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ABSTRACT

The assessment of nonlinear relationships in the context of Partial Least Squares Path Modelling
(PLS-PM) has received a growing interest in recent years. One important contribution to this
subject has been the work of Henseler, Fassot, Dijkstra and Wilson (2012) on the analysis of four
different approaches to quadratic effects. The Smooth Partial Least Squares (PLSs) estimation
technique studied in this work removes any assumptions on the structure of the nonlinear
relationships between latent variables, by applying smoothing spline techniques to the structural
model. Performance results of the PLSs show that it is a powerful tool in the context of predictive
research, for instance to support the definition of targeted policies. Building from the hybrid
approach to the PLS algorithm introduced by Wold (1982), we compare the performance of
alternative spline designs, including natural cubic splines, P-Splines and Thin Plate Regression
Splines (TPRS). For this purpose, Monte-Carlo simulations are carried with a conceptual model
drawn from a comprehensive set of nonlinear relationships, in different sample sizes. All model
configurations are compared using Root Mean Squared Error (RMSE) and absolute bias results.
The benchmarking exercise shows that, in most contexts, P-Splines perform slightly better than
TPRS and natural cubic splines.
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1. INTRODUCTION

Partial Least Squares Path Modeling (PLS-PM) was introduced by Wold (1975 and 1982) - later
extended by Lohmoller (1989) - and is part of a class of multivariate techniques, defined as
Structural Equation Modeling, that combine factor analysis and regression techniques to allow for
the examination of relationships among measured variables and latent variables and between
latent variables (Hair et al, 2014).

As summarized by Hair, Sarstedt, Ringle and Mena (2011), PLS-PM is a technique that maximizes
the explained variance of endogenous latent variables by estimating partial model relationships
in an iterative sequence of ordinary least squares (OLS) regressions.

PLS-PM was initially underused in detriment of the more popular covariance-based techniques
(CB-SEM, e.g. Steenkamp and Baumgartner, 2000), and described as a technique with some but
not all of the abilities of structural modelling (Henseler, Hubona, & Ash Ray, 2016).

This may have resulted, in part, from the original shortcomings of the model. As Dijkstra and
Schermelleh-Engel (2014) describe, PLS tends to overestimate the loadings in absolute value, and
to underestimate multiple and bivariate (absolute) correlations between the latent variables. This
is a consequence of an inherent feature of PLS-PM: the (iterative) construction of linear
compounds of indicator variables as proxies or stand-ins for the latent variables, and the use of
estimated relationships between the linear compounds as estimates for the relationships between
the latent variables; however, relationships between the former can never replicate those
between the latter, apart from sets of measure zero in the parameter space.

Notwithstanding, PLS-PM has always been identified as a relevant alternative estimation
technique given its prediction abilities, flexibility regarding the relaxation of the assumption of
multivariate normality needed for maximum likelihood-based Structural Equation Models (SEM)
estimations (e.g. Dijkstra, 2010) and low requirements in terms of sample size (Reinartz, Haenlein
and Henseler, 2009).

Recent developments, which have provided the tools to elevate PLS-PM to a full-fledged structural
equation modeling approach (Henseler, Hubona, & Ray, 2016), allowed this technique to
overcome initial concerns and contributed for a considerable growth in the usage of these models
in different fields.

Focus given on establishing a framework for the correct implementation of the model in empirical
studies and developments in software and hardware for model estimation have also had a
significant contribution to a greater implementation of this technique.

Hair et al. (2011) provide an extensive list of applications of PLS-PM in Marketing Research and
Henseler et al. (2016) discuss the growing interest and usage of this modeling technique in the
context of new technology adoption. Both authors support the analysis of the adoption of PLS-PM
in specific fields with interesting reflections on the progress made in research.

In fact, Hair et al. (2011) cite some of the important developments implemented in PLS-PM in
recent years: (1) confirmatory tetrad analysis for PLS-PM to empirically test a construct’s
measurement mode; (2) impact-performance matrix analysis; (3) response-based segmentation



techniques, such as finite mixture partial least squares; (4) guidelines for analyzing moderating
effects; (5) non-linear effects; and (6) hierarchical component models.

More recently, Benitez, Henseler, Castillo and Schuberth (2020) incorporate the new knowledge
and contrast classical views of PLS-PM modelling with a modern view, more focused in detailed
performance analysis and specification testing of the model.

The concept of nonlinearity is found in PLS-PM almost since its inception. In fact, as early as the
seminal work of Wold (1982), the concept of nonlinearity was already being introduced as a
feature of the model when specifying relationships between variables of the structural model.

Notwithstanding, and despite evidences of the existence of nonlinear relationships between latent
variables (e.g. Tuu, & Olsen, 2010), nonlinear approaches in multiple regression settings were
pretty much underdeveloped for decades, even in what regards moderation effects, by means of
interaction or curvilinearity, as studied by Cortina (1993).

Moreover, early examples of nonlinear approaches to SEM are mostly devoted to CB-SEM (Kenny
& Judd, 1984, Klein, & Moosbrugger, 2000; Marsh, Wen, & Hau, 2004; Klein, & Muthén, 2007; Pek,
Sterba, Kok, & Bauer, 2009; Kelava, Schermelleh-Engel, Moosbrugger, Zapf, Ma, Cham, Aiken, &
West, (2011) or Bayesian contexts (e.g. Song, & Lu, 2010; Song, Lu, Kai, & Ip, 2013).

It wasn’t until the first decade of the 2010s that these phenomena became an object of more
focused and systematic investigation in PLS-PM and became a more prominent feature of PLS-PM
estimating tools.

In recent years, the better understanding of non-linear effects has been an important part on the
assessment improvements within PLS-PM, as significant recent research has been devoted to
analyzing and incorporating these phenomena in modeling PLS-PM - despite some reservations
on the actual implementation in empirical research in specific contexts, due to parsimony
principles or lack of theoretical support (Hair, Ringle, & Starstedt, 2013).

Most notably, Henseler and Chin (2010) and Henseler et al. (2012), in contexts of estimating
interaction and quadratic effects, identified and worked on four different approaches to these
issues: (1) product indicator approach (Chin, Marcolin, & Newsted, 2003), (2) 2-stage approach
(Chin et al, 2003; Henseler & Fassott, 2010), (3) hybrid approach (Wold, 1982), and (4)
orthogonalizing approach (Henseler et al., 2010; Little et al., 2006).

The Smooth Partial Least Squares (PLSs) path modelling technique presented in this study
addresses nonlinearity in direct relationships of the structural model, building upon the extensive
work that has been developed in applying generalized additive models (GAM) to test nonlinear
relationships between observed variables, based on the assumption that these relationships are
not less common in the case of latent variables. Wood (2017) provides an extensive description
of GAM models and associated smoothing techniques.

The proposed approach has the advantage of not limiting nonlinearity to quadratic or product-
interaction terms, allowing for the assumption that the nonlinear trend is not known. In that
sense, that study is groundbreaking and separated from the rest of the field, since no prior
research in PLS-PM had accounted for nonlinear relationships without assuming the nature of its
relationships.



In fact, even though the usage of splines in the context of the inner model in PLS-PM had been used
before in practical implementations (see Jakobowicks, 2007), this is the first to address in a more
general and theoretical approach.

Notwithstanding, further work lies ahead to establish PLSs as a mainstream tool to identify
nonlinearities and estimate latent variable scores in the context of PLS-PM.

Particularly, for empirical purposes, it is relevant to test the model with other types of smoothers
and smoother parametrizations. This dissertation draws from the groundwork laid by Mendes et
al. (2018) and aims to help identifying which are the better performing smoothers in PLSs context
and smoother configurations.

For this purpose, different smoothers are analyzed, based on the alternatives presented by Wood
(2006). This part of the analysis should allow for the identification of the most adequate
smoothers in the context of PLS-PM estimation.

To study the best smoothing choices, Monte-Carlo simulations are carried with different
smoothers and parametrization strategies. The choice of smoothers and knot configuration will
be based in the theoretical and practical ground laid by Wood (2006). The conclusions of the study
are drawn from simulations in adequate theoretical scenarios to allow for sound generalizations
and empirical application.

The software implementation and simulation plan, including the population design, will follow
the methodology carried by Mendes et al. (2018) in what regards simulated population
dimension, methodologies adopted for observation generation and analyzed random sample sizes

The underlying conceptual model follows the functional forms used by Bauer, Baldasaro and
Gottfredson (2012), to incorporate a wide span of nonlinear relationships, with an added true
linear relationship to assess to what extent the PLSs method can capture linear relationships.

