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Abstract 

 

New chemical entities (NCEs) under development tend to be progressively more poorly 
water soluble. As conventional dissolution tests are not representative of in vivo conditions and 
thus not predictive of its in vivo behavior, formulation of these orally administered drug products 
is often compromised. The design of a biorelevant dissolution method reflects the physiological 
conditions in the gastrointestinal (GI) tract, possessing a biological discriminative power given 
e.g. by the increased solubilization of drug molecules by bile salts and lecithin, which is of signif-
icant importance when evaluating the dissolution behavior of poorly soluble drugs. Moreover, 
there has been an increasing trend in the pharmaceutical industry to use mechanistic models to 
complement in vitro data that are an inexpensive and fast way of assisting the formulation pro-
cess. 

The present work aims at using a biorelevant dissolution methodology to support drug 
product development, employing USP Apparatus 2 and different formulations (enteric and non-
enteric polymers, different binders and granule sizes) of tablets of spray dried dispersions (SDDs) 
of Itraconazole (ITZ), a poorly water-soluble drug. SDDs, tablets and the reference commercial 
product dissolution were assessed in biorelevant media and a biorelevant pH shift was performed. 
Also, an attempt was made to simultaneously evaluate dissolution and in vitro permeation of ITZ, 
using the reverse dialysis membrane methodology. Finally, an in silico model describing dissolu-
tion phenomena of amorphous active pharmaceutical compounds (APIs) was developed. 

Crystalline ITZ solubility in biorelevant media could not be assessed, since it was below 
the limit of quantification of the employed method. SDDs could not be properly tested in USP 
Apparatus 2 due to the characteristic poor wettability of these powders, that led to powder floating. 
The potential for higher bioavailability of solid oral ITZ through intestinal targeting was demon-
strated via pH shift. It was not possible to quantify the molecularly dissolved ITZ through reverse 
dialysis method, which lacks further development and optimization. The obtained results show 
that the compendial dissolution methodology is not enough to evaluate poorly-soluble dosage 
forms performance because they can often lead to a sub or over estimation of its solubility. 

Keywords: in vitro, in silico, dissolution, biorelevant, poorly-soluble-drugs, free-drug 
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Resumo 

 

Os novos princípios ativos em desenvolvimento tendem a ser cada vez mais hidrofóbi-
cos. Uma vez que os testes de dissolução convencionais não são representativos das condições 
in vivo, não permitindo prever o seu comportamento nestas mesmas condições, a etapa de for-
mulação destes fármacos poderá ser inglória. A conceção de um método de dissolução biorele-
vante reflete as condições fisiológicas do trato gastrointestinal, possuindo uma capacidade de 
discriminação biológica, por exemplo devido à maior solubilização do fármaco por sais biliares e 
lecitina, relevante para o estudo da dissolução de fármacos pouco solúveis em água. Para além 
disto, tem havido uma tendência na indústria farmacêutica para utilizar modelos mecanísticos 
para complementar os dados in vitro, que constituem uma estratégia rápida e fácil de auxiliar o 
processo de formulação. 

Este trabalho visa utilizar a metodologia de dissolução biorelevante para suportar o pro-
cesso de formulação de fármacos com pouca solubilidade aquosa, recorrendo ao equipamento 
de dissolução USP Apparatus 2 e diferentes formulações (polímeros entéricos e não entéricos, 
ligantes e tamanhos de grânulos diferentes) de comprimidos com dispersões sólidas amorfas 
(DSAs) de Itraconazole (ITZ), um fármaco pouco solúvel em água. A dissolução das DSAs, dos 
comprimidos e do produto comercial (referência) foram estudados em meios biorelevantes e foi 
realizado um ensaio de dissolução biorelevante com transição de pH para as formulações mais 
promissoras. Também foi feita uma tentativa de quantificar simultaneamente a dissolução e per-
meação in vitro do ITZ usando o método de diálise reversa. Por último, desenvolveu-se um mo-
delo in silico para descrever o fenómeno de dissolução de princípios ativos (PAs) amorfos. 

Não foi possível determinar a solubilidade do ITZ cristalino, por estar abaixo do limite de 
quantificação do método utilizado. A dissolução das DSAs no Apparatus 2 não foi avaliada nas 
condições mais adequadas, devido à baixa molhabilidade típica destes produtos que, por con-
seguinte, flutuam no meio de dissolução. Demonstrou-se o potencial de maior biodisponibilidade 
de uma formulação entérica de ITZ via dissolução com mudança de pH. Não foi possível quanti-
ficar o ITZ livre em solução pelo método de diálise reversa, sendo que este carece de futuro 
desenvolvimento e otimização. Os resultados obtidos mostram que os métodos de dissolução 
compendiais não são suficientes para estimar o desempenho de fármacos pouco solúveis in vivo, 
uma vez que estes levam frequentemente a uma sub ou sobrestimação da sua solubilidade. 

Palavras-chave: in vitro, in silico, dissolução, biorelevante, fármacos-pouco-solúveis, fármaco-
livre. 
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 Introduction 

1.1. Motivation 
Oral drug delivery represents the primary route for drug administration [1], due to its con-

venience of self-administration, ease of handling of the dosage form by the patient and lower cost 

of the final drug product in contrast  to, e.g., sterile manufacturing for injectables [2]. However, in 

order to achieve therapeutically effective concentrations upon oral administration, the drug must 

exhibit satisfactory biopharmaceutical properties. 

In a drug discovery setting, oral bioavailability, which is defined as the fraction of an oral 

dose of the drug that reaches the systemic circulation, is the pharmacokinetic measure of drug 

candidate suitability for oral administration most commonly used [2]. Drug absorption at the intes-

tine is the result of a number of steps (Figure 1.1), including drug dissolution in the GI tract and 

uptake through the intestinal mucosa, followed by delivery into the systemic circulation. In order 

to predict the in vivo performance of a drug after oral administration, it is critical to establish the 

physiochemical and physiological factors affecting drug absorption [3]. An high oral bioavailability 

reduces the amount of administered drug necessary to achieve a desired pharmacological effect, 

thus avoiding potential side-effects and toxicity associated to higher doses and can reduce inter-

individual variability, averting an unpredictable response to a drug [2].  

1 
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Figure 1.1 – Dissolution and Oral Drug Delivery. Adapted from [4]. 

Dissolution testing is an important analytical tool that is widely used by the pharmaceutical 

industry to assess and establish product behavior during the various stages of drug product de-

velopment, as well as life cycle management. It is described in is described in many pharmaco-

peias, e.g. European Pharmacopeia (EP) and United States Pharmacopeia (USP) and Food and 

Drug Administration (FDA) guidelines. 

The relationship between in vitro dissolution and in vivo performance is based on the fact 

that the active pharmaceutical ingredient (API) must be in solution in the GI tract so that it can be 

available for absorption. For a proper use in the evaluation of dosage forms performance, the 

quality of the in vitro dissolution data is of paramount importance. Thus, the main goal of a disso-

lution test should be a discriminatory method, sensitive to variables that impact the release rate 

and are simultaneously representative of the in vivo performance (Figure 1.2). Such variables 

may include characteristics of the API, drug product formulation and drug product manufacturing 

and effects of stability storage conditions [3]–[5]. 



3 

 

Dissolution Results: 
Percentage Dissolved vs. Time

API

 API: Source, Quality, Purity, Salt, etc;
 API: Solubility, Dissolution Rate, Particle 

Size, Crystal Shape, Polymorphism, pKa, 
etc.

Formulation and Process
 Formulation Type: immediate, modified 

release, etc;
 Formula: Composition, Grade of Excipients, 

Quantity of API and Excipients, etc;
 Process Parameters: Mixing, Granulation, 

Tableting, Coating.

Dissolution Method

 Dissolution Apparatus;
 Dissolution Media;
 Dissolution Parameters.

 
Figure 1.2 – Factors influencing in vitro dissolution [5]. 

At the early stages of development, also referred as preformulation, dissolution testing of 

pure APIs serves as a tool in the screening of physicochemical properties of drug candidates [6]. 

It guides the selection of toxicology and phase I formulations for evaluation in animals and hu-

mans.  At later stages of development, the dissolution tests are performed with drug products to 

compare prototype formulations, elucidate the drug release mechanisms, assess the stability of 

the formulated product and the robustness of the manufacturing process to ensure safety and 

reproducibility of the products released to the market [7]. 

During the development of a pharmaceutical product, dissolution testing is used as a tool 

to identify formulation factors that influence and may have a significant effect on the bioavailability 

of the API. After formulation and manufacturing processes are defined, dissolution testing is used 

in the quality control of scale-up and of production batches, ensuring batch-to-batch consistency. 

A quality control (QC) release dissolution test is overtly discriminatory with no relevance to the in 

vivo performance of the product. As conventional dissolution tests in USP Apparatus 1 and 2 

described in the pharmacopoeias use a constant fluid volume, pH and buffer species, which are 

not physiologically relevant of the human GI tract, formulation development of poorly soluble 

drugs is often hindered. Accordingly, the prediction of the in vivo performance of these oral drug 

products is compromised. 

The rate and extent of absorption of an oral dosage form are primarily controlled by two 

factors: solubility and permeability. In this regard, FDA established the Biopharmaceutics Classi-

fication System (BCS). According to BCS, drug substances are divided in different classes I, II, 

III or IV according to their solubility and permeability (Figure 1.3). This system can be used to flag 

a drug that should not be tested clinically unless appropriate formulation strategies are employed. 
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For example, BCS Class II compounds are not likely good clinical candidates without the use of 

enhanced formulation techniques in order to increase solubility or dissolution rate. 

 
Figure 1.3 – Biopharmaceutics Classification System. Adapted from [8].	

Recently, a new classification system that aims to support formulation process has been 

proposed – Developability Classification System (DCS) [9]. This system, although having the 

same classes of BCS, divides Class II in two sub-classes, IIa, dissolution rate limited drugs and 

IIb, solubility limited drugs, which facilitates the choice of formulation strategy, e.g. for class IIa 

drugs, one formulation option would be particle size reduction while for a class IIb drug, an amor-

phous solid dispersion would be suitable. 

Most of NCEs (drugs that contain any functional group not yet known or approved by the 

FDA) under development are intended to be used as solid dosages forms, even though up to 

90% of these entities are poorly water soluble drugs, i.e. not well-absorbed after oral administra-

tion [10]. For orally administered drugs, low aqueous solubility represents an obstacle to efficient 

absorption across GI tract and thus to an high oral bioavailability [1]. Therefore, one of the major 

current challenges of the pharmaceutical industry is to develop strategies in order to enhance 

water solubility and the dissolution rate of drugs [11]. Consequently, dissolution tests are partic-

ularly critical in BCS class II drugs, whose bioavailability is limited by their solubility or dissolution 

rate.   

There are several platforms to improve the release of BCS class II drugs, which include 

changing the delivery strategy, particle engineering of the drug substance and/or intermediates, 

amorphous dispersions, complexation (e.g. with cyclodextrins), lipidic formulations and excipient 

optimization. Thus, it is possible to use the in vitro dissolution tests to identify the aspects that 

need to be adjusted or modified, in order to obtain the desired dissolution profile and consequently 

the optimal pharmacokinetic properties. 

Biorelevant dissolution tests consist in dissolution tests that simulate the conditions of the 

GI tract and can predict the in vivo performance of drug products. They are useful from the early 
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stages of drug discovery and development through the later stages of development for identifying 

the biopharmaceutical performance of the drug product, solubility issues, food effects and precip-

itation in the small intestine. In fact, they can assist in formulation strategies and in the establish-

ment of in vitro in vivo correlations (IVIVCs) which allow the reduction of the number of in vivo 

studies [12]. Particularly, biorelevant dissolution tests have a biological discriminative power 

which is of utter importance to poorly soluble drugs, i.e. class BCS II - where the dissolution is 

the rate limiting step to absorption, whereas the compendial dissolution tests are not representa-

tive of in vivo conditions and thus not predictive of its in vivo behavior. Biorelevant dissolution 

tests have been shown to be a useful tool to predict the absorption of poorly soluble drugs [12]–

[14]. For example, food and bile components  can promote the solubility of the drug, resulting in 

a much greater solubility in vivo than in vitro tests, using buffers as dissolution media [15]. 

As there is also a demand to reduce development times and increase cost-effectiveness, 

there is a clear need of in silico mechanistic models with the capability to accurate predict solu-

bility/dissolution limited absorption. Reliable predictions on these aspects would be most useful 

to guide formulation development (e.g. Design of Experiments) and taking into account inter-pa-

tient variability). Additionally, computational modeling provides an inexpensive and fast way to 

assess the dissolution and intestinal permeability of a molecule before synthesis and also enables 

prioritization of molecules for in vitro and in vivo studies. 

This MSc work seeks to develop dissolution methodologies suitable for BCS class II drugs 

and to put together an in silico model that will be used to best guide and select the formulation 

stages. 

1.2. Dissolution process 

Dissolution is defined as a dynamic process by which a material is transferred from a solid 

state to a solution per unit of time.  Dissolution of a solid dosage form is composed of at least two 

consecutive steps: tablet disintegration followed by dissolution of the drug in the liquid media. 

This process is directly related  with the cohesive properties of the formulated drug and the intrin-

sic physicochemical properties of the drug molecule [7]. 

Factor affecting kinetics of drug dissolution can be understood by Noyes-Whitney equation 

(Equation 1) proposed in 1897 [16] based on the Nernst-Brunner modifications [16], [17] . It de-

scribes the dissolution profile of a drug particle. 

 𝑑𝐶
𝑑𝑡

=
𝐷𝐴
𝑉𝛿

(𝐶* − 𝐶) (1) 

where C is drug concentration, D is drug diffusion coefficient, A is drug surface area available for 

dissolution, δ is the thickness of the hydrodynamic boundary layer, Cs is the equilibrium solubility 

of the API at the solid liquid interface and V is the volume of the dissolution medium. Each pa-

rameter of the equation is influenced by physicochemical and physiological factors as described 
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in Table 1.1.  
 
Table 1.1 – Physicochemical and physiological parameters influencing drug dissolution in the GIT. 

Modified from [18]. 

Factor Physicochemical parameter Physiological parameter 

Drug surface area (A) Particle size, wettability Surfactants in gastric juice and bile 

Drug diffusivity (D) Molecular size Viscosity of luminal contents, diffusiv-

ity of mixed micelles 

Boundary layer thickness (𝛿) - Mobility pattern, flow rate 

Solubility (Cs) Hydrophobicity, crystal structure, 

pKa 

pH, buffer capacity, bile, food 

Bulk drug concentration (C) Particle size, wettability, solubility Permeability 

Volume of solvent available (V)  Secretions, co-administered fluid 

 

1.3. Biorelevant dissolution methodology 
The design of a biorelevant dissolution method  should take into account for the following 

factors to reflect the physiological conditions in the GI tract: pH conditions, volume of the GI con-

tents, characteristics of the composition of the GI contents: buffer capacity, osmolality, surface 

tension, viscosity and prandial state – composition of the GI content; temperature; hydrodynam-

ics; transit times [19]. 

The duration of the test should reflect the residence times in the GI tract and thus be chosen 

according to the type of release of the dosage form (Table 1.2). An immediate release (IR) is 

designed to disintegrate in the stomach whilst being transported to the small intestine, where its 

dissolution should be completed, so that its absorption can take place. On the other hand, delayed 

release dosage forms are formulated to remain intact until they reach the GI segment in which 

they are supposed to release the API. There is still a third category, extended release dosage 

forms, which are intended to ensure prolonged drug release over a large part of the GI tract. This 

last two are named modified-release tablets, i.e. tablets which are designed to modify the rate, 

the place or the time at which the API is released [20].  
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Table 1.2 – Typical values of MRT (Mean Residence Times) in various segments of the GI Tract of 

Young Healthy Volunteers [21]. 

 

The temperature defined during a dissolution test is maintained at its physiological value, 

i.e. rounding 37 ºC and variations in the hydrodynamic conditions and media volumes can be 

obtained through the employment of different USP dissolution apparatus or within one apparatus 

by changing the stirring rate, reciprocating frequency, or flow rate. As for reflecting the effect of 

the remaining factors on the drug release, they are achieved by the use of biorelevant media. 

1.3.1. Biorelevant dissolution media 

Compendial media are simple aqueous preparations used to simulate mainly the pH and 

ionic strength of the fasted human GI compartments [22]. This type of media is essentially used 

for QC purposes due to its cheapness and simplicity. According to the pharmacopoeias, the pH 

of a dissolution medium for an oral dosage form should cover the physiological range of 1.2 to 

6.8. The pharmacopeias also recommend the use of media more similar to the in vivo fluids – 

Simulated Gastric Fluid sine pepsin (SGFsp) and Simulated Intestinal Fluid sine pepsin (SIFsp) 

in terms of pH and ionic strength [23]. However, the compendial media do not include surfactants 

and therefore are less likely to simulate the solubilization and the wetting effect that occur in vivo 

due to compounds such as bile acids, bile salts, lecithin, among others, before the drug molecules 

are absorbed. 

