João Lita da Silva ${ }^{1}$
Department of Mathematics and GeoBioTec Faculty of Sciences and Technology
NOVA University of Lisbon
Quinta da Torre, 2829-516 Caparica, Portugal

Abstract

In this paper we derive the characteristic polynomial for a family of anti-tridiagonal 2-Hankel matrices of even order in terms of Chebyshev polynomials giving also a representation of its eigenvectors. An orthogonal diagonalization for these type of matrices having null northeast-to-southwest diagonal is also provided using prescribed eigenvalues.

Keywords: Anti-tridiagonal 2-Hankel matrix, eigenvalue, eigenvector, Chebyshev polynomials
2010 Mathematics Subject Classification: 15A18, 42C05

1 Introduction

The concept of an r-Toeplitz matrix was introduced by Gover and Barnett in the eighties (see Gover \& Barnett, 1985) which established also many of its properties (see Gover \& Barnett, 1985; Gover, 1989). They defined an r-Toeplitz matrix as an $n \times n$ matrix \mathbf{A}_{n} such that $\left[\mathbf{A}_{n}\right]_{k+r, \ell+r}=\left[\mathbf{A}_{n}\right]_{k, \ell}$ for all $k, \ell=1,2, \ldots, n-r$. Following this idea, we say that an $n \times n$ matrix \mathbf{B}_{n} is an r-Hankel matrix if $\left[\mathbf{B}_{n}\right]_{k+r, \ell-r}=\left[\mathbf{B}_{n}\right]_{k, \ell}$ for every $k=1,2, \ldots, n-r$ and $\ell=r+1, \ldots, n$. Note that, when $r=1$, the matrix \mathbf{B}_{n} becomes a Hankel matrix.

Let us point out that Hankel matrices appear not only in engineering problems of system and control theory (see Olshevsky \& Stewart, 2001 and the references therein) but also in computational mathematics (see Bultheel \& Van Barel, 1997, among others).

In this note, we shall consider a particular type of anti-tridiagonal 2-Hankel matrices of even order, concretely, real $2 n \times 2 n$ matrices of the form

$$
\mathbf{H}_{2 n}=\left[\begin{array}{ccccccc}
0 & \ldots & \ldots & \ldots & 0 & b_{1} & c \tag{1.1}\\
\vdots & & & . & a_{2} & d & a_{1} \\
\vdots & & . & . & . & c & b_{2}
\end{array}\right) 0
$$

with $c d=0$. It is our goal to obtain an explicit expression for the characteristic polynomial of $\mathbf{H}_{2 n}$ as well
as a representation of its eigenvectors for eigenvalues given a priori. As a consequence, sufficient conditions are announced to get an orthogonal diagonalization of anti-tridiagonal 2-Hankel matrices of even order having null northeast-to-southwest diagonal. We emphasize that, in general, $\mathbf{H}_{2 n}$ is not a persymmetric matrix which makes some recent approaches concerning this issue unfeasible (see Akbulak, da Fonseca \& Yilmaz, 2013 or Wu, 2010). Therefore, our results emerge as a complement for these and other papers about spectral properties of anti-tridiagonal matrices.

2 Main results

For any integer $p \geqslant-1$, we shall denote by $U_{p}(x)$ the p th degree Chebyshev polynomial of second kind

$$
U_{p}(x)=\frac{\sin [(p+1) \arccos x]}{\sin (\arccos x)}, \quad-1<x<1
$$

with $U_{p}(\pm 1)=(\pm 1)^{p}(p+1)$ (see Mason \& Handscomb, 2003). This expression as a sum of powers of x can, of course, be evaluated for any x. The symbols $\lfloor x\rfloor$ and \otimes will be used to indicate the largest integer not greater than x and the Kronecker product, respectively. The Euclidean norm will be denoted by $\|\cdot\|$.