Model performance is compared among all the approaches using the absolute bias and root mean
square error (RMSE).

In the following paragraphs we describe the PLS model and some of its extensions (1.1). We also
introduce penalized smoothing in the context of PLS (1.2), elaborate on the justification for
developing the PLSs estimation methodology (1.3) and present the 3 alternative smoothing
splines techniques used in our analysis. In the second part of the document (2.), the procedure to
test the performance of the different smoothing splines is described (2.1) before the presentation
of the results (2.2). Wrapping up and suggestions for future work are included in the last two
sections (3. And 4.).



1.1. PLS AND SOME EXTENSIONS

Hair et al (2014) describe the PLS-PM model as a second-generation multivariate statistic
modelling technique, being part of the family of Structural Equation Modelling (SEM) methods
along with CB-SEM (Covariance-Based SEM). PLS-PM distinguishes from CB-SEM mainly by its
primary focus on explaining the variance in the dependent variables when analyzing the model.

PLS-PM models are designed with two components: the structural model and the measurement
models.

The structural model establishes the relationships between latent variables that are not directly
measured, whereas the measurement models define the relationship between those constructs
and the indicators, which are the variables that are directly measured.

The constructs may be exogenous or endogenous, whether they are, respectively, independent or
dependent of other constructs in the model.

Figure 1 illustrates graphically a simple path model with both reflective and formative models. In
this model, the &5 and &, constructs are endogenous variables of the structural model and &; and
are its {, exogenous constructs. All constructs are estimated based on reflective models except for
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Figure 1 - Example of a simple path model

The graphical connections in the structural model define linear relationships between the
constructs, which can be translated in the following equations

$3 = P11é1 + B21$2
$a = B1281 + B2282 + B3283

More generally, the equations of the structural model are given by:

$i =Piot Zﬁikfk +v;
k



Also, the measurement models may be formative or reflective, where formative models are linear
regression relationships being the construct the dependent variable, and reflective models are
models where it is assumed that the construct impacts the results of the indicator variables.

In the reflective measurement model, each indicator variable is related to the constructs by means
of a simple regression:

Xij = Wijo+ ;i + &)

where §; has mean m and standard deviation 1, where the only hypothesis is that ¢;; has zero

mean and is uncorrelated with its respective construct (Tenenhaus, Vinzi, Chatelin, & Lauro,
2005), such that:

E(xi1&) = wijo+w;&;

In the formative measurement model, the construct is generated by its indicators by means of a

linear function:
$i = Z”ijxij +6;
j

Where the residual vector §;has a zero mean and is uncorrelated with the indicators. Hence,
E(§i|xi1, "'inpi) = ZTEUXU + 61'
J

Tennenhaus et al. (2005) provide a detailed description of the PLS-PM methodology, including
estimation techniques and statistical properties. Henseler, Ringle and Sinkovics (2009) draw from
this description and sum it up has follows:

e Step 1: Outer approximation of the latent variable scores. Outer proxies of the latent
variables, E3¥¢", are calculated as linear combinations of their respective indicators.
These outer proxies are standardized; i.e. they have a mean of 0 and a standard deviation
of 1. The weights of the linear combinations result from step 4 of the previous iteration.
When the algorithm is initialized, and no weights are available yet, any arbitrary nontrivial
linear combination of indicators can serve as an outer proxy of a latent variable;

o Step 2: Estimation of the inner weights. Inner weights are calculated for each latent
variable in order to reflect how strongly the other latent variables are connected to it
There are three schemes available for determining the inner weights;

e Step 3: Inner approximation of the latent variable scores. Inner proxies of the latent
variables, f,il""er, are calculated as linear combinations of the outer proxies of their
respective adjacent latent variables, using the aforedetermined inner weights. Step 4:
Estimation of the outer weights. The outer weights are calculated either as the covariances
between the inner proxy of each latent variable and its indicators (in Mode A, reflective),
or as the regression weights resulting from the ordinary least squares regression of the
inner proxy of each latent variable on its indicators (in Mode B, formative).

o These four steps are repeated until the change in outer weights between two iterations
drops below a predefined limit. The algorithm terminates after step 1, delivering latent
variable scores for all latent variables. Loadings and inner regression coefficients are then



calculated in a straightforward way, given the constructed indices and using the formative
and reflective model equations. /n order to determine the path coefficients, for each
endogenous latent variable a (multiple) linear regression is conducted.

Aside from the linearity constraints addressed by the works of Henseler et al. (2010), Henseler et
al. (2012) or Mendes et al. (2018), other problematic concerns have been raised regarding by the
original PLS algorithm over time, namely:

e Inconsistency, translated in overestimation of the absolute value of loadings and
underestimation of multiple and bivariate(absolute) correlations between the latent
variables;

e Lack of an overall goodness of fit measure;

e Limitations addressing multicollinearity;

e Limitations addressing endogeneity;

However, recent developments in research have addressed these concerns, consolidating the
validity of PLS-PM approach.

Dijkstra and Henseler (2015a) presented an improved estimation technique (Consistent PLS -
PLSc) that addresses the shortcomings of the original PLS-PM model and leads to consistent and
asymptotically normal estimators for the loadings and for the correlations between the latent
variables, , by correcting for attenuation of the construct scores correlations with a new and
consistent reliability coefficient for PLS. This model has had widespread usage and has become a
reference in the estimation of models with reflective indicators (Henseler, Hubona, & Ray, 2016).

Also, Dijkstra and Henseler (2015b) have shown that the overall model can be assessed in two
non-exclusive ways, by assessing the differences between the empirical and model implied
indicator variance-covariance matrix.

Regarding multicollinearity, Jung and Park (2018) proposed the regularized PLSc, which
incorporates a ridge type of regularization in the PLSc, an approach that was shown to have
interesting results in contexts of strong multicollinearity.

Endogeneity as also been addressed, either by replacing OLS for 2SLS in the structural model
(Benitez, Henseler, & Roldan, 2016) or alternative approaches avoiding instrumental variables,
which include the Gaussian copula approach (Hult, Hair, Proksch, Sarstedt, Pinkwart, & Ringle,
2018).

Other approaches have been carried to cement the PLS-PM as a solid estimation technique, or a
silver bullet as Hair, Ringle and Sarsted (2011) have classified it.

These works include, namely, a criterion to assess discriminant validity (Henseler, Ringle, &
Sarstedt, 2015) designated Heterotrait-Monotrait ratio of correlations (HTMT), new approaches
for estimating and testing second-order constructs (see Van Riel, Henseler, Kemeny, & Sasovova,
2017) and multigroup analysis to address groups with different behavior within samples (Chin &
Dibbern, 2010; Sarstedt, Henseler, & Ringle, 2011).



1.2. PENALIZED SMOOTHING IN THE CONTEXT OF THE PLS

The research developed by Mendes et al. (2018) relaxes the restriction of linearity of the
relationships between constructs by allowing the existence of non-linear relationships. By doing
so, it proposes an alternative approach by means of penalization.

In this approach the Least Squares objective function is replaced by a penalized version of the
traditional objective function. As a way of simplification in the context of one covariate, the
objective function will be:

ey = FEDP + A J{f"W}Pdu (1)
where
yi=f(x) +eg

This becomes the traditional setting of a regression with smoothing spline when f(x;) is
composed a set of pre-defined basis functions such that:

fG) = ) Bihy(0)
i=1

where the different h;(x) are piecewise polynomials joined together to compose a single smooth

curve. These functions are bounded by points defined as knots of the spline. In the next chapter
three alternative sets of basis functions are detailed.

In fact, this setting is based on the framework developed by Reinsch (1967) - which has served as
a main reference in fitting non-linear relationships - adapted to a regression context more suited
to statistical inference, where the number of functions is not the number of observations, but
instead is restricted to a predefined limited number of functions.

The objective function depicted in (1) may be decomposed in two components, where

i — f(x)}* minimizes the Euclidean distance, while the second term A [{f"(u)}*du
penalizes overfitting. This second term is 0 if f is linear. Also, 1 is a smoothing parameter that
controls the trade-off between the two terms, by adding a penalty to the residual sum of squares.

Applying this to a SEM context, y; is an endogenous latent variable and x; may be either an
endogenous or an exogenous variable.

Setting matrix H, where H;; = h;(x), the spline objective function comes as

(=HR)"(=HP) + nAp"Qp

Where (1 is a matrix of known coefficients comprising the elements of the second derivatives of
the basis functions:

Q;; =fdxh{'(x)h]'-'(x)



Mendes et al. (2018) show that differentiating with respect to £, the estimator of f is found
through the equation:

£ =(HTH +nAQ) " tHTy

The added covariance given by nA() depends not only of the shape of the functions, but also the
desired amount of smoothing, given by the A. The largest the A, less is the weight of the actual data
in the fit.

