Information

Management
School

Mestrado em Métodos Analiticos Avancados

Master Program in Advanced Analytics

Explorations of the Semantic Learning
Machine Neuroevolution Algorithm
Dynamic Training Data Use and Ensemble
Construction Methods

Marta Sofia Lopes Seca

Dissertation presented as the partial requirement for
obtaining a Master's degree in Data Science and
Advanced Analytics

NOVA Information Management School
Instituto Superior de Estatistica e Gestdo de Informagao

Universidade Nova de Lisboa

NOVA Information Management School
Instituto Superior de Estatistica e Gestao de Informagao

Universidade Nova de Lisboa

Explorations of the Semantic Learning Machine Neuroevolution Algorithm
Dynamic Training Data Use and Ensemble Construction Methods

Marta Sofia Lopes Seca

Dissertation presented as the partial requirement for obtaining a Master’s degree in Data

Science and Advanced Analytics

Adviser: Ilvo Gongalves

Co-Adviser: Mauro Castelli

February 2020

Explorations of the Semantic Learning Machine Neuroevolution Algorithm

Copyright © Marta Sofia Lopes Seca, NOVA Information Management School, NOVA
University of Lisbon.

The NOVA Information Management School and the NOVA University of Lisbon have
the right, perpetual and without geographical boundaries, to file and publish this
dissertation through printed copies reproduced on paper or on digital form, or by any
other means known or that may be invented, and to disseminate through scientific
repositories and admit its copying and distribution for non-commercial, educational

or research purposes, as long as credit is given to the author and editor.

This document was created using the (pdf)IATEX processor, based in the “novathesis” template[1], developed at the Dep. Informatica of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

ABSTRACT

As the world’s technology evolves, the power to implement new and more efficient
algorithms increases but so does the complexity of the problems at hand. Neuroevo-
lution algorithms fit in this context in the sense that they are able to evolve Artificial
Neural Networks (ANNSs).

The recently proposed Neuroevolution algorithm called Semantic Learning Machine
(SLM) has the advantage of searching over unimodal error landscapes in any Super-
vised Learning task where the error is measured as a distance to the known targets.
The absence of local optima in the search space results in a more efficient learning
when compared to other neuroevolution algorithms. This work studies how differ-
ent approaches of dynamically using the training data affect the generalization of the
SLM algorithm. Results show that these methods can be useful in offering different
alternatives to achieve a superior generalization. These approaches are evaluated ex-
perimentally in fifteen real-world binary classification data sets. Across these fifteen
data sets, results show that the SLM is able to outperform the Multilayer Perceptron
(MLP) in 13 out of the 15 considered problems with statistical significance after pa-
rameter tuning was applied to both algorithms.

Furthermore, this work also considers how different ensemble construction methods
such as a simple averaging approach, Bagging and Boosting affect the resulting gener-
alization of the SLM and MLP algorithms. Results suggest that the stochastic nature
of the SLM offers enough diversity to the base learner in a way that a simple averaging
method can be competitive when compared to more complex techniques like Bagging

and Boosting.

Keywords: Semantic Learning Machine; Neuroevolution; Evolutionary Machine Learn-

ing; Artificial Neural Networks; Deep Learning

vii

REsumMo

A medida que a tecnologia evolui, a possibilidade de implementar algoritmos novos
e mais eficientes aumenta, no entanto, a complexidade dos problemas com que nos
deparamos também se torna maior. Algoritmos de Neuroevolution encaixam-se neste
contexto, na medida em que sdo capazes de evoluir Artificial Neural Networks (ANNs).
O algoritmo de Neuroevolution recentemente proposto chamado Semantic Learning
Machine (SLM) tem a vantagem de procurar sobre landscapes de erros unimodais em
qualquer problema de Supervised Learning, onde o erro ¢ medido como a distancia aos
alvos conhecidos. A nao existéncia de local optima no espago de procura resulta numa
aprendizagem mais eficiente quando comparada com outros algoritmos de Neuroevo-
lution. Este trabalho estuda como métodos diferentes de uso dindmico de dados de
treino afeta a generalizacao do algoritmo SLM. Os resultados mostram que estes mé-
todos sdo uteis a oferecer uma alternativa que atinge uma generalizagdo competitiva.
Estes métodos sao testados em quinze problemas reais de classificagao binaria. Nestes
quinze problemas, o algoritmo SLM mostra superioridade ao Multilayer Perceptron
(MLP) em treze deles com significancia estatistica depois de ser aplicado parameter
tuning em ambos os algoritmos.

Para além disso, este trabalho também considera como diferentes métodos de cons-
trucao de ensembles, tal como um simples método de averaging, Bagging e Boosting
afetam os valores de generalizacao dos algoritmos SLM e MLP. Os resultados sugerem
que a natureza estocastica da SLM oferece diversidade suficiente aos base learners de
maneira a que o método mais simples de construcao de ensembles se torne competitivo

quando comparado com técnicas mais complexas como Bagging e Boosting.

Palavras-chave: Semantic Learning Machine; Neuroevolution; Evolutionary Machine

Learning; Artificial Neural Networks; Deep Learning

ix

CONTENTS

List of Figures xiii
List of Tables XV
1 Introduction 1
2 Neuroevolution Overview 3
3 Semantic Learning Machine 11
3.1 Algorithm 11
3.2 Previous Comparisons with Other Neuroevolution Methods 13

4 Experimental Methodology 15
4.1 Datasets o i i e e e e e e e e e e 15
4.2 Methods and Parameter Tuning 16

5 Results and Analysis 19
5.1 SLMVariants e e e e e e e e e e e e e 19
5.2 MLP Variants o e e e e e e e e 22
5.3 Generalization Analysis 0L, 25
5.4 Ensemble Analysis. 30
5.4.1 SLMasabaselearner, 30

54.2 MLPasabaselearner. 33

6 Conclusions 37
Bibliography 39
A Data sets description 45

xi

2.1

3.1

4.1

5.1

5.2

5.3

5.4

5.5

5.6

List OF FIGURES

An example of an Artificial Neural Network
An example of an application of the GSM operator Gongalves, 2017
Characteristics of the binary classification data sets considered

Boxplots for test set AUROC values of SLM and MLP: agaricus-lepiota,
breast-cancer-wisconsin, cleanl, clean2, credit-g, diabetes, hill-valley-with-
noise, hill-valley-without-noise
Boxplots for test set AUROC values of SLM and MLP: ionosphere, kr-vs-kp,
molecular-biology-promoters, sonar, spambase, spectf, tokyol
Boxplots for test set AUROC values of each ensemble construction method
considered: agaricus-lepiota, breast-cancer-wisconsin, cleanl, clean2, credit-
g, diabetes, hill-valley-with-noise, hill-valley-without-noise

Boxplots for test set AUROC values for each ensemble construction method

considered: ionosphere, kr-vs-kp, molecular-biology-promoters, sonar, spam-

base, spectf, tokyol L
Boxplots for test set AUROC values of each ensemble construction method
considered using the MLP as base learner: breast-cancer-wisconsin, cleanl,
credit-g, diabetes, hill-valley-with-noise, hill-valley-without-noise
Boxplots for test set AUROC values for each ensemble construction method
considered using the MLP as a base learner: ionosphere, kr-vs-kp, molecular-

biology-promoters, sonar, spambase, spectf, tokyol

xiii

12

15

27

28

31

32

34

35

List OF TABLES

4.1 Binary classification data sets considered

5.1 Validation AUROC for each SLM variant considered
5.2 Best SLM configuration by variant
5.3 Number of iterations for each SLM variant considered . . .
5.4 EDVand TIEuseinSLM-BLS
5.5 RST and RWT use in the BLS and the OLS variants
5.6 Validation AUROC for each MLP variant considered
5.7 Best MLP configuration by variant
5.8 Number of iterations for each MLP variant considered . . .
5.9 Activation functions use by MLP variant
5.10 p-values of Kolmogorv-Smirnov tests over test set AUROC values of SLM

and MLP e
5.11 p-values of Mann-Whitney U-tests over test set AUROC values of SLM and

XV

16

20
21
21
22
23
24
24
25
26

29

29

46

CHAPTER

INTRODUCTION

As the world’s technology evolves, the power to implement new and more efficient
algorithms increases but so does the complexity of the problems at hand. Machine
Learning algorithms have proved to be a great asset in several industries, from bank-
ing to health, essentially because they mimic human behavior but since they run on
powerful machines and are capable of digesting much more information than a person,

they end up surpassing our knowledge, per se, in many situations (Wang et al., 2016).

The Artificial Neural Network (ANN) is one of the most successfully used Ma-
chine Learning algorithms which is based on how our brain works, with neurons
sending information through synapses between them. The algorithms of this nature
evolved to something called Deep Learning simply because more computation power
allowed for the usage of more layers of neurons. However, these methods require a lot
of parameters to be selected and optimized — the number of neurons, number of layers,
learning rate, among many others — so that the final result is reasonable and trust-
worthy. The Backpropagation algorithm, where the calculated error of a given Neural
Network is propagated backwards with the goal of adjusting the existing weights,
is still the most obvious option, however, it fails to provide the general topology of
neurons and synapses. This means that this is still an open question in the realm of
Machine Learning because the parameters and topology of an ANN rely heavily on the

problem the Neural Network is trying to solve.

Neuroevolution originally tried to answer this question by making use of Evolu-
tionary Algorithms (EAs) to find the best parameters for a given Neural Network. More
recently, investigation showed that it was possible to have these algorithms creating
and evolving Neural Networks as well as their parameters. The NeuroEvolution of
Augmenting Topologies (NEAT) algorithm (K. O. Stanley & Miikkulainen, 2002) is

1

CHAPTER 1. INTRODUCTION

still broadly used, however, there are other competitive options. Recently, a Neuroevo-
lution algorithm called Semantic Learning Machine (SLM) was proposed (Gongalves,
2017; Gongalves, Silva, & Fonseca, 2015b). The SLM has the advantage of searching
over unimodal error landscapes in any Supervised Learning task where the error is
measured as a distance to the known targets. The SLM showed superiority both in
terms of training error and generalization ability when compared to NEAT and other
well-established ML algorithms like Support Vector Machine (SVM) and Feedforward
ANN s trained with the Backpropagation algorithm (Jagusch, Gongalves, & Castelli,
2018).

The SLM neuroevolution algorithm has enabled different branches of investigation.
Recently, the algorithm was used with Convolutional Neural Networks (CNNs) (Lapa,
Gongalves, Rundo, & Castelli, 2019a, 2019b) where the task of discriminating between
benign and malignant prostate cancer lesions given multiparametric magnetic reso-
nance imaging was under study. This image classification problem was addressed in
the context of the PROSTATEXx (Litjens, Debats, Barentsz, Karssemeijer, & Huisman,
2017) competition. The SLM was used as a background replacement for the training
of the last fully connected layers of CNNs. In this case, the outputs of the convolu-
tional layers are passed (without pre-training) to the SLM. The results are compared
to the XmasNet state-of-the-art CNN (S. Liu, Zheng, Feng, & Li, 2017), specifically
developed to address this challenge. Results suggest that the SLM is able to achieve
a higher AUROC curve value than XmasNet with a statistically significant difference.
It is important to mention that this performance is achieved without pre-training the
underlying CNN or relying on backpropagation. Furthermore, it is of relevance to em-
phasize that the Semantic Learning Machine was only run on CPU (whereas XmasNet
was trained using a GPU) and without any explicit parallelization. This adds value to
the results obtained since each network evaluation could be suitable parallelized, thus
achieving a higher speed-up.