Let ξ, b_{1}, b_{2} be real numbers such that $b_{1} b_{2} \neq 0$. Throughout, we shall consider the sequence of polynomials $\left\{Q_{k}(x, \xi)\right\}_{k \geqslant 0}$ defined by

[^0]$Q_{k}(x, \xi):= \begin{cases}x\left(b_{1} b_{2}\right)^{\frac{k-1}{2}} U_{\frac{k-1}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right), & k \text { odd } \\ \left(b_{1} b_{2}\right)^{\frac{k}{2}} U_{\frac{k}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)+ \\ \xi^{2}\left(b_{1} b_{2}\right)^{\frac{k}{2}-1} U_{\frac{k}{2}-1}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right), & k \text { even }\end{cases}$
as well as the $n \times n$ matrix $\mathbf{Q}_{n}\left[\frac{b_{3+(-1)^{n}}^{2}}{}\right]$ whose (k, ℓ) entry is

$$
\begin{cases}-b^{\left\lfloor\frac{\ell-k}{2}\right\rfloor} b^{\left\lfloor\frac{\ell-(-1)^{k}}{2}\right.} b^{\frac{3+(-1)^{k}}{2}} \frac{Q_{k-1}\left(\lambda, b_{2}\right) Q_{n-\ell}\left[\lambda, b^{\left.\frac{3+(-1)^{n}}{2}\right]}\right.}{Q_{n}\left(\lambda, b_{2}\right)}, & k \leqslant \ell \tag{2.2}\\ -b^{\left\lfloor\frac{k-\ell}{2}\right\rfloor} b^{\frac{3-(-1)^{\ell}}{2}} b^{\left.\frac{k-\ell+1}{2}\right\rfloor} \frac{Q_{\ell-1}\left(\lambda, b_{2}\right) Q_{n-k}\left[\lambda, b_{3+(-1)^{n}}^{2}\right]}{2} & \frac{Q_{n}\left(\lambda, b_{2}\right)}{2},\end{cases}
$$

and the $n \times n$ matrix $\mathbf{S}_{n}\left[x, \frac{\left.b_{\frac{3+(-1)^{n}}{2}}, b_{2}\right] \text { given by }}{}\right.$

$$
\begin{array}{r}
\mathbf{Q}_{n}\left[b_{\frac{3+(-1)^{n}}{2}}\right]-\frac{b_{\frac{3+(-1)^{n}}{2}} Q_{n}\left(x, b_{2}\right)}{Q_{n}\left(x, b_{2}\right)-b_{\frac{3+(-1)^{n}}{2}}^{2} Q_{n-1}\left(x, b_{2}\right)} . \tag{2.3}\\
\mathbf{q}_{n}\left[\frac{\left.b_{\frac{3+(-1)^{n}}{2}}^{2}\right] \mathbf{q}_{n}\left[b_{\frac{3+(-1)^{n}}{2}}\right]^{\top}}{} .\right.
\end{array}
$$

with $\mathbf{q}_{n}\left[\frac{b_{3+(-1)^{n}}^{2}}{}\right]$ the last column of $\mathbf{Q}_{n}\left[\frac{b_{3+(-1)^{n}}^{2}}{2}\right]$. Further, we shall suppose the $n \times n$ matrix $\mathbf{T}_{n}(x, y)$ defined by

$$
\left\{\left[\begin{array}{ccccccc}
{\left[\begin{array}{ccccccc}
0 & x & 0 & \cdots & \cdots & \cdots & 0 \\
x & 0 & y & 0 & & & \vdots \\
0 & y & 0 & x & \ddots & & \vdots \\
\vdots & 0 & x & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & \ddots & \ddots & 0 & x \\
0 & \cdots & \cdots & \cdots & 0 & x & y
\end{array}\right], n \text { even }} \tag{2.4}\\
{\left[\begin{array}{ccccccc}
0 & x & 0 & \cdots & \cdots & \cdots & 0 \\
x & 0 & y & 0 & & & \vdots \\
0 & y & 0 & x & \ddots & & \vdots \\
\vdots & 0 & x & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & \ddots & \ddots & 0 \\
\vdots & & & \ddots & \ddots & 0 & y \\
0 & \cdots & \cdots & \cdots & 0 & y & x
\end{array}\right], n \text { odd. }}
\end{array}\right.\right.
$$

Set

$$
\begin{gathered}
\mathbf{J}_{n}:=\left[\delta_{k+\ell, n+1}\right]_{k, \ell}, \\
\mathbf{E}_{n}:=\left[\frac{1+(-1)^{k}}{2} \delta_{k, \ell}\right]_{k, \ell}
\end{gathered}
$$

$$
\mathbf{K}_{n}:=\left[\frac{1-(-1)^{k}}{2} \delta_{k, \ell}\right]_{k, \ell}
$$

where δ is the Kronecker delta. For $a b \neq 0$, let $\mathbf{u}_{n}(x, a, b)$ be the n-dimensional vector whose the k th component is

$$
\left\{\begin{array}{l}
U_{\frac{k-1}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)+\frac{b}{a} U_{\frac{k-3}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right), k \text { odd } \tag{2.5}\\
\frac{x}{a} U_{\frac{k}{2}-1}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right), k \text { even }
\end{array}\right.
$$

In what follows, we shall assume the antitridiagonal 2-Hankel matrix $\mathbf{H}_{2 n}$ defined in (1.1) with $d=0$. Notwithstanding, similar results hold for any real number d and $c=0$, mutatis mutandis.

