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1. Introduction

In this paper, we show that the expected returns of long–short value strategies in a range

of asset classes increase in the value spread. The value spread is the difference between

the value signal in the long versus the short portfolio, and its relation to value premia

can be motivated from standard present value logic (e.g., Vuolteenaho, 2002; Froot and

Ramadorai, 2005). The time variation in value premia we document is both economically

and statistically large. At the one–year horizon, the R2 in a time series predictive regres-

sion equals 14% and 6% for U.S. individual equities and industries, respectively, as well as

9%, 11%, 19% and 8% for commodities, currencies, global government bonds, and global

stock indexes, respectively, and 13% in a pooled regression. In all these asset classes, a

standard deviation increase in the value spread predicts an increase in the expected value

return of the same order of magnitude (or more) as the unconditional value premium.

Thus, expected returns on value strategies vary over time by at least as much as their

already puzzling level.

Cochrane (2011) emphasizes that the value premium continues to be one of the main

“puzzles” in finance, as the long–standing debate between rational explanations and mis-

pricing is still unresolved. To provide new insight, we analyze the economic drivers of

the time variation in expected value returns. We first decompose the value spread into

a common component, defined as the first principal component of value spreads, and

asset class–specific components. While the common component captures about half of

the variation in value spreads, it captures more –– about two–thirds –– of the varia-

tion in expected value returns in the pool of asset classes. The remaining one–third is

asset class–specific. Quantifying the relative contribution of these two components to

predictability is important, because a large and significant common component is evi-

dence of market integration. Despite this fact, there is little evidence in the literature for

common return predictability across asset classes (e.g. Cochrane, 2011).

We argue that time–varying risk premia drive the common component of value. In-
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deed, we find that expected value returns are globally high in bad times and remain so for

a number years. Moreover, two proxies for the risk of financial intermediaries –– market

leverage and funding liquidity –– together with a measure of risk aversion explain the bulk

of time variation in the common component. Thus, our evidence builds support for the

recent theoretical literature on intermediary–based asset pricing (He and Krishnamurthy,

2012, 2013; Brunnermeier and Sannikov, 2014), as well as for asset pricing models fea-

turing time–varying risk aversion (Campbell and Cochrane, 1999; Menzly, Santos, and

Veronesi, 2004; Santos and Veronesi, 2016). Thus, the quantitatively large amount of

value return predictability we find in asset classes with potentially different investors and

institutional settings presents a challenge for asset pricing theory. Our results suggest

that a full explanation of the value premium requires a general framework, where in bad

times investors shy away from holding different risky assets, so that value spreads widen

simultaneously.

Another challenge to asset pricing models follows from the asset class–specific com-

ponents of the value spread, which point to a mix of risk and mispricing. Although

these components load on risk proxies, such as leverage and uncertainty, we find that

the loadings vary considerably across asset classes. In addition, the risk proxies leave a

large share of asset class–specific value return predictability unexplained, which points to

mispricing. Consistent with these findings, we show that the common component of the

value spread contributes relatively more than the asset class–specific components to value

return predictability in the recent subsample. We find that common value is strongly as-

sociated with proxies for the risk of financial intermediaries, and financial intermediation

has become more important over time. Moreover, if limits to arbitrage partially drive

the asset class–specific components of value return predictability, one would expect these

components to become less important over time.

Our results contribute to the asset pricing literature in various ways.1 Unconditional

1A contemporaneous paper, Asness et al. (2018), independently reaches the same conclusion that
value returns are predictable in different asset classes. The key difference from their paper is that we use
the value spread as a simple measure of the expected return to a value strategy and analyze its variation
over time in a pool of asset classes. This setup allows us to decompose value into common and asset
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value premia are documented for U.S. individual equities (Fama and French, 1992), in-

ternational equities (e.g., Fama and French, 1998; Liew and Vassalou, 2000), and al-

ternative asset classes (Asness, Moskowitz, and Pedersen, 2013). Whereas our paper is

about comovement in expected value returns, Asness, Moskowitz, and Pedersen (2013)

show that realized value returns comove across asset classes. Conditional tests are rela-

tively powerful in distinguishing between competing asset pricing models (Campbell and

Cochrane, 2000; Cochrane, 2001; Nagel and Singleton, 2011). Therefore, the large amount

of common variation in expected value returns that we document sets a higher hurdle for

rational, risk–based models than what Asness, Moskowitz, and Pedersen (2013) discuss.

We analyze the ability of the value spread to predict a value–minus–growth port-

folio return over time, whereas many studies attempt to forecast (long–only) returns

using valuation ratios. Lewellen (1999) and Cochrane (2011) predict the returns of di-

versified equity portfolios with their book–to–market ratio. Cochrane (2011, p. 1099)

concludes that “variation over time in a given portfolio’s book–to–market ratio is a much

stronger signal of return variation than the same variation across portfolios in average

book–to–market ratio.” Kelly and Pruitt (2013) conclude that the expansion and com-

pression of the cross–section of value characteristics contains information about expected

stock market returns. We show that this conclusion applies equally to expected value

returns in all the asset classes we study.

Our findings for the value spread in individual equities are consistent with those of

Asness et al. (2000a). Using data for large U.S. individual equities from 1982 to 1999, they

find that industry–adjusted value spreads have predictive power for value–minus–growth

returns.2 We contribute to this literature by studying (i) the value spread in other asset

classes; (ii) the relative contribution of common and specific components of the value

class–specific components, thus enabling us to highlight the close association between common value and
aggregate risk premia. Asness et al. (2018) focus on “deep” value events. They have more extensive data
for equities, which enables them to highlight the fundamentals of low and high value stocks and to test
more rigorously alternative behavioral theories for the value effect.

2Similarly, Cohen, Polk, and Vuolteenaho (2003) show that the return of the Fama and French (1993)
HML factor is predictable by the HML value spread. Asness et al. (2017) study strategies that time and
rotate value, momentum, and betting–against–beta in equities using their respective value spreads.
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spread to predictability, as well as their economic drivers; and (iii) the potential for

timing and rotation using the value spread in an out–of–sample setting. In particular,

we find that value returns are predictable in real time, which alleviates concerns that our

in–sample evidence is spurious.

Our multi–asset approach is uniquely suited to answer some of the central questions in

asset pricing: Do expected returns vary over time and across assets? If so, by how much?

And is this time variation driven by risk or mispricing? Our risky common component

of expected value returns cannot be identified by analyzing a single value strategy in

isolation. This fact helps to explain recent mixed evidence on the question of whether

the equity value premium is driven by risk or mispricing (Golubov and Konstantinidi,

2016; Gerakos and Linnainmaa, 2018). Our work also contributes to the literature on

global asset pricing, where “betting against beta” (Frazzini and Pedersen, 2014), “carry”

(Koijen et al., 2018), and downside risk (Lettau, Maggiori, and Weber, 2014) are shown

to be factors in U.S. individual equities, as well as a host of other asset classes. In

contrast to us, these papers mostly characterize unconditional premia. Haddad, Kozak,

and Santosh (2017) characterize conditional return variation in stocks, currencies, and

bonds and argue, just like us, that long–short returns are more predictable than long–only

market returns.3 Haddad, Kozak, and Santosh (2017) analyze a different strategy and

a different predictor in each asset class. We analyze a single strategy (value) and a

single predictor (the value spread) in all asset classes, and we extract a single common

component.

2. Data and Methodology

In this section, we describe the construction of our value measures and value returns

in different asset classes. The sources and procedures to clean the data are in the In-

3Moskowitz, Ooi, and Pedersen (2012), Neuhierl and Weber (2017), and Moreira and Muir (2017) also
present global evidence for return predictability, respectively, due to time series momentum, monetary
momentum, and volatility timing.
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ternet Appendix A. There, we also validate our key result using the value returns of

Asness, Moskowitz, and Pedersen (2013). As is common in the literature, we use the

book–to–market ratio as our measure of value for individual equities, industries, and

global stock indexes. For the remaining asset classes, we follow Asness, Moskowitz, and

Pedersen (2013) and measure value using long–term past returns. This choice is inspired

by the literature documenting a direct link between past returns and book–to–market

ratios, both empirically (DeBondt and Thaler, 1985; Fama and French, 1996; Gerakos

and Linnainmaa, 2018) and theoretically (Daniel, Hirshleifer, and Subrahmanyam, 1998;

Hong and Stein, 1999; Vayanos and Woolley, 2013).

2.1 Value in Different Asset Classes

2.1.a. U.S. individual equities and industries

The U.S. individual equities data are from the Center for Research in Security Prices

(CRSP) and Compustat. Following Asness, Moskowitz, and Pedersen (2013), we limit

the analysis to a sample from January 1972 to December 2017 and a universe of stocks

that is liquid and can be traded at reasonably low cost in sizable trading volume. To be

precise, we include in our value strategies only those stocks that cumulatively account

for 90% of the total market capitalization in CRSP, which cutoff yields an average of

495 stocks for our portfolios. The idea is twofold. This allows us to provide conservative

estimates for an implementable set of trading strategies. The cutoff also allows for a better

comparison with the value strategies in alternative asset classes, where the securities are

relatively liquid.

To measure value for each firm i, we use the ratio of the book value to the market

value of equity, or the book–to–market ratio, BMi,t, as in Fama and French (1992). Book

values are observed each June and refer to the previous fiscal year–end. Market values are

updated monthly as in Asness and Frazzini (2013), but we also consider annually updated

market values in a robustness check. Consistent with the literature, we exclude financial
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firms: a given book–to–market ratio might indicate distress for a non–financial firm, but

not for a financial firm (Fama and French, 1995). We denote this measure BMi,t,ExF in.

Because many financial firms are large and in the investment opportunity set of most

investors, we also consider a second set of industry–adjusted book–to–market ratios. To

find the industry–adjusted book–to–market ratio for stock i, BMi,t,IndAdj, we subtract

from its book–to–market ratio the value–weighted average book–to–market ratio of the

industry to which stock i belongs. Asness, Porter, and Ross (2000b) and Cohen and Polk

(1998) find that industry–adjusted value strategies are relatively attractive. They argue

that there is no unconditional value effect across industries. To determine whether there

is a conditional value effect, we sort seventeen industry portfolios on the value–weighted

average book–to–market ratio within each industry. To be consistent with our analysis of

individual stocks, we construct the seventeen industry portfolios using only the restricted

set of relatively large stocks.

2.1.b. Commodity futures

We obtain commodity futures price data for Crude Oil, Gasoline, Heating Oil, Natural

Gas, Gas–Oil Petroleum, Coffee, Rough Rice, Orange Juice, Cocoa, Soybean Oil, Soybean

Meal, Soybeans, Corn, Oats, Wheat, Cotton, Gold, Silver, Platinum, Feeder Cattle, Live

Cattle, Lean Hogs (from the Commodity Research Bureau) and Aluminum, Nickel, Tin,

Lead, Zinc, and Copper (from Datastream). We define value for commodities as the

negative of the five–year spot return. As is common in the literature, we use the more

liquid first–nearby futures price to proxy for the spot price. The sample period for

commodities runs from January 1972 to December 2017.

2.1.c. Currencies

We obtain spot and forward currency exchange rates for Australia, Canada, Germany

(spliced with the euro), Japan, New Zealand, Norway, Sweden, Switzerland, United

Kingdom, and the United States. To measure value, we use the five–year change in
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relative purchasing power parity, which is calculated as the negative of the five–year

spot return adjusted by the five–year foreign–U.S. inflation difference. Currency value

is large when the foreign currency has weakened relative to the dollar. As noted in

Menkhoff et al. (2016), using five–year changes avoids potential problems that may arise

from non–stationarity and base–year effects. The sample period for currencies runs from

February 1976 to December 2017.

