

M. van Sinderen et al. (Eds.): IWEI 2012, LNBIP 122, pp. 146–160, 2012.

MDA-Based Interoperability Establishment
Using Language Independent Information Models

Carlos Agostinho1, Jaroslav Černý 1, and Ricardo Jardim-Goncalves1,2

1 Centre of Technology and Systems, CTS, Uninova, 2829-516 Caparica, Portugal
2 Departamento de Engenharia Electrotécnica, Faculdade de Ciências e Tecnologia, FCT,

Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{ca,rg}@uninova.pt

Abstract. Nowadays, more and more enterprises realize that one important step
to success in their business is to create new and innovative products. Many
times the solution to do that is to abandon the idea of an enterprise as an
“isolated island”, and get collaboration with others: worldwide non-hierarchical
networks are characterized by collaboration and non-centralized decision
making. This paper proposes a conceptual model common to the entire business
network, in a framework that enables the abstraction of individual models at
their meta-level and increase language independency and interoperability,
keeping all the enterprise software’s integrity intact. The strategy presented
allows an incremental mapping construction, to achieve growing integration.

Keywords: MDA, MDE, Enterprise Interoperability, Model-Morphisms,
Model and Data Transformations, Language Independent Information Models.

1 Introduction

Interoperability is a property directly related with the heterogeneity of model
languages, communication capabilities, databases and semantics. Differences in these
hide a great barrier to achieve the time-to-market symbiosis that can unleash a
solution more valuable than the sum of its creators. Interoperability is more than just a
communication support: it is a software approach to maximize the benefits of
diversity, rather than to integrate the different system into one. Such diversity leads to
more fruitful results than by just integrating different systems into one. Since many
organizations developed and purchased software solutions based on their own needs,
the required cooperation with others is not a trivial activity and business partnerships
are less effective, evidencing low level of interoperability.

To solve this problem, instead of adopting a paradigm that obligates every
organization to migrate their systems, or develop complex mappings in a single step
to comply with these advanced practices, one can act at the communication module,
where the data is exchanged. The authors propose Model Driven Architecture (MDA)
based technologies for the development of transformations and execution of
automatic and executable Model Morphisms (MoMo), also providing traceability and
repeatability on them. The proposed framework enables to respond automatically to

IFIP International Federation for Information Processing 2012

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-642-33068-1 20

©

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/344685131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/978-3-642-33068-1_20

 MDA-Based Interoperability Establishment 147

the network dynamics and its sustainability, i.e. changes that occur over the time and
impact negatively the interoperable state can be tuned and balanced.

2 Model Driven Engineering

Model-Driven Engineering (MDE), sometimes also referred as Model-Driven
Development (MDD), is an emerging practice for developing model driven
applications. It represents a promising software engineering approach to address
systems complexity, both by simplifying and formalizing the various activities and
tasks that comprise an information system life cycle (i.e. from design, to construction,
deployment, operation, maintenance and modification). Given today’s increase of
technology complexity, models are becoming a powerful mechanism to precisely
describe problems in a way that avoids delving into technological details, thus
allowing developers to focus on more abstract tasks and increasing productivity rather
than to computing concepts. MDE is meant to maximize compatibility between
systems, simplifying the process of design, and promoting communication between
individuals and teams working on the system [1].

MDD/MDE’s vision goes even further, invoking the unification principle, which
states that “everything is a model” (i.e., platforms, components, legacy software,
services, etc.), encouraging the support of models at different levels of abstraction,
from high-level business models focusing on goals, roles and responsibilities down to
detailed use-case and scenario models for business execution [2, 3]. These models are
developed through extensive communication among product managers, designers, and
members of the development team, and as they approach completion, enable a fast
development of product and systems. However, despite obvious potential capabilities
for closely matching the EI holistic levels, yielding major productivity and reliability
benefits, there is not yet consensus about its technology readiness [4, 5].

2.1 Model-Driven Architecture (MDA)

Among the several realizations of the MDE/MDD principles that exist, such as Agile
Model Driven Development [4, 6], Domain-oriented Programming [7], Microsoft’s
Software Factories [8] and Model Driven Architecture [9, 10], MDA is perhaps the
most prevalent at the moment. Since it was launched, in 2001, MDA has been having
a major impact on the software development community, and presently, there is a
large landscape of tools available for its support.

