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ABSTRACT 

The assessment of nonlinear relationships in the context of Partial Least Squares Path Modelling 

(PLS-PM) has received a growing interest in recent years. One important contribution to this 

subject has been the work of Henseler, Fassot, Dijkstra and Wilson (2012) on the analysis of four 

different approaches to quadratic effects. The Smooth Partial Least Squares (PLSs) estimation 

technique studied in this work removes any assumptions on the structure of the nonlinear 

relationships between latent variables, by applying smoothing spline techniques to the structural 

model. Performance results of the PLSs show that it is a powerful tool in the context of predictive 

research, for instance to support the definition of targeted policies. Building from the hybrid 

approach to the PLS algorithm introduced by Wold (1982), we compare the performance of 

alternative spline designs, including natural cubic splines, P-Splines and Thin Plate Regression 

Splines (TPRS). For this purpose, Monte-Carlo simulations are carried with a conceptual model 

drawn from a comprehensive set of nonlinear relationships, in different sample sizes. All model 

configurations are compared using Root Mean Squared Error (RMSE) and absolute bias results. 

The benchmarking exercise shows that, in most contexts, P-Splines perform slightly better than 

TPRS and natural cubic splines.  

 

KEYWORDS 

PLS-PM, Nonlinear, PLSs, Smoothing, Monte-Carlo Simulation, Natural Cubic Splines, P-Splines, 

Thin Plate Regression Splines 
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1. INTRODUCTION 

Partial Least Squares Path Modeling (PLS-PM) was introduced by Wold (1975 and 1982) - later 

extended by Lohmöller (1989) - and is part of a class of multivariate techniques, defined as 

Structural Equation Modeling, that combine factor analysis and regression techniques to allow for 

the examination of relationships among measured variables and latent variables and between 

latent variables (Hair et al, 2014). 

As summarized by Hair, Sarstedt, Ringle and Mena (2011), PLS-PM is a technique that maximizes 

the explained variance of endogenous latent variables by estimating partial model relationships 

in an iterative sequence of ordinary least squares (OLS) regressions.  

PLS-PM was initially underused in detriment of the more popular covariance-based techniques 

(CB-SEM, e.g. Steenkamp and Baumgartner, 2000), and described as a technique with some but 

not all of the abilities of structural modelling (Henseler, Hubona, & Ash Ray, 2016). 

This may have resulted, in part, from the original shortcomings of the model. As Dijkstra and 

Schermelleh-Engel (2014) describe, PLS tends to overestimate the loadings in absolute value, and 

to underestimate multiple and bivariate (absolute) correlations between the latent variables. This 

is a consequence of an inherent feature of PLS-PM: the (iterative) construction of linear 

compounds of indicator variables as proxies or stand-ins for the latent variables, and the use of 

estimated relationships between the linear compounds as estimates for the relationships between 

the latent variables; however, relationships between the former can never replicate those 

between the latter, apart from sets of measure zero in the parameter space.  

Notwithstanding, PLS-PM has always been identified as a relevant alternative estimation 

technique given its prediction abilities, flexibility regarding the relaxation of the assumption of 

multivariate normality needed for maximum likelihood–based  Structural Equation Models (SEM) 

estimations (e.g. Dijkstra, 2010) and low requirements in terms of sample size (Reinartz, Haenlein 

and Henseler, 2009). 

Recent developments, which have provided the tools to elevate PLS-PM to a full-fledged structural 

equation modeling approach (Henseler, Hubona, & Ray, 2016), allowed this technique to 

overcome initial concerns and contributed for a considerable growth in the usage of these models 

in different fields.  

Focus given on establishing a framework for the correct implementation of the model in empirical 

studies and developments in software and hardware for model estimation have also had a 

significant contribution to a greater implementation of this technique. 

Hair et al. (2011) provide an extensive list of applications of PLS-PM in Marketing Research and 

Henseler et al. (2016) discuss the growing interest and usage of this modeling technique in the 

context of new technology adoption. Both authors support the analysis of the adoption of PLS-PM 

in specific fields with interesting reflections on the progress made in research. 

In fact, Hair et al. (2011) cite some of the important developments implemented in PLS-PM in 

recent years: (1) confirmatory tetrad analysis for PLS-PM to empirically test a construct’s 

measurement mode; (2) impact-performance matrix analysis; (3) response-based segmentation 
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techniques, such as finite mixture partial least squares; (4) guidelines for analyzing moderating 

effects; (5) non-linear effects; and (6) hierarchical component models. 

More recently, Benitez, Henseler, Castillo and Schuberth (2020) incorporate the new knowledge 

and contrast classical views of PLS-PM modelling with a modern view, more focused in detailed 

performance analysis and specification testing of the model. 

The concept of nonlinearity is found in PLS-PM almost since its inception. In fact, as early as the 

seminal work of Wold (1982), the concept of nonlinearity was already being introduced as a 

feature of the model when specifying relationships between variables of the structural model.  

Notwithstanding, and despite evidences of the existence of nonlinear relationships between latent 

variables (e.g. Tuu, & Olsen, 2010), nonlinear approaches in multiple regression settings were 

pretty much underdeveloped for decades, even in what regards moderation effects, by means of 

interaction or curvilinearity, as studied by Cortina (1993). 

Moreover, early examples of nonlinear approaches to SEM are mostly devoted to CB-SEM (Kenny 

& Judd, 1984, Klein, & Moosbrugger, 2000; Marsh, Wen, & Hau, 2004; Klein, & Muthén, 2007; Pek, 

Sterba, Kok, & Bauer, 2009; Kelava, Schermelleh-Engel, Moosbrugger, Zapf, Ma, Cham, Aiken, & 

West, (2011) or Bayesian contexts (e.g. Song, & Lu, 2010; Song, Lu, Kai, & Ip, 2013). 

It wasn’t until the first decade of the 2010s that these phenomena became an object of more 

focused and systematic investigation in PLS-PM and became a more prominent feature of PLS-PM 

estimating tools. 

In recent years, the better understanding of non-linear effects has been an important part on the 

assessment improvements within PLS-PM, as significant recent research has been devoted to 

analyzing and incorporating these phenomena in modeling PLS-PM – despite some reservations 

on the actual implementation in empirical research in specific contexts, due to parsimony 

principles or lack of theoretical support (Hair, Ringle, & Starstedt, 2013). 