2.1.d. Global government bonds

We obtain global government bond data for Australia, Canada, New Zealand, Germany,

Japan, Norway, Sweden, Switzerland, the United Kingdom, and the United States. We

consider two sets of returns. Synthetic prices and returns for a one–month futures con-

tract on a ten–year bond are derived for all countries from zero coupon, government

bond yields. Traded bond index futures returns are available for six countries only (Aus-

tralia, Canada, Germany, Japan, U.K. and U.S.). We define two measures of value for

bonds using synthetic prices and yields, because the cheapest–to–deliver feature of traded

bond futures makes it hard to compare yields over time and across countries. The first

measure is the negative of the five–year futures return (–5–year return). The second is

the five–year change in the ten–year yield (5–year ∆y). Using five–year changes in yields

avoids potential problems that may arise from trends and unconditional differences across

bond markets in default risk, for instance. Throughout the paper, our main focus is on

strategies that use the first value measure to invest in the traded bond futures, but we

present a number of robustness checks for the second value measure and synthetic bond

returns. The sample period for global government bonds runs from January 1991 to

December 2017.

2.1.e. Global stock indexes

The universe of developed country stock index futures consists of Australia, Canada,

France, Germany, Hong Kong, Italy, Japan, Netherlands, Spain, Sweden, Switzerland, the
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United Kingdom, and the United States. To measure value for global stock indexes, we

use the inverse of the MSCI price–to–book ratio (MSCIBP ). Dictated by data availability,

the sample period for these stock indexes runs from January 1994 to December 2017.

2.2 Value Returns and Value Spreads

To construct value returns, we sort securities within each asset class into P groups based

on the cross–section of value measures, Vi,t. For individual stocks, we form market

value–weighted decile portfolios (P = 10) each month and define the value portfolio as

decile 10 (High) and the growth portfolio as decile 1 (Low). For all other classes, we set

P = 2 and form an equal–weighted High and Low portfolio by splitting the securities at

the median of ranked values. We denote with RH–L
t+1 the return of the High–minus–Low

value portfolio in the month after sorting. We also report results from an alternative

rank–weighting procedure that weights each security i = 1, . . . ,Nt at time t according to

its rank in the cross–section:

wRanki,t = qt (Rank(Vi,t)–
∑Nt
i Rank(Vi,t)

Nt

) .

The weights sum to zero, thus representing a dollar–neutral long–short portfolio. The

scaling factor qt ensures that we are one dollar long and one dollar short. The return of

this rank–weighted strategy is calculated as RRank
t+1 = ∑iwRanki,t Ri,t+1.

Throughout the paper, whenever we are predicting returns over horizons longer than

one month, we separately compound total returns on the long and short position of

these value strategies and then take the difference. These long and short positions are

rebalanced for every month.

2.3 Predicting Value Returns with the Value Spread

The signal of interest is the value spread, which is defined as the difference between the av-

erage value signal in the High and Low portfolio, V SH–L
t = V H

t –V L
t , or the rank–weighted
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average value signal, V SRankt = ∑iwRanki,t Vi,t. We conduct predictive regressions of value

returns (compounded over horizon h) on the lagged value spread:

Rx
t+1∶t+h = ah + bhV Sxt + εt+1∶t+h for x =H–L,Rank. (1)

This regression is easily motivated economically. For equities, consider the log–linear

present value model employed in Vuolteenaho (2002). If the book–to–market ratio is

well–behaved, then:

θt =
∞
∑
j=0

ρjrt+1+j +
∞
∑
j=0

ρj(–et+1+j) +
∞
∑
j=0

ρjkt+1+j, (2)

where θt is the log book–to–market ratio, rt+1 ≡ log (1 + ∆MEt+1+Dt+1

MEt
) denotes the log

stock return, and et+1 ≡ log (1 + ∆BEt+1+Dt+1

BEt
) is the log clean–surplus accounting return

on equity. Next, consider a portfolio that is long high book–to–market stocks and short

low book–to–market stocks. We apply Equation (2) to both portfolios, take conditional

expectations, difference, and reorganize, to get:

Et [
∞
∑
j=0

ρjrH–L
t+1+j] = θHt –θLt +Et [

∞
∑
j=0

ρj(eHt+1+j–e
L
t+1+j)] . (3)

Empirically, we abstract from the correction for the spread in discounted future expected

profitability. Thus, the specification in Equation (1) provides a lower bound on the

predictability of value returns (Asness et al., 2000a).4

As an alternative motivation, consider the investment–based asset pricing model of

Zhang (2005). In this model, the value spread predicts value returns in the time series

because it signals time variation in the risk premia of value versus growth stocks. In

bad times, the market value of value firms decreases (relative to growth firms) as they

are burdened with more unproductive capital and face large adjustment costs. Con-

4Indeed, the predictive ability of the value spread in U.S. individual equities improves when incorpo-
rating the restrictions in Equation (3) in a filtering approach (Rytchkov, 2010) or by using the implied
costs of capital to control for differences in earnings growth rates and payout ratios (Li, Ng, and Swami-
nathan, 2014).
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sequently, value is more risky exactly when risk premia are high. Finally, the value

spread can be motivated on purely statistical grounds. In Section B of the Internet Ap-

pendix, we show that the partial least squares method of Kelly and Pruitt (2015) selects

the High–minus–Low value spread as the optimal forecasting factor derived from the

cross–section of portfolio–level book–to–market ratios.

Similar to Equation (2), the present value formulation of Froot and Ramadorai (2005)

shows that expected currency returns are a key driver of real exchange rates. This

motivates using real exchange rates as a measure of value for currencies. For bonds, the

yield is a natural value metric, where a high yield indicates that the bond is relatively

cheap. As for the case of equities, our regressions for currencies and bonds provide a

lower bound on the predictability of value returns, since one can likely improve on our

results by controlling for expected real interest rate differentials, in the case of currencies

(Menkhoff et al., 2016), and differences in expected long–term inflation, in the case of

bonds (Asness et al., 2018).5 Because these adjustments need to be estimated and are

different across asset classes, we prefer the simpler, directly observable, measures of value

that are used in Asness, Moskowitz, and Pedersen (2013).

In the regressions of value returns on the value spread, we consider forecasting horizon

h up to four years. Horizons longer than one month help to mitigate the countervail-

ing momentum effect (Asness and Frazzini, 2013) and better resemble the experience

of actual value investors. It is important to note that long–horizon regressions of value

returns on the value spread are relatively less affected by the inferential problems that

are commonly associated with predictability. High first–order autocorrelation of the pre-

dictor and Stambaugh (1999) bias have been put forward as leading causes of inaccurate

inference when predicting aggregate stock market returns (e.g., Valkanov, 2003; Lewellen,

2004; Boudoukh, Richardson, and Whitelaw, 2006). However, the monthly autocorrela-

tion of value spreads in the different asset classes ranges from 0.95 to 0.98 (see Panel A

5Similarly, one can strengthen the results by combining different measures of value in a single as-
set class. For instance, larger unconditional value effects are found for equities when combining earn-
ings–to–price, sales–to–price, and book–to–price (Asness et al., 2000a; Israel and Moskowitz, 2013).
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of Table I), which is small relative to an autocorrelation of 0.993 for the dividend yield

over our sample period from 1972 to 2017. Moreover, as we show in Table C.I in the

Internet Appendix, the Stambaugh bias is small when predicting value returns with the

value spread in individual equities. The intuition for this result is that the left–hand side

in Equation (1) is a difference in returns between two portfolios, which we regress on the

corresponding difference in valuation ratios. This setup in differences largely breaks the

mechanical relation that exists in regressions of a single return on a price–based valuation

ratio.6

Thus, our setting is different from the usual setting in the predictability literature.

Figure C.1 in the Internet Appendix, presents the coefficient estimates, t–statistics, and

R2s from predictive regressions of non–overlapping value returns on the value spread, as

well as market returns on the dividend yield. The figure shows that the value spread

predicts value returns more strongly and farther into the future than the dividend yield

predicts aggregate stock market returns.

2.4 Time Variation in Value Spreads

To accommodate comparison across asset classes, we standardize each value spread so

that its time series average equals zero and standard deviation equals one. We present

the time series of (High–minus–Low) value spreads in all seven asset classes in Figure 1.

[Insert Figure 1 about here]

To interpret the time variation in the value spread, let us consider the case of U.S.

individual equities in the top–left panel. When the value spread is zero, value stocks are

cheaper than growth stocks by their historical average amount. A positive value spread

indicates that value stocks are cheaper and the cross–section of value measures is wider

than normal. The same intuition applies to the other asset classes. For currencies, for

6Pooling also helps to alleviate concerns about Stambaugh bias, because the across asset class dimen-
sion lowers the correlation between innovations in the value spread and past return shocks.
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instance, a large current value spread indicates that deviations from relative purchasing

power parity are historically large.

The seven panels in Figure 1 present a number of episodes when the value spread is

large in more than a few asset classes, such as after the collapse of the dot–com bubble

and the recent financial crisis. Thus, the value spread is correlated across asset classes.

This conclusion is confirmed in Panel A of Table I, which presents the correlation matrix

of value spreads. We find that the value spreads in U.S. individual equities, industries,

commodities, and global equity indexes correlate strongly and positively with each other.

[Insert Table I about here]

These results suggest that the time variation of value spreads in different asset classes

may be well captured by a small number of factors. Because the panel of value spreads

is unbalanced due to limited data availability early in the sample period, we follow the

procedure described in Stock and Watson (2002) to estimate the principal component fac-

tors using an iterative method based on the Expectation Maximization (EM) algorithm.

Panel B of Table I shows that the first principal component of value spreads explains

about 51% of the total variation. This first principal component is also presented in each

panel of Figure I. All value spreads load positively on the first principal component, and

consistent with the correlations in Panel A, the loadings decrease from U.S individual

equities to industries, equity indexes, commodities, bonds, and currencies. Consistent

with these positive loadings, the correlation between a simple across–asset class average

of the value spreads and the first principal component is large at 0.95.7

In what follows, we refer to this first principal component as the common component of

the value spreads, V SComt . The common component explains about half of the variation

in value spreads, but it is an empirical question as to what fraction of value return

predictability it captures. The answer to this question is important because it determines

to what extent expected returns comove across asset classes. In theory, one would expect

7The second principal component explains another 26% of the variation and loads heavily on currencies
and bonds.
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strong comovement, but empirical evidence of this effect is scarce in the literature. For

instance, following up on the evidence in Cochrane and Piazzesi (2005), who show that a

single common factor extracted from forward rates describes the majority of the variance

of expected bond returns, Cochrane (2011, p. 1054) asks: “[W]hat similar patterns hold

across broad asset classes?”

Figure 1 also provides evidence of asset class–specific variation in the value spreads.

For instance, the value spread in global government bonds often moves in the opposite

direction to the remaining asset classes. To analyze the fraction of value return pre-

dictability that is asset class–specific, we define the asset class–specific component of the

value spread, V SSpect , as the residual from a regression of the value spread in an asset

class on the common component.

3. In–Sample Value Return Predictability

In this section, we ask whether returns to value strategies are predictable in the time

series. To this end, we first analyze time series predictive regressions for each asset class.

There is ample evidence for U.S. equities in the literature; however, our evidence for

the other asset classes is new. Next, we analyze pooled predictive regressions to assess

the joint strength of value return predictability. This pooled evidence represents a key

contribution of our paper.

