
Identificação automática de aves a partir de
áudio

SILVESTRE DANIEL DIAS CARVALHO
Julho de 2020

Automatic Bird Identification from
Audio

Silvestre Daniel Dias Carvalho

Dissertation to obtain a Master’s degree in Informatics
Engineering, Area of Specialisation in Computer Systems

Supervisor: Elsa Ferreira Gomes

Porto, July 5, 2020

iii

Abstract

Bird classification from audio is mainly useful for ornithologists and ecologists. With growing
amounts of data, manual bird classification is time-consuming, which makes it a costly
method.

Birds react quickly to environmental changes, which makes their analysis an important prob-
lem in ecology, as analyzing bird behaviour and population trends helps detect other organ-
isms in the environment.

A reliable methodology that automatically identifies bird species from audio would be a
valuable tool for the experts in the area.

The main purpose of this work is to propose a methodology able to identify a bird species
by its chirp.

There are many techniques that can be used to process the audio data, and to classify the
audio data. This thesis explores the deep learning techniques that are being used in this
domain, such as using Convolutional Neural Networks and Recurrent Neural Networks to
classify the data. Audio problems in deep learning are commonly approached by converting
them into images using feature extraction techniques such as Mel Spectrograms and Mel
Frequency Cepstral Coefficients.

Multiple deep learning and feature extraction combinations are used and compared in this
thesis in order to find the most suitable approach to this problem.

Keywords: Bird Audio Classification, Deep Learning, Audio Feature Extraction

v

Resumo

Classificação de pássaros a partir de áudio é principalmente útil para ornitólogos e ecologis-
tas. Com o aumento da quantidade de dados disponível, classificar a espécie dos pássaros
manualmente acaba por consumir muito tempo.

Os pássaros reagem rapidamente às alterações climáticas, o que faz com que a análise de
pássaros seja um problema interessante na ecologia, porque ao analisar o comportamento das
aves e a tendência populacional, outros organismos podem ser detetados no meio ambiente.

Devido a estes factos, a criação de uma metodologia que identifique a espécie dos pássaros
fiavelmente seria uma ferramenta bastante útil para os especialistas na área.

O objetivo principal do trabalho nesta dissertação é propor uma metodologia que identifique
a espécie de uma ave através do seu canto.

Existem diversas técnicas que podem ser usadas para processar os dados sonoros que contêm
os cantos das aves, e que podem ser usadas para classificar as espécies das aves. Esta
dissertação explora as principais técnicas de deep learning que são usadas neste domínio,
tais como as redes neuronais convolucionais e as redes neuronais recorrentes que são usadas
para classificar os dados.

Os problemas relacionados com som no deep learning, são normalmente abordados por
converter os dados sonoros em imagens utilizando técnicas de extração de atributos, para
depois serem classificados utilizando modelos de deep learning tipicamente utilizados para
classificar imagens. Dois exemplos destas técnicas de extração de atributos normalmente
utilizadas são os Espectrogramas de Mel e os Coeficientes Cepstrais da Frequência de Mel.

Nesta dissertação, são feitas múltiplas combinações de técnicas de deep learning com téc-
nicas de extração de atributos do som. Estas combinações são utilizadas para serem com-
paradas com o âmbito de encontrar a abordagem mais apropriada para o problema.

vii

Contents

List of Figures xi

List of Tables xiii

List of Source Code xv

List of Acronyms xvii

1 Introduction 1
1.1 Context . 1
1.2 Problem . 1
1.3 Objective . 1
1.4 Expected results . 2
1.5 Value Analysis . 2
1.6 Approach . 2
1.7 Document Structure . 2

2 Context 3
2.1 Dataset . 3
2.2 Value Analysis . 5

2.2.1 New Concept Development (NCD) 5
Opportunity Identification . 5
Opportunity Analysis . 6
Idea Generation and Enrichment 6
Idea Selection . 7
Concept Definition . 7