Most notably, Henseler and Chin (2010) and Henseler et al. (2012), in contexts of estimating 

interaction and quadratic effects, identified and worked on four different approaches to these 

issues: (1) product indicator approach (Chin, Marcolin, & Newsted, 2003), (2) 2-stage approach 

(Chin et al., 2003; Henseler & Fassott, 2010), (3) hybrid approach (Wold, 1982), and (4) 

orthogonalizing approach (Henseler et al., 2010; Little et al., 2006). 

The Smooth Partial Least Squares (PLSs) path modelling technique presented in this study 

addresses nonlinearity in direct relationships of the structural model, building upon the extensive 

work that has been developed in applying generalized additive models (GAM) to test nonlinear 

relationships between observed variables, based on the assumption that these relationships are 

not less common in the case of latent variables. Wood (2017) provides an extensive description 

of GAM models and associated smoothing techniques. 

The proposed approach has the advantage of not limiting nonlinearity to quadratic or product-

interaction terms, allowing for the assumption that the nonlinear trend is not known. In that 

sense, that study is groundbreaking and separated from the rest of the field, since no prior 

research in PLS-PM had accounted for nonlinear relationships without assuming the nature of its 

relationships. 
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In fact, even though the usage of splines in the context of the inner model in PLS-PM had been used 

before in practical implementations (see Jakobowicks, 2007), this is the first to address in a more 

general and theoretical approach. 

Notwithstanding, further work lies ahead to establish PLSs as a mainstream tool to identify 

nonlinearities and estimate latent variable scores in the context of PLS-PM.  

Particularly, for empirical purposes, it is relevant to test the model with other types of smoothers 

and smoother parametrizations. This dissertation draws from the groundwork laid by Mendes et 

al. (2018) and aims to help identifying which are the better performing smoothers in PLSs context 

and smoother configurations.  

For this purpose, different smoothers are analyzed, based on the alternatives presented by Wood 

(2006). This part of the analysis should allow for the identification of the most adequate 

smoothers in the context of PLS-PM estimation. 

To study the best smoothing choices, Monte-Carlo simulations are carried with different 

smoothers and parametrization strategies. The choice of smoothers and knot configuration will 

be based in the theoretical and practical ground laid by Wood (2006). The conclusions of the study 

are drawn from simulations in adequate theoretical scenarios to allow for sound generalizations 

and empirical application. 

The software implementation and simulation plan, including the population design, will follow 

the methodology carried by Mendes et al. (2018) in what regards simulated population 

dimension, methodologies adopted for observation generation and analyzed random sample sizes 

The underlying conceptual model follows the functional forms used by Bauer, Baldasaro and 

Gottfredson (2012), to incorporate a wide span of nonlinear relationships, with an added true 

linear relationship to assess to what extent the PLSs method can capture linear relationships.  

Model performance is compared among all the approaches using the absolute bias and root mean 

square error (RMSE). 

In the following paragraphs we describe the PLS model and some of its extensions (1.1). We also 

introduce penalized smoothing in the context of PLS (1.2), elaborate on the justification for 

developing the PLSs estimation methodology (1.3) and present the 3 alternative smoothing 

splines techniques used in our analysis. In the second part of the document (2.), the procedure to 

test the performance of the different smoothing splines is described (2.1) before the presentation 

of the results (2.2). Wrapping up and suggestions for future work are included in the last two 

sections (3. And 4.). 
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1.1.  PLS AND SOME EXTENSIONS 

Hair et al (2014) describe the PLS-PM model as a second-generation multivariate statistic 

modelling technique, being part of the family of Structural Equation Modelling (SEM) methods 

along with CB-SEM (Covariance-Based SEM). PLS-PM distinguishes from CB-SEM mainly by its 

primary focus on explaining the variance in the dependent variables when analyzing the model. 

PLS-PM models are designed with two components: the structural model and the measurement 

models. 

The structural model establishes the relationships between latent variables that are not directly 

measured, whereas the measurement models define the relationship between those constructs 

and the indicators, which are the variables that are directly measured.  

The constructs may be exogenous or endogenous, whether they are, respectively, independent or 

dependent of other constructs in the model. 

Figure 1 illustrates graphically a simple path model with both reflective and formative models. In 

this model, the 𝜉3 and 𝜉4 constructs are endogenous variables of the structural model and 𝜉1 and 

are its 𝜉2 exogenous constructs. All constructs are estimated based on reflective models except for 

𝜉4. 

 

Figure 1 – Example of a simple path model 

The graphical connections in the structural model define linear relationships between the 

constructs, which can be translated in the following equations 

𝜉3 = 𝛽11𝜉1 + 𝛽21𝜉2 

𝜉4 = 𝛽12𝜉1 + 𝛽22𝜉2 + 𝛽32𝜉3 

More generally, the equations of the structural model are given by: 

𝜉𝑖 = 𝛽𝑖0 +∑𝛽𝑖𝑘𝜉𝑘 + 𝜈𝑖
𝑘
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Also, the measurement models may be formative or reflective, where formative models are linear 

regression relationships being the construct the dependent variable, and reflective models are 

models where it is assumed that the construct impacts the results of the indicator variables. 

In the reflective measurement model, each indicator variable is related to the constructs by means 

of a simple regression: 

𝑥𝑖𝑗 = 𝜛𝑖𝑗0+𝜛𝑖𝑗𝜉𝑖 + 𝜀𝑖𝑗 , 

where 𝜉𝑖  has mean m and standard deviation 1, where the only hypothesis is that 𝜀𝑖𝑗  has zero 

mean and is uncorrelated with its respective construct (Tenenhaus, Vinzi, Chatelin, & Lauro, 

2005), such that: 

𝐸(𝑥𝑖𝑗|𝜉𝑖) = 𝜛𝑖𝑗0+𝜛𝑖𝑗𝜉𝑖 

In the formative measurement model, the construct is generated by its indicators by means of a 

linear function: 

𝜉𝑖 =∑𝜋𝑖𝑗𝑥𝑖𝑗
𝑗

+ 𝛿𝑖  

Where the residual vector 𝛿𝑖has a zero mean and is uncorrelated with the indicators. Hence,  

𝐸(𝜉𝑖|𝑥𝑖1, … , 𝑥𝑖𝑝𝑖) =∑𝜋𝑖𝑗𝑥𝑖𝑗
𝑗

+ 𝛿𝑖 

Tennenhaus et al. (2005) provide a detailed description of the PLS-PM methodology, including 

estimation techniques and statistical properties. Henseler, Ringle and Sinkovics (2009) draw from 

this description and sum it up has follows: 

• Step 1: Outer approximation of the latent variable scores. Outer proxies of the latent 

variables, 𝜉𝑛
𝑜𝑢𝑡𝑒𝑟, are calculated as linear combinations of their respective indicators. 

