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Abstract

As the world’s technology evolves, the power to implement new and more efficient

algorithms increases but so does the complexity of the problems at hand. Neuroevo-

lution algorithms fit in this context in the sense that they are able to evolve Artificial

Neural Networks (ANNs).

The recently proposed Neuroevolution algorithm called Semantic Learning Machine

(SLM) has the advantage of searching over unimodal error landscapes in any Super-

vised Learning task where the error is measured as a distance to the known targets.

The absence of local optima in the search space results in a more efficient learning

when compared to other neuroevolution algorithms. This work studies how differ-

ent approaches of dynamically using the training data affect the generalization of the

SLM algorithm. Results show that these methods can be useful in offering different

alternatives to achieve a superior generalization. These approaches are evaluated ex-

perimentally in fifteen real-world binary classification data sets. Across these fifteen

data sets, results show that the SLM is able to outperform the Multilayer Perceptron

(MLP) in 13 out of the 15 considered problems with statistical significance after pa-

rameter tuning was applied to both algorithms.

Furthermore, this work also considers how different ensemble construction methods

such as a simple averaging approach, Bagging and Boosting affect the resulting gener-

alization of the SLM and MLP algorithms. Results suggest that the stochastic nature

of the SLM offers enough diversity to the base learner in a way that a simple averaging

method can be competitive when compared to more complex techniques like Bagging

and Boosting.

Keywords: Semantic Learning Machine; Neuroevolution; Evolutionary Machine Learn-

ing; Artificial Neural Networks; Deep Learning
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Resumo

À medida que a tecnologia evolui, a possibilidade de implementar algoritmos novos

e mais eficientes aumenta, no entanto, a complexidade dos problemas com que nos

deparamos também se torna maior. Algoritmos de Neuroevolution encaixam-se neste

contexto, na medida em que são capazes de evoluir Artificial Neural Networks (ANNs).

O algoritmo de Neuroevolution recentemente proposto chamado Semantic Learning

Machine (SLM) tem a vantagem de procurar sobre landscapes de erros unimodais em

qualquer problema de Supervised Learning, onde o erro é medido como a distância aos

alvos conhecidos. A não existência de local optima no espaço de procura resulta numa

aprendizagem mais eficiente quando comparada com outros algoritmos de Neuroevo-

lution. Este trabalho estuda como métodos diferentes de uso dinâmico de dados de

treino afeta a generalização do algoritmo SLM. Os resultados mostram que estes mé-

todos são úteis a oferecer uma alternativa que atinge uma generalização competitiva.

Estes métodos são testados em quinze problemas reais de classificação binária. Nestes

quinze problemas, o algoritmo SLM mostra superioridade ao Multilayer Perceptron

(MLP) em treze deles com significância estatística depois de ser aplicado parameter
tuning em ambos os algoritmos.

Para além disso, este trabalho também considera como diferentes métodos de cons-

trução de ensembles, tal como um simples método de averaging, Bagging e Boosting

afetam os valores de generalização dos algoritmos SLM e MLP. Os resultados sugerem

que a natureza estocástica da SLM oferece diversidade suficiente aos base learners de

maneira a que o método mais simples de construção de ensembles se torne competitivo

quando comparado com técnicas mais complexas como Bagging e Boosting.

Palavras-chave: Semantic Learning Machine; Neuroevolution; Evolutionary Machine

Learning; Artificial Neural Networks; Deep Learning
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1
Introduction

As the world’s technology evolves, the power to implement new and more efficient

algorithms increases but so does the complexity of the problems at hand. Machine

Learning algorithms have proved to be a great asset in several industries, from bank-

ing to health, essentially because they mimic human behavior but since they run on

powerful machines and are capable of digesting much more information than a person,

they end up surpassing our knowledge, per se, in many situations (Wang et al., 2016).

The Artificial Neural Network (ANN) is one of the most successfully used Ma-

chine Learning algorithms which is based on how our brain works, with neurons

sending information through synapses between them. The algorithms of this nature

evolved to something called Deep Learning simply because more computation power

allowed for the usage of more layers of neurons. However, these methods require a lot

of parameters to be selected and optimized – the number of neurons, number of layers,

learning rate, among many others – so that the final result is reasonable and trust-

worthy. The Backpropagation algorithm, where the calculated error of a given Neural

Network is propagated backwards with the goal of adjusting the existing weights,

is still the most obvious option, however, it fails to provide the general topology of

neurons and synapses. This means that this is still an open question in the realm of

Machine Learning because the parameters and topology of an ANN rely heavily on the

problem the Neural Network is trying to solve.

Neuroevolution originally tried to answer this question by making use of Evolu-

tionary Algorithms (EAs) to find the best parameters for a given Neural Network. More

recently, investigation showed that it was possible to have these algorithms creating

and evolving Neural Networks as well as their parameters. The NeuroEvolution of

Augmenting Topologies (NEAT) algorithm (K. O. Stanley & Miikkulainen, 2002) is

1



CHAPTER 1. INTRODUCTION

still broadly used, however, there are other competitive options. Recently, a Neuroevo-

lution algorithm called Semantic Learning Machine (SLM) was proposed (Gonçalves,

2017; Gonçalves, Silva, & Fonseca, 2015b). The SLM has the advantage of searching

over unimodal error landscapes in any Supervised Learning task where the error is

measured as a distance to the known targets. The SLM showed superiority both in

terms of training error and generalization ability when compared to NEAT and other

well-established ML algorithms like Support Vector Machine (SVM) and Feedforward

ANNs trained with the Backpropagation algorithm (Jagusch, Gonçalves, & Castelli,

2018).

The SLM neuroevolution algorithm has enabled different branches of investigation.

Recently, the algorithm was used with Convolutional Neural Networks (CNNs) (Lapa,

Gonçalves, Rundo, & Castelli, 2019a, 2019b) where the task of discriminating between

benign and malignant prostate cancer lesions given multiparametric magnetic reso-

nance imaging was under study. This image classification problem was addressed in

the context of the PROSTATEx (Litjens, Debats, Barentsz, Karssemeijer, & Huisman,

2017) competition. The SLM was used as a background replacement for the training

of the last fully connected layers of CNNs. In this case, the outputs of the convolu-

tional layers are passed (without pre-training) to the SLM. The results are compared

to the XmasNet state-of-the-art CNN (S. Liu, Zheng, Feng, & Li, 2017), specifically

developed to address this challenge. Results suggest that the SLM is able to achieve

a higher AUROC curve value than XmasNet with a statistically significant difference.

It is important to mention that this performance is achieved without pre-training the

underlying CNN or relying on backpropagation. Furthermore, it is of relevance to em-

phasize that the Semantic Learning Machine was only run on CPU (whereas XmasNet

was trained using a GPU) and without any explicit parallelization. This adds value to

the results obtained since each network evaluation could be suitable parallelized, thus

achieving a higher speed-up.

The current work aims to continue the investigation on the SLM and how different

methods of dynamically using the training data and ensemble construction approaches

affect the resulting generalization.

This document is organized as follows: Chapter 2 intends to provide an in-depth

overview of Neuroevolution. The Semantic Learning Machine (SLM) algorithm is ex-

plained in Chapter 3. Chapter 4 describes the Experimental Methodology procedures

followed in the course of this project. Chapter 5 reports the experimental results and

finally, Chapter 6 presents the final remarks and concludes the work.

2
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2
Neuroevolution Overview

Using an Artificial Neural Network is not an easy task. One of the main challenges

when doing so may sit upon choosing an architecture or topology (here used as syn-

onyms to reflect some of the hyperparameters inherent of any ANN, such as, the num-

ber of layers, number of neurons and how these are connected between each other).

Figure 2.1 presents a simple example of a Neural Network with four input neurons, a

hidden layer with two neurons and an output neuron.