With this configuration, a piecewise continuous linear model is constructed, with the portioning
of the range of x into K+1 intervals, by choosing K points, called knots, which may be uniformly
distributed across x or corresponding to specific quantiles.

This means that each individual segment basis functions are summed to obtain a composite
function f (x), which is a cubic spline of order K degrees of freedom.

Wood (2017) provides detailed descriptions of how to estimate models based on natural cubic
splines, including the cross-validation methodologies to calculate the optimal A (see Wood, 2017,
page 255, for a detailed description of cross validation techniques) and strategies to define the
number and positioning of the knots. These authors also develop the algorithm in the context of
more than one covariate.

The PLSs algorithm

The PLSs algorithm description presented below reproduces (in italic) the PLS algorithm hybrid
approach developed by Wold (1982), as presented by Tennenhaus et al. (2005) with the
modifications introduced by Henseler et al. (2012) and Mendes et al. (2018):

o Step 1: Calculating outer proxies of latent variable scores: outer proxies of the latent
variables fj‘-’“ter are calculated as linear combinations of their respective indicators. The

weights of the linear combinations result from step 4 of the previous iteration or are
manually initialized. For each non-linear term, a new proxy is created as the element-wise
transformation of the respective outer estimates.

The latent variable scores are estimated as a weighted sum of their respective indicators:
youter — xWw
Where W is the diagonal GxG matrix of the outer weights.

The outer proxies of the latent variable scores are initialised by setting the weights of the
previous equation to 1.

Assuming all the MVs, X1,X,,-,Xx are scaled (mean(X;) = 0 and Var(X;) = 1), the
latent variables are also centered (mean=0) but must be scaled to have unit variance.

Assuming the nonlinear relationship between latent variables are approximated by
smoothing splines with K-1 knots (as the constant terms vanish because we are dealing



with LVs that have been scaled to mean zero and unit variance) the n X G matrix Y is
augmented to an X G(K — 1) matrix, where the ith line is given by:

{(pouter __
Y

= [Yir, hyi), hin, 1), h(Vins Vi —1))» Yizo R0i2)s h iz, ¥31), -+,

h(Viz V3k-1)) Yie hic) R e, vie)r -+ h(Vie Yo k-1))]

where the first and second indexes of y. refer to the observation and to the LV, and the
first and second indexes ofy. refer to the LV variable and the fixed knot (for simplicity we
dropped the superscript “outer”). Moreover, the columns of matrix Y should be scaled to
mean zero and unit variance.

Step 2: Estimation of the inner weights: Inner weights are calculated for each latent
variable in order to reflect how strongly the other latent variables are connected to it.
There are three schemes available for determining the inner weights. Wold (1982)
originally proposed the centroid scheme. Later, Lohmdéller (1989) developed the factor
weighting and path wejghting schemes. The centroid scheme uses the sign of the
correlations between a latent variable or, more precisely, the outer proxy and its adjacent
latent variables; the factor weighting scheme uses the correlations. The path weighting
scheme pays tribute to the arrow orientations in the path model The weights of those
latent variables that explain the focal latent variable are set to the regression coefficients
stemming from a regression of the focal latent variable (regressant) on its latent regressor
variables. The weights of those latent variables, which are explained by the focal latent
variable, are determined in a similar manner as in the factor weighting scheme. Regardless
of the weighting scheme, a weight of zero is assigned to all nonadjacent latent variables.

The inner weights are also determined for each nonlinear term of the splines with K -1
knots.

An illustration of characterization the elements of the augmented matrix of the inner
weights E4%9, by means of the centroid method, may be found in Mendes et al. (2018).

Step 3: Inner approximation of the latent variable scores: Inner proxies of the latent

variables, & }nner

respective adjacent latent variables, using the afore-determined inner weights. Fach term

, are calculated as linear combinations of the outer proxies of their

of the splines with K -1 knots is used to estimate the inner proxies of the latent variables.

?inner — ?innerEAug

~inner

yxg'nner: Yj Jj=1,-,G,
Var(ng’nner)

Where E4%9 js the augmented matrix as determined in Step 2.

Step 4: Estimation of the outer weights: The outer weights are calculated either as the
covariances between the inner proxy of each latent variable and its indicators (in Mode
A), or as the regression weights resulting from the ordinary least squares regression of
the inner proxy of each latent variable on its indicators (in Mode B).



No additional procedure is required in this step because the non-linear terms do not have
any assigned indicators, as determined by the hybrid approach.

Mode A: Multivariate regression coefficient with the block of manifest variables as
response and the latent variable as the regressor:

. T . -1 . T
~T — slnner - glnner sinner 3
wp = (yj Y ) Vi X
= Cor(y"™",X;

Mode B: Multiple regression coefficient with the latent variable as response and its block
of manifest variables as regressors:
AT

Wj

(XJ'TXJ' )_1XJT37}nner
Var(Xj)_lCor(X-, }7}""")

These steps are iterated until the change in outer weights between two consecutive
iterations falls below a predefined tolerance,

< tolerance,K =1,--,K,j=1,-,G

The algorithm terminates after step 1, delivering latent variable scores for all latent
variables. The loadings and inner regression coefficients are then calculated in a
straightforward way, given the constructed indices. The structural relationships are
obtained by estimating the additive model using a smoothing spline. For each latent
variableyj,j = 1,---, G,we have the following model:

#pred K—1

Yij = Z ,31(1)(371'1) + Z ﬁr(r?-I-lhm+1(yil) + €
=1 m=1

#pred
=1

regressing LV j on the set of all predecessor LVs, h is a natural cupic spline ande;j are L.i.d.

Where y;; is an endogenous latent variable, the summation ). means we are

N(0,02) random variables. The estimated factor scores (including the nonlinear terms) of
the predecessor set of latent variables of’y;are used for this purpose.

In practice the model may be estimated using partial least squares with the mgcvlibrary
available through the R Project software (R Core Team, 2018).

Mendes et al. (2018) compare the performance of the PLSs with the PLS and PLSc models
and shows that this model performs uniformly better, using absolute bias and Root Mean
Squared Error (RMSE) measurements, in a simulated model where structural

relationships have underlying real nonlinear functional forms, as proposed by Bauer et al.
(2012).

10



1.3. JUSTIFICATION FOR PLSS

Henseler (2018) reflects on the applications PLS-PM, arguing that this estimation technique is
suitable for all main lines of research, namely causal (including confirmatory and explanatory
research), exploratory, descriptive and predictive research.

As what regards nonlinearity, Hair et al. (2013) state that nonlinear approaches to PLS-PM must
be carried carefully, as results in one specific experiment are not easily replicable and, hence, not
generalizable. Also, these approaches are usually more demanding in terms of interpretability. In
most contexts, these authors recommend more parsimonious approaches, yielding, in most cases,
similar and more easily interpretable results. This is especially the case for causal and
experimental research.

As such, the application of PLSs for causal and experimental research is not straightforward and
its usage should be taken cautiously. Nevertheless, in these contexts, it shouldn’t, at all, be
discarded as an important auxiliary tool, for characterization and visual analysis of results.

On the other hand, PLSs appears as a powerful tool for predictive analysis and could become one
of the go to tools in specific contexts, such as strategic management, where the main objective is
to accurately predict the behavior of out of sample elements and target segment specific policies.

In fact, the good performance of this method when compared with PLS and PLSc, as shown be
Mendes et al. (2018), regarding absolute bias and RMSE metrics, gives indications that PLSs may
be the most suitable to more accurately predict individual behaviors. Also, it shares these models’
properties of transparency in how the prediction is produced, which is a plus when compared
with alternative prediction tools (Henseler, 2018).

As Mendes et al. (2018) show in a practical example, visual inspection of the results of PLSs
modelling is an important instrument to detect nonlinearity.

Also, the analysis of first, and even second derivatives of the results, provide valuable information
about the elements of the population where specific policies may be more impactful in the
presence of nonlinearity, allowing for their efficient targeting.

To briefly illustrate this potential, we draw from the application presented by Mendes et at.
(2018).