MDA has as its foundation on three complementary ideas: direct representation,
automation and open standards. The first makes use of abstract models to represent
ideas and concepts of the problem domain, reducing the semantic gap existing
between domain-specific concepts and the technologies used to implement them. The
second uses model transformation tools to automate the translation process from high
level specifications and formal descriptions of the systems, to the bottom levels and
implementation code, therefore increasing speed, code optimization and avoiding
human errors in the process. Regarding the last foundation, MDA enforces the usage

148 C. Agostinho, J. Čern

of open standards to speci
implementation platforms,
tool vendors [3, 11].

Fig. 1. MDA’s Conceptual

An MDA system can be
Fig. 1), and in order to sup
models at three different
Independent Model (CIM),
environment where it will o
the domain practitioners a
domain; (ii) Platform Indep
the structure and functiona
More concretely, it focuses
any particular platform in o
(iii) Platform Specific Mod
with details that specify ho
PSM adds to the PIM, te
available in a specific im
systems and programming l

2.2 Model Transforma

Based on model transforma
an application or integrated
requirements through PIM
generated code and a deplo
evolves, extending and ther
and interoperability are bu
distinction between vertical

ný , and R. Jardim-Goncalves

ify the high level models, and the features of the tar
promoting interoperability among the entire ecosystem

lization Levels and Transformation Types (adopted from [12])

e observed and analyzed from different points of view (
pport the supra-cited foundations it defines a hierarchy
levels of information abstraction [13]: (i) Computat

, which specifies the requirements for the system and
operate. It’s also called a domain model since it’s meant
and it’s based on the vocabulary of the specific tar
pendent Model (PIM), which is the formal specification
ality of the system that abstracts away technical deta
s on the operation details while hiding specific details

order to be suitable for use with several different platfor
el (PSM) that combines the specification in the PIM mo
ow the system uses a particular type of platform. Thu
echnical details and implementation constructs that

mplementation platform, including middleware, operat
languages (e.g. Java, C++, EJB, XML, Web Services, et

ations

ations, the MDA unifies every step of the developmen
d suite from its start as a CIM of the application's busin

M defined functions and behavior, one or more PSMs
oyable application. The PIM remains stable as technolo
reby maximizing software return on investment. Portabi
uilt into the MDA architecture, which also introduces
l and horizontal transformations (evidenced in Fig. 1).

rget
m of

)

(see
y of
tion
the

t for
rget
n of
ails.
s of
rms;
odel
s, a
are

ting
tc).

nt of
ness
, to
ogy
ility
the

 MDA-Based Interoperability Establishment 149

Vertical Transformations: Imply a change on the abstraction level of the resulting
model, e.g. going from PSM to PIM implies a generalization transformation, and from
PIM to PSM implies a specialization transformation. The amount of generated code
depends on both the code generator and also the level of detail represented in the
PSMs (i.e. how well the PSM captures the details of the physical platform). Ideally,
only small portions of missing code should have to be added by the human developer
in order to ensure that the generated code and auxiliary files are ready for
compilation, linking and deployment.

However, today, MDA vertical transformations are still an open issue. Incomplete
applications have been developed from CIM to PIM due to the lack of efficient tools
and methods for transformation [14]. For this purpose, new concepts, methods and
tools are necessary.

Horizontal Transformations: In this case (e.g. refactoring of individual models,
language translation, or even joining different models), the level of abstraction
remains unchanged, leading to solutions for interoperability problems at the same
enterprise level [15]. Both input and output models must be an instance of a well-
defined meta-model, and have to be classifiable according to the meta-modelling level
they belong to. Due to that, greater interoperability benefits but also harder
complications are expected in horizontal transformations, since at the time of the
transformation specification (mapping), one has to be concerned with different
language-related specificities [12]. In fact, different languages might enable to
describe the same objects with different detail levels (e.g. properties, constraints, etc.).

With horizontal transformations, companies can specify P2P mappings to translate
any data from one format to the other, thus allowing an exchange of information. When
performing this type of transformation (e.g. converting instances of a model to instances
of another model) an explicit or an implicit mapping of the meta-model has to be
performed. Thus, as depicted in Fig. 1, the idea is that when performing a transformation
at a certain level “n”, this transformation has (implicitly or explicitly) to be designed by
taking into account mappings at level “n+1”. Once the “n+1” level mapping is complete,
executable languages can be used to implement the transformation, e.g. ATL1 and the
QVT2. This is valid either for CIM, PIM or PSM models.

Horizontal transformations, which are targeted in this paper’s research, are traditionally
static processes that once defined can be repeated any number of times achieving the same
results. The major difficulty is defining them while supporting network dynamicity,
joining the efforts of business and technical specialists at reduced costs.