By now, ANNs have proven to be useful in a vast amount of applications, however,

specific rules to determine the best set of hyperparameters remain uncovered and

something that is still problem dependent. Thus, it is still a task that requires a lot of

effort and trial and error from the users. When trying to automate the aforementioned

problem, one may recur to (1) use different search methods based on the gradient

descent algorithm to optimize the weights and hyperparameters of the network, or

(2) use evolutionary techniques to generate networks and to optimize the topology

of the ANN. In the course of the last 30 years, neuroevolution techniques have been

successfully applied in different areas (Floreano, Dürr, & Mattiussi, 2008), and many

were the proposals to use Evolutionary Computing (EC) to optimize ANNs. In fact, it

is possible to split neuroevolution’s progress in three stages:

1. The use of EC to train an ANN;

2. The use of EC to optimize the architecture underneath an ANN;

3. The use of EC to optimize the topology of an ANN and train it;

Pioneers in the field appeared in the late 80’s: Davis, 1989 proved it was possible

to map Classifier Systems (CSs) – systems that incorporate Genetic Algorithms (GAs)

3



CHAPTER 2. NEUROEVOLUTION OVERVIEW

Input
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Hidden
layer

Output
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Output

Input 1

Input 2

Input 4

Input 3

Figure 2.1: An example of an Artificial Neural Network

as the learning mechanism – into Neural Networks and vice versa. Whitley, 1989 at-

tempted to train a Neural Network making use of Genetic Algorithms, however, at

this point, researchers would still have to decide on the ANN’s architecture, only al-

lowing the evolution to generate new weights based on the network’s performance.

This meant that the two systems would work as separate components, thus, from the

moment that it was generated, the neural network would not learn anything further

during its existence. This technique was then established as fixed-topology neuroevo-

lution in the literature (Montana & Davis, 1989). At this time, researchers thought

this could be a valid alternative to the most traditional ANN training algorithm called

backpropagation (Miller, Todd, & Hegde, 1989; Montana & Davis, 1989; Whitley &

Hanson, 1989) which, due to how gradient descent works, can easily get trapped in a

local minimum of the error function and it is not able to find a global minimum if the

error function is multimodal and/or non-differentiable (Xin Yao, 1999).

Miller et al., 1989 were able to use a genetic algorithm for evolving neural network

architectures for specific problems. Each topology of an ANN is represented as “a

connection constraint matrix mapped directly into a bit-string genotype” (Miller et al.,

1989). Modified standard genetic operators are applied upon populations of these

genotypes to generate topologies with better fitness in consecutive generations. Topol-

ogy fitness is evaluated through training the neural network and keeping track of the

4



final performance error. Miller et al., 1989’s study is different from the previous ones

in the sense that in this scenario the EC techniques are used to evolve the topology of

the network. Evolving the architecture of a network can be established as an optimiza-

tion problem where the objective is to find the global optimum in a search space where

each point represents a network architecture. This search space (also known as fitness

landscape or surface) shows some properties that make it suitable for EC techniques to

search for the most appropriate architecture to represent an ANN (Miller et al., 1989).

These properties were unveiled and discussed in Miller et al., 1989 as follows:

• The search space is infinitely large since the number of possible neurons and

connections is unbounded;

• The fitness landscape is undifferentiable because changes in the number of units

and connections must be discrete and can discontinuously affect the performance

of the network. This aspect makes it impossible for gradient-based methods to

be used;

• The mapping between the architecture of the network and its performance after

the learning phase is indirect, extremely epistatic and dependent on the very

initial conditions like the random original weights. Consequently, the surface is

complex and noisy;

• Finally, networks with similar architectures can behave differently and vice versa

(different architectures may show a similar behavior). Thus, the search space is

deceptive and multimodal.

These aspects make EC techniques suitable to address the task of automatically

finding an optimal network topology, proving to be a reliable asset and a competitive

alternative to constructive and destructive algorithms. On the one hand, a constructive

algorithm (Fahlman & Lebiere, 1990; Frean, 1990) is a hill climbing approach which

starts with an ANN with minimum number of neurons, hidden layers and connections

and adds new elements throughout the learning phase, when necessary and based

on some criteria. On the other hand, destructive algorithms (Cun, Denker, & Solla,

1990; Mozer & Smolensky, 1989; Sietsma & Dow, 1991) start their search for the

optimal topology with an ANN with the maximum number of units, hidden layers

and connections, and while learning, unnecessary elements are removed (Xin Yao,

1999). These methods may seem simpler to implement when compared with EC-based

methods, however, they are prone to get stuck in local optima architectures and are

only able to explore a small part of the possible ANN topologies. Schaffer, Caruana,

and Eshelman, 1990 illustrate how a genetic algorithm can be used to exploit the

properties of backpropagation to solve difficult tasks. Their results show that networks

evolved through a genetic algorithm perform better than a large network using the

backpropagation learning method alone. Wilson, 1990’s results demonstrated that

5



CHAPTER 2. NEUROEVOLUTION OVERVIEW

if genetic search is applied to a perceptron, it can learn more complex tasks than it

would be initially thought. Schiffmann, Joost, and Werner, 1992 started by exploring

evolution strategies which used only mutation to change the parents’ topologies in a

GA population. Such research was followed by the creation of a crossover operator

for an automatic topology optimization genetic algorithm. Their results confirmed

that allowing two parent networks with different number of neurons to mate and

generate a child network which inherits their genes outperforms the fixed topologies

and reaches classification performances close to optimal values. Along a similar line

of thought, Alba, Aldana, and Troya, 1993 accomplished a full genetic ANN design by

making use of a genetic algorithm to address the connectivity and structure definition

problems.

On the one hand, EC techniques have been shown to be used in the optimization of

neural networks’ weights assuming that their topologies are fixed and defined from the

beginning. On the other hand, EC-based methods have been applied in the evolution

of ANNs’ architectures considering that their activation functions are defined a priori

and static throughout the whole process. Some studies revealed how choosing these

activation functions is also important when measuring the performance of a neural

network (Dasgupta & Schnitger, 1992; Mani, 1990). Schoenauer and Ronald, 1997

proposed a method to evolve both topologies and activation functions, showing how

tuning the slopes of these functions for each processing unit in the NN improves

its overall performance. To achieve the same effect, White and Ligomenides, 1993

presented a less complex method where 80% of the neurons in the initial population

used the Sigmoid function whereas the remaining 20% used a Gaussian function. The

learning phase, through the evolutionary process, was used to automatically define

the most suitable combination for these percentages. Optimizing activation functions

is currently under the investigation radar also due to the popularity of deep learning.

The Rectified Linear Activation (ReLU) function (Jarrett, Kavukcuoglu, Ranzato, and

LeCun, 2009) has been widely used to simplify the training of deep neural networks

since it overcomes issues like weight initialization and vanishing gradient. Manessi

and Rozza, 2018 summarized the different variations of ReLU proposed throughout

the years:

• Leaky ReLU (LReLU) (Maas, 2013), which covers the dead neurons issue in ReLU

networks;

• Threshold ReLU (Konda, Memisevic, and Krueger, 2014), which integrates a

solution for problems like the large negative bias in autoencoders;

• Parametric ReLU (PReLU) (He, Zhang, Ren, and Sun, 2015), which uses the

leakage parameter of LReLU as a per-filter learnable weight.

The authors introduced two methods that would automatically learn several com-

binations with different base activation functions, such as the identity function, ReLU

6



and the hyperbolic tangent. They thoroughly compared their two approaches to com-

mon architectures in standard data sets, showing relevant improvements in the gen-

eral performance of the NN. While these studies introduced new and useful activation

functions, other works had proposed advanced strategies to learn the best activation

function for the particular topology at hand.

