. Then (k, k + 2) ∈ Kerα∗1 or (k + 1, k + 3) ∈ Kerα∗1. From
2 ≤ k ≤ n−3

2 , it follows that k + 3 < n. Hence, |Rel({k, k + 2})| = |Rel({k + 1, k + 3})| = 3 and there exist
a, b ∈ n \ {k, k + 2} or a, b ∈ n \ {k + 1, k + 3} such that (a, b) ∈ Kerα∗1. But Kerα∗1 ⊆ Kerαk,k+2 implies that
(a, b) ∈ Kerαk,k+2. Since rankαk,k+2 = n − 2, we have Kerα∗1 = Kerαk,k+2. Hence, there exists ρk,k+2 ∈ A
with Ker ρk,k+2 = Kerαk,k+2 or Ker ρk,k+2 = Ker γnαk,k+2. Moreover, we have ρk,k+2 /∈ A(2). On the other
hand, assume there exist 2 ≤ k < ` ≤ n−3

2 such that Kerαk,k+2 = Ker γnα`,`+2. Then k = n − (` + 3) + 1
and so n = k + ` + 3 − 1 < n−3

2 + n−3
2 + 2 = n − 3 + 2 = n − 1, a contradiction. Hence ρk,k+2 6= ρ`,`+2, for

2 ≤ k < ` ≤ n−3
2 . Take

B(3) = {ρk,k+2 | k ∈ {2, . . . , n−32 }}

and A(3) = A(2) ∪B(3). Since A(2) ∩B(3) = ∅, we obtain
∣∣A(3)

∣∣ =
∣∣A(2)

∣∣+
∣∣B(3)

∣∣ = 3 + n−5
2 = n+1

2 .
Let α = αk,k+1,k+2, for some k ∈ {2, . . . , n−12 }. Then k + 2 < n and, by Theorem 2.1, there exists no

β ∈ TFn with rankβ = n − 1 such that Kerβ ⊆ Kerαk,k+1,k+2. Hence, Kerα∗1 = Kerαk,k+1,k+2 and so
there exists ρk,k+1,k+2 ∈ A with Ker ρk,k+1,k+2 = Kerαk,k+1,k+2 or Ker ρk,k+1,k+2 = Ker γnαk,k+1,k+2. Clearly,
ρk,k+1,k+2 /∈ A(3).

Let α = α1,2,3. If rankα∗1 = n − 2 then Kerα∗1 = Kerα1,2,3 or Kerα∗1 = Ker γnα1,2,3. Now, admit that
rankα∗1 = n − 1. Then there exists j ∈ {2, . . . , p} such that rankα∗1α2 . . . αj−1 = n − 1 and rankα∗1α2 . . . αj =
n − 2. Observe that either Imα∗1α2 . . . αj−1 = {1, . . . , n − 1}, with {1, 2, 3}α∗1α2 . . . αj−1 = {n − 2, n − 1}, or
Imα∗1α2 . . . αj−1 = {2, . . . , n}, with {1, 2, 3}α∗1α2 . . . αj−1 = {2, 3}. Suppose that Imα∗1α2 . . . αj−1 = {2, . . . , n}.
Then {1, 2, 3}α∗1α2 . . . αj−1 = {2, 3} and we conclude that (2, 3) ∈ Kerαj . By Theorem 2.1, this implies that
(1, 2) ∈ Kerαj or (3, 4) ∈ Kerαj . The case (3, 4) ∈ Kerαj is not possible since otherwise rankα∗1α2 . . . αj ≤ n−3,
a contradiction. Thus (1, 2) ∈ Kerαj and so Kerαj = Kerα1,2,3. If Imα∗1α2 . . . αj−1 = {1, . . . , n − 1} then,
similarly, we obtain Kerαj = Kerαn−2,n−1,n = Ker γnα1,2,3. Therefore, there exists ρ1,2,3 ∈ A with Ker ρ1,2,3 =
Kerα1,2,3 or Ker ρ1,2,3 = Ker γnα1,2,3. Clearly, ρ1,2,3 /∈ A(3). Assume there exist 1 ≤ k < ` ≤ n−1

2 such that
Kerαk,k+1,k+2 = Ker γnα`,`+1,`+2. Then k = n−(`+2)+1 and so n = `+k+1 < n−1

2 + n−1
2 +1 = n−1+1 = n,

a contradiction. Hence ρk,k+1,k+2 6= ρ`,`+1,`+2, for 1 ≤ k < ` ≤ n−1
2 . Take

B(4) = {ρk,k+1,k+2 | k ∈ {1, . . . , n−12 }}

and A(4) = A(3) ∪B(4). Since, A(3) ∩B(4) = ∅, we obtain
∣∣A(4)

∣∣ =
∣∣A(3)

∣∣+
∣∣B(4)

∣∣ = n+1
2 + n−1

2 = n.
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Let α = α1,2k+1, for some k ∈ {2, . . . , n−12 }. Then

Kerα1,2k+1 = {(1 + i, 2k + 1− i) | 0 ≤ i ≤ k − 1} ∪ {(x, x) | x ∈ n}.