The current work aims to continue the investigation on the SLM and how different
methods of dynamically using the training data and ensemble construction approaches
affect the resulting generalization.

This document is organized as follows: Chapter 2 intends to provide an in-depth
overview of Neuroevolution. The Semantic Learning Machine (SLM) algorithm is ex-
plained in Chapter 3. Chapter 4 describes the Experimental Methodology procedures
followed in the course of this project. Chapter 5 reports the experimental results and

finally, Chapter 6 presents the final remarks and concludes the work.

CHAPTER

NEUROEVOLUTION OVERVIEW

Using an Artificial Neural Network is not an easy task. One of the main challenges
when doing so may sit upon choosing an architecture or topology (here used as syn-
onyms to reflect some of the hyperparameters inherent of any ANN, such as, the num-
ber of layers, number of neurons and how these are connected between each other).
Figure 2.1 presents a simple example of a Neural Network with four input neurons, a
hidden layer with two neurons and an output neuron.

By now, ANNs have proven to be useful in a vast amount of applications, however,
specific rules to determine the best set of hyperparameters remain uncovered and
something that is still problem dependent. Thus, it is still a task that requires a lot of
effort and trial and error from the users. When trying to automate the aforementioned
problem, one may recur to (1) use different search methods based on the gradient
descent algorithm to optimize the weights and hyperparameters of the network, or
(2) use evolutionary techniques to generate networks and to optimize the topology
of the ANN. In the course of the last 30 years, neuroevolution techniques have been
successfully applied in different areas (Floreano, Dirr, & Mattiussi, 2008), and many
were the proposals to use Evolutionary Computing (EC) to optimize ANNSs. In fact, it
is possible to split neuroevolution’s progress in three stages:

1. The use of EC to train an ANN;
2. The use of EC to optimize the architecture underneath an ANN;

3. The use of EC to optimize the topology of an ANN and train it;

Pioneers in the field appeared in the late 80’s: Davis, 1989 proved it was possible
to map Classifier Systems (CSs) — systems that incorporate Genetic Algorithms (GAs)

3

CHAPTER 2. NEUROEVOLUTION OVERVIEW

Input Hidden Output
layer layer layer
Input 1
Input 2
Output
Input 3
Input 4

Figure 2.1: An example of an Artificial Neural Network

as the learning mechanism — into Neural Networks and vice versa. Whitley, 1989 at-
tempted to train a Neural Network making use of Genetic Algorithms, however, at
this point, researchers would still have to decide on the ANN'’s architecture, only al-
lowing the evolution to generate new weights based on the network’s performance.
This meant that the two systems would work as separate components, thus, from the
moment that it was generated, the neural network would not learn anything further
during its existence. This technique was then established as fixed-topology neuroevo-
lution in the literature (Montana & Davis, 1989). At this time, researchers thought
this could be a valid alternative to the most traditional ANN training algorithm called
backpropagation (Miller, Todd, & Hegde, 1989; Montana & Davis, 1989; Whitley &
Hanson, 1989) which, due to how gradient descent works, can easily get trapped in a
local minimum of the error function and it is not able to find a global minimum if the
error function is multimodal and/or non-differentiable (Xin Yao, 1999).

Miller et al., 1989 were able to use a genetic algorithm for evolving neural network
architectures for specific problems. Each topology of an ANN is represented as “a
connection constraint matrix mapped directly into a bit-string genotype” (Miller et al.,
1989). Modified standard genetic operators are applied upon populations of these
genotypes to generate topologies with better fitness in consecutive generations. Topol-

ogy fitness is evaluated through training the neural network and keeping track of the

4

final performance error. Miller et al., 1989’s study is different from the previous ones
in the sense that in this scenario the EC techniques are used to evolve the topology of
the network. Evolving the architecture of a network can be established as an optimiza-
tion problem where the objective is to find the global optimum in a search space where
each point represents a network architecture. This search space (also known as fitness
landscape or surface) shows some properties that make it suitable for EC techniques to
search for the most appropriate architecture to represent an ANN (Miller et al., 1989).

These properties were unveiled and discussed in Miller et al., 1989 as follows:

* The search space is infinitely large since the number of possible neurons and

connections is unbounded;

* The fitness landscape is undifferentiable because changes in the number of units
and connections must be discrete and can discontinuously affect the performance
of the network. This aspect makes it impossible for gradient-based methods to

be used;

* The mapping between the architecture of the network and its performance after
the learning phase is indirect, extremely epistatic and dependent on the very
initial conditions like the random original weights. Consequently, the surface is

complex and noisy;

* Finally, networks with similar architectures can behave differently and vice versa
(different architectures may show a similar behavior). Thus, the search space is
deceptive and multimodal.

These aspects make EC techniques suitable to address the task of automatically
finding an optimal network topology, proving to be a reliable asset and a competitive
alternative to constructive and destructive algorithms. On the one hand, a constructive
algorithm (Fahlman & Lebiere, 1990; Frean, 1990) is a hill climbing approach which
starts with an ANN with minimum number of neurons, hidden layers and connections
and adds new elements throughout the learning phase, when necessary and based
on some criteria. On the other hand, destructive algorithms (Cun, Denker, & Solla,
1990; Mozer & Smolensky, 1989; Sietsma & Dow, 1991) start their search for the
optimal topology with an ANN with the maximum number of units, hidden layers
and connections, and while learning, unnecessary elements are removed (Xin Yao,
1999). These methods may seem simpler to implement when compared with EC-based
methods, however, they are prone to get stuck in local optima architectures and are
only able to explore a small part of the possible ANN topologies. Schaffer, Caruana,
and Eshelman, 1990 illustrate how a genetic algorithm can be used to exploit the
properties of backpropagation to solve difficult tasks. Their results show that networks
evolved through a genetic algorithm perform better than a large network using the

backpropagation learning method alone. Wilson, 1990’s results demonstrated that

5

CHAPTER 2. NEUROEVOLUTION OVERVIEW

if genetic search is applied to a perceptron, it can learn more complex tasks than it
would be initially thought. Schiffmann, Joost, and Werner, 1992 started by exploring
evolution strategies which used only mutation to change the parents’ topologies in a
GA population. Such research was followed by the creation of a crossover operator
for an automatic topology optimization genetic algorithm. Their results confirmed
that allowing two parent networks with different number of neurons to mate and
generate a child network which inherits their genes outperforms the fixed topologies
and reaches classification performances close to optimal values. Along a similar line
of thought, Alba, Aldana, and Troya, 1993 accomplished a full genetic ANN design by
making use of a genetic algorithm to address the connectivity and structure definition
problems.

On the one hand, EC techniques have been shown to be used in the optimization of
neural networks’ weights assuming that their topologies are fixed and defined from the
beginning. On the other hand, EC-based methods have been applied in the evolution
of ANNSs’ architectures considering that their activation functions are defined a priori
and static throughout the whole process. Some studies revealed how choosing these
activation functions is also important when measuring the performance of a neural
network (Dasgupta & Schnitger, 1992; Mani, 1990). Schoenauer and Ronald, 1997
proposed a method to evolve both topologies and activation functions, showing how
tuning the slopes of these functions for each processing unit in the NN improves
its overall performance. To achieve the same effect, White and Ligomenides, 1993
presented a less complex method where 80% of the neurons in the initial population
used the Sigmoid function whereas the remaining 20% used a Gaussian function. The
learning phase, through the evolutionary process, was used to automatically define
the most suitable combination for these percentages. Optimizing activation functions
is currently under the investigation radar also due to the popularity of deep learning.
The Rectified Linear Activation (ReLU) function (Jarrett, Kavukcuoglu, Ranzato, and
LeCun, 2009) has been widely used to simplify the training of deep neural networks
since it overcomes issues like weight initialization and vanishing gradient. Manessi
and Rozza, 2018 summarized the different variations of ReLU proposed throughout

the years:

* Leaky ReLU (LReLU) (Maas, 2013), which covers the dead neurons issue in ReLU

networks;

* Threshold ReLU (Konda, Memisevic, and Krueger, 2014), which integrates a

solution for problems like the large negative bias in autoencoders;

* Parametric ReLU (PReLU) (He, Zhang, Ren, and Sun, 2015), which uses the
leakage parameter of LReLU as a per-filter learnable weight.

The authors introduced two methods that would automatically learn several com-

binations with different base activation functions, such as the identity function, ReLU

6

and the hyperbolic tangent. They thoroughly compared their two approaches to com-
mon architectures in standard data sets, showing relevant improvements in the gen-
eral performance of the NN. While these studies introduced new and useful activation
functions, other works had proposed advanced strategies to learn the best activation
function for the particular topology at hand.

Agostinelli, Hoffman, Sadowski, and Baldi, 2014 came up with a new design for a
piecewise linear activation function which is learned independently for each neuron
using gradient descent. Using this adaptive activation function, the authors were
able to improve deep neural network architectures composed of static ReLU units
and achieve state-of-the-art performances on CIFAR-10, CIFAR-100 — data sets which
contain several images in 10 and 100 classes, respectively —, as well as on a benchmark
involving Higgs boson decay modes. These studies showed how evolving activation
functions is, nowadays, seen as something so important as evolving the topologies of
the neural networks (Manessi & Rozza, 2018).

Still during the 90’s, Angeline, Saunders, and Pollack, 1994; Branke, 1995; Gruau,
Whitley, and Pyeatt, 1996 and Xin Yao, 1999 showed that it was possible to go the next
step and evolve network topologies as well as their weights in what was called Topology
and Weight Evolving Artificial Neural Networks (TWEANNSs). In particular, Angeline
etal., 1994 argued that crossover was not well-suited for evolving the network topology.
Instead, they proposed a method where offspring are solely created by mutation. Until
this point, connection weights had to be learned in a subsequent step — this method
reduces the complexity of evolving both the architecture and the weights, however,

there are two main issues in doing so as shown by Yao and Liu, 1997:

1. Different and random initial weights can generate different training results, that
is, the same genotype can lead to different fitness results due to the random

weight initialization;

2. Different training algorithms may lead to different training values even when
using the same set of initial weights. This is especially true for multimodal
error functions. The idea behind the method that optimizes, at the same time,
weights and architectures for the neural networks is that each individual in a
population is a fully specified neural network with complete weight information.
Consequently, there is a one-to-one mapping between the genotype and the
phenotype, which allows the search process to overcome the already mentioned

issues regarding fitness evaluation.

Srinivas and Patnaik, 1991 developed an approach to reduce the search space of a
genetic algorithm to improve its performance in finding the optimal set of connection
weights. The authors used the equivalent solutions in the search space, and from each

set of equivalent solutions, they took one solution, called the base solution, to feature

7

CHAPTER 2. NEUROEVOLUTION OVERVIEW

in the reduce search space. They added an extra step to the algorithm where the solu-
tions are mapped to their correspondent base solutions.

Bornholdt and Graudenz, 1992 presented a GA-based method used to evolve a network
that represented a model for a brain with sensory and motor neurons. Oliker, Furst,
and Maimon, 1993 showed that it was possible to have a distributed genetic algorithm
to define and train neural networks. The approach establishes the neural network’s
topology and its weights for a specific task where the network is composed of binary
linear threshold units.