Agostinelli, Hoffman, Sadowski, and Baldi, 2014 came up with a new design for a

piecewise linear activation function which is learned independently for each neuron

using gradient descent. Using this adaptive activation function, the authors were

able to improve deep neural network architectures composed of static ReLU units

and achieve state-of-the-art performances on CIFAR-10, CIFAR-100 – data sets which

contain several images in 10 and 100 classes, respectively –, as well as on a benchmark

involving Higgs boson decay modes. These studies showed how evolving activation

functions is, nowadays, seen as something so important as evolving the topologies of

the neural networks (Manessi & Rozza, 2018).

Still during the 90’s, Angeline, Saunders, and Pollack, 1994; Branke, 1995; Gruau,

Whitley, and Pyeatt, 1996 and Xin Yao, 1999 showed that it was possible to go the next

step and evolve network topologies as well as their weights in what was called Topology

and Weight Evolving Artificial Neural Networks (TWEANNs). In particular, Angeline

et al., 1994 argued that crossover was not well-suited for evolving the network topology.

Instead, they proposed a method where offspring are solely created by mutation. Until

this point, connection weights had to be learned in a subsequent step – this method

reduces the complexity of evolving both the architecture and the weights, however,

there are two main issues in doing so as shown by Yao and Liu, 1997:

1. Different and random initial weights can generate different training results, that

is, the same genotype can lead to different fitness results due to the random

weight initialization;

2. Different training algorithms may lead to different training values even when

using the same set of initial weights. This is especially true for multimodal

error functions. The idea behind the method that optimizes, at the same time,

weights and architectures for the neural networks is that each individual in a

population is a fully specified neural network with complete weight information.

Consequently, there is a one-to-one mapping between the genotype and the

phenotype, which allows the search process to overcome the already mentioned

issues regarding fitness evaluation.

Srinivas and Patnaik, 1991 developed an approach to reduce the search space of a

genetic algorithm to improve its performance in finding the optimal set of connection

weights. The authors used the equivalent solutions in the search space, and from each

set of equivalent solutions, they took one solution, called the base solution, to feature

7



CHAPTER 2. NEUROEVOLUTION OVERVIEW

in the reduce search space. They added an extra step to the algorithm where the solu-

tions are mapped to their correspondent base solutions.

Bornholdt and Graudenz, 1992 presented a GA-based method used to evolve a network

that represented a model for a brain with sensory and motor neurons. Oliker, Furst,

and Maimon, 1993 showed that it was possible to have a distributed genetic algorithm

to define and train neural networks. The approach establishes the neural network’s

topology and its weights for a specific task where the network is composed of binary

linear threshold units.

White and Ligomenides, 1993 developed a novel algorithm which uses a genetic algo-

rithm to define the topology and weights of a neural network. If the genetic algorithm

fails to find a network as a solution, the best network to be developed until that mo-

ment is used to try to find a solution through backpropagation. This way, each algo-

rithm is used to exploit its best advantage: the genetic algorithm, through its global

search, defines the architecture and suboptimal weights to solve the task and back-

propagation uses its local search to pursue the best neighbor of the architecture and

weight structure found by the GA. There were other EC methods used to approach this

optimization problem. Koza and Rice, 1991 showed that it was possible to use Genetic

Programming to find both the weights and the topology of a neural network, including

the number of layers, number of neurons per layer and how they are connected. Jian

and Yugeng, 1997 proposed a novel approach to define the structure and weights of

ANNs based on Evolutionary Programming. The Particle Swarm Optimization (PSO)

algorithm was also considered to evolve both weights and topologies of neural net-

works (Chunkai Zhang, Huihe Shao, & Yu Li, 2000; Garro & Vázquez, 2015; Kiranyaz,

Ince, Yildirim, & Gabbouj, 2009). In the same line of thought, Kiranyaz et al., 2009

proposed an extension of the PSO algorithm to a Multi-Dimensional Particle Swarm

Optimization (MD-PSO) algorithm in a way that it was able to automatically design

the ANNs while evolving the optimal network configuration (connections, weights

and biases) within the architecture space. Garro and Vázquez, 2015 explored the si-

multaneous evolution of the three main components of a neural network: the set of

synaptic weights, the connections, and the activation function of each neuron. The

key value of this contribution was the assessment of eight different fitness functions

used to verify the quality of each solution and find the best network design. Chunkai

Zhang et al., 2000 introduced a new evolutionary system to build Feed-Forward ANNs

which is restricted to PSO where both elements of the neural network – architecture

and weights – are adaptively adjusted according to the quality of the network.

At the beginning of the twenty-first century, K. O. Stanley and Miikkulainen, 2002 con-

verged their ideas to some of the limitations they saw in topology representations into

a novel neuroevolution algorithm called NeuroEvolution of Augmenting Topologies

(NEAT). In particular, one of the main challenges they found concerned something

called Competing Conventions which essentially meant that multiple different geno-

types decode into the same phenotype which could have a serious negative impact

8



on the algorithm. In that sense, NEAT’s ability to evolve increasingly complex ANNs,

whilst setting aside traditional TWEANNs’ restrictions, allowed it to become the most

popular and broadly used approach in the neuroevolution field. More recently, NEAT

has been evolved to CoDeepNEAT (Miikkulainen et al., 2017) which is able to cover

more complex fields such as vision, speech and language.

For further details about this investigation field, the reader is referred to (Ding, Li, Su,

Yu, & Jin, 2013; K. Stanley, Clune, Lehman, & Miikkulainen, 2019; Xin Yao, 1999).
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3
Semantic Learning Machine

3.1 Algorithm

The Semantic Learning Machine (Gonçalves, 2017; Gonçalves et al., 2015b) relies on

the Geometric Semantic Genetic Programming (GSGP)’s mutation operator defined

by Moraglio, Krawiec, and Johnson, 2012 (Definition 3.1.1). In this work, Moraglio et

al., 2012 proposed a new approach - GSGP - where traditional crossover and mutation

are replaced by geometric semantic operators. These new operators run directly in

the space of the underlying semantics (outputs) of the individuals which induces a

unimodal error surface for any supervised learning problem (Gonçalves et al., 2015b).

This means that the SLM shares the same semantic landscape properties as GSGP

which contains no local optima.

Definition 3.1.1. Geometric Semantic Mutation (GSM)

TM = T +ms • (TR1− TR2)

Where T is a parent function T : R
n→ R, TR1 and TR2 are random real functions in

the codomain [0,1] and ms is a parameter called mutation step, responsible for the

degree of change on the semantics.

The Semantic Learning Machine, by inheriting GSGP’s unimodal error landscape,

assures that the search is performed on a surface with no local optima. This means that

it is possible for the SLM algorithm to be a Geometric Semantic Hill Climber (GSHC)

for feedforward Neural Networks: the search process revolves around one individual

(the best one) and, through the mutation operator, a sample of Neural Networks is

produced at each generation and from those, the best one is selected replacing the

current best if it is better than it. Figure 3.1 shows the application of said mutation

operator. The SLM algorithm can be summarized in the following steps:

11
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1. Generate N initial random NNs;

2. Choose the best NN (B) from the initial random NNs, according to the selected

performance criterion;

3. Repeat the following steps until a given stopping criterion is met:

a) Apply the geometric semantic mutation to the current best (B) N times to

generate N new NNs (known as children or neighbors);

b) Update B as being the NN with the best performance according to the se-

lected criterion, considering the current B and the N newly generated NNs;

4. Return B as the best performing NN according to the selected performance crite-

rion.

Parent Neural Network Random Neural Network

Resulting Neural Network

Figure 3.1: An example of an application of the GSM operator Gonçalves, 2017

The initial random neural networks can have any number of layers and neurons.

