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Abstract: The Mittag—Leffler function (MLF) plays an
important role in many applications of fractional calcu-
lus, establishing a connection between exponential and
power law behaviors that characterize integer and frac-
tional order phenomena, respectively. Nevertheless, the
numerical computation of the MLF poses problems both of
accuracy and convergence. In this paper, we study the cal-
culation of the 2-parameter MLF by using polynomial com-
putation and integral formulas. For the particular cases
having Laplace transform (LT) the method relies on the
inversion of the LT using the fast Fourier transform. Exper-
iments with two other available methods compare also the
computational time and accuracy. The 3-parameter MLF
and its calculation are also considered.
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1 Introduction

The Mittag—Leffler function (MLF) [1-4] is ubiquitous both
in the theory of fractional calculus (FC) and its applica-
tions [5-16]. In fact, the impulse response of fractional lin-
ear systems can be expressed in terms of the MLF, which
entails the need of efficient algorithms for its computa-
tion [17]. However, this calculation is not trivial, excepting
when considering small values of the argument, since the
numerical computation of the MLF poses problems both
of accuracy and convergence [1, 3, 18-21].
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In this paper, we tackle this problem. We start from
the general integral formula for the 2-parameter MLF [1,
22, 23] and we develop a method for its numerical imple-
mentation. We then particularize the general formulation
for values on half-straight lines, which are useful in its
application to linear systems. In a second step, we intro-
duce a generalization of the MLF and we propose one
method based on the efficient computation of the inverse
Laplace transform (LT). We adopt the bilinear transform-
ation to follow a Z transform form and we use the fast
Fourier transform (FFT) to obtain a sampled version of the
generalized Mittag—-Leffler fuction (GMLF). Finally, based
on these ideas, we consider also the implementation of the
3-parameter GMLF.

The paper is organized as follows. Section 2 intro-
duces the 1- and 2-parameter MLF and their integral rep-
resentations. Section 3 addresses distinct methods for
computing the MLF, presents several numerical tests,
and discusses the main results. Section 4 generalizes the
algorithms to the 3-parameters MLF. Finally, Section 5
draws the mains conclusions.

2 The MLF and its integral
representation

Definition 1. The (I-parameter) MLF [6] is given by:

oo

k
_ z +
Ea(z)_gir(kaﬂ), zeC, aeR*. )

The exponential series is a particular case obtained when
a=1.

A generalization of (1) includes a second parameter,
yielding the 2-parameter MLF:

o k

Z +
Ea’ﬁ(Z)sz:O:m’ zeC, (X,BER. 2

When a and B are positive real (case that we will consider
here), the series converges for all values of z € C [1, 22, 23]
and has the integral representation that we will deduce
here.
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Figure 1: The Integration path, £, for ﬁ

Consider the integration path in Figure 1. As shown by
Hankel [24], the reciprocal gamma function can be com-
puted by the integral

% = % /K uZeldu, zeC, 3)

provided that:

— u% is defined by its principal branch; we can assume
for branchcut line the negative real half axis, unless a
pole exists on this line;

— rmay assume any positive real value;

— ¢ can be any value in the interval (17/2, 71); it can be
equal to 71, provided that arg(u) = 7, or arg(u) = -,
above, or below, the cut, respectively.

As the MLF is defined by a uniformly convergent series,
we can write

l oo
Egplz) = — Y 2 / ukeBet gy
xp 2mi k2=(; r

1 - - -k | ju
= 5 Luﬁ[kZ_O:(zu )}edu.
The summation of the inner geometric series is
Yok = M provided that |zu™| < 1. This
condition introduces a constraint in the integration loop
in such a way that we can formulate the general integral
form of the MLF, [1, 19, 22, 25]:

1 urPett

Ea,ﬂ(z) = i A md%

zeC, a,BeR", (4)

Re

where now L is the integration path consisting in a loop

that starts at u = —oo, encircles the disk with center u = 0

and radius |z|/%, and returns to u = —oo (in Figure 1, r >

|z|M/%). This integration path can be deformed to become
the Hankel contour, simplifying the computations, under
the assumptions:

— The negative real axis is the branchcut line, but we
can choose any other in the left half plane; as referred
above, we have to follow that strategy if there is a pole
on such axis;

— As the MLF of any order a > 1 can be written in terms
of the MLF with order &« < 1, we will consider 0 <
a<l;

— We address the cases a — f — 1 > 0. Other alternatives
[1], namely a < 0, can also be treated, but they are not
relevant, and are not considered;

- zeCNO.