Panel A of Table II presents the unconditional performance of the High–minus–Low

and rank–weighted value strategies. All returns are scaled to have an annual standard

deviation of 15% to accommodate comparison. Consider first the evidence for individual

equities, for which we have two signals: BMExFin and BMIndAdj. Consistent with the lit-

erature, we find that the industry–adjusted value strategy performs well, with annualized

Sharpe ratios (monthly Sharpe ratio ×
√

12) of 0.24 and 0.38 for the High–minus–Low and

rank–weighted strategy, respectively. These numbers are relative to 0.14 and 0.17 for the

strategy excluding financials. Overall, these Sharpe ratios are slightly lower than what is
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typically reported for value in the literature, because we focus on the set of relatively large

and liquid stocks that cumulatively account for 90% of the total market capitalization

(and value returns have generally been poor in recent years)8.

[Insert Table II about here]

For industries, commodities, currencies, global government bonds, and global stock

indexes, we see that most value strategies generate a positive Sharpe ratio, but there

is considerable variation in magnitude. Annualized Sharpe ratios range between 0.20

and 0.30 for the value strategies in commodities, currencies, and global stock indexes.

Consistent with the literature, a value strategy using industries does not perform well

unconditionally and produces a Sharpe ratio of 0.03. The Sharpe ratio of the value

strategy using global government bonds is similarly small at –0.03.9

3.1 Time Series Predictive Regressions

Panel B of Table II shows the results from time series predictive regressions of value

returns on the value spread at forecasting horizons of h = 1,12 and 24 months for all

seven asset classes. We present regression coefficients, t–statistics (using Newey and

West (1987, tnw) and Hodrick (1992, thd) standard errors with h lags), and R2s.

We see that the coefficient on the value spread is positive for all asset classes and for

all horizons. The evidence is strong at the annual horizon, where the coefficient estimate

is significant and positive at the 10%–level in all asset classes using both Newey–West and

Hodrick standard errors. Similarly strong evidence is found at the two–year horizon, with

global equity indexes significant at the 10%–level and all other asset classes significant

at the 5%–level. At the one–month horizon, the coefficient estimate is significant in half

8Our focus on large stocks is similar to Asness et al. (2013), and the correlation between their
book–to–market strategy and our strategy excluding financial firms is 0.99.

9This strategy uses traded bond futures returns and –5–year return as the value signal. Alternative
strategies, using synthetic bond futures returns or the 5–year change in yield as value signal, perform
slightly better unconditionally (see Table C.II of the Internet Appendix). Asness, Moskowitz, and Ped-
ersen (2013) also find that value strategies using global government bonds vary considerably across
specifications.
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(one–third) of the asset classes for the High–minus–Low (rank–weighted) portfolios. So,

statistically, there is considerable evidence that the value spread predicts value returns.

The information in the value spread takes longer than a month to fully materialize,

however. Indeed, both the coefficient estimates and R2s are, in most cases, increasing

with the horizon.

The economic magnitudes of the coefficients on the value spread are also large. To see

this, consider first the evidence for individual equities. For the High–minus–Low value

strategy excluding financials, the coefficient estimates translate to an increase in monthly,

annual, and bi–annual future return equal to 0.48%, 6.97%, and 16.96% (with Hodrick

t–statistics of 2.20, 3.24, and 4.24, respectively) for a standard deviation increase in the

value spread. The R2 in these same regressions are 1.03%, 13.94%, and 30.86% respec-

tively. Thus, time variation in the value spread explains almost one–third of the variation

in the two–year returns of this strategy. For the industry–adjusted book–to–market strat-

egy, the coefficient estimates and R2 are even larger. The correlation between the value

return series that excludes financials and the industry–adjusted value return series is

about 0.69. This result suggests that cleaning valuation ratios from across–industry vari-

ation creates a different time series of value returns that is more predictable. For the

rank–weighted portfolios, we also see economically large coefficients and R2s, although

the evidence is a bit weaker than for the decile portfolio strategy.10

Recall that by standardizing the value spread, the ratio of the estimated coefficient to

the intercept, bh/ah, measures the implied standard deviation of expected returns relative

to the unconditional value premium. At all horizons, this ratio is over 2 (2.8 on average)

for the High–minus–Low portfolios, and over 1.1 (1.6 on average) for the rank–weighted

portfolios. We conclude that the value premium in U.S. individual equities strongly

increases (decreases) as the cross–section of valuation ratios expands (compresses). To

10In Table C.III of the Internet Appendix, we show that the value spread remains a significant predictor
when we (i) extend the sample back to 1962, (ii) calculate the book–to–market ratio with annually
updated market cap (as in Fama and French, 1992), and (iii) sort stocks on the negative of the past
five–year return (e.g., DeBondt and Thaler, 1985, who use a similar measure to identify undervalued
firms).
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benchmark the strength of this in–sample evidence, consider that Cochrane (2011) reports

a ratio slightly below one when predicting the aggregate stock market return with the

dividend yield.

Although the fact that value returns in U.S. individual equities are predictable using

the value spread is not new (e.g., Asness et al., 2000a; Cohen et al., 2003), our evidence

contributes to the literature along the following dimensions. First, we focus on a rela-

tively small set of large and liquid stocks and extend the sample period post–2000, thus

including two major recessions and the recent period of low value returns. Second, we

show in the next section that the value spread predicts value returns out–of–sample. This

finding is important, because even after a long history of research on the predictive rela-

tion between market returns and the dividend yield, it is unclear whether the information

in the dividend yield can be used profitably in an out–of–sample setting. This lack of

out–of–sample evidence has raised concerns that the in–sample predictability is spurious

(Lettau and Van Nieuwerburgh, 2007; Goyal and Welch, 2008). Third, the variation in

expected value returns we document is economically large and will likely pose a challenge

for standard asset pricing models to match. To see this by example, we simulate from the

investment–based asset pricing model of Zhang (2005), which contains a time–varying

value premium. Table C.IV of the Internet Appendix presents the distribution of uncon-

ditional and conditional value premia obtained from 1000 simulations of the model. We

see that the median ratio bh/ah in a regression of annual High–minus–Low value returns

on the lagged value spread is 0.74. This ratio is small relative to our estimates of 3.47 (in

case we exclude financials) and 2.12 (in case we use industry–adjusted book–to–market),

which both fall in the far right tail of the simulated distribution.

In the remainder of Table II, we see that the value spread predicts value returns

similarly in the other asset classes, although the evidence is slightly weaker statistically.

This is partly due to a lack of power in asset classes with shorter sample periods (e.g.,

global government bonds and global stock indexes). Let us focus on the High–minus–Low

strategies for interpretation. At the annual horizon, the coefficient estimate on the value
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spread ranges from 4.34% (thd = 2.09) for industries to 7.00% (thd = 2.36) for global

government bonds. At the two–year horizon, the coefficient estimates range from 6.86%

(thd = 1.94) for commodities to 15.60% (thd = 2.80) for global government bonds. The

value spread captures a considerable fraction of the variation in two–year value returns

at R2s of 16.86% for industries, 8.91% for commodities, 27.32% for currencies, 33.92%

global government bonds, and 5.21% for global stock indexes.11 Similar to what we find

for U.S. individual equities, the ratio of the coefficient on the value spread relative to

the intercept is quite large in all asset classes. This ratio is about one for currencies and

commodities. The ratio is considerably larger than one in the remaining asset classes,

which is partly due to the fact that the unconditional value effects are small in some

cases. For instance, the unconditional average value return is only 4 bps per month

for industries, which is consistent with the literature. We show that the industry value

premium is large conditionally and varies over time with the value spread, just like it does

in all the other classes we study. In fact, comparing the unconditional evidence in Panel

A to the conditional evidence in Panel B, we conclude that the conditional variation in

value premia is actually more similar across asset classes than is the unconditional value

premium.

3.2 Pooled Predictive Regressions

We next employ pooled tests for the following value strategies: U.S. individual equi-

ties (book–to–market excluding financials and industry–adjusted book–to–market), in-

dustries, commodities, currencies, global government bonds, and global stock indexes.

These pooled tests provide insight on the joint time variation in expected value premia

implied by time variation in the value spread. Panel A of Table III presents the results

11Table C.II of the Internet Appendix shows similar evidence for global government bonds when we
use the alternative value measure (5–year change in yield instead of –5–year return) and slightly weaker
when using synthetic bond futures returns.
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for the following regression:

Rx
c,t+1∶t+h = ah + bh VSxc,t + exc,t+1∶t+h, (4)

where c denotes an asset class and x ∈ {H–L,Rank}. We add in these pooled tests a

longer four–year horizon, h = 48 months, because pooling increases statistical power.12

[Insert Table III about here]

In Panel A of Table III, we find that the joint evidence for value return predictability

is strong for both types of portfolios. For instance, for the High–minus–Low portfolio, the

coefficient on the value spread is significant, with a t–statistic above three at the monthly

horizon and a t–statistic above five for horizons that are over a quarter. The coefficient

estimates are economically large too. Looking at the ratio of the estimated coefficient

to the intercept, we see that the standard deviation of expected returns implied by the

value spread is about 81% to 147% (23% to 77%) larger than the unconditional value

premium in the pool of High–minus–Low (rank–weighted) value strategies. For instance,

the coefficient estimate is 6.41% at the annual horizon, which is relative to an uncondi-

tional average value premium of 2.64% (the intercept). Consistent with these coefficient

estimates, the R2 increases with the horizon, and exceeds 20% at the 24– and 48–month

horizons. The idea that the value spread contains information for value returns at long

horizons is further supported by the evidence in Figure 2. In this figure, we predict future

value returns over consecutive semi–annual periods after portfolio formation. We find that

the coefficient on the value spread is decreasing as time passes, but remains positive and

marginally significant up to about four–and–a–half years after portfolio formation.

In Panel B of Table III, we present an alternative way of looking at the joint strength of

the value return predictability. We regress in the time series the across–asset class average

value return on the across–asset class average value spread. We again see coefficient

12Because the value spread is mean zero in all asset classes, the coefficient estimate bh is identical when
we include asset class fixed effects in Equation (4).

19



estimates on the value premium that are statistically significant and economically large.

The R2s at the 24– and 48–month horizons are even larger at over 35%, since averaging

smooths out some noise in the individual value strategies. These results testify to the

joint strength of the value premium predictability, but they also suggest that there is

common variation in value premia across asset classes.

We run the same tests, but exclude the value strategies for individual equities. We

see in Panels C and D in Table III that value returns in the alternative asset classes are

jointly strongly predictable by the value spread, with a ratio of coefficient–to–intercept

that is well above one in both the pooled and average–on–average specification. Finally, in

Table C.V of the Internet Appendix, we show that the value spread predicts value returns

in the pool of asset classes in both subsamples (split around June 1994). This result

suggests that value return predictability is not solely driven by the highly popularized

value episodes around the dot–com bubble in the late 1990’s and around the recent global

financial crisis.

Next, we examine whether our results are explained by time–varying exposure to a

market benchmark, as in a conditional Capital Asset Pricing Model (CAPM). The litera-

ture shows that an unconditional CAPM does not explain the value premium. However,

Campbell and Vuolteenaho (2004) find that the value spread is a significant time series

predictor of equity market returns. Hence, if the market beta of value strategies varies

over time with the value spread, this could explain the time series variation in value

premia. To see whether this is the case, we run the pooled predictive regression of value

returns on the value spread, but control for market exposure in each asset class. We

consider a model with constant betas, as well as a model that allows the market beta

in each asset class c to vary over time with the value spread: βMKT,c,t = β0,c + β1,cV Sc,t.