White and Ligomenides, 1993 developed a novel algorithm which uses a genetic algo-
rithm to define the topology and weights of a neural network. If the genetic algorithm
fails to find a network as a solution, the best network to be developed until that mo-
ment is used to try to find a solution through backpropagation. This way, each algo-
rithm is used to exploit its best advantage: the genetic algorithm, through its global
search, defines the architecture and suboptimal weights to solve the task and back-
propagation uses its local search to pursue the best neighbor of the architecture and
weight structure found by the GA. There were other EC methods used to approach this
optimization problem. Koza and Rice, 1991 showed that it was possible to use Genetic
Programming to find both the weights and the topology of a neural network, including
the number of layers, number of neurons per layer and how they are connected. Jian
and Yugeng, 1997 proposed a novel approach to define the structure and weights of
ANNSs based on Evolutionary Programming. The Particle Swarm Optimization (PSO)
algorithm was also considered to evolve both weights and topologies of neural net-
works (Chunkai Zhang, Huihe Shao, & Yu Li, 2000; Garro & Vazquez, 2015; Kiranyaz,
Ince, Yildirim, & Gabbouj, 2009). In the same line of thought, Kiranyaz et al., 2009
proposed an extension of the PSO algorithm to a Multi-Dimensional Particle Swarm
Optimization (MD-PSO) algorithm in a way that it was able to automatically design
the ANNs while evolving the optimal network configuration (connections, weights
and biases) within the architecture space. Garro and Vazquez, 2015 explored the si-
multaneous evolution of the three main components of a neural network: the set of
synaptic weights, the connections, and the activation function of each neuron. The
key value of this contribution was the assessment of eight different fitness functions
used to verify the quality of each solution and find the best network design. Chunkai
Zhang et al., 2000 introduced a new evolutionary system to build Feed-Forward ANNs
which is restricted to PSO where both elements of the neural network — architecture
and weights — are adaptively adjusted according to the quality of the network.

At the beginning of the twenty-first century, K. O. Stanley and Miikkulainen, 2002 con-
verged their ideas to some of the limitations they saw in topology representations into
a novel neuroevolution algorithm called NeuroEvolution of Augmenting Topologies
(NEAT). In particular, one of the main challenges they found concerned something
called Competing Conventions which essentially meant that multiple different geno-

types decode into the same phenotype which could have a serious negative impact

8

on the algorithm. In that sense, NEAT’s ability to evolve increasingly complex ANNSs,
whilst setting aside traditional TWEANNSs' restrictions, allowed it to become the most
popular and broadly used approach in the neuroevolution field. More recently, NEAT
has been evolved to CoDeepNEAT (Miikkulainen et al., 2017) which is able to cover
more complex fields such as vision, speech and language.

For further details about this investigation field, the reader is referred to (Ding, Li, Su,
Yu, & Jin, 2013; K. Stanley, Clune, Lehman, & Miikkulainen, 2019; Xin Yao, 1999).

CHAPTER

SEMANTIC LEARNING MACHINE

3.1 Algorithm

The Semantic Learning Machine (Gongalves, 2017; Gongalves et al., 2015b) relies on
the Geometric Semantic Genetic Programming (GSGP)’s mutation operator defined
by Moraglio, Krawiec, and Johnson, 2012 (Definition 3.1.1). In this work, Moraglio et
al., 2012 proposed a new approach - GSGP - where traditional crossover and mutation
are replaced by geometric semantic operators. These new operators run directly in
the space of the underlying semantics (outputs) of the individuals which induces a
unimodal error surface for any supervised learning problem (Gongalves et al., 2015b).
This means that the SLM shares the same semantic landscape properties as GSGP

which contains no local optima.
Definition 3.1.1. Geometric Semantic Mutation (GSM)
TM =T+ms e (TR]- — TRZ)

Where T is a parent function T : R” — R, Tl and T2 are random real functions in
the codomain [0,1] and ms is a parameter called mutation step, responsible for the

degree of change on the semantics.

The Semantic Learning Machine, by inheriting GSGP’s unimodal error landscape,
assures that the search is performed on a surface with no local optima. This means that
it is possible for the SLM algorithm to be a Geometric Semantic Hill Climber (GSHC)
for feedforward Neural Networks: the search process revolves around one individual
(the best one) and, through the mutation operator, a sample of Neural Networks is
produced at each generation and from those, the best one is selected replacing the
current best if it is better than it. Figure 3.1 shows the application of said mutation

operator. The SLM algorithm can be summarized in the following steps:

11

CHAPTER 3. SEMANTIC LEARNING MACHINE

1. Generate N initial random NNis;

2. Choose the best NN (B) from the initial random NNs, according to the selected

performance criterion;
3. Repeat the following steps until a given stopping criterion is met:

a) Apply the geometric semantic mutation to the current best (B) N times to

generate N new NNs (known as children or neighbors);
b) Update B as being the NN with the best performance according to the se-

lected criterion, considering the current B and the N newly generated NNs;

4. Return B as the best performing NN according to the selected performance crite-

rion.

Parent Neural Network Random Neural Network

Resulting Neural Network

Figure 3.1: An example of an application of the GSM operator Gongalves, 2017

The initial random neural networks can have any number of layers and neurons.
Both the activation functions and weights in the connections between the neurons
can be freely selected. Just like many other Neuroevolution algorithms, the SLM does
not use backpropagation to adjust the weights of the neural networks. The key point
of this algorithm is the definition of the geometric semantic mutation which adds

new neurons to the already existent ones in the hidden layers. Each new neuron

12

3.2. PREVIOUS COMPARISONS WITH OTHER NEUROEVOLUTION
METHODS

can choose from which already available unit will receive a connection. This implies
that the neural network does not need to be fully-connected and its sparseness can
be controlled by establishing the number of incoming connections each neuron will
receive considering the set of all possible incoming connections. Like in the initial step,
the weights of each connection can be freely chosen. One of the main aspects about
this mutation is the fact that new processing units do not feed their computations to
existing neurons with the exception of the output neuron.

More recently, Gongalves, Silva, Fonseca, and Castelli, 2017 developed two stop-
ping criteria for SLM based on the information gathered on the semantic neighborhood
(the set of new models generated after the mutation): Error Deviation Variation (EDV)
and Training Improvement Effectiveness (TIE). The EDV stopping criterion measures
the percentage of solutions that reduce the error deviation (sample standard deviation
of the absolute errors of an individual over the training instances) in comparison with
the error deviation of the current best model, within the individuals that are better
than the current best. The TIE criterion measures the effectiveness of the mutation op-
erator. Within the sample of generated individuals, it gives the percentage of solutions
which are better than the current best. In both criteria, if the percentages are smaller
than a given threshold (parameter), the search process stops, avoiding overfitting and
contributing to a more computationally efficient algorithm. Furthermore, in Gongalves
et al., 2017, an Optimal Learning Step (OLS), calculated at each application of the mu-
tation operator and based on the Moore-Penrose inverse, was tested rather than relying
only on a Fixed Learning Step (FLS). This OLS computation was adapted from the
optimal mutation step computation used in GSGP proposed by Gongalves, Silva, and

Fonseca, 2015a.

3.2 Previous Comparisons with Other Neuroevolution
Methods

Combining the aforementioned factors with its original characteristics makes the SLM
a promising and competitive algorithm when compared with the popular NEAT algo-
rithm, fixed-topology neuroevolution approaches and other matured ML algorithms
like Multilayer Perceptron (MLP) and Support Vector Machine (SVM) (Jagusch et al.,
2018). This experiment was performed on nine real world free data sets (five classifi-
cation and four regression data sets), taken from the UCI Machine Learning Reposi-
tory (Lichman, 2013). Results showed that, in terms of learning, the SLM was superior,
with statistically significant differences, in comparison to the other neuroevolution
methods in all the data sets considered. In this work, the best SLM variant was, un-
surprisingly, the one generated with the optimal learning step. Focusing specifically
on the comparison with NEAT and in the generalization performance, in eight of the

nine tasks, the Semantic Learning Machine was able to achieve statistically significant

13

CHAPTER 3. SEMANTIC LEARNING MACHINE

differences. In the other data set, no statistically significant difference was found. Be-
sides this, the SLM variant generated with the OLS and with the Semantic Stopping
Criterion EDV achieved smaller neural networks and was able to reach speed-ups of

various orders of magnitude over NEAT on several data sets.

14

CHAPTER

EXPERIMENTAL METHODOLOGY

4.1 Data sets

In this experimental study, fifteen real-world binary classification data sets were con-
sidered. These were pulled from the Penn Machine Learning Benchmark (PMLB) (Orze-
chowski, Cava, & Moore, 2018) repository, which contains a large collection of stan-
dardized data sets for classification and regression problems. In this work only classi-
fication tasks were considered. A more detailed description of the data sets as well as
the objective for each one of them can be found in Table A.1. Table 4.1 and Figure 4.1
present the number of features (input variables), the number of instances (observa-

tions), and the % of class 1 instances in each of the thirteen problems under study.

Features
e ® 5] N} = >
3 3 3 S S 3

IS
S

N
S

0
0 1000 2000 3000 4000 5000 6000 7000 8000
Instances

Figure 4.1: Characteristics of the binary classification data sets considered

It is of relevance to mention that some of the data sets, such as clean1 and clean?2

15

CHAPTER 4. EXPERIMENTAL METHODOLOGY

Data set Features Instances % of class 1 instances
agaricus-lepiota 22 8145 ~ 48%
breast-cancer-wisconsin 30 569 ~ 37%
cleanl 168 476 =~ 43%
clean2 168 6598 ~ 14%
credit-g 24 1000 ~ 64%
diabetes 8 768 ~ 35%
hill-valley-with-noise 100 1212 ~ 50%
hill-valley-without-noise 100 1212 ~ 50%
sonar 60 208 =~ 47%
ionosphere 34 351 ~ 64%
kr-vs-kp 36 3196 ~ 52%
molecular-biology-promoters 58 106 ~ 50%
spambase 57 4601 ~ 39%
spectf 44 349 ~ 73%
tokyol 44 959 ~ 64%

Table 4.1: Binary classification data sets considered

and hill-valley-with-noise and hill-valley-without-noise contain the same kind of data,
however, differ in terms of number of instances and noise, respectively, which pose

different challenges to the algorithms under test.

4.2 Methods and Parameter Tuning
The base configuration for the SLM is the following:

— In the initial population, each NN is generated with a random number of hidden

layers selected between 1 and 5;

— In the initial population, each NN contained in each hidden layer is generated

with a random number of neurons selected between 1 and 5;

— Each hidden neuron randomly selects its activation function from the following

options: Logistic, Relu, and Tanh;

— Each hidden neuron randomly selects the weight of each incoming connection
from values within [-mncw, mncw], where mncw represents the maximum neuron

connection weight parameter (subject to parameter tuning);

— Each hidden neuron randomly selects the weight of its bias from values in the
range [-mbw, mbw], where mbw represents the maximum bias weight parameter

(also subject to parameter tuning);

— Each time a new NN is created by the mutation operator, the number of new

neurons to be added to each layer is randomly selected between 1 and 3.

16

4.2. METHODS AND PARAMETER TUNING

The main differences between the SLM variants under study are the following;:
* The strategy to choose the learning step where two options are considered:

— Calculate the Optimal Learning Step (OLS), previously mentioned, for each

application of the mutation operator;

— Use a Bounded Learning Step (BLS) where there is an additional parameter
which establishes the maximum learning step (mls) restricting the learning
step. At each application of the mutation operator, the effective learning

step is randomly assigned a value from the range [-mls, mls].

* The type of dynamic selection of training examples (if applicable) in which two

methods are taken into account:

— Random selection from a subset of data at each iteration and calculate the
performance of each solution with this new subset, denominated Random
Sampling Technique (RST) following (Gongalves & Silva, 2013; Gongalves,
Silva, Melo, & Carreiras, 2012) and based on (Y. Liu & Khoshgoftaar, 2004);

— Use the full data set but choose weights, between 0 and 1, for each record
and change these weights at each iteration. In this work, this process is
referred as Random Weighting Technique (RWT).