These outer proxies are standardized; i.e. they have a mean of 0 and a standard deviation 

of 1. The weights of the linear combinations result from step 4 of the previous iteration. 

When the algorithm is initialized, and no weights are available yet, any arbitrary nontrivial 

linear combination of indicators can serve as an outer proxy of a latent variable;  

• Step 2: Estimation of the inner weights. Inner weights are calculated for each latent 

variable in order to reflect how strongly the other latent variables are connected to it. 

There are three schemes available for determining the inner weights; 

• Step 3: Inner approximation of the latent variable scores. Inner proxies of the latent 

variables, 𝜉𝑛
𝑖𝑛𝑛𝑒𝑟, are calculated as linear combinations of the outer proxies of their 

respective adjacent latent variables, using the aforedetermined inner weights. Step 4: 

Estimation of the outer weights. The outer weights are calculated either as the covariances 

between the inner proxy of each latent variable and its indicators (in Mode A, reflective), 

or as the regression weights resulting from the ordinary least squares regression of the 

inner proxy of each latent variable on its indicators (in Mode B, formative). 

• These four steps are repeated until the change in outer weights between two iterations 

drops below a predefined limit. The algorithm terminates after step 1, delivering latent 

variable scores for all latent variables. Loadings and inner regression coefficients are then 
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calculated in a straightforward way, given the constructed indices and using the formative 

and reflective model equations. In order to determine the path coefficients, for each 

endogenous latent variable a (multiple) linear regression is conducted. 

Aside from the linearity constraints addressed by the works of Henseler et al. (2010), Henseler et 

al. (2012) or Mendes et al. (2018), other problematic concerns have been raised regarding by the 

original PLS algorithm over time, namely: 

• Inconsistency, translated in overestimation of the absolute value of loadings and 

underestimation of multiple and bivariate(absolute) correlations between the latent 

variables; 

• Lack of an overall goodness of fit measure; 

• Limitations addressing multicollinearity; 

• Limitations addressing endogeneity; 

However, recent developments in research have addressed these concerns, consolidating the 

validity of PLS-PM approach. 

Dijkstra and Henseler (2015a) presented an improved estimation technique (Consistent PLS – 

PLSc) that addresses the shortcomings of the original PLS-PM model and leads to consistent and 

asymptotically normal estimators for the loadings and for the correlations between the latent 

variables, , by correcting for attenuation of the construct scores correlations with a new and 

consistent reliability coefficient for PLS. This model has had widespread usage and has become a 

reference in the estimation of models with reflective indicators (Henseler, Hubona, & Ray, 2016). 

Also, Dijkstra and Henseler (2015b) have shown that the overall model can be assessed in two 

non-exclusive ways, by assessing the differences between the empirical and model implied 

indicator variance-covariance matrix. 

Regarding multicollinearity, Jung and Park (2018) proposed the regularized PLSc, which 

incorporates a ridge type of regularization in the PLSc, an approach that was shown to have 

interesting results in contexts of strong multicollinearity. 

Endogeneity as also been addressed, either by replacing OLS for 2SLS in the structural model 

(Benitez, Henseler, & Roldán, 2016) or alternative approaches avoiding instrumental variables, 

which include the Gaussian copula approach (Hult, Hair, Proksch, Sarstedt, Pinkwart, & Ringle, 

2018). 

Other approaches have been carried to cement the PLS-PM as a solid estimation technique, or a 

silver bullet as Hair, Ringle and Sarsted (2011) have classified it.  

These works include, namely, a criterion to assess discriminant validity (Henseler, Ringle, & 

Sarstedt, 2015) designated Heterotrait-Monotrait ratio of correlations (HTMT), new approaches 

for estimating and testing second-order constructs (see Van Riel, Henseler, Kemeny, & Sasovova, 

2017) and multigroup analysis to address groups with different behavior within samples (Chin & 

Dibbern, 2010; Sarstedt, Henseler, & Ringle, 2011). 
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1.2.  PENALIZED SMOOTHING IN THE CONTEXT OF THE PLS 

The research developed by Mendes et al. (2018) relaxes the restriction of linearity of the 

relationships between constructs by allowing the existence of non-linear relationships. By doing 

so, it proposes an alternative approach by means of penalization. 

In this approach the Least Squares objective function is replaced by a penalized version of the 

traditional objective function. As a way of simplification in the context of one covariate, the 

objective function will be:  

∑ {𝑦𝑖 − 𝑓(𝑥𝑖)}
2 + 𝜆∫{𝑓′′(𝑢)}2𝑑𝑢𝑛

𝑖=1  (1) 

where  

𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜀𝑖  

This becomes the traditional setting of a regression with smoothing spline when 𝑓(𝑥𝑖) is 

composed a set of pre-defined basis functions such that: 

𝑓(𝑥𝑖) =∑𝛽𝑗ℎ𝑗(𝑥)

𝑚

𝑖=1

 

where the different ℎ𝑗(𝑥) are piecewise polynomials joined together to compose a single smooth 

curve. These functions are bounded by points defined as knots of the spline. In the next chapter 

three alternative sets of basis functions are detailed. 

In fact, this setting is based on the framework developed by Reinsch (1967) - which has served as 

a main reference in fitting non-linear relationships - adapted to a regression context more suited 

to statistical inference, where the number of functions is not the number of observations, but 

instead is restricted to a predefined limited number of functions. 

The objective function depicted in (1) may be decomposed in two components, where 

∑ {𝑦𝑖 − 𝑓(𝑥𝑖)}
2𝑛

𝑖=1  minimizes the Euclidean distance, while the second term 𝜆 ∫{𝑓′′(𝑢)}2𝑑𝑢 

penalizes overfitting. This second term is 0 if 𝑓 is linear. Also, 𝜆 is a smoothing parameter that 

controls the trade-off between the two terms, by adding a penalty to the residual sum of squares. 

Applying this to a SEM context, 𝑦𝑖  is an endogenous latent variable and 𝑥𝑖 may be either an 

endogenous or an exogenous variable.  