Consider the integration path in Figure 2 denoted by L;. It

consists of three components:

— The above described path £;

— The Hankel path # consisting of two half-straight lines
joined by a half circle with a radius as small as we
wish;

— Two circular arcs with radius R > |z|/4, to make a
closed path; radius R grows to co.

With the residue theorem, we can write

a
a _
f W=z 0

uhet 2""2%3 eZ% |arg(z)| < nma
f du = < 5)
c

|arg(z)| > ma ’
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Figure 2: The paths £ and H, and the closing arcs.

Under the above stated conditions, we can deduce that:

— The integrals along the circular arcs tend to zero when
the radius goes to infinite (application of the Jordan’s
lemma);

— The integral along the half-circle in the Hankel path
becomes zero when its radius decrease to zero;

— The integral along the upper half-straight line is

0oyt PPy g
0% yaelan_z ’

— The integral over the lower half-straight line is
ooyt Be P oy

“Jot Tagtian_,
— The MLF is given by
o
Eqp(z) = z¥ +
a
1 S 20— : _ a-f
1 / sin(Bm)u + sin[(a — B)mlu Ze‘” du, (6
T Jor u2a — 2 cos(am)u?z + z2
if | arg(z)| < ma, or by
Ea,ﬁ(Z) =
1 00 i 20— : _ a-f
1 / sin(Bm)u + sin[(a - B)lu Ze,u a7
T Jo+ u2a — 2 cos(am)u®z + z2

if | arg(z)| > ma.

Remark 1. For arg(z) = +am we have a singularity in the
integral, leading to inaccurate results. We will analyze and
solve this problem in Section 3.

In numerical computations, we need to truncate the integ-
ral above some uy. This originates an error given by:

Re

e “du.

5 - 1 /°° sin(Bmu?* P + sin[(a - p)mlu* Pz

7 Ju, u2a — 2 cos(am)u?z + z2

. sin(Bmuesi )
It can be shown that the function Sn@mu™sin(@mu®’z
u?®-2 cos(amu®z+z

is bounded and approaches sin(87) when u increases
without bound. Assume that its absolute value is given by
sin(Bm)(1+¢), €>0.Then

6] < 1+ /°° ie’“du < (L+e) [ e du
n Up uﬂ ugrr Up
1
_ ¢ ;8) e, ®)
U

Therefore, the error decreases exponentially leading to a
fast convergence of the integral.

In FC applications, we need to compute the MLF on
half-straight lines, defined by z = pt®e(t). From eq. (2) we
obtain the expression:

tka

F(ka+ﬁ)8(t)’ peC, teR, (9)

Eappt) = 3 pt
k=0

where t represents time and £(t) denotes the Heaviside
unit step function used to state that eq. (9) is identically
null for ¢ < 0.

To avoid confusion we call expression (9) as “causal
MLF” (CMLF), since it is defined on R and is null on R~ (it
can be considered as the impulse response of a causal sys-
tem). Furthermore, in order to simplify notation, we will
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omit £(t). This variable change is inserted in egs. (6) and
(7), where we make v = u/t to get

1
1pePt!
Eappt®) =pa +
ﬁ /‘X’ sin(Bm)v**# + sin[(a - B)mlv*Fp eav, (10)
m Jor v2 — 2 cos(am)pv® + p?
if | arg(p)| < na, or
Ea,p(pt“) =
ﬁ /w sin(Bm)v2# + sin[(a - f)nlv*Fp e dy, (1)
T Jo+ V2% — 2 cos(am)pv® + p?

if | arg(p)| > ma.