1.3.1.1. Media simulating the contents of the stomach 

• FaSSGF (Fasted State Simulated Gastric Fluid) 

Several attempts have been made to improve media simulating the fasting conditions in 

the stomach. In most of these media, particular attention was given to the simulation of the surface 
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tension measured in human gastric aspirates [18], [24], [25]. In these media, synthetic surfactants, 

such as sodium lauryl sulfate or Triton-X 100 have been utilized, although they often overestimate 

gastric dissolution because they induce greater solubilization effects compared to the ones oc-

curring in vivo [26].  

In 2005, Vertzoni et al. [27] developed Fasted State Simulated Gastric Fluid (FaSSGF) 

(Table 2.3) which is a dissolution medium that mimics the actual gastric composition in the fasted 

state according to published physiological data. This medium has a pH of 1.6 and contains phys-

iological relevant amounts of pepsin, bile salts and lecithin in order to obtain a surface tension 

close to that found in vivo. It appears to be more biorelevant than the previously proposed media 

because it comprises only components that have been recovered from the fasting stomach. FaS-

SIF is currently recommended for biorelevant in vitro experiments [22]. 

It is not straightforward to define a standard gastric pH value, since the inter-patient varia-

bility is high. The median pH of the stomach in the fasted state falls in the range 1.5–1.9 [28]–

[30], even though pH values as low as below pH 1 or as high as pH 5–6 are presented by a few 

patients [30]. 
•  FeSSGF (Fed State Simulated Gastric Fluid) 

In a fed state, the conditions in the stomach can vary widely, depending on the composition 

of the meal ingested. Initially, the composition of the gastric fluid will be close to the composition 

of the meal with respect to the pH, osmolality and the surface tension. The pH is increased to 

values of 3-6 [21]. Over time, with the secretion of gastric fluids and the following gastric emptying, 

values will return to those of the fasted state [31]. Thus, the contents of the fed stomach are 

complex, heterogeneous and have transient physicochemical characteristics. 

Full fat milk (3.5%) and Ensure® Plus [32] were proposed to simulate the fed conditions in 

the stomach. While milk was first investigated as a dissolution medium about 20 years ago [32], 

[33] the use of Ensure® Plus has been established only a few years ago [32]. Both have a similar 

composition to the standard breakfast meal recommended by the Health and Human Services - 

Food and Drug Administration (HHS-FDA) for the food effects and bioequivalence studies [34]. 

However, milk and/or nutritional liquid products can only simulate the initial gastric conditions in 

the fed state. This is because the composition of the stomach contents in the fed state changes 

with time, as secretions, digestion and gastric emptying proceed [22]. There are two options to 

overcome this problem: to artificially gradually digest the milk with aliquots of an acidic solution 

into milk during the in vitro test or to use “snapshot” media, corresponding to a defined time-frame 

after meal ingestion [34]. Both techniques use homogenized milk (3.5% fat) as the initial medium. 

In the first approach, the initial medium is gradually digested by adding physiologically relevant 

amounts of a hydrochloric solution (HCl 1.83 M) containing 1.1 miligrams of protein (pepsin) per 

milliliter into the vessel from 0 to 90 min every 15 minutes [35]. Regarding the second approach, 
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Jantratid et al. [34] designed media reflecting the pH, buffer capacity and osmolality of the gastric 

contents during the first 75 min (early), from 75-165 min (middle) and after 165 min (late) following 

meal ingestion. These “snapshot” media can be used as sequential dissolution media in one test 

series (e.g. USP Apparatus 3 and 4). The “middle” medium FeSSGF – (Table 1.3) is suggested 

represent postprandial conditions for comparing formulations and/or predicting food effects com-

pared with FaSSGF. It contains UHT-milk (3.5%) and acetate buffer mixed in equal volumes with 

a pH of 5 [35]. 
Table 1.3 – Composition of the media simulating the contents of the fasted (FaSSGF) and fed 

(FeSSGF) stomach [34]. 

 

1.3.1.2. Media simulating the contents of the intestine 

• FaSSIF (Fasted State Simulated Intestinal Fluid) 

FaSSIF was introduced in 1998 by Dressman et al. in order to simulate fasting state con-

ditions in the small intestine according to physiological data [13], [18]. Apart from pH, osmolality 

and buffer capacity, FaSSIF takes into account the solubilizing capacity of the intestinal fluids 

preprandially. FaSSIF has a pH of 6.5 and contains sodium taurocholate and phospholipids in a 

ratio of 4:1 (Table 2.4). Later (2008), Jantratid et al. [34], have improved the composition of FaS-

SIF with minor modifications and proposed the FaSSIF-V2. The amount of lecithin is decreased 

from 0.75 mM in FaSSIF to 0.2 mM in FaSSIF–V2, the osmolality is lower in FaSSIF-V2 and 

maleate buffer is used instead of phosphate buffer (Table 2.4) [35]. However, it is worth noting 

that the surface tension of both FaSSIF and FaSSIF-V2 is considerably higher than the surface 

tension of human intestinal fluids (HIF) (54 vs. 33.6 mN/m) [36] which can lead to a greater in 

vitro solubility than that observed in vivo. 
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• FeSSIF (Fed State Simulated Intestinal Fluid) 

Similarly to the fed state in the stomach, the composition of the fluids in the upper small 

intestine in the fed state will also be dependent on the type of food ingested, even though, in a 

lower extent than in the stomach. After ingesting a meal, there are changes in both the hydrody-

namics and the intralumenal volume. The pH of the chyme (pre-digested, acidified mass of food 

that passes from the stomach into the small intestine) after a solid meal is lower than the intestinal 

fluid pH in the fasted state, while buffer capacity and osmolality show a sharp increase. As well 

as these factors, the increase in bile output could also be a major influence on the bioavailability 

of a drug. In addition, specific interactions between the drug and ingested food components may 

occur [22]. 

Together with FaSSIF mentioned above, a fed state simulated intestinal media – FeSSIF 

(Table 1.4) is also available [13]. FeSSIF simulates the fluids in the fed upper small intestine in 

terms of bile salt and phospholipids levels, pH, osmolarity and buffer capacity. The pH was set at 

5 and by the addition of sodium chloride, the osmolality is adjusted to 635±10 mOsm/kg, while 

acetic acid is added to maintain a higher buffer capacity of 76 mmol/L/pH.  

As for the gastric fluid, the composition of the intestinal fluid changes over time in the post-

prandial state. Therefore, similarly to the stomach media mentioned early, Dressman et al. devel-

oped three “snapshot” media: “early” FeSSIF, “Middle FeSSIF” and “Late” FeSSIF [34]. Though, 

a composite of the three intestinal “snapshot” media, FeSSIF-V2 (Table 2.4), is recommended for 

general assessment of dosage form performance in the fed state, since it is single phase, easy 

to prepare and facilitates analytic quantification [34]. These modifications were based on studies 

related to the characterization of the fed intestinal contents under conditions simulating bioavail-

ability/bioequivalence [31] which indicated that the pH in the upper small intestine decreases ra-

ther slowly after meal intake [34]. Also, in the updated media, the presence of lipolysis products 

(glyceryl monooleate and sodium oleate) in the fed intestinal contents was also taken into account 

(Table 1.4) [37]. 

Therefore, FeSSGF and FeSSIF-V2 are suitable for the prediction of drug dissolution in 

the fed stomach and upper small intestine, respectively, whereas FaSSGF and FaSSIF-V2 are 

recommended to predictive dissolution studies in the fasted state [34]. 
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Table 1.4 – Composition of the media simulating the contents of the fasted (FaSSIF-V1 and FaSSIF-
V2) and fed (FeSSIF-V1 and FeSSIF-V2) intestine [34]. 

 

1.3.2. Dissolution Apparatus 

USP, EP and Japanese Pharmacopoeia (JP) contain individual chapters describing the 

types and specifications of dissolution apparatus. Different apparatuses, procedures and tech-

niques are required for API or different dosage forms because of significant differences in formu-

lation design and physicochemical properties of the drugs.  

There are seven dissolution systems officially approved by USP that can be used to test 

several types of formulations. In particular, for oral dosage forms testing, phamacopoeial setups 

consist in Apparatus 1, 2, 3 e 4 and for the drug substance, the rotating and stationary disk. 

1.3.2.1. IDR (Intrinsic Dissolution Rate) 

The IDR is defined as the dissolution rate of pure substances under the condition of con-

stant surface area, temperature, agitation, medium pH and ionic strength. The intrinsic dissolution 

tests are performed with a rotating disk holder, similar to the one proposed by Wood et al. [38] 

and a fixed disk system called stationary disk, described only in the USP [39]. The rotating-disk 

is the most used system [40] having a cavity for placing the drug, which is compacted to have a 

fixed geometry (Figure 1.4). The geometry and size of the exposed surface of the drug are known 

and the compressed drug is set in a location within the apparatus with lower hydrodynamic vari-

ability [40]. 
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Figure 1.4 – Schematic representation of the Fixed Disk System, on the left, and of Rotating Disk 

System (Wood’s Apparatus), on the right [40]. 

The dissolution of pure API or active substances in preparations presented as powders or 

granules using USP Apparatus 4 (which will be presented in the next sections) is called apparent 

dissolution. In this method, the powder is simply transferred into the cell without the need for 

compression or compaction. 

 The IDR depends on the solid state properties of the API and it is useful to assess its 

dissolution behavior. For example, such knowledge allows to assess if the drug is solubility or 

dissolution rate limited. 

1.3.2.2. USP Apparatus 1 and 2 - Basket and Paddle 

The USP Apparatus 1 and 2 (Table 1.5) are the most commonly used dissolution equip-

ments for drug products simulating the individual compartments of the digestive tract [6] and were 

proposed in the 13th edition of the USP in 1970 [41]. They are the first choice for solid dosage 

forms due to its easiness of operation and because they are standardized and robust.  

Apparatus 1  - the basket apparatus - was described in 1968 by Pernarowski and his co-

workers [42]. The assembly consists of a vessel made of glass or other inert transparent material 

which can be covered, a motor, a metallic drive shaft and a cylindrical basket. The vessel is 

typically immersed in a water bath but other heating devices can be employed. The vessel is 

cylindrical with a hemispherical bottom. The dosage form is placed in the basket at the beginning 

of each test. The basket apparatus is usually employed in dissolution testing of tablets, capsules, 

beads and floaters [41]. It is especially useful for dosage forms that tend to float or disintegrate 

slowly, for example capsules and powders because these dosage forms can be held inside the 

basket [43]. 

In USP Apparatus 2, a paddle replaces the basket as the source of agitation. The assembly 

is similar to the basket apparatus, except for the source of stirring. Similarly, to the USP Apparatus 

1, the vessel is partially immersed in a suitable water-bath of any convenient size or heated by a 

suitable device such as a heating jacket at the physiological temperature. This apparatus can be 

used in dissolution of tablets, capsules, suspensions or powders. However, floating dosage forms 

require the use of sinkers. 
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In both apparatuses, aliquots are taken with a syringe at defined time points. Then, they 

are filtered through a low pore size filter (<0.45 µm) and analyzed. These systems can accom-

modate up to 1000 mL of medium using the standard size vessel. A medium volume of 200 to 

300 ml is used to simulate the fasted stomach, 500 mL for the fasted small intestine, and up to 

1000 ml for fed state conditions in the stomach and small intestine [18]. There are also non com-

pendial smaller vessels (such as the mini-paddle) used to simulate, e.g., the fasted stomach. This 

mini-paddle is hydrodynamically similar to the paddle apparatus [43]. Note, however, that a relia-

ble simulation of the GI transit is hindered due to the complexity of the hydrodynamic mechanisms 

of transport. For example, it is known a priori that the statistically steady flow is a crude approxi-

mation of the pulsated flow in the GI tract. Subsequently, several attempts to correlate the in vitro 

hydrodynamics with in vivo showed inconsistent results [44]. 

In order to simulate transfer from the stomach to the intestine, a change of media during 

dissolution is recommended by the pharmacopeias (commonly referred to as pH shift). This is 

especially relevant for modified-release forms (e.g. enteric coating formulations) or for the as-

sessment of precipitation of APIs upon the entry in the small intestine. The pharmacopoeias rec-

ommend two different methods for changing the pH during a dissolution test in a USP Apparatus 

1 and 2, one performed in a single vessel and the other including the transfer of the dosage form 

from a vessel containing an acidic medium simulating the gastric fluid, to a vessel containing a 

medium simulating the intestinal fluid. The latter mentioned method, can be performed with bio-

relevant media and has recently been used by Kambayashy (which they denoted as the “dump-

ing” method) to predict the precipitation of weak basic drugs in the intestine [45].  

1.3.2.3. Transfer model 

The transfer model (Figure 1.5) [46] is an upgraded version of the “dumping” method. It 

consists of a donor compartment (e.g. mini paddle vessel) simulating the stomach and an accep-

tor compartment (e.g. USP Apparatus 2 vessel) simulating the intestine. Gastric emptying is mim-

icked through the use of a peristaltic pump which connects the donor compartment with the ac-

ceptor compartment. The pump can be programmed to run nonlinear transfer kinetics, which en-

ables the simulation of first order gastric emptying in the fasted state. In this methodology, the 

biorelevant medium simulating the stomach fluid is poured in the donor vessel and the medium 

simulating the intestinal fluid is poured in the acceptor vessel. The media are warmed up to 37° 

C and the paddle rotation is turned on. Then the formulation is placed in the donor compartment. 

The peristaltic pump is turned on to transfer the contents of the donor compartment into the ac-

ceptor compartment and samples are withdrawn similarly to the USP Apparatus 1 and 2 assays. 
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Figure 1.5 – Transfer model [46]. 

1.3.2.4. USP Apparatus 3 – Reciprocating cylinder 

USP Apparatus 3 (Table 2.5) was incorporated into the USP in 1991 as alternative to USP 

apparatuses 1 and 2 for the assessment of dissolution of solid oral modified-release dosage forms 

[47], [48]. Its assembly consists of a set of cylindrical, flat-bottomed glass outer vessels and a set 

of reciprocating cylinders. 

The dosage form is placed in an open cylinder fitted with a sieve at the bottom end and at 

the top end (optional). It is placed in a vessel heated at 37ºC and the cylinder is moved up and 

down through the medium. It is possible to move the cylinder from one vessel to another. If each 

vessel is filled with different media, it enables the simulation of the passage of the immediate and 

modified release drug products through the GI tract in a single experiment [44]. It allows auto-

mated testing for up to six days although media evaporation can occur for the longer duration 

tests. 

Analogously to the USP Apparatus 1 and 2, the aliquots are withdrawn from the acceptor 

vessel with a syringe at defined time points, filtered through a low pore size filter (<0.45 µm) and 

analyzed. 

The vessel capacity is low (maximum 250 mL), thus it is difficult to obtain sink conditions 

(i.e. a volume at least three times bigger than the one needed to obtain a saturated solution) for 

the case of poorly soluble drugs, although it is possible to increase the total volume in the exper-

iment by increasing the number of times the cylinder is moved across the vessels [44]. The recip-

rocating cylinder comprises 6 vessels with up to 8 rows per compartment so that up to 48 vessels 

can be placed in it. 

The reciprocating movement of the cylinder generates pulsating hydrodynamic patterns 

which bear some resemblance to the in vivo conditions, whereas the resistance to the fluid flow 

can be adjusted by changing the mesh size of the sieve in the bottom of the cylinder [44]. 

In order to mimic in vivo conditions it is common to use 5-15 dips per minute (dpm) to 

simulate the fasted state and 30-40 dpm for the fed state [47]. Moreover, it is possible to add inert 
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spheres of several densities in order to simulate interaction with solid food particles in movement 

[49]. 

This apparatus is originally used for extended release products and bead-type modified 

release dosage form, particularly beads in capsules. It is also useful for solids which are mostly 

non-disintegrating [43]. 

1.3.2.5. USP Apparatus 4 – Flow-through Cell 

In 1981, International Pharmaceutical Federation proposed the flow-through cell (Table 

1.5) as an alternative to basket and paddle methods for poorly soluble and extended release 

forms [50]. In 1990, it was accepted by the USP, becoming an official compendial apparatus [21]. 