2.2.2 Value . 7
Value for the Customer . 8
Perceived Value . 8

2.2.3 Value Proposal . 9
2.2.4 Canvas Business Model . 9
2.2.5 Analytic Hierarchy Process . 10

3 State of the Art 13
3.1 Deep Learning for Sound Classification . 13

3.1.1 Convolutional Neural Network . 13
How it works . 13
Layers . 14

3.1.2 Recurrent Neural Network . 19
Long Short Term Memory Networks 20
Gated Recurrent Unit Networks 22

3.1.3 Convolutional Recurrent Neural Network 22

viii

3.1.4 Evaluating a Deep Leaning Classification Model 23
Evaluation Metrics . 25

3.2 Deep Learning Frameworks . 26
3.2.1 TensorFlow . 27
3.2.2 PyTorch . 27
3.2.3 Keras . 27

3.3 Audio Processing . 28
3.3.1 Pre-processing . 28

Signal pre-processing . 28
Syllable segmentation (J. Colonna et al. 2016) 28

3.3.2 Feature extraction . 29
Mel Spectrogram . 29
Mel-Frequency Cepstral Coefficients (MFCC) 30
Bark Frequency Cepstral Coefficients (BFCC) 31
Revised Perceptual Linear Prediction (RPLP) 31
Gammatone Frequency Cepstral Coefficients (GFCC) 32

3.4 Existing Approaches . 32
3.4.1 BirdCLEF . 32

Best overall approach . 33
3.4.2 Avian Vocalizations (Hiatt 2019) 34

4 Adopted Approach 37
4.1 Deep Learning Framework . 37
4.2 Deep Neural Networks . 37
4.3 Evaluation Methodology . 38
4.4 Pre-processing . 38
4.5 Feature Extraction . 39

5 Design of the Solution 41
5.1 Methodology . 41

5.1.1 Optimization Methodology . 41
5.1.2 Experiment Methodology . 42

5.2 Implementation . 43
5.2.1 Data Pre-processing . 43

Normalization . 43
Preparing for feature extraction 44
Extracting Features . 46

5.2.2 Deep Learning Model Architectures 46
Convolutional Neural Network . 47
Recurrent Neural Network - Long Short Term Memory 48
Recurrent Neural Network - Gated Recurrent Unit 48
Convolutional Recurrent Neural Network - Long Short Term Memory 49
Convolutional Recurrent Neural Network - Gated Recurrent Unit . . 50

5.2.3 Constructed Solution . 51
Data Pre-processing . 53
Deep Learning . 54

6 Evaluation 55
6.1 Methodology . 55

ix

6.1.1 Combinations . 55
6.1.2 Metrics . 55
6.1.3 Hypothesis . 56

6.2 Experiments . 56
6.2.1 Deep Learning Model Architectures 56

Convolutional Neural Network . 57
Recurrent Neural Network - Long Short Term Memory 58
Recurrent Neural Network - Gated Recurrent Unit 60
Convolutional Recurrent Neural Network - Long Short Term Memory 61
Convolutional Recurrent Neural Network - Gated Recurrent Unit . . 63

6.2.2 Combinations . 65
Best Models . 70

6.2.3 Result Comparison . 73
6.3 Statistical Test . 77

7 Conclusion 81
7.1 Further Improvements . 82

Bibliography 83

A Calculations for the Analytic Hierarchy Process 89

xi

List of Figures

2.1 Scatter chart of the sample duration for each species 5
2.2 A Longitudinal Perspective on Value for the Customer (from Woodall 2003) 8
2.3 Hierarchical Decision Tree . 11