In practical applications, it is interesting to deal with the
LT.If B = 1itis a simple task to show that

Sa—l
a _ b

£ [Ea1pt)] = (12)

S
for Re(s) > 0 and |ps™®| < 1 [6]. Given the analytical
properties of the LT, these conditions can be expressed as
Re(s) > max { Re(p?/®), 0]. If B = 1, the function in eq. (9)
has a LT with no simple closed form. However, from egs.
(9), (10), and (11) the GMLF

Capt) = 1, p(pt%), teRY, 13)
has LT given by:
5B .
L [cap®)] = Capls) = wp MPERL (4

for Re(s) > max {Re(pl/“), Ol.

Frequently we know the LT in (14) that must be inver-
ted [17]. In agreement with the Bromwich inversion the-
orem, we compute the integral along a vertical straight
line passing at Re(s) = ¢ > max | Re(p'/%), 0}. In this line of
thought, we apply the LT inverse theorem to obtain a func-
tion that will be multiplied by e°’; our working domain is
avertical line defined by s = o+iw, where w represents the
angular frequency in rad/s. With such change of variable
we obtain the Fourier transform (FT):

. (0 + iw)* P
C = 1
op(iw) i) —p (15)
The inverse FT of this function is given by
capg(t) = i fw Meiwtda} (16)
B | (o +iw®—p )
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The computation of this integral may reveal some
difficulties, because the absolute value of the integrand
decreases to zero when w increases, but the decrease is
very slow, implying a very high truncation value. To avoid
this problem we can use the bilinear transformation:

21-z1

s=*7_1’ ZE(C, (17)

to obtain, from eq. (14), a function defined in the context
of the Z transform [26]:
171 ]a—ﬂ

[ 14z~

21217%_
Tiz1| P

where the subscript d means that we are referring to a
transfer function of a discrete-time system.

~ino

Ca(2) = lz| > 1, (18)

Remark 2. The sampling time interval T must be small. In
the integer order applications we choose T to guarantee

2+pT
that Ze}f’TT ~ 1 [26] for any p € C. In practice, the value
T = 1073 s is adequate. For the fractional case 0 < a < 1

it is expected to be small, suggesting the value T = 10™* s.

The time-domain function corresponding to eq. (18) is
given by:

ca(nT) = ﬁ f; C42)2"\dz, (19)

where A is a circle with center at the origin and radius
greater than 1. With a change of variable z = €% =
ael”, a = e we obtain:

1 (7 o
ca(nT) = —; / Ca(e)e"dw, (20)
2 J_,
or, as Hy(e'”) is a 2r-periodic function, we can write
1 2n . X
cqg(nT) = a"— Cq(e®)e“"dw. (21)
211 Jo
Adopting w = 2rv expression (21) yields:
1 3 -
cq(nT) = / Cq(e?™)e2™ndy. (22)
0

This integral is suitable for numerical computation by
means of the FFT. Let us sample the integrand on a dis-
crete uniform grid with K = 2 points, vy = ¢ -k, k =

0,1,...,K -1, to obtain the discrete Fourier transform:
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K-1

i) w2 Y Cale TR 23)
k=0

The value of K must be chosen in agreement with desired

highest value for the time interval: t,,, = KT.

To obtain the final estimation values for the CMLF
with this approach we must multiply (23) by the expo-
nential €T, On the other hand, the relation between the
continuous-time and the corresponding discrete-time val-
ues is obtained by dividing by the sampling interval, T.
Therefore, the final CMLF is given by:

K-1

ca(nT) = cupnT) w e — 3" Ca(@ T T . (24)
k=0

KT

3 The numerical computation of the
MLF

Several techniques were proposed for computing the MLF
[2, 18-20, 25]. In general, they use the Taylor series
approach for small values of the magnitude of the argu-
ment, |z|, and the properties of integral representations
and asymptotic behavior for high values of |z|.