These authors use a real data set produced in the context of the European Customer Satisfaction
Index to investigate nonlinear relationships between satisfaction and loyalty and between
perceived quality and satisfaction latent variables.
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The structural equation model is the reduced ECSI model presented below.

perceived
quality

perceived
value

Figure 2 - Structural Equation Model of the reduced ECSI

In the table below we also reproduce the indicators of the measurement model of the analysis. All
the included indicators are measured on a 10-point scale, from 1 to 10, where 1 traduces a very
negative opinion and 10 a very good opinion. Cronbach's alpha () and Dillon-Goldstein's rho (p)
unidimensionality measures are presented for each group of indicators.

Latent variables Manifest variables

(a) Overall perceived quality

(b) Quality of products and services

(c) Customer service and personal advice

(d) Availability of contact channels

(e) Reliability of products and services

(f) Diversity of products and services

(g) Clarity and transparency of information provided
(h) Accessibility

(i) Quality of physical facilities

Perceived quality
a=093;p=094

Perceived value (a) Evaluation of prices given quality
a=0.91;p=0.95 (b) Evaluation of quality given prices

(a) Overall satisfaction
(b) Fulfillment of expectations
(c) Distance to ideal company

Customer satisfaction
a=0.84;p=091

Customer loyalty (a) Intention to remain customer
a=0.89;p=0.95 (b) Recommendation to friends and colleagues

Table 1 - Measurement model of the reduced ECSI.

The authors show that the PLSs method behaves slightly better than the PLSc and significantly
better than the traditional PLS approach, in that regards R-squared values.

The study presents the estimated relationships of the latent variables graphically. In particular,
the visual inspection of the data and estimation results shows the ability of the PLSs to capture
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apparent non-negligible nonlinearities in the case of the direct relationship between satisfaction
and loyalty. Figure 3 illustrates these conclusions, whereby the PLSs fitting is represented by the
continuous line.

The results presented by Mendes et al. (2018) are interesting and show the potential of the model
for further graphical analysis.

Impact of Satisfaction on Loyalty

f(Satisfaction)

Figure 3 - Estimated direct relationships between Satisfaction and Loyalty in the
reduced ECSI model. Circles (o) represent the traditional PLS estimated factor scores.
Crosses (x) represent Smooth PLS estimated factor scores. The (non)-linear
relationship estimated using Smooth PLS is represented by the red solid line. PLS and
PLSc linear relationships are represented by the blue dashed line and green long-
dashed lines.

Going somewhat further, below we present a depiction of the derivatives of the estimated direct
relationships between satisfaction and loyalty, alongside the estimated curves produced by
Mendes et al. (2018).

The concave form of the direct relationship is evidently translated in a downward line of the
derivatives. In fact, this illustrates that targeted satisfaction-based policies applied toward loyalty
increase are likely to have a much stronger impact in elements of the population where
satisfaction is lower than in those clients that already show high levels of satisfaction.

13



Impact of Satisfaction on Loyalty Impact of Satisfaction on Loyalty (derivatives)

f(Satisfaction)
f(Satisfaction)
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Satisfaction Satisfaction

Figure 4 - Estimated direct relationships between Satisfaction and Loyalty and their derivatives
in the reduced ECSI model

In instances where nonlinear direct relationships between variables show inflections in the rate
of variation (from concave to convex or vice-versa), inspection of second derivatives should also
prove useful to detect the respective inflection points.

Surely, consumer behavior analysis for targeted policies definition shouldn’t forego other sources
of information regarding satisfaction and loyalty (e.g. regarding client value), but in marketing
research and strategic management perspectives the PLSs produces valuable auxiliary and
complementary insights towards efficiently addressing and predicting consumer behavior.
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1.4. ALTERNATIVE SMOOTHING SPLINES

As stated by Wood (2017), penalised regression splines are low rank smoothing splines, that are
designed to provide efficient compromise between retaining the good properties of splines and
computational efficiency.

In this section, we present a brief description of the three alternative smoothing methods based
on penalized regression splines used in our analysis.

Natural cubic splines

First, we start by presenting the natural cubic regression splines used by Mendes et al. (2018) in
their PLSs study, which is drawn from Wahba (1990).

The basis functions in this case are:
hi(x)=1
h,(x) =x

(x— xi)-3v- —(x - xi)“j’r _ (x— xi)“j’r - (x- Xi)?i
Xn — X Xn — Xn-1

hiv2(x,x1) =

Where (), is the positive portion of its argument:

x—x, x—x;=0
X — X))y =
( )+ { 0, x—x; <0

In a comparison analysis with other penalized regression splines, Wood (2006) states that the
main advantages of natural cubic splines are the fact these are computationally cheap and have
directly interpretable parameters. Its main disadvantage is the dependence on knots, which adds
a degree of subjectivity in the model design.

P-Splines

P-Splines were introduced by Eillers, & Marx (1996) and are a low rank version of the B-Splines
developed by Boor (2001).

Eillers et al (1996) propose the following objective function with basis splines of any order q:

2

n m m
Z Vi —Zaij(xi) +/1f Z (Akaj)z
i=1 j=1 j=k+1

Where the B-splines basis functions of order q are defined recursively:

X — X; X; 52— X
Bl(x) = —]Bm_l(x) +LB-”"1(JC) j=1,...m
J . PV | . e, Jj+1
Xji+m—+1 — Xj Xj+m+2 — Xj+1
And
_ 1 x;<x<x;
B l(x) = { IS XS Xy
i (%) 0 otherwise
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That is, the authors propose to base the penalty on higher order finite differences of the
coefficients of adjacent B-splines. By doing this, the dimensionality of the problem is reduced from
the number of observations to the number of B-splines.

The authors describe P-splines as also not being computationally expensive, including for cross-
validation (indispensable for calculating 1). These splines have no boundary effects, conserve
moments (means, variances) of the data, and have polynomial curve fits as limits. The main
limitations of P-splines are the fact that they require equally spaced knots and the interpretation
of penalties is far from being straightforward (Wood, 2006).

Thin-plate regression splines

The third type of penalized splines tested in this analysis is Thin Plate Regression Splines (TPRS).
TPRS were first introduced by Wood (2002) and built from the Thin Plate Splines (Duchon, 1977).

The following paragraphs follow very closely the description and notation carried by Wood
(2016)

In thin plate splines smoothing, the objective function to be minimized is:

ly = FI? + Uma () (2)

Where f is a function of the covariates and J is a penalty functional measuring the wiggliness of f
and A is a smoothing parameter.The wiggliness penalty may be written as:

ol 3 T Y
=1... X1...04X
md R4 Vl!...Vd! ax;l...ax;d ! a

Vit+.+vg=m

where d is the number of covariates.

Defining m such that 2m > d + 1, function (2) may be written as:
n m
) =) Sittmalllx =D + ) a5(x)
i=1 j=1

where § and « are vectors of the coefficients to be estimated, with § being subject to the constrains
TT§ = 0, where T;; = ¢;(x;) and

(_1)m+1+d/2
22m=1gd/2(m — 1)! (m — d /2)!
r /2 —-m)
22mpgd/2(m — 1)!

r?m=dlogr deven

Nma (r) =
p2m-—d d odd

At last, by defining the matrix E by E;; = nmd(“xi — x]-||), the objective function may be written
as:

ly — E§ — Ta||?> + A8TES, subjectto TT6 = 0
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As Wood (2016) states and describes, thin plate regression splines are based on the idea of
truncating the space of wiggly components of the thin plate spline (the components with
parameters §), while leaving the components of zero wiggliness unchanged (the @ components).

The author also defends that the advantages of this approach are the absence of knots and some
optimality properties, which regularly translate in better performances than the other spline
methods described above. Regarding disadvantages, computational costs in large data sets is the
one that may have more impact in the context of our analysis.
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2. APPLICATION

2.1. DATA DESCRIPTION AND PROCEDURE

To study the best smoothing choices, Monte-Carlo simulations are carried with different
smoothers and knot choice placement strategies.

The software implementation and simulation plan, including the population design, will follow
the methodology carried by Mendes et al. (2018) in what regards simulated population
dimension, methodologies adopted for observation generation and analyzed random sample
sizes.

Hence, the underlying conceptual model will follow the functional forms used by Bauer et al.
(2012), to incorporate a wide span of nonlinear relationships, with an added true linear
relationship to assess to what extent the PLSs method can capture linear relationships.

In the next paragraphs we describe the steps carried to generate the simulation data, following
the method implemented by Mendes et al. (2018).

The Monte Carlo procedure follows three steps:

1. Define an underlying true model.
2. Generate random data emerging from the defined model.
3. Use PLSs to estimate the models with different smoothing splines and compare the

different approaches using the absolute bias and RMSE.