Theorem 1 Let n be a positive integer, c a real number, $\left\{Q_{k}(x, \xi)\right\}_{k \geqslant 0}$ the sequence of polynomials (2.1) and $\mathbf{T}_{n}\left(a_{1}, a_{2}\right), \mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ the matrices defined by (2.4) for nonzero reals $a_{1}, a_{2}, b_{1}, b_{2}$.
(a) If n is even, then the eigenvalues of $\mathbf{H}_{2 n}$ in (1.1) are precisely the zeros of

$$
\begin{align*}
& f(x)=\left(a_{1} a_{2} b_{1} b_{2}\right)^{\frac{n}{2}} . \\
& \quad\left[U_{\frac{n}{2}}\left(\frac{x^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)+\frac{a_{2}-x}{a_{1}} U_{\frac{n}{2}-1}\left(\frac{x^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)\right] . \tag{2.6}\\
& \quad\left[U_{\frac{n}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)+\frac{b_{2}-x}{b_{1}} U_{\frac{n}{2}-1}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)\right]
\end{align*}
$$

Moreover, if λ is an eigenvalue of $\mathbf{T}_{n}\left(a_{1}, a_{2}\right), \mu$ is an eigenvalue of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right), Q_{n}\left(\lambda, b_{2}\right) \neq b_{2} Q_{n-1}\left(\lambda, b_{2}\right)$ and $\operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0$, then

$$
\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right) \tag{2.7}\\
-c \mathbf{S}_{n}\left(\lambda, b_{2}, b_{2}\right) \mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right)
\end{array}\right]
$$

and

$$
\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{0} \tag{2.8}\\
\mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)
\end{array}\right]
$$

are eigenvectors of $\mathbf{H}_{2 n}$ associated to λ and μ, respectively, where $\mathbf{P}_{2 n}$ is the $2 n \times 2 n$ permutation matrix

$$
\mathbf{P}_{2 n}:=\left[\begin{array}{l|l}
\mathbf{E}_{n} & \mathbf{J}_{n} \mathbf{E}_{n} \tag{2.9}\\
\hline \mathbf{K}_{n} & \mathbf{J}_{n} \mathbf{K}_{n}
\end{array}\right]
$$

$\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right), \mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)$ are the n-dimensional vectors defined by (2.5) and $\mathbf{S}_{n}\left(\lambda, b_{2}, b_{2}\right)$ is the $n \times n$ matrix given in (2.3).
(b) If n is odd, then the eigenvalues of $\mathbf{H}_{2 n}$ in (1.1) are precisely the zeros of

$$
\begin{align*}
& f(x)=\left(a_{1} a_{2} b_{1} b_{2}\right)^{\frac{n-1}{2} .} \\
& \quad\left[\left(x-a_{1}\right) U_{\frac{n-1}{2}}\left(\frac{x^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)-a_{2} U_{\frac{n-3}{2}}\left(\frac{x^{2}-a_{1}^{2}-a_{2}^{2}}{2 a_{1} a_{2}}\right)\right] . \\
& \quad\left[\left(x-b_{1}\right) U_{\frac{n-1}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)-b_{2} U_{\frac{n-3}{2}}\left(\frac{x^{2}-b_{1}^{2}-b_{2}^{2}}{2 b_{1} b_{2}}\right)\right] \tag{2.10}
\end{align*}
$$