Both the activation functions and weights in the connections between the neurons

can be freely selected. Just like many other Neuroevolution algorithms, the SLM does

not use backpropagation to adjust the weights of the neural networks. The key point

of this algorithm is the definition of the geometric semantic mutation which adds

new neurons to the already existent ones in the hidden layers. Each new neuron

12
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METHODS

can choose from which already available unit will receive a connection. This implies

that the neural network does not need to be fully-connected and its sparseness can

be controlled by establishing the number of incoming connections each neuron will

receive considering the set of all possible incoming connections. Like in the initial step,

the weights of each connection can be freely chosen. One of the main aspects about

this mutation is the fact that new processing units do not feed their computations to

existing neurons with the exception of the output neuron.

More recently, Gonçalves, Silva, Fonseca, and Castelli, 2017 developed two stop-

ping criteria for SLM based on the information gathered on the semantic neighborhood

(the set of new models generated after the mutation): Error Deviation Variation (EDV)

and Training Improvement Effectiveness (TIE). The EDV stopping criterion measures

the percentage of solutions that reduce the error deviation (sample standard deviation

of the absolute errors of an individual over the training instances) in comparison with

the error deviation of the current best model, within the individuals that are better

than the current best. The TIE criterion measures the effectiveness of the mutation op-

erator. Within the sample of generated individuals, it gives the percentage of solutions

which are better than the current best. In both criteria, if the percentages are smaller

than a given threshold (parameter), the search process stops, avoiding overfitting and

contributing to a more computationally efficient algorithm. Furthermore, in Gonçalves

et al., 2017, an Optimal Learning Step (OLS), calculated at each application of the mu-

tation operator and based on the Moore-Penrose inverse, was tested rather than relying

only on a Fixed Learning Step (FLS). This OLS computation was adapted from the

optimal mutation step computation used in GSGP proposed by Gonçalves, Silva, and

Fonseca, 2015a.

3.2 Previous Comparisons with Other Neuroevolution

Methods

Combining the aforementioned factors with its original characteristics makes the SLM

a promising and competitive algorithm when compared with the popular NEAT algo-

rithm, fixed-topology neuroevolution approaches and other matured ML algorithms

like Multilayer Perceptron (MLP) and Support Vector Machine (SVM) (Jagusch et al.,

2018). This experiment was performed on nine real world free data sets (five classifi-

cation and four regression data sets), taken from the UCI Machine Learning Reposi-

tory (Lichman, 2013). Results showed that, in terms of learning, the SLM was superior,

with statistically significant differences, in comparison to the other neuroevolution

methods in all the data sets considered. In this work, the best SLM variant was, un-

surprisingly, the one generated with the optimal learning step. Focusing specifically

on the comparison with NEAT and in the generalization performance, in eight of the

nine tasks, the Semantic Learning Machine was able to achieve statistically significant

13
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differences. In the other data set, no statistically significant difference was found. Be-

sides this, the SLM variant generated with the OLS and with the Semantic Stopping

Criterion EDV achieved smaller neural networks and was able to reach speed-ups of

various orders of magnitude over NEAT on several data sets.
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4
Experimental Methodology

4.1 Data sets

In this experimental study, fifteen real-world binary classification data sets were con-

sidered. These were pulled from the Penn Machine Learning Benchmark (PMLB) (Orze-

chowski, Cava, & Moore, 2018) repository, which contains a large collection of stan-

dardized data sets for classification and regression problems. In this work only classi-

fication tasks were considered. A more detailed description of the data sets as well as

the objective for each one of them can be found in Table A.1. Table 4.1 and Figure 4.1

present the number of features (input variables), the number of instances (observa-

tions), and the % of class 1 instances in each of the thirteen problems under study.
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Figure 4.1: Characteristics of the binary classification data sets considered

It is of relevance to mention that some of the data sets, such as clean1 and clean2
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Data set Features Instances % of class 1 instances
agaricus-lepiota 22 8145 ≈ 48%
breast-cancer-wisconsin 30 569 ≈ 37%
clean1 168 476 ≈ 43%
clean2 168 6598 ≈ 14%
credit-g 24 1000 ≈ 64%
diabetes 8 768 ≈ 35%
hill-valley-with-noise 100 1212 ≈ 50%
hill-valley-without-noise 100 1212 ≈ 50%
sonar 60 208 ≈ 47%
ionosphere 34 351 ≈ 64%
kr-vs-kp 36 3196 ≈ 52%
molecular-biology-promoters 58 106 ≈ 50%
spambase 57 4601 ≈ 39%
spectf 44 349 ≈ 73%
tokyo1 44 959 ≈ 64%

Table 4.1: Binary classification data sets considered

and hill-valley-with-noise and hill-valley-without-noise contain the same kind of data,

however, differ in terms of number of instances and noise, respectively, which pose

different challenges to the algorithms under test.

4.2 Methods and Parameter Tuning

The base configuration for the SLM is the following:

– In the initial population, each NN is generated with a random number of hidden

layers selected between 1 and 5;

– In the initial population, each NN contained in each hidden layer is generated

with a random number of neurons selected between 1 and 5;

– Each hidden neuron randomly selects its activation function from the following

options: Logistic, Relu, and Tanh;

– Each hidden neuron randomly selects the weight of each incoming connection

from values within [-mncw, mncw], where mncw represents the maximum neuron

connection weight parameter (subject to parameter tuning);

– Each hidden neuron randomly selects the weight of its bias from values in the

range [-mbw, mbw], where mbw represents the maximum bias weight parameter

(also subject to parameter tuning);

– Each time a new NN is created by the mutation operator, the number of new

neurons to be added to each layer is randomly selected between 1 and 3.
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The main differences between the SLM variants under study are the following:

• The strategy to choose the learning step where two options are considered:

– Calculate the Optimal Learning Step (OLS), previously mentioned, for each

application of the mutation operator;

– Use a Bounded Learning Step (BLS) where there is an additional parameter

which establishes the maximum learning step (mls) restricting the learning

step. At each application of the mutation operator, the effective learning

step is randomly assigned a value from the range [-mls, mls].

• The type of dynamic selection of training examples (if applicable) in which two

methods are taken into account:

– Random selection from a subset of data at each iteration and calculate the

performance of each solution with this new subset, denominated Random

Sampling Technique (RST) following (Gonçalves & Silva, 2013; Gonçalves,

Silva, Melo, & Carreiras, 2012) and based on (Y. Liu & Khoshgoftaar, 2004);

– Use the full data set but choose weights, between 0 and 1, for each record

and change these weights at each iteration. In this work, this process is

referred as Random Weighting Technique (RWT).

• The stopping criterion to decide the ending of the learning process where two

approaches are considered:

– Ending based on a fixed number of iterations;

– Ending based on EDV or TIE, two Semantic Stopping Criteria introduced

in (Gonçalves et al., 2017) and previously explained.

Taking the aforementioned aspects into account, the SLM variants are grouped and

denominated in the following way:

1. BLS variants: SLM-BLS, SLM-BLS + RST, and SLM-BLS + RWT

2. OLS variants: SLM-OLS, SLM-OLS + RST, and SLM-OLS + RWT

3. BLS + TIE/EDV: SLM-BLS + TIE/EDV

4. OLS + EDV: SLM-OLS + EDV

Whenever the SLM-BLS or SLM-OLS methods are mentioned by themselves it

means that the variants which do not use either of the sampling/weighting techniques

are being referred. In this experiment it is followed a K-Fold Cross Validation (CV)

methodology where a 30-fold outer CV is used to obtain 30 final generalization values

(test set values) to perform statistical validation for the methods under comparison.
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For each of the outer training fold, a 2-fold inner CV is used to apply parameter tuning

in each method.

