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Abstract Oxytocin-like peptides have been implicated in the regulation of a wide range of social

behaviors across taxa. On the other hand, the social environment, which is composed of

conspecifics that may vary in their genotypes, also influences social behavior, creating the

possibility for indirect genetic effects. Here, we used a zebrafish oxytocin receptor knockout line to

investigate how the genotypic composition of the social environment (Gs) interacts with the

oxytocin genotype of the focal individual (Gi) in the regulation of its social behavior. For this

purpose, we have raised wild-type or knock-out zebrafish in either wild-type or knock-out shoals

and tested different components of social behavior in adults. GixGs effects were detected in some

behaviors, highlighting the need to control for GixGs effects when interpreting results of

experiments using genetically modified animals, since the genotypic composition of the social

environment can either rescue or promote phenotypes associated with specific genes.

Introduction
Social genetic effects (aka indirect genetic effects) occur when the phenotype of an organism is influ-

enced by the genotypes of conspecifics. Previous work has highlighted the major potential evolu-

tionary consequences of social genetic effects (Moore et al., 1997; Wolf et al., 1998), with

evidence for such effects to be present both in interactions between related (e.g. mothers and off-

spring Champagne and Meaney, 2006; Wilson et al., 2004) and unrelated individuals (e.g. sexual

displays (Petfield et al., 2005), aggression Wilson et al., 2011; Sartori and Mantovani, 2013;

Santostefano et al., 2017). More recently, the importance of social genetic effects for health and

disease has also been recognized (Baud et al., 2017), which may explain the pervasiveness of the

social environment as a mortality risk in humans (Holt-Lunstad et al., 2010; Holt-Lunstad et al.,

2015). Interestingly, the potential consequences of social genetic effects for the interpretation of

research results using genetically modified organisms (GMO) has been greatly neglected. GMOs

have been widely used in behavioral neuroscience to investigate the causal role of candidate genes

and behavioral phenotypes. Typically Knock-in and Knock-out transgenics and mutants have been

used to causally link the gain or loss of behavioral function to a specific gene (Huang and Zeng,

2013). In recent years, the development of genome editing techniques, such as CRISPR-Cas9-and

TALEN-induced mutations, have increased the interest in this approach and opened the door to

studying the genetic basis of behavior in non-model organisms (Hsu et al., 2014).
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However, most studies using GMO in behavioral neuroscience have ignored the potential contri-

bution of the genotypic composition of the social environment to the behavioral phenotype studied.

This is because it has been assumed that if the genetic background of these mutants is identical and

their environment has been kept constant, any phenotypic differences must come from the genetic

manipulation. However, when GMOs are incrossed or visually screened at a very young age (e.g.

using reporter genes, GFP) and thereafter raised and housed together until used in experiments,

changes in their behavior might be affected by the divergent genotypic composition of social envi-

ronments experienced by these mutants. In other words, modified behavior might be a result of

growing with their peer mutants, rather than the canonical social environment provided by wild-type

conspecifics. Such problem is particularly relevant when studying social behavior. Thus, given the ris-

ing interest in the study of social behavior in model organisms from worms to higher vertebrates, an

assessment of the potential effect of the interaction between the genotype of the individual (Gi) and

the genotypic composition of its social environment (Gs), on the behavioral phenotype of interest in

GMOs used in social neuroscience is crucial.

Despite the wide variety of species-specific social behaviors, a wealth of evidence has implicated

the paralog nonapeptides vasopressin (VP) and oxytocin (OXT) and their receptors in the regulation

of different aspects of social behavior across vertebrates (Donaldson and Young, 2008;

Goodson and Thompson, 2010), suggesting a genetic toolkit role (sensu evo-devo, i.e. ancient

genes highly conserved among taxa that control the same biological process) for these nonapepti-

des in social behavior. Nonapeptides are an ancestral neuropeptide family found both in vertebrates

and invertebrates, that derived from a VP-like peptide, and that evolved along two parallel clades of

VP- and OXT-like peptides from the duplication of the VP gene in early jawed fish (ca. 500 Mya).

