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Abstract

In this paper we derive the characteristic polynomial for a family of anti-tridiagonal 2-Hankel matrices of

even order in terms of Chebyshev polynomials giving also a representation of its eigenvectors. An orthogonal

diagonalization for these type of matrices having null northeast-to-southwest diagonal is also provided using

prescribed eigenvalues.
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1 Introduction

The concept of an r-Toeplitz matrix was introduced by
Gover and Barnett in the eighties (see Gover & Bar-
nett, 1985) which established also many of its proper-
ties (see Gover & Barnett, 1985; Gover, 1989). They
defined an r-Toeplitz matrix as an n×nmatrixAn such
that [An]k+r,ℓ+r = [An]k,ℓ for all k, ℓ = 1, 2, . . . , n− r.
Following this idea, we say that an n× n matrix Bn is
an r-Hankel matrix if [Bn]k+r,ℓ−r = [Bn]k,ℓ for every
k = 1, 2, . . . , n − r and ℓ = r + 1, . . . , n. Note that,
when r = 1, the matrix Bn becomes a Hankel matrix.

Let us point out that Hankel matrices appear not
only in engineering problems of system and control the-
ory (see Olshevsky & Stewart, 2001 and the references
therein) but also in computational mathematics (see
Bultheel & Van Barel, 1997, among others).

In this note, we shall consider a particular type of
anti-tridiagonal 2-Hankel matrices of even order, con-
cretely, real 2n× 2n matrices of the form

H2n =




0 . . . . . . . . . 0 b1 c
... . .

.
a2 d a1

... . .
.

. .
.

c b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 d . .
.

. .
. ...

b1 c b2 . .
. ...

d a1 0 . . . . . . . . . 0




(1.1)

with cd = 0. It is our goal to obtain an explicit expres-
sion for the characteristic polynomial of H2n as well

as a representation of its eigenvectors for eigenvalues
given a priori. As a consequence, sufficient conditions
are announced to get an orthogonal diagonalization of
anti-tridiagonal 2-Hankel matrices of even order hav-
ing null northeast-to-southwest diagonal. We empha-
size that, in general, H2n is not a persymmetric matrix
which makes some recent approaches concerning this
issue unfeasible (see Akbulak, da Fonseca & Yilmaz,
2013 or Wu, 2010). Therefore, our results emerge as a
complement for these and other papers about spectral
properties of anti-tridiagonal matrices.

2 Main results

For any integer p > −1, we shall denote by Up(x) the
pth degree Chebyshev polynomial of second kind

Up(x) =
sin[(p+ 1) arccosx]

sin(arccosx)
, −1 < x < 1,

with Up(±1) = (±1)p(p+1) (see Mason & Handscomb,
2003). This expression as a sum of powers of x can, of
course, be evaluated for any x. The symbols ⌊x⌋ and ⊗
will be used to indicate the largest integer not greater
than x and the Kronecker product, respectively. The
Euclidean norm will be denoted by || · ||.

Let ξ, b1, b2 be real numbers such that b1b2 6= 0.
Throughout, we shall consider the sequence of polyno-
mials {Qk(x, ξ)}k>0 defined by
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Qk(x, ξ) :=





x(b1b2)
k−1
2 U k−1

2

(
x2−b21−b22

2b1b2

)
, k odd

(b1b2)
k

2 U k

2

(
x2−b21−b22

2b1b2

)
+

ξ2(b1b2)
k

2−1U k

2−1

(
x2−b21−b22

2b1b2

)
, k even

(2.1)

as well as the n×n matrix Qn

[
b 3+(−1)n

2

]
whose (k, ℓ)-

entry is





−b
⌊ ℓ−k

2 ⌋
3−(−1)k

2

b
⌊ ℓ−k+1

2 ⌋
3+(−1)k

2

Qk−1(λ,b2)Qn−ℓ

[
λ,b 3+(−1)n

2

]