3.1 A Convolutional Neural Network representation (Chatterjee 2019) 14
3.2 5x5 Filter producing an Activation Map (Deshpande 2019) 15
3.3 Different values of Stride (Deshpande 2019) 15
3.4 Padding value of 2 on 32 x 32 input (Deshpande 2019) 16
3.5 Rectified Linear Units Activation (Jain 2020) 17
3.6 Sigmoid Activation (Jain 2020) . 17
3.7 Tanh Activation (Jain 2020) . 17
3.8 Types of pooling with a stride value of 2 (Brownlee 2019a) 18
3.9 Flattening (Arunava 2018) . 19
3.10 A fully connected network (Arunava 2018) 19
3.11 A recurrent neural network visualization (Olah 2019) 20
3.12 Long Short Term Memory (Mittal 2019) 21
3.13 Gated Recurrent Unit Network (Nguyen 2019) 22
3.14 Convolutional Recurrent Neural Network (Chatterjee 2019) 23
3.15 A sample confusion matrix (edited, from: Minaee 2019) 25
3.16 Example of syllable segmentation (J. Colonna et al. 2016) 29
3.17 Example of Mel Spectrogram (Roberts 2020) 30
3.18 Example of Mel Scale (Mel - Simon Fraser University 2005) 30
3.19 Example of MFCC extraction (edited, from: J. Colonna et al. 2016) 31
3.20 Feature Extraction (Hiatt 2019) . 34
3.21 Bar Chart with the Percentage of Correct Classifications (Hiatt 2019) . . . 35
3.22 Confusion Matrix (Hiatt 2019) . 35

5.1 Optimization Alternative 1 - Linked Optimization 41
5.2 Optimization Alternative 2 - Separated Optimization 42
5.3 Experiment Methodology . 42
5.4 Normalization . 44
5.5 Removing noise and splitting into multiple samples 44
5.6 Signal padding of Black-tailed Gnatcatcher (ID: XC17806) 44
5.7 Butterworth Bandpass filter on Black-tailed Gnatcatcher (ID: XC17806) . . 45
5.8 Split Samples of Black-tailed Gnatcatcher (ID: XC17806) 45
5.9 Mel Frequency Cepstrum Coefficients and Mel Spectrogram visualization . 46
5.10 Class and Library diagram . 52

6.1 Recall, Accuracy and Loss per Epoch - Convolutional Neural Network . . . 58
6.2 Recall, Accuracy and Loss per Epoch - Long Short Term Memory 59
6.3 Recall, Accuracy and Loss per Epoch - Gated Recurrent Unit 61

xii

6.4 Recall, Accuracy and Loss per Epoch - Convolutional Recurrent Neural Net-
work - Long Short Term Memory . 63

6.5 Recall, Accuracy and Loss per Epoch - Convolutional Recurrent Neural Net-
work - Gated Recurrent Unit . 65

6.6 Extracted Mel Frequency Cepstrum Coefficients (American Crow, ID: XC110263,
Sample 4) . 65

6.7 Extracted Mel Spectrogram (American Crow, ID: XC110263, Sample 4) . . 66
6.8 Recall per epoch of CRNN-GRU using Mel Spectrogram 68
6.9 Accuracy per epoch of CRNN-GRU using Mel Spectrogram 68
6.10 Loss per epoch of CRNN-GRU using Mel Spectrogram 69
6.11 Recall, Accuracy and Loss per Epoch - Top 3 models using mel spectrogram 69
6.12 Recall per epoch of CNN, CRNN-LSTM and CRNN-GRU using Mel Spec-

trogram . 71
6.13 Accuracy per epoch of CNN, CRNN-LSTM and CRNN-GRU using Mel Spec-

trogram . 71
6.14 Loss per epoch of CNN, CRNN-LSTM and CRNN-GRU using Mel Spectrogram 72
6.15 Recall, Accuracy and Loss per Epoch - Comparing Results experiment . . . 75
6.16 Confusion Matrix . 75
6.17 Bar Chart with the Percentage of Correct Classifications (Rotated) 76
6.18 Critical Distance Diagram (Rotated) . 79

xiii

List of Tables

2.1 Bird Species list and Duration Percentage (1) 3
2.2 Bird Species list and Duration Percentage (2) 4
2.3 Longitudinal Value Perspective . 9
2.4 Canvas Business Model . 10