Furthermore, if λ is an eigenvalue of $\mathbf{T}_{n}\left(a_{1}, a_{2}\right), \mu$ is an eigenvalue of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right), Q_{n}\left(\lambda, b_{2}\right) \neq b_{1} Q_{n-1}\left(\lambda, b_{2}\right)$ and $\operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0$, then

$$
\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
-c \mathbf{S}_{n}\left(\lambda, b_{1}, b_{2}\right) \mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right) \tag{2.11}\\
\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right)
\end{array}\right]
$$

and

$$
\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right) \tag{2.12}\\
\mathbf{0}
\end{array}\right]
$$

are eigenvectors of $\mathbf{H}_{2 n}$ associated to λ and μ, respectively, where $\mathbf{P}_{2 n}$ is the $2 n \times 2 n$ permutation matrix

$$
\mathbf{P}_{2 n}:=\left[\begin{array}{l|l}
\mathbf{K}_{n} & \mathbf{E}_{n} \mathbf{J}_{n} \tag{2.13}\\
\hline \mathbf{E}_{n} & \mathbf{K}_{n} \mathbf{J}_{n}
\end{array}\right]
$$

$\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right), \mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)$ are the n-dimensional vectors defined by (2.5) and $\mathbf{S}_{n}\left(\lambda, b_{1}, b_{2}\right)$ is the $n \times n$ matrix given in (2.3).

Remark It is worthy to note that by taking $c=0$ and $a_{2}=b_{1}, a_{1}=b_{2}$ in (2.6) or (2.10), we recover the expressions obtained in section 4 of da Fonseca, 2018 for the matrices of even order analysed therein.

The previous result leads us to an orthogonal diagonalization for anti-tridiagonal 2-Hankel matrices (1.1) with null northeast-to-southwest diagonal, i.e. for matrices of the form

$$
\mathbf{H}_{2 n}^{*}=\left[\begin{array}{ccccccc}
0 & \ldots & \ldots & \ldots & 0 & b_{1} & 0 \tag{2.14}\\
\vdots & & & . & a_{2} & 0 & a_{1} \\
\vdots & & . & . & \cdot & 0 & b_{2}
\end{array}\right) 0
$$

Put

$$
\begin{align*}
& \mathbf{V}_{n}:=\left[\begin{array}{lll}
\frac{\mathbf{u}_{n}\left(\lambda_{1}, a_{1}, a_{2}\right)}{\left\|\mathbf{u}_{n}\left(\lambda_{1}, a_{1}, a_{2}\right)\right\|} & \cdots & \frac{\mathbf{u}_{n}\left(\lambda_{n}, a_{1}, a_{2}\right)}{\left\|\mathbf{u}_{n}\left(\lambda_{n}, a_{1}, a_{2}\right)\right\|}
\end{array}\right] \\
& \mathbf{W}_{n}:=\left[\begin{array}{lll}
\frac{\mathbf{u}_{n}\left(\mu_{1}, b_{1}, b_{2}\right)}{\left\|\mathbf{u}_{n}\left(\mu_{1}, b_{1}, b_{2}\right)\right\|} & \cdots & \frac{\mathbf{u}_{n}\left(\mu_{n}, b_{1}, b_{2}\right)}{\| \mathbf{u}_{n}\left(\mu_{n}, b_{1}, b_{2}\right)}
\end{array}\right] \tag{2.15}
\end{align*}
$$

where $\mathbf{u}_{n}\left(\lambda_{k}, a_{1}, a_{2}\right)$ and $\mathbf{u}_{n}\left(\mu_{k}, b_{1}, b_{2}\right)$ are the n dimensional vectors whose the k th components are defined by (2.5).

Corollary 1 Let n be a positive integer, $a_{1}, a_{2}, b_{1}, b_{2}$ nonzero real numbers, $\mathbf{H}_{2 n}^{*}$ the $2 n \times 2 n$ matrix (2.14), $\quad \mathbf{T}_{n}\left(a_{1}, a_{2}\right)$ and $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ matrices defined by (2.4) having eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and μ_{1}, \ldots, μ_{n}, respectively. Suppose that $\operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0$ and the sequence of polynomials $\left\{Q_{k}(x, \xi)\right\}_{k \geqslant 0}$ given by (2.1) satisfies $Q_{n}\left(\lambda_{k}, b_{2}\right) \neq b_{\frac{3+(-1)^{n}}{2}} Q_{n-1}\left(\lambda_{k}, b_{2}\right)$ for each $k=1, \ldots, n$.
(a) If n is even, then

$$
\begin{equation*}
\mathbf{H}_{2 n}^{*}=\mathbf{U}_{2 n} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}\right) \mathbf{U}_{2 n}^{\top} \tag{2.16}
\end{equation*}
$$

where

$$
\mathbf{U}_{2 n}=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c|c}
\mathbf{V}_{n} & \mathbf{O} \tag{2.17}\\
\hline \mathbf{O} & \mathbf{W}_{n}
\end{array}\right]
$$