The results are reported in Table IV. In Panel A, we use the CRSP value–weighted stock

market portfolio –– the most common proxy for the CAPM market portfolio in the lit-

erature –– as the benchmark in all asset classes. In Panel B, we use an equal–weighted

portfolio of the securities in each alternative asset class as the benchmark.
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[Insert Table IV about here]

In the first test with constant betas, we find that the estimated coefficient on the

value spread is similarly large in economic magnitude and significance to what we report

in Panel A of Table III. This finding is intuitive: Since the unconditional market betas

of the value strategies are small, time variation in expected market returns alone cannot

explain the large amount of time variation in value premia we find. The model with

time–varying betas shows that the interaction between time variation in market betas

and time variation in the market risk premium cannot explain our findings either. There

is no consistent pattern across asset classes in the coefficients β1,c, which are mostly

insignificant. Hence, the predictability of value returns due to the value spread is again

largely unaffected. We conclude that our results are not driven by the predictive relation

between market returns and the value spread and thus a conditional CAPM. In line with

this conclusion, Table C.VI of the Internet Appendix shows that the value spread is not

a robust predictor of market returns in the pool of asset classes we study.

4. Out–of–Sample Value Timing and Rotation

In this section, we present a number of out–of–sample strategies that take advantage of

the information in the value spread in real time.

4.1 Value Timing in Individual Equities

We construct a linear timing strategy for value in individual equities by constructing a

value spread that is standardized in month t using only historical information:

V St,His =
∑11
s=0 V St–s/12–∑t–1

s=12 V St–s/(t–12)
σ(V S1∶t–12)

. (5)

Thus, V St,His indicates whether the average value spread over the last twelve months is

historically large. We take an annual average to accommodate that return predictabil-
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ity using the value spread strengthens with the horizon. To ensure that our dynamic

strategies are not extreme, we truncate the standardized signal at ±2.

Table V presents summary performance statistics for three strategies: a unit weight

strategy that captures the unconditional value premium, a linear timing strategy where

V St,His dollars are invested in both the long and short position of the value strat-

egy, and a combined strategy where 1 + V St,His dollars are invested in the long and

short position. We consider 2 × 2 variations of these strategies: using either (i) the

book–to–market signal excluding financials or the industry–adjusted book–to–market ra-

tio, and (ii) the High–minus–Low decile portfolio or the rank–weighted portfolio. To

make the results comparable across strategies, we standardize each return series to have

an ex ante annualized standard deviation of 15%. In particular, we follow Moskowitz,

Ooi, and Pedersen (2012) and estimate ex ante variance using an exponential weighting

scheme: σ2
Rt+1

= ∑∞
i=0(1–δ)δi(Rt–i–R̂t+1)2, where δ is chosen so that the center of mass of

the weights is two years and R̂t+1 is the exponentially–weighted average return computed

similarly. We then rescale the return on the position as follows: Rt+1,15% = Rt+1

σRt+1
× 15%√

12
.

[Insert Table V about here]

We next compare the performance of the linear timing strategy to the unit weight

strategy. For the High–minus–Low decile book–to–market strategy that excludes fi-

nancials, we find an average return for the linear timing strategy of 60 bps (t = 2.77)

per month, which is 62 bps higher than the average return of the unit weight strat-

egy. For the alternative value strategies, this difference ranges from 25 bps (indus-

try–adjusted book–to–market, rank–weighted value strategy) to 49 bps (excluding fi-

nancials, rank–weighted value strategy). Because this increase in average returns is not

accompanied by a proportional increase in standard deviation, the Sharpe ratio of the

linear timing strategies is relatively large as well, ranging from 0.34 to 0.41 (annualized).

For comparison, over the alternative value strategies, the largest Sharpe ratio for the unit

weight strategy is 0.24 (industry–adjusted book–to–market, rank–weighted value strat-

egy). In the combined strategy, the returns of its two components are summed, which
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yields attractive average returns ranging from 56 bps to 87 bps, but Sharpe ratios that

are similar to the linear timing strategies. In all, these results suggest that investors can

use the information in the value spread to time value in the stock market. Moreover, this

timing strategy is an attractive complement to an unconditional value strategy.

These conclusions are supported further when we look at alphas relative to the market

portfolio (of large stocks accounting for 90% of total market cap in CRSP), as well as

the Fama and French (1993) three–factor model. We find that the CAPM alpha of the

linear–timing strategies are large at about 55 bps and significant. This number is relative

to a CAPM alpha for the unit weight strategy, which ranges from an insignificant 17 bps

to a marginally significant 34 bps. This result suggests that conditional value strategies

are attractive on top of an indexed market strategy and more so than an unconditional

value strategy. The three–factor alpha of the linear timing strategies is also large and

significant, at over 47 bps. This result suggests that the conditional value strategies using

only the largest stocks are attractive even relative to unconditional value strategies using

all stocks in the CRSP file.

In Table C.VII of the Internet Appendix, we present results for the same strategies

using alternative market cap cutoffs of 75% and 95%. Although there is some variation

in magnitude, we find again that conditioning on the value spread improves performance

relative to a unit weight value strategy and typically also relative to a market strategy

and the Fama–French three–factor model. With the 95% cutoff, we use on average 740

stocks per month (relative to 495 using the 90% cutoff), which increases transaction costs.

Including these relatively smaller stocks does increase the unconditional value premium,

which is consistent with the literature. Interestingly, with the 75% cutoff, we use on

average only 212 stocks per month, which lowers the transaction costs considerably.

4.2 Value Timing and Rotation in the Pool of Value Strategies

We next examine value timing and rotation in the pool of asset classes. To start, we

run a pooled regression of value returns on a dummy variable that indicates whether the
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current value spread in an asset class is above the historical average:

Rx
c,t+1∶t+h,15% = ah + bhIV Sx

c,t,His>0 + ec,t+1∶t+h, (6)

where c denotes an asset class and x ∈ {H–L,Rank}, and V Sxc,t,His is defined as in

Equation (5). The subscript indicates that we standardize each return series to have an

ex ante annualized standard deviation of 15% to ensure comparability across asset classes.

Table VI presents the results. For the one–month horizon, we find that the coefficient

estimate of b is large and significant at 60 bps (t = 2.91) and 57 bps (t = 2.53) for

the High–minus–Low and rank–weighted portfolios, respectively. Combined with the

estimated intercept, these numbers imply that the average return of a value strategy

that invests only in an asset class when V Sc,t,His > 0 equals 52 bps and 55 bps per

month, respectively. These returns translate to annualized Sharpe ratios of about 0.4. In

comparison, the Sharpe ratio of investing when V Sc,t,His ≤ 0 is negative, although small

and insignificant. This evidence suggests that investing in value in a typical asset class

is only attractive when the value spread in that asset class is historically large. Finally,

the regression results for longer horizons suggest that strategies that rebalance at a lower

frequency than every single month, are likely more attractive.

[Insert Table VI about here]

We next examine strategies that rotate value across asset classes. As a benchmark,

we consider an unconditional value strategy where 1/Nt is invested in each of Nt available

value strategies (out of the maximum of seven) in each sample month t. Next, we consider

a value rotation strategy where asset classes are overweighted (underweighted) when the

value spread is high (low) relative to the other asset classes. We consider two alternative

weighting schemes. The first rotation strategy takes a position in each asset class c in

month t equal to:

wrot,1c,t = qt (V Sc,t,His–
Nt

∑
c=1

V Sc,t,His/Nt) , (7)

where the scalar qt ensures that the total weight in the long and short position equals
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one. In the second strategy, with weights denoted wrot,2c,t , an equal weight is invested in

each asset class with V Sc,t,His above (below) the mean value spread across asset classes.

We calculate performance measures for these two long–short rotation strategies, as well

as for a combination with the unconditional strategy.

[Insert Table VII about here]

The first block of results in Panel A in Table VII is for the High–minus–Low portfolios.

We find that the two rotation strategies outperform the unconditional strategy. For

instance, the average return and annualized Sharpe ratio of the linear rotation strategy

equal 68 bps (t = 3.12) and 0.52, respectively, which is large relative to 8 bps (t = 0.74)

and 0.12 for the unconditional strategy. The equal–weighted rotation strategy performs

similarly at an average return of 63 bps (t = 3.30) and has a Sharpe ratio of 0.55. In

the second block of results for the rank–weighted value strategies, we find that the value

rotation strategies outperform the unconditional strategies as well, albeit by a slightly

smaller margin. The Sharpe ratio is about 0.45 for the two rotation strategies and 0.23

for the unconditional strategy. Similar to the case of individual equities, we find that

the combined strategies (unconditional value plus value rotation) perform about as well

as the rotation strategies in Sharpe ratio. We conclude that the value spread can be

used by investors to rotate value across asset classes in real time and this strategy is

attractive relative to a strategy that invests unconditionally in value in all asset classes.

Thus, investing in value is most attractive in asset classes with value spreads that are

large compared to other asset classes.

Table IV also reports the abnormal return, or α, of the rotation strategies relative to

an equal–weighted portfolio of the market strategies in each asset class (as shown in Panel

B of Table IV). Note, this aggregate market benchmark is well–diversified and presents

a tough benchmark for the dynamic strategy to beat. The value rotation strategies have

lower α’s than average returns, suggesting that there is some market exposure. However,

the reduction is generally small (about 10 bps), such that the remaining abnormal return
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is economically large (> 49 bps) and statistically significant. We conclude that rotation

strategies may be an attractive addition to a portfolio that diversifies unconditionally

across these markets. In contrast, the unconditional value strategy obtains an α that

is about one–third in magnitude of the rotation strategy and is insignificant in all four

cases.

In Panel B of Table VII, we present the fraction of months in which the long and short

leg of the rotation strategies invest in each asset class. We see that the strategies diversify

across different asset classes over time: no asset class is present in either leg for more

than one–third of the sample. We next decompose the average return of the long–short

rotation strategies across asset classes. For both rotation strategies, we find in Panel

C that about 60% of the average return is derived from the alternative asset classes.

Currencies is the asset class with the largest contribution. The value strategies using

individual equities and equity indexes also contribute substantially. Thus, we conclude

that not only U.S. individual equities, but also the alternative asset classes, contribute

to the benefits of value rotation.

Table C.VIII in the Appendix presents the results from timing strategies for the

alternative asset classes (analogous to Table V). We find that the return from a linear

timing strategy is non–negligible economically (ranging from about 20 to 30 bps per

month) for industries, currencies, global government bonds, and global stock indexes.

These effects are insignificant, however, partly due to the shorter sample period dictated

by data availability. This result highlights an important difference between value timing

and rotation. Even if timing value in a specific asset class is difficult, the value spread in

that asset class may contain valuable information for rotating value across asset classes.

Indeed, the evidence in Table VII suggests that comparing the value spread in currencies

to other asset classes provides valuable information to determine when to go long (or

short) the currency value strategy.
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5. Common Value and Economic Drivers of Value

Return Predictability

In this section, we investigate (i) the strength of comovement between the expected

returns of value strategies in different asset classes, and (ii) whether this comovement is

driven by economic fundamentals. Throughout this section, we discuss the results for the

High–minus–Low value strategies. By and large, identical results for the rank–weighted

strategies are reported in Tables C.IX, C.X, and C.XI of the Internet Appendix.

5.1 Common Versus Asset Class–Specific Value

We start by investigating how much predictability in value strategies is common across

the different asset classes. In Table VIII, we present the results from a pooled predictive

regression on the two components of the value spread defined in subsection 2.4. The

common component, denoted V SComt , is the first principal component of value spreads.

The asset class–specific component, denoted V SSpect , is the residual from a regression of

the value spread in each asset class on the common component.