Qn(λ,b2)
, k 6 ℓ

−b
⌊k−ℓ

2 ⌋
3−(−1)ℓ

2

b
⌊ k−ℓ+1

2 ⌋
3+(−1)ℓ

2

Qℓ−1(λ,b2)Qn−k

[
λ,b 3+(−1)n

2

]

Qn(λ,b2)
, k > ℓ

(2.2)

and the n× n matrix Sn

[
x, b 3+(−1)n

2
, b2

]
given by

Qn

[
b 3+(−1)n

2

]
−

b 3+(−1)n

2

Qn(x,b2)

Qn(x,b2)−b 3+(−1)n

2

Qn−1(x,b2)
·

qn

[
b 3+(−1)n

2

]
qn

[
b 3+(−1)n

2

]⊤ (2.3)

with qn

[
b 3+(−1)n

2

]
the last column of Qn

[
b 3+(−1)n

2

]
.

Further, we shall suppose the n × n matrix Tn(x, y)
defined by








0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 x

0 . . . . . . . . . 0 x y




, n even




0 x 0 . . . . . . . . . 0

x 0 y 0
...

0 y 0 x
. . .

...
... 0 x

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . . 0 y

0 . . . . . . . . . 0 y x




, n odd.

(2.4)

Set

Jn := [δk+ℓ,n+1]k,ℓ ,

En :=
[
1+(−1)k

2 δk,ℓ

]
k,ℓ

,

Kn :=
[
1−(−1)k

2 δk,ℓ

]
k,ℓ

where δ is the Kronecker delta. For ab 6= 0, let
un(x, a, b) be the n-dimensional vector whose the kth
component is




U k−1
2

(
x2−a2−b2

2ab

)
+ b

a
U k−3

2

(
x2−a2−b2

2ab

)
, k odd

x
a
U k

2−1

(
x2−a2−b2

2ab

)
, k even

(2.5)
In what follows, we shall assume the anti-

tridiagonal 2-Hankel matrix H2n defined in (1.1) with
d = 0. Notwithstanding, similar results hold for any
real number d and c = 0, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real num-

ber, {Qk(x, ξ)}k>0 the sequence of polynomials (2.1)
and Tn(a1, a2), Tn(b1, b2) the matrices defined by (2.4)
for nonzero reals a1, a2, b1, b2.

(a) If n is even, then the eigenvalues of H2n in (1.1)
are precisely the zeros of

f(x) = (a1a2b1b2)
n

2 ·
[
Un

2

(
x2−a2

1−a2
2

2a1a2

)
+ a2−x

a1
Un

2
−1

(
x2−a2

1−a2
2

2a1a2

)]
·

[
Un

2

(
x2−b21−b22

2b1b2

)
+ b2−x

b1
Un

2 −1

(
x2−b21−b22

2b1b2

)]
(2.6)

Moreover, if λ is an eigenvalue of Tn(a1, a2), µ is

an eigenvalue of Tn(b1, b2), Qn(λ, b2) 6= b2Qn−1(λ, b2)
and det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] 6= 0, then

P⊤
2n

[
un(λ, a1, a2)

−cSn(λ, b2, b2)un(λ, a1, a2)

]
(2.7)

and

P⊤
2n

[
0

un(µ, b1, b2)

]
(2.8)

are eigenvectors of H2n associated to λ and µ, respec-

tively, where P2n is the 2n× 2n permutation matrix

P2n :=

[
En JnEn

Kn JnKn

]
(2.9)

un(λ, a1, a2), un(µ, b1, b2) are the n-dimensional vec-

tors defined by (2.5) and Sn(λ, b2, b2) is the n× n ma-

trix given in (2.3).