In turn, the Multilayer Perceptron (MLP), trained with backpropagation is also

evaluated in two different variants: the most common Stochastic Gradient Descent

(SGD) (Kiefer & Wolfowitz, 1952; Nikolopoulos & Fellrath, 1994), and the Adaptive

Moment Estimation (Adam) SGD variant (Kingma & Ba, 2014). Both algorithms are

allowed to test 72 random parameter combinations in the inner CV. The SLM tests

18 parameter combinations for each of the groups considered while the MLP tests 36

parameter configurations for each of the two variants taken into account.

All the SLM variants can tune the maximum neuron connection weight (mncw)

and the maximum bias weight (mbw) in the interval [0.1, 0.5]. The BLS variants and

the BLS + TIE/EDV can tune the maximum learning step (mls) in the range [0.1 and

2], and the number of iterations in the range [1, 100]. The BLS and OLS variants are

allowed to select with equal probability the use of RST, RWT or none. BLS + TIE/EDV

selects with equal probability the use of EDV or TIE as the Semantic Stopping Criterion.

Whenever RST is used, the parameter that defines the ratio of the total training data

to be considered – the subset ratio – is chosen from the interval [0.01, 0.99].

For SGD and Adam, the following parameters are tuned:

– The number of iterations in the range [1, 100]

– The batch size between 50 and the maximum number of training instances avail-

able

– The activation function to be used in the hidden layers: Logistic Relu, and Tanh

– The number of hidden layers in the range [1, 5]

– The number of hidden neurons per layer in the range [1, 200]

– The learning rate in the range [0.1, 2]

– The L2 penalty in the range [0.1, 10]

SGD can also select the momentum in the interval [0.0000001, 1] and decide to

use or not the Nesterov’s momentum. Adam can also select the beta 1 and beta 2

parameters in the range [0, 1[.
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5
Results and Analysis

This chapter analyses the results obtained in the experimental step. Section 5.1 presents

the results reached by the different SLM variants, analyzing the performance achieved

on the validation set and discussing some aspects related to the parameter selection.

Afterwards, Section 5.2 shows the results obtained by the MLP variants in the same

considered tasks and discusses the key differences between the two algorithms consid-

ered. Section 5.3 compares SLM and MLP after the best configuration was found and,

finally, Section 5.4 digs deeper in the generalization performance of the SLM under

different ensemble construction methods.

5.1 SLM Variants

This section presents the results obtained when considering the different variants in

the SLM group. The discussion starts off by delving in the validation Area Under

Receiver Operating Characteristic (AUROC) curve values generated by the SLM vari-

ants under study. The results can be found in Table 5.1. For each task and for each

technique, the table reports the mean and standard deviation of the validation AU-

ROC generated by the best model in each inner cross-validation process, which was

performed to determine the best set of hyperparameters. Table 5.2 suggests that the

OLS variants achieved the best results in every task considered. In fact, in 9 out of

the 15 considered problems, the OLS variant was always the selected one. Only in one

of the problems – molecular-biology-promoters – it is possible to find a slightly more

varied distribution of the selected variants: three for BLS, five for BLS + TIE/EDV,

six for OLS + EDV and sixteen for OLS, the lowest value registered for this variant.

BLS + TIE/EDV achieved the weakest results in every data set amongst the consid-

ered variants. A reasonable explanation could be that the number of iterations is not
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Data set BLS + TIE/EDV OLS variants BLS variants OLS + EDV
agaricus-lepiota 0.790 +- 0.048 0.966 +- 0.007 0.894 +- 0.022 0.869 +- 0.014
breast-cancer-wisconsin 0.839 +- 0.052 0.940 +- 0.006 0.910 +- 0.010 0.892 +- 0.018
clean1 0.632 +- 0.047 0.788 +- 0.016 0.704 +- 0.035 0.711 +- 0.032
clean2 0.848 +- 0.008 0.937 +- 0.005 0.867 +- 0.015 0.878 +- 0.011
credit-g 0.704 +- 0.003 0.727 +- 0.006 0.717 +- 0.006 0.715 +- 0.004
diabetes 0.720 +- 0.017 0.776 +- 0.006 0.768 +- 0.006 0.767 +- 0.007
hill-valley-without-noise 0.636 +- 0.106 0.934 +- 0.020 0.733 +- 0.054 0.757 +- 0.034
hill-valley-with-noise 0.609 +- 0.074 0.836 +- 0.024 0.677 +- 0.056 0.727 +- 0.017
ionosphere 0.766 +- 0.035 0.909 +- 0.010 0.871 +- 0.017 0.848 +- 0.012
kr-vs-kp 0.668 +- 0.049 0.946 +- 0.004 0.873 +- 0.032 0.873 +- 0.028
molecular-biology-promoters 0.850 +- 0.052 0.909 +- 0.022 0.870 +- 0.037 0.901 +- 0.026
sonar 0.634 +- 0.031 0.777 +- 0.026 0.734 +- 0.037 0.723 +- 0.031
spambase 0.770 +- 0.030 0.919 +- 0.004 0.851 +- 0.021 0.856 +- 0.019
spectf 0.728 +- 0.002 0.797 +- 0.018 0.751 +- 0.019 0.738 +- 0.010
tokyo1 0.772 +- 0.040 0.914 +- 0.004 0.881 +- 0.017 0.866 +- 0.012

Table 5.1: Validation AUROC for each SLM variant considered

enough for the Semantic Stopping Criterion to have an impact under the utilization

of a Bounded Learning Step on the considered problems. In general, the OLS group

(OLS variants and OLS + EDV) was able to achieve a higher AUROC in comparison

with the BLS group (BLS variants and BLS + TIE/EDV). The results can be summed

up in the following way:

1. Amongst the BLS group, BLS + TIE/EDV always achieved a lower value than the

BLS variants;

2. Amongst the OLS group, the OLS variants were always the best performer re-

gardless of the considered benchmark;

3. The OLS variants seem like the most suitable choice for the classification tasks

considered.

In particular, for the hill-valley data sets, results suggest that all the variants are able

to perform better on the problem without noise. As for the clean benchmarks, it looks

like the SLM is negatively impacted by having less observations to train the model:

the SLM achieves better results in clean2 which contains more instances and is less

imbalanced.

The subsequent analysis considers the mean value of iterations obtained for each

SLM variant and is based on Table 5.3. In 9 out of the 15 tasks considered, the OLS

variants which were previously considered the most suitable choice, present a higher

number of iterations. In the six remaining benchmark problems, the BLS variants

take superior values, which is expected since these do not use any Semantic Stopping

Criterion or Optimal Learning Step. These two groups of variants present a number
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Data set BLS variants OLS variants BLS + TIE/EDV OLS + EDV
agaricus-lepiota 0 30 0 0
breast-cancer-wisconsin 0 30 0 0
clean1 1 29 0 0
clean2 0 30 0 0
credit-g 4 26 0 0
diabetes 2 23 0 5
hill-valley-without-noise 0 30 0 0
hill-valley-with-noise 0 30 0 0
ionosphere 0 30 0 0
kr-vs-kp 0 30 0 0
molecular-biology-promoters 3 16 5 6
sonar 1 26 0 3
spambase 0 30 0 0
spectf 2 28 0 0
tokyo1 0 30 0 0