Setting matrix H, where 𝐻𝑖𝑗 = ℎ𝑗(𝑥), the spline objective function comes as 

(−𝐻𝛽)𝑇(−𝐻𝛽) + 𝑛𝜆𝛽𝑇Ω𝛽 

Where Ω is a matrix of known coefficients comprising the elements of the second derivatives of 

the basis functions: 

Ω𝑖𝑗 = ∫𝑑𝑥ℎ𝑖
′′(𝑥)ℎ𝑗

′′(𝑥) 
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Mendes et al. (2018) show that differentiating with respect to 𝛽, the estimator of 𝛽 is found 

through the equation: 

𝛽̂ = (𝐻𝑇𝐻 + 𝑛𝜆Ω)−1𝐻𝑇𝑦 

The added covariance given by 𝑛𝜆Ω depends not only of the shape of the functions, but also the 

desired amount of smoothing, given by the 𝜆. The largest the 𝜆, less is the weight of the actual data 

in the fit. 

With this configuration, a piecewise continuous linear model is constructed, with the portioning 

of the range of 𝑥 into K+1 intervals, by choosing K points, called knots, which may be uniformly 

distributed across 𝑥 or corresponding to specific quantiles. 

This means that each individual segment basis functions are summed to obtain a composite 

function 𝑓(𝑥), which is a cubic spline of order K degrees of freedom. 

Wood (2017) provides detailed descriptions of how to estimate models based on natural cubic 

splines, including the cross-validation methodologies to calculate the optimal 𝜆 (see Wood, 2017, 

page 255, for a detailed description of cross validation techniques) and strategies to define the 

number and positioning of the knots. These authors also develop the algorithm in the context of 

more than one covariate. 

The PLSs algorithm 

The PLSs algorithm description presented below reproduces (in italic) the PLS algorithm hybrid 

approach developed by Wold (1982), as presented by Tennenhaus et al. (2005) with the 

modifications introduced by Henseler et al. (2012) and Mendes et al. (2018): 

• Step 1: Calculating outer proxies of latent variable scores: outer proxies of the latent 

variables 𝜉𝑗
𝑜𝑢𝑡𝑒𝑟are calculated as linear combinations of their respective indicators. The 

weights of the linear combinations result from step 4 of the previous iteration or are 

manually initialized. For each non-linear term, a new proxy is created as the element-wise 

transformation of the respective outer estimates. 

The latent variable scores are estimated as a weighted sum of their respective indicators: 

𝑌̂𝑜𝑢𝑡𝑒𝑟 = 𝑋𝑊̂ 

Where W is the diagonal GxG matrix of the outer weights. 

The outer proxies of the latent variable scores are initialised by setting the weights of the 

previous equation to 1. 

Assuming all the MVs, 𝑋1, 𝑋2, ⋯ , 𝑋𝐾  are scaled (𝑚𝑒𝑎𝑛(𝑋𝑖) = 0 𝑎𝑛𝑑 𝑉𝑎𝑟(𝑋𝑖) = 1), the 

latent variables are also centered (mean=0) but must be scaled to have unit variance. 

Assuming the nonlinear relationship between latent variables are approximated by 

smoothing splines with K-1 knots (as the constant terms vanish because we are dealing 



9 
 

with LVs that have been scaled to mean zero and unit variance) the 𝑛 × 𝐺 matrix 𝑌̂ is 

augmented to a 𝑛 × 𝐺(𝐾 − 1) matrix, where the ith line is given by: 

𝑌̂𝑖
𝑜𝑢𝑡𝑒𝑟 = [𝑦𝑖1, ℎ(𝑦𝑖1), ℎ(𝑦𝑖1, 𝑦11

∗ ),⋯ , ℎ(𝑦𝑖1, 𝑦1(𝐾−1)
∗ ), 𝑦𝑖2, ℎ(𝑦𝑖2), ℎ(𝑦𝑖2, 𝑦21

∗ ),⋯, 

ℎ(𝑦𝑖2, 𝑦2(𝐾−1)
∗ ), 𝑦𝑖𝐺 , ℎ(𝑦𝑖𝐺), ℎ(𝑦𝑖𝐺 , 𝑦1𝐺

∗ ),⋯ , ℎ(𝑦𝑖𝐺 , 𝑦𝐺(𝐾−1)
∗ )] 

where the first and second indexes of  𝑦∙∙ refer to the observation and to the LV, and the 

first and second indexes of 𝑦∙∙
∗refer to the LV variable and the fixed knot (for simplicity we 

dropped the superscript “outer"). Moreover, the columns of matrix 𝑌̂should be scaled to 

mean zero and unit variance. 

• Step 2: Estimation of the inner weights: Inner weights are calculated for each latent 

variable in order to reflect how strongly the other latent variables are connected to it. 

There are three schemes available for determining the inner weights. Wold (1982) 

originally proposed the centroid scheme. Later, Lohmöller (1989) developed the factor 

weighting and path weighting schemes. The centroid scheme uses the sign of the 

correlations between a latent variable or, more precisely, the outer proxy and its adjacent 

latent variables; the factor weighting scheme uses the correlations. The path weighting 

scheme pays tribute to the arrow orientations in the path model. The weights of those 

latent variables that explain the focal latent variable are set to the regression coefficients 

stemming from a regression of the focal latent variable (regressant) on its latent regressor 

variables. The weights of those latent variables, which are explained by the focal latent 

variable, are determined in a similar manner as in the factor weighting scheme. Regardless 

of the weighting scheme, a weight of zero is assigned to all nonadjacent latent variables. 

The inner weights are also determined for each nonlinear term of the splines with K -1 

knots. 

An illustration of characterization the elements of the augmented matrix of the inner 

weights 𝐸𝐴𝑢𝑔, by means of the centroid method, may be found in Mendes et al. (2018). 

• Step 3: Inner approximation of the latent variable scores: Inner proxies of the latent 

variables, 𝜉𝑗
𝑖𝑛𝑛𝑒𝑟  , are calculated as linear combinations of the outer proxies of their 

respective adjacent latent variables, using the afore-determined inner weights. Each term 

of the splines with K -1 knots is used to estimate the inner proxies of the latent variables. 

𝑌̂𝑖𝑛𝑛𝑒𝑟 = 𝑌̂𝑖𝑛𝑛𝑒𝑟𝐸𝐴𝑢𝑔 

𝑦̂𝑗
𝑖𝑛𝑛𝑒𝑟 =

𝑦̂𝑗
𝑖𝑛𝑛𝑒𝑟

√𝑉𝑎𝑟(𝑦̂𝑗
𝑖𝑛𝑛𝑒𝑟)

, 𝑗 = 1,⋯ , 𝐺,  

Where 𝐸𝐴𝑢𝑔is the augmented matrix as determined in Step 2. 