* The stopping criterion to decide the ending of the learning process where two

approaches are considered:

- Ending based on a fixed number of iterations;

— Ending based on EDV or TIE, two Semantic Stopping Criteria introduced
in (Gongalves et al., 2017) and previously explained.

Taking the aforementioned aspects into account, the SLM variants are grouped and
denominated in the following way:

1. BLS variants: SLM-BLS, SLM-BLS + RST, and SLM-BLS + RWT
2. OLS variants: SLM-OLS, SLM-OLS + RST, and SLM-OLS + RWT
3. BLS + TIE/EDV: SLM-BLS + TIE/EDV

4. OLS + EDV: SLM-OLS + EDV

Whenever the SLM-BLS or SLM-OLS methods are mentioned by themselves it
means that the variants which do not use either of the sampling/weighting techniques
are being referred. In this experiment it is followed a K-Fold Cross Validation (CV)
methodology where a 30-fold outer CV is used to obtain 30 final generalization values

(test set values) to perform statistical validation for the methods under comparison.

17

CHAPTER 4. EXPERIMENTAL METHODOLOGY

For each of the outer training fold, a 2-fold inner CV is used to apply parameter tuning
in each method.

In turn, the Multilayer Perceptron (MLP), trained with backpropagation is also
evaluated in two different variants: the most common Stochastic Gradient Descent
(SGD) (Kiefer & Wolfowitz, 1952; Nikolopoulos & Fellrath, 1994), and the Adaptive
Moment Estimation (Adam) SGD variant (Kingma & Ba, 2014). Both algorithms are
allowed to test 72 random parameter combinations in the inner CV. The SLM tests
18 parameter combinations for each of the groups considered while the MLP tests 36
parameter configurations for each of the two variants taken into account.

All the SLM variants can tune the maximum neuron connection weight (mncw)
and the maximum bias weight (mbw) in the interval [0.1, 0.5]. The BLS variants and
the BLS + TIE/EDV can tune the maximum learning step (mls) in the range [0.1 and
2], and the number of iterations in the range [1, 100]. The BLS and OLS variants are
allowed to select with equal probability the use of RST, RWT or none. BLS + TIE/EDV
selects with equal probability the use of EDV or TIE as the Semantic Stopping Criterion.
Whenever RST is used, the parameter that defines the ratio of the total training data
to be considered — the subset ratio — is chosen from the interval [0.01, 0.99].

For SGD and Adam, the following parameters are tuned:
— The number of iterations in the range [1, 100]

— The batch size between 50 and the maximum number of training instances avail-
able

— The activation function to be used in the hidden layers: Logistic Relu, and Tanh
— The number of hidden layers in the range [1, 5]

— The number of hidden neurons per layer in the range [1, 200]

— The learning rate in the range [0.1, 2]

— The L2 penalty in the range [0.1, 10]

SGD can also select the momentum in the interval [0.0000001, 1] and decide to
use or not the Nesterov’s momentum. Adam can also select the beta 1 and beta 2

parameters in the range [0, 1[.

18

CHAPTER

REsULTS AND ANALYSIS

This chapter analyses the results obtained in the experimental step. Section 5.1 presents
the results reached by the different SLM variants, analyzing the performance achieved
on the validation set and discussing some aspects related to the parameter selection.
Afterwards, Section 5.2 shows the results obtained by the MLP variants in the same
considered tasks and discusses the key differences between the two algorithms consid-
ered. Section 5.3 compares SLM and MLP after the best configuration was found and,
finally, Section 5.4 digs deeper in the generalization performance of the SLM under

different ensemble construction methods.

5.1 SLM Variants

This section presents the results obtained when considering the different variants in
the SLM group. The discussion starts off by delving in the validation Area Under
Receiver Operating Characteristic (AUROC) curve values generated by the SLM vari-
ants under study. The results can be found in Table 5.1. For each task and for each
technique, the table reports the mean and standard deviation of the validation AU-
ROC generated by the best model in each inner cross-validation process, which was
performed to determine the best set of hyperparameters. Table 5.2 suggests that the
OLS variants achieved the best results in every task considered. In fact, in 9 out of
the 15 considered problems, the OLS variant was always the selected one. Only in one
of the problems — molecular-biology-promoters — it is possible to find a slightly more
varied distribution of the selected variants: three for BLS, five for BLS + TIE/EDV,
six for OLS + EDV and sixteen for OLS, the lowest value registered for this variant.
BLS + TIE/EDV achieved the weakest results in every data set amongst the consid-
ered variants. A reasonable explanation could be that the number of iterations is not

19

CHAPTER 5. RESULTS AND ANALYSIS

Data set BLS + TIE/EDV OLS variants BLS variants OLS + EDV

agaricus-lepiota 0.790 +- 0.048 0.966 +- 0.007 0.894 +-0.022 0.869 +- 0.014
breast-cancer-wisconsin 0.839 +- 0.052 0.940 +- 0.006 0.910 +- 0.010 0.892 +- 0.018
cleanl 0.632 +-0.047 0.788 +- 0.016 0.704 +- 0.035 0.711 +- 0.032
clean2 0.848 +- 0.008 0.937 +- 0.005 0.867 +- 0.015 0.878 +-0.011
credit-g 0.704 +- 0.003 0.727 +- 0.006 0.717 +- 0.006 0.715 +- 0.004
diabetes 0.720 +- 0.017 0.776 +- 0.006 0.768 +- 0.006 0.767 +- 0.007
hill-valley-without-noise 0.636 +- 0.106 0.934 +- 0.020 0.733 +- 0.054 0.757 +- 0.034
hill-valley-with-noise 0.609 +- 0.074 0.836 +- 0.024 0.677 +- 0.056 0.727 +- 0.017
ionosphere 0.766 +- 0.035 0.909 +- 0.010 0.871 +- 0.017 0.848 +- 0.012
kr-vs-kp 0.668 +- 0.049 0.946 +- 0.004 0.873 +-0.032 0.873 +-0.028
molecular-biology-promoters 0.850 +- 0.052 0.909 +- 0.022 0.870 +- 0.037 0.901 +- 0.026
sonar 0.634 +- 0.031 0.777 +- 0.026 0.734 +- 0.037 0.723 +-0.031
spambase 0.770 +- 0.030 0.919 +- 0.004 0.851 +- 0.021 0.856 +-0.019
spectf 0.728 +-0.002 0.797 +- 0.018 0.751 +- 0.019 0.738 +- 0.010
tokyol 0.772 +-0.040 0.914 +- 0.004 0.881 +-0.017 0.866 +-0.012

Table 5.1: Validation AUROC for each SLM variant considered

enough for the Semantic Stopping Criterion to have an impact under the utilization
of a Bounded Learning Step on the considered problems. In general, the OLS group
(OLS variants and OLS + EDV) was able to achieve a higher AUROC in comparison
with the BLS group (BLS variants and BLS + TIE/EDV). The results can be summed

up in the following way:

1. Amongst the BLS group, BLS + TIE/EDV always achieved a lower value than the

BLS variants;

2. Amongst the OLS group, the OLS variants were always the best performer re-

gardless of the considered benchmark;

3. The OLS variants seem like the most suitable choice for the classification tasks

considered.

In particular, for the hill-valley data sets, results suggest that all the variants are able
to perform better on the problem without noise. As for the clean benchmarks, it looks
like the SLM is negatively impacted by having less observations to train the model:
the SLM achieves better results in clean2 which contains more instances and is less
imbalanced.

The subsequent analysis considers the mean value of iterations obtained for each
SLM variant and is based on Table 5.3. In 9 out of the 15 tasks considered, the OLS
variants which were previously considered the most suitable choice, present a higher
number of iterations. In the six remaining benchmark problems, the BLS variants
take superior values, which is expected since these do not use any Semantic Stopping

Criterion or Optimal Learning Step. These two groups of variants present a number

20

5.1.

SLM VARIANTS

Data set BLS variants OLS variants BLS + TIE/EDV OLS + EDV

agaricus-lepiota 0 30 0 0

breast-cancer-wisconsin 0 30 0 0

cleanl 1 29 0 0

clean2 0 30 0 0

credit-g 4 26 0 0

diabetes 2 23 0 5

hill-valley-without-noise 0 30 0 0

hill-valley-with-noise 0 30 0 0

ionosphere 0 30 0 0

kr-vs-kp 0 30 0 0

molecular-biology-promoters 3 16 5 6

sonar 1 26 0 3

spambase 0 30 0 0

spectf 2 28 0 0

tokyol 0 30 0 0

Table 5.2: Best SLM configuration by variant

Data set BLS + TIE/EDV OLS variants BLS variants OLS + EDV
agaricus-lepiota 50.500 +- 129.126 419.167 +- 59.887 369.667 +- 95.644 3.567 +- 3.126
breast-cancer-wisconsin 23.967 +-79.003 330.200 +- 94.672 375.967 +- 92.992 1.167 +- 0.531
cleanl 15.000 +- 34.339 350.033 +- 82.854 325.700 +-110.046 8.967 +- 29.432
clean2 3.933 +- 4.828 424.767 +- 46.555 335.467 +-129.398 5.233 +- 6.383
credit-g 3.767 +- 5.164 313.900 +-123.399 301.333 +-137.811 2.367 +- 0.850
diabetes 7.700 +- 26.761 285.133 +- 142.049 330.033 +-111.033 1.467 +- 0.973
hill-valley-without-noise 13.800 +- 21.335 413.867 +- 65.554 351.400 +- 97.820 7.800 +- 5.845
hill-valley-with-noise 15.900 +- 19.361 405.533 +- 84.233 344.733 +- 99.606 26.933 +- 24.669
ionosphere 23.333+-91.975 333.833 +-93.222 354.000 +- 108.958 2.533 +- 1.889
kr-vs-kp 20.533 +-90.701 411.400 +-71.944 376.800 +- 88.220 7.333 +- 5.054
molecular-biology-promoters 12.200 +- 18.817 278.567 +- 131.946 313.933 +-132.128 2.533 +- 1.737
sonar 3.133 +- 2.569 339.400 +- 105.707 373.900 +- 106.740 2.800 +- 4.046
spambase 14.600 +- 55.260 412.533 +- 76.270 343.000 +- 109.710 2.767 +- 2.635
spectf 1.833 +-1.392 355.567 +-102.266 293.700 +- 134.954 2.433 +-1.006
tokyol 9.667 +- 34.948 353.933 +-92.118 363.100 +- 114.439 3.333 +-4.444

Table 5.3: Number of iterations for each SLM variant considered

of iterations significantly larger when compared with the other groups. Specifically,

laying the OLS variants next to the OLS + EDV variant, it is possible to verify that

the number of iterations of the latter is way lower. Using the Optimal Learning Step

allows OLS + EDV to achieve a reasonably good performance in every benchmark even

if it never surpasses the winner OLS variant. To sum up, the results suggest that using

a Semantic Stopping Criterion has a positive impact when it comes to decreasing the

computational effort in the training phase, however, it might not be enough to obtain

the best overall performance.

Focusing specifically on the different Semantic Stopping Criteria, Table 5.4 shows

21

CHAPTER 5. RESULTS AND ANALYSIS

Dataset EDV TIE
agaricus-lepiota 22 8
breast-cancer-wisconsin 18 12
cleanl 21 9
clean2 18 12
credit-g 17 13
diabetes 23 7
hill-valley-without-noise 22 8
hill-valley-with-noise 25 5
ionosphere 19 11
kr-vs-kp 23 7
molecular-biology-promoters 17 13
sonar 21 9
spambase 19 11
spectf 15 15
tokyol 17 13

Table 5.4: EDV and TIE use in SLM-BLS

the distribution of using the EDV and TIE techniques in the SLM BLS variant. Accord-
ing to the presented values, we can clearly conclude that the EDV strategy is more
efficient than the TIE one in the benchmarks considered. In 14 out of the 15 data sets,
EDV was superior. In the remaining one — spectf — the results are even.