3 Model Morphims (MoMo)

The concept of morphism is described in mathematics as an abstraction of a structure-
preserving map between two mathematical structures [16]. Recently, this concept is
gaining some meaning in computer science, more exactly in systems interoperability.

1 ATL – Atlas Transformation Language (www.eclipse.org/m2m/atl/)
2 QVT – Query View Transformation (www.omg.org/spec/QVT/)

150 C. Agostinho, J. Černý , and R. Jardim-Goncalves

This new meaning of Morphism describes the relations (e.g. mapping, merging,
transformation, etc.) between two or more information specifications as the ones
needed to define MDA horizontal transformations.

In this context, the research community identifies two core classes of MoMo: non-
altering and model altering morphisms [15]. In the first, given two models (source A
and target B), a mapping is created relating each element of the source with a
correspondent element in the target, leaving both models intact. In model altering
morphisms, the source model is transformed using a function that applies a mapping
to the source model and outputs the target model. Other relations, such as the merge
operation, can also be classified as model altering morphisms, however they are not
detailed in this paper.

3.1 MoMo Formalization

The research community has developed many proposals to morphisms formalization
[15]. Graph theory has been used in some, although other theories can be considered
to achieve the envisaged goals, e.g., set theory [17], model management [18], or
semantic matching [19]. However there is not a single perfect solution that can be
used to achieve all the morphisms goals at once. Some are ideal for structural issues,
others for semantics providing good human traceability, and others are more formal
and mathematical based. Agostinho et al. ([20]) proposes a 5-tuple mapping
expression, with the objective to consolidate and complement existent approaches:

MapT:<ID,MElems,KMType,MatchClass,Exp> (1)

• ID is the unique identifier of the MapT;
• MElems is the pair (a,b) that indicates the mapped elements in the source and

destination models;
• KMType stands for Knowledge Mapping Type, and is used to identify the

morphism as “Conceptual” if mapping concepts or terms; “Structural” if mapping
model schemas; or “InstantiableData” if the mapping instantiable properties;

• MatchClass stands for Match/Mismatch Classification and is used to classify with
reference data, knowledge about the mapping mismatches, i.e., inconsistencies of
information that can appear when a mapping between two models is created,
derived from the multiple conflicts between the entities;

• Exp stands for the mapping expression that translates and further specifies the
previous tuple components.

The idea of using a tuple brings many advantages, e.g. being human traceable and
readable, adding knowledge concerning mismatch. When used by intelligent systems,
the tuple’s information enables automatic data transformations and exchange between
two organizations working with/on different information models. Therefore, it was
decided that the tuple would represent morphism in the framework proposed.

According to the tuple philosophy, all the information about the mappings should
be stored in a dedicated knowledge base so that it becomes computer processable, and

 MDA-Based Interoperability Establishment 151

readjustments can be easier to manage and data exchange re-established automatically
in a sustainable environment. To reach these objectives, Sarraipa et al. [19, 20]
proposed the Communication Mediator (CM), and also proposed that all the business
partners in the same collaboration network it embedded in their local system.

3.2 Graphical Representation of Mapping Morphisms

In addition to the formalization, also models visualization is important. Frequently
information modeling languages are associated to very specific and technically driven
graphical representations which damage the abstraction purposed behind modeling.

Graphical browsing of standard models and product data visualization, play
important roles in the interoperability achievement, and should be considered in
MoMo frameworks. When in the development and implementation stages of an
information model, it is frequently necessary to have an easy view and graphical
understanding of the full scope of the model. The same happen in the mapping
establishment. Thus, non-technical visual representation facilitates the understanding
of the reference model, and the abstraction levels that a visual object may represent,
brings a suitable and attractive mechanism to understand, navigate and manage the
contents of the model, and the model structure itself [21].

For example, nowadays, browsing approaches have been used to assist in the
development of some product data standards (e.g. STEP [22]). Efforts towards this
kind of visualization were first noticed in XML editors with the introduction of grid
layouts. Nevertheless, other more promising technologies exist for these purposes,
like hyperbolic tree representation and graph representation. In the first (hyperbolic
tree), a tree-like three dimensional hierarchical structure visualization of the
information is given, providing the possibility to have represented levels of
abstraction with expand/collapse functionalities. Sometimes, despite being technology
independent, this type of visualization becomes rapidly complex when models are too
large. The second, interactive graph-based representations also do not impose any
kind of restrictions on the relationships between the nodes and are considerably more
widespread with examples available in many commercial and open source solutions
(Microsoft Visio ®, Annas3, JGraph4, JUNG5, etc..)