Both peptides have been implicated in the regulation of behavior and physiology across different

taxa, with VP being more involved in aggression and agonistic behaviors and OXT-like peptides con-

sistently acting in affiliative behaviors and species-specific social behaviors across diverse taxa (i.e.

sexual behavior, social interactions) (Stoop, 2012; Goodson, 2013). Despite this wealth of evidence

on the direct genetic effects of OXT on social behavior, social genetic effects (i.e. GixGs effects) of

OXT genotypes have never been studied.

In this study, we aimed to provide a proof of principle for GixGs effects in behavioral phenotypes

observed in GMO by assessing the occurrence of such effects in a knockout line for the OXT recep-

tor in zebrafish, a commonly used model species in behavioral neuroscience (Orger and de Pola-

vieja, 2017), which forms social groups (aka shoals, Miller and Gerlai, 2007; Miller and Gerlai,

2012) and expresses a rich repertoire of social behavior (Zebrafish Neuroscience Research Consor-

tium et al., 2013; Nunes et al., 2017). For this purpose, we studied the GixGs interaction in the

effects of the OXT gene (oxtr) in different aspects of social behavior, by raising individual zebrafish

of the WT (oxtr(+/+)) or knock-out genotype (oxtr(-/-)) in different social environments (i.e. oxtr(+/+)

shoal or oxtr(-/-) shoal; Figure 1A). Since sociality encompasses motivational, cognitive and collective

behavioral traits, we have selected a set of tests that aim to characterize these different aspects at a

fundamental level: (Moore et al., 1997) the social preference and social habituation tests assess the

motivation to approach conspecifics, and how it varies with the repeated access to conspecifics;

(Wolf et al., 1998) the social recognition test, which provides an insight into the ability of zebrafish

to discriminate between conspecifics based on one-trial learning; and (Champagne and Meaney,

2006) tests of shoaling behavior that assess how well the focal individual is able to integrate itself

into an unfamiliar shoal and what influence it has on the behavior of the other shoal members.

Results and discussion
Adult zebrafish, like many other social animals, express a tendency to approach and interact with

conspecifics (social preference, Figure 1B; Engeszer et al., 2004). Here, we show that there was no

significant effect of either genotype or GixGs interaction on social preference, but there was a mar-

ginally significant main effect of Gs (Table 1; Figure 1C). When fish were presented for a second

time to a shoal to measure social habituation (i.e. expected reduction in social preference), we found

a GixGs interaction, where oxtr(-/-) individuals raised in oxtr(-/-) shoals express enhanced social habitu-

ation (F1,44 = 5.642, p=0.022; Figure 1D). Thus, social motivation in zebrafish seems to be influenced

by the genotype of conspecifics rather than by the genotype of the individual. Hence, the increased

social habituation in oxtr(-/-) fish does not seem to be due to reduced social motivation, but rather to
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Figure 1. Genetic variation in the social environment affects zebrafish social behavior. The contribution of the

individual genotype (Gi), the genotype of conspecifics in the social group (Gs) and the interaction between the two

(GixGs) to the expression of behavioral phenotypes in zebrafish was assessed by raising oxytocin receptor mutant

fish and wild types (focal fish marked with *) in shoals of either mutants or wild types (A). Social preference,

measured by the time fish spend near a shoal vs. empty in a choice test (B, upper panel), showed a marginally

significant effect of Gs (C; Source data file Figure 1—source data 1). Social habituation, which consisted on a

consecutive social preference test exhibited a GixGs effect (D; Source data file Figure 1—source data 2). Social

recognition, measured as the discrimination between a novel and a familiar conspecific (E, upper panel), shows a

pure G effect (F; Source data file Figure 1—source data 3). Social integration, measured as distance to the

centroid of the shoal (G), showed a GixGs effect (H; Source data file Figure 1—source data 4). Social influence,

measured by the cohesion of the remaining shoal members (I), also showed a marginally significant GixGs effect (J;

Source data file Figure 1—source data 5). Heatmaps show the spatial distribution of a representative oxtr
(+/+)

individual fish raised in a oxtr
(+/+) group, during the entire trial, for both social preference (B, lower panel) and

social recognition (E, lower panel). Data is presented as mean ± standard error of the mean (SEM). Sample sizes

are nine for heterogeneous groups (i.e. focal individual with different genotype from the remaining individuals in

the shoal; mutant focal in WT shoals and WT focal in mutant shoals) and 15 for homogeneous groups (i.e. focal

individual with the same genotype of the remaining individuals in the shoal; mutant focal in mutant shoals and WT

focal in WT shoals). Different letters indicate significant differences (p<0.05) between treatments as assessed by

Tukey post-hoc tests following a two-way ANOVA (D,H,J; see Table 1). An asterisk indicates a Gi main effect in F.