A further analysis takes into account the impact of using the random weighting/sam-
pling techniques when combined with the SLM variants. Results of this analysis are
shown in Table 5.5 where the distribution of using RST, RWT, and the complete data
set (None) are compared in the context of the BLS and OLS variants. For the OLS
variants, the table suggests that using the complete training set is actually more effec-
tive than relying on one of the weighting/sampling techniques. Only in two of the
problems considered - clean2 and molecular-biology-promoters - the RWT is the favorite
selection. In two other benchmarks - ionosphere and tokyol - the distribution between
using the full set of observations and RWT is even. For the OLS variants, RST does
not seem like an effective option as it is always selected the least number of times. In
the BLS variants, the results are slightly more varied: using the complete data set is
preferred in six of the considered tasks, RWT is selected in five of the problems and
RST the favorite in two of the benchmarks.

5.2 MLP Variants

This section presents and discusses the results for the MLP variants considered: Adam
and SGD. The first part of the analysis is based on Table 5.6 which shows the perfor-
mance of the models achieved on the validation set. The results suggest that Adam is

the better performer in 7 out of the 15 considered data sets. For the remaining two

22

5.2. MLP VARIANTS

Dataset OLS variants BLS variants
None RST RWT None RST RWT

agaricus-lepiota 14 10 6 9 8 13
breast-cancer-wisconsin 16 2 12 6 9 15
cleanl 14 3 13 18 2 10
clean2 10 7 13 11 14 5
credit-g 17 4 9 13 9 8
diabetes 16 7 7 14 8 8
hill-valley-without-noise 14 8 8 9 9 12
hill-valley-with-noise 21 4 5 7 11 12
ionosphere 12 6 12 9 12 9
kr-vs-kp 18 5 7 7 8 15
molecular-biology-promoters 12 4 14 15 3 12
sonar 15 6 9 15 4 11
spambase 18 6 6 7 11 12
spectf 16 2 12 17 6 7
tokyol 14 2 14 13 10 7

Table 5.5: RST and RWT use in the BLS and the OLS variants

- credit-g and spectf — the value was the same for both variants. The choice between
one variant or the other seems to be balanced and the values suggest that tending to
one or the other might be problem dependent. In addition to these results, Table 5.7
presents the best MLP configuration per variant where it is possible to verify that out
of the 15 problems considered, Adam outperforms SGD in 9 of them. In fact, for the
spectf data set, the SGD variant is never selected. The opposite perspective can also be
found in the diabetes data set where Adam was never selected. At this point, it is of
extreme importance to compare the results present in Table 5.6 (obtained with MLP)
with the ones available in Table 5.1 (obtained with SLM). Considering these results,
the SLM variants are capable of outperforming the best MLP variant in 11 out of the
15 classification tasks under study - for spectf, the weakest AUROC value is the same in
both algorithms. This comparison clearly shows how superior the Semantic Learning
Machine is in creating models with a better validation AUROC when compared to MLP.
In general, the SLM is a competitive option to take into account in these classification
tasks since its performance is significantly better than the best MLP variant in more
than 70% of the benchmarks considered.

When comparing these two methods it is also of major relevance to take into ac-
count the number of iterations necessary to obtain the final solution. Table 5.8 shows
the number of iterations for each MLP variant considered. As seen previously, the
SLM was able to generate the final classification model in a significantly low number
of iterations when making use of a Semantic Stopping Criterion. These values are
considerably lower than the ones achieved by Adam and SGD which are based on the
backpropagation algorithm. This lower number of iterations does not seem to have a

negative impact on the performance of the final solutions as these SLM variants are

23

CHAPTER 5. RESULTS AND ANALYSIS

Data set Adam SGD

agaricus-lepiota 0.669 +- 0.125 0.857 +- 0.112
breast-cancer-wisconsin 0.690 +- 0.081 0.631 +- 0.014
cleanl 0.615 +-0.053 0.581 +- 0.035
clean2 0.855 +-0.020 0.852 +- 0.016
credit-g 0.700 +- 0.002 0.700 +- 0.001
diabetes 0.681 +- 0.034 0.762 +- 0.021
hill-valley-without-noise 0.513 +- 0.009 0.509 +- 0.007
hill-valley-with-noise 0.512 +-0.011 0.503 +- 0.004
ionosphere 0.789 +- 0.060 0.827 +- 0.064
kr-vs-kp 0.678 +- 0.158 0.879 +- 0.133
molecular-biology-promoters 0.737 +- 0.088 0.632 +- 0.116
sonar 0.550 +- 0.018 0.579 +- 0.062
spambase 0.663 +- 0.055 0.621 +- 0.036
spectf 0.728 +- 0.001 0.728 +- 0.001
tokyol 0.651 +- 0.018 0.690 +- 0.058

Table 5.6: Validation AUROC for each MLP variant considered

Data set Adam SGD
agaricus-lepiota 4 26
breast-cancer-wisconsin 25 5
cleanl 27 3
clean2 19 11
credit-g 29 1
diabetes 0 30
hill-valley-without-noise 25 5
hill-valley-with-noise 23 7
ionosphere 10 20
kr-vs-kp 7 23
molecular-biology-promoters 27 3
sonar 16 14
spambase 24 6
spectf 30 0
tokyol 14 16

Table 5.7: Best MLP configuration by variant

24

5.3. GENERALIZATION ANALYSIS

Data set

Adam

SGD

agaricus-lepiota

240.633 +- 157.372

292.667 +- 134.730

breast-cancer-wisconsin

270.600 +- 133.376

230.633 +- 175.833

cleanl

311.033 +- 138.915

212.600 +- 145.270

clean2

271.833 +-156.325

238.267 +- 149.608

credit-g

218.200 +- 137.295

273.267 +- 140.189

diabetes

213.033 +- 135.064

230.133 +- 118.258

hill-valley-without-noise

231.333 +-153.482

255.733 +- 136.781

hill-valley-with-noise

269.900 +- 137.863

272.500 +- 140.118

ionosphere

203.100 +- 148.262

276.767 +- 116.114

kr-vs-kp

259.933 +-157.215

281.767 +- 123.694

molecular-biology-promoters

235.733 +- 154.893

201.667 +- 103.557

sonar

254.500 +- 142.140

240.467 +- 134.315

spambase

243.733 +- 126.503

286.033 +- 128.667

spectf

301.300 +- 117.290

298.967 +- 140.357

tokyol

226.600 +- 151.842

277.467 +- 130.240

Table 5.8: Number of iterations for each MLP variant considered

able to outperform MLP in 10 out of the 15 considered benchmarks: OLS + EDV is
only outperformed by MLP in one data set (kr-vs-kp) and BLS + TIE/EDV is worse than
MLP in five tasks (agaricus-lepiota, clean2, diabetes, ionosphere and kr-vs-kp). When
comparing the best SLM performer with both MLP variants it is possible to conclude
that the OLS variants need more iterations to achieve a better validation AUROC value.
To better understand the main differences between Adam and SGD, Table 5.9 presents
how the activation functions were used throughout the two variants. According to
these values, the Adam variant has a clear preference for selecting the ReLu activation
function, except in three of the problems - credit-g, hill-valley-without-noise and spectf
- in which for credit-g and hill-valley-without-noise the Tanh activation function is the
preferred one by five and four times, respectively. For spectf the Logistic activation
function is the favorite one by two times. SGD shows much more distributed values
across the three different types of activation functions: the Logistic function is the
preferred one in six of the problems, ReLu is selected over the others in five of the

tasks and Tanh is preferred in the remaining four considered benchmarks.

5.3 Generalization Analysis

This section provides an assessment of the generalization (i.e., the performance achieved
on test set over the 30 outer folds) of SLM and MLP taking into account the best config-
uration after the parameter tuning phase. Figures 5.1 and 5.2 show the AUROC values
for both algorithms in the form of boxplots. In each box, the middle mark represents
the median, while the edges represent the first and third quartile (25th percentile and
75th percentile, respectively). The whiskers extend to the most extreme observations

25

CHAPTER 5. RESULTS AND ANALYSIS

Dataset Adam SGD
Logistic Relu Tanh Logistic Relu Tanh

agaricus-lepiota 5 20 5 17 8 5
breast-cancer-wisconsin 10 16 4 5 19 6
cleanl 4 22 4 6 15 9
clean2 10 14 6 14 7 9
credit-g 11 7 12 13 9 8
diabetes 1 17 12 0 13 17
hill-valley-without-noise 5 11 14 10 11 9
hill-valley-with-noise 6 15 9 13 12 5
ionosphere 2 26 2 3 16 11
kr-vs-kp 8 16 6 3 10 17
molecular-biology-promoters 2 24 4 12 7 11
sonar 11 13 6 2 15 13
spambase 10 19 1 13 14 3
spectf 21 4 5 21 2 7
tokyol 7 19 4 8 4 18

Table 5.9: Activation functions use by MLP variant

which are not considered outliers. Any record out of those whiskers is considered an
outlier.

These results show that the SLM achieved better results in 9 out of the 15 considered
data sets: breast-cancer-wisconsin, clean1, hill-valley-with-noise, hill-valley-without-noise,
molecular-biology-promoters, sonar, spambase, spectf and tokyol. For agaricus-lepiota,
MLP achieved a better median value, however, it shows a lot of variability. For clean2,
credit-g, diabetes and ionosphere, the test AUROC values are very similar but in general,
in these cases, SLM presents a higher value of outliers. There is only one benchmark —

kr-vs-kp — where MLP clearly outperforms the Semantic Learning Machine algorithm.

To assess the statistical significance of these results, a set of statistical tests is ap-
plied. First, a Kolmogorov-Smirnov test is performed to evaluate whether these values
come from a normal distribution. The outcome of this test (present in 5.10) suggests
that the alternative hypothesis (i.e., the data do not come from a normal distribution)
cannot be rejected considering a significance level () of 0.05 and consequently, a rank-
based test like the Mann-Whitney U test is selected for the next step. In this case, the
null hypothesis states that both samples have equal means and thus no statistically sig-
nificant difference between the two models. Just like in the previous test, considering
a significance level of 0.05, the results indicate that the SLM algorithm outperforms
MLP in 13 out of the 15 classification problems. The p-values for these comparisons
may be found in Table 5.11.