(b) If n is odd, then the eigenvalues of H2n in (1.1)
are precisely the zeros of

f(x) = (a1a2b1b2)
n−1
2 ·

[
(x− a1)Un−1

2

(
x2−a2

1−a2
2

2a1a2

)
− a2Un−3

2

(
x2−a2

1−a2
2

2a1a2

)]
·

[
(x− b1)Un−1

2

(
x2−b21−b22

2b1b2

)
− b2Un−3

2

(
x2−b21−b22

2b1b2

)]

(2.10)

Furthermore, if λ is an eigenvalue of Tn(a1, a2), µ is

an eigenvalue of Tn(b1, b2), Qn(λ, b2) 6= b1Qn−1(λ, b2)
and det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] 6= 0, then

P⊤
2n

[
−cSn(λ, b1, b2)un(λ, a1, a2)

un(λ, a1, a2)

]
(2.11)
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and

P⊤
2n

[
un(µ, b1, b2)

0

]
(2.12)

are eigenvectors of H2n associated to λ and µ, respec-

tively, where P2n is the 2n× 2n permutation matrix

P2n :=

[
Kn EnJn

En KnJn

]
(2.13)

un(λ, a1, a2), un(µ, b1, b2) are the n-dimensional vec-

tors defined by (2.5) and Sn(λ, b1, b2) is the n× n ma-

trix given in (2.3).

Remark It is worthy to note that by taking c = 0 and
a2 = b1, a1 = b2 in (2.6) or (2.10), we recover the ex-
pressions obtained in section 4 of da Fonseca, 2018 for
the matrices of even order analysed therein.

The previous result leads us to an orthogonal diag-
onalization for anti-tridiagonal 2-Hankel matrices (1.1)
with null northeast-to-southwest diagonal, i.e. for ma-
trices of the form

H∗
2n =




0 . . . . . . . . . 0 b1 0
... . .

.
a2 0 a1

... . .
.

. .
.

0 b2 0
... . .

.
. .
.

. .
.

. .
.

. .
. ...

0 a2 0 . .
.

. .
. ...

b1 0 b2 . .
. ...

0 a1 0 . . . . . . . . . 0




(2.14)

Put

Vn :=
[

un(λ1,a1,a2)
||un(λ1,a1,a2)||

. . .
un(λn,a1,a2)
||un(λn,a1,a2)||

]

Wn :=
[

un(µ1,b1,b2)
||un(µ1,b1,b2)||

. . .
un(µn,b1,b2)
||un(µn,b1,b2)||

] (2.15)

where un(λk, a1, a2) and un(µk, b1, b2) are the n-
dimensional vectors whose the kth components are de-
fined by (2.5).

Corollary 1 Let n be a positive integer, a1, a2, b1, b2
nonzero real numbers, H∗

2n the 2n × 2n ma-

trix (2.14), Tn(a1, a2) and Tn(b1, b2) matrices

defined by (2.4) having eigenvalues λ1, . . . , λn

and µ1, . . . , µn, respectively. Suppose that

det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] 6= 0 and the se-

quence of polynomials {Qk(x, ξ)}k>0 given by (2.1)
satisfies Qn(λk, b2) 6= b 3+(−1)n

2

Qn−1(λk, b2) for each

k = 1, . . . , n.

(a) If n is even, then

H∗
2n = U2ndiag(λ1, . . . , λn, µ1, . . . , µn)U

⊤
2n, (2.16)

where

U2n = P⊤
2n

[
Vn O

O Wn

]
, (2.17)

P2n is the permutation matrix (2.6) and Vn,Wn are

the n× n matrices in (2.15).

(b) If n is odd, then

H∗
2n = U2ndiag(λ1, . . . , λn, µ1, . . . , µn)U

⊤
2n (2.18)

where

U2n = P⊤
2n

[
O Wn

Vn O

]
,

P2n is the permutation matrix (2.13) and Vn,Wn are

the n× n matrices in (2.15).

Remark More generally, Theorem 1 also leads to an
eigendecomposition for H2n in (1.1) with d = 0, tak-
ing eigenvector matrices formed by the column vectors
(2.7), (2.8) or (2.11), (2.12) according as n is even or
odd, respectively.