4 MDA-Based Framework for Interoperability Establishment

In order to materialize the vision of being able to put aside the low-level implementation
details and have domain experts defining interoperability through the use of language
independent information models, a framework based on the four levels of the model-
driven architecture, relating meta-models, information models and data is presented
in Fig. 2.

3 https://sites.google.com/site/annasproject/Home
4 http://www.jgraph.com/jgraph.html
5 http://jung.sourceforge.net/

152 C. Agostinho, J. Černý , and R. Jardim-Goncalves

Fig. 2. MDA-based Framework for Interoperability Establishment

The left and right-hand sides of Fig. 2 represent two different organization’s
information systems with different internal legacy models, where information is
presented following the model- language-meta-model. The core of the architecture is
focused on the middle part of the figure, enabling two complementary layers, i.e. the
modeling language harmonization layer and the inter-enterprise harmonization layer:

• The first (boundaries shared with the enterprises), is focused on the definition
of mapping morphisms at the meta-model level, i.e. the modeling language
used in each information model. It is therefore the layer realizing the
transformation of models from one language to the other, which in our case, is
used as an intermediate step for interoperability establishment. Enterprise
system models, standards or even reference ontologies are transformed to their
abstract interfaces (and vice-versa) using metadata descriptions (the Language
Independent Meta-Model - LIMM, presented in next section 4.3) similar to the
suggested in ISO/IEC 11179 Metadata Registries (MDR) [23].

• The last (center), works sequentially after the first and is responsible for the
model and semantics harmonization, defining mapping morphisms among the
different abstract model interfaces (LIMs). The process includes storing this
knowledge in a CM knowledge base (as the one of [20]) replicated by the
involved organizations, which serving as a standard during the mapping
establishment will support the package for sustaining systems interoperability.

The architecture makes use of MDA’s horizontal transformations to support the
harmonization of modeling languages, models and data levels, within a platform
independent context.

4.1 Model Morphisms

Model morphisms are used across the multiple harmonization layers and throughout
the MDA levels: Level 2 – language mapping; Level 1 – models and ontologies

Modelling Language
Harmonization Layer

Models and Ontologies Mapping

Level 0
(Data)

Level 1
(Information

Models)

Level 2
(Meta-models)

Level 3
(Meta-meta-

models)

Meta-meta-
model

Models
Transform

Meta-
modelo

Meta-model

defined by

defined by

La
ng

u
ag

e
(A

)

Common Base
(A)

described by

R
ea

liz
es

defined by

Common Base
(B)

defined by

described by described by

defined by R
ea

liz
es

Data Transformations

R
ea

liz
es

defined by

described by

defined by

Mapping A-B

Language
Mapping

Models
Transform

Data Data

Inter-Enterprise
Harmonization Layer

Semantic
Mismatches

LIMMLIMM Meta-
modelo

Meta-model

Modelo
Model

D
at

a

LIM A LIM B Modelo
Model

D
at

a

A’s
Mediator

KB

B’s
Mediator

KB

St
ru

ct
ur

e
(A

)

Language (B)
Structure (B)

Language
Mapping

Modelling Language
Harmonization Layer

 MDA-Based Interoperability Establishment 153

mapping, as well as the model transformation morphims; Level 0 – data transformation
morphisms.

The MoMo’s associated with the mappings are model non-altering"ߠሺܣ, ,"ሻܤ
which are described by mapping tables for each modelling language linked to the
LIMM. These mappings are then implemented using an executable language,
realizing the model altering morphisms (transformations "߬: ܣ ൈ ߠ ՜ on the ("ܤ
respective inferior level. Since there are not so many modeling languages available,
level 2 mappings are expected to be pre-defined and transformation scripts relatively
static as changes in modeling languages specification is not common. They can be
updated, but the mechanism for doing so is not envisaged to be as dynamic as the
model and ontology mappings from the intra-enterprise harmonization layer (level 1).

4.2 Modeling Language Harmonization Layer

As specified, this architecture layer is responsible for translating information models.
Mappings here defined are accomplished by establishing a correspondence, at the
meta-model level (level 2 of the MDA), between any specific language constructs and
the language independent metadata, enabling bidirectional transformations at any
enterprise information model (level 1).