The main idea is to avoid the problems involved in the
direct computation of the series (2). To do the computation
we proceed as follows:

(i) Truncate the series to get a polynomial

N Zk
E, = _
AN(Z) kE:o T+ §)

where N is chosen to assure that ‘Hﬁfﬁiﬂ)‘ <1n,andn

a small value (we use 7 = 10719),
(ii) Compute the terms cy = m

For fixed values of @ and f, when k increases,
the same happens to I'(ka + B). Although depend-
ing on a, we can say that in most cases, for k >
200 this function becomes oo in the numerical rep-
resentation. We propose here a simple and robust
method for calculating the terms ci. Therefore, for
a given set of values k and ka + 3, we calculate the
integer and fractional parts of ka + 8, denoted by
P and b, respectively, so that P = |ka + 3] and
b = ka + B — P. Knowing that T'(x + m) = (x),,['(x),
where (x),, is the Pochhammer factorial, x € R, m ¢
N, we can compute the terms ¢, by means of the
expression

M. D. Ortigueira et al.: On the Numerical Computation = 5

Ck = (25)

1 =
I'(b+1) l_[ <bT;) '
j=0
Experiments with different values of a and f§ reveal
that the proposed approach is more robust when
compared with the calculation of the MLF directly
form expression (2). We used I'(b + 1) instead of I'(b)
to avoid the case b = 0.
(iii) Perform polynomial computation.

To avoid computing large powers of z we use
the well-known Horner algorithm [24]. This consists
basically in a recursive computation as described in
the follow-up.

To simplify, write Xy(z) = Eq g n(2) in the format

XN(2) = (((cNz + cN-1) Z + CN-2) Z--C1) Z + Co.  (26)
This representation suggests the following recursive
procedure for its computation. In each step, we carry

out a product and an add. Let us start the algorithm
withn =N,

X.1(@) = cyz + cy-1.
Forn=N-1,---,1, we make
XN-1-n(2) = Xn-2-n(2)z + Cp1.

As seen, we carry N multiplications and N adds, but
we do not need to compute the powers of z.

The algorithm described is effective for small values of
|z|. On the other hand, the computation of the MLF
(2) and the CMLF (9) by means of the integral formu-
lations (6)—(7) and (10)-(11), respectively, yields good
results for high values of |z|, but reveals difficulties
for small values of the argument. Therefore, herein
we combine both approaches. The procedure is the
following:

(i) Consider 2 positive real values: x; < x. For |z| < x;
we use the above polynomial-based approximation
to compute the MLF. We denote by fi(z) the obtained
function, and we use it to approximate the MLF for
|z| < Xx3.

(ii) For |z|] > x, we use the integral formulations (6)-(7).
As above, we denote this function by f5(z), and use it
to approximate the MLF for |z| > x».

For xj < |z| < x, we use a weighted average of both
methods, fi(z) and f>(z2):

(iii)
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a. Define two real weight functions wy(z) =

- 'XZZ':;;, for x; < |z| £ x» and wy(z) = ‘)fz‘:;‘ll

for x; < |z| £ x», such that wi(z) + wy(z) = 1,
for x; < |z| < x,.

b. Inthe interval x; < |z| < x», the MLF is approxim-

ated by the weighted average:

f(2) = w1(2)f1(2) + wafa(2). (27)

This is important to avoid jumps.

In the follow-up we compute the MLF (1)-(2), the CMLF (9)
and the GMLF (13) for different values of their parameters
(Table 1). All of the experiments are performed in Matlab
R2015a, under Windows 7, 64-bit, on a Intel(R) Core(TM)
i5 CPU @ 3.20 GHz computer. The results obtained with
the proposed methods and those generated by the P&K-
MLF [27] and Gar-MLF [28] algorithms are compared in
terms of accuracy and computational time. For the P&K-
MLF approach we use precision 1078, For the Gar-MLF we
use the default settings. As a reference for accuracy we
adopt the values calculated with the software Mathemat-
ica (Mat-MLF).

In the first experiment, C;, we calculate the MLF by
means of the polynomial and general integral formulation
(Int-MLF), given by (6)-(7), (27). The integral is computed
through the Matlab function integral. The parameters
are (a,B) = (0.6,1), and the domain are the circumfer-
ences defined by |z| € [1,1.1], arg(z) € [-m, m]. Figure 3
depicts the results in the complex plane. We verify that
the Int-MLF and Gar-MLF lead to accurate results (close
to those obtained with the Mat-MLF), while the P&K-MLF
reveals difficulties for certain values of z, namely when
arg(z) = xan.