Given i ∈ {1, . . . , k − 2} such that (1 + i, 2k + 1− i) ∈ Kerα∗1, we have

Rel({1 + i, 2k + 1− i}) = {1 + i− 1, 2k + 1− i− 1, 1 + i+ 1, 2k + 1− i+ 1}.

Since Kerα∗1 ⊆ Kerα1,2k+1, we have (1 + (i + 1), 2k + 1 − (i + 1)), (1 + (i − 1), 2k + 1 − (i − 1)) ∈ Kerα∗1. If
(k, k+2) ∈ Kerα∗1 then Rel({k, k+2}) = {k−1, k+1, k+3} and so we have (k−1, k+3) ∈ Kerα∗1. Now, assume
that (1+ i, 2k+1− i) /∈ Kerα∗1, for all i ∈ {1, . . . , k−1}. Then Kerα∗1 ⊆ Kerα1,2k+1 implies (1, 2k+1) ∈ Kerα∗1
and rankα∗1 = n− 1, which is not possible by Theorem 2.1. Therefore, Kerα∗1 = Kerα1,2k+1 and so there exists
ρ1,2k+1 ∈ A with Ker ρ1,2k+1 = Kerα1,2k+1 or Ker ρ1,2k+1 = Ker γnα1,2k+1. Since (1, 2k + 1) ∈ Ker ρ1,2k+1 or
(n, n− 2k) ∈ Ker ρ1,2k+1, we have ρ1,2k+1 /∈ A(4). For k, l ∈ {2, . . . , n−12 }, we have (1, 2k + 1) ∈ Kerα1,2k+1 and
(1, 2k + 1) 6∈ Ker γnα1,2`+1. Hence ρ1,2k+1 6= ρ1,2`+1, for 2 ≤ k < ` ≤ n−1

2 . Take

B(5) = {ρ1,2k+1 | k ∈ {2, . . . , n−12 }}

and A(5) = A(4) ∪B(5). Since A(4) ∩B(5) = ∅, we obtain
∣∣A(5)

∣∣ =
∣∣A(4)

∣∣+
∣∣B(5)

∣∣ = n+ n−3
2 = 3n−3

2 = 3
2(n− 1).

Finally, let α = βk,m, for some k,m ∈ {2, . . . , n−12 } such that 2k + 3m ≤ n + 1. It is easy to verify that
{k + i, k + 2m− i, k + 2m+ i}, for 0 ≤ i ≤ m, are all the non-singleton Kerβk,m-classes. If i ∈ {1, . . . ,m− 1}
is such that (k + i)α∗1 = (k + 2m− i)α∗1 = (k + 2m+ i)α∗1 then

Rel({k+i, k+2m−i, k+2m+i}) = {k+i−1, k+2m−i−1, k+2m+i−1, k+i+1, k+2m−i+1, k+2m+i+1}

implies
(k + (i− 1))α∗1 = (k + 2m− (i− 1))α∗1 = (k + 2m+ (i− 1))α∗1

and
(k + (i+ 1))α∗1 = (k + 2m− (i+ 1))α∗1 = (k + 2m+ (i+ 1))α∗1,

since Kerα∗1 ⊆ Kerβk,m. If (k, k + 2m) ∈ Kerα∗1 then, similarly, we have

(k + 1)α∗1 = (k + 2m− 1)α∗1 = (k + 2m+ 1)α∗1.

Moreover, we obtain

(k +m− 1)α∗1 = (k + 2m− (m− 1))α∗1 = (k + 2m+ (m− 1))α∗1,

whenever (k +m, k + 3m) ∈ Kerα∗1. Therefore Kerα∗1 = Kerβk,m and so there exists δk,m ∈ A with Ker δk,m =
Kerβk,m or Ker δk,m = Ker γnβk,m. Moreover, it is easy to verify that δk,m /∈ A(5). Take

B(6) = {δk,m | k,m ∈ {2, . . . , n−12 } and 2k + 3m ≤ n+ 1}.