[Insert Table VIII about here]

In isolation, the coefficient estimates on the common as well as the asset class–specific

component of the value spread are statistically and economically significant at all hori-

zons. Thus, both contain information about future value returns. The estimated coeffi-

cients are identical in a joint test, because the two components are orthogonal.13 More

interesting is the relative contribution of each component to the total R2 in the joint

test. This R2 ranges from 0.56% at the monthly horizon to 10.63% at the annual horizon,

18.78% at the two–year horizon, and 24.07% at the four–year horizon. At these horizons,

13One can decompose the value spread arbitrarily in two orthogonal components that obtain a joint
regression R2 identical to what we present here. However, such arbitrary components will in general
not predict value returns in isolation, especially a component that is restricted to not vary across asset
classes.
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the common component contributes 0.35%, 5.79%, 12.84%, and 18.45% of the explained

variation, respectively. In other words, about 60% of the predictability of value returns

in the pool of value strategies is driven by the common component at horizons from

one month up to one year. At horizons of two and four years, the common component

contributes even more at about 68% and 77%, respectively. Recall that the common

component explains about half of the variation in value spreads. We thus find that it

explains an even larger share of the predictability of value returns; for instance, more

than two–thirds at long horizons. The asset class–specific components contribute rela-

tively more at short horizons. This latter finding is consistent with the idea that limits

to arbitrage prohibit the fast movement of money across asset classes.

In Tables C.XII and C.XIII of the Internet Appendix, we show that these conclusions

are not sensitive to the definition of the common component. A first alternative defi-

nition uses the first principal component from a standard principal component analysis

performed on the panel of value spreads. However, in this case, the panel is balanced with

an algorithm that recursively projects the value spread in an asset class with a shorter

sample on the value spreads that are available over the full sample. A second alternative

definition is the average value spread over the asset classes with available data in month

t.14 The advantage of this definition is that the common component is directly observable

and does not suffer from errors–in–variables bias. The disadvantage of this decomposition

is that we assume equal loadings on the common component across asset classes. The

correlation between our measure of the common component and this alternative measure

is large, at 0.95, which suggests that this disadvantage should not affect the results much.

For both alternative definitions and for all horizons, we find that the common component

contributes about two–thirds of the predictability of value returns.

Overall, these results suggest that the common component of the value spread con-

tributes more than the asset class–specific component to value return predictability. A

component of the value spread that is common across asset classes and determines about

14The asset class–specific component is then simply the difference between the value spread in an asset
class and common value.
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two–thirds of the variance of expected returns to value strategies is interesting from a

theoretical perspective. Asset pricing models now must also explain that expected returns

of value strategies rise and fall globally. As highlighted in (Cochrane, 2011, p. 1060): “It

is not enough to simply generate temporary price movements in individual securities.”

5.2 Economic Drivers of the Components of Value

In this subsection, we analyze the economic sources of variation in the common and asset

class–specific components of the value spread using state variables from recent asset

pricing models. In particular, we run time series regressions of the following form:

V S Com
t = k0 + k′1Zt + uComt and (8)

V S Spec
c,t = k0 + k′1Zt + u Specc,t , (9)

where Zt is a particular set of state variables or risk proxies. We report the results from

Equations (8) and (9) in Panels A and B of Table IX, respectively.

Intermediaries are the marginal investors in many asset markets. Hence, their marginal

value of wealth is a plausible pricing kernel for a broad set of securities and may drive

common variation in expected returns. Recent intermediary–based asset pricing models

(e.g., He and Krishnamurthy, 2012, 2013; Brunnermeier and Sannikov, 2014) show that

the intermediary sector’s net worth (or equivalently the reciprocal of leverage, defined as

assets over equity) is the key determinant of its marginal value of wealth. We analyze

the link between the aggregate leverage of financial intermediaries and the common com-

ponent of the value spread in row 1 of Panel A of Table IX. We find a strong relation,

with variation in leverage accounting for almost 50% of the overall variation in common

value. This time series evidence complements the large and growing body of literature

showing that the leverage of financial intermediaries has strong cross–sectional predictive

power for returns in various asset classes (Adrian, Etula, and Muir, 2014; He, Kelly, and

Manela, 2017).
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[Insert Table IX about here]

Next, guided by theory (Brunnermeier and Pedersen, 2009) and empirical evidence

(Adrian and Shin, 2010) that implies a close link between funding liquidity and the

balance sheet of the financial sector, we investigate the relation between illiquidity and

common value. Following Nagel (2016), we proxy for illiquidity with the repo/T–bill

spread. In row 2 of Table IX, we find that illiquidity also explains considerable variation

in common value with an R2 of almost 40%. Jointly, leverage and illiquidity explain 64%

of the variation in common value (row 3). Both variables enter significantly, with eco-

nomically large coefficients. For a standard deviation increase in leverage and illiquidity,

common value increases by 0.39 and 0.27 standard deviations, respectively.

Recent literature acknowledges that financial intermediary leverage is endogenous

and its cycles may simply reflect movements in aggregate risk aversion (Campbell and

Cochrane, 1999; Menzly, Santos, and Veronesi, 2004; Santos and Veronesi, 2016).15 In-

spired by Campbell and Cochrane (1999), who argue that the price–to–dividend ratio is

nearly linear in the surplus consumption ratio, we next explore the link between com-

mon value and the dividend yield. In row 4 of Table IX, we find that the dividend yield

explains lots of variation in common value, with an R2 of almost 69%. This result is

consistent with the idea that the value spread widens when risk aversion is high. We

then investigate the extent to which leverage and liquidity are just a manifestation of

time–varying risk aversion (as proxied by the dividend yield). We see in row 5 that inter-

mediary leverage, illiquidity, and the dividend yield are all significant and jointly capture

about three–quarters of the variation in the common component of the value spread.

However, as the intimate link between leverage cycles, liquidity dry–up, and risk aversion

would suggest (Santos and Veronesi, 2016), the magnitude and statistical significance of

the individual coefficients falls upon joint inclusion of the variables.

15Leverage is measured as the inverse of the squared intermediary capital ratio, as in He, Kelly, and
Manela (2017). This measure of leverage is based on market prices (market leverage) and, in the model
of Santos and Veronesi (2016), the debt–to–wealth ratio is monotonically decreasing in the surplus
consumption ratio (see their Corollary 13).
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Based on the evidence so far, we conclude that common value is large when, in bad

times, intermediaries’ balance sheets get shocked or aggregate risk aversion is high, or

both. Consistent with this result, we see in row 6 of Table IX that common value is higher

by about 0.46 standard deviations during global recessions. In row 7, we find that this

conclusion is also robust to controlling for additional state variables. Following Koijen,

Lustig, and Nieuwerburgh (2017), who link the value spread in equities to business cycle

risk, we include the Chicago Fed National Activity Index (CFNAI). We also include the

Jurado, Ludvigson, and Ng (2015) real uncertainty index. As pointed out by Nagel (2016),

liquidity may be in part driven by the level of uncertainty, since a high level of risk can

erode agents’ trust that bank deposits are a good store of liquidity. Finally, we include

the BAA–AAA corporate bond default spread, a popular proxy for cyclical variation in

risk premia. In this “kitchen sink” regression, all three additional state variables are

insignificant and the R2 increases only marginally relative to the three–variable model in

row 5 (79% vs. 74%). In all, the common value spread is high in bad times, which are

modeled well as a combination of high leverage, illiquidity, and a large dividend yield.

This conclusion holds true also in changes.16 Rows 8 and 9 in Table IX display the

results obtained when using innovations from an AR(1) model in the common compo-

nent and the state variables. We find that the innovations in common value are driven

positively and significantly by innovations in these state variables. Innovations in lever-

age and liquidity together explain 41% of the variation in innovations in common value,

whereas adding innovations in the dividend yield increases the R2 to 57%. Among the

three state variables, the dividend yield (liquidity) is relatively more (less) important.

For the asset class–specific components in Panel B in Table IX, we focus on the kitchen

sink regression to have an upper bound on what risk can explain. Jointly, the risk proxies

explain a considerable fraction of the variation in the asset class–specific value spread

in some asset classes, with R2’s ranging from 9% for the equity value strategy excluding

financials to 48% for industries. However, the loadings on individual risk proxies vary

16We thank an anonymous referee for suggesting this analysis.
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dramatically across asset classes, in both magnitude and significance.

[Insert Table X about here]

Next we examine how much of the predictive ability of the common component of the

value spread is captured by the part that is correlated with the risk proxies (the predicted

value spread in the kitchen sink specification, k0+k′1Zt, of Equation (8)) and how much by

the part that is orthogonal (the residual, uComt ). Focusing on the decomposition of R2, we

see in Panel A of Table X that both the explained and orthogonal part are significant in

predicting value returns. The fraction of value return variation attributed to the explained

part of common value increases in horizon and ranges from about two–thirds (at short

horizons) to three–fourths (at the four–year horizon). Consistent with the association

between these risk proxies and common value, we show in Table C.XIV of the Internet

Appendix that the first principal component of the risk proxies predicts value returns

significantly in isolation. However, it is common value that dominates in predicting value

returns in a joint test. Panel B of Table X provides the results of a decomposition of the

asset class–specific value return predictability. In contrast to the case of common value,

we find that the part of the asset class–specific component of the value spread that is

orthogonal to the risk proxies is relatively more important for predicting value returns

than the explained part.

5.3 The Role of the Equity Value Spread

Although the value spread also predicts value returns outside U.S. individual equities, it

is an interesting question as to how much of the value return predictability across asset

classes is associated with variation in the value spread in U.S. individual equities. The

fact that the dividend yield is the state variable with the largest correlation to common

value suggests that U.S. individual equity valuations are relatively important. To answer

this question, we conduct a pooled regression of value returns in all asset classes on

the equity value spread. We report the results in Panels A and B of Table C.XV of the
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Internet Appendix. We find that the equity value spread predicts returns about as well as

the common component (see Table VIII). When we exclude the two equity value returns

from the test assets (Panels C and D), the value spread remains marginally significant

(at the one– and two–year horizons) in both specifications, but the fraction of explained

variation drops considerably. Thus, we find weak evidence for across–asset class value

return predictability due to the equity value spread. This finding implies that our measure

of common value extracts additional relevant information from the value spreads in the

alternative asset classes.

5.4 Interpretation

The evidence in this section suggests that the majority of value return predictability in

different asset classes is driven by a single common component. These results for common

value call for a general framework, where investors shy away in bad times from holding

different risky assets, such as individual equities, global stock indexes, industries, and

commodities with low valuation ratios. Consequently, value spreads widen simultane-

ously when discount rates (and thus expected value returns) are high. The motivation is

that common value return predictability is closely associated with proxies for the risk of

financial intermediaries (such as market leverage and funding liquidity) and risk aversion

(dividend yield). This common time–varying component of value premia is present in

asset classes with potentially different investors and institutional factors.

Our analysis of the asset class–specific components of the value spread indicates the

presence of additional risk and mispricing factors in time–varying value premia. For

risk, we find that correlation between risk proxies, such as leverage and uncertainty, and

asset class–specific value contributes to the predictability of value returns. The loadings of

specific value on these risk proxies vary across asset classes, which points to heterogeneity

in risk exposure as an important driver of asset class–specific value return predictability.

For mispricing, we show that it is the component of the asset class–specific value spread

that is orthogonal to our large set of risk proxies that contributes relatively more to the
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predictability of value returns. Limits to arbitrage may impair the ability of investors to

undo mispricing specific to different asset classes.