By being able to transform any given input back and forth to the LIM format (LIM
meta-model - LIMM), the architecture accomplishes the objective of modeling
language independency, helping enterprises to further abstract from technology. To
unleash it, executable rules can be applied to transform any N-1 level, according to
the Nth level of the mapping. This way, one can represent multiple models according
to LIMM (level 2) and, if there is a mapping defined between each input modeling
language and the latter, multiple models from multiple languages can be represented
by equal number language independent models (LIM).

The language mapping procedure is a manual process since meta-models must be
analyzed and mapped between them by experts, but the language transformations are
always automatic and repeatable. Given that each language map is done only once
independently of the number of times it is used or executed, it is an acceptable cost.

4.3 Language Independent Meta-Model (LIMM)

LIMM serves as an abstract interface on top of enterprises’ information models.
Through its usage, becomes possible to abstract the technology and implementation
details associated with the different modeling languages, and thus, enlarge the scope
of users involved in a traditional mapping definition activity. Having manager and
domains experts involved in this process increases the quality of the mappings that
will enable interoperable relationships. In comparison to most modeling languages, it
is intended to enable as little loss of expressiveness as possible, but at the same time,
be simple and generic to support multiple language mappings.

Also, LIMM resemblances with ISO/IEC 11179 [23] standard are not by fortuity.
This abstract interface was based on the standard’s foundations and concepts in order
to give support to mechanisms for enabling global data interchange, particularly

154 C. Agostinho, J. Černý , and R. Jardim-Goncalves

across application areas. A bridge between major LIMM concepts and ISO/IEC
11179 can be made, e.g. the standard’s “Entity”, “Property” and “Representation”
concepts correspond to LIMM’s “Entity_Concept”, “Property” and “Representation”
constructs, respectively. The language independent meta-model proposed is described
as an UML class diagram in Fig. 3.

Many of the information modeling languages, e.g. EXPRESS [24], UML class
infrastructure [25], OWL and XSD specification [26, 27] have been analyzed in
detail and they were the focus of the attention to create this comprehensive meta-
model and, as far the mappings defined for those languages demonstrate, LIMM is
able to support them with little loss of expressiveness. In resemblance to what
happens in the OWL language, LIMM is capable of representing both models and
data levels of MDA (Level 1 and Level 0, respectively), enabling the combined
transformation of both levels at the same time, or each independently if required.
With this, not only the meta-model is prepared to deal with harmonization of
modeling languages, but is also capable of representing instances of models, meaning
that it can be used as an intermediate platform for data harmonization (represented by
the “LIMM_Instances” package, on the bottom).

Fig. 3. Language Independent Meta-model (LIMM)

Concerning modeling concepts, the meta-model considers the representation of
entities, types, properties, basic types, aggregations, etc. Nevertheless, some
languages (e.g. EXPRESS) enable explicit behavioral expressions (instantiation rules)
and functions, which are not supported. However, they are considered non-
fundamental for the envisaged mapping process which is mainly focused on the
information model mapping at the level 1 of the framework.

 MDA-Based Interoperability Establishment 155

4.4 Inter-Enterprise Harmonization Layer

Once all modeling languages from the different enterprises involved in the mapping
definition are harmonized with the LIMM, and the models made available as LIMs,
experts from each company should begin cooperating to define the actual P2P,
P2Standard or P2Ontology mapping definition. As specified in the center of Fig. 2,
the inter-enterprise harmonization layer is responsible for this activity, following the
same MDA horizontal transformation paradigm as before, and enabling automating
transformations at the level N-1.

Besides the traditional connectivity, the semantic mismatches, found along the
various model elements being mapped, are a very important topic regarding the
experts’ collaboration. Many of the mapping morphisms will be imperfect due to a
number of factors that can go from a simple encoding difference in equivalent
properties to a granularity divergence. These can never be solved, but for change
management and sustainability this is an important issue and the proposed
architecture takes this in consideration, registering the complementarity between the
model element correspondence and the semantic mismatch.

The mappings realized at this point do not suffer from the extra complexity of
dealing with multi-modeling languages, focusing just on the business related
constructs and easing the process of harmonizing the semantic and structure level of
models and ontologies. As a result of the entire process, generation of transformation
morphisms for data from different enterprise nodes, or even to a reference format, is
achieved, thus establishing interoperability.

Each pair of morphims (mappings and transformations) is stored on dedicated
Communication Mediators. The objective is that each organization keeps its own CM
to track relationships of their inner-elements with its business partner ones, thus
maintaining a traceable record of relationships to support monitoring and intelligence
activities of the package for sustaining systems interoperability, as well as “on-the-fly”
composition of transformations. MoMos defined at the modeling language
harmonization layer could also be stored on each CM. However, those transformations
are only used to enable the inter-enterprise mapping process, and do not have the same
need for dynamicity nor monitoring. The union of the two transformations (for each
direction of communication) unleashes the capability of, both automatic and
transparently, communicate and collaborate with other organizations, with different
modeling languages, models, semantics and ontologies.