26

5.3. GENERALIZATION ANALYSIS

Test AUROC for SLM and MLP - agaricus-lepiota

Test AUROC for SLM and MLP - breast-cancer-wisconsin

10 10
— "7
——
‘ 09
09
08
08
8 Sor
g g
E E]
2 2
07
06
06 0s
05 ! 04
B VP Ex) MP
Test AUROC for SLM and MLP - cleant » Test AUROC for SLM and MLP - clean2
10
09
09 s
s 07
o o
8 goe
Sor E]
2 205
06 04
03
05
02
04
B P EX] P
Test AUROC for SLM and MLP - credit-g Test AUROC for SLM and MLP - diabetes.
09
08
‘ ‘ os
o | | |
07 \
9 o
j-had 8
E g
2 206
05
05
04
04
03
£ g EX) LP
Test AUROC for SLM and MLP - Hill_Valley_with_noise Test AUROC for SLM and MLP - Hill_Valley_without_noise
. 10
09
09
os | |
08
Q Q
397 3
g g
g g
< o7
06
06
05
05
04

Figure 5.1: Boxplots for test set AUROC values of SLM and MLP: agaricus-lepiota,
breast-cancer-wisconsin, cleanl, clean2, credit-g, diabetes, hill-valley-with-noise, hill-

valley-without-noise

27

CHAPTER 5. RESULTS AND ANALYSIS

Test AUROC for SLM and MLP - ionosphere Test AUROC for SLM and MLP - kr-vs-kp
10 — 10 [—
—
i |
09 L |
-
09
[I
08
07 08
o 9
3 o
Sos]
< <07
05
06
04
03 s ‘
'
£ ML B MLP
Test AUROC for SLM and MLP - molecular-biology_promoters Test AUROC for SLM and MLP - sonar
10 10 —
09
09
08
08
07
8 8
E So7 ‘
208 2
05
06
e
04 ‘ ‘
05
03
04
StM [B MLP
Test AUROC for SLM and MLP - spambase Test AUROC for SLM and MLP - spectf
09
]
1
o9 08
P]
07
08
8 8os
g g
E]]
2 2
07 0
| 04
06
03
05
Ex) WP B VP

Test AUROC for SLM and MLP - tokyol

Figure 5.2: Boxplots for test set AUROC values of SLM and MLP: ionosphere, kr-vs-kp,
molecular-biology-promoters, sonar, spambase, spectf, tokyol

28

5.3. GENERALIZATION ANALYSIS

Table 5.10: p-values of Kolmogorv-Smirnov tests over test set AUROC values of SLM

and MLP

Table 5.11: p-values of Mann-Whitney U-tests over test set AUROC values of SLM and

MLP

Data set p-value (SLM) p-value (MLP)
agaricus-lepiota 1.059x10722 1.621x107 1%
breast-cancer-wisconsin 5.569 x 10717 1.222x 10712
cleanl 6.240x1071® 1.268x 10713
clean2 3.146x10722 7.002x 107"
credit-g 2.890x 10717 1.792x 107!
diabetes 6.912x 10716 6.989 x 107 1°
hill-valley-with-noise 2.861x10°15 2.844x10713
hill-valley-without-noise 2.159x 10717 2.091x1071%
sonar 1.502x 1077 1.267x10713
ionosphere 2.890x 10717 7.642x 10712
kr-vs-kp 1.890x10722 1.250x 1071
molecular-biology-promoters 7.983 x 1078 2.844x 10713
spambase 2.533x107%! 4.052x 1071
spectf 6.981x10°17 8.288x 107!
tokyol 4.050x1072% 4.601x 107!

Data set p-value

agaricus-lepiota 2.537x 107>
breast-cancer-wisconsin 6.493 x 10710
clean1 8.189x 1077
clean2 2.963x107°
credit-g 1.503x 1073
diabetes 1.312x107"
hill-valley-with-noise 5.572x 10712
hill-valley-without-noise 9.472x 10712
sonar 1.502x 1077
ionosphere 4.639x107%
kr-vs-kp 2.744x 1071
molecular-biology-promoters 9.989 x 107°
spambase 1.448 x 10711
spectf 2.881x107%
tokyol 8.366x 10710

29

CHAPTER 5. RESULTS AND ANALYSIS

5.4 Ensemble Analysis

This section consists in the study of applying different ensemble construction methods
when using the SLM and the MLP as a base learner. Bagging (Breiman, 1996) and
Boosting (Drucker, 1997) are compared with a common simple averaging construction
method which trains the base learner N times without altering the training set. These
three methods of building ensembles are used to create ensembles of 30 NNs using
the SLM as a base learner. In the case of Boosting, four variations of the AdaBoost.R2

were used and labeled in the following way:

* Boosting-1: weighted median prediction and fixed learning rate of 1

* Boosting-2: weighted median prediction and variable learning rate selected ran-

domly in the interval [0, 1] for each new NN added to the ensemble
* Boosting-3: weighted mean prediction and fixed learning rate of 1

* Boosting-4: weighted mean prediction and variable learning rate selected ran-

domly in the interval [0, 1] for each new NN added to the ensemble

5.4.1 SLM as a base learner

Figures 5.3 and 5.4 present the boxplots for the test set AUROC values of each ensemble
construction method considered: Simple (averaging), Bagging and the four Boosting
variants. Results suggest that in general, the six approaches considered behave not too
differently. In terms of the median AUROC value, both the simple averaging method
and the bagging approach achieve higher values in four of the data sets: agaricus-lepiota,
hill-valley-with-noise, hill-valley-without-noise, kr-vs-kp, sonar and spambase. Both these
construction methods outperform the remaining approaches in one of the classification
tasks: the simple averaging ensemble method in spectf and bagging in clean1. It seems
that the stochastic nature of the SLM confers enough diversity to the base learner in
its search process in a way that even a simple averaging method is able to perform
well without having to delve into more detailed intricacies inherent of the bagging and
boosting approaches.

It is interesting to see that for the hill-valley benchmark problems, results are more
concentrated on higher values for the version without noise, while for the task with
noise, results show a higher variability. Nonetheless, as mentioned previously, the
simple averaging method and bagging achieve a better performance on both of the
challenges. The same analysis can be performed for the clean data sets. As seen
previously, the SLM achieves better results in the version with more instances even if

this means that the data set is more imbalanced.

30

5.4. ENSEMBLE ANALYSIS

SLM Testing AUROC for different ensemble techniques - agaricus-lepiota SLM Testing AUROC for different ensemble techniques - breast-cancer-wisconsin

e EEEE

\
0s
g 3 .
g gos
094 ‘ 14
2 2
092 04
S S e e ey et S S et mwer ey Bt
SLM Testing AUROC for different ensemble techniques - clean1 SLM Testing AUROC for different ensemble techniques - clean2

T T ‘ = —= = ==

— 09
09

8 8%

gor . g

g £

2 ES

‘ 06
06
i .
05 . 05
04 04
Simple Bagging Boosting-1 Boosting2 Boosting-3. Boosting4 Simple Bagging Boosting1 Boosting 2 Boosting 3 Boosting4
SLM Testing AUROC for different ensemble techniques - credit-g SLM Testing AUROC for different ensemble techniques - diabetes
oss T -1 . -1 -1 -1 -1 -1 -1
050
080 085
075 080
o Q
7
om0 Sors
S S
2 2
070
065
065
[I
i . 060 — . —1
055 B
055
Simple Bagging Boosting-1 Boosting2 Boosting3 Boosting4 Simple. Bagging Boosting-1 Boosting 2 Boosting 3 Boosting4
SLM Testing AUROC for different ensemble techniques - Hill_Valley_with_noise SLM Testing AUROC for different ensemble techniques - Hill_Valley_without_noise

100 . .
00 o i: i:
095 — N N
08
090
o . 8
° Sor
4 . g
2085 . H 2
. . 06
080
05
075 —
04 .
Smple Bagging Boosting-1 Boosting2 Boosting3 Boosting 4 Simple Bagging Boosting1 Boosting 2 Boosting 3 Boosting 4

Figure 5.3: Boxplots for test set AUROC values of each ensemble construction method
considered: agaricus-lepiota, breast-cancer-wisconsin, cleanl, clean2, credit-g, dia-
betes, hill-valley-with-noise, hill-valley-without-noise

31

CHAPTER 5. RESULTS AND ANALYSIS

SLM Testing AUROC for different ensemble techniques - ionosphere. SLM Testing AUROC for different ensemble techniques - kr-vs-kp
1.00 —_ [[
0.98
095
090 096
085

Q
S
]
Zos80
075 092
090 1 L

065
Simple Bagging Boosting-1 Boosting2 Boosting3, Boosting4 Simple Bagging Boosting-1 Boosting2 Boosting3 Boosting-4
SLM Testing AUROC for different ensemble techniques - molecular-biology_promoters SLM Testing AUROC for different ensemble techniques - sonar
10 10
09 09
08 08
Q Q
go7 gor
€ &
3 E}
z 2
08 06
05 05 ‘
04 04
03 03
Simple. Bagging Boosting-1 Boosting2 Boosting3 Boosting4. Simple Bagging Boosting-1 Boosting2 Boosting-3. Boosting-4
SLM Testing AUROC for different ensemble techniques - spambase SLM Testing AUROC for different ensemble techniques - spectf

- 1 m ‘ ‘ ‘

094 -1 . 08 ‘ ‘

092
08
o
Som | | 8
€ g
2 1 207
088 B
l 1 06
086 ,
084 . 05
Simple Bagging Boosting-1 Boosting2 Boosting3 Boosting4 Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

SLM Testing AUROC for different ensemble techniques - tokyol

s

08 ‘
o .
8 . .
E]
To07 ‘

06

05 .

simple Bagging Boosting-1 Boosting2 Boosting 3 Boosting4

Figure 5.4: Boxplots for test set AUROC values for each ensemble construction method
considered: ionosphere, kr-vs-kp, molecular-biology-promoters, sonar, spambase,
spectf, tokyol

32

5.4. ENSEMBLE ANALYSIS

5.4.2 MLP as a base learner

The same analysis can be performed when using the MLP as base learner. Figures 5.5
and 5.6 show the boxplots for the test set AUROC values of each of the six ensemble
construction methods considered. In general, the six approaches perform similarly
across the different benchmark problems. Considering the median AUROC values and
comparing the ensemble results when using the MLP as a base learner rather than
the SLM, it is possible to verify that the former reach higher values in two data sets:
credit-g and spectf. For agaricus-lepiota, the Boosting variants perform better with MLP
as a base learner than with SLM.

Once again it is interesting to compare the hill-valley data sets: using the MLP as a
base learner results in the ensembles achieving better median AUROC values in the
version with noise than in the version without noise, something that did not happen
when using the SLM as the base learner. Nevertheless, ensembles built with the SLM
outperform the ensembles built with the MLP in both benchmarks. Results for the
clean tasks suggest that it is not very For the clean tasks, it is not very clear if MLP
is able to perform efficiently with less instances to train the model. It looks like the
minimum AUROC value in clean?2 is higher than in cleanl but at the same time there
are way more outliers in the former.

It is also interesting to see that, in general, the Boosting-1 and Boosting-2 variants tend

to achieve either lower or more variable results than the remaining approaches.