• Step 4: Estimation of the outer weights: The outer weights are calculated either as the 

covariances between the inner proxy of each latent variable and its indicators (in Mode 

A), or as the regression weights resulting from the ordinary least squares regression of 

the inner proxy of each latent variable on its indicators (in Mode B). 
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No additional procedure is required in this step because the non-linear terms do not have 

any assigned indicators, as determined by the hybrid approach.  

 

Mode A: Multivariate regression coefficient with the block of manifest variables as 

response and the latent variable as the regressor: 

𝑤̂𝑗
𝑇 = (𝑦̂𝑗

𝑖𝑛𝑛𝑒𝑟𝑇𝑦̂𝑗
𝑖𝑛𝑛𝑒𝑟)

−1
𝑦̂𝑗
𝑖𝑛𝑛𝑒𝑟𝑇𝑋𝑗

 = 𝐶𝑜𝑟(𝑦̂𝑗
𝑖𝑛𝑛𝑒𝑟 , 𝑋𝑗                           

 

Mode B: Multiple regression coefficient with the latent variable as response and its block 

of manifest variables as regressors: 

𝑤̂𝑗
𝑇 = (𝑋𝑗

𝑇𝑋𝑗)
−1
𝑋𝑗
𝑇𝑦̂𝑗

𝑖𝑛𝑛𝑒𝑟              

 = 𝑉𝑎𝑟(𝑋𝑗)
−1
𝐶𝑜𝑟(𝑋𝑗, 𝑦̂𝑗

𝑖𝑛𝑛𝑒𝑟)
 

These steps are iterated until the change in outer weights between two consecutive 

iterations falls below a predefined tolerance, 

𝑚𝑎𝑥(|
𝑤̂𝑘𝑗
𝑖 − 𝑤̂𝑘𝑗

(𝑖+1)

𝑤̂𝑘𝑗
(𝑖+1)

|) < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒, 𝐾 = 1,⋯ ,𝐾, 𝑗 = 1,⋯ , 𝐺 

 

The algorithm terminates after step 1, delivering latent variable scores for all latent 

variables. The loadings and inner regression coefficients are then calculated in a 

straightforward way, given the constructed indices. The structural relationships are 

obtained by estimating the additive model using a smoothing spline. For each latent 

variable 𝑦𝑗 , 𝑗 = 1,⋯ , 𝐺,we have the following model: 

𝑦𝑖𝑗 = ∑ 𝛽1
(𝑙)(𝑦𝑖𝑙) +

#𝑝𝑟𝑒𝑑

𝑙=1

∑ 𝛽𝑚+1
(𝑙) ℎ𝑚+1(𝑦𝑖𝑙) + 𝜖𝑖𝑗

𝐾−1

𝑚=1

 

 

Where 𝑦𝑖𝑗  is an endogenous latent variable, the summation ∑  
#𝑝𝑟𝑒𝑑
𝑙=1 means we are 

regressing LV  𝑗 on the set of all predecessor LVs, h is a natural cupic spline and 𝜖𝑖𝑗 are i.i.d. 

𝑁(0, 𝜎𝜖
2) random variables. The estimated factor scores (including the nonlinear terms) of 

the predecessor set of latent variables of 𝑦𝑗are used for this purpose. 

In practice the model may be estimated using partial least squares with the mgcv library 

available through the R Project software (R Core Team, 2018). 

Mendes et al. (2018) compare the performance of the PLSs with the PLS and PLSc models 

and shows that this model performs uniformly better, using absolute bias and Root Mean 

Squared Error (RMSE) measurements, in a simulated model where structural 

relationships have underlying real nonlinear functional forms, as proposed by Bauer et al. 

(2012). 
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1.3.  JUSTIFICATION FOR PLSS 

Henseler (2018) reflects on the applications PLS-PM, arguing that this estimation technique is 

suitable for all main lines of research, namely causal (including confirmatory and explanatory 

research), exploratory, descriptive and predictive research. 

As what regards nonlinearity, Hair et al. (2013) state that nonlinear approaches to PLS-PM must 

be carried carefully, as results in one specific experiment are not easily replicable and, hence, not 

generalizable. Also, these approaches are usually more demanding in terms of interpretability. In 

most contexts, these authors recommend more parsimonious approaches, yielding, in most cases, 

similar and more easily interpretable results. This is especially the case for causal and 

experimental research. 

As such, the application of PLSs for causal and experimental research is not straightforward and 

its usage should be taken cautiously. Nevertheless, in these contexts, it shouldn’t, at all, be 

discarded as an important auxiliary tool, for characterization and visual analysis of results. 

On the other hand, PLSs appears as a powerful tool for predictive analysis and could become one 

of the go to tools in specific contexts, such as strategic management, where the main objective is 

to accurately predict the behavior of out of sample elements and target segment specific policies. 

In fact, the good performance of this method when compared with PLS and PLSc, as shown be 

Mendes et al. (2018), regarding absolute bias and RMSE metrics, gives indications that PLSs may 

be the most suitable to more accurately predict individual behaviors. Also, it shares these models’ 

properties of transparency in how the prediction is produced, which is a plus when compared 

with alternative prediction tools (Henseler, 2018). 

As Mendes et al. (2018) show in a practical example, visual inspection of the results of PLSs 

modelling is an important instrument to detect nonlinearity. 

Also, the analysis of first, and even second derivatives of the results, provide valuable information 

about the elements of the population where specific policies may be more impactful in the 

presence of nonlinearity, allowing for their efficient targeting. 

To briefly illustrate this potential, we draw from the application presented by Mendes et at. 

(2018). 

These authors use a real data set produced in the context of the European Customer Satisfaction 

Index to investigate nonlinear relationships between satisfaction and loyalty and between 

perceived quality and satisfaction latent variables. 
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The structural equation model is the reduced ECSI model presented below. 

 

Figure 2 – Structural Equation Model of the reduced ECSI 

In the table below we also reproduce the indicators of the measurement model of the analysis. All 

the included indicators are measured on a 10-point scale, from 1 to 10, where 1 traduces a very 

negative opinion and 10 a very good opinion. Cronbach's alpha (α) and Dillon-Goldstein's rho (ρ) 

unidimensionality measures are presented for each group of indicators. 