5.1 Convolutional Neural Network - Model Architecture 47
5.2 Long Short Term Memory - Model Architecture 48
5.3 Gated Recurrent Unit - Model Architecture 49
5.4 Convolutional Recurrent Neural Network - Long Short Term Memory - Model

Architecture . 50
5.5 Convolutional Recurrent Neural Network - Gated Recurrent Unit - Model

Architecture . 51

6.1 Convolutional Neural Network alternatives 57
6.2 Convolutional Neural Network alternative comparison 58
6.3 Recurrent Neural Network - Long Short Term Memory alternatives 59
6.4 Long Short Term Memory alternative comparison 59
6.5 Recurrent Neural Network - Gated Recurrent Unit alternatives 60
6.6 Gated Recurrent Unit alternative comparison 60
6.7 Convolutional Recurrent Neural Network - Long Short Term Memory alter-

natives . 62
6.8 Convolutional Recurrent Neural Network - Long Short Term Memory alter-

native comparison . 62
6.9 Convolutional Recurrent Neural Network - Gated Recurrent Unit alternatives 64
6.10 Convolutional Recurrent Neural Network - Gated Recurrent Unit alternative

comparison . 64
6.11 Extracted Features and Deep Learning Model Architecture Combination

Comparison . 67
6.12 Top 3 model comparison . 70
6.13 Percentage of Correct Classifications per Bird Species (1) 72
6.14 Percentage of Correct Classifications per Bird Species (2) 73
6.15 Result Comparison . 74
6.16 Full results from the Result Comparison experiment 74
6.17 Summary of populations . 78

A.1 Comparison Matrix . 89
A.2 Normalized comparison matrix with estimated weights 89
A.3 Calculating the new vector . 90
A.4 Random Index values for n order squared matrices 90
A.5 Peer comparison matrix for the criteria accuracy 90
A.6 Normalized peer comparison matrix for the criteria accuracy with priority

vector (weight) . 91

xiv

A.7 Peer comparison matrix for the criteria loss 91
A.8 Normalized peer comparison matrix for the criteria loss with priority vector

(weight) . 91
A.9 Peer comparison matrix for the criteria training time 91
A.10 Normalized peer comparison matrix for the criteria training time with priority

vector (weight) . 91
A.11 Alternative priority calculation . 92

xv

List of Source Code

3.1 Fixing the Random Seed (Brownlee 2019b). 24
3.2 Repeat Evaluation Experiments (Brownlee 2019b). 25
5.1 Mel Frequency Cepstral Coefficients Extraction Code 46
5.2 Mel Spectrogram Extraction Code . 46

xvii

List of Acronyms

AHP Analytic Hierarchy Process.
API Application Programming Interface.
AWS Amazon Web Service.

BFCC Bark Frequency Cepstral Coefficients.

CI Consistency Index.
cmAP Classification Mean Average Precision.
CNN Convolutional Neural Network.
CPU Central Processing Unit.
CR Consistency Ratio.
CRNN Convolutional Recurrent Neural Network.

FFT Fast Fourier Transform.

GFCC Gammatone Frequency Cepstral Coefficients.
GPU Graphics Processing Unit.
GRU Gated Recurrent Unit Networks.

LP Linear Predictive.
LSTM Long Short Term Memory.

MFCC Mel-Frequency Cepstral Coefficients.

NCD New Concept Development.

PLP Perceptual Linear Predictive Coefficients.

RAM Random Access Memory.
ReLU Rectified Linear Units.
RI Random Index.
RNN Recurrent Neural Network.
RPLP Revised Perceptual Linear Prediction.

TF TensorFlow.