The online version of this article includes the following source data for figure 1:

Source data 1. Effects of individual and conspecifics genotype on Social Preference.

Source data 2. Effects of individual and conspecifics genotype on social habituation.

Source data 3. Effects of individual and conspecifics genotype on social recognition.

Source data 4. Effects of individual and conspecifics genotype on social integration.

Source data 5. Effects of individual and conspecifics genotype on social influence.
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an heightened habituation to the stimuli, suggesting that the observed GixGs interaction effect is

related to changes in single-stimulus learning mechanisms in mutant fish rather than to changes in

social motivation.

When we tested social recognition, which is a form of social memory needed for individuality in

social interactions (i.e. differential expression of social behavior depending on identity of interacting

individual), that is known to be modulated by oxytocin both in mammals and zebrafish

(Ferguson et al., 2000; Ribeiro et al., 2020), we observed that oxtr(-/-) individuals exhibit a deficit in

acquisition and retention of social recognition irrespective of the social environment (oxtr(-/-) or

oxtr(+/+)) in which they were raised (F1,44 = 7.600, p=0.008; Figure 1F). Thus, in contrast to social

motivation, social memory seems to rely on the individual’s genotype. This result is in accordance

with a recent study from our lab (Ribeiro et al., 2020) that has shown a deficit in one-trial recogni-

tion memory of both conspecifics and objects in oxt(-/-) fish, suggesting that this deficit is not specific

to the social domain but is rather a general domain cognitive deficit.

Table 1. Effect of genotype of the focal individual (Gi), genotype of conspecifics present in its social

environment (Gs) and the interaction between the two (GixGs) on zebrafish social behavior was

assessed using a two-way ANOVA.

~ indicates marginally significant, *p<0.05, **p<0.01, ***p<0.001. (Source data files Figure 1—source

datas 1–5).

Social preference

d.f. Mean squares F Significance Partial h2

Gi 1 0.023 1.731 0.195 0.038

Gs 1 0.050 3.788 0.058~ 0.079

Gi x Gs 1 0.001 0.049 0.825 0.001

Error 44 0.013

Habituation

d.f. Mean squares F Significance Partial h2

Gi 1 0.058 13.927 0.001 ** 0.240

Gs 1 0.008 1.936 0.171 0.042

Gi x Gs 1 0.024 5.642 0.022 * 0.114

Error 44 0.004

Social recognition

d.f. Mean squares F Significance Partial h2

Gi 1 0.213 7.600 0.008 ** 0.147

Gs 1 0.005 0.189 0.666 0.004

Gi x Gs 1 0.001 0.041 0.841 0.001

Error 44 0.028

Social group integration

d.f. Mean squares F Significance Partial h2

Gi 1 39.486 24.370 <0.001 *** 0.356

Gs 1 12.565 7.755 0.008 ** 0.150

Gi x Gs 1 12.811 7.907 0.007 ** 0.152

Error 44 1.620

Social group dispersion

d.f. Mean squares F Significance Partial h2

Gi 1 174.366 4.309 0.044 * 0.089

Gs 1 657.221 16.240 <0.001 *** 0.270

Gi x Gs 1 122.980 3.039 0.088 0.065

Error 44 40.469
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Given that social behavior of zebrafish mainly occurs in the context of shoaling we have also

investigated two shoaling behavior parameters: social integration and social influence. Social inte-

gration assesses how well the focal individual integrates in the social group (aka shoal), and is mea-

sured by its average distance to the centroid of the shoal (Figure 1G,H). A GixGs interaction was

found for social integration, where oxtr(-/-) individuals raised in oxtr(-/-) shoals exhibit a significantly

lower social integration than oxtr(-/-) individuals raised in oxtr(+/+) shoals; in contrast, oxtr(+/+) individ-

uals exhibit high levels of social integration irrespective of the shoal type in which they were raised