 

Latent variables Manifest variables 

Perceived quality  
α = 0.93; ρ = 0.94 

(a) Overall perceived quality 
(b) Quality of products and services 
(c) Customer service and personal advice 
(d) Availability of contact channels 
(e) Reliability of products and services  
(f) Diversity of products and services 
(g) Clarity and transparency of information provided 
(h) Accessibility 
(i) Quality of physical facilities 

Perceived value  
α = 0.91; ρ = 0.95 

(a) Evaluation of prices given quality 
(b) Evaluation of quality given prices 

Customer satisfaction 
α = 0.84; ρ = 0.91 

(a) Overall satisfaction 
(b) Fulfillment of expectations 
(c) Distance to ideal company 

Customer loyalty 
α = 0.89; ρ = 0.95 

(a) Intention to remain customer 
(b) Recommendation to friends and colleagues 

Table 1 – Measurement model of the reduced ECSI. 

The authors show that the PLSs method behaves slightly better than the PLSc and significantly 

better than the traditional PLS approach, in that regards R-squared values. 

The study presents the estimated relationships of the latent variables graphically. In particular, 

the visual inspection of the data and estimation results shows the ability of the PLSs to capture 
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apparent non-negligible nonlinearities in the case of the direct relationship between satisfaction 

and loyalty. Figure 3 illustrates these conclusions, whereby the PLSs fitting is represented by the 

continuous line. 

The results presented by Mendes et al. (2018) are interesting and show the potential of the model 

for further graphical analysis. 

 

Figure 3 – Estimated direct relationships between Satisfaction and Loyalty in the 
reduced ECSI model. Circles (∘) represent the traditional PLS estimated factor scores. 
Crosses (x) represent Smooth PLS estimated factor scores. The (non)-linear 
relationship estimated using Smooth PLS is represented by the red solid line. PLS and 
PLSc linear relationships are represented by the blue dashed line and green long-
dashed lines. 

Going somewhat further, below we present a depiction of the derivatives of the estimated direct 

relationships between satisfaction and loyalty, alongside the estimated curves produced by 

Mendes et al. (2018). 

The concave form of the direct relationship is evidently translated in a downward line of the 

derivatives. In fact, this illustrates that targeted satisfaction-based policies applied toward loyalty 

increase are likely to have a much stronger impact in elements of the population where 

satisfaction is lower than in those clients that already show high levels of satisfaction.  
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Figure 4 – Estimated direct relationships between Satisfaction and Loyalty and their derivatives 
in the reduced ECSI model 

In instances where nonlinear direct relationships between variables show inflections in the rate 

of variation (from concave to convex or vice-versa), inspection of second derivatives should also 

prove useful to detect the respective inflection points. 

Surely, consumer behavior analysis for targeted policies definition shouldn’t forego other sources 

of information regarding satisfaction and loyalty (e.g. regarding client value), but in marketing 

research and strategic management perspectives the PLSs produces valuable auxiliary and 

complementary insights towards efficiently addressing and predicting consumer behavior. 
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1.4.  ALTERNATIVE SMOOTHING SPLINES 

As stated by Wood (2017), penalised regression splines are low rank smoothing splines, that are 

designed to provide efficient compromise between retaining the good properties of splines and 

computational efficiency. 

In this section, we present a brief description of the three alternative smoothing methods based 

on penalized regression splines used in our analysis. 

Natural cubic splines 

First, we start by presenting the natural cubic regression splines used by Mendes et al. (2018) in 

their PLSs study, which is drawn from Wahba (1990). 

The basis functions in this case are:  

ℎ1(𝑥) = 1 

ℎ2(𝑥) = 𝑥 

ℎ𝑖+2(𝑥, 𝑥1) =  
(𝑥 − 𝑥𝑖)+

3 − (𝑥 − 𝑥𝑖)+
3

𝑥𝑛 − 𝑥𝑖
−
(𝑥 − 𝑥𝑖)+

3 − (𝑥 − 𝑥𝑖)+
3

𝑥𝑛 − 𝑥𝑛−1
 

Where (∙)+ is the positive portion of its argument: 

(𝑥 − 𝑥𝑖)+ = {
𝑥 − 𝑥𝑖, 𝑥 − 𝑥𝑖 ≥ 0
0, 𝑥 − 𝑥𝑖 < 0

 

In a comparison analysis with other penalized regression splines, Wood (2006) states that the 

main advantages of natural cubic splines are the fact these are computationally cheap and have 

directly interpretable parameters. Its main disadvantage is the dependence on knots, which adds 

a degree of subjectivity in the model design. 

P-Splines 

P-Splines were introduced by Eillers, & Marx (1996) and are a low rank version of the B-Splines 

developed by Boor (2001).  

Eillers et al (1996) propose the following objective function with basis splines of any order q: 

∑{𝑦𝑖 −∑𝑎𝑗𝐵𝑗(𝑥𝑖)

𝑚

𝑗=1

}

2

+ 𝜆∫ ∑ (∆𝑘𝑎𝑗)
2

𝑚

𝑗=𝑘+1

𝑛

𝑖=1

 

Where the B-splines basis functions of order q are defined recursively: 

𝐵𝑗
𝑞(𝑥) =

𝑥 − 𝑥𝑗

𝑥𝑗+𝑚−+1 − 𝑥𝑗
𝐵𝑗
𝑚−1(𝑥) +

𝑥𝑗+𝑚+2 − 𝑥

𝑥𝑗+𝑚+2 − 𝑥𝑗+1
𝐵𝑗+1
𝑚−1(𝑥)  𝑗 = 1, . . . 𝑚 

And 

𝐵𝑗
−1(𝑥) = {

1 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 



16 
 

That is, the authors propose to base the penalty on higher order finite differences of the 

coefficients of adjacent B-splines. By doing this, the dimensionality of the problem is reduced from 

the number of observations to the number of B-splines. 

The authors describe P-splines as also not being computationally expensive, including for cross-

validation (indispensable for calculating 𝜆). These splines have no boundary effects, conserve 

moments (means, variances) of the data, and have polynomial curve fits as limits. The main 

limitations of P-splines are the fact that they require equally spaced knots and the interpretation 

of penalties is far from being straightforward (Wood, 2006). 

Thin-plate regression splines 

The third type of penalized splines tested in this analysis is Thin Plate Regression Splines (TPRS). 

TPRS were first introduced by Wood (2002) and built from the Thin Plate Splines (Duchon, 1977). 

The following paragraphs follow very closely the description and notation carried by Wood 

(2016) 

In thin plate splines smoothing, the objective function to be minimized is: 

‖𝑦 − 𝑓‖2 + 𝜆𝐽𝑚𝑑(𝑓) (2) 

Where 𝑓 is a function of the covariates and 𝐽 is a penalty functional measuring the wiggliness of 𝑓 

and 𝜆 𝑖𝑠 𝑎 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟. 𝑇ℎ𝑒 𝑤𝑖𝑔𝑔𝑙𝑖𝑛𝑒𝑠𝑠 penalty may be written as: 

𝐽𝑚𝑑 = ∫. . . ∫ ∑
𝑚!