Table 5.2: Best SLM configuration by variant

Data set BLS + TIE/EDV OLS variants BLS variants OLS + EDV
agaricus-lepiota 50.500 +- 129.126 419.167 +- 59.887 369.667 +- 95.644 3.567 +- 3.126
breast-cancer-wisconsin 23.967 +- 79.003 330.200 +- 94.672 375.967 +- 92.992 1.167 +- 0.531
clean1 15.000 +- 34.339 350.033 +- 82.854 325.700 +- 110.046 8.967 +- 29.432
clean2 3.933 +- 4.828 424.767 +- 46.555 335.467 +- 129.398 5.233 +- 6.383
credit-g 3.767 +- 5.164 313.900 +- 123.399 301.333 +- 137.811 2.367 +- 0.850
diabetes 7.700 +- 26.761 285.133 +- 142.049 330.033 +- 111.033 1.467 +- 0.973
hill-valley-without-noise 13.800 +- 21.335 413.867 +- 65.554 351.400 +- 97.820 7.800 +- 5.845
hill-valley-with-noise 15.900 +- 19.361 405.533 +- 84.233 344.733 +- 99.606 26.933 +- 24.669
ionosphere 23.333 +- 91.975 333.833 +- 93.222 354.000 +- 108.958 2.533 +- 1.889
kr-vs-kp 20.533 +- 90.701 411.400 +- 71.944 376.800 +- 88.220 7.333 +- 5.054
molecular-biology-promoters 12.200 +- 18.817 278.567 +- 131.946 313.933 +- 132.128 2.533 +- 1.737
sonar 3.133 +- 2.569 339.400 +- 105.707 373.900 +- 106.740 2.800 +- 4.046
spambase 14.600 +- 55.260 412.533 +- 76.270 343.000 +- 109.710 2.767 +- 2.635
spectf 1.833 +- 1.392 355.567 +- 102.266 293.700 +- 134.954 2.433 +- 1.006
tokyo1 9.667 +- 34.948 353.933 +- 92.118 363.100 +- 114.439 3.333 +- 4.444

Table 5.3: Number of iterations for each SLM variant considered

of iterations significantly larger when compared with the other groups. Specifically,

laying the OLS variants next to the OLS + EDV variant, it is possible to verify that

the number of iterations of the latter is way lower. Using the Optimal Learning Step

allows OLS + EDV to achieve a reasonably good performance in every benchmark even

if it never surpasses the winner OLS variant. To sum up, the results suggest that using

a Semantic Stopping Criterion has a positive impact when it comes to decreasing the

computational effort in the training phase, however, it might not be enough to obtain

the best overall performance.

Focusing specifically on the different Semantic Stopping Criteria, Table 5.4 shows
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Dataset EDV TIE
agaricus-lepiota 22 8
breast-cancer-wisconsin 18 12
clean1 21 9
clean2 18 12
credit-g 17 13
diabetes 23 7
hill-valley-without-noise 22 8
hill-valley-with-noise 25 5
ionosphere 19 11
kr-vs-kp 23 7
molecular-biology-promoters 17 13
sonar 21 9
spambase 19 11
spectf 15 15
tokyo1 17 13

Table 5.4: EDV and TIE use in SLM-BLS

the distribution of using the EDV and TIE techniques in the SLM BLS variant. Accord-

ing to the presented values, we can clearly conclude that the EDV strategy is more

efficient than the TIE one in the benchmarks considered. In 14 out of the 15 data sets,

EDV was superior. In the remaining one – spectf – the results are even.

A further analysis takes into account the impact of using the random weighting/sam-

pling techniques when combined with the SLM variants. Results of this analysis are

shown in Table 5.5 where the distribution of using RST, RWT, and the complete data

set (None) are compared in the context of the BLS and OLS variants. For the OLS

variants, the table suggests that using the complete training set is actually more effec-

tive than relying on one of the weighting/sampling techniques. Only in two of the

problems considered - clean2 and molecular-biology-promoters - the RWT is the favorite

selection. In two other benchmarks - ionosphere and tokyo1 - the distribution between

using the full set of observations and RWT is even. For the OLS variants, RST does

not seem like an effective option as it is always selected the least number of times. In

the BLS variants, the results are slightly more varied: using the complete data set is

preferred in six of the considered tasks, RWT is selected in five of the problems and

RST the favorite in two of the benchmarks.

5.2 MLP Variants

This section presents and discusses the results for the MLP variants considered: Adam

and SGD. The first part of the analysis is based on Table 5.6 which shows the perfor-

mance of the models achieved on the validation set. The results suggest that Adam is

the better performer in 7 out of the 15 considered data sets. For the remaining two
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Dataset OLS variants BLS variants
None RST RWT None RST RWT

agaricus-lepiota 14 10 6 9 8 13
breast-cancer-wisconsin 16 2 12 6 9 15
clean1 14 3 13 18 2 10
clean2 10 7 13 11 14 5
credit-g 17 4 9 13 9 8
diabetes 16 7 7 14 8 8
hill-valley-without-noise 14 8 8 9 9 12
hill-valley-with-noise 21 4 5 7 11 12
ionosphere 12 6 12 9 12 9
kr-vs-kp 18 5 7 7 8 15
molecular-biology-promoters 12 4 14 15 3 12
sonar 15 6 9 15 4 11
spambase 18 6 6 7 11 12
spectf 16 2 12 17 6 7
tokyo1 14 2 14 13 10 7

Table 5.5: RST and RWT use in the BLS and the OLS variants

- credit-g and spectf – the value was the same for both variants. The choice between

one variant or the other seems to be balanced and the values suggest that tending to

one or the other might be problem dependent. In addition to these results, Table 5.7

presents the best MLP configuration per variant where it is possible to verify that out

of the 15 problems considered, Adam outperforms SGD in 9 of them. In fact, for the

spectf data set, the SGD variant is never selected. The opposite perspective can also be

found in the diabetes data set where Adam was never selected. At this point, it is of

extreme importance to compare the results present in Table 5.6 (obtained with MLP)

with the ones available in Table 5.1 (obtained with SLM). Considering these results,

the SLM variants are capable of outperforming the best MLP variant in 11 out of the

15 classification tasks under study - for spectf, the weakest AUROC value is the same in

both algorithms. This comparison clearly shows how superior the Semantic Learning

Machine is in creating models with a better validation AUROC when compared to MLP.

In general, the SLM is a competitive option to take into account in these classification

tasks since its performance is significantly better than the best MLP variant in more

than 70% of the benchmarks considered.

When comparing these two methods it is also of major relevance to take into ac-

count the number of iterations necessary to obtain the final solution. Table 5.8 shows

the number of iterations for each MLP variant considered. As seen previously, the

SLM was able to generate the final classification model in a significantly low number

of iterations when making use of a Semantic Stopping Criterion. These values are

considerably lower than the ones achieved by Adam and SGD which are based on the

backpropagation algorithm. This lower number of iterations does not seem to have a

negative impact on the performance of the final solutions as these SLM variants are
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Data set Adam SGD
agaricus-lepiota 0.669 +- 0.125 0.857 +- 0.112
breast-cancer-wisconsin 0.690 +- 0.081 0.631 +- 0.014
clean1 0.615 +- 0.053 0.581 +- 0.035
clean2 0.855 +- 0.020 0.852 +- 0.016
credit-g 0.700 +- 0.002 0.700 +- 0.001
diabetes 0.681 +- 0.034 0.762 +- 0.021
hill-valley-without-noise 0.513 +- 0.009 0.509 +- 0.007
hill-valley-with-noise 0.512 +- 0.011 0.503 +- 0.004
ionosphere 0.789 +- 0.060 0.827 +- 0.064
kr-vs-kp 0.678 +- 0.158 0.879 +- 0.133
molecular-biology-promoters 0.737 +- 0.088 0.632 +- 0.116
sonar 0.550 +- 0.018 0.579 +- 0.062
spambase 0.663 +- 0.055 0.621 +- 0.036
spectf 0.728 +- 0.001 0.728 +- 0.001
tokyo1 0.651 +- 0.018 0.690 +- 0.058

Table 5.6: Validation AUROC for each MLP variant considered

Data set Adam SGD
agaricus-lepiota 4 26
breast-cancer-wisconsin 25 5
clean1 27 3
clean2 19 11
credit-g 29 1
diabetes 0 30
hill-valley-without-noise 25 5
hill-valley-with-noise 23 7
ionosphere 10 20
kr-vs-kp 7 23
molecular-biology-promoters 27 3
sonar 16 14
spambase 24 6
spectf 30 0
tokyo1 14 16