33

CHAPTER 5. RESULTS AND ANALYSIS

MLP Testing AUROC for different ensemble techniques - agaricus-lepiota MLP Testing AUROC for different ensemble techniques - breast-cancer-wisconsin
09 . .
09 ‘ ‘
08
08 .
Q Q
e} Sor
2 4 .
E El
2 2
07 B 06 E—
B .
05
06 '
04 .
‘ — — .
05
Simple Bagging Boosting-1 Boosting 2 Boosting 3 Boosting 4 Simple Bagging Boosting-1 Boosting2 Boosting3 Boosting4
MLP Testing AUROC for different ensemble techniques - cleant MLP Testing AUROC for different ensemble techniques - clean2
10 — — —_
—_ . 095 i s
09 : : o
08 090 ‘

]
W
|
|
|

06
- 080
05
- | 075
04
Simple Bagging Boosting-1 Boosting2 Boosting-3 Boosting4 Simple. Bagging Boosting-1 Boosting 2 Boosting3 Boosting4
MLP Testing AUROC for different ensemble techniques - credit-g MLP Testing AUROC for different ensemble techniques - diabetes
09
07 ¢ 1] I 1 .]
08
06 N
! 07
o Q
° <]
E] E]
208 206 N N I I
05
04
04
03 H H H H H H . . .
Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting4 Simple Bagging Boosting1 Boosting 2 Boosting 3 Boosting 4
MLP Testing AUROC for different ensemble techniques - Hill_Valley_with_noise MLP Testing AUROC for different ensemble techniques - Hill_Valley_without_noise
065 .
065 . ‘ .
060
055 ‘ ‘ 080

0ss -1
‘ : ! °® e I — —
0.40 —1 —1 —1
‘ 045
0.35 ‘
e Seons Boostng 1 Boostng? Boostngs Boostng S Baggno Boostng 1 BoosingZ Boosingd Boosing®

Figure 5.5: Boxplots for test set AUROC values of each ensemble construction method
considered using the MLP as base learner: breast-cancer-wisconsin, cleanl, credit-g,
diabetes, hill-valley-with-noise, hill-valley-without-noise

34

5.4. ENSEMBLE ANALYSIS

MLP Testing AUROC for different ensemble techniques - ionosphere MLP Testing AUROC for different ensemble techniques - kr-vs-kp
0 10 [’——‘—‘ '——‘—‘
09
09 ‘ ‘
08
08
o o
o o7 o
€ g
2 2 f
07
0s .
05 06 .
04 . 1 . 1
05 .
03
Simple Bagging Boosting-1 Boosting2 Boosting3 Boosting4 Simple Bagging Boosting-1 Boosting-2 Boosting 3 Boosting4
MLP Testing AUROC for different ensemble techniques - molecular-biology_promoters. MLP Testing AUROC for different ensemble techniques - sonar
10 . R 10
09
s : . .
08
06 0.7 N N
o o
o o
g g
2 Fl 06
04
05 ‘ ‘
02 04 ‘
03
00
Simple Bagging Boosting-1 Boosting2 Boosting3 Boosting4 Simple Bagging Boosting-1 Boosting-2 Boosting3 Boosting4
MLP Testing AUROC for different ensemble techniques - spambase MLP Testing AUROC for different ensemble techniques - spectf
09 : ' — e R ' ' [E—
07
08
. 06
, :
07
8 ' 8
4 05
g g
2 —— =
06
04
05
03 ‘ ‘
04
Simple Bagging Boosting-1 Boosting2 Boosting3 Boosting4 Simple Bagging Boosting-1 Boosting-2 Boosting3 Boosting4

MLP Testing AUROC for different ensemble techniques - tokyol

09

:: mn BB

04 N

03 .

simple Bagging Boosting-1 Boosting2 Boosting3, Boosting4.

Figure 5.6: Boxplots for test set AUROC values for each ensemble construction method
considered using the MLP as a base learner: ionosphere, kr-vs-kp, molecular-biology-
promoters, sonar, spambase, spectf, tokyol

35

CHAPTER

CONCLUSIONS

This work focused on two main objectives:
— Studying the dynamic use of training data under the SLM algorithm;

— Exploring different ensemble construction methods using the SLM as a base

learner.

To explore the dynamic use of training data two techniques were considered: dynamic
subset sampling of the training data, where at each generation a subset of the training
examples is chosen, and dynamic weighting of the training instances, where random
weights are assigned to these instances at each generation. Results showed that these
approaches are useful to improve the resulting generalization.

To study the effect of using the SLM as a base learner for different ensemble con-
struction methods, six ensemble variants were taken into account: simple averaging
method, Bagging and four variants of Boosting. Results suggested that there is not
really a method that stands out but it is important to mention that due to the stochastic
nature of the SLM algorithm, it was possible to verify that a simple averaging ensemble
method can be as competitive as Bagging and Boosting.

Finally, when assessing the generalization ability of the SLM algorithm, results proved
that the SLM outperformed MLP in 13 of the considered tasks, with statistical signifi-
cance, after parameter tuning was performed for both algorithms.

37

BIBLIOGRAPHY

Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2014). Learning activation
functions to improve deep neural networks. arXiv: 1412.6830 [cs.NE]

Alba, E., Aldana, J. F, & Troya, J. M. (1993). Full automatic ann design: A genetic
approach. In J. Mira, J. Cabestany, & A. Prieto (Eds.), New trends in neural
computation (pp. 399-404). Berlin, Heidelberg: Springer Berlin Heidelberg.

Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm
that constructs recurrent neural networks. IEEE Transactions on Neural Networks,
5(1), 54-65. doi:10.1109/72.265960

Bornholdt, S., & Graudenz, D. (1992). General asymmetric neural networks and
structure design by genetic algorithms. Neural Networks, 5(2), 327-334. doi:https:
//doi.org/10.1016/50893-6080(05)80030-9

Branke, J. (1995). Evolutionary algorithms for neural network design and training. In
In proceedings of the first nordic workshop on genetic algorithms and its applications
(pp. 145-163).

Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140. doi:10.
1023/A:1018054314350

Chunkai Zhang, Huihe Shao, & Yu Li. (2000). Particle swarm optimisation for evolving
artificial neural network. In Smc 2000 conference proceedings. 2000 ieee interna-
tional conference on systems, man and cybernetics. ‘cybernetics evolving to systems,
humans, organizations, and their complex interactions’ (cat. no.0 (Vol. 4, 2487-2490
vol.4). doi:10.1109/ICSMC.2000.884366

Cun, Y. L., Denker, J. S., & Solla, S. A. (1990). Optimal brain damage. In Advances in
neural information processing systems (pp. 598—605). Morgan Kaufmann.

Dasgupta, B., & Schnitger, G. (1992). Efficient approximation with neural networks:
A comparison of gate functions.

Davis, L. (1989). Mapping classifier systems into neural networks. In D. S. Touretzky
(Ed.), Advances in neural information processing systems 1 (pp. 49-56). Morgan-
Kaufmann. Retrieved from http://papers.nips.cc/paper/162-mapping-classifier-
systems-into-neural-networks.pdf

Ding, S., Li, H, Su, C.,, Yu, J., & Jin, F. (2013). Evolutionary artificial neural networks:
A review. Artif. Intell. Rev. 39(3), 251-260. doi:10.1007/s10462-011-9270-6

39

https://arxiv.org/abs/1412.6830
https://dx.doi.org/10.1109/72.265960
https://dx.doi.org/https://doi.org/10.1016/S0893-6080(05)80030-9
https://dx.doi.org/https://doi.org/10.1016/S0893-6080(05)80030-9
https://dx.doi.org/10.1023/A:1018054314350
https://dx.doi.org/10.1023/A:1018054314350
https://dx.doi.org/10.1109/ICSMC.2000.884366
http://papers.nips.cc/paper/162-mapping-classifier-systems-into-neural-networks.pdf
http://papers.nips.cc/paper/162-mapping-classifier-systems-into-neural-networks.pdf
https://dx.doi.org/10.1007/s10462-011-9270-6

BIBLIOGRAPHY

Drucker, H. (1997). Improving regressors using boosting techniques. In Proceedings of
the fourteenth international conference on machine learning (pp. 107-115). ICML
’97. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from
http://dl.acm.org/citation.cfm?id=645526.657132

Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In
Advances in neural information processing systems 2 (pp. 524-532). San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc.

Floreano, D., Durr, P., & Mattiussi, C. (2008). Neuroevolution: From architectures to
learning. Evolutionary Intelligence, 1, 47-62.

Frean, M. (1990). The upstart algorithm: A method for constructing and training
feedforward neural networks. Neural Computation, 2(2), 198-209. doi:10.1162/
neco.1990.2.2.198

Garro, B. A., & Vazquez, R. (2015). Designing artificial neural networks using parti-
cle swarm optimization algorithms. Computational Intelligence and Neuroscience,
2015. doi:10.1155/2015/369298

Gongalves, 1. (2017). An exploration of generalization and overfitting in genetic program-
ming: Standard and geometric semantic approaches (Doctoral dissertation, Depart-
ment of Informatics Engineering, University of Coimbra, Portugal).

Gongalves, 1., & Silva, S. (2013). Balancing learning and overfitting in genetic pro-
gramming with interleaved sampling of training data. In European conference on
genetic programming (pp. 73-84). Springer.

Gongalves, 1., Silva, S., & Fonseca, C. M. (2015a). On the generalization ability of
geometric semantic genetic programming. In Genetic programming (pp. 41-52).
Springer.

Gongalves, 1., Silva, S., & Fonseca, C. M. (2015b). Semantic learning machine: A feed-
forward neural network construction algorithm inspired by geometric semantic
genetic programming. In Progress in artificial intelligence (Vol. 9273, pp. 280-
285). Lecture Notes in Computer Science. Springer.

Gongalves, 1., Silva, S., Fonseca, C. M., & Castelli, M. (2017). Unsure when to stop?
ask your semantic neighbors. In Proceedings of the genetic and evolutionary com-
putation conference (pp. 929-936). GECCO ’17. doi:10.1145/3071178.3071328

Gongalves, I, Silva, S., Melo, J. B., & Carreiras, J. M. B. (2012). Random sampling tech-
nique for overfitting control in genetic programming. In Genetic programming
(pp- 218-229). Springer.

Gruau, F,, Whitley, D., & Pyeatt, L. (1996). A comparison between cellular encoding
and direct encoding for genetic neural networks. In Proceedings of the 1st annual
conference on genetic programming (pp. 81-89). Stanford, California: MIT Press.

He, K., Zhang, X,, Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. arXiv: 1502.01852
[cs.CV]

40

http://dl.acm.org/citation.cfm?id=645526.657132
https://dx.doi.org/10.1162/neco.1990.2.2.198
https://dx.doi.org/10.1162/neco.1990.2.2.198
https://dx.doi.org/10.1155/2015/369298
https://dx.doi.org/10.1145/3071178.3071328
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852

BIBLIOGRAPHY

Jagusch,].-B., Gongalves, 1., & Castelli, M. (2018). Neuroevolution under unimodal
error landscapes: An exploration of the semantic learning machine algorithm.
In Proceedings of the genetic and evolutionary computation conference companion
(pp. 159-160). ACM.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y. (2009). What is the best multi-
stage architecture for object recognition? In 2009 ieee 12th international conference
on computer vision (pp. 2146-2153). doi:10.1109/I1CCV.2009.5459469

Jian, F,, & Yugeng, X. (1997). Neural network design based on evolutionary program-
ming. Artificial Intelligence in Engineering, 11(2), 155-161. doi:https://doi.org/
10.1016/50954-1810(96)00025-8

Kiefer, J., & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression
function. Ann. Math. Statist. 23(3), 462—-466. doi:10.1214/aoms/1177729392

Kingma, D. P, & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv:
1412.6980 [cs.LG]

Kiranyaz, S., Ince, T., Yildirim, A., & Gabbouj, M. (2009). Evolutionary artificial neural
networks by multi-dimensional particle swarm optimization. Neural Networks,
22(10), 1448-1462. doi:https://doi.org/10.1016/j.neunet.2009.05.013

Konda, K., Memisevic, R., & Krueger, D. (2014). Zero-bias autoencoders and the
benefits of co-adapting features. arXiv: 1402.3337 [stat.ML]

Koza,].R., & Rice, J. P. (1991). Genetic generation of both the weights and architecture
for a neural network. In Ijcnn-91-seattle international joint conference on neural
networks (Vol. 2, 397-404 vol.2). doi:10.1109/IJCNN.1991.155366

Lapa, P., Gongalves, I., Rundo, L., & Castelli, M. (2019a). Enhancing classification per-
formance of convolutional neural networks for prostate cancer detection on mag-
netic resonance images: A study with the semantic learning machine. (pp. 381-
382). d0i:10.1145/3319619.3322035

Lapa, P, Gongalves, I., Rundo, L., & Castelli, M. (2019b). Semantic learning machine
improves the cnn-based detection of prostate cancer in non-contrast-enhanced
mri. In M. Lopez-Ibanez (Ed.), Gecco 2019 companion (pp. 1837-1845). GECCO
2019 Companion : Proceedings of the 2019 Genetic and Evolutionary Compu-
tation Conference Companion (pp. 1837-1845). New York: Association for
Computing Machinery, Inc. https://doi.org/10.1145/3319619.3326864. doi:10.
1145/3319619.3326864