The apparatus consists of a reservoir containing a dissolution medium, a pump that forces 

the medium upwards through the vertically positioned flow-through cell, and a water bath that 

maintains the dissolution medium at 37ºC. The cell, made of a transparent and inert material, is 

placed vertically with a filter system that prevents the escape of undissolved particles from the 

top of the cell. There are two types of cells available for orally administered dosage forms: a large 

cell (22.6 mm i.d.) and a small cell (12 mm i.d.) The bottom cone of the cell is filled with small 

glass beads of about 1 mm diameter and a ruby bead of about 5 mm diameter is placed at the 

bottom of the cell acting as a check valve and prevents glass beads from blocking the cell chan-

nel. A filter (often a glass fiber filter) is positioned at the inner top of the cell. The filter only allows 

the dissolved particles to pass through and maintains the undissolved particles within the cell. 

Normally, single or combination filters of different pore sizes are used to optimize the filtration. 

Samples are usually withdrawn via an internal sampling and filtration device. In order to maintain 

the temperature at 37±0.5 ºC, the cells are immersed in a water bath. For other types of dosage 

forms, such as suppositories, powders, implants and drug eluting stents, different cell types are 

available. The flow through apparatus can operate in two different configurations: open system, 

with constant fresh medium from the reservoir passing through the cell, or as a closed system, 

with a fixed volume of medium passing through the cell. The pump usually has a flow rate delivery 

capacity between 2 and 32 mL/min, however, the compendial flowrates are 4, 8 and 16 mL/min 

In the open configuration, with an exchange of media and flowrate is possible to simulate 

different environments of the digestive tract [51], [52]. Media volume is not limited which allows 

the maintenance of sink conditions, in contrast to the previous apparatuses. Therefore, it repre-

sents another approach for the investigation of modified release formulations under biorelevant 

conditions. Another advantage of using Apparatus 4, is that the same apparatus may be main-

tained through dissolution testing of all the stages of drug development, from the API to the final 

dosage form. 
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Amongst the compendial apparatuses, the flow through cell provides the most physiologi-

cal hydrodynamic conditions [52]. The flow pattern is described as being turbulent when operated 

without glass beads in the entry cone and laminar when glass beads are used [50]. In vivo, in 

fasted and fed conditions, the average axial velocity is around 1.5 and 1.3 cm/min, respectively. 

In USP Apparatus 4, this corresponds to flow rates less than 8 mL/min [53]. 

The USP apparatus 4 is commonly used for the analysis of modified release dosage forms. 

The different cell types allow the testing of various drug products such as solids (tablets, capsules, 

implants, powders, and granules), semisolids (suppositories, soft gelatin capsules, ointments) 

and liquids (suspensions) [54]. Additionally, it is suitable for special dosage forms such as pow-

ders, granules and implants [41]. The flow-through cell has not been routinely used for immediate-

release products, mainly because it is a complex and expensive method due to the large volumes 

of medium necessary. It is essentially used when the performance of the paddle and basket ap-

paratus is insufficient. This method has been found to be superior to the paddle apparatus in 

achieving IVIVCs for several formulations [55]–[57]. 
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Table 1.5 – Compendial Apparatus used for oral solid dosage forms dissolution tests [54]. 

 

USP Apparatus 1 – Basket 

 
• Typical rotating speed: 50-100 rpm 
• Vessel volume: 1 L  
• Dosage form is placed in the basket 
• Used for: solid dosage forms (floating, disinte-

grating or non-disintegrating, single units, mul-
tiple units) 

 

 

USP Apparatus 2 – Paddle 

 
• Typical rotating speed: 50-100 rpm 
• Vessel capacity: 1 L  
• Dosage form should remain at the bottom cen-

tre of the vessel 
• Used for: solid dosage forms (tablets, cap-

sules), particulates (suspensions, powders) – 
sinkers can be used 

 

 

USP Apparatus 3 – Reciprocating Cylinder 

 
• Typical reciprocating agitation: 5-35 dps 
• Vessel capacity: 325 mL 
• Dosage form is placed in the cylinder and it 

moves horizontally to different rows of vessels 
• Used for: solid dosage forms (mostly non-disin-

tegrating, single units, multiple units) 

 

 

USP Apparatus 4 – Flow Through cell 

 
• Operation system: open/closed 
• Flow rates: 2-32 mL/min (compendial: 4,8,16 

mL/min) 
• Dosage form is placed inside the vessel, immo-

bilized  
• Used for: solids (tablets, capsules, implants, 

powder, granules), semisolids (suppositories, 
soft gelatin capsules, ointments), liquids (sus-
pensions) 
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1.4. Itraconazole 
The model drug used in this study, ITZ, consists in an orally active synthetic anti-fungal 

agent with a broad spectrum activity. It belongs to triazole group indicated in the treatment of local 

and systemic fungal infections (histoplasmosis, bastomycosis and onychomycosis). Its mecha-

nism of action consists in cytochrome P-450 inhibition which prevents the synthesis of ergosterol 

in fungal cell membranes resulting in the membrane fluidity alteration leading to cell death [58]. 

It is a weakly basic (physicochemical properties in Table 1.6) and very lipophilic drug, pos-

sessing an extremely low aqueous solubility and good permeability. Because of its poor aqueous 

solubility, its oral bioavailability is poor. However, because of its highly lipophilic nature, ITZ can 

easily penetrate into the intestinal membrane. This indicates the poor aqueous solubility as the 

main reason for lower plasma concentrations, meaning ITZ is BCS class II and DCS class IIb. 

ITZ is considered one of the most demanding challenges in the development of basic 

drugs due to its extremely low aqueous solubility and dissolution rate, low pKa and high dose 

[59]. 

 
Table 1.6 – ITZ Physicochemical Properties [59]. 

ITZ Physicochemical Properties  
Chemical Structure 

 
Aqueous solubility  ~4 ng/ml  

LogP  5.7  

pKa 3.7  

MW 705.64 (Da)  

Melting Point 168 ºC  

 

Several types of commercial brand ITZ products are available (Table 1.7). For example, 

Sporanox® 100 mg oral capsules, consists of an amorphous solid dispersion of ITZ in HPMC  

HydroxyPropylMethyl Cellulose (HPMC) coated onto inert sugar spheres and PolyEthyleneGlycol 

(PEG) 20.000  (to prevent the sticking  of the spheres) in a hard gelatin capsule [60]. A dose 

between 100 and 400 mg/day is usually administered to patients.  
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Table 1.7 – Main marketed Itraconazole Drugs  

Brand Type Company Approach 

Hyphanox (USA) · Onmel 
(Europe, Japan) Oral Tablet Janssen Pharmaceutica 

Products, LP 
Amorphous Solid Disper-
sion (Hot Melt Extrusion) 

Sporanox Oral Capsules 
Janssen Pharmaceutica NV 
· Janssen Pharmaceuticals, 

Inc. 
Amorphous Solid Disper-

sion (Spray Drying) 

Sporanox Injection Injection Solution Janssen Pharmaceutica 
Products, LP 

Amorphous Solid Disper-
sion (HPMC) 

Sporanox Oral Solution Oral Solution Janssen Pharmaceutica 
Products, LP Cyclodextrin 

Lozanoc 
Oral Capsule 

 
Mayne Pharma Group Ltd. 

Amorphous Solid Disper-
sion, enteric coating (Spray 

Drying) 

 

The absolute bioavailability of oral capsules of ITZ is 55% ± 15% [58]. ITZ should be ad-

ministered with food since the bioavailability is reduced by 40% when it is administered under 

fasting conditions. This increase in systemic absorption in the fed state is explained by the solu-

bility increase caused by the presence of food [61]. 

Also, absorption of ITZ capsules is reduced in subjects with reduced gastric acidity, such 

as subjects taking drugs known as gastric acid secretion suppressors (e.g., H2-receptor antago-

nists, proton pump inhibitors) or subjects with achlorhydria caused by certain diseases which is 

consistent with the fact of ITZ being a weak base  

Sporanox® capsules were used as a reference in drug product dissolution studies. 

1.5. Amorphous Solid Dispersions (ASDs) 
Amorphization is an approach wherein the solid state form of the drug is changed from 

crystalline to amorphous due to the higher solubility and faster dissolution rates characteristic of 

this form. However, the Gibbs free energy of amorphous forms also result in their instability and 

consequently, their tendency to crystallize. ASDs can be considered as a potential solution to this 

issue. An ASD is an amorphous molecular dispersion of a drug in a polymer matrix. The polymer 

carrier stabilizes the drug not only in the solid state, avoiding drug recrystallization by reducing its 

molecular mobility and increasing its glass transition temperature (Tg), but also offer benefits for 

dissolution performance by extending supersaturation [62]. Therefore, the ideal polymer must 

maintain the drug’s amorphous form in the solid state and to dissolve quickly and release the drug 

in its site of absorption in the GI tract, maintaining the supersaturation for a time period such that 

it enables its absorption [63]. 

They can be formed using a variety of technologies including spray drying and hot melt 

extrusion. When prepared by spray drying, ASDs are designed by spray dried dispersions 
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(SDDs). SDDs are obtained by dissolving drug and polymer in a suitable solvent and then spray-

drying the solution. 

The performance of an ASD can be measured in vitro by its dissolution rate. The “spring 

and parachute” analogy (Figure 2.3) is often used to illustrate the dissolution of an ASD: The 

spring, a high energy form of the drug provides the driving force to solubilize the drug at a con-

centration greater than its equilibrium solubility level. The parachute, the carrier (or a combination 

of excipients) inhibits and/or retards precipitation [64]. 

 
Figure 1.6 – Representation of the supersaturated state: the “spring” and “parachute” effect [71]. 

When added to an aqueous solution simulating the intestinal fluid, ASDs produce a variety 

of species, as stated by Friesen et al. [64]: free or solvated drug, drug in bile-salt micelles, free or 

solvated polymer, polymer colloids, amorphous drug-polymer nanostructures (20 to 100 nm), 

small aggregates of amorphous drug/polymer nanostructures (70 to 300 nm) and large amor-

phous particles (>500 nm) all of which are in dynamic exchange with each other. Several studies 

studies have shown that colloidal solubilized drug may not be able to permeate through the in-

stestinal epithelium [65]–[67], highlighting the importance of knowing the “true supersaturation”, 

i.e., the molecularly dissolved drug concentration. Since these nanoparticles cannot be separated 

from the solution by filtration or centrifugation, the apparent solubility of a drug can be falsely high. 

These drug-polymer nanostructures and nanoaggregated are believed to be critical to drug ab-

sorption since they produce a higher solubility comparing to crystalline drug and maintain the free 

drug concentration during drug absorption. Also, they inhibit the conversion of the amorphous 

drug to its crystalline form, i.e. they sustain free drug supersaturation for a physiologically relevant 

period of time [62], [66]–[68]. The molecularly dissolved species can be separated from the re-

maining species by dialysis  or by ultracentrifugation [68], [69]. 
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1.6. Main Objectives and Dissertation Outline 

Taking into account the problem statement described in the introduction, the main goal of 

this work is the study and development of in vitro biorelevant dissolution methodologies that best 

suit the dissolution characterization of a poorly soluble drug, covering the drug substance to the 

final dosage form. Also, an in silico model will be developed, which can be calibrated using the 

obtained in vitro data, describing dissolution phenomena of amorphous API’s.  

In order to accomplish the proposed goals, this document is structured in four chapters. 

Chapter 1 – In the Introduction, the motivation of this work is highlighted and an overview 

of the most relevant concepts and methodologies available in literature regarding this subject are 

presented.  

Chapter 2 –  In the Materials and Methods a description of the used materials is given, 

followed by the methods used for the experimental work of this thesis, such as biorelevant media, 

dialysis membranes, SDDs and tablet preparation as well as the respective characterization and 

API quantification techniques.  

Chapter 3 – In the Results and Discussion experimental results are presented regarding 

the solid state characterization of the formulations, dissolution and dialysis experiments and of 

the in silico model implementation and its discussion.  

Chapter 4 – The Conclusions and Future Work contain the final thoughts, describing the 

impact of the developed work and address the direction for future research works.  

Finally, the Appendix includes supplementary information regarding this work. 

Part of this work was submitted and approved as a short paper to the 2nd European Con-

ference on Pharmaceutics (Poland, 2017). 
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 Materials and Methods 

In this chapter, a description of the materials, procedures, and equipment used in the de-

velopment/implementation of this thesis is presented. First, the methodologies regarding the pro-

duction and physicochemical characterization of the ITZ, SDDs and tablets are described. Se-

cond, API solubility and dissolution studies, and third, the quantification of free drug within the 

ASDs and tablets with dialysis membranes. 

2.1. Materials 
Crystalline ITZ was supplied by Capot Chemical Co., Ltd. (Hangzhou, China). Sporanox®  

(Janssen Pharmaceutica, Belgium) was purchased at a local pharmacy. Biorelevant media, FaS-

SIF-V2 and FaSSIF/FeSSIF/FaSSGF powder were purchased from biorelevant.com (Croydon, 

Surrey, UK). 

The polymers for SDDs production consisted of PVP/VA - Copovidone K28 (BASF, Lud-

wigshafen am Rhein, Germany) and hydroxypropylmethylcellulose acetate succinate (HPMCAS 

grade LF, AQOAT®, Shin-Etsu Chemical Co., Ltd., Tokyo, Japan).The excipients used in tablet 

formulation consisted of magnesium stearate (Merck, Darmstadt, Germany), croscarmellose so-

dium - DISOLCEL®  (MINGTAI CHEMICAL CO., Ltd., Taoyuan Hsien, Taiwan), microcrystalline 

cellulose (Blanver, Brazil), fumed silica - Aerosil® 200 Pharma, (Evonik industries AG, Hanau, 

Germany), methylcellulose - methocel A15 Premium LV (Dow, Michigan, EUA) and lactose mon-

ohydrate - Tablettose® 80  (MEGGLE, Wasserburg, Munich). 

FaSSGF, FaSSIF, FaSSIF-V2 and FeSSIF were prepared according to manufacturer’s in-

structions (biorelevant.com, Croydon, Surrey, UK). FeSSGF was prepared by dissolving 13.85 g 

of sodium chloride, 2.445 g of sodium acetate in 0.5 L of water, 1 mL of acetic acid was then 

added and the mixture was diluted to 1 L with milk.  Blank FaSSGF, Blank FeSSGF, Blank FaS-

SIF, Blank FeSSIF, Blank FaSSIF-V2, corresponding to their simple buffers and compendial me-

dia, SGFsp (Simulated Gastric Fluid sine pepsin), SIFsp (Simulated Intestinal Fluid sine pepsin), 

HCl 1.6 and PBS buffers 50 mM with different pHs (5.8, 6.5 and 7.2) were also prepared. 

2 
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2.2. SDD and Tablet Preparation 
Spray-Drying 

Two formulations of SDDs were produced at 40 wt.% ITZ load with HPMCAS LF and with 

PVP/VA K28 - Copovidone. The drug load and spray drying process conditions mimicked those 

employed in a previous work [70]. Solutions of ITZ and each polymer were prepared with 10 wt.% 

solids concentration in dicloromethane (DCM) for the case of PVP/VA and a mixture of DCM and 

methanol (MeOH) (80:20 w/w) for HPMCAS LF. SDDs were produced in a laboratory scale spray 

dryer (BÜCHI Mini Spray Drier B-290, Switzerland) equipped with a two fluid nozzle with a 0.7 

mm orifice and 1.4 mm cap. In both runs, the spray drying unit was operated in open cycle mode, 

i.e. without recirculation of the hot drying gas (nitrogen).  The drying gas fan was set at 100% of 

its capacity (flow rate at maximum capacity corresponds approximately to about 40 kg/h). A flow 

rate of 0.76 kg/h was set for the atomization with nitrogen. Before feeding the solution to the 

nozzle, the spray dryer was stabilized with nitrogen and then with a solvent mixture without solids 

to ensure stable inlet and outlet temperatures (Tin and Tout, respectively). The feed flow rate was 

set to 30% in the peristaltic pump (about 11.5 mL/min of liquid feed). The inlet temperature was 

adjusted to achieve an outlet temperature of 40°C for both trials.  The stream containing the dried 

particles was directed into a cyclone and collected at the bottom of the cyclone. After spray-drying, 

SDDs were post-dried step in a tray dryer with a temperature of 40°C for approximately 12 h, 

under vacuum in order to remove any residual solvents. The amorphous state and single phase 

of SDDs was confirmed by X-ray powder diffraction (XRPD) and Differential Scanning Calorimetry 

(DSC) analysis and its stability by repeating the XRPD analysis after two months of storage at 

room temperature. 