Remark 3. For arg(z) = =+am we have one pole on the
branchcut line. In this case, for avoiding inaccurate results

Table 1: Set of experiments illustrating the methods proposed.

DE GRUYTER

(a,{)’) = (0.6,‘1); |z| € [Il, 1.1];ar$(z) € [-m, 7

3
— P&K-MLF
—— Gar-MLF
27 — Int-MLF
Mat-MLF
1 L 4
m IRRERR
— REURE!
S of HH
E
A+ J
2+ .
_3 1 Il 1 1 1
-1 0 1 2 3 4 5

Re(MLF)

Figure 3: The value of the MLF calculated with the P&K-MLF,
Gar-MLF, Int-MLF and Mat-MLF algorithms, for (a, 8) = (0.6, 1),
z| € [1,1.1], and arg(z) € [-m, 7].

with the Int-MLF method, we should replace u by u-e', 16| <
Z, in the integral equations (6)—(7), to move the branchcut
from m towards m - 6.

In the two next experiments {C,, C3} we assess the meth-
ods in terms of accuracy and computational time. The
domain is the straightline defined by |z| €]0, 100], arg(z) =
ant. For C, the parameters are (a, 8) = (0.5,1), while for
Cs we have (a,B) = (0.5, 0.4). Figure 4 depicts the error
E= |E,X,5—Ea,/;|, where Ea,ﬁ(z) and E, g(z) denote the values
calculated by the numerical methods and those obtained
with Mathematica, respectively. Occasional gaps in the
error curve correspond to E = 0. Figure 5 shows the com-
putational time, t¢, required for the numerical evaluation
of the MLF with the different algorithms.

Label Function Parameters Domain Method
Cy MLF (1)-(2) (o, B) = (0.6, 1) |z| = 1, arg(z) € [1, 1.1] Int-MLF (6)-(7), (27)
(65} MLF (1)-(2) (@, B) =(0.5, 1) |z| €]0, 100], arg(z) = ar Int-MLF (6)-(7), 27)
C3 MLF (1)-(2) (a, B) = (0.5,0.4) |z| €]0, 100], arg(z) = an Int-MLF (6)-(7), (27)
Cy MLF (1)-(2) (o, =(0.7,0) |z| €]0, 100], arg(2) = a5 Int-MLF (6)-(7), (27)
Cs MLF (1)-(2) (@, P =(1.2,0.7) Iz| €]0, 100], arg(z) = a2 Int-MLF (6)-(7), (27)
Ce CMLF (9) (a,p) =(0.7,0.9 t €]0,20],p=-1 Int-CMLF (10)-(11), (27)
C7 CMLF (9) (a,p =(0.7,0.9 t€l0,20l,p=-1+1i Int-CMLF (10)-(11), (27)
Cs GMLF (13) (a,B) =(0.7, D) t €]0,20l,p =-1 FFT-GMLF (24)
Co GMLF (13) (o, =(0.7,1) t€]0,20],p=-1+i FFT-GMLF (24)
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@) 40 (‘a,ﬁ) = (9.5, 1);ar.g(z) = o

10730 ' ' ' '
0 20 40 60 80 100
—6— P&K-MLF
100 —v— Gar-MLF
= —A—Int-MLF
S 1010 S oo 0o0060060
10720 ' ' ' '
20 40 60 80 100
|z
® (@)= 05.04m() = or
@ 10_10 A ’ %
&) 10_20 / b b e W A A Y, 40 M A DL e D, 054 b Nl L
10730 ' ' ' '
20 40 60 80 100
—— P&K-MLF
10° —v— Gar-MLF
. —4—Int-MLF
w10 Sooo60600c 6o
E 10 M
10720 V ' ' ' '
0 20 40 60 80 100
|z

Figure 4: The error, E, in the numerical evaluation of the MLF for the
cases (@) Ca: (a, B) = (0.5, 1), |z| €]0,100], arg(z) = am; (b) Cs:
(a, B) = (0.5, 0.4), || €]0,100], arg(z) = an.