Lichman, M. (2013). UCI machine learning repository. University of California, Irvine,
School of Information and Computer Sciences. Retrieved from http://archive.
ics.uci.edu/ml

Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., & Huisman, H. (2017). Prostatex
challenge data. The Cancer Imaging Archive. doi:https://doi.org/10.7937/
K9TCIA.2017.MURS5CL

41

https://dx.doi.org/10.1109/ICCV.2009.5459469
https://dx.doi.org/https://doi.org/10.1016/S0954-1810(96)00025-8
https://dx.doi.org/https://doi.org/10.1016/S0954-1810(96)00025-8
https://dx.doi.org/10.1214/aoms/1177729392
https://arxiv.org/abs/1412.6980
https://dx.doi.org/https://doi.org/10.1016/j.neunet.2009.05.013
https://arxiv.org/abs/1402.3337
https://dx.doi.org/10.1109/IJCNN.1991.155366
https://dx.doi.org/10.1145/3319619.3322035
https://dx.doi.org/10.1145/3319619.3326864
https://dx.doi.org/10.1145/3319619.3326864
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://dx.doi.org/https://doi.org/10.7937/K9TCIA.2017.MURS5CL
https://dx.doi.org/https://doi.org/10.7937/K9TCIA.2017.MURS5CL

BIBLIOGRAPHY

Liu, S., Zheng, H., Feng, Y., & Li, W. (2017). Prostate cancer diagnosis using deep
learning with 3d multiparametric MRI. CoRR, abs/1703.04078. arXiv: 1703.
04078. Retrieved from http://arxiv.org/abs/1703.04078

Liu, Y., & Khoshgoftaar, T. (2004). Reducing overfitting in genetic programming mod-
els for software quality classification. In Proceedings of the eighth ieee international
conference on high assurance systems engineering (pp. 56—65). HASE '04. Tampa,
Florida: IEEE Computer Society.

Maas, A. L. (2013). Rectifier nonlinearities improve neural network acoustic models.

Manessi, F., & Rozza, A. (2018). Learning combinations of activation functions. 2018
24th International Conference on Pattern Recognition (ICPR). doi:10.1109/icpr.
2018.8545362

Mani, G. (1990). Learning by gradient descent in function space. In 1990 ieee interna-
tional conference on systems, man, and cybernetics conference proceedings (pp. 242—
247). doi:10.1109/ICSMC.1990.142101

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., ... Hodjat,
B. (2017). Evolving deep neural networks. arXiv: 1703.00548 [cs.NE]

Miller, G., Todd, P., & Hegde, S. (1989). Designing neural networks using genetic
algorithms. (pp. 379-384).

Montana, D.]., & Davis, L. (1989). Training feedforward neural networks using genetic
algorithms. In Proceedings of the 11th international joint conference on artificial
intelligence - volume 1 (pp. 762-767). IJCAI'89. Detroit, Michigan: Morgan
Kaufmann Publishers Inc.

Moraglio, A., Krawiec, K., & Johnson, C. G. (2012). Geometric semantic genetic
programming. In C. A. C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, & M.
Pavone (Eds.), Parallel problem solving from nature - ppsn xii (pp. 21-31). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Mozer, M. C., & Smolensky, P. (1989). Skeletonization: A technique for trimming the
fat from a network via relevance assessment. In D. S. Touretzky (Ed.), Advances
in neural information processing systems 1 (pp. 107-115). Morgan-Kaufmann.
Retrieved from http://papers.nips.cc/paper/119-skeletonization-a-technique-
for-trimming-the-fat-from-a-network-via-relevance-assessment.pdf

Nikolopoulos, C., & Fellrath, P. (1994). A hybrid expert system for investment advising.
Expert Systems, 11(4), 245-250. doi:10.1111/j.1468-0394.1994.tb00332.x. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0394.1994.tb00332.x

Oliker, S., Furst, M., & Maimon, O. (1993). Design architectures and training of neural
networks with a distributed genetic algorithm. In Ieee international conference on
neural networks (199-202 vol.1). doi:10.1109/ICNN.1993.298556

Orzechowski, P., Cava, W. G. L., & Moore, J. H. (2018). Where are we now? A large
benchmark study of recent symbolic regression methods. CoRR, abs/1804.09331.
arXiv: 1804.09331. Retrieved from http://arxiv.org/abs/1804.09331

42

https://arxiv.org/abs/1703.04078
https://arxiv.org/abs/1703.04078
http://arxiv.org/abs/1703.04078
https://dx.doi.org/10.1109/icpr.2018.8545362
https://dx.doi.org/10.1109/icpr.2018.8545362
https://dx.doi.org/10.1109/ICSMC.1990.142101
https://arxiv.org/abs/1703.00548
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment.pdf
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment.pdf
https://dx.doi.org/10.1111/j.1468-0394.1994.tb00332.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-0394.1994.tb00332.x
https://dx.doi.org/10.1109/ICNN.1993.298556
https://arxiv.org/abs/1804.09331
http://arxiv.org/abs/1804.09331

BIBLIOGRAPHY

Schaffer, J., Caruana, R. A., & Eshelman, L.]. (1990). Using genetic search to exploit the
emergent behavior of neural networks. Physica D: Nonlinear Phenomena, 42(1),
244-248. doi:https://doi.org/10.1016/0167-2789(90)90078-4

Schiffmann, W, Joost, M., & Werner, R. (1992). Synthesis and performance analysis of
multilayer neural network architectures.

Schoenauer, M., & Ronald, E. (1997). Genetic extensions of neural net learning: Trans-
fer functions and renormalisation coefficients.

Sietsma, J., & Dow, R.J. (1991). Creating artificial neural networks that generalize.
Neural Networks, 4(1), 67-79. doi:https://doi.org/10.1016/0893-6080(91)90033-
2

Srinivas, M., & Patnaik, L. M. (1991). Learning neural network weights using ge-
netic algorithms-improving performance by search-space reduction. In [proceed-
ings] 1991 ieee international joint conference on neural networks (2331-2336 vol.3).
doi:10.1109/IJCNN.1991.170736

Stanley, K. O., & Miikkulainen, R. (2002). Evolving neural networks through augment-
ing topologies. Evolutionary computation, 10(2), 99-127.

Stanley, K., Clune, J., Lehman, J., & Miikkulainen, R. (2019). Designing neural net-
works through neuroevolution. Nature Machine Intelligence, 1. doi:10.1038/
$42256-018-0006-z

Wang, F.-Y., Zhang, J. J., Zheng, X., Wang, X., Yuan, Y., Dai, X,, ... Yang, L. (2016).
Where does alphago go: From church-turing thesis to alphago thesis and beyond.
IEEE/CAA Journal of Automatica Sinica, 3(2), 113-120.

White, D., & Ligomenides, P. (1993). Gannet: A genetic algorithm for optimizing
topology and weights in neural network design. In J. Mira, J. Cabestany, & A.
Prieto (Eds.), New trends in neural computation (pp. 322-327). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Whitley, D. (1989). Applying genetic algorithms to neural network problems. In
International neural network society (p. 230). Department of Computer Science,
Colorado State University, Fort Collins, CO 80523 USA.

Whitley, D., & Hanson, T. (1989). Optimizing neural networks using faster, more accu-
rate genetic search. In Proceedings of the third international conference on genetic
algorithms (pp. 391-396). George Mason University, USA: Morgan Kaufmann
Publishers Inc.

Wilson, S. W. (1990). Perception redux: Emergence of structure. Physica D: Nonlinear
Phenomena, 42(1), 249-256. doi:https://doi.org/10.1016/0167-2789(90)90079-5

Xin Yao. (1999). Evolving artificial neural networks. Proceedings of the IEEE, 87(9),
1423-1447. do0i:10.1109/5.784219

Yao, X., & Liu, Y. (1997). A new evolutionary system for evolving artificial neural
networks. IEEE Transactions on Neural Networks, 8(3), 694-713. doi:10.1109/72.
572107

43

https://dx.doi.org/https://doi.org/10.1016/0167-2789(90)90078-4
https://dx.doi.org/https://doi.org/10.1016/0893-6080(91)90033-2
https://dx.doi.org/https://doi.org/10.1016/0893-6080(91)90033-2
https://dx.doi.org/10.1109/IJCNN.1991.170736
https://dx.doi.org/10.1038/s42256-018-0006-z
https://dx.doi.org/10.1038/s42256-018-0006-z
https://dx.doi.org/https://doi.org/10.1016/0167-2789(90)90079-5
https://dx.doi.org/10.1109/5.784219
https://dx.doi.org/10.1109/72.572107
https://dx.doi.org/10.1109/72.572107

APPENDIX

DATA SETS DESCRIPTION

45

APPENDIX A. DATA SETS DESCRIPTION

Data set

Description

agaricus-lepiota

Includes descriptions of hypothetical samples correspond-
ing to 23 species of mushrooms in the Agaricus and Lepiota
Family. The objective is to classify the record as edible or
poisonous.

breast-cancer-wisconsin

Contains continuous measurements from tumors. The algo-
rithm must classify the tumor as benign or malignant.

cleanl

Describes a set of 102 molecules where the goal is to learn
to predict whether new molecules will be musks or non-
musks.

clean2

Describes a set of 102 molecules where the goal is to learn
to predict whether new molecules will be musks or non-
musks.

credit-g

Contains credit card applications. The objective is to clas-
sify the individuals as either good or bad credit.

diabetes

Contains patient records where the goal is to predict
whether the individuals have diabetes or not.

hill-valley-with-noise

Each record represents 100 points on a two dimensional
graph, where the algorithm must classify the series as either
a Hill (a "bump"in the terrain) or a Valley (a "dip"in the
terrain) - contains noise.

hill-valley-without-noise

Each record represents 100 points on a two dimensional
graph, where the algorithm must classify the series as either
a Hill (a "bump"in the terrain) or a Valley (a "dip"in the
terrain) - contains no noise.

sonar

Contains patterns obtained by bouncing sonar signals off a
metal cylinder at various angles and under various condi-
tions. The algorithm must predict whether the objects are
rocks or mines.

ionosphere

Contains continuous measurements from high-frequency
antennas. The algorithm must classify whether the signals
are good or bad.

kr-vs-kp

Contains chess data where the goal is to classify whether
the white pieces can win or not.

molecular-biology-promoters

Contains molecular information and the objective is to pre-
dict whether the records are promoters or not.

spambase

Contains word frequencies in emails. The algorithm must
classify whether the e-mails are spam or not.

spectf

Describes the diagnose of cardiac Single Proton Emission
Computed Tomography (SPECT) images. Each of the
records is classified into two categories: normal and abnor-
mal.

tokyol

Contains Server Performance Data categorizing each record
as either good or bad.

Table A.1: Description of the binary classification data sets considered

46

B09S BlEB wylob|y uonnjoasoinap aulyoey Buluies dnuewaS 8y} Jo suoijelojdx3 — 0202 I

	Contents
	List of Figures
	List of Tables
	Introduction
	Neuroevolution Overview
	Semantic Learning Machine
	Algorithm
	Previous Comparisons with Other Neuroevolution Methods

	Experimental Methodology
	Data sets
	Methods and Parameter Tuning

	Results and Analysis
	SLM Variants
	MLP Variants
	Generalization Analysis
	Ensemble Analysis
	SLM as a base learner
	MLP as a base learner

	Conclusions
	Bibliography
	Data sets description

