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Abstract 

 

Using degenerate-primers PCR we isolated and sequenced fragments from the sand fly 

Lutzomyia longipalpis homologous to two behavioural genes in Drosophila, cacophony and period. 

In addition we identified a number of other gene fragments that show homology to genes previously 

cloned in Drosophila. A codon usage table for L. longipalpis based on these and other genes was 

calculated. These new molecular markers will be useful in population genetics and evolutionary 

studies in phlebotomine sand flies and in establishing a preliminary genetic map in these important 

leishmaniasis vectors. 
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Sand flies of the genus Lutzomyia (Diptera:Psychodidae:Phlebotominae) are vectors of 

leishmaniasis in the Americas (Young and Duncan, 1994; Tesh and Guzman, 1996). Despite their 

medical importance, there is a paucity of molecular markers in the species of this genus and related 

genera. So far, only a handful of genes such as those expressed in salivary glands have been 

characterised (Charlab et al., 1999). Behaviour is one aspect of sand fly biology where no molecular 

data is yet available. One area where behavioural genes are particularly important is in speciation. 

Studies of some of the most important vectors species, such as Lutzomyia longipalpis, suggest that 

they might represent complexes of cryptic species (Ward et al., 1988; Lanzaro et al., 1993; Lampo 

et al., 1999; Uribe, 1999). The occurrence of sibling species in sand flies has important 

epidemiological consequences (Lanzaro and Warburg, 1995) as they seem to differ in vector 

competence, habitat (peri-domestic x silvatic) and host preference (anthropophily x zoophily). 

One of the most important forms of reproductive isolation between closely related species 

involves differences in courtship behaviour. In a great number of Drosophila species, males vibrate 

their wings during courtship producing a lovesong (Hall, 1994) that seems to increase the 

receptivity of females and has been implicated as one of the signals they used to recognise 

conspecific males (Kyriacou and Hall, 1982; 1986). This lovesong is therefore potentially important 

in the reproductive isolation between closely related species and, as a consequence, in the process 

of speciation. A few Drosophila genes controlling the courtship song have been identified and 

cloned (Hall, 1994). 

cacophony is a voltage-gated calcium channel gene, also known as Dmca1A (Smith et al., 

1996; 1998; Peixoto et al., 1997), that shows homology to mammalian calcium channel class A 

(Stea et al., 1995) and related channels B and E. cacophony is particularly interesting from an 

evolutionary point of view because one of its mutant alleles produces a song that resembles those of 

other Drosophila species (Peixoto and Hall, 1998). Using degenerate primer PCR we isolated a 

sand fly fragment homologous to the Drosophila cacophony gene. Fig. 1 shows the amino acid 

sequence encoded by a PCR fragment amplified from L. longipalpis, aligned to the corresponding 

region of the Drosophila melanogaster cacophony and other calcium channels. This fragment is 

~270 bp and encodes the IVS6 domain of the channel. It also includes an intron (~100 bp). Fig. 2 

shows a phylogenetic tree where the amino acid sequence of the L. longipalpis fragment is 

compared to other mammalian and Drosophila calcium channels, and clusters with the sand fly 

homologue of Drosophila’s cac. 

Another locus that also has an effect in courtship is period, a gene encoding a clock protein 

that has been shown to control species specific courtship song rhythm differences between D. 

melanogaster and its sibling species Drosophila simulans (Kyriacou and Hall, 1986, Wheeler et al., 

1991). period also controls circadian rhythms of activity in Drosophila (Konopka and Benzer, 
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1971). The behaviour of insect vector species plays an important role in the dynamics of the 

diseases they transmit (Klowden, 1996). The rhythmic patterns of activity and feeding presented by 

haematophagous insects, which are so important to disease transmission, are certainly controlled by 

the internal biological clock (Saunders, 1982), which is in turn under genetic control (Dunlap, 

1999). Using the same strategy mentioned above we isolated a sand fly fragment homologous to the 

Drosophila period (per) gene. Fig. 3 shows an alignment of the putative amino acid sequences 

encoded by PCR fragments obtained from Lutzomyia longipalpis and the same region of the per 

gene of Drosophila virilis. The sand fly fragment is nearly 1 Kb long, includes an intron and was 

obtained using two pairs of degenerate primers that amplified two overlapping fragments. Its 

predicted amino acid sequence extends from the end of the PAS protein dimerisation domain to the 

Thr-Gly repeat region. These two domains are particularly important to period function and 

evolution (Costa and Kyriacou, 1998; Dunlap, 1999). 