The defined model consists of one exogenous latent variable and four endogenous latent variables,
all depicting different nonlinear relationships with the exogenous latent variable. The chosen
functional forms were those used by Bauer et al. (2012). A true linear relationship is added to
assess to what extent the PLSs method can capture linear relationships. Figure 5 presents all the
designed relationships.
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)
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Figure 5 - Structural Equation Model implemented in the Monte Carlo simulation

where lsco <O0is the indicator function, taking the value 1 if £ < 0 and 0 otherwise, and the

disturbances are sampled as follows:
€j ~N(0;05);,j =1;2;,3; 45

To ensure consistency in the PLS-PM, the measurement model has a fixed number of five
indicators and latent variables with unit loadings:

Xf=E+68, 1=1,2345
Yy =+ 6ok =123451=12345

where residual variance §(), follows a normal distribution N (ag) with 3 different levels of
variance (3, 1 and 0,33), corresponding to communalities of 0.25, 0.50 and 0.75, respectively.

The experiment is implemented with different samples sizes, ranging from 50 to 900 observations
(namely, 50, 100, 150, 250, 300, 500, 600, 750 and 900).

Following this methodology, three populations of 10 000 units, will be generated (corresponding
to the three levels of residual variance).

Then, K = 1000 random samples of size n = 50; 100; 150; 250; 300; 500; 600; 750; 900, are
randomly drawn from the three levels of communality.
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2.2. RESULTS

This section presents the results drawn from our simulation plan.

After generating the samples, SEM models where estimated through PLSs with the three different
types of splines using the “gam” function of the mgcvR Package (Wood, 2018).

To analyze the performance of the models, we measured the absolute bias (B) and the RMSE. The
calculations of these indicators are given by:

300

1 _
B zﬁl;mi(f) - i(®)|

K 300
1 1 . 2
RMSE, ~ EKZI (%;(gki(f) - 9:() )

Where the index 1=1,2,3 represents the different sample sizes, and g, (§) = ﬁz}cgolo i (6) is

the mean estimated functional relationship between £and n(.) evaluated at a fixed, even grid of
i =1,...,300 points in the range of ¢, and g(¢) is the known functional relationship (see Mendes
etal, 2018).

Regarding the parametrization of the splines, the following configurations were implemented:

1. Natural cubic splines with 10 equidistant knots (GAM function with bs="cr” and k=10);

2. P-Splines with a 2nd order spline basis and a third order difference penalty (GAM function
with bs="ps” and m=2).

3. P-Splines with a 3rd order spline basis and a third order difference penalty (GAM function
with bs="ps” and m=3).

4. P-Splines with a 4td order spline basis and a fourth order difference penalty (GAM function
with bs="ps” and m=4).

5. Thin Plate Regression splines with 2nd order derivatives (GAM function with bs="tp” and

m=2).

6. Thin Plate Regression splines with 3rd order derivatives (GAM function with bs="tp” and
m=3).

7. Thin Plate Regression splines with 4t order derivatives (GAM function with bs="tp” and
m=4).

The natural cubic splines configuration is the configuration used by Mendes et al. (2018).

Firstly, we compare the performance of splines with 2nd order derivatives. Figures 3 and 4 below
compare the performances of these spline configurations across all sample sizes, regarding,
respectively, the RMSE and absolute bias.
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Table 3 - RMSE for Natural Cubic Splines and P-Splines and TPRS with 2rd order derivatives

In the context of very small samples (n=50), the results vary depending on the performance
indicator. As PLSs with TPRS have less RMSE, the absolute bias (Bias) indicator shows better
performances of Cubic Splines and P-Splines depending on the type of nonlinear relationship.

However, from n=100 all models with P-Splines perform better in both Bias and RMSE when
estimating the relationships 7, to n,.

In the specific case of 75, TPRS have lower RMSE in samples n=100 and 150 and Natural Cubic
Splines show the best Bias results with n=100. Hence, P-Splines tend to be a less obvious choice
when the underlying relationship between the latent variables is linear.
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The results presented in the Annex confirm and deepen these conclusions when splines of higher
order are used. In fact, P-Splines fare better in all contexts when the underlying relationships are
nonlinear.

This advantage disappears when dealing with a linear relationship. In this case, higher order TPRS
present better results than the other cases in what regards RMSE. Regarding Bias performance,
the outcome is more mixed and inconclusive. Nevertheless, both TPRS and P-Splines tend to
perform better than that natural cubic splines originally employed by Mendes et al. (2018).

Hence, with these results, P-splines become the obvious choice for estimating PLSs, since they fare
better than the other methodologies in most contexts.

This conclusion is further justified as P-Splines are also faster producing results, as stated by
Wood (2016).

Hence, the recommendation drawn from this analysis is that P-Splines should be preferred when
using PLSs when nonlinear relationships are present.
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3. CONCLUSIONS

In the last decade and a half, extensive research in PLS-PM has endowed this estimation technique
with an extensive set of tools to overcome or at least mitigate its original shortcomings.

Evenso, nonlinear approaches to PLS-PM have been limited and mostly circumscribed to
nonlinear relationships of known functional form.

Building from the work carried by Mendes et al. (2018), which introduces a method that embeds
natural cubic splines with fixed knots in the PLS algorithm, aptly named smooth PLS (PLSs), we
studied the performance of PLSs with different penalized regression splines.

For that, we embedded the PLS algorithm with P-Splines and Thin Plate Regression Splines in
structural model direct relationships, testing different sets of parameters.

The different configurations were tested using a simulated dataset. The simulation framework
included four different nonlinear structural relationships and a linear relationship for control
purposes. The studied scenarios included six different sample sizes (from n=50 to n= 900), and
3 different levels of communality between latent variables and their indicators.

For comparison of the performance of these configurations we used the usual metrics: Root Mean
Squared Error (RMSE) and absolute bias (Bias).

Our results show that P-Splines and TPRS are valid alternatives to natural cubic splines when
studying non-linear relationships of unknown form in the context of PLS-SEM. More so, P-Splines
fare better than the rest of the configurations in almost all the studied scenarios, except for very
small samples contexts (n=50) and linear relationships, where TPRS, in some cases, presented
better results.

We also illustrate how PLSs can be a powerful for inspection of nonlinear relationships and be a
powerful predictive in corporate management and marketing research work frameworks, namely
by assessing first and second derivatives of the direct relationships.
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4, LIMITATIONS AND FUTURE WORK

Despite the observed trend of better results from P-Splines and TPRS, further simulation work
should be developed to test in a more robust fashion whether these splines are significantly better
suited to fit nonlinear relationships.

Besides RMSE and Bias, these different parametrizations could also be analyzed in an efficiency
perspective. That is, it should be studied whether residual gains in RMSE and Bias with higher
order parameters are sufficiently important to compensate in higher estimation times, since the
identified differences are residual.

More generally, the full impact of PLSs in predictive research could be object of a structured and
detailed approach, namely in what regards the analysis of derivatives of the direct relationships’
functions in the structural model.

Also, the performance of the method in models with formative constructs should be studied to
evaluate if the conclusions presented here may be generalized.

As the model behavior hasn’t fared consistently better than the classic PLS approach in contexts
where relationships between latent variables are in fact linear, the development of tools to
automatically opt for the most adequate model configuration would be a valuable development
for practical contexts, since it could provide substantial gains regarding parameter
interpretability.