Tableting 

Tablets containing the previously prepared SDDs (100 mg of ITZ) were prepared as per 

the formulations indicated in Table 2.1. The intergranular excipients were mixed in a TURBULA® 

- T2F (Willy A. Bachofen AG Maschinenfabrik, Switzerland). All the intragranular excipients were 

blended for 15 minutes at 46 rpm and then magnesium stearate was added and mixed for 2 min 

at 32 rpm.  The blend of the powders was compressed into tablets on a PMS ST8 Mpress R&D 

Tablet Press (PMS, Surrey, UK), but using solely one punch and operating manually due to the 

low quantities being processed, which comes at the cost of lesser control of the dwell time (i.e. 

duration of the compression process), which is nevertheless secondary to the objective of the 

current work. For every tablet, 500 mg of the mixture were filled into the die and compressed to 

a hardness between 10 and 15 kP by controlling the tablet edge thickness (minimum distance 

between the punches during the compression process). The hardness of the first 5 tablets was 

verified for quality control purposes with a Sotax HT 1 Hardness tester (Sotax, Switzerland). Then, 

the tablets were granulated through a mesh no. 28 (roughly 600 µm aperture), except for formu-

lation 2 where the powder was divided in three equal parts and granulated through sieves with 
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different apertures: 212, 600 and 800 µm. The disintegrant (croscarmellose sodium) was only 

added before the granulation so that the drug would be released from granules of known size. 

The extragranular excipients - lactose, microcrystalline celullose (MCC), croscarmellose sodium 

and magnesium stearate - were added, blended one more time and the powder was weighted 

(500 mg per tablet) and compressed into tablets again. The amorphous form of ITZ within the 

tablets was confirmed by DSC and XRPD analysis. 

 
Table 2.1 – Formulation Blend Composition. 

	 Formulation	1	 Formulation	2	 Formulation	3	 Formulation	4	
SDD	formula-

tion/binder	used	
PVPVA	SDD	–	
MCC	Binder	

PVPVA	SDD	-	
HPMC	Binder	

HPMCAS	SDD	-	
MCC	Binder	

HPMCAS	SDD	-	
HPMC	Binder	

%
In
tr
ag
ra
nu

la
r	

SDD	ITZ	 50.0	 50.0	 50.0	 50.0	

HPMC	 -	 16.5	 -	 16.5	

MCC	 16.5	 -	 16.5	 -	

Lactose	 15.5	 15.5	 15.5	 15.5	

Fumed	Silica	 0.7	 0.7	 0.7	 0.7	

Magnesium	Stea-
rate	 0.4	 0.4	 0.4	 0.4	

%
Ex
tr
ag
ra
nu

la
r	

Lactose	 6.5	 6.5	 6.5	 6.5	

MCC	 9.5	 9.5	 9.5	 9.5	

Croscarmellose	
Sodium	 0.4	 0.4	 0.4	 0.4	

Magnesium	Stea-
rate	 0.5	 0.5	 0.5	 0.5	

Drug	Load	(%)	 20.0	 20.0	 20.0	 20.0	

 

2.3. SDD and Granule Solid State Characterization 
XRPD  

Diffraction patterns were obtained with a PANalytical X’Pert PRO X-ray Diffractometer 

(PANalytical, Almelo, Netherlands) in alpha1 configuration equipped with an X’Celerator detector. 

Cu (λ = 1.5406 Å) was used as anode material and crystal graphite monochromator, operated at 

a voltage of 40 kV and a current of 45 mA. Samples were pressed into a sample holder to gener-

ate a flat and smooth plane surface and were analysed in the 2θ scan range of 3.0000-39.9987°. 

The process parameters were set as follows: step size of 0.0167° (2θ), scan step time of 59.690 

seconds, and time of acquisition of 18 minutes and 29 seconds. 
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DSC  

Conventional and modulated DSC (mDSC) experiments were performed in a DSC Q200 

V24.4 Build 116 (Universal V4.5A TA Instruments, USA) equipped with a refrigerated cooling 

system (RCS), after adequate calibration with indium (TA instruments, USA; 

Tmelt =156.55°C, ΔmeltH = 28. 51 J/g).	

Samples, weighing between 3 and 5 mg were placed in pin-holed aluminium pans (Perkin-

Elmer, Massachusetts, EUA). In the case of conventional DSC, samples were equilibrated at 

20ºC and analyzed under continuous dry nitrogen purge (50 mL/min) in a ramp of 10 ºC/min until 

300ºC. In the case of mDSC, samples were equilibrated at 0ºC and analyzed using a modulated 

heating ramp from that temperature to 250°C at a heating rate of 2.5°C/min using a period of 60s 

and an amplitude of 1.2°C. In order to obtain ITZ glass transition (Tg), the product was subjected 

to a heat-cool-heat cycle (conventional DSC) to render the amorphous product and then, the 

modulation cycle was applied. The sample was equilibrated at 0ºC, and heated until 250ºC at 

10ºC/min. Then, it was cooled at 50º C/min until 0ºC. Afterward, the mDSC method previously 

stated was applied. Data was processed using the TA Universal Analysis 2000 Software (Waters, 

Milford, MA, USA). Tg was considered as the inflection point in the heat capacity change (ΔCp) 

observed in the reversible heat flow. 

SEM (Scanning Electron Microscopy) 

Samples were attached to adhesive carbon tapes (Ted Pella Inc., CA, USA), previously 

fixed to aluminium stubs and the powder in excess was removed by a jet of pressurized nitrogen. 

A Phenom ProX (Phenom-World BV, Eindhoven, Netherlands) scanning electron microscope op-

erated at an accelerating voltage of 10 kV was employed. Micrographs were taken at various 

magnifications, ranging from 270x to 4900x. 

PSD (Particle Size Distribution) – Analytical Sieving 

To perform dissolution experiments, tablets were sieved by a mesh corresponding to their 

particle size. To assess the granule size distribution, granules obtained were fractionated into six 

different sizes (750, 500, 355, 250, 125 and 45 μm) by shaking for 10 min with an interval of 30 s 

and an amplitude of 1.5 with a nest of sieves mounted on a test sieve shaker HAVER EML 450 

Digital Plus (HAVER & BOECKER, Oelde, Germany). Granule size distribution was determined 

by the weight of granules in each sieve. The d50, the median granule size, is taken as the sieve 

mesh size for which half the sample (by weight) can pass. 

PSD – Laser Diffraction 

The particle size of the spray dried amorphous solid dispersion of ITZ was measured by 

laser diffraction (SYMPATEC, Sympatec Inc., Pennington, NJ, USA). The instrument is equipped 

with a dispensing unit RODOS/M, a vibratory feeder VIBRI, and a laser diffraction sensor HELOS. 

Dry powders were measured directly with a dispersing pressure of 3 bar at a feed velocity of 18 
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mm/s and a laser measuring range of 0.5 µm to 350 µm. The measurements were performed in 

duplicate.  

2.4. HPLC (High Performance Liquid Chromatography) 
The quantification of ITZ throughout the in vitro studies was conducted by Ultra Perfor-

mance Liquid Chromatography (UPLC), a variant of HPLC technique employing higher pressures, 

using a Waters Acquity UPLC H-Class chromatograph with an UPLC® Acquity PDA detector 

system (Waters, Milford, MA, USA). 1 µL of sample solution equilibrated at 25 ºC was injected 

onto an Acquity UPLC CSH C18 2.1 mm x 100 mm, 1.7 µm (Waters, Milford, MA, USA) held at 

40 ºC and eluted with a mixture of acetonitrile, tetrahydrofuran (THF) and water adjusted to pH 

2.5 with phosphoric acid (50:2.5:47.5) v/v, respectively, at a flow rate of 0.4 mL min-1. The effluent 

was monitored at a UV wavelength of 254 nm. Mobile phases and washing solutions were de-

gassed and sonicated in a USC-THD (VWR, USA) for 5 min before the analysis. The chromato-

grams were acquired and processed using Empower™ 3 Chromatography Data Software (Wa-

ters, Milford, MA, USA). The linearity of this method was demonstrated by a calibration curve, in 

triplicate (n=3), of ITZ in the dissolution mixture (MeOH:H2O 90:10 v/v) between 1 and 75 µg/mL 

(Appendix 1). ITZ maximum absorption wavelength was confirmed in a mixture of H2O:MeOH 

(90:10 v/v) using a HITACHI U-2000 UV Spectrophotometer (HITACHI, Ltd., Tokyo, Japan).  

2.5. Drug content in SDDs and granules 
SDDs 

The drug content in the solid dispersions was assayed according to the HPLC method 

described before. Concentrated stock solutions of the respective solid dispersions in MeOH were 

prepared by dissolving 12.5 mg of the SDDs in 25 mL of MeOH in a 50 mL volumetric flask. The 

solutions were vortexed, sonicated for 5 min in an Ultrasonic Cleaner USC-THD (VWR, USA) and 

shaken for 30 min in a CAT S50 Microplate shaker (CAT, Staufen, Etzenbach, Germany). After 

resting, the volume was completed with MeOH. Standard solutions with a target ITZ concentration 

of 50 µg/mL were prepared by diluting 10 mL of each concentrated stock solution with MeOH:H2O 

90:10 v/v in a 20 mL volumetric flask. The solutions were sonicated prior to analysis, filtered 

through GHP Acrodisc® 25 mm syringe filters, with 0.45 µm GHP Membrane (Pall Life Sciences, 

Port Washington, New York, Pall) and injected. The quantification was performed against a sin-

gle-point external standard of pure ITZ in MeOH:H2O 90:10 v/v (50 μg/mL). This analysis was 

carried out in duplicate (n=2). 

SPO and granules 

The assay content of the granules was performed according to the HPLC method described 

before. In a 200 mL volumetric flask, 100 mg of granules were submitted to sonication with 20 mL 
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of H2O, for 10 minutes on an Ultrasonic Cleaner USC-THD (VWR, USA). About 100 mL of MeOH 

was added to the volumetric flask and vortexed for 1 min. After resting, the volume was completed 

with MeOH. This solution was diluted 1:1 with a mixture of MeOH:H2O (90:10, v/v) and then fil-

tered through GHP Acrodisc® 25 mm syringe filters, with 0.45 µm GHP Membrane (Pall Life 

Sciences, Port Washington, New York, Pall). The quantification was performed against a single-

point external standard of pure ITZ in MeOH:H2O 90:10 v/v (50 μg/mL). This analysis was carried 

out in duplicate (n=2). 

2.6.  API Solubility and Dissolution Studies 

Thermodynamic Solubility of the API 

ITZ saturation solubility was determined using the Shake Flask method [2]. An excess of 

drug (approximately 10 mg) was added to 20 mL scintillation vials containing 10 mL of the disso-

lution media (miliQ water, SGFsp, HCl 1.6, SIFsp (EP 8), PBS buffers 50 mM with different pHs - 

5.8, 6.5 and 7.2, FaSSGF, FaSSIF, FeSSGF, FeSSIF, FaSSIF (and respective blanks, corre-

sponding to the buffer without solubilizers), vortexed and then placed on an ES – 20/60, Orbital 

Shaker – Incubator (Biosan, Latvia) for 24 h at 37±0.5 ºC and 50 rpm. After this period, the vials 

were vortexed. The suspension was centrifuged in a himac CT15RE centrifuge (Hitachi Koki Co., 

Ltd.) for 3 min at 13000 rpm at room temperature. The supernatant was filtered through Bulk IC 

Acrodisc® 13 mm, 0.45 µm Supor® (PES) syringe filters (Pall Life Sciences, Port Washington, 

New York, Pall). Regarding the milk-based medium, FeSSGF, an additional step was employed 

to allow the precipitation of protein proteins, thus enabling a proper quantification. An aliquot of 1 

mL was withdrawn in the middle of the flask. Then, 1 mL of MeOH was added. After this, the 

sample was centrifuged in a himac CT15RE centrifuge (Hitachi Koki Co., Ltd.)  for 3 min at 13000 

rpm at room temperature. These tests were carried out in triplicate (n=3). As the chromatographic 

method was proven to be linear (see Appendix 1), the quantification was performed against a 

single-point external standard of pure ITZ in MeOH:H2O 90:10 v/v (50 μg/mL).  

Intrinsic Dissolution Rate (IDR) 

IDR testing of ITZ was performed using a miniaturized method as surrogate of the USP 

Rotating Disk Apparatus. 100 ± 5 mg of ITZ were compressed for 1 min in a diameter die against 

a steel plate under a pressure of 9000 ton using a punch and die system (Atlas 15T Manual 

Hydraulic Press, SPECAC Ltd., Kent, UK) to yield a disk of known surface area. The disks were 

blown with compressed air to remove any loose particles and their dimensions measured with a 

caliper. Each pellet, was then placed on the top of a cavity of a 6-well-plate containing 10 mL of 

the dissolution medium and incubated in an ES – 20/60, Orbital Shaker – Incubator (Biosan, 

Latvia) at 37±0.5 ºC and 50 rpm. Aliquots of 1 mL were withdrawn at 1, 5, 10, 15, 20, 30, and 60 

minutes with dissolution media volume replacement. The samples were filtered through Bulk IC 

Acrodisc® 13 mm, 0.45 µm Supor® (PES) syringe filters (Pall Life Sciences, Port Washington, 
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New York, Pall) and analysed by HPLC. The media used consisted of FaSSGF, FeSSGF, FaS-

SIF, FaSSIF-V2 and FeSSIF. Regarding the milk-based medium, FeSSGF, 1 mL of MeOH was 

added to 1 mL of the aliquot in order precipitate milk proteins. After this, the sample was centri-

fuged in a himac CT15RE centrifuge (Hitachi Koki Co., Ltd.)  for 3 min at 13000 rpm at room 

temperature. These tests were carried out in triplicate (n=3). The quantification was performed, 

by HPLC, against a single-point external standard of pure ITZ in MeOH:H2O 90:10 v/v (50 μg/mL). 

2.7.  Drug Product Intermediate/ Drug Product Dissolution 
Studies 

Dissolution  

Dissolution studies of ITZ solid dispersions were conducted using the USP dissolution ap-

paratus 2 with a Copley Dissolution Tester DIS 6000 (Copley, Nottingham, UK). 900 mL of disso-

lution media (either FaSSGF or FaSSIF) were added to 1 L capacity vessels containing the dos-

age form (corresponding to 100 mg of ITZ). The dosage forms consisted of the SDD powders, 

tablet granules and the content of SPO capsules. The test was carried out at 75 rpm and 37 ± 0.5 

ºC. Samples of 5 mL were taken at 5, 10, 15, 20, 30, 45, 60, 90, 120, 150, 180, 210, 240 min and 

then again after 15 min at 200 rpm (infinity spin) with dissolution media volume replacement. All 

samples were filtered immediately through GHP Acrodisc® 25 mm syringe filters, with 0.45 µm 

GHP Membrane (Pall Life Sciences, Port Washington, New York). The first 3 mL of the filtrate 

were discarded. The remaining volume was diluted with MeOH in a 1:1 v/v proportion and ana-

lyzed by HPLC. The dissolution experiments were carried out in duplicate (n=2). The non enteric 

formulations were tested in gastric media and the enteric formulations in the intestinal media. 

Also, the best formulation of tablets of each group (enteric/non enteric) were used to perform 

dissolution testing in FeSSIF and pH shift method using FaSSGF and FeSSIF in the fasted state. 

The pH of FeSSIF was adjusted to 5.8 so that the enteric polymer HPMCAS LF would dissolve. 

SPO was additionally tested in SGFsp, FaSSGF with its pH adjusted to 1.2 and HCl 1.6 in order 

to assess the pH effect in ITZ dissolution. The quantification was performed, by UPLC, against a 

single-point external standard of pure ITZ in MeOH:H2O 90:10 v/v (50 μg/mL). 

pH Shift Simulating Fasted State 

Dissolution studies of ITZ tablets and SPO capsules were conducted using the USP disso-

lution apparatus above mentioned. This experiment was designed according to biorelevant meth-

odology, with biorelevant volumes and transit times. 250 mL of gastric media (FaSSGF) were 

added to 1 L capacity vessels containing 500 mg of the dosage form (or the content of one cap-

sule, in the case of SPO). The test was carried out at 75 rpm and 37 ± 0.5 ºC. Samples of 5 mL 

were taken at 5, 10, 15, 20, 30, 45 and 60 minutes. At this point, 250 mL of 2x concentrated 

FaSSIF and 5 mL of sodium hydroxide (to adjust the pH to 6.5) were added to the vessel. Aliquots 
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were taken at 5, 10, 15, 20, 30, 45 and 60, 90, 120 and every half hour until 5 hours and then 

again after 15 min at 200 rpm (infinity spin), with dissolution media volume replacement. All sam-

ples were filtered immediately through GHP Acrodisc® 25 mm syringe filters, with 0.45 µm GHP 

Membrane (Pall Life Sciences, Port Washington, New York, Pall). The first 3 mL of the filtrate 

were discarded. The remaining volume was diluted with MeOH in a 1:1 v/v proportion and ana-

lyzed by UPLC against a single-point external standard of pure ITZ in MeOH:H2O 90:10 v/v (50 

μg/mL). 