In addition to these two behavioural genes, a number of other fragments were isolated which 

show homology to genes previously cloned in Drosophila. Table 1 gives a list of nine sand fly 

molecular markers (including period and cacophony) for which highly significant similarity to 

Drosophila genes were observed in BLASTX (Altschul et al., 1997) searches using the NCBI 

(National Center for Biotechnology Information) web page. Other fragments were also obtained, 

but not included as no clear putative Drosophila homologues were found. The table also gives the 

size of fragments, level of amino-acid identity and similarity of predicted encoded proteins and their 

putative functions in sand flies based on their role in Drosophila. 

One molecular marker particularly interesting is fragment 6, which shows homology to 

purity of essence, a Drosophila gene coding for a calmodulin binding protein. Mutations in this 

locus affect behaviour and synaptic transmission at the neuromuscular junction. Mutant flies are 

sluggish and uncoordinated (Richards et al, 1996). In addition, mutant alleles also cause male 

sterility (Fabrizio et al., 1998). 

Of the nine markers listed, three were obtained from Lutzomyia intermedia, an important 

vector of cutaneous leishmaniasis in Brazil (Young and Duncan, 1994). One of these shares 

homology to Dmca1D (Zheng et al, 1995), a Drosophila voltage-gated calcium channel different 

from cacophony and more similar to mammalian channel class D (see figs. 1 and 2). Like L. 

longipalpis cacophony homologue, this fragment encodes the IVS6 domain of the channel and it 

also includes an intron. Dmca1D is highly expressed in the embryonic nervous system (Zheng et al, 

1995). Some more severe mutations at this channel are lethal recessives and mutants die at the late 

embryonic stage, while hypomorphic alleles cause flies to have difficulty in eclosing from pupae 

(Eberl et al, 1998). It is not yet known whether this gene might have also an effect in behaviour. 

Using the available L. longipalpis sequences from our work and the ones from Charlab et al. 
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(1999), we calculated the codon usage for this sand fly species. Table 2 shows the frequencies of 

the different codons used by L. longipalpis compared with the values observed in Drosophila 

melanogaster. Note that the majority of the amino acids, 15 out of 18, show differences in codon 

preference between the two species. This is consistent with the variation observed among different 

Drosophila species (Powell, 1997). Once more sequences are available, it will be possible to look at 

variation among genes as observed in other organisms. 

We are currently attempting to isolate other sand fly molecular markers controlling different 

aspects of behaviour. These new molecular markers will be useful in population genetics and 

evolutionary studies. For example, based on the sequence of the L. longipalpis homologues of 

period and cacophony, we designed more specific primers to this species and we are now using 

them to study the differentiation among putative cryptic species of the L. longipalpis complex in 

Brazil (Oliveira et al, in press). We are also considering using the molecular markers available to 

initiate the construction of a preliminary genetic map in these important leishmaniasis vectors. 
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Table 1. 

New sand fly molecular markers. 

 
# Genomic DNA of Lutzomyia longipalpis and L. intermedia was prepared according to Jowett 

(1998) or using the GenomicPrep from Amersham Pharmacia Biotech. From 50 ng to 100 ng of 

genomic DNA were used in the PCR. The reactions were carried out in a Perkin-Elmer GeneAmp 

PCR system 9600 for 35 cycles (95oC for 0.5 min; 37oC to 55oC for 1.0 min; 72oC to 1.0 min). In 

some cases reamplifications were also carried out. Different combinations of degenerate primers 

were used. PCR products were electrophoresed in 2% TAE agarose gels, bands were purified using 

the Sephaglas BandPrep kit Band (Amersham Pharmacia Biotech) and cloned into pMOSBlue 

vector. Sequencing was done automatically at Fundação Oswaldo Cruz (Rio de Janeiro, Brazil) and 

at University of Leicester (UK). The GCG software (Version 7, 1991) was used for DNA sequence 

editing and analysis. * These fragments include putative intron sequences. Protein sequence 

similarity and identity values were obtained from BLASTX (Altschul et al., 1997) searches and they 

are based on comparisons to Drosophila melanogaster in all cases, except for period where the 

sequence of D. virilis was used. 