(Table 1; Figure 1H). Social influence assesses how the focal individual affects the shoaling behavior

of the remaining shoal members, by measuring the shoal dispersion as defined by the perimeter of

the other shoal members (Figure 1I,J). The presence of a single WT (oxtr(+/+)) individual in a oxtr(-/-)

shoal was enough to increase its dispersion, whereas the presence of a single oxtr(-/-) individual in a

oxtr(+/+) shoal did not affect its dispersion (Table 1; Figure 1J). In summary, we show that distinct

components of social behavior are differentially affected by the genetic composition of the social

environment versus the oxtr genotype of the focal individual. Social preference shows a marginally

significant influence of the genotype of conspecifics. Social recognition exhibited a pure effect of

the individual genotype. And clear GixGs interactions were observed in the cases of social habitua-

tion and social integration. Social influence had a major contribution of the social environment, which

is also the case, to a lesser extent, with social preference. Thus, we demonstrated that genetic varia-

tion in the social environment interacts with individual genotype during the developmental acquisi-

tion of social behavior. In other words, variation in the genotypes present in the social environment

can revert particular phenotypes associated with specific genes. These results are in line with

reported interactions between other aspects of the social environment and oxytocin receptor geno-

type in the determination of social behavior phenotypes in human populations (Thompson et al.,

2011; Wade et al., 2015; McQuaid et al., 2013). Our results suggest that more caution is needed

in the interpretation of studies using transgenic or mutant individuals that are raised in cohorts of

the same genotype, and that some phenotypes observed in transgenic or mutant lines may in fact

result from GixGs interactions.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent,
TL (Danio rerio)

oxtr mutant line Nunes et al., 2020 ZDB-ALT-190830–1

Commercial
assay or kit

NucleoSpin Tissue MACHEREY-NAGEL # 740952.50 For oxtr mutant
genotyping

Sequence-
based reagent

sense 5’-
TGCGCGAGGAAAACTAGTT-3’

Sigma For oxtr mutant
genotyping

Sequence-
based reagent

antisense 5’-
AGCAGACACTCAGAATGGTCA-3’

Sigma For oxtr mutant
genotyping

Software, , algorithm SPSS 25.0 SPSS RRID:SCR_002865

Software, , algorithm Imagej (Fiji) Schindelin et al., 2012 RRID:SCR_003070

Software, , algorithm Ethovision XT 11.5 Noldus Technology www.noldus.com/
ethovision

Software, , algorithm GraphPad Prism
version 6.0 c

GraphPad software,
San Diego,
California, USA

www.graphpad.com

Other B and W mini
surveillance camera

Henelec 300B Acquisition
rate of 30 fps

Other Webcameras Logitech HD C525 Acquisition
rate of 30 fps
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Zebrafish lines and maintenance
Zebrafish were raised and bred according to standard protocols and all experimental procedures

were approved by the host institution, Instituto Gulbenkian de Ciência, and by the National Veteri-

nary Authority (DGAV, Portugal; permit number 0421/000/000/2013). OXTR mutant zebrafish line

(ZFIN ID: ZDB-ALT-190830–1) was generated and provided by Dr. Gil Levkowitz (Weizmann Institute

of Science) using a TALEN-based genome editing system. The characterization of this line has been

described in Nunes et al., 2020.

All the experimental groups were formed at 4 days post-fertilization, based on the genotype of

the progenitors, before they imprint for olfactory and visual kin recognition (Gerlach et al., 2008;

Hinz et al., 2013). To evaluate genotype-environment effects, fish were raised in groups according

to the experimental design in Figure 1A and both female and males tested in adulthood (3 months

old). Sample sizes varied between nine for heterogeneous groups (i.e. focal individual with different

genotype from the remaining individuals in the shoal) and 15 for homogeneous groups (i.e. focal

individual with the same genotype of the remaining individuals in the shoal). The smaller sample size

of heterogeneous groups is due to the need of genotyping all individuals in these groups to single

out the focal individual.

Genotyping
At 3 months old, 1-week before the behavioral screenings, genomic DNA was extracted from adult

fin clips using the HotSHOT protocol (Meeker et al., 2007). All group members were fin clipped at

different fin locations, to allow their identification while being maintained together. The genomic

region of interest was amplified by PCR and sequenced to identify the focal fish in each group. The

following primers were used: sense 5’-TGCGCGAGGAAAACTAGTT-3’, antisense 5’-AGCAGACAC

TCAGAATGGTCA-3’.