In Table C.XVI of the Internet Appendix, we show that common value is relatively

more important in the recent subsample post–1994, which is broadly consistent with these

interpretations. Common value is strongly associated with proxies for the risk of financial

intermediaries and financial intermediation has become progressively more important over

time. Moreover, if limits to arbitrage partially drive the asset class–specific components of

value return predictability, one would expect these components to become less important

over time.

6. Conclusion

Value premia are strongly time–varying and comove across asset classes. We show that

returns to value strategies in U.S. individual equities, industries, commodities, currencies,

global government bonds, and global stock indexes are predictable in the time series using

the value spread. This predictability is statistically significant and economically large.

Our coefficient estimates suggest that expected value returns vary by at least as much as

their unconditional level. To understand the drivers of this time variation, we decompose

the value spread into a common component, defined as the first principal component

of value spreads, and asset class–specific components. While the common component

captures about half of the total variation in value spreads, it captures more –– about

two–thirds –– of the total variation in expected value returns across asset classes. The

dividend yield, intermediary leverage, and an illiquidity premium capture the bulk of

the time variation in common value. Furthermore, common value return predictability is

persistent and indicates that expected value returns are countercyclical. Thus, we argue

that the main source of common variation in value premia is compensation for risk. On

the contrary, both risk and mispricing contribute to the asset class–specific components

of value return predictability.
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These findings are new to the literature and are only detected in a joint examination

of different asset classes. Our results confirm the basic intuition that risk premia comove

strongly across asset classes, for which empirical evidence to date is scarce.
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Figure 1: The Value Spread in Different Asset Classes
This figure presents the time series of standardized value spreads (in blue) for the following seven value strategies: (i) individual equities:
book-to-market excluding financials, (ii) individual equities: industry adjusted book-to-market, (iii) US industries, (iv) commodities, (v)
currencies, (vi) global government bonds, and (vii) global stock indexes. In each panel, we also present the time series of common value
(defined as the first principal component of value spreads). The shaded areas represent NBER recessions.
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Figure 2: Semi-Annual Future Value Returns on the Value Spread at Time t
This figure presents the coefficient estimates (± two standard errors) from pooled predictive regressions of non-overlapping semi-
annual value returns on the value spread: Rc,t+h1∶t+h2 = ah1,h2 + bh1,h2 VSxc,t + ec,t+h1∶t+h2 . The semi-annual value returns range from
six months (h1 = 1, h2 = 6) to five years (h1 = 55, h2 = 60) after the value spread is observed in month t. We include in the pool
of value strategies the High-minus-Low value return in (i) individual equities: book-to-market excluding financials, (ii) individual
equities: industry adjusted book-to-market, (iii) US industries, (iv) commodities, (v) currencies, (vi) global government bonds, and
(vii) global stock indexes. The value spread is standardized.
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Table I: Correlations and Factor Structure of Value Spreads
Panel A of this table presents the correlation matrix of the High-minus-Low value spread in
different asset classes (p-value in parentheses), with first-order autocorrelations on the diagonal.
We consider two measures of value for individual equities: book-to-market excluding financial
firms (BMExFin) and industry-adjusted book-to-market (BMIndAdj). For seventeen industries,
the value measure is the market cap-weighted book-to-market ratio. In all three cases, the data
covers the period from 1972 to 2017. Market cap in the denominator of the book-to-market ratio
is updated monthly and we use only the largest stocks that cumulatively account for 90 percent
of the total market cap in CRSP. For commodities, the sample ranges from 1972 to 2017 and
we measure value as the negative of the five-year spot return (−5-year return). For currencies,
the sample ranges from 1976 to 2017 and we measure value as the inflation-adjusted negative
five-year spot return (Inf. adj. return). For global government bonds, the sample ranges from
1991 to 2017 and we measure value as the negative of the five-year return of a one-month futures
on a 10-year global government bond (−5-year return). For global stock indexes, the sample
ranges from 1994 to 2017 and we measure value using the MSCI Book-to-Price ratio (MSCIBP ).
Panel B presents the loadings of the first three principal components of the seven value spreads
and the fraction of total variance explained by each component, which are extracted using the
approach of Stock and Watson (2002).

Panel A: (Auto-) Correlations

Asset Class BMExFin BMIndAdj US Industries Commodities Currencies Bonds Equity Indexes

BMExFin 0.97 0.95 0.86 0.34 0.04 –0.13 0.20
(0.00) (0.00) (0.00) (0.00) (0.38) (0.02) (0.00)

BMIndAdj 0.97 0.80 0.39 0.00 –0.17 0.40
(0.00) (0.00) (0.00) (0.96) (0.00) (0.00)

US Industries 0.98 0.18 –0.01 –0.08 0.59
(0.00) (0.00) (0.86) (0.13) (0.00)

Commodities 0.95 –0.12 –0.08 –0.09
(0.00) (0.01) (0.17) (0.11)

Currencies 0.95 0.01 –0.10
(0.00) (0.83) (0.10)

Bonds 0.95 –0.33
(0.00) (0.00)

Equity Indexes 0.97
(0.00)

Panel B: Principal Components

Loadings BMExFin BMIndAdj Industries Commodities Currencies Bonds Equity Indexes Var. Exp.

PC1 1.34 1.34 1.29 0.59 0.07 0.16 1.17 51%
PC2 –0.22 –0.09 –0.29 0.78 –1.66 –1.77 0.60 26%
PC3 0.03 0.14 –0.64 2.28 0.94 –0.01 –0.70 12%
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Table II: Time Series Predictive Regressions of Value Returns on the Value Spread
This table presents the results from predictive regressions of monthly value returns on the value spread: Rc,t+1∶t+h = ah + bhVSc,t + εt+1∶t+h, in all asset
classes c. Value is measured in each asset class as explained in Table I. Value returns are calculated from two portfolio strategies: High-minus-Low (H −L)
or rank-weighted (Rank). For individual equities, we sort stocks in ten value-weighted deciles. For the remaining asset classes, we sort securities in two
equal-weighted portfolios, split at the median of value measures in that asset class. Panel A reports unconditional performance statistics for monthly
value returns in each asset class. Panel B presents the regression results for overlapping holding period returns of h = 1,12,24 months. For the sake of
comparison across asset classes, value spreads, VSc,t, are standardized to have mean equal to zero and variance equal to one; and, value returns are scaled
to have an annual standard deviation of 15%. tnw and thd indicate t-statistics calculated using Newey and West (1987) and Hodrick (1992) standard
errors, respectively.

Panel A: Unconditional Performance (Monthly Returns)

H −L Rank

Asset Class Value Measure Avg. ret. t Sharpe Avg. ret. t Sharpe

Ind. Equities
BMExFin 0.15 0.83 0.04 0.21 1.11 0.05
BMIndAdj 0.32 1.73 0.07 0.49 2.65 0.11

Industries BM 0.04 0.19 0.01 0.05 0.25 0.01
Commodities −5-year return 0.30 1.60 0.07 0.27 1.48 0.06
Currencies Inf. adj. return 0.41 2.13 0.09 0.46 2.38 0.11
Gov’t Bonds −5-year return –0.04 –0.16 –0.01 –0.05 –0.20 –0.01
Stock Indexes MSCIBP 0.22 0.87 0.05 0.32 1.27 0.08

Panel B: Predictive Regressions of Value Returns on the Value Spread

H −L Rank

h a b tnwa tnwb thda thdb R2 a b tnwa tnwb thda thdb R2

Ind. Equities BMExFin 1 0.15 0.48 0.80 2.35 0.84 2.20 1.03 0.21 0.35 1.06 1.53 1.11 1.52 0.47
12 2.01 6.97 0.96 3.89 0.92 3.24 13.94 3.01 5.54 1.30 2.30 1.38 2.45 7.96
24 4.49 16.96 1.09 4.88 1.04 4.24 30.86 7.19 15.62 1.53 2.99 1.65 3.66 22.81
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Continued

H −L Rank

h a b tnwa tnwb thda thdb R2 a b tnwa tnwb thda thdb R2

Ind. Equities BMIndAdj 1 0.32 0.65 1.65 2.76 1.73 2.75 2.09 0.49 0.54 2.52 2.02 2.65 2.04 1.40
12 4.59 9.72 2.22 4.62 2.10 4.17 26.24 7.28 8.79 2.87 2.91 3.33 3.59 15.56
24 9.98 22.46 2.24 4.21 2.31 5.31 39.95 16.94 22.35 3.22 3.36 3.89 4.93 31.86

US Industries BM 1 0.04 0.20 0.19 1.07 0.19 1.00 0.03 0.05 0.18 0.24 0.87 0.25 0.83 –0.02
12 0.29 4.34 0.15 2.58 0.13 2.09 6.44 0.41 3.67 0.18 1.78 0.19 1.65 3.63
24 –0.10 13.17 –0.02 3.08 –0.02 3.39 16.86 0.02 11.73 0.00 2.06 0.00 2.86 11.09

Commodities −5-year return 1 0.30 0.17 1.60 0.83 1.61 0.85 –0.02 0.27 0.11 1.47 0.52 1.49 0.54 –0.11
12 3.10 5.08 1.55 2.62 1.42 2.28 8.65 2.72 5.35 1.27 2.56 1.24 2.47 8.78
24 7.56 6.86 2.07 2.67 1.81 1.94 8.91 6.34 9.78 1.59 2.64 1.54 2.85 15.26

Currencies Inf. adj. return 1 0.41 0.22 2.08 1.10 2.13 1.15 0.07 0.46 0.25 2.31 1.15 2.39 1.19 0.14
12 6.15 6.07 2.70 2.99 2.67 3.11 11.40 6.37 6.12 2.88 3.13 2.77 3.01 11.94
24 14.80 15.28 3.36 4.35 3.25 4.36 27.32 15.02 12.99 3.69 3.94 3.31 3.74 23.40

Gov’t Bonds −5-year return 1 –0.04 0.57 –0.16 1.70 –0.16 1.80 1.42 –0.05 0.60 –0.21 1.97 –0.20 1.96 1.59
12 –0.96 7.00 –0.44 4.42 –0.34 2.36 18.76 –0.55 6.37 –0.28 3.99 –0.19 2.14 18.29
24 –1.74 15.60 –0.39 5.51 –0.33 2.80 33.92 –0.75 12.32 –0.18 6.44 –0.14 2.22 26.81

Stock Indexes MSCIBP 1 0.22 0.44 0.90 1.68 0.88 1.57 0.67 0.32 0.36 1.25 1.28 1.29 1.22 0.33
12 1.54 5.39 0.47 1.76 0.53 1.91 7.68 3.58 5.76 1.16 1.79 1.22 1.92 9.12
24 1.13 7.79 0.16 1.50 0.20 1.63 5.21 6.11 8.70 1.02 1.69 1.06 1.75 9.10
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Table III: Predicting Value Returns with the Value Spread: Pooled Tests
This table reports results from joint tests that pool the value strategies across asset classes. Panel A
reports regression results for the pooled predictive regression, Rc,t+1∶t+h = ah + bhVSc,t + εc,t+1∶t+h. Value
is measured in each asset class c as explained in Table I. For the sake of comparison across asset classes,
value spreads, VSc,t, are standardized to have mean equal to zero and variance equal to one, whereas
value returns are standardized to have a standard deviation of 15% annually. Panel B reports results
of a time series regression of the cross-sectional average value return (over the seven strategies) on the
cross-sectional average value spread: Rt+1∶t+h = ah + bhVSt + εt+1∶t+h. Panels C and D report results for
the same two specifications, but exclude the two value strategies in individual equities. We consider
h = 1,3,6,12,24,48 months and two portfolio weighting schemes: a High-minus-Low spreading portfolio
(H − L) and a rank-weighted portfolio (Rank). The t-statistics are Hodrick (1992) with h lags for
the average-on-average time series regression and Driscoll and Kraay (1998) with h lags for the pooled
regression. The sample period is 1972 to 2017, but some alternative asset classes enter the sample only
after 1972.