The complete automatic data exchange and translation can be accomplished
between different model instances at the MDA level 0, thus completing the base for
sustainable systems interoperability. Also, since all mappings of level 1 can be stored
on a local knowledge base, it enables to gradually add more mappings with other
partnering organizations and even to edit or delete past mappings. This provides the
required adaptability of the framework to small collaboration networks, and being
able to escalate to larger scenarios.

Although the MDA-based framework for interoperability establishment proposes a
complete solution to enable the model and language independency in multi-sized
business networks, it is more focused in enabling the harmonization of the
heterogeneous information models from the multiple organizations involved in the

156 C. Agostinho, J. Černý , and R. Jardim-Goncalves

collaboration network. Semantics analysis through terminology mapping is also
possible but, the further refinement of semantic interoperability is not in the scope of
this paper.

5 Proof-of-Concept Implementation

Given the context of MDA, QVT is the standard transformation language proposed by
OMG. However, considering the languages analyzed, ATL has currently the largest
user-base and the most extensive information available such as reference guides,
tutorials, programmers’ forums, etc. As evidenced by [28], it is a largely used
language to implement MDA based tools, having a specific development toolkit plug-
in available in open source6. By all these reasons it was decided to use ATL to
implement model and language transformations in the scope of the MDA-based
framework for interoperability establishment.

The proof-of concept (POC) here described, is focused on the implementation
details as required by an industrial case-study in the frame of the European Project
CRESNDENDO [29], which among other modeling languages is concerned with
OWL. This way, Fig. 4 is focused on step required to instantiate the framework
previously presented with information models described in that language.

Fig. 4. OWL Instantiation of the Modeling Language Harmonization Layer

5.1 Modeling Language Harmonization Layer

To enable a mapping among the OWL meta-model [30] and the LIMM, one needs
firstly to put the OWL data in an XMI serialization following the OWL meta-model
specifications. Nevertheless the procedure to do so is not as straightforward as
desirable since, in spite of the inputting OWL model is already XML serialized, it
cannot be directly processed by the ATL toolkit which needs XMI as an input. The

6 Eclipse Modelling Project - http://www.eclipse.org/modeling/

Enterprise D Preparatory Steps OWL – LIMM Mapping Morphism

Level 2
(Meta-models)

Level 3
(Meta-meta-

models)

D’s Model
(XMI)

D’s Model
(XMI)

OWL
Meta-Model

(XMI)

LIMM
(XMI)

LIMD

(XMI)

MOF

instance of

instance of instance of

instance of

de
fin

es

mapping
θ(OWL, LIMM)

D’s Model
(OWL/XML)

Step 1

XML
injection

XML
Meta-Model

(XMI)

instance of de
fin

es

mapping

instance of

Level 1
(Information

Models)

Step 2 Step 3

transformation
τ(OWL, LIMM)

 MDA-Based Interoperability Establishment 157

complete process for accomplishing the language mapping test case is illustrated in
Fig. 4, where the first step consists in doing an injection of the original model to an
XML MOF meta-model specification. Following that, the second preparatory step
consists in mapping that XML format to the reference OWL meta-model which will
be the starting point for the actual ߠሺܱܹܮ, .ሻ language mapping (step 3)ܯܯܫܮ

According to the architecture specified in section 4, the language transformation is
a direct consequence of the mapping. In fact, by using ATL as the MDA language,
one is at the same time specifying the mapping and defining the transformation rules
(illustrated under step 3).

5.2 Inter-Enterprise Harmonization Layer

LIMM has the unusual capacity of storing both model and data instances within the
same physical file, in resemblance to what happens with OWL. It potentiates the
actual data transformation at a language independent form as well, thus avoiding the
definition of mapping morphisms at this abstract level, which would have to be
reengineered back to the original model languages. This integration of model and data
maintains a forward flow of activities from company “X” to the abstract interface, and
from there to the company “Y”. However, as illustrated in Fig. 5, before the definition
of the model mapping (step 5), similar steps as the ones conducted for the modeling
language harmonization layer need to be followed to append data into the LIM model
(step 4). For this TC, since enterprise “A” was already part of the network, that
preparatory step 4 is not required.