Finally, as the classic PLS has evolved to PLSc to address its original consistency issues, future

work on PLSs could pursue a similar path, since the nonlinear approximations carried in this
methodology approximation relies on linear combinations of functions.
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ANNEX - RMSE AND ABSOLUTE BIAS RESULTS

RMSE
n
n= 50 100 150 250 300 500 600 750 900
hi
Cs 02684 @i 01982 @i 01800 @i 01694 @m: 01644 i 01577 (i 01550 @i 01530 @i 01525 m
ps2 02681 @i 01954 i 01773 i 01675 @i 01619 i 0,553 i 01530 i 01507  mi 01503
Ps3 02684 wi 01852 @i 01682 wi 01609 wi 01555 i 0,1497 @i 01480 i 01458 @i 01456 @
Psd 02805 @i 01876 i 01672 i 01588 @ 01531 i 01471 i 01454 i 0,432 i 01429
TPRs2 02630 @i 01966 @i 01792 i 01693 @i 01643 i 01575 i 01550 i 01528 @i 01524 g
TPRs3 02559 i 01817 @i 01672 @i 01604 @i 01563 i 01508  wi 01490 i 01470 i 01470 @
TPRs4 02705 ! 01810 : 01648 4 0,575 ; 01528 ¢ 01476 (: 01458 @ 01437 @ 01436 @
h2
s 0,2666 @i 02047 @& 0,1844 @i 01702 ] 0,1669 0,1610 0,1578 0,1575 o] 0,154
Ps2 0,2643 =i 02019 0,1816 =i 01680 0,1646 = 0,1587 @ 0,1552 & 10,1551 = 0,1523 &
Ps3 02636 w: 01918 g 0,1728 i 01614 g 0,1583 @ 10,1532 1] 0,1506 @ 10,1502 @ 0,147 @
Ps4 02728 i 01928 i 01702 i 01581 @ 01551 ) 0,501 qy: 0,480 @ 0,474 g 0,455 g
TPRs2 0,2616 @i 02036 @ 0,1830 @i 0,1701 ® 0,1665 & 0,1609 & 0,1574 i\ 10,1573 ®l 0,1546 @)
TPRs3 02527 i 01892 @i 01719 i 01620 4w 01591 ) 01545 i 01518 @i 01515 i 01494 4
TPRs4 02616 @: 01876 . 01686 ¢ 0,585 iy 0,553 . 0,1506 @i 01486 | 01482 @i 01462 g
h3
€s 02756 i 01979 ¢! 01849 i 01716 ¢! 01673 ! 01599 i 01581 ! 01561 i 01540
Ps2 0,2735 =i 10,1955 & 0,1835 & 0,1699 0,1657 = 01577 = 10,1562 & 10,1542 =l 0,1530 =
Ps3 0,2693 @i 01858 g 0,1747 10,1635 @ 0,1588 0,1525 5] 0,1516 @ 01498 0,1487 @
Psd 02797 m: 01867 0,1725 @i 01617 @ 0,1573 = 0,1500 0,1434 i 01475 0,1465
TPRs2 0,2714  wi 10,1973 ®l 0,1848 01714 @ 0,1676 @ 0,1587 & 0,1582 i 01564 01550 @
TPRs3 0,2613 ) 10,1833 = 0,1737 @ 0,1638 “ 0,1603 “ 10,1537 & 10,1525 I 0,1510 " 0,1499 @
TPRs4 02670 @i 01815 i 0,169 i 01604 . 01566 i 01503 @i 01497 @i 01481 @i 01472 g
RMSE
)z
n= 50 100 150 250 300 500 600 750 900
hi
Cs 02842 @i 02375 @i 02206 @mi 02052 @i 01997 @i 01922 i 01890 i 01865 @i 01844 @
ps2 0,2825 @i 0235 @mi 02174 i 02021 @i 01966 =i 0,1BB7 =i 01858 i 01833 i 01814 5
Ps3 02687 @i 02229 @i 02062 @i 01932 @i 01882 mi 01820 @i 01797 @i 01779 @i 01763 @
Psd 02777  wi 02208 @i 02025 4yi 01886 i 01840 4y: 01785 i 01764 i 01745 i 01731
TPRs2 0,2827 @i 02377 @i 02201 i 02047 @i 01995 45i 01920 mi 01889 i 01861 i 01840
TPRs3 0,2634 i 02231 ) 0,2075 wi 01946 @ 0,1897 0,1836 01816 01794 @ 01779 @
TPRs4 0,2675 @i 02185 i 02027 @i 01893 @) 01845 i 01792 @i 01770 @] 01753 @i 01739 @
h2
Cs 02939 i 02455 (! 02269 i 02128 5 02086 ! 0,982 5i 01959 ! 01933 i 01911
Ps2 0,2899 & 02427 02246 @i 02103 & 0,2063 = 0,1560 &= 0,1936 & 0,1912 = 0,1891 &
Ps3 0,2750 @i 02301 “ 0,2143 @i 02021 @ 0,1988 @ 0,1894 @ 0,1872 5] 01857 @ 0,1840 @
Psd 02825 i 02289 @ 02107 @ 01981 @ 01949 ¢ 0,860 y:; 01880 g 0,1827 g 0,810
TPRs2 02909 @i 02450 @ 02269 mi 02129 m 0,2092 0,1588 0,15965 i 01540 01517 m
TFRs3 02706 w: 0,229 @ 10,2155 " 0,2031 " 0,2003 " 0,1510 0,1833 # 01874 4w 10,1855 "
TPRs4 02743 @i 02261 i 02092 4 01980 . 0,954 ) 0,1866 @ 01850 ! 0,836 @ 01819 @
h3
[ 02858 @i 02412 ¢! 02224 i 02071 @ 02024 ) 01923 i 01912 ;| 01870 i 01862
Ps2 0,2833 @i 10,2392 =l 0,2198 0,2042 = 0,1987 0,1880 00,1881 12 10,1842 =) 0,1835 &
Ps3 0,2661 @i 02271 “ 0,209 @ 0,1950 0,1821 @ 0,1829 0,1823 [ 10,1795 @ 0,1792 =)
Psd 02738 i 02358 @ 02066 @i 01915 0,1880 0,1794 0,1788 i 01759 4y 01756
TPRs2 0,2832 =i 02407 @ 0,2226 0,2071 m 0,2026 @ 0,15923 m 0,1910 @ 01870 & 0,1863 m
TPRs3 0,2624 ) 10,2265 @l 02114 @ 0,1977 “ 0,1938 10,1847 & 0,1840 I 0,1809 " 0,1807 @
TPRs4 0,2642 @ 0,2228 w 0,2061 i 0,1922 @ 0,1888 @& 0,1803 @ 0,1797 @ 0,1768 @ 0,1766 @
RMSE
n:
n= 50 100 150 250 300 500 600 750 900
hi
Cs 06156 @i 05037 @i 04855 @i 04717 @i 04649 i 04555 i 04518 i 04480 @i 04479 ¢
ps2 06129 @i 05002 =i 04820 i 04687 @i 04617 =i 04511 sl 04476 mi 04438 i 04439 5
Ps3 05933 @i 04822 @i 04649 i 04561 @i 04519 gmi 04435 @i 04404 @i 04373 @i 04378 @
Psd 06108 =i 04832 i 04625 i 04525 i 04471 i 04400 @i 04370 i 04337 i 04345
TPRs2 0,6081 wi 05020 @ 0,4842 @i 04715 &l 04648 5 0,4539 04506 @& 04466 @ 04469 @
TPRs3 0,5834 w 04789 2 0,4644 =] 0,4586 Il 04530 @ 0,4448 I 0,4421 “ 04382 ) 0,4384 Il
TPRs4 0,5975 @i 04766 04614 i 04537 @ 04479 m 04407 m 04380 m 04348 @ 10,4353 @
hz
Cs 05867 @i 05047 ¢ 04790 04600 0,4580 = 04474 04437 m 04427 0,4381 i
Ps2 05856 =i 04987 5 0,4751 & 10,4563 = 0,4534 0,4421 = 04388 & 0,4365 =) 10,4331 &
Ps3 05724 @i 04792 =] 0,4613 =) 0,4473 @ 0,4443 @ 0,4349 0,4331 [ 0,4313 @ 04280 @
Psd 0,5902 mi 04821 [ 04598 @i 04431 =) 0,4410 0,4320 0,4295 1y 04284 04251
TPRs2 05821 wi 05017 @i 04770 @i 04587 @i 04577 @i 04462 @i 04424 @i 04410 @i 04367 @
TPRs3 05581 i 04798 @i 04630 wi 04483 i 04458 i 04365 i 04345  wi 04327 i 04293 @
TPRs4 05737 @i 04783 i 04586 i 04431 i 04415 i 04322 @i 04304 @i 04292 @i 04261 @
h3
Cs 06111 @i 04914 @i 04788 @i 04604 @i 04550 i 04426 mi 04434 i 04395 ;i 04365 ¢
ps2 06066 m: 04887 =i 04762 i 04557 @i 04508 i 04372 =i 04373 mi 04335 i 04299
Ps3 05928 @i 04718 @i 04620 @i 04459 @i 04401 mi 04288 @i 04293 @i 04261 @i 04238 @
Psd 06120 mi 04711 i 04564 i 04408 i 04353 i 04241 i 04252 i 04215 i 04193
TPRs2 06050 w: 04915 @: 04784 @i 04589 @: 04537 i 04407 i 04411 @i 04375 @i 04344
TPRs3 05840 i 04708 @ 0,4632 Wi 04482 " 0,4439 10,4313 2] 04319 04284 0,4261 "
TPRs4 0,5943 @i 04679 @ 10,4565 wi 04421 @ 0,4380 0,4262 =] 04274 o 04236 @ 0,4211 @