 

 

 

Fragment# Species 
Size 

(bp) 

Putative Drosophila 

Homologue 

Protein sequence 

similarity and 

identity 

Putative function 

1 L. longipalpis 921*  period 76% / 63% 
transcriptional regulator 

(clock gene) 

2 L. longipalpis 225* 
cacophony 

(Dmca1A) 
87% / 82% 

voltage-gated calcium 

channel -1 subunit 

3 L. longipalpis 470* CG10046 100% / 100% RNA binding protein 

4 L. longipalpis 432 CG15828 51% / 34% ligand binding or carrier 

5 L. longipalpis 363 CG9649 51% / 36% endopeptidase 

6 L. longipalpis 273 purity of essence 94% / 84% 
calmodulin binding 

protein 

7 L. intermedia 291* CG3003 60% / 43% unknown 

8 L. intermedia 249 CG6726 80% / 67% peptidase 

9 L. intermedia 226*  Dmca1D 81% / 71% 
voltage-gated calcium 

channel -1 subunit 
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* The frequencies are calculated from a total of 3683 codons. Values in brackets are from D. 

melanogaster (Powell, 1997) and they are shown here for comparison. The most frequent used 

codons in both species are in italics. 

 

 

 

 

Table 2 

Codon usage in L. longipalpis 
 

Amino Acid Codon Frequency*  Amino Acid Codon Frequency 

       

Gly GGG 0.21 (0.06)  Ser AGU 0.18 (0.12) 

Gly GGA 0.43 (0.28)  Ser AGC 0.18 (0.24) 

Gly GGU 0.26 (0.23)  Ser UCG 0.08 (0.22) 

Gly GGC 0.10 (0.43)  Ser UCA 0.22 (0.09) 

    Ser UCU 0.14 (0.08) 

Glu GAG 0.35 (0.71)  Ser UCC 0.19 (0.25) 

Glu GAA 0.65 (0.29)     

    Arg AGG 0.17 (0.10) 

Asp GAU 0.66 (0.52)  Arg AGA 0.25 (0.08) 

Asp GAC 0.34 (0.48)  Arg CGG 0.04 (0.14) 

    Arg CGA 0.15 (0.14) 

Val GUG 0.22 (0.47)  Arg CGU 0.22 (0.18) 

Val GUA 0.16 (0.10)  Arg CGC 0.16 (0.35) 

Val GUU 0.48 (0.18)     

Val GUC 0.14 (0.25)  Gln CAG 0.47 (0.73) 

    Gln CAA 0.53 (0.27) 

Ala GCG 0.09 (0.18)     

Ala GCA 0.36 (0.16)  His CAU 0.71 (0.34) 

Ala GCU 0.34 (0.19)  His CAC 0.29 (0.66) 

Ala GCC 0.21 (0.47)     

    Leu UUG 0.21 (0.18) 

Lys AAG 0.47 (0.75)  Leu UUA 0.11 (0.04) 

Lys AAA 0.53 (0.25)  Leu CUG 0.15 (0.45) 

    Leu CUA 0.13 (0.08) 

Asn AAU 0.74 (0.42)  Leu CUU 0.20 (0.09) 

Asn AAC 0.26 (0.58)  Leu CUC 0.20 (0.16) 

       

Ile AUA 0.17 (0.16)  Pro CCG 0.15 (0.30) 

Ile AUU 0.54 (0.32)  Pro CCA 0.44 (0.24) 

Ile AUC 0.30 (0.52)  Pro CCU 0.24 (0.11) 

    Pro CCC 0.17 (0.35) 

Thr ACG 0.25 (0.24)     

Thr ACA 0.35 (0.19)  Tyr UAU 0.45 (0.34) 

Thr ACU 0.23 (0.15)  Tyr UAC 0.55 (0.66) 

Thr ACC 0.17 (0.42)     

    Phe UUU 0.52 (0.33) 

Cys UGU 0.49 (0.27)  Phe UUC 0.48 (0.67) 

Cys UGC 0.51 (0.73)     

    End UAG 0.10 (0.28) 

Met AUG 1.00 (1.00)  End UAA 0.60 (0.53) 

    End UGA 0.30 (0.18) 

Trp UGG 1.00 (1.00)     
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Legends to Figures 

 

Fig. 1. Alignment of the amino acid sequence encoded by a fragment obtained from L. longipalpis 

(called here Llca1A) compared to the IVS6 domain of mammalian (rat alpha-1A, human alpha-1D 

and rat alpha-1G) and Drosophila (Dmca1A and Dmca1D) voltage-gated calcium channels.  The 

amino acid sequence encoded by a fragment obtained from L. intermedia (called here Lica1D) is 

also included (see also Table 1). The software ClustalX (Thompson et al., 1997) was used for the 

alignment. Accession numbers of protein sequences used: P54282 (rat alpha-1A), Q01668 (human 

alpha-1D), O54898 (rat alpha-1G), P91645 (Dmca1A or cacophony), Q24270 (Dmca1D). 