Fig. 5. Instantiation of the Inter-Enterprise Harmonization Layer

LIM – LIM Mapping/Versioning Morphism

LIMM
(XMI)

MOF

instance of

instance of instance of

Enterprise X

Level 2
(Meta-models)

Level 3
(Meta-meta-

models)

Level 1
(Information

Models)

Level 0
(Data) (as in process of

language mapping)

X
(language x)

Step 4

LIMX

(XMI)
LIMY

(XMI)

mapping θ(LIMX, LIMY)

X
(XMI)

Step 5

transformation
τ(X, Y)

Y
(XMI)

versioning θ(LIMX, LIMY)

de
fi

ne
s

X’s
CM

Y’s
CM

Preparatory
Steps

158 C. Agostinho, J. Černý , and R. Jardim-Goncalves

It is very important to preserve the user’s technology abstraction, envisaged by
LIMM, thus the mapping process is supported by a collaborative tool capable of
visualizing and interacting with models and concepts in a way that model element’
relationships and dependencies are easily understood by domain actors with no
knowledge of technical rules. For this purpose, graph-like visualization tools have
been analyzed, not being associated with other types of technical diagrams (e.g.
UML, etc.). As in the language transformation, data transformation is a direct
consequence of the mapping.

5.3 Mapping Tool

JGraph has been elected and modified to read LIM model files and store morphisms
at the CM. It is a widely used open source project for graph visualization and
manipulation, similar to Microsoft Visio®, with good documentation and several
examples. Features include a complete selection of layouts to automatically position
the graph, many styles of shapes and edges, validation of connections, as well as an
undo and redo manager. Naturally, some adjustments had to be made to enable the
interaction (mapping definition) among two different graphs, and to become
integrated with LIMM’s Entity_types, Type_Concepts, and Instance_Groups. A
JAVA binder (JAXB7) was included to allow the unmarshalling (interpretation) of
LIM files, and JENA8 - a Java API for OWL providing services for model
representation, parsing, database persistence, querying - was used for the integration
with the communication mediator.

Fig. 6. Mapping Tool Snapshot

7 JAXB: http://www.oracle.com/technetwork/articles/javase/
index-140168.html

8 Available at: http://protege.stanford.edu/plugins/owl/
jena-integration.html

 MDA-Based Interoperability Establishment 159

A snapshot of the tools in included in Fig. 6 where is possible to see two
information models represented using very simple shapes, metadata of the selected
object on the left, and the mapping linking both model objects. The complete that can
be defined between both models is represented not only graphically. It can be edited
according to the formalization tuple described in section 3.1 – equation 1, and
complemented with the required ATL code.

6 Conclusions and Future Work

The proposed conceptual framework envisages that enterprises willing to join a
collaboration network do not have to change their legacy software. The choice of
MDA/MDI as the enabling technology for the interoperability establishment is
motivated by morphisms modularity and repeatability through the existing landscape
of tools available to support horizontal and vertical transformations. Depending on the
initial situation (i.e. already having a legacy system, or wanting to develop a new
one), either of these methods can prove to be the more efficient to establish
interoperability, thus allowing a seamless exchange of information among partners.

This branch of applied research could be explored in the future, checking the
feasibility of creating smaller, more parameterized software or services developed
specifically for managing networked business relationships. Nevertheless, since there
are scarce implementations of transformations from context independent models
(CIM), where the business requirements are specified, to platform independent
models (PIM), where the information structure is detailed, new concepts, methods and
tools are demanded to cover this gap.

Acknowledgments. Authors would like to acknowledge the European funded Project
UNITE (FP7 248583), namely its secondment programme coordinated by
UNINOVA-GRIS, that supported the development of various ideas and concepts
presented in this. Also, recognition goes to all the involved in CRESCENDO
FP7-234344 and MSEE FP7-284860 that in somehow have contributed to this work.

References

1. Selic, B.: The pragmatics of model-driven development (2003)
2. Bézivin, J.: Model Driven Engineering: An Emerging Technical Space. In: Lämmel, R.,

Saraiva, J., Visser, J. (eds.) GTTSE 2005. LNCS, vol. 4143, pp. 36–64. Springer,
Heidelberg (2006)

3. Frankel, D.: Model Driven Architecture – Applying MDA to Enterprise Computing. OMG
Press (2003)

4. Ambler, S.W.: Agile Model Driven Development Is Good Enough. IEEE Software 20,
71–73 (2003)

5. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45, 621–645 (2006)