Table A.1 - RMSE for Natural Cubic Splines and P-Splines and TPRS
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Table A.1 (continued) - RMSE for Natural Cubic Splines and P-Splines and TPRS

50 100 150 250 300 500 600 750 900
08080 @i 06929 @i 06761 i 06644 i 06607 @i 06479 i 06437 i 06376 wi 06333
08064 @i 06914 @i 06752 @i 06621 @i 06580 @i 06462 @i 06415 @i 06356 @i 06311 @
08317 i 06978 i 06757 @i 06587 i 06534 @i 0,63% @i 06344 @i 06298 @i 06255 @
08646 mi 07044 i 06750 i 06546 i 06498 i 06343 i 06310 ! 06256 i 06205
08001 i 06913 i 06760 i 06658 =i 06607 wi 0649 i 06448 =i 06388 i 06339
08201 i 06994 i 06793 i 06697 4mi 06630 @i 06535 i 06501 i 06423 i 06375 @
0,8515 ®l 0,7098 m 0,6858 m 06704 @ 0,6655 o] 0,6536 m 0,6517 m 0,6447 m 0,6393 m
08026 @i 06956 @i 06809 i 06610 i 06579 i 06432 i 06395 ! 06328 i 06276
08003 @i 06944 i 06792 i 06569 i 06554 @i 06391 @i 06364 @i 06289 @i 06240 @
08270 i 06982 wi 06794 @i 06541 @i 0649 @i 06322 i 0629 @i 06213 @i 06177 o
08646 @i 07045 i 06793 @i 06489 i 06450 i 06273 i 06251 i 06176 @i 06142 4y
0,7914 @i 06928 0,6812 = 06611 i 06592 i 06443 = 06406 & 06340 & 0,6292 =
08107 i 07001 i 06836 @i 06643 i 06624 @i 06464 i 06444 i 06350 @i 06303 @
0,8448 ®l 0,7107 m 0,6905 m 0,6665 o] 06638 m 0,6478 m 0,6461 m 0,6364 m 0,6317 m
08012 @i 06874 @i 06702 i 06508 i 06482 i 06299 i 06215 i 06158 wi 06092
07936 @i 06861 0,6691 @ 06499 i 06457 @i 06264 @ 0,6195 @ 06129 @ 0,6072 @
08199 i 06924 i 06690 @i 06444 i 06394 @i 06191 @i 06124 @i 06058 @i 06009
08531 m: 06949 i 06656 i 06384 i 06331 i 06131 @i 06067 i 05999 ;05957
07888 i 06866 @i 06708 i 06534 i 06501 i 06320 i 06239 mi 06175 mi 06114 5
08119 i 06936 @i 06757 i 06594 i 06549 i 06361 @i 06291 i 06210 i 06135 @
0,8414 @i 07027 @mi 06797 @i 06600 i 06557 mi 06385 @i 06308 m! 06246 @mi 06181 m

50 100 150 250 300 500 600 750 900
0,2495 i 01605 wi 01484 5! 01400 i 01373 @i 01354 i 01341 i 01334 i 01330 ¢
0,2457 @i 0,572 i 01456 @i 01354 @i 01361 i 0,1343 i 01335 i 01324 g 01322
0,2674 @i 01644 i 01493 i 01395 i 01357 i 01318 i 01310 i 01297 wi 01291
0,283% i 01718 mi 01512 ;i 01355 4mi 01355 i 0,1312  ymi 01304 @i 01288 @i 01283
0,2362 i 0,553 i 01457 i 01400 mi 01364 i 01349 i 01340 ymi 01332 i 01329
0,2503 i 01595 @i 01452 i 01375 @i 01340 @i 01312 @i 01303 @i 01295 @i 01290 @
0,2610 =i 01611 =i 01457  wi 01344 i 01317 i 01284 i 01276 ! 01264 i 01255
0,2313 i 01622 i 01467 i 01384 i 01357 @i 0,1327 i 01314 i 01308 i 01306 m
0,2232  mi 01580 i 01449 i 01360 i 01337 i 01316 mi 01302 i 01268 i 01286 5
0,2401 i 01654 i 01478 i 01357 i 01321 i 01288 i 01270 i 01265 @i 01262 @
0,2566 @i 0,171% mi 01498 i 01356 i 01318 i 01278 @i 01257 @i 01252 @i 01248
0,2186 i 0,575 i 01440 i 01366 i 01348 @i 0,1324 i 01309 ymi 01308 @i 01304 g
0,2306 @i 01603 i 01435 i 01338 i 01310 i 01287 @i 01266 @i 01266 wi 01262
0,23%% =i 01613 w! 01424 ! 01314 i 01278 w! 01256 @i 01235 ! 01233 i 01230
0,2321 i 01573 i 01443 i 01344 i 01325 mi 01288 i 01276 mi 01261  mi 01355
0,2245 @i 01541 i 01416 @i 01330 i 01312 i 01275 i 01267  mi 01252  mi 01248
0,2407 @i 01602 i 01447 i 01327 i 01296 i 01245 i 01238 i 01222 @i 01221
0,2598 mi 01643 @mi 01464 i 01315 i 01288 @i 01226 @i 01219 @i 01206 @mi 01206
0,2188 i 0,527 i 01412 i 01332 i 01318 @i 01282 i 01274  ymi 01261 @i 01256  m
0,2310 =] 10,1558 =] 0,1417 ] 0,1309 = 0,1290 = 0,1244 =] 10,1235 =] 0,1223 ] 0,1221 =]
0,2424 @i 01568 i 01398 i 01283 i 01266 i 01221 i 01210 i 01200 i 01198
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Table A.2 — Absolute Bias for Natural Cubic Splines and P-Splines and TPRS

50 100 150 250 300 500 600 750 900
0,1427 =i 01265 i 01244 i 01223 i 01189 i 01173 i 01162 i 01156 @i 01157
01432 4 01253 5 01233 g 01209 5 01183 & 01154 5 01142 & 01136 &5 01136 &
0,1247 @i 01103 @: 01106 i 01135 i 01105 @i 01095 @i 01089 i 01087 @i 01092 @
0,1206 @i 01058 @i 01065 i 01093 i 01075 : 01070 : 01066 y: 01065 w: 01070
01480 . 01275 ¢ 01248 . 01226 ¢ 01200 m 01173 ¢ 01161 & 01154 5 01154 g
10,1242 @ 10,1111 @l 0,1121 i 10,1130 il 0,1114 i 10,1105 “ 10,1098 i 10,1097 “l 10,1102 i
0,1180 i 0,051 i 01068 @i 01090 i 01076 @i 01075 @i 01070 @i 01071 @i 01076 w
01397 @) 01319 ! 01270 ! 01231 ! 01219 ! 01198 ! 01181 ) 01187 ! 01169
10,1392 @i 01308 g5 0,1258 = 0,1217 5] 0,1204 5 01180 & 0,1163 =] 01169 & 10,1151 =]
0,121 @i 01160 @i 01147 i 01135 i 01132 @i 01125 @i 01118 @i 01125 @i 01113
0,1188 ¢ 01116 @ 01105 . 01102 4 01100 g 01102 4 0,109 g 01106 i 0,109
01412 ¢ 01333 @ 01280 ¢ 01235 i 01222 @ 01199 i 01183 ¢ 01188 @ 01170 ¢
0,1227 i 01172 i 01159 i 01146 i 01140 i 01136 i 01127 i 01134 i 01124
0,1187 @: 041114 g 01107 @i 01106 @i 01106 @i 01108 @i 01104 @ 01110 @ 01101 @
01429 i 01271 @i 01267 @i 01234 i 01211 i 01186 @i 01175 @i 01172 i 01162 @
0,1426 =i 01262 i 01260 i 01218 i 01200 i 01169 i 01158 i 01154 i 01143 5
0,1256 @i 01114 @: 01141 @i 01139 i 01127 @i 01111 @i 01109 @i 01109 @i 01101 @
0,230 @ 0,062 ¢ 0,094 g 01106 4 0,006 g 01089 4 0,088 g 01080 gy 01086 g
0,1451 @i 01280 @i 01273 @i 01239 @i 01217 @i 01186 @i 01177 @i 01173 @i 01163
0,1263 i 01129 i 01157 i 01154 i 01138 i 01124 i 01118 i 01119 i 01112 4
0,217 g 01068 ;i 01098 @ 01108 i 01099 @ 01093 i 0,093 @ 0109 @i 01091 @