$\mathbf{P}_{2 n}$ is the permutation matrix (2.6) and $\mathbf{V}_{n}, \mathbf{W}_{n}$ are the $n \times n$ matrices in (2.15).
(b) If n is odd, then

$$
\begin{equation*}
\mathbf{H}_{2 n}^{*}=\mathbf{U}_{2 n} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}\right) \mathbf{U}_{2 n}^{\top} \tag{2.18}
\end{equation*}
$$

where

$$
\mathbf{U}_{2 n}=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c|c}
\mathbf{O} & \mathbf{W}_{n} \\
\hline \mathbf{V}_{n} & \mathbf{O}
\end{array}\right],
$$

$\mathbf{P}_{2 n}$ is the permutation matrix (2.13) and $\mathbf{V}_{n}, \mathbf{W}_{n}$ are the $n \times n$ matrices in (2.15).

Remark More generally, Theorem 1 also leads to an eigendecomposition for $\mathbf{H}_{2 n}$ in (1.1) with $d=0$, taking eigenvector matrices formed by the column vectors (2.7), (2.8) or (2.11), (2.12) according as n is even or odd, respectively.

3 Lemmata and proofs

In order to prove Theorem 1, we will need some auxiliary results. The first one is well-known in the literature (see Akbulak, da Fonseca \& Yilmaz, 2013) and locates the eigenvalues of tridiagonal matrices having the form (2.4). Indeed, the characteristic polynomial of $\mathbf{T}_{n}(a, b)$ is

$$
(a b)^{\frac{n}{2}}\left[U_{\frac{n}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)+\frac{b-x}{a} U_{\frac{n}{2}-1}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)\right]
$$

when n is even and
$(a b)^{\frac{n-1}{2}}\left[(x-a) U_{\frac{n-1}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)-b U_{\frac{n-3}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)\right]$
whenever n is odd. Next, we shall provide a representation of its eigenvectors.

Lemma 1 Let n be a positive integer and $\mathbf{T}_{n}(a, b)$ the $n \times n$ matrix (2.4) with a, b nonzero reals. If λ is an eigenvalue of $\mathbf{T}_{n}(a, b)$, then $\mathbf{u}_{n}(\lambda, a, b)$ given in (2.5) is an eigenvector of $\mathbf{T}_{n}(a, b)$ associated to λ.

Proof. Suppose a positive integer n and reals a, b such that $a \neq 0, b \neq 0$. Consider the three-term recurrence relation,

$$
\left\{\begin{array}{l}
P_{-1}(x) \equiv 0 \\
P_{0}(x) \equiv 1, \\
P_{k}(x)=\frac{x-\beta_{k}}{\alpha_{k}} P_{k-1}(x)-\frac{\gamma_{k-1}}{\alpha_{k}} P_{k-2}(x), \quad 1 \leqslant k \leqslant n
\end{array}\right.
$$

with $\gamma_{0}=\alpha_{n}=1$,

$$
\alpha_{k}=\gamma_{k}= \begin{cases}a, & k \text { odd } \\ b, & k \text { even }\end{cases}
$$

and

$$
\beta_{k}=\left\{\begin{array}{l}
0, \quad k<n \\
b, \quad k=n \text { and } n \text { even } \\
a, \quad k=n \text { and } n \text { odd }
\end{array}\right.
$$

Hence, $P_{k}(x)$ is expressed by

$$
\left\{\begin{array}{l}
U_{\frac{k}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right)+\frac{b}{a} U_{\frac{k}{2}-1}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right), k \text { even } \\
\frac{x}{a} U_{\frac{k-1}{2}}\left(\frac{x^{2}-a^{2}-b^{2}}{2 a b}\right), k \text { odd }
\end{array}\right.
$$

for each $0 \leqslant k \leqslant n-1$ and $\left[P_{0}(\lambda), P_{1}(\lambda), \ldots, P_{n-1}(\lambda)\right]^{\top}$ is an eigenvector of $\mathbf{T}_{n}(a, b)$ associated to the eigenvalue λ (see da Fonseca, 2005). The thesis is established.