𝜈1!. . . 𝜈𝑑!
(

𝜕𝑚𝑓

𝜕𝑥1
𝜈1 . . . 𝜕𝑥𝑑

𝜈𝑑
)

2

𝑑𝑥1. . . 𝑑𝑥𝑑
𝜈1+...+𝜈𝑑=𝑚

 

ℝ𝑑
 

where d is the number of covariates. 

Defining m such that 2𝑚 > 𝑑 + 1, function (2) may be written as: 

𝑓(𝑥) =∑𝛿𝑖𝜂𝑚𝑑(‖𝑥 − 𝑥𝑖‖) +∑𝛼𝑗𝜙𝑗(𝑥)

𝑚

𝑗=1

𝑛

𝑖=1

 

where 𝛿 and 𝛼 are vectors of the coefficients to be estimated, with 𝛿 being subject to the constrains 

𝑇𝑇𝛿 = 0, where 𝑇𝑖𝑗 = 𝜙𝑗(𝑥𝑖) and 

𝜂𝑚𝑑(𝑟) =

{
 
 

 
 (−1)𝑚+1+𝑑 2⁄

22𝑚−1𝜋𝑑 2⁄ (𝑚 − 1)! (𝑚 − 𝑑 2⁄ )!
𝑟2𝑚−𝑑 𝑙𝑜𝑔 𝑟 𝑑 𝑒𝑣𝑒𝑛

𝛤(𝑑 2⁄ −𝑚)

22𝑚𝜋𝑑/2(𝑚 − 1)!
𝑟2𝑚−𝑑 𝑑 𝑜𝑑𝑑

 

At last, by defining the matrix E by  𝐸𝑖𝑗 ≡ 𝜂𝑚𝑑(‖𝑥𝑖 − 𝑥𝑗‖), the objective function may be written 

as: 

‖𝑦 − 𝐸𝛿 − 𝑇𝛼‖2 + 𝜆𝛿𝑇𝐸𝛿, subject to 𝑇𝑇𝛿 = 0 
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As Wood (2016) states and describes, thin plate regression splines are based on the idea of 

truncating the space of wiggly components of the thin plate spline (the components with 

parameters 𝛿), while leaving the components of zero wiggliness unchanged (the 𝛼 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠). 

The author also defends that the advantages of this approach are the absence of knots and some 

optimality properties, which regularly translate in better performances than the other spline 

methods described above. Regarding disadvantages, computational costs in large data sets is the 

one that may have more impact in the context of our analysis. 
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2. APPLICATION 

2.1.  DATA DESCRIPTION AND PROCEDURE 

To study the best smoothing choices, Monte-Carlo simulations are carried with different 

smoothers and knot choice placement strategies.  

The software implementation and simulation plan, including the population design, will follow 

the methodology carried by Mendes et al. (2018) in what regards simulated population 

dimension, methodologies adopted for observation generation and analyzed random sample 

sizes. 

Hence, the underlying conceptual model will follow the functional forms used by Bauer et al. 

(2012), to incorporate a wide span of nonlinear relationships, with an added true linear 

relationship to assess to what extent the PLSs method can capture linear relationships.  

In the next paragraphs we describe the steps carried to generate the simulation data, following 

the method implemented by Mendes et al. (2018). 

The Monte Carlo procedure follows three steps: 

1. Define an underlying true model.  

2. Generate random data emerging from the defined model.  

3. Use PLSs to estimate the models with different smoothing splines and compare the 

different approaches using the absolute bias and RMSE. 

The defined model consists of one exogenous latent variable and four endogenous latent variables, 

all depicting different nonlinear relationships with the exogenous latent variable. The chosen 

functional forms were those used by Bauer et al. (2012). A true linear relationship is added to 

assess to what extent the PLSs method can capture linear relationships. Figure 5 presents all the 

designed relationships. 
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Figure 5 – Structural Equation Model implemented in the Monte Carlo simulation 

where 𝐼𝜉<0 < 0 is the indicator function, taking the value 1 if 𝜉 < 0 and 0 otherwise, and the 

disturbances are sampled as follows: 

𝜖𝑗 ∼ 𝑁(0;  0,5);  𝑗 =  1;  2;  3;  4;  5 

To ensure consistency in the PLS-PM, the measurement model has a fixed number of five 

indicators and latent variables with unit loadings: 

𝑥𝑙
𝜉
 =  𝜉 + 𝛿0, 𝑙 =  1;  2;  3;  4;  5 

𝑦 𝑙
𝜂𝑘 = 𝜂𝑘  +  𝛿𝑘;  𝑘 =  1;  2;  3;  4;  5;  𝑙 =  1;  2;  3;  4;  5 

where residual variance 𝛿(.), follows a normal distribution 𝑁(𝜎𝛿
2) with 3 different levels of 

variance (3, 1 and 0,33), corresponding to communalities of 0.25, 0.50 and 0.75, respectively. 

The experiment is implemented with different samples sizes, ranging from 50 to 900 observations 

(namely, 50, 100, 150, 250, 300, 500, 600, 750 and 900). 

Following this methodology, three populations of 10 000 units, will be generated (corresponding 

to the three levels of residual variance).  

Then, K = 1000 random samples of size n = 50; 100; 150; 250; 300; 500; 600; 750; 900, are 

randomly drawn from the three levels of communality.  
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2.2.  RESULTS 

This section presents the results drawn from our simulation plan.  

After generating the samples, SEM models where estimated through PLSs with the three different 

types of splines using the “gam” function of the mgcv R Package (Wood, 2018). 

To analyze the performance of the models, we measured the absolute bias (B) and the RMSE. The 

calculations of these indicators are given by: 

𝐵𝑙 ≈
1

300
∑|𝑔̅𝑖(𝜉) − 𝑔𝑖(𝜉)|

300

𝑖=1

 

𝑅𝑀𝑆𝐸𝑙 ≈
1

𝐾
∑ (

1

300
∑(𝑔𝑘𝑖(𝜉) − 𝑔𝑖(𝜉))

2
300

𝑖=1

)

𝐾

𝐾=1

 

Where the index l=1,2,3 represents the different sample sizes, and 𝑔̅𝑘(𝜉) =
1

1000
∑ 𝑔𝑘𝑖(𝜉)
1000
𝑘=1  is 

the mean estimated functional relationship between 𝜉and 𝜂(. ) evaluated at a fixed, even grid of 

𝑖 = 1, . . . , 300 points in the range of 𝜉, and 𝑔(𝜉) is the known functional relationship (see Mendes 

et al, 2018). 