50 100 150 250 300 500 600 750 900
0,1747 @i 01637 @i 01617 i 01568 @i 01542 i 01517 i 01501 i 01491 @i 01480
01728 @ 01625 i 01606 & 01547 i 01523 & 01493 g 01478 g 01472 g 01463 g
10,1502 @ 0.1467 @l 0.1477 =] 10,1457 =] 10,1440 =] 10,1435 & 10,1427 =] 10,1427 ] 10,1422 =]
10,1455 @i 01409 0,1428 0,1417 [ 10,1401 i 10,1405 i 0,1399 01399 0,1384 g
01763 mi 01645 @mi 01626 mi 01567 i 01545 @i 01518 i 01500 i 01485 i 01479
0,1514 w: 0,1488 ! 0,1497 | 01469 i 0,1451 | 01445 | 0,1438 i 01436 0,431 g
0,1454 i 01421 @i 01443 @i 01427 @i 01409 @i 01413 @i 01405 @i 01406 @i 01401 @
01780 ! 01731 @l 01680 ! 01636 @) 01626 ! 01579 ! 0,158 ) 01556 5! 0,544 g5
01782 @ 01717 i 01665 & 01621 i 01611 & 01563 & 0154 & 01544 i 01534 &
0,1540 @i 01563 @i 01549 i 01536 @i 01835 @i 01503 @i 0149 @i 0149 @i 01450
0,1499 i 0,509 ! 01505 i 01498 yi 01499 yi 01474 i 01468 i 01468 i 0,1464 gy
01807 ¢ 01742 i 01685 (. 01643 i 01632 ¢ 01583 i 01572 . 01560 i 01547 @
0,1564 @ 0,1580 @ 10,1565 @ 10,1545 “ 0,1543 @ 0,1512 “ 0,1508 @ 0,1505 “ 0,1497 @
0,1512 @i 01519 @i 01508 @i 01504 @i 01505 @i 01480 @i 01477 @i 01477 @i 01471 @
01763 ) 01679 ! 01637 | 01580 ) 0,152 ! 01518 | 0,520 ) 01493 5! 0,496
0,1753 i 01660 @i 01616 i 0,555 i 0,1543 i 01497 i 01501 i 01477 i 01481
0,1516 @i 0,1517 @ 10,1503 @ 0,1472 =) 0,1470 @ 0,1447 5] 0,1454 @ 10,1441 1] 0,1447 @
01461 . 0,468 g 0,462 . 0,436 g 0,434 g 01417 g 0,426 . 01412 gy 0,419 g
10,1785 il 10,1685 [ 0,1643 4l 10,1582 [ 10,1562 4l 01521 i 10,1519 &l 10,1494 ) 10,1497 4l
0,1532 i 01531 i 01527 i 01487 i 01478 i 01455 i 01462 i 01446  wi 01454 4y
0,1470 @i 01474 @i 01468 @i 01444 @i 01441 i 01425 @i 01432 @i 01418 @i 01425 @

50 100 150 250 300 500 600 750 500
03275 i 02853 qm: 02796 @i 02780 i 02745 i 02716 gmi 02694 i 02676 m: 02686
03277 i 02830 @: 02781 i 02764 i 02730 mi 02695 i 02674 i 02659 @i 02670 @
03069 @ 02682 5 02653 . 0660 @ 02656 . 02639 @ 02625 @ 02617 i 02632
03069 y: 02665 : 02637 : 02653 i 02638 : 02628 i 02614 i 02604 : 02620 4y
03287 m: 02852 i 0279 m: 02781 @i 02747 @i 02711 @i 02689 i 02671 i 02683 g
03086 ! 02603 ! 02663 @ 02687 i 02661 . 02644 | 02628 w: 02616 @ 02629 g
0,3073 @i 02669 @ 02646 @i 02666 @i 02647 @i 02631 @i 02618 w; 02609 m; 02623 m
03175 @ 02879 @i 02793 m! 02723 @i 02722 m! 02677 gl 02660 m! 02665 i 02645
03153 . 02851 5 02760 . 02702 i 02697 . 02651 & 02635 . 02633 g 02621
02979 i 02695 @i 02657 @i 02625 @i 02625 @i 02602 wi 02597 @i 02602 @i 02590 @
0,262 i 02688 i 02641 i 02611 i 02612 y: 02592 i 02585 i 02594 i 02581 4y
03189 . 02874 . 02787 @ 02717 . 02718 . 02672 . 02655 . 02657 . 02638 g
02973 @i 02719 i 02674 i 02635 i 02630 i 02602 @i 02598 i 02605 i 02591 4
0,2952 ; 02702 @ 02654 @i 02616 @ 02618 @i 02594 @i 02588 @ 02595 @ 02583 @
03261 i 02823 i 02800 @mi 02733 @i 02706 @i 02663 ;i 02676 mi 02652 @i 02637 m
0,3254 &1 02804 0,2783 & 02709 & 0,2689 & 0,2638 & 0,2646 = 0,2624 0,2607 &
03060 g 02672 5 02674 @ 02633 i 02610 @ 02584 @ 0256 @ 02581 @i 02574 @
03061 @ 0,649 g 02645 g 02612 g 02591 . 02565 4 02579 @ 02560 @ 02554
03272 m: 02829 m: 02799 i 02729 i 02700 i 02655 @i 02665 i 02644 i 02629 g
03088 i 02688 i 02691 i 02645 i 02627 i 02590 i 02605 i 02587 i 02580
03073 @ 02660 @ 02667 @ 02624 @ 02607 @ 02575 @ 0,250 @ 02568 @ 0,251 @
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Ps2
Ps3
Psd
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Ps3
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TPRs4
h3

Ps2
Ps3
Psd
TPRs2
TPRs3
TPRs4

Table A.2 (continued) - Absolute Bias for Natural Cubic Splines and P-Splines and TPRS

50 100 150 250 300 500 600 750 900
01113 i 00865 @i 00900 =i 00903 i 00891 i 00893 i 00877 i 00887 i 00880
0,1111 @i 0,0861 & 0,0901 &l 10,0900 & 0,0886 & 0,0884 & 0,0868 & 00880 0,0870 &
01076 @i 00804 @ 0,0839 @ 10,0851 @i 00842 @i 00850 @ 0,0837 @i 00852 @i 00845 @
01013 @i 00749 @i 00759 @i 00781 i 00781 i 00804 @i 00798 i 00814 @i 00812 @
0,1117 mi 00872 i 00908 m 10,0904 i 10,0895 i 0,0894 @ 0,0876 &l 00885 0,0882 i
0,1081 ] 0,0824 ] 0,0855 ] 0,0863 ] 0,0850 “ 0,0858 ] 0,0844 ] 0,0860 W 0,0853 ]
0,0993 i 00741 i 00757 i 00774 ! 00775 i 00799 i 00793 i 00810 i 00807 4y
01038 i 00870 @i 00862 i 00881 i 00854 i 00860 i 00846 i 00844 i 00845
10,1033 =i 0,0865 & 0,0863 &l 0,0880 & 10,0852 =] 0,0857 & 0,0843 & 00840 5 0,0842 &
0,0984 @i 00809 @ 00799 = 0,0828 @ 10,0803 @ 0,0822 @ 0,0811 @ 0,0812 ) 0,0814 @
00912 @i 00772 @mi 00746 @i 00757 @i 00751 @i 00775 @i 00770 @i 00775 @mi 00782 @
0,1041 mi 00874 @ 0,0871 i 0,0886 i 0,0860 0,0863 i 0,0848 i 00846 0,0845 i
00998 i 00820 i 00814 i 00840 i 00817 i 00828 i 00816 i 00818 i 00820
0,0899 i 00746 i 00728 i 00756 ! 00741 i 00772 i 00764 i 00773 i 00778
0,1013 i 00852 i 00851 ymi 00845 i 00847 i 00841 @i 00831 i 00824 i 00811 @
10,1011 @i 0,0855 &l 0,0849 & 0,0842 & 0,0841 =] 0,0831 & 0,0821 & 0,0812 i 00798 &
00084 @i 00799 00793 00789 @i 00793 @i 00791 00788 i 00784 @i 00774 g
00930 @i 00719 i 00717 @i 00714 i 00719 i 00734 i 00741 @i 00743 @i 00739
10,1013 mi 00,0863 i 0,0857 i 0,0850 i 0,0849 i 0,0841 &l 0,0833 i 00826 0,0812 i
00994 i 00816 i 00808 i 00803 i 00805 i 00802 wi 00796 i 00794 i 00783
00923 i 00721 @i 00716 i 00716 @i 00723 @i 00735 @i 00739 i 00742 i 00740 @
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