3 Lemmata and proofs

In order to prove Theorem 1, we will need some aux-
iliary results. The first one is well-known in the liter-
ature (see Akbulak, da Fonseca & Yilmaz, 2013) and
locates the eigenvalues of tridiagonal matrices having
the form (2.4). Indeed, the characteristic polynomial
of Tn(a, b) is

(ab)
n

2

[
Un

2

(
x2−a2−b2

2ab

)
+ b−x

a
Un

2
−1

(
x2−a2−b2

2ab

)]

when n is even and

(ab)
n−1
2

[
(x− a)Un−1

2

(
x2−a2−b2

2ab

)
− bUn−3

2

(
x2−a2−b2

2ab

)]

whenever n is odd. Next, we shall provide a represen-
tation of its eigenvectors.

Lemma 1 Let n be a positive integer and Tn(a, b) the
n × n matrix (2.4) with a, b nonzero reals. If λ is an

eigenvalue of Tn(a, b), then un(λ, a, b) given in (2.5)
is an eigenvector of Tn(a, b) associated to λ.

Proof. Suppose a positive integer n and reals a, b such
that a 6= 0, b 6= 0. Consider the three-term recurrence
relation,





P−1(x) ≡ 0,
P0(x) ≡ 1,

Pk(x) =
x−βk

αk

Pk−1(x)−
γk−1

αk

Pk−2(x), 1 6 k 6 n

with γ0 = αn = 1,

αk = γk =

{
a, k odd
b, k even

and

βk =





0, k < n

b, k = n and n even
a, k = n and n odd.

3



Hence, Pk(x) is expressed by





U k

2

(
x2−a2−b2

2ab

)
+ b

a
U k

2−1

(
x2−a2−b2

2ab

)
, k even

x
a
U k−1

2

(
x2−a2−b2

2ab

)
, k odd

for each 0 6 k 6 n−1 and [P0(λ), P1(λ), . . . , Pn−1(λ)]
⊤

is an eigenvector of Tn(a, b) associated to the eigen-
value λ (see da Fonseca, 2005). The thesis is estab-
lished. ⊓⊔

The following auxiliary statement is an explicit for-
mula for the inverse of a sort of perturbed tridiagonal
2-Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real num-

ber, {Qk(x, ξ)}k>0 the sequence of polynomials de-

fined by (2.1) and Tn(b1, b2) the n × n matrix de-

fined by (2.4) with nonzero reals b1, b2. If Qn(λ, b2) 6=
b 3+(−1)n

2

Qn−1(λ, b2), then

[Tn(b1, b2)− λIn]
−1

= Sn

[
λ, b 3+(−1)n

2
, b2

]
(3.1)

where Sn

[
λ, b 3+(−1)n

2

, b2

]
is the n× n matrix given by

(2.3).

Proof. Suppose a positive integer n and real numbers
λ, b1, b2 such that b1 6= 0, b2 6= 0. Employing the Sec-
ond Principle of Mathematical Induction on the vari-

able n we can state that det [Tn(b1, b2)] = (−1)⌊
n

2 ⌋bn1
which ensures the nonsingularity of Tn(b1, b2). Denot-
ing by en the n-dimensional vector (0, . . . , 0, 1), the
inverse of Tn(b1, b2) − λIn − b 3+(−1)n

2
en is the ma-

trix Qn

[
b 3+(−1)n

2

]
in (2.2) (see Theorem 4.1 of da

Fonseca & Petronilho, 2001) and the thesis is a di-
rect consequence of the well-known Sherman-Morrison-
Woodbury formula. ⊓⊔

Proof of Theorem 1. Since both assertions can be
proven in the same way, we only prove (a). Let n be an
even positive integer. It is straightforward to see that