 

 

Fig. 2. Phylogenetic tree using sequences of Fig. 1. The “neighbour-joining” method available at 

ClustalX software (Thompson et al., 1997) was used to construct the tree. The numbers on nodes 

represent the “bootstrap” percentage values based on a 1000 replicates. 

 

 

Fig. 3. Alignment of the amino acid sequence encoded by a fragment obtained from L. longipalpis 

compared to the protein sequence encoded by the period gene of Drosophila virilis (accession 

number S02035). 
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Llca1A          PNIMLACLKGR---PCDERAGKEPHE--TC-GSSLAYAYFVSFIFFCSFLMLNLFVAV 

Dmca1A          PNIMLACLKGK---ACDDDAEKAPGE--YC-GSTLAYAYFVSFIFFCSFLMLNLFVAV 

alpha-1A        HNIMLSCLSGK---PCDKNSGIQKPE---C-GNEFAYFYFVSFIFLCSFLMLNLFVAV 

alpha-1D        QEIMLACLPGK---LCDPESDYNPGEEHTC-GSNFAIVYFISFYMLCAFLIINLFVAV 

Dmca1D          QEIMMSCSAQP-DVKCDMNSDTPG---EPC-GSSIAYPYFISFYVLCSFLIINLFVAV 

Lica1D          QDIMMDCSSRPGEVNCDDRSDDRGSK-DGC-GSSIAFPYFISFYVLCSFLIINLFVAV 

alpha-1G        NGIMKDTLR-----DCDQEST--------CYNTVISPIYFVSFVLTAQFVLVNVVIAV 

                  **           **  :         * .. ::  **:** . . *:::*:.:** 
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 Llca1A

 Dmca1A

 alpha-1A

 alpha-1D

 Dmca1D

 Lica1D

 alpha-1G

98

99

98

85

0.05 
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D.virilis          LIGRSILDFYHHEDLSDIKDIYEKVVKKGQTVGATFCSKPFRFLIQNGCYILLETEWTSF 

L.longipalpis      MIGRSIMDFYHPEDFSYLREVYETVMRVGKTAGASFCSKPYRFLAHNGFYITLETEWTSF 

                   :*****:**** **:* ::::**.*:: *:*.**:*****:*** :** ** ******** 

 

L.longipalpis      VNPWSRQLEFVIGHHRVLRGPSNPQVFAST-LVNQQFSEDVLNDAKINQEKILCLLTEPV 

D.virilis          VNPWSRKLEFVVGHHRVFQGPKQCDVFEMSPNVTPNIPEDEQNRNACIKEDILKMMTETV 

                   ******:****:*****::**.: :**  :  *. ::.**  *     :*.** ::**.* 

 

D.virilis          TRPSDTVKQEVSRRCQALASFMETLMDEVARGDLKLDLPHETELTVSERDSVMLGEISPH 

L.longipalpis      SKDIDTVKQQVSKRCLALASFMETLMDEVTRPDLKLDLPQETELTISERDSVMLGEISPH 

                   ::  *****:**:** *************:* *******:*****:************** 

 

D.virilis          HDYYDSKSSTETPPSYNQLNYNENLLRFFNSKPVTAPVDTDPPKMDSSYVSSAR-EDALS 

L.longipalpis      HDYYDSKSSSETPPSYNQLNYNENLQRFFESKPITIGPDEAMKVEHTEPESTGDPQNSLS 

                   *********:*************** ***:***:*   *      .:.  *:.  :::** 

 

D.virilis          PVHGFEGSGGSGSSGNLTTASNVRMSSVTNTSNTGTGTSGGENSASGSSNPLPVNMTLTE 

L.longipalpis      PVQCF-GSG-SGSAGNLSSGSNIQMDSMT--SNTGTGTS------SGSYQP-P---ALTE 

                   **: * *** ***:***::.**::*.*:*  ********      *** :* *   :*** 

 

D.virilis          ILLN 

L.longipalpis      SLLS 

                    **. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