We observe that the Int-MLF leads to more accurate results
than the Gar-MLF and P&K-MLF algorithms, particularly
for larger values of |z|. For |z| small, the P&K-MLF
diverges. In terms of computational time, we verify that
tc is smaller, and remains nearly constant, for the Gar-
MLF algorithm. Both for the Int-MLF and P&K-MLF, the
computational time is non-uniform, varying more than
one order of magnitude. In general, the Gar-MLF method
requires more time than its counterparts for evaluating the
MLEF.

Experiments {C4, C5} assess the methods in another
demanding domain, defined by |z| €]0,100], arg(z) =
a5. The parameters are (a,f) = (0.7,1), and (a,f) =
(1.2,0.7), for C4 and Cs, respectively. Figures 6 and 7

M. D. Ortigueira et al.: On the Numerical Computation = 7

(a) 100 (Oé7ﬁ) = (057 1),arg(z) = am
——P&K-MLF
p —— Gar-MLF
10 —&—|nt-MLF

(b) 100 (Oéyﬂ) = (0.5,0.4); arg(z) = anr
——P&K-MLF
-1 —— Gar-MLF
10 —&— |nt-MLF

Figure 5: The computational time, t¢, to evaluate the MLF for the
cases (@) C: (a, B) = (0.5, 1), |z| €]0,100], arg(z) = arm; (b) Cs:
(a, B) = (0.5, 0.4), |z| €]0,100], arg(z) = am.

depict the error, E, and the computational time, tc,
obtained with the different algorithms. We observe that
the Int-MLF and the Gar-MLF yield similar accuracy and
are better than the P&K-MLF algorithm. Moreover, the
Gar-MLF is more efficient in terms of computational
time.

In the experiments {C¢, C;} we calculate the CMLF. We
use the integral formulation (Int-CMLF) given in the for-
mulas (10)-(11). For both experiments the parameters are
(@,B) = (0.7,0.9), and t €]0,20]. In Cs we use p = -1,
while in Cs we adopt p = -1 + i. Figure 8 shows the error,
E = |Eqp — Eapl, with &5 and &, 5 denoting the values
calculated numerically and obtained with Mathematica,
respectively. Figure 9 depicts the computational time, ¢c.
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('Ol7ﬂ) = (9.7, 1); al"‘g(z) — Oz'%

20 40 60 80
—e— P&K-MLF
| —— Gar-MLF
—2— Int-MLF

100

100

10'30 1 1 1 1
20 40 60| —— P&K-MLF 100
—v— Gar-MLF
10° Int-MLF [
@ 10-10
1070

Figure 6: The error, E, in the numerical evaluation of the MLF for the
cases (a) C4: (a, f) = (0.7, 1), |z| €]0,100], arg(z) = aZ; (b) Cs:
(a, p) = (1.2,0.7), 2| €]0,100], arg(z) = a5.

The Int-CMLF and Gar-MLF lead to identical values of E,
while for the P&K-MLF the error is considerable larger.
The computational time, tc, is smaller for the Gar-MLF
algorithm.

In the examples {Cg, Cy}, we calculate the GMLF for
t €]0,20] and parameters (@, 8) = (0.7, 1). Such value for
B allows comparing our method based on the inversion
of the LT using the FFT (FFT-GMLF), given by (24), with
the Int-CMLF, the P&K-MLF and the Gar-MLF algorithms.
For the experiments Cg and Cy we adopt p = -1 and
p = -1+ i, respectively. Figures 10 and 11 depict the
error, E, and the computational time, t¢c. Regarding accur-
acy, the FFT-GMLF algorithm performs slightly better
than the P&K-MLF, and worse than the Int-CMLF and
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Figure 7: The computational time, t¢, to evaluate the MLF for the
cases (a) Cy4: (a, B) = (0.7, 1), |z| €]0, 100], arg(z) = a%; (b) Cs:
(a, B) = (1.2,0.7), |z| €]0,100], arg(z) = a5.

Gar-MLF. With respect to computational time, we observe
that FFT-GMLF is considerably slower than the alternative
methods.