Assume there exist k,m, p, q ∈ {2, . . . , n−12 } such that βk,m = γnβp,q, with 2k + 3m, 2p+ 3q ≤ n+ 1 and k 6= p
or m 6= q. Then k = n − (p + 3q) + 1. If k < p then n = k + p + 3q − 1 < 2p + 3q − 1 ≤ n + 1 − 1 = n, a
contradiction. Admit that p < k. From βk,m = γnβp,q it follows that βp,q = γnβk,m and so p = n− (k+ 3m) + 1.
This provides again n < n, as in the previous case. Suppose now that p = k. Then q 6= m and we have
p = n − (p + 3m) + 1 6= n − (p + 3q) + 1 = k, i.e. p 6= k, a contradiction. This allows us to conclude that
δk,m 6= δp,q, whenever k,m, p, q ∈ {2, . . . , n−12 }, with 2k + 3m, 2p + 3q ≤ n + 1 and k 6= p or m 6= q. Thus∣∣B(6)

∣∣ =

n−5
2∑

k=2

(⌊
n+1−2k

3

⌋
− 1
)
.
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Take A(6) = A(5) ∪B(6). Since A(5) ∩B(6) = ∅, we obtain

∣∣A(6)
∣∣ =

∣∣A(5)
∣∣+
∣∣B(6)

∣∣ = 3
2(n− 1) +

n−5
2∑

k=2

(⌊
n+1−2k

3

⌋
− 1
)

= |Gn|.

Since A(6) ⊆ A, we have |A| ≥
∣∣A(6)

∣∣ = 3
2(n − 1) +

n−5
2∑

k=2

(⌊
n+1−2k

3

⌋
− 1
)
, which allows us to deduce that

rank(TFn) ≥ 3
2(n− 1) +

n−5
2∑

k=2

(⌊
n+1−2k

3

⌋
− 1
)

= |Gn|, as required.

Next, we consider the even case.

Lemma 3.6. Let n be an even number. Then rank(TFn) ≥ 3n− 8 +
n−7∑
k=2

(⌊
n−1−k

3

⌋
− 1
)

= |Gn|.

Proof. Let A be a generating set of TFn.
Since {α ∈ TFn | rankα = n} = {idn}, we have idn ∈ A. Let A(0) = {idn}. Then

∣∣A(0)
∣∣ = 1.

Let α ∈ TFn be such that rankα ≤ n− 1. Then, there exist α1, . . . , αp ∈ A \ {idn} such that α = α1 . . . αp,
for some natural number p. Clearly, Kerα1 ⊆ Kerα and rankα1 ≤ n− 1.

If α ∈ B(1) = {α1,2, α1,3, αn−1,n, αn−2,n} then it is easy to verify that α = α1. Hence B(1) ⊆ A and we define
A(1) = A(0) ∪B(1). We have

∣∣A(1)
∣∣ =

∣∣A(0)
∣∣+
∣∣B(1)

∣∣ = 1 + 4 = 5.
Let α = αk,k+2, for some 2 ≤ k ≤ n − 4. Then (k, k + 2) ∈ Kerα1 or (k + 1, k + 3) ∈ Kerα1. Since

2 ≤ k < n− 3, we have Rel({k, k+ 2}) = {k− 1, k+ 1, k+ 3} ⊆ n or Rel({k+ 1, k+ 3}) = {k, k+ 2, k+ 4} ⊆ n,
respectively. Since Kerα1 ⊆ Kerαk,k+2, we obtain Kerα1 = Kerαk,k+2. Hence, there exists ρk,k+2 ∈ A such
that Ker ρk,k+2 = Kerαk,k+2. Thus, being

B(2) = {ρk,k+2 | k ∈ {2, . . . , n− 4}},

we have
∣∣B(2)

∣∣ = n− 5. Take A(2) = A(1) ∪ B(2). Since rank ρk,k+2 = n− 2, it follows that ρk,k+2 /∈ A(1). Then∣∣A(2)
∣∣ =

∣∣A(1)
∣∣+
∣∣B(2)

∣∣ = 5 + n− 5 = n.
Let α = αek,k+1,k+2, for some k ∈ {2, . . . , n − 3}. Then there is no β ∈ TFn such that rankβ = n − 1

and Kerβ ⊆ Kerαek,k+1,k+2. Thus, there exists ρk,k+1,k+2 ∈ A with Ker ρk,k+1,k+2 = Kerαek,k+1,k+2. Clearly,

ρk,k+1,k+2 /∈ A(2). Take

B(3) = {ρk,k+1,k+2 | k ∈ {2, . . . , n− 3}}.