Behavioral assays
Video acquisition
Fish were in a tank placed on top of an infrared lightbox and video-recorded either from above

(shoal preference and social recognition tests) or laterally (group behaviour tests). Video acquisition

was done with software Pinnacle Studio 14 (Corel Corporation, Ottawa, Canada). Shoal preference,

social habituation and social recognition analyses were performed with EthoVision video tracking

system (Noldus Information Technologies, Wageningen, The Netherlands) and group behavior analy-

ses were done with the open source FIJI image-processing package (Schindelin et al., 2012).

Social preference and social habituation
The social preference test assesses the individual’s sociability by observing the interactions between

conspecifics (Ribeiro et al., 2020): a focal fish was placed in a central compartment (30 � 15�10

cm) of a three-compartment tank, separated by transparent and sealed partitions. A shoal of unfa-

miliar fish was placed in one of the lateral compartments (15 � 10�10 cm), while the other contained

only water. To avoid any side bias, the stimuli were balanced across trials. After an acclimatization

period (10 min), the focal fish was released from a start box and allowed to explore the tank, while

its behavior was video-recorded for 10 min. The time spent by the focal fish near (less than two body

lengths) each compartment was quantified and used to calculate the social preference score

(SP = Time near shoal/ [Time near shoal + Time near empty]). A score above 0.5 indicates a prefer-

ence for the shoal.

The social preference test was performed twice, with 24 hr in between, and social preference

scores of both tests were used to calculate the habituation index (Hab. Score = 1- [SPTrial2]/[SPTrial1 +

SPTrial2]). A score above 0.5 represents a decrease in preference to associate with conspecifics.

Social recognition
The social recognition assay to evaluate short-term (i.e. 10 min retention) social memory was

adapted from the procedure already developed in our lab for long-term (i.e. 24 hr retention) social

memory in zebrafish (Gerlach et al., 2008), and has already been used successfully in previous stud-

ies (Ribeiro et al., 2020; Madeira and Oliveira, 2017). A focal fish was placed for 10 min in the cen-

tral compartment of a three-compartment tank, separated by transparent and sealed partitions, to
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acclimatize. The focal fish was allowed to interact visually across partitions with two novel (unfamiliar)

conspecifics for 10 min. After, both stimuli were removed, one was placed in the same compartment

(familiar conspecific stimulus), while a novel conspecific was placed in the other compartment (novel

conspecific stimulus). In a second 10 min interaction, the time spent by the focal fish near each com-

partment (termed novel cue or familiar cue) was quantified and used to measure the preference for

the novel (Recognition Score = Time near Novel/[Time near Novel + Time near Familiar]). A recogni-

tion score of 0.5 indicates no preference between novel or familiar conspecifics.

Shoaling behavior
Shoaling behavior is a common behavior present in fish models and allows to determine complex

interactions between individuals. Both focal fish and social partners were recorded in the home tanks

(3.5L tank). Focal fish were tagged with fin clips for easy identification. The behaviors were video-

recorded from side view for 10 min. Two components of shoaling behavior were analyzed manually

in time bins of 8 s, using FIJI software (Schindelin et al., 2012): (Moore et al., 1997) focal fish dis-

tance to the group centroid (social integration); and (Wolf et al., 1998) the dispersion of the remain-

ing shoal members as measured by their perimeter (social influence).

Data analysis
Data were analysed using SPSS 25.0. All data sets were tested for departures from normality with

Shapiro-Wilks test. Two factor univariate ANOVA were used for comparing multiple groups. All data

sets were corrected for multiple comparisons. Tukey’s Test comparisons were used as post-hocs.

Given that ANOVA is known to be underpowered for detecting significance of genotype x environ-

ment interaction (Wahlsten, 1990) we have decided to proceed with post-hoc tests for multiple

comparisons among treatments even when GixGs interaction were only marginally significant

(p<0.10). Graphs were performed with GraphPad software.

Ethical approval
All experiments were performed in accordance with the relevant guidelines and regulations for the

care and use of animals in research and approved by the competent Portuguese authority (Direcção

Geral de Alimentação e Veterinária, permit 0421/000/000/2017).
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