In conclusion, we verify that for evaluating the MLF
and the CMLF, the proposed methods, namely the Int-MLF
and the Int-CMLF, yield results identical to those obtained
with the Gar-MLF, and perform better than the P&K-MLF
algorithm. In terms of computational time, the Gar-MLF
algorithm superior to the other methods. For calculating
the GMLF, the FFT-GMLF is more accurate than the P&K-
MLF, requiring however a larger computational effort.
Therefore, the proposed methods represent alternatives
to those already available, and can be implemented
easily.
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Figure 8: The error, E, in the numerical evaluation of the CMLF for
the cases (a) Cs: (@, B) = (0.7,0.9), t €]0, 20], p = -1; (b) C7:
(a, B) = (0.7,0.9), t €]0,20], p = -1 +1.

4 Computation of the 3-parameter
CMLF

The 3-parameter GMLF is defined by:

[}

: -yt
S N S
Cap,y () =t kg; W Tkas ﬂ)e(t),

zeC, a,B,y,teR. (28)
Its LT is given by:
C s z 2
tx,ﬁ,y(s) = W, y ¢Z, (29)

for Re(s) = 0 > max {Re(p"/?),0}.If y € Z*, then we obtain
a combination of MLF. If y ¢ Z~, then we have a sum of
powers of the type t*.
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(0 8) = (07,09 p = —1

(@ 100 .
—o— P&K-CMLF
—v— Gar-CMLF
107! —a— Int-CMLF

10 .
° > 10 15 20
t
(b) 100 (O‘7ﬂ) = (0.770.9);1) = —1 +i
——P&K-CMLF
1 —v— Gar-CMLF
o ——Int-CMLF

Figure 9: The computational time, ¢, to evaluate the CMLF for the
cases (a) Ce: (a, B) = (0.7,0.9), t €]0, 20], p = —1; (b) C7:
(a,B) = (0.7,0.9), t €]0,20], p = -1 +1.

For computing c,p,(t) we need to adapt procedures
presented in Section 3 as follows:
(i) Computation based on the integral formulation
In this case the LT (29) does not have any pole,
meaning that its inverse assumes the form [24]:

1
)= —.
Capy (0 2mi
/oo eiﬁn(ua _pe—ian)y _ e—iﬁn(ua _peian)y —“fdu.
o+ [u2 - 2pcos(am)u® + p2]7 - ub-ar
&(o). (30)

(i) Computation based on the inversion of the LT using
the FFT
In this case, the approach is similar to that used
in (18), yielding:
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Figure 10: The error, E, in the numerical evaluation of the GMLF for
the cases (a) Cs: (a, B) = (0.7, 1), t €]0, 20], p = —1; (b) Co:
(a,B) = (0.7,1), t €]0,20], p = -1 +1i.

(1)

We compare the performance of the FFT-GMLF and Gar-
MLF methods for the parameters (a,f,y) = (0.7,1,0.8),
and argument t €]0,20], p = -1 + i. Figure 12 depicts
the value of GMLF and the computational time. We verify
again the good performance of the proposed method in
terms of accuracy, while ¢ is considerably larger.
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a
@ (@.0) = (0.7, 1);p = -1
§ —o— P&K-GMLF
10 —v—Gar-GMLF |}
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Figure 11: The computational time, t¢, to evaluate the GMLF for the
cases (a) Cs: (a, B) = (0.7,1), t €]0,20], p = -1; (b) Co: (a, B) = (0.7, 1),
t€]0,20],p=-1+1i.

5 Conclusions

In this paper, we proposed algorithms for efficiently com-
puting the MLF and its particular version, the CMLF,
based on polynomial calculations and integral formulas.
For the GMLF another method, relying on the inversion
of the LT using the binomial transformation and the FFT,
was proposed. Simulation results comparing the new and
two well-known methods, regarding the computational
time and accuracy, showed the effectiveness of the pro-
posed approach.
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Figure 12: The GMLF for parameters (a, B, ) = (0.7,1,0.8), and
argument t €]0, 20], p = -1+ i: (@) GMLF value; (b) computational
time, tc.
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