Regarding the parametrization of the splines, the following configurations were implemented: 

1. Natural cubic splines with 10 equidistant knots (GAM function with bs=”cr” and k=10); 

2. P-Splines with a 2nd order spline basis and a third order difference penalty (GAM function 

with bs=”ps” and m=2). 

3. P-Splines with a 3rd order spline basis and a third order difference penalty (GAM function 

with bs=”ps” and m=3). 

4. P-Splines with a 4rd order spline basis and a fourth order difference penalty (GAM function 

with bs=”ps” and m=4). 

5. Thin Plate Regression splines with 2nd order derivatives (GAM function with bs=”tp” and 

m=2). 

6. Thin Plate Regression splines with 3rd order derivatives (GAM function with bs=”tp” and 

m=3). 

7. Thin Plate Regression splines with 4th order derivatives (GAM function with bs=”tp” and 

m=4). 

The natural cubic splines configuration is the configuration used by Mendes et al. (2018).  

Firstly, we compare the performance of splines with 2nd order derivatives. Figures 3 and 4 below 

compare the performances of these spline configurations across all sample sizes, regarding, 

respectively, the RMSE and absolute bias. 
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Table 2 - RMSE for Natural Cubic Splines and P-Splines and TPRS with 2nd order derivatives 
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Table 3 - RMSE for Natural Cubic Splines and P-Splines and TPRS with 2nd order derivatives 

In the context of very small samples (n=50), the results vary depending on the performance 

indicator. As PLSs with TPRS have less RMSE, the absolute bias (Bias) indicator shows better 

performances of Cubic Splines and P-Splines depending on the type of nonlinear relationship. 

However, from n=100 all models with P-Splines perform better in both Bias and RMSE when 

estimating the relationships 𝜂1 to 𝜂4.  

In the specific case of 𝜂5, TPRS have lower RMSE in samples n=100 and 150 and Natural Cubic 

Splines show the best Bias results with n=100. Hence, P-Splines tend to be a less obvious choice 

when the underlying relationship between the latent variables is linear. 
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The results presented in the Annex confirm and deepen these conclusions when splines of higher 

order are used. In fact, P-Splines fare better in all contexts when the underlying relationships are 

nonlinear. 

This advantage disappears when dealing with a linear relationship. In this case, higher order TPRS 

present better results than the other cases in what regards RMSE. Regarding Bias performance, 

the outcome is more mixed and inconclusive. Nevertheless, both TPRS and P-Splines tend to 

perform better than that natural cubic splines originally employed by Mendes et al. (2018). 

Hence, with these results, P-splines become the obvious choice for estimating PLSs, since they fare 

better than the other methodologies in most contexts. 

This conclusion is further justified as P-Splines are also faster producing results, as stated by 

Wood (2016).  

Hence, the recommendation drawn from this analysis is that P-Splines should be preferred when 

using PLSs when nonlinear relationships are present. 
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3. CONCLUSIONS 

In the last decade and a half, extensive research in PLS-PM has endowed this estimation technique 

with an extensive set of tools to overcome or at least mitigate its original shortcomings.  

Evenso, nonlinear approaches to PLS-PM have been limited and mostly circumscribed to 

nonlinear relationships of known functional form.  

Building from the work carried by Mendes et al. (2018), which introduces a method that embeds 

natural cubic splines with fixed knots in the PLS algorithm, aptly named smooth PLS (PLSs), we 

studied the performance of PLSs with different penalized regression splines. 

For that, we embedded the PLS algorithm with P-Splines and Thin Plate Regression Splines in 

structural model direct relationships, testing different sets of parameters. 

The different configurations were tested using a simulated dataset. The simulation framework 

included four different nonlinear structural relationships and a linear relationship for control 

purposes. The studied scenarios included six different sample sizes (from n=50 to n= 900), and 

3 different levels of communality between latent variables and their indicators. 

For comparison of the performance of these configurations we used the usual metrics: Root Mean 

Squared Error (RMSE) and absolute bias (Bias). 

Our results show that P-Splines and TPRS are valid alternatives to natural cubic splines when 

studying non-linear relationships of unknown form in the context of PLS-SEM. More so, P-Splines 

fare better than the rest of the configurations in almost all the studied scenarios, except for very 

small samples contexts (n=50) and linear relationships, where TPRS, in some cases, presented 

better results. 

We also illustrate how PLSs can be a powerful for inspection of nonlinear relationships and be a 

powerful predictive in corporate management and marketing research work frameworks, namely 

by assessing first and second derivatives of the direct relationships. 
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4. LIMITATIONS AND FUTURE WORK 

Despite the observed trend of better results from P-Splines and TPRS, further simulation work 

should be developed to test in a more robust fashion whether these splines are significantly better 

suited to fit nonlinear relationships. 

Besides RMSE and Bias, these different parametrizations could also be analyzed in an efficiency 

perspective. That is, it should be studied whether residual gains in RMSE and Bias with higher 

order parameters are sufficiently important to compensate in higher estimation times, since the 

identified differences are residual. 

More generally, the full impact of PLSs in predictive research could be object of a structured and 

detailed approach, namely in what regards the analysis of derivatives of the direct relationships’ 

functions in the structural model. 

Also, the performance of the method in models with formative constructs should be studied to 

evaluate if the conclusions presented here may be generalized. 

As the model behavior hasn’t fared consistently better than the classic PLS approach in contexts 

where relationships between latent variables are in fact linear, the development of tools to 

automatically opt for the most adequate model configuration would be a valuable development 

for practical contexts, since it could provide substantial gains regarding parameter 

interpretability. 

Finally, as the classic PLS has evolved to PLSc to address its original consistency issues, future 
work on PLSs could pursue a similar path, since the nonlinear approximations carried in this 
methodology approximation relies on linear combinations of functions. 
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ANNEX – RMSE AND ABSOLUTE BIAS RESULTS 

 

Table A.1 - RMSE for Natural Cubic Splines and P-Splines and TPRS 
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Table A.1 (continued) - RMSE for Natural Cubic Splines and P-Splines and TPRS 
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Table A.2 – Absolute Bias for Natural Cubic Splines and P-Splines and TPRS 
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Table A.2 (continued) – Absolute Bias for Natural Cubic Splines and P-Splines and TPRS 
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