2.8.  Quantification of free drug within the ASDs with dialysis 
membranes 

API Dissolution & Permeability Test 

A dissolution and permeability test of the API was performed with 100 mL intestinal medium 

(FeSSIF) containing a dialysis membrane – Float-A-Lyzer®G2 Dialysis Device with a molecular 

weight cutoff of 1000 kD (Spectra/Por®, USA). The membranes were prepared according to man-

ufacturer’s instructions [71]. In a 250 mL goblet, the dissolution media was allowed to equilibrate 

at 37ºC; 100 mg of an ITZ IV pellet or powder were placed in each goblet. At time points 1, 

5,10,15, 20, 30, 60, 90 and 24h, 1 mL of media were aliquoted inside and outside the membrane 

– this method is known as reverse dialysis. The volume was replaced and the samples from 

outside the membrane were filtered through Bulk IC Acrodisc® 13 mm, 0.45 µm Supor® (PES) 

syringe filters (Pall Life Sciences, Port Washington, New York, Pall). Samples were analyzed by 

HPLC. The quantification was performed against a single-point external standard of pure ITZ in 

MeOH:H2O 90:10 v/v (50 μg/mL). This analysis was carried out in duplicate (n=2). 

In order to assess if crystalline ITZ was able to permeate through the dialysis membrane 

(previously prepared according to manufacturers instructions [71]), 100 mg of ITZ were added to 

shot flasks containing 400 mL with dissolution medium - HCl 1.6 with 1% of sodium dodecyl sul-

fate (SDS) – incubated in an ES – 20/60, Orbital Shaker – Incubator (Biosan, Latvia) at 37 ± 0.5 

ºC and 100 rpm with four dialysis membranes - Biotech CE (Cellulose Ester) Membrane with a 

molecular weight cutoff of 3.5-5 kD (Spectra/Por®, USA) containing 500 µL of dissolution me-

dium. At each time point – 30, 60, 120, 180 minutes, an aliquot of 2 mL and one membrane was 

taken from outside the membrane and filtered through GHP Acrodisc® 25 mm syringe filters, with 

0.45 µm GHP Membrane (Pall Life Sciences, Port Washington, New York). The filtrate was diluted 

1:1 with MeOH before HPLC analysis. The content of the membrane was directly analyzed. The 

quantification was performed against a single-point external standard of pure ITZ in MeOH:H2O 

90:10 v/v (50 μg/mL). This analysis was carried out in duplicate (n=2). 
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SDD Dissolution & Permeability Tests 

This experiment was conducted in USP Apparatus 2 at 75 rpm with 900 mL of dissolution 

media. The non enteric SDD (ITZ: PVP/VA) was tested in the fasted gastric media (FaSSGF) and 

the enteric SDD (ITZ:HPMCAS LF) was tested in the fasted intestinal media (FaSSIF). Six dialysis 

membranes containing 500 µL of dissolution media were prepared for each vessel. Membranes 

were previously washed according to manufacture procedure [71]. An equivalent of 100 mg of 

ITZ was placed in the vessel and an aliquot of 5 mL was taken at 5, 10, 15, 20, 30, 45, 60, 90 and 

120 minutes. The volume taken was not replaced. 500 µL of the dissolution samples were with-

drawn and diluted it with 500 µL of MeOH. Before dilution, this samples were filtered through GHP 

Acrodisc® 25 mm syringe filters, with 0.45 µm GHP Membrane (Pall Life Sciences, Port Wash-

ington, New York, Pall) and the first 3 mL were discarded.  At 5, 15, 30, 60, 90 and 120 minutes, 

one membrane was taken and its content directly analyzed. Samples were analyzed by HPLC. 

The quantification was performed against a single-point external standard of pure ITZ in 

MeOH:H2O 90:10 v/v (50 μg/mL). This analysis was carried out in duplicate (n=2). 

Granule Dissolution & Permeability Tests 

The pH shift method was performed in USP Apparatus 2 at 75 rpm. 250 mL of the gastric 

media (FaSSGF) were added to 1 L vessels containing either one SPO capsule content or 500 

mg of formulation 4 (enteric). Membranes were prepared according to manufacture procedure. 

Six dialysis membranes containing 500 µL of dissolution media were prepared for each vessel.  

At 60 minutes, 250 mL of 2x concentrated FaSSIF and 3 mL of 1 M NaOH were added to the 

vessel together with the 6 dialysis membranes. An equivalent of 100 mg of ITZ was placed in the 

vessel and an aliquot of 5 mL was taken at 5, 10, 15, 30, 60, 65, 75, 90, 120, 180 and 240 minutes 

and the volume taken was not replaced. 500 µL of the dissolution samples were withdrawn and 

diluted it with 500 µL of MeOH. Before dilution, this samples were filtered through GHP Acrodisc® 

25 mm syringe filters, with 0.45 µm GHP Membrane (Pall Life Sciences, Port Washington, New 

York, Pall) and the first 3 mL were discarded.  At 65, 75, 90, 120, 180 and 240 minutes, corre-

sponding to the intestinal environment, one membrane was taken and its content directly ana-

lysed by HPLC. The quantification was performed against a single-point external standard of pure 

ITZ in MeOH:H2O 90:10 v/v (50 μg/mL). This analysis was carried out in duplicate (n=2).
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 Results and Discussion 

In this chapter, key experimental results obtained are presented, interpreted and discussed: 

the results regarding API (Active Pharmaceutical Ingredient) dissolution; SDD and tablet produc-

tion and respective solid state analysis – XRPD, DSC and mDSC, SEM; SDD and tablet dissolu-

tion; dialysis membranes for free ITZ quantification studies; and prospects for modeling, where 

the equations of the in silico dissolution model implemented in Scilab and the respective output 

are presented.	

3.1. API Dissolution Studies 
The determined ITZ solubility in the media tested was below the LOQ of the method, 1 

µg/mL. Only the value of thermodynamic solubility of ITZ in SGFsp was obtained, corresponding 

to 3.07 ± 0.3 µg/m, not too far from the one found in the literature, 3.9 ± 0.7 µg/mL [72]. Accord-

ingly, the results of IDR and dissolution and permeation test of the API could not be obtained. 

 
Figure 3.1 – The Shake Flask method for ITZ solubility determination. On the left, vials containg ITZ 
in FaSSGF and FaSSIF before incubation and on the right, the same vials after 24h of incubation, at 

37ºC. 

 

3 
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Figure 3.2 – ITZ IDR determination in FaSSGF and in FeSSGF, using a multiwell plate. 

 

 
Figure 3.3 – ITZ dissolution and permeation experiment in FeSSIF. On the left, ITZ is available as a 

compressed pellet, on the right ITZ is available as a powder.  

These tests (Figure 3.2, 3.3 and 3.4) confirmed that ITZ is a drug whose absorption is limited 

by its solubility, indicating that a solid dispersion is a suitable formulation approach for this API. 

3.2. SDD and Tablet Preparation 
SDDs 

Two different types of polymer stabilizers were chosen to generate an immediate release 

formulation: PVP/VA in order to produce extensive supersaturation in acid and HPMCAS LF, 

which dissolves at a pH equal or higher than 5.5, ensuring its release only in intestinal media 

(enteric release). This last polymer should provide minimal ITZ release in acid but will produce 

extensive supersaturation following the acidic-to-neutral pH transition. 

The yield obtained in the two spray drying runs was of 82% which is in-line with the previous 

experience at Hovione. The main properties of the ITZ powders produced are displayed in Table 

3.1. Henceforth, the three resultant formulations of formulation 2 with different granule sizes will 

be designated by its respective sieve apertures: 212, 600 and 800 µm.  
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Table 3.1 – Summary of produced SDDs properties. 

 SDD ITZ:PVP/VA SDD:HPMCAS LF 
Amorphous (mDSC and XRPD ana-

lisys) Yes Yes 
Single phase (mDSC) Yes Yes 

Tg (ºC) 91.03 86.58 
Particle D50 (µm) 3.94 3.18 

Particle Span 2.3 2.5 
Particle Morphology (SEM analysis) Spherical particles Buckled particles 

 

 
Figure 3.4 – SDD production in a Buchi Mini Spray Dryer B-290. 

Tablets 

As reported in the section 2.2 of this thesis, the tablet compression was performed in two 

steps. The first one, known as slugging, consists of formulating without disintegrant in order to 

simulate a dry granulation process (e.g. roller compaction). After this, disintegrant (and the other 

extragranular excipients) were added and the granules were compressed to tablets (second step). 

However, this strategy was not successful, since in the first dissolution experiment, it was verified 

that the produced tablets did not disintegrate. This was possibly due to an insufficient percentage 

of sodium croscarmellose formulation – 1% instead of 2-5%, the indicated range for tablets [73]. 

As a compromise alternative, the granules were milled again through the same sieve sizes as 

before, in order to reverse the compression step. 

The average yield of the entire process, dry granulating and tableting, was 59.4%. This low 

value is expectable, due to the large mass losses that occurred during tableting process. Tablets 

were weighted and compressed individually (Figure 4.6). If the automatic feeder of the tablet 



36 

 

press had been used, even lower yields would be observed. The main properties of the ITZ tablets 

produced are displayed in Table 3.2. 

 
Figure 3.5 – Six formulations of ITZ tablets produced. 

 
Table 3.2  – Summary of produced tablet properties. 

 Non enteric formulations Enteric formulations 

Formulation 
1 - 600 
µm 

2 - 212 
µm 

2 - 600 
µm 

2 - 800 
µm 

3 - 600 µm 4 - 600 µm 

wt. % Excipients 

PVP/VA 
ASD – 
MCC 

Binder 

PVP/VA ASD - HPMC Binder 

HPMCAS 
ASD – 
MCC 

Binder 

HPMCAS 
ASD - 
HPMC 
Binder 

ASD 49.7 50.2 50.0 50.2 49.6 49.6 

HPMC 0.0 16.8 16.7 17.3 0.0 16.6 

MCC 25.2 8.6 8.5 8.6 25.3 8.6 

Lactose 21.0 21.2 21.1 21.2 23.9 21.1 

Fumed Silica 0.8 0.8 0.8 0.8 0.8 0.8 

Magnesium Stea-
rate 

0.9 0.9 1.4 0.9 0.9 0.9 

Croscarmellose 
Sodium 

1.0 1.0 1.0 1.0 1.0 1.0 

Drug load 19.9 24.4 23.5 23.7 19.9 19.9 

d50 mass 250 µm 45 µm 250 µm 355 µm 250 µm 250 µm 

Amorphous - 
XRPD 

Yes Yes Yes Yes Yes Yes 

Amorphous - DSC Yes Yes Yes Yes Yes Yes 
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3.3. Drug Content Within ITZ formulations 
HPLC analysis was used to estimate the drug content in the formulations (Table 3.3). 

 
Table 3.3 – ITZ content within the formulations tested. 

 
Average Drug Content  

% w/w (n=2) 

% RSD 
(n=2) 

Theoric Drug Load (%) 

SDD ITZ:PVP/VA 102.5 2.6 40.0 

SDD ITZ:HPMCAS LF 104.0 3.5 40.0 

SPO 101.5 0.4 20.0 

Formulation 1 99.8 0.1 19.9 

Formulation 2 - 212  
µm 

101.4 0.8 
20.1 

Formulation 2 - 600 µm 106.4 5.4 20.0 

Formulation 2 - 800  
µm 

108.3 0.6 
20.1 

Formulation 3 99.3 0.5 19.9 

Formulation  4 103.2 0.6 19.9 

 

The obtained ITZ weight percentage in the SDDs was between 99% and 101% of the the-

oretical value. The obtained values for the all the tablet formulations tested were between 80% 

and 105% (w/w) of the theoretical values. ITZ content in the commercial product, SPO, was be-

tween 101% and 102% of the label claim.  

3.4. SDD and Granule Solid State Characterization 
Solid state characterization was performed to confirm the amorphous state of the API 

contained in the formulations and that there is no phase separation (XRPD and DSC). 

Additionally, to evaluate if the SDDs had comparable particle sizes, PSD analysis by laser 

diffraction was performed. To assess the granule PSD, and thus its influence in dissolution, 

analytical sieving was conducted. Finally, DSC analysis was used to assess if the compression 

step modified the polymorphic form of ITZ. SEM analysis was used to study SDDs morphology 

and to confirm the results of PSD determination by laser diffraction. 
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Crystallinity and phase separation studies  

The ITZ characterization by XRPD allowed the acquisition of the characteristic diffracto-

gram pattern of the form I (Figure 3.6). The diffractogram pattern of Figure 3.6 is consistent with 

that of the commercial form polymorph [86]. Figure 3.6 also confirms the amorphous state of the 

SDDs produced, showing the characteristic halo of amorphous forms. It can be seen that the 

physical mixtures show crystallinity, corresponding to ITZ even though the intensity of the reflec-

tions is smaller than in raw ITZ, due to the drug load of 40%. Additionally, pure carrier polymers, 

HPMCAS and PVP/VA exhibit characteristic broad amorphous halos. 

 
Figure 3.6 – XRPD patterns. Left: I: Fresh SDD ITZ:HPMCAS LF; II: SDD ITZ:HPMCAS LF after two 
months; III: HPMCAS LF; IV: SDD ITZ:HPMCAS LF Physical Mixture; V: Crystalline ITZ. Right: I: 
Fresh SDD ITZ:PVP/VA; II: SDD ITZ:PVP/VA after two months; III: PVP/VA; IV: SDD ITZ:PVP/VA 

Physical Mixture; V: Crystalline ITZ.  

The physical stability of the produced dispersions was assessed by repeating the XRPD 

analysis after two months after their production, using samples stored at room temperature and 

humidity (Figure 3.6). The 2-month old samples show the same pattern of the fresh ones. This 

indicates that ITZ was converted to a physically stable amorphous form. The presented SDD 

stability is expectable, since their glass transition temperatures (Tgs) are greater than 20ºC above 

the storage condition, even in the summer, when higher temperatures occurred. 

From Figure 3.7, it can be seen that the reflections corresponding to the higher intensity 

reflections of crystalline ITZ can only be seen in the physical mixture diffractograms. All the peaks 

presented in the formulation XRPD patterns, corresponding to crystalline excipients - MCC MgSt, 

lactose monohydrate, are also present in the corresponding physical mixtures, showing that there 

is no formation of an alternative polymorph due to the compression in the tableting step. There-

fore, these diffractograms do not show ITZ crystallinity.  

 



39 

 

 
Figure 3.7 – Diffractograms of ITZ tablet formulations. I: Formulation I; I - PM: Physical mixture of 

Formulation 1; IIa: Formulation 2 – 212 µm; IIb - Formulation 2 – 600 µm; IIc: Formulation 2 – 800 

µm; II-PM: Physical mixture of Formulation 2; III: Formulation 3; III-PM: Physical mixture of Formu-
lation 3; IV: Formulation 4; VI–PM: Physical mixture of Formulation 4; ITZ: Crystalline ITZ. 

XRPD analysis confirms the amorphous nature of the compounds, but does not provide an 
answer regarding the existence of phase separation, i.e., amorphous-amorphous separation 
within the SDDs. The answer is given by DSC analysis by the existence of a single Tg. 

ITZ thermogram (Figure 3.8) shows a single, well defined, endothermic peak at 166.72°C 

corresponding to its melting temperature. This endotherm is characteristic of a pure substance, 

presenting a linear melting curve. Therefore, in agreement with XRPD analysis, the analyzed ITZ 

is classified as crystal form I, the most stable polymorph, with a melting temperature of 165.1 ºC 

[74]. 
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Figure 3.8 – Crystalline ITZ DSC thermogram. 

 PVP/VA being an amorphous polymer showed a single Tg of 113.95 ºC (Figure 3.9). The 

ITZ Tg was determined as 58 ºC (Figure 3.9). This value, which is relatively high, is in agreement 

with the literature [74]. The endotherms at 70.3 and 90 ºC result from the formation of a 

mesophase [75]. 

 
Figure 3.9 – mDSC thermograms. Left (A): I: SDD ITZ:HPMCAS LF; II: Physical Mixture of SDD 

ITZ:HPMCAS LF; III: HPMCAS LF; IV: Amorphous ITZ. Right (B): I: SDD ITZ:PVP/VA; II: Physical 
Mixture of SDD ITZ:PVP/VA; III: PVP/VA; IV: Amorphous ITZ. The arrows point to the glass transi-

tion temperatures. 