P2nH2nP
⊤
2n =

[
Tn(a1, a2) O

cIn Tn(b1, b2)

]
(3.2)

where P2n is the permutation matrix (2.9). Thus,

det (tI2n −H2n) =

det [tIn −Tn(a1, a2)] det [tIn −Tn(b1, b2)]

and from Lemma 1 we obtain (2.6). Let λ be an eigen-
value of Tn(a1, a2). According to (3.3) we can rewrite
the relation (H2n − λI2n)x = 0 as

[
Tn(a1, a2)− λIn O

cIn Tn(b1, b2)− λIn

]
P2nx = 0,

that is,

[Tn(a1, a2)− λIn]y
(1) = 0,

cy(1) + [Tn(b1, b2)− λIn]y
(2) = 0,

[
y(1)

y(2)

]
= P2nx.

(3.3)

Since det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] 6= 0, the
matrices Tn(a1, a2) and Tn(b1, b2) have no eigenvalues
in common (see Laub, 2005, page 145) which implies
det [Tn(b1, b2)− λIn] 6= 0 and Lemma 1 ensures that
the solution of (3.4) is

x = P⊤
2n

[
un(λ, a1, a2)

−c [Tn(b1, b2)− λIn]
−1

un(λ, a1, a2)

]

where un(λ, a1, a2) is given by (2.5). From Lemma 2,

[Tn(b1, b2)− λIn]
−1

= Sn(λ, b2, b2)

and (2.7) is an eigenvector of H2n associated to the
eigenvalue λ. On the other hand, suppose that µ is an
eigenvalue of Tn(b1, b2). Since H2nx = µx is equiva-
lent to

[Tn(a1, a2)− µIn]y
(1) = 0,

cy(1) + [Tn(b1, b2)− µIn]y
(2) = 0,

[
y(1)

y(2)

]
= P2nx,

and det [Tn(a1, a2)− µIn] 6= 0, we obtain

x = P⊤
2n

[
0

un(µ, b1, b2)

]
,

where un(µ, b1, b2) is defined in (2.5). Therefore, (2.8)
is an eigenvector of H2n associated to the eigenvalue
µ. ⊓⊔

Proof of Corollary 1. Consider an even positive inte-
ger n. From Lemma 1 and

det [In ⊗Tn(a1, a2)−Tn(b1, b2)⊗ In] 6= 0

we can guarantee that all eigenvalues of H∗
2n are dis-

tinct. Setting

vn(λk) := un(λk, a1, a2),

wn(µk) := un(µk, b1, b2)

and

v̂n(λk) := P⊤
2n

[
vn(λk)

0

]
,

ŵn(µk) := P⊤
2n

[
0

wn(µk)

]

it follows that
{

v̂n(λ1)
||v̂n(λ1)||

, . . . ,
v̂n(λn)
||v̂n(λn)||

,
ŵn(µ1)
||ŵn(µ1)||

, . . . ,
ŵn(µn)
||ŵn(µn)||

}
(3.4)
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is a complete set of orthogonal eigenvectors according
to Theorem 1. Hence,

H∗
2n = U2ndiag(λ1, . . . , λn, µ1, . . . , µn)U

−1
2n

where

U2n =
[

v̂n(λ1)
||v̂n(λ1)||

. . .
v̂n(λn)
||v̂n(λn)||

ŵn(µ1)
||ŵn(µ1)||

. . .
ŵn(µn)
||ŵn(µn)||

]

= P⊤
2n

[
vn(λ1)
||vn(λ1)||

. . .
vn(λn)
||vn(λn)||

0 . . . 0

0 . . . 0 wn(µ1)
||wn(µ1)||

. . .
wn(µn)
||wn(µn)||

]

provided that P⊤
2n is an orthogonal matrix. Since (3.4)

is an orthonormal set, U2n is an orthogonal matrix and
(2.16) is established. The proof of (b) is analogous and
so will be omitted. ⊓⊔
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