The following auxiliary statement is an explicit formula for the inverse of a sort of perturbed tridiagonal 2-Toeplitz matrices.

Lemma 2 Let n be a positive integer, λ a real number, $\left\{Q_{k}(x, \xi)\right\}_{k \geqslant 0}$ the sequence of polynomials defined by (2.1) and $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ the $n \times n$ matrix defined by (2.4) with nonzero reals b_{1}, b_{2}. If $Q_{n}\left(\lambda, b_{2}\right) \neq$ $b_{\frac{3+(-1)^{n}}{2}} Q_{n-1}\left(\lambda, b_{2}\right)$, then

$$
\begin{equation*}
\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right]^{-1}=\mathbf{S}_{n}\left[\lambda, b_{\frac{3+(-1)^{n}}{2}}, b_{2}\right] \tag{3.1}
\end{equation*}
$$

 (2.3).

Proof. Suppose a positive integer n and real numbers λ, b_{1}, b_{2} such that $b_{1} \neq 0, b_{2} \neq 0$. Employing the Second Principle of Mathematical Induction on the variable n we can state that $\operatorname{det}\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)\right]=(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} b_{1}^{n}$ which ensures the nonsingularity of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$. Denoting by \mathbf{e}_{n} the n-dimensional vector ($0, \ldots, 0,1$), the inverse of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}-b_{\frac{3+(-1)^{n}}{2}} \mathbf{e}_{n}$ is the matrix $\mathbf{Q}_{n}\left[\frac{b_{3+(-1)^{n}}^{2}}{}\right]$ in (2.2) (see Theorem 4.1 of da Fonseca \& Petronilho, 2001) and the thesis is a direct consequence of the well-known Sherman-MorrisonWoodbury formula.

Proof of Theorem 1. Since both assertions can be proven in the same way, we only prove (a). Let n be an even positive integer. It is straightforward to see that

$$
\mathbf{P}_{2 n} \mathbf{H}_{2 n} \mathbf{P}_{2 n}^{\top}=\left[\begin{array}{c|c}
\mathbf{T}_{n}\left(a_{1}, a_{2}\right) & \mathbf{O} \tag{3.2}\\
\hline c \mathbf{I}_{n} & \mathbf{T}_{n}\left(b_{1}, b_{2}\right)
\end{array}\right]
$$

where $\mathbf{P}_{2 n}$ is the permutation matrix (2.9). Thus,

$$
\begin{aligned}
& \operatorname{det}\left(t \mathbf{I}_{2 n}-\mathbf{H}_{2 n}\right)= \\
& \quad \operatorname{det}\left[t \mathbf{I}_{n}-\mathbf{T}_{n}\left(a_{1}, a_{2}\right)\right] \operatorname{det}\left[t \mathbf{I}_{n}-\mathbf{T}_{n}\left(b_{1}, b_{2}\right)\right]
\end{aligned}
$$

and from Lemma 1 we obtain (2.6). Let λ be an eigenvalue of $\mathbf{T}_{n}\left(a_{1}, a_{2}\right)$. According to (3.3) we can rewrite the relation $\left(\mathbf{H}_{2 n}-\lambda \mathbf{I}_{2 n}\right) \mathbf{x}=\mathbf{0}$ as

$$
\left[\begin{array}{c|c}
\mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\lambda \mathbf{I}_{n} & \mathbf{O} \\
\hline c \mathbf{I}_{n} & \mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}
\end{array}\right] \mathbf{P}_{2 n} \mathbf{x}=\mathbf{0}
$$

that is,

$$
\begin{align*}
& {\left[\mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\lambda \mathbf{I}_{n}\right] \mathbf{y}^{(1)}=\mathbf{0},} \\
& c \mathbf{y}^{(1)}+\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right] \mathbf{y}^{(2)}=\mathbf{0}, \tag{3.3}\\
& {\left[\begin{array}{l}
\mathbf{y}^{(1)} \\
\mathbf{y}^{(2)}
\end{array}\right]=\mathbf{P}_{2 n} \mathbf{x} .}
\end{align*}
$$