Regarding the thermogram of SDD ITZ:HPMCAS LF, also an amorphous polymer, it shows 

a single Tg of 120.78 ºC (Figure 3.9 (A) - Left). Considering the thermogram of SDD ITZ:HPMCAS 

LF (Figure 3.9 (A) - Left), there is a single Tg at 86.58 ºC, indicating the presence of a single 

phase. The obtained Tg is an intermediate value between the ITZ and polymer. The Tg of the 

SDD ITZ:HPMCAS LF was estimated using the simplified Gordon-Taylor/Kelley-Bueche (GTKB) 

equation [76]. The obtained value was of  93ºC, higher than the experimental one. However, 

GTKB model does not take into account the molecular interactions between polymer and drug 

molecules [77]. PM show a melting transition at 166.72 ºC higher than the Tg of HPMCAS LF, 

indicating the crystalline nature of ITZ within the mixture. Also for ITZ:HPMCAS LF,  there is a 

complete miscibility between drug and polymer. Additionally, no melting peak is present in the 

thermogram, which validates the amorphous form of the SDD. 

Similarly, the thermogram of SDD ITZ:PVP/VA (tjhermogram I in Figure 3.9  B- Right) pre-

sents a single Tg at 91.03 ºC which implies the presence of a single phase. As in the previous 

SDD, the obtained Tg is an intermediate value between the ITZ and polymer Tgs, together with 

the absence of a melting peak in the thermogram, proves complete miscibility between the drug 

and the polymer. The estimated Tg using the Gordon-Taylor/Kelley-Bueche GTKB equation 90.22 

ºC, which is in agreement with the experimental one. The respective physical mixture shows a 

melting endotherm at 165.49 ºC after Tg of PVP/VA (125.19 ºC), indicating the crystalline nature 

of ITZ within the mixture. 

(A) (B) 
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Figure 3.10 – DSC thermograms of ITZ tablet formulations. I: Formulation 1; I - PM: Physical mix-

ture of Formulation 1; II: Formulation 2 – 212 µm; III: Formulation 2 – 600 µm; IV: Formulation 2 – 

800 µm; II, III, IV - PM: Physical mixture of Formulation 2; V: Formulation 3; V – PM: Physical mix-
ture of Formulation 3; VI: Formulation 4; VI – PM: Physical mixture of Formulation 4. 

Melting endotherms, corresponding to crystalline excipients, in ITZ tablet formulation ther-

mograms are present in physical mixtures thermograms with the absence of ITZ melting (Figure 

3.10). This excludes the possibility of polymorph formation due to tableting operation (as sug-

gested by XRPD analysis) and corroborates the hypothesis that ITZ is present in the amorphous 

form. The presence of an exothermic peak at around 175°C, should correspond to the transfor-

mation of amorphous ITZ into its crystalline form, since this exotherm is not present in physical 

mixtures thermograms.  
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Particle Morphology and Size 

Concerning the assessment of particle morphology and size of ITZ, polymers PVP/VA 
and HPMCAS LF and generated SDDs, the respective micrographs are shown in Figure 3.11. 

 
Figure 3.11 – SEM Micrographs of raw PVP/VA, HPMCAS LF, ITZ, ITZ:PVP/VA SDD at a 40% drug 

load and ITZ:HPMCAS LF SDD at a 40% drug load at different magnifications. 
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The particles of crystalline ITZ were found to be large orthorhombic crystals with a particle 

size ranging from 10 µm to 70 µm. PVP/VA particles are spherical and larger than HPMCAS LF, 

that have an irregular shape. Compared to the starting material, the particle sizes of the SDDs 

are much smaller. SDD ITZ:PVP/VA solid dispersions prepared by spray drying were spherical in 

shape. The particulate structure of the SDD ITZ:HPMCAS LF had a partially collapsed structure 

that can be described as deflated spherical particles (buckled particles). The particle morphology 

results from the balance between the evaporation rate of the solvent and the diffusion rate of the 

solutes, quantified by the Peclet number, evaporation rate/diffusion rate ratio. If the drying is dif-

fusion controlled (low Peclet number) buckling can occur [78]. Thus, the different solvents used 

in both SDDs would explain the different particle morphologies observed, i.e. the DCM, the sol-

vent utilized with PVP/VA polymer, possesses a lower vaporization heat, promoting a faster drying 

step – evaporation rate controlled – high Peclet number, which results in spherical particles. On 

opposite, in the case of the SDD ITZ:HPMCAS LF, the solvent employed, MeOH, has a higher 

vaporization rate, resulting in a slower droplet drying – diffusion controlled drying, which justifies 

the observed buckled particles.  Another hypothesis, is that the different morphology of the two 

SDDs produced is related to the different mechanical properties of the polymers, PVP/VA and 

HPMCAS LF. Both SDDs show small particles (nano range) on the surface of the larger ones 

which suggests a large particle size span, that will impact the dissolution rate of these powders. 

The particle size of both SDD formulations were obtained by laser diffraction and the cor-

responding distribution curves can be seen in Figures 3.12 and 3.13. 

 
Figure 3.12 – Particle Size Distribution of the SDD ITZ:PVP/VA  at 40% of drug load, obtained by la-

ser diffraction.  
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Figure 3.13 – Particle Size Distribution of the SDD ITZ:HPMCAS LF at 40% of drug load obtained by 

laser diffraction. 

Both SDDs show a considerable span, relative span factors (RSFs) of 2.3 and 2.5 for SDD 

ITZ:PVP/VA and ITZ:HPMCAS LF, respectively. For a two fluid atomizer, the RSFs obtained are 

acceptable [79]. The first one shows a maximum of distribution density at 7 µm and a D50 of 3.94 

µm while the second one has two ends of the function at 0.8 and 6 µm and a D50 of 3.18 µm. 

The particle size of the particles is smaller than it would be expectable based on the atomization 

model developed by Hovione. Although this can influence the compression and dissolution pro-

cess, as the two powders had similar particle sizes, this fact has no significant effect in the current 

work.  

Particle size analysis by analytical sieving of formulations (Figure 3.14) was conducted in 

order to assess granule distribution. Figure 3.14 shows a wide span of particle size due to the 

granulation method, i.e., manually milling the tablets through sieves of a fixed MESH. The high 

fine percentage present in the formulations may cause a burst, i.e. quick dissolution in the begin-

ning of the test. The variability present in dissolution profiles, presented in the next section, may 

be due to the large span of particle size distribution, since they have different surface areas, i.e. 

dissolution rates [16]. Nevertheless, formulations granulated using the same sieve (Figure 3.14 – 

Left) exhibit an identical PSD whereas the formulation divided and granulated using different 

sieves present considerable three distinct distributions. Therefore, the goal of obtaining six differ-

ent formulations was achieved: four formulations with different compositions have identical PSDs 

(Figure 3.14 – Left) and three formulations with the same composition, but different PSDs were 

obtained (Figure 3.14 – Right), which will allow to assess the excipients/particle size effect on 

dissolution. 
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Figure 3.14 – Particle Size Distribution of the six formulations of ITZ tablets, obtained by analytical 
sieving. Left: Formulations with identical particle size distribution - Formulation 1 (brown), formula-
tion 2 (grey), formulation 3 (blue) and formulation 4 (green). Right: Formulations with distinct parti-

cle size distribution - Formulation 2 - 212 µm, formulation 2 - 600 µm (red), formulation 2 - 800 µm 
(orange),  

3.5. SDD Dissolution 
In order to assess the effect of sodium taurocholate and lecithin, components of biorelevant 

media, in ITZ dissolution, media without these compounds were also tested and are denoted as 

Blank. This was only applied to intestinal media, since the gastric medium (FaSSGF) has low 

amounts of these compounds when compared to the intestinal media (as mentioned previously 

in Chapter 1) 

The dissolution profile of the drug product intermediates was assessed using biorelevant 

media with a pH value in accordance to the preferential solubility of the polymer used: gastric 

media representing the fasted stomach, FaSSGF for ITZ:PVP/VA SDD formulation and the fasted 

intestine, FaSSIF for ITZ:HPMCAS LF SDD formulation (enteric formulation). Figure 3.15 shows 

dissolution profiles for both SDD formulations in these biorelevant media. 

Due to the low solubility of ITZ in the tested media, it was not possible to achieve sink 

conditions in the dissolution experiments with the 900 mL of media. From the dissolution profile 

presented, it can be seen that in ITZ:PVP/VA SDD formulation, ITZ quickly dissolves, but starts 

precipitating after 1h. This illustrates quite well the “spring and parachute” effect. Regarding the 

enteric ITZ:HPMCAS LF SDD formulation, a higher solubility was obtained in FaSSIF (pH 6.5) 

even though, being a weak base. ITZ possesses a higher solubility in the pH of FaSSGF (pH 1.6), 

rather than in the intestinal media. This behavior might be attributed to the HPMCAS LF ability to 

stabilize the ITZ in solution, in contrast to PVP/VA, which was not a good supersaturation stabi-

lizer (“parachute”) since ITZ started to precipitate after one hour of the test. 
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Figure 3.15 – Dissolution profiles of SDD ITZ:PVP/VA in FaSSGF (grey), SDD ITZ:HPMCAS LF in 

FaSSIF (blue) and SDD ITZ:HPMCAS LF in Blank FaSSIF (orange). The vertical bars correspond to 
the standard deviation from duplicates (n=2). 

The difference observed between FaSSIF and Blank FaSSIF media (4-fold ITZ solubility 

increase) is explained by the presence of lecithin and sodium taurocholate in FaSSIF, which sol-

ubilize ITZ into mixed micelles [80]. The bile components exert their effect on solubility by forming 

different colloidal phases that are able to solubilize the ITZ molecule better, therefore, the mixed 

micelles present in FaSSIF produced a higher solubility than in the correspondent buffer (blank 

FaSSIF) . 

 
Figure 3.16 – Floating powder during ITZ SDD dissolution testing. 

It is important to highlight that the SDD powders floated during the performed tests (illus-

trated in Figure 3.16), which is quite common when evaluating the dissolution profiles of powders 
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using USP Apparatus 2. This behavior is even more noticeable in SDD powders due to their 

traditional lack of wettability. Some alternatives may be employed to overcome this issue, for 

example the preparation of suspensions that are then added to the dissolution media, the inverse 

order of addition of sample/dissolution media and, as mentioned before in the Chapter 1, the use 

of USP Apparatus 4. 

3.6.  Granule Dissolution 
The dissolution profiles of the drug products - ITZ tablets - were assessed using biorelevant 

media, by means of USP Apparatus 2, under non sink conditions (100 mg of ITZ to 900 mL of 

dissolution medium). Accordingly, the linear portion of each curve (Figures 3.17, 3.19, 3.20, and 

3.21) is quite brief as saturation solubility is quickly reached. Although sink conditions are desir-

able throughout dissolution process, they may not prevail in GI tract, as they depend on the com-

position and volume of the fluids of the GI tract and on the permeability of the drug [72].   

3.6.1. Granule size effect in dissolution profile 

 
Figure 3.17 – Dissolution profiles of formulation 2 - 212 µm (yellow), formulation 2 - 600 µm (or-

ange) and formulation 2 - 800 µm (blue) in FaSSGF. The vertical bars correspond to the standard 
deviation from duplicates (n=2). 

Figure 3.17 represents the influence of particle size in dissolution of the non-enteric formu-

lation (containing the SDD ITZ:PVP/VA), with HPMC as binder (formulation 2) - in gastric media. 

It is observable that the formulation 2 with smallest particle size - 212 µm, exhibited the most 

rapid dissolution rate with approximately 68% of ITZ in solution at 30 min, followed by the formu-

lation 2 - 600  µm. This was expectable since, according to the Noyes Whitney model, the disso-

lution rate is inversely proportional to the particle size due to the increase on surface area [16]. 
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Even though these tests were carried out under non sink conditions, and thus the saturation sol-

ubility was quickly achieved, it was still possible to discriminate the particle size effect on the 

dissolution profile. 

Figures 3.17 and 3.19 show that ITZ dissolves quickly in gastric media, since it is a weak 

base, ionized, and therefore more soluble, at low pHs. 

 
Figure 3.18 – Granules dissolution testing. 

3.6.2. Dissolution profile of non enteric formulations – binder effect 

 

 
Figure 3.19 – Dissolution profiles of formulation 2 - 600 µm (orange), formulation 1 (grey) and SPO 

(blue) in FaSSGF. The vertical bars correspond to the standard deviation from duplicates (n=2). 

Still regarding the fasted gastric environment, and therefore, the non-enteric formulations 

(Figure 3.19), it is seen that SPO dissolves until saturation solubility at a lower dissolution rate 

than formulations 1 and 2 of the same particle size, which might be due to the dissolution of the 

spheres sugar coating, delaying ITZ dissolution and maintaining the supersaturation only for 30 

min. Although not reaching the same saturation level of SPO, formulations 1 and 2 seem to have 

0

10

20

30

40

50

60

0 50 100 150 200 250

C
on

ce
nt

ra
tio

n 
(µ

g/
m

L)

Time (min)



49 

 

greater capacity of continually releasing ITZ.  Formulation 1 releases only a half of the ITZ com-

paring to SPO (approximately 31 µg/mL instead of approximately 52 µg/mL), but takes about 75 

min for a decrease in ITZ concentration starts to be detected. Formulation 2 holds the saturation 

solubility during the four hours of the test. Since the only different aspect among these last two 

formulations is the binder (MCC for formulation 1 and HPMC for formulation 2), it is reasonable 

to infer that the precipitation inhibiting capacity of HMPC prevents the precipitation of ITZ to occur.   

3.6.3. Dissolution profile of the enteric formulations - binder and solubilizers 
effect  

The enteric formulations (formulation 3 and 4) dissolution profiles were determined in FaS-

SIF (fasted intestinal medium) and blank FaSSIF (the latter corresponding to the buffer of FaSSIF 

alone). The difference between these two formulations is the binder used: MCC for formulation 3 

and HPMC for formulation 4. 

 
Figure 3.20 – Dissolution profiles of formulation 4 (yellow), formulation 3 (blue) and SPO (green) in 

FaSSIF, formulation 4 (orange), formulation 3 (grey) and SPO (red) in Blank FaSSIF. The vertical 
bars correspond to the standard deviation from duplicates (n=2). 

Comparing the dissolution profiles of formulation 3 and 4 in FaSSIF, the effect of the media 

solubilizers is a 2-fold increase in saturation solubility (at the same time point, 90 min, for formu-

lation 3 a difference of concentration from 29.20 µg/mL to 51.89 µg/mL; for formulation 4 a differ-

ence of concentration from 26.20 µg/mL to 53.88 µg/mL). As already mentioned, this difference 

is due to the presence of the biological solubilizers, lecithin and sodium taurocholate, in FaSSIF, 

which solubilize ITZ into mixed micelles [80].  In fact, these compounds are known to have a 

significant enhancing effect upon the dissolution rate of poorly soluble drugs by improving the 
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wettability of solids and by increasing the solubility of a drug substance into mixed micelles [80]. 

This micellar solubilization of ITZ in FaSSIF provided the high “spring effect” and the HPMCAS 

LF acts as a precipitation inhibitor to sustain the “parachute effect”, preventing the nucleation and 

fast precipitation of ITZ in FaSSIF. The same effect is observed when comparing dissolution pro-

file of SPO in Blank FaSSIF versus FaSSIF. The results, shown in Figure 3.15 and once again 

confirmed by the ones presented in Figure 3.20, show that the presence of lecithin and sodium 

taurocholate clearly produced an enhancement in dissolution compared with the compendial me-

dia. Thus, the dissolution rate of poorly soluble, lipophilic drugs such as ITZ may be improved 

greatly in biorelevant media in comparison to the dissolution rate observed in simple aqueous 

solutions. In Figure 3.20, representing the intestinal media, it is possible to observe that enteric 

formulations 3 e 4 have similar releases: even though they have different binders. The similarity 

between these profiles, may be due to the polymer, HPMCAS LF, which is well known for its 

capacity of stabilizing the amorphous ITZ in solution [81], overlying the binder effect. 

3.6.4. Food effects assessment 

The bile components exert their effect on solubility by forming different colloidal phases 

that could solubilize lipophilic drugs. In vivo, food stimulates the release of bile salts and phos-

pholipids; this highlights the importance of the fed state in solubilizing this lipophilic compound. 

Thus, food effects were also assessed regarding the intestinal environment: the dissolution profile 

of formulation 4 (enteric polymer with HPMC binder) was determined in FaSSIF and FeSSIF (Fig-

ure 4.26). Formulation 4 was selected for this experiment since, although smooth, the saturation 

solubility of ITZ is slightly higher, when compared to formulation 3 (57 µg/mL vs. 52 µg/ml, re-

spectively). 
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Figure 3.21 – Dissolution profiles of formulation 4 (yellow) and SPO (blue) in FaSSIF, formulation 4 
(orange) and SPO (brown) in FeSSIF. The vertical bars correspond to the standard deviation from 

duplicates (n=2). 