Then
∣∣B(3)

∣∣ = n−4. Furthermore, being A(3) = A(2)∪B(3), we have
∣∣A(3)

∣∣ =
∣∣A(2)

∣∣+∣∣B(3)
∣∣ = n+n−4 = 2n−4.

Let α = α1,2k+1, for some k ∈ {2, . . . , n2 − 1}. It is clear that

Kerα1,2k+1 = {(1 + i, 2k + 1− i) : 0 ≤ i ≤ k − 1} ∪ {(x, x) : x ∈ n}.

If i ∈ {1, . . . , k − 2} is such that (1 + i, 2k + 1− i) ∈ Kerα1 then

Rel({1 + i, 2k + 1− i}) = {1 + i− 1, 2k + 1− i− 1, 1 + i+ 1, 2k + 1− i+ 1}

and, as Kerα1 ⊆ Kerα1,2k+1, it follows (1+(i+1), 2k+1−(i+1)) ∈ Kerα1 and (1+(i−1), 2k+1−(i−1)) ∈ Kerα1.
If (k, k + 2) ∈ Kerα1 then Rel({k, k + 2}) = {k − 1, k + 1, k + 3}, whence (k − 1, k + 3) ∈ Kerα1 (since
Kerα1 ⊆ Kerα1,2k+1). If (1, 2k + 1) ∈ Kerα1 then Rel({1, 2k + 1}) = {2, 2k, 2k + 2} ⊆ n (note that k ≤ n

2 − 1
implies 2k + 2 ≤ n) and, since Kerα1 ⊆ Kerα1,2k+1, we have (2, 2k) ∈ Kerα1. Therefore Kerα1 = Kerα1,2k+1

and there exists ρ1,2k+1 ∈ A with Ker ρ1,2k+1 = Kerα1,2k+1. Clearly, ρ1,2k+1 /∈ A(3).
Let α = α2m,n, for some m ∈ {1, . . . , n−42 }. Analogously, we can show there exists ρ2m,n ∈ A with Ker ρ2m,n =

Kerα2m,n. Moreover, it is easy to verify that ρ2m,n /∈ A(3) and ρ2m,n 6= ρ1,2k+1, since (2m,n) ∈ Ker ρ2m,n and
(2m,n) /∈ Ker ρ1,2k+1, for k ∈ {2, . . . , n2 − 1}.
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Take
B(4) = {ρ1,2k+1 | k ∈ {2, . . . , n2 − 1}} ∪ {ρ2m,n | m ∈ {1, . . . , n−42 }}.

Then
∣∣B(4)

∣∣ = n−4
2 + n−4

2 = n− 4. Furthermore, define A(4) = A(3) ∪B(4). Since A(3) ∩B(4) = ∅, it follows that∣∣A(4)
∣∣ =

∣∣A(3)
∣∣+
∣∣B(4)

∣∣ = 2n− 4 + n− 4 = 3n− 8.
Let α = βk,m, for some k,m ∈ {2, . . . , n} such that k+ 3m ≤ n− 1. Similarly to the proof of Lemma 3.5, we

can prove the existence of an element δk,m ∈ A such that Ker δk,m = Kerβk,m. Clearly, we also have δk,m /∈ A(4).
Take

B(5) = {δk,m | k,m ∈ {2, . . . , n} and k + 3m ≤ n− 1}.

Then
∣∣B(5)

∣∣ =
n−7∑
k=2

(⌊
n−1−k

3

⌋
− 1
)
. Moreover, being A(5) = A(4) ∪B(5), since A(4) ∩B(5) = ∅, we obtain

∣∣A(5)
∣∣ =

∣∣A(4)
∣∣+
∣∣B(5)

∣∣ = 3n− 8 +
n−7∑
k=2

(⌊
n−1−k

3

⌋
− 1
)

= |Gn|.

Since A(5) ⊆ A, we have |A| ≥
∣∣A(5)

∣∣ = 3n−8+
n−7∑
k=2

(⌊
n−1−k

3

⌋
− 1
)
, which allows us to conclude that rank(TFn) ≥

3n− 8 +
n−7∑
k=2

(⌊
n−1−k

3

⌋
− 1
)

= |Gn|, as required.

As an immediate consequence of Proposition 3.4 and Lemmas 3.5 and 3.6, we can state our main result.

Theorem 3.7. We have

rank(TFn) =


3
2(n− 1) +

n−5
2∑

k=2

(⌊
n+1−2k

3

⌋
− 1
)

if n is odd

3n− 8 +
n−7∑
k=2

(⌊
n−1−k

3

⌋
− 1
)

if n is even.
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