Since $\operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0$, the matrices $\mathbf{T}_{n}\left(a_{1}, a_{2}\right)$ and $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$ have no eigenvalues in common (see Laub, 2005, page 145) which implies $\operatorname{det}\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right] \neq 0$ and Lemma 1 ensures that the solution of (3.4) is

$$
\mathbf{x}=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right) \\
-c\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right]^{-1} \mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right)
\end{array}\right]
$$

where $\mathbf{u}_{n}\left(\lambda, a_{1}, a_{2}\right)$ is given by (2.5). From Lemma 2,

$$
\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\lambda \mathbf{I}_{n}\right]^{-1}=\mathbf{S}_{n}\left(\lambda, b_{2}, b_{2}\right)
$$

and (2.7) is an eigenvector of $\mathbf{H}_{2 n}$ associated to the eigenvalue λ. On the other hand, suppose that μ is an eigenvalue of $\mathbf{T}_{n}\left(b_{1}, b_{2}\right)$. Since $\mathbf{H}_{2 n} \mathbf{x}=\mu \mathbf{x}$ is equivalent to

$$
\begin{aligned}
& {\left[\mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mu \mathbf{I}_{n}\right] \mathbf{y}^{(1)}=\mathbf{0},} \\
& c \mathbf{y}^{(1)}+\left[\mathbf{T}_{n}\left(b_{1}, b_{2}\right)-\mu \mathbf{I}_{n}\right] \mathbf{y}^{(2)}=\mathbf{0}, \\
& {\left[\begin{array}{l}
\mathbf{y}^{(1)} \\
\mathbf{y}^{(2)}
\end{array}\right]=\mathbf{P}_{2 n} \mathbf{x},}
\end{aligned}
$$

and $\operatorname{det}\left[\mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mu \mathbf{I}_{n}\right] \neq 0$, we obtain

$$
\mathbf{x}=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)
\end{array}\right]
$$

where $\mathbf{u}_{n}\left(\mu, b_{1}, b_{2}\right)$ is defined in (2.5). Therefore, (2.8) is an eigenvector of $\mathbf{H}_{2 n}$ associated to the eigenvalue μ.

Proof of Corollary 1. Consider an even positive integer n. From Lemma 1 and

$$
\operatorname{det}\left[\mathbf{I}_{n} \otimes \mathbf{T}_{n}\left(a_{1}, a_{2}\right)-\mathbf{T}_{n}\left(b_{1}, b_{2}\right) \otimes \mathbf{I}_{n}\right] \neq 0
$$

we can guarantee that all eigenvalues of $\mathbf{H}_{2 n}^{*}$ are distinct. Setting

$$
\begin{aligned}
& \mathbf{v}_{n}\left(\lambda_{k}\right):=\mathbf{u}_{n}\left(\lambda_{k}, a_{1}, a_{2}\right), \\
& \mathbf{w}_{n}\left(\mu_{k}\right):=\mathbf{u}_{n}\left(\mu_{k}, b_{1}, b_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \widehat{\mathbf{v}}_{n}\left(\lambda_{k}\right):=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{v}_{n}\left(\lambda_{k}\right) \\
\mathbf{0}
\end{array}\right], \\
& \widehat{\mathbf{w}}_{n}\left(\mu_{k}\right):=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{w}_{n}\left(\mu_{k}\right)
\end{array}\right]
\end{aligned}
$$

it follows that

$$
\begin{equation*}
\left\{\frac{\widehat{\mathbf{v}}_{n}\left(\lambda_{1}\right)}{\left\|\widehat{\mathbf{v}}_{n}\left(\lambda_{1}\right)\right\|}, \ldots, \frac{\widehat{\mathbf{w}}_{n}\left(\lambda_{n}\right)}{\widehat{\mathbf{v}}_{n}\left(\lambda_{n}\right) \|}, \frac{\widehat{\mathbf{w}}_{n}\left(\mu_{1}\right)}{\left\|\widehat{\mathbf{w}}_{n}\left(\mu_{1}\right)\right\|}, \ldots, \frac{\widehat{\mathbf{w}}_{n}\left(\mu_{n}\right)}{\left\|\widehat{\mathbf{w}}_{n}\left(\mu_{n}\right)\right\|}\right\} \tag{3.4}
\end{equation*}
$$

is a complete set of orthogonal eigenvectors according to Theorem 1. Hence,

$$
\mathbf{H}_{2 n}^{*}=\mathbf{U}_{2 n} \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}\right) \mathbf{U}_{2 n}^{-1}
$$