H −L Rank

h a b ta tb R2 a b ta tb R2

Panel A: Pooled Predictive Regression

1 0.21 0.38 2.15 3.39 0.75 0.26 0.32 2.51 2.69 0.56
3 0.61 1.23 2.32 4.86 2.47 0.78 1.07 2.63 3.55 1.77
6 1.26 2.73 2.55 5.66 5.60 1.61 2.44 2.72 3.99 4.10

12 2.64 6.41 2.86 6.16 12.74 3.45 5.93 2.90 4.50 9.70
24 5.84 14.40 2.90 5.63 22.06 7.82 13.83 3.17 4.27 18.81
48 15.23 31.76 2.86 6.22 26.20 19.54 27.69 3.38 5.52 21.36

Panel B: Average Value Return on Average Value Spread

1 0.25 0.35 2.48 2.16 2.04 0.29 0.30 2.80 1.90 1.29
3 0.73 1.14 2.43 2.39 6.47 0.87 0.95 2.78 2.06 3.88
6 1.53 2.37 2.54 2.68 14.27 1.83 2.01 2.90 2.33 7.87

12 3.30 5.30 2.74 3.51 30.06 3.96 4.66 3.16 3.02 17.00
24 7.75 12.42 3.27 4.98 48.53 9.32 11.91 3.76 4.43 35.11
48 20.57 27.88 4.61 7.08 53.25 23.81 24.19 5.04 5.45 43.74

Panel C: Excluding Value in Individual Equities (Pooled)

1 0.20 0.28 2.13 2.80 0.43 0.22 0.26 2.29 2.58 0.37
12 2.31 5.44 2.53 5.88 9.64 2.61 5.31 2.54 5.30 8.76
24 5.15 11.74 2.81 6.09 16.05 5.68 11.23 2.81 5.10 14.98

Panel D: Excluding Value in Individual Equities (Average-on-Average)

1 0.22 0.24 2.19 1.91 0.87 0.23 0.23 2.28 1.92 0.70
12 2.80 4.03 2.33 3.31 21.61 2.87 4.02 2.33 3.43 16.25
24 6.99 8.38 3.01 4.17 36.43 6.82 8.28 2.93 4.06 28.87

46



Table IV: Does the CAPM Explain Time Variation in Value Returns?
This table reports the results of pooled predictive regressions as in Table III, but now we control for exposure to a market benchmark. We consider
an unconditional specification: Rc,t+1 = a + bVSc,t + β0,cRMKT,c,t+1 + εc,t+1 as well as a conditional alternative: Rc,t+1 = a + bVSc,t + β0,cRMKT,c,t+1 +
β1,cRMKT,c,t+1 ⋅VSc,t+εc,t+1, where VSc,t is the value spread in asset class c. β0,c captures the unconditional market exposure and β0,c+β1,cV Sc,t captures
the conditional market exposure of each value strategy. The market benchmark is common across asset classes in Panel A: the CRSP value-weighted stock
market portfolio. The market benchmark is asset class-specific in Panel B. Value returns are calculated from two portfolio strategies: High-minus-Low
(H −L) or rank-weighted (Rank). t-statistics are Driscoll and Kraay (1998) with one lag. The full sample period is 1972 to 2017.

a b β0,ExFin. β1,ExFin. β0,IndAdj. β1,IndAdj. β0,Inds. β1,Inds. β0,Com. β1,Com. β0,Cur. β1,Cur. β0,Bonds β1,Bonds β0,EqInd. β1,EqInd. R2

Panel A: Common Market Benchmark: CRSP Market Portfolio

High-minus-Low (H −L)

Unconditional
0.22 0.38 –0.20 –0.03 –0.13 0.03 0.03 0.11 0.17 2.20

(2.30) (3.43) (–3.33) (–0.51) (–2.45) ( 0.62) (0.38) (1.94) (2.54)

Conditional
0.22 0.34 –0.23 0.06 –0.06 0.07 –0.11 –0.05 0.03 –0.03 0.02 0.12 0.13 0.04 0.17 0.04 2.82

(2.27) (3.35) (–3.94) (0.95) (–1.18) (0.96) (–2.21) (–1.22) (0.71) (–0.72) (0.38) (1.85) (1.72) (0.34) (2.42) (0.53)

Rank-Weighted (Rank)

Unconditional
0.28 0.32 –0.26 –0.03 –0.14 0.05 0.00 0.08 0.22 2.72

(2.71) (2.74) (–4.25) (–0.52) (–2.75) (1.07) (0.01) (1.38) (3.47)

Conditional
0.27 0.30 –0.28 0.03 –0.06 0.06 –0.13 –0.03 0.06 –0.07 0.00 0.12 0.10 0.05 0.22 0.02 3.23

(2.65) (2.68) (–4.86) (0.40) (–1.05) (0.79) (–2.75) (–0.56) (1.31) (–1.72) (0.03) (1.76) (1.38) (0.55) (3.46) (0.25)

Panel B: Asset Class-Specific Market Benchmark

High-minus-Low (H −L)

Unconditional
0.30 0.37 –0.20 –0.04 –0.14 –0.20 –0.24 –0.95 0.33 4.11

(3.11) (3.48) (–3.38) (–0.68) (–2.68) (–3.23) (–1.83) (–3.37) (4.53)

Conditional
0.29 0.34 –0.22 0.05 –0.07 0.06 –0.12 –0.07 –0.14 –0.12 –0.24 0.08 –0.96 0.45 0.32 0.09 4.94

(3.09) (3.47) (–3.95) (0.70) (–1.26) (0.76) (–2.37) (–1.55) (–2.06) (–2.12) (–1.88) (0.57) (–3.56) (1.85) (4.47) (1.25)

Rank-Weighted (Rank)

Unconditional
0.35 0.32 –0.25 –0.02 –0.15 –0.24 –0.33 –0.65 0.39 4.96

(3.40) (2.79) (–3.88) (–0.27) (–2.94) (–3.76) (–2.57) (–2.40) (5.95)

Conditional
0.34 0.30 –0.24 0.00 –0.03 0.03 –0.14 –0.05 –0.19 –0.13 –0.33 0.10 –0.68 0.66 0.38 0.06 5.77

(3.39) (2.84) (–4.19) (0.00) (–0.54) (0.40) (–2.88) (–0.85) (–2.63) (–2.82) (–2.65) (0.65) (–2.62) (2.63) (6.03) (0.78)
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Table V: Value Timing in Individual Equities
This table reports unconditional performance statistics for the monthly returns of a strategy

that times value using the signal: V St,His = ∑11
s=0 V St−s/12−∑t−1

s=12 V St−s/(t−12)
σ(V S1∶t−12) . V St,His captures

deviations of last year’s value spread from the historical average value spread and is observable
at time t. We present results for a unit weight strategy that passively captures the unconditional
value premium, a linear timing strategy that invests V St,His dollars in both the long and short
position of the value strategy, and, finally, a combined strategy that invests 1 + V St,His. We
consider 2×2 variations of each value strategy: using either the book-to-market signal excluding
financials or the industry-adjusted book-to-market ratio and either the High-minus-Low decile
portfolio or the rank-weighted portfolio. To make these different value strategies comparable,
we scale each value return series ex ante to have an annualized standard deviation of 15%. The
sample period is 1972 to 2017.

Avg. ret. t Sharpe αCAPM tCAPMα αFF3 tFF3
α

Panel A: High-minus-Low (H −L)

Ind. Equities
(BMEx.fin.)

Unit Weight –0.02 –0.08 0.00 0.17 0.89 –0.39 –2.60
Linear Timing 0.60 2.77 0.12 0.53 2.42 0.59 2.73

Combined 0.58 2.34 0.10 0.71 2.79 0.20 0.91

Ind. Equities
(BMInd.adj.)

Unit Weight 0.20 1.03 0.04 0.24 1.20 –0.18 –1.09
Linear Timing 0.60 2.66 0.11 0.55 2.39 0.48 2.12

Combined 0.80 3.04 0.13 0.79 2.93 0.30 1.27

Panel B: Rank-Weighted (Rank)

Ind. Equities
(BMEx.fin.)

Unit Weight 0.04 0.19 0.01 0.28 1.47 –0.32 –2.35
Linear Timing 0.52 2.35 0.10 0.53 2.33 0.50 2.23

Combined 0.56 2.03 0.09 0.81 2.94 0.18 0.74

Ind. Equities
(BMInd.adj.)

Unit Weight 0.31 1.61 0.07 0.34 1.70 –0.17 –1.10
Linear Timing 0.56 2.29 0.10 0.58 2.31 0.47 1.94

Combined 0.87 2.90 0.12 0.92 2.97 0.31 1.14
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Table VI: Out-of-Sample Pooled Predictive Regression
This table reports results for pooled predictive regressions of returns of the seven value strategies on a dummy variable indicating whether
the current value spread in an asset class is historically high or low. We run Rc,t+1∶t+h,15% = a + bIV Sc,t,His>0 + ec,t+1∶t+h, where IV Sc,t,His>0 is
an indicator function that equals one when the historically standardized value spread in asset class c (see Equation (5)) is positive, and zero
otherwise. We consider returns of both High-minus-Low and rank-weighted value strategies. To make the value strategies comparable across
asset classes, we scale each return series to have an ex ante annualized standard deviation of 15%. We perform this standardization in each
month using only backward-looking information as detailed in Table V. t-statistics in the pooled regressions are calculated using Driscoll
and Kraay (1998) standard errors with h lags. Panel B reports unconditional performance statistics for a value strategy that invests only
in asset class c when V aluec,t,His > 0, which average return is equal to the sum of the estimated coefficients in the pooled regression at the
monthly horizon (a + b for h = 1). Conversely, the average return of a strategy that only invests in the value strategy of asset class c when
V aluec,t,His ≤ 0 is equal to the estimated intercept (a). The full sample period is 1972 to 2017, but some alternative asset classes enter the
sample only after 1972.

Panel A: Pooled Regression on High Value Spread Dummy

H −L Rank

h a b ta tb R2 a b ta tb R2

1 –0.09 0.60 –0.70 2.91 0.41 –0.02 0.57 –0.12 2.53 0.37
3 –0.28 1.83 –0.83 3.36 1.15 –0.01 1.61 –0.03 2.55 0.87
6 –0.68 4.01 –1.08 3.77 2.56 0.03 3.23 0.03 2.48 1.57
12 –1.36 8.27 –1.03 3.64 4.76 –0.07 7.27 –0.04 2.67 3.34
24 –4.49 21.12 –1.42 3.56 9.82 –0.99 16.98 –0.26 2.64 6.03
48 –16.53 63.35 –1.84 3.99 17.26 –6.28 46.94 –0.64 3.43 10.07

Panel B: Implied Performance

H −L Rank

Avg. ret. St. dev. t Sharpe Avg. ret. St. dev. t Sharpe

Invest when V Sc,t,His > 0 0.52 4.52 3.70 0.11 0.55 4.61 3.90 0.12
Invest when V Sc,t,His ≤ 0 –0.09 4.43 –0.86 –0.02 –0.02 4.35 –0.16 –0.00
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Table VII: Rotating Value Strategies Across Asset Classes
This table reports unconditional performance statistics for monthly returns of strategies that rotate value across asset classes. These strategies overweight
(underweight) those asset classes where the value spread is high (low) relative to the other asset classes. As a benchmark, we consider an unconditional
value strategy that invests, in each sample month t, 1/Nt in each of the Nt available value strategies (out of the maximum of seven). The first rotation
strategy takes a position in each asset class c in month t equal to wrot,1

c,t = qt(V Sc,t,His −Mean(V Sc,t,His)), where the scalar qt ensures that the total

weight in the long and short position equal one. The second strategy, with weights denoted wrot,2
c,t , invests an equal weight in each asset class with

V Sc,t,His above (below) the mean value spread across asset classes. We calculate performance measures for these two long-short rotation strategies
(denoted RotationLong−Short) as well as for a combination with the unconditional strategy (denoted CombinedLong−Short). The reported α is relative to
an unconditional market strategy, which equally-weights the market portfolio in each asset class (defined as in Table IV). The value strategy returns are
scaled in each asset class to have a standard deviation of 15% using only backward-looking information. Panel B reports the fraction of the long and short
leg of the two rotation strategies that is invested in each asset class (on average over time). Panel C decomposes the average return of the long-short
rotation strategy across asset classes. Because we lose the first 120 months in the asset classes with the longest history as burn-in period for the value
signal and we require at least four asset classes with available data, the full out-of-sample period is 1982 to 2017.