The SPO concentration in FeSSIF is more than 3 times higher than in FaSSIF (at 10 min, 

10.35 µg/ml in FeSSIF against no detection in FaSSIF) and ITZ concentration starts decreasing 

after 2 hours from the start of the test (Figure 3.21). This was expectable because of the higher 

concentration of solubilizers, lecithin and sodium taurocholate. Formulation 4 shows the opposite 

behavior: at 30 minutes, the ITZ concentration in FaSSIF is approximately 57 µg/ml, whereas in 

FeSSIF is of about 9 µg/ml, at the same time point.  

It is important to note that, FaSSIF and FeSSIF are adjusted to different pH values: whilst 

FaSSIF is used at pH 6.5, FeSSIF is prepared at pH 5.8. The different ITZ solubility in these two 

media might be due to the fact that this formulation is enteric: HPMCAS LF starts dissolving at 

5.5, so its solubility must be lower in 5.8 than in 6.5. Therefore, the effect observed in formulation 

4 may be to the fact that ITZ release from the polymeric matrix is being limited by the polymer 

solubility in the medium. 

In SPO patient medical information, it is recommended to take the dosage form after full 

meals [82]. Also, it is said that ITZ’s bioavailability is lowered in individuals with reduced gastric 

acidity. This is in apparent contrast, since after meals the gastric pH is increased. The reason 

pointed to the increased BA in the fed state is the presence of solubilizers present in the food and 

bile salts and lecithin. Indeed, ITZ solubility in FeSSIF was higher than in FaSSIF. Although it is 

also necessary to compare dissolution profiles of ITZ in the fed and fasted stomach and to quan-

tify the free ITZ. Soon biorelevant.com will launch FeSSGF, a standardized medium representing 

the fed stomach, thus, to investigate this question, it would be interesting to perform a pH shift 

experiment simulating the fed state and to use ultracentrifugation to distinguish molecularly dis-

solved ITZ. 
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3.6.5. pH effect in dissolution profile 

To assess the impact of pH in the dissolution profile of the reference drug product, SPO, 

its dissolution was performed in four different gastric media: SGFsp - pH 1.2, FaSSGF - pH 1.2 

and 1.6, SGFsp - pH 1.6 (Figure 4.22). 

 
Figure 3.22 – Dissolution profiles of SPO in SGFsp – pH 1.2 (orange), FaSSGF - pH 1.2 (yellow), 

SGFsp - pH 1.6 (grey) and FaSSGF – pH 1.6 (blue). The vertical bars correspond to the standard de-
viation from duplicates (n=2).	

In the FaSSGF medium, high release of ITZ from SPO was observed, reaching around 40 

µg/mL. However, this corresponded to around 30% of SPO ITZ release in SGFsp (123 µg/mL) 

after one hour. Since FaSSGF is also an acidic medium, additionally composed by lecithin and 

sodium taurocholate, this fact was strange and could only be attributed to the pH difference (1.6 

instead of 1.2) between these media. In order to explain this result, an additional experiment was 

conducted: dissolution of SPO in HCl 1.6 and in FaSSGF which pH was adjusted to 1.6. Indeed, 

when the pH increased, ITZ is less ionized (pKa value of the conjugate acid form of ITZ is 3.7) 

and therefore less soluble [83]. This test proved that a slight pH variation can impact severely ITZ 

dissolution (Figure 3.27) and that the pH effect is clearly dominant when compared to the solubil-

izers effect, since although its presence in FaSSGF and absence in SGFsp, higher releases were 

observed in the last. It is worth noting that the sodium taurocholate and lecithin concentrations in 

FaSSGF (medium simulating the fasted stomach) are residual when comparing to the media sim-

ulating the intestine, i.e. they are 38 and 188 times higher in the fasted and fed intestine, respec-

tively. 
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3.6.6. Biorelevant pH shift of the best formulations 

In order to assess the dissolution profile taking into consideration the different pHs that an 

oral drug will encounter, a pH shift method was employed. In this method, SPO, Formulation 4 

(enteric polymer, HPMC binder) and Formulation 2 (non enteric polymer, HPMC binder), were 

used (Fig 4.23). These two were chosen because of their superior performance, i.e., higher sol-

ubility maintained for a higher period of time (Figures 3.19 and 3.20). 

 
Figure 3.23 – pH shift of SPO (green), formulation 2 – 600 µm (orange) and formulation 4 (blue) 

from FaSSGF to FaSSIF. The dashed line corresponds to the moment of pH shift. The vertical bars 
correspond to the standard deviation from duplicates (n=2).  

As expected, non pH-dependent formulation 2, releases ITZ at low pH (gastric), however, 

upon pH change, an extensive precipitation of the drug occurs. Near complete precipitation oc-

curred for all formulations 1h after pH transition. Due to a very low pKa value of the conjugate 

acid form of ITZ, the change in pH from the acidic environment of pH 1.6 to a higher pH of 6.5 in 

the dissolution medium resulted in the conversion of ITZ to its neutral form. As the intrinsic solu-

bility of non-protonated drugs is extremely low, it has precipitated out from the dissolution medium 

at pH 6.5. These results suggest that pH is a more dominant factor in influencing ITZ precipitation 

when compared to the micellar solubilization with the bile salts and lecithin as it was stated in the 

analysis of Figure 3.22. 

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250 300

%
R

el
ea

se

Time (min)



54 

 

In contrast, after pH shift, the enteric formulation 4, shows an increases of ITZ in solution 

at about 16 ± 3 % at 90 minutes, followed by a precipitation pattern from 90 to 180 minutes, where 

it reaches the same concentration as SPO. Formulation 4 has the best performance of all the 

formulations tested, since it achieves the maximum of release in the main site of absorption for 

ITZ, i.e. duodenum [84]. These pH shift tests involved an immediate change from gastric pH to 

intestinal pH, however, the rate at which the contents of the stomach emptied into the intestine 

should also be considered [46]. In this way, the pH shift approach, employing USP Apparatus 2 

(or “dumping method”), should be considered as the worst case, when testing weakly basic drugs 

due to accelerated precipitation kinetics and the opposite when testing acidic drugs. To better 

assess the in vivo precipitation behavior of ITZ, both transfer model and USP Apparatus 4 should 

be employed. USP Apparatus 4 has the additional possibility of maintaining sink conditions 

throughout the test. 

These in vitro dissolution profiles in biorelevant media containing surfactants quantify all 

the drug species that are formed in solution, including drug-polymer colloids and micelles that 

may not be able to permeate through the intestinal barrier [85]. Consequently, it is of extreme 

importance to quantify the concentration of molecularly ITZ dissolved (true supersaturation), since 

this is the key parameter affecting the first step of bioavailability: absorption. 

3.7.  Free drug quantification tests 
Before presenting the results regarding the dialysis membrane experiments, the workflow 

to obtain the drug apparent permeability coefficient and the free drug concentration using in vitro 

dissolution data and dialysis membranes will be described in this section. 

Considering two compartments (1 and 2, denoted as donor and acceptor, respectively) with 

different volumes (V1 and V2) and concentrations (C1 and C2) separated by a porous membrane 

of area A (Figure 3.24), the mass flux through the membrane is given by: 

 
𝐽 =

𝐷
𝛿
𝐶. − 𝐶/  (2) 

J: API mass flux through the membrane (kg.m-2.s-1); 
D: diffusion coefficient of the API in the membrane (m2.s-1); 
δ: membrane thickness (m); 
C1: free API concentration in the donor compartment (kg.m-3); 
C2: free API concentration in the acceptor compartment (kg.m-3). 
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Figure 3.24 – Representation of the mass transport across a membrane model. 

The free API within the donor compartment (1) is given by the mass balance between the 

free API present in its reservoirs (tablet granules, micelles and colloids) and permeated free com-

partment (2). Accordingly, the concentration in the acceptor compartment is given by the free API 

mass flux across the membrane: 

 
𝑉.
𝑑𝐶.(𝑡)
𝑑𝑡

= −𝑉/
𝑑𝐶/(𝑡)
𝑑𝑡

+ 𝑓(𝑡)

𝑉/
𝑑𝐶/(𝑡)
𝑑𝑡

= 𝐽𝐴 =
𝐷𝐴
𝛿
(𝐶. − 𝐶/)

 
(3) 
(4) 

f(t): term corresponding to the free drug release from its reservoirs (tablet granules/micelles/colloids); 
A: membrane surface area; 
V1: volume of the donor compartment (m3); 
V2: volume of the acceptor compartment (m3); 
t: dissolution time (s). 

It is not possible to solve the first equation for the free API concentration in the donor com-

partment (C1), since the term corresponding to the rate of release of free API present in its reser-

voirs (tablet granules, micelles and colloids) is not known a priori. Nevertheless, the free API 

concentration in the donor compartment (C2) is measured in the dialysis membranes experiments, 

therefore it is possible to solve the Equation 4 for the free API concentration in the donor com-

partment (C1) whose integral will correspond to the total amount of API potentially capable of 

being absorbed. 

 
𝑉/
𝑑𝐶/(𝑡)
𝑑𝑡

=
𝐷𝐴
𝛿
(𝐶. − 𝐶/) (5) 

 
⟺

𝑉/𝛿
𝐷𝐴

𝑑𝐶/(𝑡)
𝑑𝑡

= (𝐶. − 𝐶/) 
 

(6) 

 
⟺ 𝐶. = 𝐶/ +

𝑉/𝛿
𝐷𝐴

𝑑𝐶/(𝑡)
𝑑𝑡

 
 

(7) 

 
⟺ 𝐶. = 𝐶/ +

1
𝐾
𝑑𝐶/(𝑡)
𝑑𝑡

 
 

(8) 

 
⟺ 𝐶.(𝑡)

5

6
𝑑𝑡 = 𝐶/(𝑡)

5

6
𝑑𝑡 +

1
𝐾

𝐶/ 𝑡 + 𝐶6  

 
(9) 

since when 𝑡 = 0, 𝐶/ = 0 ⟹  𝐶6 = 0. 
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⟺ 𝐶.(𝑡)

5

6
𝑑𝑡 = 𝐶/(𝑡)

5

6
𝑑𝑡 +

𝐶/ 𝑡
𝐾

 (10) 

 
𝐶. 𝑡
5

6
𝑑𝑡 = 𝑡𝑜𝑡𝑎𝑙	𝑎𝑚𝑜𝑢𝑛𝑡	𝑜𝑓	𝑓𝑟𝑒𝑒	𝑑𝑟𝑢𝑔	𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑	𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑑𝑜𝑠𝑎𝑔𝑒	𝑓𝑜𝑟𝑚  

K: API apparent permeability (s-1). 
 

The first step (Figure 3.25) is to determine the API apparent permeability – K (Equation 8). 

This is achieved by performing an experiment in USP apparatus 2, controlled temperature and 

stirring speed, using a crystalline API (known free drug fraction) saturated solution (C1 is the API 

solubility in the medium tested) and one membrane per time point (to generate C2 cumulative 

results), using at least three time points. It is important to ensure that the dialysis membranes 

have similar dimensions, since this constant is dependent of the exposed membrane area. Addi-

tionally, it is essential to confirm that the permeability rate is similar to the dissolution rate (i.e. 

permeation is not the rate limiting step), so that when testing SDDs containing formulations, the 

API is able to permeate the membrane before its precipitation (recall that amorphous APIs have 

metastable solubiIities).  

 
Figure 3.25 - Representation of a dissolution and permeation test using the reverse dialysis 

method. C2 represents the drug concentration in the permeate. 

The next step is to perform the dissolution test with dialysis membranes, in the same con-

ditions as the ones applied in the previous dissolution test for the dosage form under study and 

obtain the API permeate concentration (C2). Afterwards, the free drug concentration (C1) can be 

estimated using Equation 10. 
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Figure 3.26 – Free drug assessment workflow. 

3.7.1. API permeation tests 

An initial step was the evaluation of the crystalline ITZ ability to permeate the dialysis 
membrane (Figure 4.29). 

 
Figure 3.27 – Dissolution (blue) and permeation (orange) profiles of crystalline ITZ in HCl 1.6 with 

1% of SDS. The vertical bars correspond to the standard deviation from duplicates (n=2).  

No significant permeation of crystalline ITZ was detected after 24 hours (Figure 3.27). It 

was hypothesized the main fraction of the ITZ was being solubilized by micelles of SDS and 
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consequently could not pass through the dialysis membranes. To assess this, the test was re-

peated with SPO in SGFsp (medium without surfactants) and the same result was obtained, elim-

inating the micelles hypothesis. The high concentration value inside the membrane obtained at 5 

minutes (46 µg/mL) is probably due to sample contamination. These tests with dialysis mem-

branes (Figures 3.27 and 3.28) were carried out with very acidic media, 1.2 and 1.6. The mem-

branes manufacturer recommended pH range between 2 and 9. It may be possible that this low 

pHs could have damaged the membranes, even though their visual appearance remained iden-

tical. 

 

Figure 3.28 – Dissolution (blue) and permeation (orange) profiles of crystalline ITZ in SGFsp. 

3.7.2. SDD and tablet permeation tests 

 
Figure 3.29 – Dissolution (blue) and permeation (orange) of SDD ITZ:PVP/VA in FaSSGF. The verti-

cal bars correspond to the standard deviation from duplicates (n=2). 

Dissolution profiles of the SDDs (Figures 3.29 and 3.30) display higher concentrations than 

the ones obtained in previous dissolution tests (section 3.5). This is probably due to the mem-

branes movement within the dissolution vessel, which improved the powder wettability. These 

profiles confirm the hypothesis that the saturation solubility was not achieved on the previous 
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SDDs dissolution experiments also supported by tablet dissolution experiments, where higher 

concentrations were obtained in the same media. Still, some aggregates of floating powder were 

observed (Figure 3.31). Moreover, any free drug was quantified and the experiment with the in-

testinal media (pH 6.5) discarded the hypothesis of the pH damaging the membranes. 

 

 
Figure 3.30 – Dissolution (blue) and permeation (orange) of SDD ITZ:HPMCAS LF in FaSSIF. The 

vertical bars correspond to the standard deviation from duplicates (n=2). 
 

 

 
Figure 3.31 – SDD dissolution and permeation experiment. 
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Figure 3.32 – Dissolution profile of a pH shift experiment of SPO (blue) and formulation 4 (grey) 

and permeation profile of these formulations (yellow). The dashed line corresponds to the moment 
of pH shift. The vertical bars correspond to the standard deviation from duplicates (n=2).  

The pH shift experiment showed similar results (Figure 3.32) to the ones obtained in the 

previous pH shift (section 3.6.6.) and it was not possible to quantify free ITZ. 

The goal of these experiments, free API quantification, was not achieved. In order to inves-

tigate the reason for this, there are some aspects that can be tested in the future. It has been 

suggested that the molecular weight cutoff (MWCO) of the dialysis membranes should be about 

a hundred times the size of the drug molecule [86]. Therefore, a membrane with a MWCO of at 

least 80 kD should be tested. The MWCO of the dialysis membranes seems suitable to isolate 

the free ITZ from the polymer and micelles. Two hypothesis are proposed: the first is the possi-

bility of interaction between the API and membrane resulting in its retention. The second one, is 

that the API permeation depends on the method applied: conventional or reverse dialysis, due to 

the membrane properties (e.g. manufacturing material and pore geometry). This can be assessed 

by repeating the API test with it placed inside the membrane. Before future experiments, the 

potential for the drug to bind to the dialysis membrane should be assessed.  

This method demonstrated severe limitations: possibility of the permeate concentration be-

ing below the LOQ of the quantification method; possibility of the permeation rate being too slow 

comparing to the dissolution one; the fact that the membranes cannot be used at acid pHs and 

thus shouldn’t be used with gastric dissolution medium; the fact that it is a time consuming 

method. Therefore, these drawbacks invalidate the dialysis membranes method. As an alterna-

tive, ultracentrifugation, a simpler method, should be employed for free API quantification. 
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3.8.  Prospects for modeling 
Models capable of describing the disintegration from tablet to granules (developed for IR 

tablets) [87], [88],  polymer swelling, erosion and API release (developed for extended release 

tablets) [89] processes are implemented in Dynochem (Scale-up Systems, Dublin, Ireland), a 

development and scale-up software for pharmaceutical industry. This software allows modifica-

tions to the models, but does not allow the implementation of other equations. 

However, these models implemented in Dynochem are only suitable for crystalline APIs, 

i.e. its dissolution mechanism assumes an equilibrium solubility at the surface of the particles. 

Therefore, they are not suitable to describe the dissolution of amorphous solid dispersions whose 

dissolution is not limited by the API thermodynamic solubility. Even if one would define an amor-

phous “solubility”, i.e. the maximum increase in solution concentration that can be obtained rela-

tive to the crystalline form [90], this would not take into account the mass transfer within the pol-

ymeric matrix nor the swelling and erosion of the polymer. 