Table 5.7: Best MLP configuration by variant
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Data set Adam SGD
agaricus-lepiota 240.633 +- 157.372 292.667 +- 134.730
breast-cancer-wisconsin 270.600 +- 133.376 230.633 +- 175.833
clean1 311.033 +- 138.915 212.600 +- 145.270
clean2 271.833 +- 156.325 238.267 +- 149.608
credit-g 218.200 +- 137.295 273.267 +- 140.189
diabetes 213.033 +- 135.064 230.133 +- 118.258
hill-valley-without-noise 231.333 +- 153.482 255.733 +- 136.781
hill-valley-with-noise 269.900 +- 137.863 272.500 +- 140.118
ionosphere 203.100 +- 148.262 276.767 +- 116.114
kr-vs-kp 259.933 +- 157.215 281.767 +- 123.694
molecular-biology-promoters 235.733 +- 154.893 201.667 +- 103.557
sonar 254.500 +- 142.140 240.467 +- 134.315
spambase 243.733 +- 126.503 286.033 +- 128.667
spectf 301.300 +- 117.290 298.967 +- 140.357
tokyo1 226.600 +- 151.842 277.467 +- 130.240

Table 5.8: Number of iterations for each MLP variant considered

able to outperform MLP in 10 out of the 15 considered benchmarks: OLS + EDV is

only outperformed by MLP in one data set (kr-vs-kp) and BLS + TIE/EDV is worse than

MLP in five tasks (agaricus-lepiota, clean2, diabetes, ionosphere and kr-vs-kp). When

comparing the best SLM performer with both MLP variants it is possible to conclude

that the OLS variants need more iterations to achieve a better validation AUROC value.

To better understand the main differences between Adam and SGD, Table 5.9 presents

how the activation functions were used throughout the two variants. According to

these values, the Adam variant has a clear preference for selecting the ReLu activation

function, except in three of the problems - credit-g, hill-valley-without-noise and spectf
- in which for credit-g and hill-valley-without-noise the Tanh activation function is the

preferred one by five and four times, respectively. For spectf the Logistic activation

function is the favorite one by two times. SGD shows much more distributed values

across the three different types of activation functions: the Logistic function is the

preferred one in six of the problems, ReLu is selected over the others in five of the

tasks and Tanh is preferred in the remaining four considered benchmarks.

5.3 Generalization Analysis

This section provides an assessment of the generalization (i.e., the performance achieved

on test set over the 30 outer folds) of SLM and MLP taking into account the best config-

uration after the parameter tuning phase. Figures 5.1 and 5.2 show the AUROC values

for both algorithms in the form of boxplots. In each box, the middle mark represents

the median, while the edges represent the first and third quartile (25th percentile and

75th percentile, respectively). The whiskers extend to the most extreme observations
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Dataset Adam SGD
Logistic Relu Tanh Logistic Relu Tanh

agaricus-lepiota 5 20 5 17 8 5
breast-cancer-wisconsin 10 16 4 5 19 6
clean1 4 22 4 6 15 9
clean2 10 14 6 14 7 9
credit-g 11 7 12 13 9 8
diabetes 1 17 12 0 13 17
hill-valley-without-noise 5 11 14 10 11 9
hill-valley-with-noise 6 15 9 13 12 5
ionosphere 2 26 2 3 16 11
kr-vs-kp 8 16 6 3 10 17
molecular-biology-promoters 2 24 4 12 7 11
sonar 11 13 6 2 15 13
spambase 10 19 1 13 14 3
spectf 21 4 5 21 2 7
tokyo1 7 19 4 8 4 18

Table 5.9: Activation functions use by MLP variant

which are not considered outliers. Any record out of those whiskers is considered an

outlier.

These results show that the SLM achieved better results in 9 out of the 15 considered

data sets: breast-cancer-wisconsin, clean1, hill-valley-with-noise, hill-valley-without-noise,

molecular-biology-promoters, sonar, spambase, spectf and tokyo1. For agaricus-lepiota,

MLP achieved a better median value, however, it shows a lot of variability. For clean2,

credit-g, diabetes and ionosphere, the test AUROC values are very similar but in general,

in these cases, SLM presents a higher value of outliers. There is only one benchmark –

kr-vs-kp – where MLP clearly outperforms the Semantic Learning Machine algorithm.

To assess the statistical significance of these results, a set of statistical tests is ap-

plied. First, a Kolmogorov-Smirnov test is performed to evaluate whether these values

come from a normal distribution. The outcome of this test (present in 5.10) suggests

that the alternative hypothesis (i.e., the data do not come from a normal distribution)

cannot be rejected considering a significance level (α) of 0.05 and consequently, a rank-

based test like the Mann-Whitney U test is selected for the next step. In this case, the

null hypothesis states that both samples have equal means and thus no statistically sig-

nificant difference between the two models. Just like in the previous test, considering

a significance level of 0.05, the results indicate that the SLM algorithm outperforms

MLP in 13 out of the 15 classification problems. The p-values for these comparisons

may be found in Table 5.11.
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Figure 5.1: Boxplots for test set AUROC values of SLM and MLP: agaricus-lepiota,
breast-cancer-wisconsin, clean1, clean2, credit-g, diabetes, hill-valley-with-noise, hill-
valley-without-noise
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Figure 5.2: Boxplots for test set AUROC values of SLM and MLP: ionosphere, kr-vs-kp,
molecular-biology-promoters, sonar, spambase, spectf, tokyo1
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Data set p-value (SLM) p-value (MLP)
agaricus-lepiota 1.059× 10−22 1.621× 10−14

breast-cancer-wisconsin 5.569× 10−19 1.222× 10−12

clean1 6.240× 10−16 1.268× 10−13

clean2 3.146× 10−22 7.002× 10−19

credit-g 2.890× 10−17 1.792× 10−11

diabetes 6.912× 10−16 6.989× 10−15

hill-valley-with-noise 2.861× 10−15 2.844× 10−13

hill-valley-without-noise 2.159× 10−19 2.091× 10−14

sonar 1.502× 10−7 1.267× 10−13

ionosphere 2.890× 10−17 7.642× 10−12

kr-vs-kp 1.890× 10−22 1.250× 10−15

molecular-biology-promoters 7.983× 10−18 2.844× 10−13

spambase 2.533× 10−21 4.052× 10−15

spectf 6.981× 10−17 8.288× 10−11

tokyo1 4.050× 10−20 4.601× 10−11

Table 5.10: p-values of Kolmogorv-Smirnov tests over test set AUROC values of SLM
and MLP

Data set p-value
agaricus-lepiota 2.537× 10−5

breast-cancer-wisconsin 6.493× 10−10

clean1 8.189× 10−7

clean2 2.963× 10−8

credit-g 1.503× 10−3

diabetes 1.312× 10−1

hill-valley-with-noise 5.572× 10−12

hill-valley-without-noise 9.472× 10−12

sonar 1.502× 10−7

ionosphere 4.639× 10−4

kr-vs-kp 2.744× 10−1

molecular-biology-promoters 9.989× 10−6

spambase 1.448× 10−11

spectf 2.881× 10−4

tokyo1 8.366× 10−10

Table 5.11: p-values of Mann-Whitney U-tests over test set AUROC values of SLM and
MLP
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5.4 Ensemble Analysis

This section consists in the study of applying different ensemble construction methods

when using the SLM and the MLP as a base learner. Bagging (Breiman, 1996) and

Boosting (Drucker, 1997) are compared with a common simple averaging construction

method which trains the base learner N times without altering the training set. These

three methods of building ensembles are used to create ensembles of 30 NNs using

the SLM as a base learner. In the case of Boosting, four variations of the AdaBoost.R2

were used and labeled in the following way:

• Boosting-1: weighted median prediction and fixed learning rate of 1

• Boosting-2: weighted median prediction and variable learning rate selected ran-

domly in the interval [0,1] for each new NN added to the ensemble

• Boosting-3: weighted mean prediction and fixed learning rate of 1

• Boosting-4: weighted mean prediction and variable learning rate selected ran-

domly in the interval [0,1] for each new NN added to the ensemble

5.4.1 SLM as a base learner

Figures 5.3 and 5.4 present the boxplots for the test set AUROC values of each ensemble

construction method considered: Simple (averaging), Bagging and the four Boosting

variants. Results suggest that in general, the six approaches considered behave not too

differently. In terms of the median AUROC value, both the simple averaging method

and the bagging approach achieve higher values in four of the data sets: agaricus-lepiota,

hill-valley-with-noise, hill-valley-without-noise, kr-vs-kp, sonar and spambase. Both these

construction methods outperform the remaining approaches in one of the classification

tasks: the simple averaging ensemble method in spectf and bagging in clean1. It seems

that the stochastic nature of the SLM confers enough diversity to the base learner in

its search process in a way that even a simple averaging method is able to perform

well without having to delve into more detailed intricacies inherent of the bagging and

boosting approaches.

It is interesting to see that for the hill-valley benchmark problems, results are more

concentrated on higher values for the version without noise, while for the task with

noise, results show a higher variability. Nonetheless, as mentioned previously, the

simple averaging method and bagging achieve a better performance on both of the

challenges. The same analysis can be performed for the clean data sets. As seen

previously, the SLM achieves better results in the version with more instances even if

this means that the data set is more imbalanced.
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Figure 5.3: Boxplots for test set AUROC values of each ensemble construction method
considered: agaricus-lepiota, breast-cancer-wisconsin, clean1, clean2, credit-g, dia-
betes, hill-valley-with-noise, hill-valley-without-noise

31



CHAPTER 5. RESULTS AND ANALYSIS

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
R

O
C

SLM Testing AUROC for different ensemble techniques - ionosphere

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

0.90

0.92

0.94

0.96

0.98

AU
R

O
C

SLM Testing AUROC for different ensemble techniques - kr-vs-kp

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
R

O
C

SLM Testing AUROC for different ensemble techniques - molecular-biology_promoters

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
R

O
C

SLM Testing AUROC for different ensemble techniques - sonar

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AU
R

O
C

SLM Testing AUROC for different ensemble techniques - spambase

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

0.5

0.6

0.7

0.8

0.9

1.0

AU
R

O
C

SLM Testing AUROC for different ensemble techniques - spectf

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

0.5

0.6

0.7

0.8

0.9

1.0

AU
R

O
C

SLM Testing AUROC for different ensemble techniques - tokyo1

Figure 5.4: Boxplots for test set AUROC values for each ensemble construction method
considered: ionosphere, kr-vs-kp, molecular-biology-promoters, sonar, spambase,
spectf, tokyo1
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5.4.2 MLP as a base learner

The same analysis can be performed when using the MLP as base learner. Figures 5.5

and 5.6 show the boxplots for the test set AUROC values of each of the six ensemble

construction methods considered. In general, the six approaches perform similarly

across the different benchmark problems. Considering the median AUROC values and

comparing the ensemble results when using the MLP as a base learner rather than

the SLM, it is possible to verify that the former reach higher values in two data sets:

credit-g and spectf. For agaricus-lepiota, the Boosting variants perform better with MLP

as a base learner than with SLM.

Once again it is interesting to compare the hill-valley data sets: using the MLP as a

base learner results in the ensembles achieving better median AUROC values in the

version with noise than in the version without noise, something that did not happen

when using the SLM as the base learner. Nevertheless, ensembles built with the SLM

outperform the ensembles built with the MLP in both benchmarks. Results for the

clean tasks suggest that it is not very For the clean tasks, it is not very clear if MLP

is able to perform efficiently with less instances to train the model. It looks like the

minimum AUROC value in clean2 is higher than in clean1 but at the same time there

are way more outliers in the former.

It is also interesting to see that, in general, the Boosting-1 and Boosting-2 variants tend

to achieve either lower or more variable results than the remaining approaches.
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Figure 5.5: Boxplots for test set AUROC values of each ensemble construction method
considered using the MLP as base learner: breast-cancer-wisconsin, clean1, credit-g,
diabetes, hill-valley-with-noise, hill-valley-without-noise
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Figure 5.6: Boxplots for test set AUROC values for each ensemble construction method
considered using the MLP as a base learner: ionosphere, kr-vs-kp, molecular-biology-
promoters, sonar, spambase, spectf, tokyo1
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6
Conclusions

This work focused on two main objectives:

– Studying the dynamic use of training data under the SLM algorithm;

– Exploring different ensemble construction methods using the SLM as a base

learner.

To explore the dynamic use of training data two techniques were considered: dynamic

subset sampling of the training data, where at each generation a subset of the training

examples is chosen, and dynamic weighting of the training instances, where random

weights are assigned to these instances at each generation. Results showed that these

approaches are useful to improve the resulting generalization.

To study the effect of using the SLM as a base learner for different ensemble con-

struction methods, six ensemble variants were taken into account: simple averaging

method, Bagging and four variants of Boosting. Results suggested that there is not

really a method that stands out but it is important to mention that due to the stochastic

nature of the SLM algorithm, it was possible to verify that a simple averaging ensemble

method can be as competitive as Bagging and Boosting.

Finally, when assessing the generalization ability of the SLM algorithm, results proved

that the SLM outperformed MLP in 13 of the considered tasks, with statistical signifi-

cance, after parameter tuning was performed for both algorithms.
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APPENDIX A. DATA SETS DESCRIPTION

Data set Description
agaricus-lepiota Includes descriptions of hypothetical samples correspond-

ing to 23 species of mushrooms in the Agaricus and Lepiota
Family. The objective is to classify the record as edible or
poisonous.

breast-cancer-wisconsin Contains continuous measurements from tumors. The algo-
rithm must classify the tumor as benign or malignant.

clean1 Describes a set of 102 molecules where the goal is to learn
to predict whether new molecules will be musks or non-
musks.

clean2 Describes a set of 102 molecules where the goal is to learn
to predict whether new molecules will be musks or non-
musks.

credit-g Contains credit card applications. The objective is to clas-
sify the individuals as either good or bad credit.

diabetes Contains patient records where the goal is to predict
whether the individuals have diabetes or not.

hill-valley-with-noise Each record represents 100 points on a two dimensional
graph, where the algorithm must classify the series as either
a Hill (a "bump"in the terrain) or a Valley (a "dip"in the
terrain) - contains noise.

hill-valley-without-noise Each record represents 100 points on a two dimensional
graph, where the algorithm must classify the series as either
a Hill (a "bump"in the terrain) or a Valley (a "dip"in the
terrain) - contains no noise.

sonar Contains patterns obtained by bouncing sonar signals off a
metal cylinder at various angles and under various condi-
tions. The algorithm must predict whether the objects are
rocks or mines.

ionosphere Contains continuous measurements from high-frequency
antennas. The algorithm must classify whether the signals
are good or bad.

kr-vs-kp Contains chess data where the goal is to classify whether
the white pieces can win or not.

molecular-biology-promoters Contains molecular information and the objective is to pre-
dict whether the records are promoters or not.

spambase Contains word frequencies in emails. The algorithm must
classify whether the e-mails are spam or not.

spectf Describes the diagnose of cardiac Single Proton Emission
Computed Tomography (SPECT) images. Each of the
records is classified into two categories: normal and abnor-
mal.

tokyo1 Contains Server Performance Data categorizing each record
as either good or bad.

Table A.1: Description of the binary classification data sets considered
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