Panel A: Performance of Value Rotation Strategies

Linear Weight (wrot,1c,t ) Equal weight (wrot,2c,t )

Avg. ret. St. dev. t Sharpe α tα Avg. ret. Std. dev. t Sharpe α tα

High-minus-Low (H −L)

Unconditional 0.08 2.20 0.74 0.04 0.09 0.81 0.08 2.20 0.74 0.04 0.09 0.81
RotationLong−Short 0.68 4.51 3.12 0.15 0.56 2.49 0.63 3.96 3.30 0.16 0.55 2.83
Combined 0.76 4.93 3.19 0.15 0.64 2.64 0.71 4.44 3.31 0.16 0.64 2.92

Rank-Weighted (Rank)

Unconditional 0.15 2.32 1.37 0.07 0.16 1.35 0.15 2.32 1.37 0.07 0.16 1.35
RotationLong−Short 0.60 4.58 2.71 0.13 0.49 2.15 0.53 4.05 2.71 0.13 0.49 2.42
Combined 0.75 5.09 3.07 0.15 0.64 2.55 0.68 4.67 3.04 0.15 0.64 2.78

Panel B: % Allocation to each Asset Class in RotationLong−Short

ExFin. IndAdj. Inds. Com. Cur. Bonds EqInd. Sum ExFin. IndAdj. Inds. Com. Cur. Bonds EqInd. Sum

H −LLong 0.03 0.05 0.05 0.22 0.31 0.05 0.28 1.00 0.07 0.07 0.09 0.22 0.30 0.08 0.18 1.00
RankLong 0.06 0.04 0.03 0.21 0.32 0.04 0.29 1.00 0.11 0.05 0.07 0.22 0.29 0.07 0.19 1.00

H −LShort 0.20 0.20 0.23 0.12 0.14 0.09 0.03 1.00 0.20 0.20 0.21 0.12 0.11 0.11 0.04 1.00
RankShort 0.16 0.19 0.27 0.12 0.15 0.09 0.02 1.00 0.17 0.22 0.22 0.12 0.11 0.12 0.03 1.00

Panel C: Contribution to Avg. Ret. in RotationLong−Short

ExFin. IndAdj. Inds. Com. Cur. Bonds EqInd. Sum ExFin. IndAdj. Inds. Com. Cur. Bonds EqInd. Sum

H −L 0.11 0.16 0.01 0.00 0.27 0.02 0.11 0.68 0.14 0.13 0.03 0.03 0.23 0.00 0.08 0.63
Rank 0.06 0.11 0.04 0.02 0.19 0.04 0.14 0.60 0.09 0.07 0.03 0.00 0.24 –0.01 0.11 0.53
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Table VIII: Common and Asset Class-Specific Components of the Value Spread
This table reports results for pooled predictive regressions of High-minus-Low value returns on
components of the value spread. Panel A reports the results of a pooled predictive regression on
the common component of the value spread (the first principal component of the value spread
in seven asset classes): Rc,t+1∶t+h = ah+bh,ComVS Com

t +εt+h. Panel B reports results for the asset
class-specific components, which are defined as the residual in a regression of the value spread
in asset class c on VS Com

t : Rc,t+1∶t+h = ah + bh,SpecVS Spec
c,t +εt+h. Panel C reports the results of a

pooled regression that includes the two components simultaneously. t-statistics are calculated
using Driscoll and Kraay (1998) standard errors with h lags. The sample is 1972 to 2017, but
some alternative asset classes enter the sample only after 1972.

h a bCom bSpec ta tbCom
tbSpec

R2

Panel A: Common Value

1 0.25 0.39 2.37 2.02 0.35
3 0.73 1.28 2.63 2.71 1.18
6 1.50 2.78 2.87 3.08 2.61
12 3.17 6.43 3.25 4.16 5.79
24 7.13 16.17 3.53 5.39 12.84
48 17.43 38.58 3.85 8.83 18.45

Panel B: Specific Value

1 0.21 0.28 2.13 2.38 0.21
3 0.61 0.96 2.26 3.40 0.73
6 1.26 2.29 2.38 4.50 1.92
12 2.64 5.67 2.41 5.49 4.84
24 5.84 10.75 2.07 5.46 5.94
48 15.23 21.20 1.80 3.29 5.62

Panel C: Common and Specific Value

1 0.25 0.39 0.28 2.38 2.02 2.37 0.56
3 0.73 1.28 0.96 2.64 2.72 3.36 1.92
6 1.50 2.78 2.29 2.91 3.10 4.49 4.53
12 3.17 6.43 5.67 3.31 4.18 5.74 10.63
24 7.13 16.17 10.75 3.52 5.25 5.97 18.78
48 17.43 38.58 21.20 3.83 8.64 3.40 24.07
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Table IX: Comovement Between Risk Proxies and the Value Spread
This table regresses components of the High-minus-Low value spread on state variables, col-
lected in the vector Zt, that are popular in the literature to proxy for time variation in risk
premia (intermediary leverage; the illiquidity premium; the dividend yield; a global recession
dummy; the default spread; real uncertainty; and, the Chicago Fed National Activity Index).
Panel A reports results from time series regressions of the common component of the value
spread on the risk proxies, VS Com

t = k0 + k′1Zt + uComt . We consider both simple regressions
on individual risk proxies (Specifications 1, 2, 4 and 6) and multiple regressions on sets of risk
proxies (Specifications 3, 5 and 7). For specifications 3 and 5, we also run the regression in
innovations, which are estimated using an AR(1)-model for both common value and the state
variables. Panel B regresses the asset class-specific components of the value spread on the full
set of risk proxies (as in Specification 7), VS Spec

c,t = k0 + k′1Zt + u Spect . t-statistics are calculated
using Newey and West (1987) standard errors with 12 lags. The full sample period is 1972 to
2017, but some alternative asset classes enter the sample only after 1972.

Intermediary
Leverage

Illiquidity
Premium

Dividend
Yield

Global
Recession

Default
Spread

Real
Uncertainty

Chicago Fed
National

Activity Index
R2

Panel A: Common Value

1 0.52 53.02
(6.81)

2 0.45 40.09
(9.56)

3 0.39 0.27 64.39
(6.70) (3.83)

4 0.59 68.70
(10.00)

5 0.16 0.16 0.38 73.80
(2.94) (2.16) (5.37)

6 0.46 9.88
(2.57)

7 0.02 0.09 0.43 0.21 0.07 0.08 0.01 78.73
(0.30) (1.27) (5.91) (2.85) (1.07) (1.11) (0.26)

3 (in AR(1)-innovations) 0.61 0.12 41.21
(6.87) (2.96)

5 (in AR(1)-innovations) 0.22 0.04 0.58 57.32
(3.23) (1.30) (6.58)

Panel B: Asset Class-Specific Value

Ind. Equities (BMEx.F in.) –0.11 0.00 0.03 –0.04 0.08 0.08 –0.02 8.64
(–1.27) (0.07) (0.44) (–0.58) (1.46) (1.50) (–0.99)

Ind. Equities (BMInd.Adj.) 0.10 –0.08 –0.12 –0.14 0.14 0.04 0.02 40.73
(1.60) (–2.59) (–2.15) (–2.89) (2.76) (0.78) (0.91)

Industries –0.30 0.09 0.29 0.03 –0.01 –0.12 –0.03 47.63
(–4.98) ( 2.64) (4.79) (0.35) (–0.23) (–2.63) (–1.33)

Commodities 0.15 –0.10 –0.18 –0.16 –0.42 0.52 0.15 19.29
(0.78) (–1.21) (–0.99) (–0.88) (–2.85) (4.19) (2.05)

Currencies 0.08 0.21 0.08 –0.35 0.15 –0.26 –0.15 12.35
(0.45) (1.21) (0.38) (–1.37) (0.92) (–1.64) (–1.54)

Government Bonds –0.25 0.11 1.57 0.06 –0.09 –0.02 –0.19 35.07
(–1.11) (0.41) (3.24) (0.28) (–0.51) (–0.10) (–2.16)

Stock Indexes 0.67 0.09 –0.43 0.22 –0.23 –0.73 –0.03 44.34
(2.42) (0.34) (–1.01) (1.22) (–1.47) (–4.50) (–0.35)
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Table X: Value Return Predictability Net of Risk Proxies
In Panel A of this table, we present the results from pooled predictive regressions of High-
minus-Low value returns on the explained and orthogonal components of common value;

Rc,t+1∶t+h = ah+bCom,Orth(VSComc,t − V̂SComc,t )+bCom,ExplV̂SComc,t +εc,t+1∶t+h. The explained compo-

nent of common value (denoted V̂SComc,t ) is pre-estimated by regressing the common component
on the full set of risk proxies used in Table IX, and saving the predicted value. The orthogonal
component of common value is the residual from this time series regression. In Panel B, we
similarly decompose the asset class-specific components of the value spread into the part ex-
plained by the risk proxies and the part that is orthogonal. t-statistics in the pooled regressions
are calculated using Driscoll and Kraay (1998) standard errors with h lags. We also present
the relative contribution to R2 from the explained and orthogonal components. The full sample
period is 1972 to 2017, but some alternative asset classes enter the sample only after 1972.

h a bCom,Orth bCom,Expl ta tCom,Orth tCom,Expl R2 R2
Com,Orth R2

Com,Expl

Panel A: Common Value

1 0.24 0.35 0.53 2.35 1.70 1.38 0.36 0.24 0.13
3 0.72 1.18 1.66 2.57 2.06 2.10 1.21 0.82 0.39
6 1.49 2.63 3.43 2.81 2.30 2.38 2.64 1.88 0.77
12 3.12 5.88 8.74 3.18 3.33 2.97 5.97 3.90 2.08
24 7.04 15.01 20.99 3.49 5.42 3.14 13.11 8.92 4.20
48 17.36 37.36 43.54 3.83 8.81 3.20 18.52 13.89 4.63

Panel B: Asset Class-Specific Value

1 0.21 0.11 0.34 2.13 0.50 2.51 0.24 0.01 0.23
3 0.61 0.63 1.08 2.26 1.14 3.29 0.76 0.08 0.68
6 1.26 1.33 2.63 2.38 1.24 4.52 2.05 0.17 1.88
12 2.64 4.52 6.09 2.41 2.22 4.62 4.91 0.82 4.09
24 5.84 12.40 10.14 2.07 5.35 3.67 5.99 2.14 3.85
48 15.23 34.98 15.80 1.81 5.50 1.64 6.55 4.30 2.24
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