In the developed model for amorphous APIs, it is assumed that the dissolution rate is gov-

erned by the mass transfer inside the polymeric matrix and therefore the API concentration at the 

surface of the dissolving particle is obtained by solving Fick’s law inside the particle with a bound-

ary condition matching the mass flux of API entering the dissolution media (given by a Noyes-

Whitney type equation). This is in stark contrast to the standard approach of decoupled dissolution 

dynamics by assuming that the API at the surface of the particles is at equilibrium concentration. 

As Dynochem does not allow the edition of the implemented code, it is not possible to link the 

modules of the Figure.  Hence, the aforementioned adaptation, dissolution limited by API internal 

diffusion in spherical coordinates was implemented in Scilab, which has the additional benefit of 

being a free software. 

The implemented work in this thesis is only a part of the overall model and its integration 

with the remaining modules has yet to be implemented in order to compare it to experimental 

dissolution data. 

3.8.1. Model implementation 

Fick’s second law of diffusion is used to describe the API mass transfer process. Numerical 

solutions of the respective set of partial differential equations are provided, considering radial 

diffusion within water-impermeable (there is no diffusion of the dissolution medium into the parti-

cle) spherical particles. Thus, they were solved numerically, using finite differences (Forward Eu-

ler scheme in time and second order scheme in space).  

The particle radius varies with time due to the flux of the drug molecules from the particle 

surface. Correspondingly, the particle surface area reduces in time with decreasing particle radius 

and increasing bulk concentration.  



62 

 

The equations regarding API internal diffusion within the spherical polymeric matrix and its 

dissolution based in Wang et al. work [91] are presented hereafter. The main modification of the 

model from Wang et al. is the assumption that the surface particle is not saturated, but instead 

that it results from the mass balance of API diffusing from within the particle and the API leaving 

the particle to the dissolution medium. 

API mass flux from an API particle into solution 

One of the classic models regarding dissolution, the Noyes Whitney equation (Equation 1) 

considers K=A.D/ δ.V as a model constant. This is equivalent to assume that the diffusion layer 

thickness δ(t) decreases in time proportionally to the particle area A at all times. There is no basis 

for such an assumption. Wang et al. introduced the Sherwood (Sh) number into the model, where 

Sh is defined as the ratio of the characteristic rate for molecules to leave the surface and diffuse 

into the bulk to the characteristic rate for molecules to diffuse within the fluid over a distance with 

the same order of magnitude as the particle radius.  Therefore, the mass flux of API leaving the 

particle to the surrounding liquid is given by: 

 

𝐽 𝑡 = 	𝑆ℎ
𝐷 𝐶FGH 5 − 𝐶I 𝑡

𝑅 𝑡  
(11) 

 
𝑆ℎ =

𝑅(𝑡)
𝛿(𝑡) 

(12) 

J(t): API mass flux (mg.mm-2.s-1); 
Cr=R: API concentration on particle surface (mg.mm-3); 
D: API diffusion coefficient in the bulk fluid (mm2.s-1); 
r: radius (mm); 
R(t): particle radius (mm); 
Cb: API bulk concentration (mg.mm-3); 
Sh: Sherwood number; 
δ (t):  diffusion layer thickness (mm); 
t: dissolution time (s). 

In equilibrium, the two rates mentioned are comparable, i.e., the Sh number takes the value 

of 1: 

 

J t = 	
D COGP Q − CR t

R t  
(13) 

 

API particle radius 

Particle radius is reduced as the API molecules leave the particle. In the beginning of the 

dissolution test, particle radius is maximum and equivalent to the particle size of the particles 

tested. 

 𝜕𝑅(𝑡)
𝜕𝑡 = −𝜌VWX.𝐽(𝑡) 

(14) 
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Initial Condition: 

 𝑡 = 0, 𝑅 𝑡 = 𝑅Z[\ (15) 

Rmax: initial particle radius (mm); 
ρDF: API initial concentration within the particle, i.e. the ration between API mass and particle vol-
ume (mg.mm-3). 

 

Number of API particles in the system 

 𝑁^ =
𝑚VW

𝜌VW
4
3𝜋𝑅Z[\

b
 (16) 

Np: number of dissolving particles; 
mDF: mass of dosage form tested (mg); 
Rmax: initial particle radius (mm); 

 

Surface area exposed to the dissolution medium 

The area exposed and available to dissolution decreases with time as occurs to the particle 

radius. In the beginning of the dissolution test, surface area exposed is maximum. 

 𝐴 = 4𝜋𝑅(𝑡)/𝑁^ (17) 

Initial Condition: 

 𝑡 = 0, 𝐴 = 4𝜋𝑅Z[\/𝑁^ (18) 

A: Surface area exposed to the dissolution medium (mm2). 
 

 Internal diffusion - 2nd Fick’s Law: 

In the beginning of the dissolution test, the API distribution within the particle is uniform and 

it corresponds to the API concentration. 

Initial condition: 

 𝑡 = 0, 𝐶 0 < 𝑟 < 𝑅Z[\ = 𝜌VW  (19) 

Boundary Conditions 

• Symmetry on the left boundary: 

 𝜕𝐶
𝜕𝑟 FG6

= 0 (20) 

• API Mass Flux on the right boundary: 
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𝜕𝐶
𝜕𝑟 FGH(5)

= −
𝐷 𝐶FGH 5 − 𝐶I 𝑡

𝑅 𝑡 = −
𝐽(𝑡)
𝐷  (21) 

Governing equation: 

 𝜕𝐶
𝜕𝑡 = 𝐷

𝜕/𝐶
𝜕𝑟/ +

2
𝑟
𝜕𝐶
𝜕𝑟  (22) 

C: API concentration within the particle (mg.mm-3); 
r: radius (mm). 

 

Bulk concentration  

The bulk fluid volume remains constant during dissolution. Dissolution experiments meas-

ure the increase in bulk concentration of the API with time, which is given by: 

 𝜕𝐶I
𝜕𝑡 =

1
𝑉I
𝐽 𝑡 𝐴 (23) 

Vb: bulk volume (mm3). 

 

3.8.2. Preliminary Results 

The model was run for Formulation 2 – 600 µm.  The granule size used as input was taken 

as the d50 mass: 250 µm. The API diffusion coefficient in the bulk fluid applied was chosen by 

trial and error, in order to adjust the theoretical data to the experimental data (5x10-5 mm2.s-1). 

Three time and space instances were chosen arbitrarily. Figures 3.33, 3.34 and 3.35 show its 

output: concentration profiles within the particle and in the bulk fluid (dissolution test output). 
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Figure 3.33 – Dissolution profiles of Formulation 2 – 600 µm: theoretical (black) and experimental 

(green). 

 
Figure 3.34 – Concentration within the particle vs Particle radius predicted by the dissolution model 

for Formulation 2 – 600 µm for three time instances: 2520 s (black), 5041 s (red) and 10082 s (blue). 
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Figure 3.35 – Concentration within the particle vs Time for Formulation 2 – 600 µm predicted by the 
dissolution model for three space instances: 0.25 mm (black), 0.12 mm  (red) and 0.25 mm (blue). 

The results of the simulations of the dissolution profiles of the different granule sizes of 

formulation 2 (212 µm, 600 µm  and 800 µm), with the d50 of 45 µm, 250 µm and 350 µm, re-

spectively are presented in Figure 3.5.  

 
Figure 3.36 – Dissolution profiles of Formulation 2 – 212  µm (red), Formulation 2 - 600  µm (green) 

and Formulation 2 - 800  µm (blue) predicted by the model. The respective experimental profiles are 
represented by the lines of same colors with circle markers. 
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 Conclusions and Future Work 

The results of the current study suggest that solid molecular dispersions of ITZ prepared 

by the spray drying method can be used to enhance the apparent solubility and subsequent dis-

solution rate of this poorly soluble drug. 

This work shows the importance of dissolution testing in environments physiologically rel-

evant during formulation development. Biorelevant dissolution methodology demonstrated con-

siderable discriminative power to evaluate different formulations and inclusively, different particle 

sizes. It also demonstrated that simple aqueous buffers are not enough to predict and evaluate 

dosage forms performance because they can often lead to a sub or over estimation of the solu-

bility in vivo. Additionally, the potential for higher bioavailability of solid oral ITZ via intestinal tar-

geting was demonstrated.  

In conclusion, modern formulation development should rely on biorelevant test methods, 

which can ally discriminative to predictive power, since they can enable an early identification of 

potential problems in drug release rate and hasten the formulation process as they are a useful 

tool in the formulation development process, particularly when the rate limiting step to absorption 

is the dissolution. Moreover, coupling these tests with in silico tools offers the potential to reduce 

the number of in vivo an even in vitro tests, thus speeding the screening and development process 

and making it more cost-effective. Therefore, robust and reliable tests for the characterization of 

the release patterns in each step of formulation, from the API to the newly formulated immediate 

release or modified-release products are an indispensable tool in the pharmaceutical and process 

development scientist’s toolbox. 

For further development of this work, studies on stability testing of the SDDs should be 

conducted. The correlation between storage condition and the duration of physical stability of 

solid molecular dispersions should be studied and completed for future references. Additionally, 

the disintegrant percentage should be adjusted in the tablet formulation. Moreover, values of 

4 
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pharmacokinetic parameters (i.e. AUC infinity, Cmax, Tmax and t1/2) should be obtained to demon-

strate the improvement of blood concentration profile and BA with these stabilized amorphous 

ITZ systems and an in vitro in vivo correlation (IVIVC) of ITZ solid molecular dispersions should 

be investigated in animal models. 

The dialysis membrane/ultracentrifugation methods, even though enabling free drug quan-

tification, are not necessarily biorelevant. Consequently, further studies with cellular models, e.g. 

Caco 2 cells should be conducted. These tests allow the discrimination of several transport mech-

anisms, inclusively, using biorelevant media. With these permeability tests it would be possible to 

study the effect of excipients that modify drug permeability, such as d-α-Tocopheryl polyethylene 

glycol 1000 succinate (TPGS) and for example solubility enhancers that often reduce drugs per-

meability. 

 It is also proposed for future work API, SDI and tablet dissolution testing in USP Apparatus 

4. As previously stated, the USP Apparatus 4 has the advantage of maintenance of sink condi-

tions throughout dissolution tests, the possibility of dissolution media change and of enabling 

suitable dissolution tests for powders. Its hydrodynamic conditions, approximated to the in vivo 

ones would enable the stablishing of an IVIVC.  

For further development of dissolution tests cheaper simplified biorelevant media corre-

sponding to buffers with surfactants existing in vivo should be studied and it would be also im-

portant to develop miniaturized dissolution tests, that use very small quantities of API and media 

that could be useful for formulation screening. 

A good follow-up for the developed in silico work is the upgrading of this model for describ-

ing the polymer swelling as a result of the diffusion of the bulk fluid (permeable particles) and the 

dependence of the diffusion coefficient of the species with the bulk fluid concentration. Lastly, the 

following steps could be developed: the linkage of the different modules, i.e. disintegration from 

tablet to granules (implemented in Dynochem), API release (implemented in Dynochem and 

adapted to amorphous APIs in this work), supported by experiences designed to isolate the dif-

ferent effects and the building of a user-friendly interface. Also, in order to describe the “spring 

and parachute” effect, a precipitation model should be implemented and linked in the future. 
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 Appendix 1 – Validation of HPLC method 
for ITZ quantification in SDD and tablets 

HPLC method development 

Based on a literature survey, a method was tested [92] with satisfactory results. The pro-

portions of mobile phase composition were tested in order to obtain satisfactory retention factors. 

Optimal conditions were achieved using as mobile phase a mixture of acetonitrile, tetrahydrofuran 

(THF) and water adjusted to pH 2.5 with phosphoric acid (50:2.5:47.5) v/v, respectively. A flow 

rate of 0.4 mL min-1 gave an optimal signal-to-noise ratio and an appropriate separation time. The 

maximum absorption of the compound was 260 nm, the selected wavelength for analysis. The 

retention time of ITZ (Itraconazole) was approximately 3 minutes and the time required for anal-

ysis is 8 minutes. The HPLC method is described in Chapter 2 – Materials and Methods. 

Preparation of the standard solutions 

The stock solution (200 µg/mL) was prepared by dissolving 20 mg of ITZ in a 100 mL volu-

metric flask with the dissolution mixture (MeOH:H2O 90:10 v/v). The standard solutions were pre-

pared by dilution of the stock solution with the dissolution mixture to yield five different concentra-

tions: 1, 5, 25, 50 and 75 µg/mL. 

Linearity 

Linearity was determined by calculation of a regression line from the peak area vs concen-

tration plot for five standard solutions (1, 5, 25, 50 and 75 µg/mL) in triplicates (n=3). The slope 

and the square of the sample correlation coefficient of the calibration curve were calculated by 

linear regression, with the software Microsoft® Excel 2013.  
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ITZ was found to follow the Lambert-Beer law over the range of concentrations 1 to 75 

µg/mL in triplicate (n=3) (R2≥0.999) and the relative standard deviation of three injections was 

less than 1% (Figure 6.1 and Table 6.1 ) 
 

Table 6.1 – ITZ linearity data.  

Theoretical concen-

tration (µg/mL) 

Average peak area 

(µV*s) 
SD RSD (%) 

1 5758 20.5 0.4 

5 28850 116.5 0.4 

25 149384 278.0 0.2 

50 149384 1022.5 0.3 

75 435890 898.5 0.2 

 

Selectivity 

The selectivity of the chromatographic method was assessed with respective physical mix-

tures of the SDDs and tablets produced, with and without ITZ, in the same mixture of H2O:MeOH 

(50:50 v/v). This study supports the specificity of the method, since no additional peaks to ITZ 

were observed. 

Sensivity 

The Limit Of Quantification (LOQ), the minimum level at which the API concentration can 

be determined with acceptable accuracy and precision, was considered as the lowest ITZ stand-

ard with a signal to noise ratio over to 10 [93]. The determined LOQ of the UPLC method was 1 

µg/mL, with a signal to noise ratio of 10.  

 
Figure 6.1 – ITZ linearity. 

In order to complete this method validation, LOD (Limit Of Detection) must be determined 

and accuracy and precision shall be assessed. 
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 Appendix 2 – Good Practices Regarding 
the Dissolution Method 

The workflow for dissolution tests during formulation development stage is shown in Figure 

8.1. The first step in drug product development is to classify the API in the BCS system in order 

to decide the formulation strategy and accordingly, design the future dissolution tests. 

The solubility and permeability assessment can be made with a variety of dissolution media 

that must cover the pH range of the GI tract. This characterization will allow the choice of formu-

lation strategy, since the goal is to achieve the behavior of a BCS class I drug.   

After the API is formulated, it is important to develop dissolution methods that are discrim-

inative enough to compare and optimize formulations. If the drug is not solubility-limited, simple 

buffers can be used as dissolution media for this purpose and test conditions can be changed in 

order to ensure this discriminative power. If the drug is solubility-limited, biorelevant media should 

be used. 

If the absorption of the API is solubility limited, an IVIVC can be established and for that, 

predictive dissolution tests, i.e. biorelevant, are needed. 
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Figure  7.1 – Workflow for dissolution testing during formulation development stage. 

This work highlighted some important aspects related to the dissolution testing method 

designed for drug development that sometimes are undervalued and constitute significant rec-

ommendations for future works, such as: 

• Filters choice: the material must be selected so that the API dissolved is not re-

tained by the filter. In this regard, filter compatibility tests must be performed before 

the design of the dissolution test; 

• Complete knowledge of the dosage form: it is critical to know the physicochemical 

properties of the dosage form, in all the stages of the formulation process, namely 

its solubility in the media tested. This will allow to determine whether if the test is 

performed under sink or non sink conditions and to evaluate the dissolution results 

with this value, being limiting to dissolution or not. Also, if the API does not have 

low aqueous solubility, a compendial medium, representing the physiological pH 

range can be sufficient to guide the formulation process; 

• Tests under non sink conditions: additional attention has to be taken during these 

tests; To prevent precipitation upon sampling, sample filtration and dilution with an 

API	BCS	Classification
•Solubility
•Intrinsic	Dissolution	Rate
•Permeability

Design	dissolution	tests
• Define	media,	temperature,	
filters,	hydrodynamics

Formulation	Strategy
• Dissolution	tests	for	intermediate product

Formulation	comparison	and	
optimization
• Ensure	sufficient	discriminative	power

IVIVC	(BCS	class	II)
• Predictive	dissolution	tests
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organic solvent must occur immediately (because the drug concentration in these 

tests rapidly achieves drug solubility and any small change in the conditions, i.e., 

temperature, will affect the equilibrium). 

 