where

$$
\begin{aligned}
& \mathbf{U}_{2 n}=\left[\begin{array}{cccccc}
\frac{\widehat{\mathbf{v}}_{n}\left(\lambda_{1}\right)}{\left\|\widehat{\mathbf{v}}_{n}\left(\lambda_{1}\right)\right\|} & \cdots & \frac{\widehat{\mathbf{v}}_{n}\left(\lambda_{n}\right)}{\left\|\widehat{\mathbf{v}}_{n}\left(\lambda_{n}\right)\right\|} & \frac{\widehat{\mathbf{w}}_{n}\left(\mu_{1}\right)}{\left\|\widehat{\mathbf{w}}_{n}\left(\mu_{1}\right)\right\|} & \cdots & \frac{\widehat{\mathbf{w}}_{n}\left(\mu_{n}\right) \|}{\left\|\hat{\mathbf{w}}_{n}\left(\mu_{n}\right)\right\|}
\end{array}\right] \\
& \quad=\mathbf{P}_{2 n}^{\top}\left[\begin{array}{cccccc}
\frac{\mathbf{v}_{n}\left(\lambda_{1}\right)}{\left\|\mathbf{v}_{n}\left(\lambda_{1}\right)\right\|} & \cdots & \frac{\mathbf{v}_{n}\left(\lambda_{n}\right)}{\left\|\mathbf{v}_{n}\left(\lambda_{n}\right)\right\|} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \cdots & \mathbf{0} & \frac{\mathbf{w}_{n}\left(\mu_{1}\right)}{\left\|\mathbf{w}_{n}\left(\mu_{1}\right)\right\|} & \cdots & \frac{\mathbf{w}_{n}\left(\mu_{n}\right)}{\left\|\mathbf{w}_{n}\left(\mu_{n}\right)\right\|}
\end{array}\right]
\end{aligned}
$$

provided that $\mathbf{P}_{2 n}^{\top}$ is an orthogonal matrix. Since (3.4) is an orthonormal set, $\mathbf{U}_{2 n}$ is an orthogonal matrix and (2.16) is established. The proof of (b) is analogous and so will be omitted.

Acknowledgements

This work is a contribution to the Project UID/GEO/04035/2013, funded by FCT - Fundação para a Ciência e a Tecnologia, Portugal.

References

Akbulak, M., da Fonseca, C.M. \& Yilmaz, F. (2013) The eigenvalues of a family of persymmetric anti-tridiagonal 2-Hankel matrices. Applied Mathematics and Computation, 225:352-357.

Bultheel, A. \& Van Barel, M. (1997) Linear algebra: rational approximation and orthogonal polynomials. Studies in Computational Mathematics 6, North-Holland, Amsterdam.
da Fonseca, C.M. \& Petronilho, J. (2001) Explicit inverses of some tridiagonal matrices. Linear Algebra and its Applications, 325:7-21.
da Fonseca, C.M. (2005) On the location of the eigenvalues of Jacobi matrices. Applied Mathematics Letters, 19: 1168-1174.
da Fonseca, C.M. (2018) The eigenvalues of some anti-tridiagonal Hankel matrices. Kuwait Journal of Sciences, 45:1-6.

Gover, M.J.C. \& Barnett, S. (1985) Inversion of Toeplitz matrices which are not strongly nonsingular. IMA Journal of Numerical Analysis, 5:101110.

Gover, M.J.C. \& Barnett, S. (1985) Characterisation and properties of r-Toeplitz matrices. Journal of Mathematical Analysis and Applications, 123:297305.

Gover, M.J.C. (1989) The determination of companion matrices characterizing Toeplitz and r Toeplitz matrices. Linear Algebra and its Applications, 117:81-92.

Laub, A.J. (2005) Matrix analysis for scientists \& engineers. SIAM, Philadelphia.

Mason, J.C. \& Handscomb, D. (2003) Chebyshev polynomials. Chapman \& Hall/CRC, Boca Raton.

Olshevsky, V. \& Stewart, M. (2001) Stable factorization for Hankel and Hankel-like matrices. Numerical Linear Algebra with Applications, 8:401-434.
$\mathbf{W u}, \mathbf{H}$. (2010) On computing of arbitrary positive powers for one type of anti-tridiagonal matrices of even order. Applied Mathematics and Computation, 217:2750-2756.

[^0]: ${ }^{1}$ E-mail address: jfls@fct.unl.pt; joao.lita@gmail.com