6. Ambler, S.W.: Effective Practices for Modeling and Documentation,
http://www.agilemodeling.com/

160 C. Agostinho, J. Černý , and R. Jardim-Goncalves

7. Thomas, D., Barry, B.M.: Model Driven Development: The Case for Domain Oriented
Programming. In: OOPSLA 2003. ACM Press (2003)

8. Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications
with Patterns, Models, Frameworks, and Tools. Wiley (2004)

9. MDA Guide Version 1.0.1 (omg/2003-06-01). Object Management Group (2003)
10. OMG: Model Driven Architecture, http://www.omg.org/mda/
11. Delgado, M.: Harmonisation of STEP and MDA conceptual models using Model

Morphisms, MSc Thesis (2008)
12. Agostinho, C., Correia, F., Jardim-Goncalves, R.: Interoperability of Complex Business

Networks by Language Independent Information Models. In: CE 2010. Springer, Cracow
(2010)

13. Berre, A.-J., Liu, F., Xu, J., Elvesæter, B.: Model Driven Service Interoperability through
Use of Semantic Annotations. In: I-ESA 2009. IEEE, Beijing (2009)

14. MSEE: Deliverable D1.1.1: Service concepts, models and method at CIM-PIM-PSM level.
MSEE IP (FP7 284860) (2012)

15. INTEROP: Deliverable DTG3.1 (MoMo.2): MoMo Roadmap. INTEROP NoE Project
(FP6 IST-1-508011) (2005)

16. Ogren, I.: On Principles for Model-Based Systems Engineering. Systems Engineering
Journal 3, 38–49 (2000)

17. Dauben, J.W.: Georg Cantor: His Mathematics and Philosophy of the Infinite. Harvard
University Press (1979)

18. Bernstein, P.A.: Applying Model Management to Classical Meta Data Problems. In: First
Biennial Conference on Innovative Data Systems Research (2003)

19. Sarraipa, J., Jardim-Goncalves, R., Steiger-Garcao, A.: MENTOR: an enabler for
interoperable intelligent systems. International Journal of General Systems 39, 557–573
(2010)

20. Agostinho, C., Sarraipa, J., Goncalves, D., Jardim-Goncalves, R.: Tuple-Based Semantic
and Structural Mapping for a Sustainable Interoperability. In: Camarinha-Matos, L.M.
(ed.) DoCEIS 2011. IFIP AICT, vol. 349, pp. 45–56. Springer, Heidelberg (2011)

21. Delgado, M., Agostinho, C., Malo, P., Jardim-Goncalves, R.: A framework for STEP-
based harmonization of conceptual models. In: IEEE IS 2006, London UK (2006)

22. ISO TC184/SC4: Standard for the Exchange of Product Data - ISO 10303 (STEP) (1994),
http://www.tc184-sc4.org

23. ISO/IEC: Information Technology - Metadata registries (MDR) - Part 1: Framework
(ISO/IEC 11179-1:2004) (2004)

24. ISO TC184/SC4: Industrial automation systems and integration – Product data
representation and exchange – Part 11: Description methods: The EXPRESS language
reference manual (ISO 10303-11:2004) (2004)

25. OMG: OMG Unified Modeling LanguageTM (OMG UML), Infrastructure - version 2.4.1
(2011), http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/

26. W3C: OWL 2 Web Ontology Language Structural Specification and Functional-Style
Syntax (2009), http://www.w3.org/TR/owl2-syntax/

27. W3C: XML Schema (XSD) (2001), http://www.w3.org/XML/Schema
28. Jouault, F., Kurtev, I.: On the interoperability of model-to-model transformation

languages. Science of Computer Programming 68, 114–137 (2007)
29. CRESCENDO IP: Collaborative and Robust Engineering using Simulation Capability

Enabling Next Design Optimisation, FP7-234344 (2012)
30. W3C: OWL 2 Web Ontology Language MOF-Based Metamodel (2008),

http://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel

	MDA-Based Interoperability Establishment
Using Language Independent Information Models
	Introduction
	Model Driven Engineering
	Model-Driven Architecture (MDA)
	Model Transforma ations

	Model Morphims (MoMo)
	MoMo Formalization
	Graphical Representation of Mapping Morphisms

	MDA-Based Framework for Interoperability Establishment
	Model Morphisms
	Modeling Language Harmonization Layer
	Language Independent Meta-Model (LIMM)
	Inter-Enterprise Harmonization Layer

	Proof-of-Concept Implementation
	Modeling Language Harmonization Layer
	Inter-Enterprise Harmonization Layer
	Mapping Tool

	Conclusions and Future Work
	References