1

Chapter 1

Introduction

This chapter presents some points to introduce this dissertation such as the context, the
problem, the objective, the expected results, the value analysis the approach and the docu-
ment structure.

1.1 Context

The Xeno Canto is an online community that has a database of bird sounds recordings
from all over the world (Xeno-Canto 2020). The provided dataset has a subset of labeled
recordings from California and Nevada, USA. The dataset has recordings of 91 species with
30 samples from each one, making it 2730 samples in total (Hiatt 2020).

1.2 Problem

With the continuing threat of climate change, the analysis of interactions between organisms
and their environment is an important problem in ecology (Martinsson 2017). By analyzing
bird behavior and population trends, other organisms in the environment can be detected
because birds react quickly to environmental changes (Gavali et al. 2019).

Bird identification can be done manually by experts in the area, either though audio or
images (Gavali et al. 2019), but the growing amounts of data makes this process tedious
and time-consuming, meaning it requires a lot of human effort, making it a costly method
(Martinsson 2017).

Therefore, a reliable methodology that automatically identifies birds from audio would be a
valuable tool for experts in the area.

1.3 Objective

The objective of this thesis is to propose a methodology able to identify a bird species by
its chirp.

In this thesis it is intended to explore deep learning techniques that are being applied in this
domain in order to get the best results.

2 Chapter 1. Introduction

1.4 Expected results

The expected result developing this project is a reliable and efficient method of classifying
birds though the sound of their chirps. To analyze the method reliability, the average recall
rate for all species will be used.

1.5 Value Analysis

Some birdwatchers rely on visibly seeing the bird and knowing what a certain species looks
like to be able to classify the bird species. Some may be able to identify a species by its
chirp, but any new species they have to research through bird sound databases and find the
correct bird with the same chirps. Most bird audio databases also rely on the users inputting
the bird audio to correctly identify the bird species.

The method resulting from the project of this dissertation could be used to create a service
to help birdwatchers and bird audio databases to correctly identify bird species.

There is a more in-depth approach to value analysis in section 2.2.

1.6 Approach

For the development of this project, related and relevant work previously developed was
researched in chapter 3. With the information obtained, multiple approaches were presented
to choose from.

The selected approach was deep learning using TensorFlow. Five deep learning models
to test and compare, such as Convolutional Neural Network (CNN), two Recurrent Neural
Network (RNN) variants and two Convolutional Recurrent Neural Network (CRNN) variants.
Also, two feature extraction methods were selected, the Mel-Frequency Cepstral Coefficients
(MFCC) and Mel Spectrogram.

These deep learning models and feature extraction methods are combined to then be opti-
mized, experimented and compared.

The approach is analysed in-depth in chapter 4.

1.7 Document Structure

This thesis is divided by six chapters. After this introductory chapter, the second chapter is
the Context. In that chapter, the problem will be contextualized and its value analysed. The
third chapter is the State of the Art, it is where related and relevant work is documented, as
well as some technologies that will be used. The fourth chapter is the Approach Evaluation,
where the options researched in the third chapter are compared and selected to be used in
chapter five. The fifth chapter is the Design of the Solution, it is where the design of the
solution is presented. The sixth chapter is the Evaluation, which is where the solution is
tested.

3

Chapter 2

Context

This chapter describes the dataset used for this dissertation and the value analysis.

2.1 Dataset

The dataset used for this work contains a subset of recordings, labeled by species, from
California and Nevada, USA (dataset from Hiatt 2020).

It contains 91 species, with 30 sound sample files per species. In total there are 2730
samples, ranging from less than 1 second to 195 seconds. The sum of the duration of all
samples from all of the species is 20 hours, 25 minutes and 8 seconds (73508 seconds).

Tables 2.1 and 2.2 list all the species in the dataset, and the percentage of the duration
relative to the total duration of all species samples.

Table 2.1: Bird Species list and Duration Percentage (1)

Bird Species Percentage Bird Species Percentage

Abert’s Towhee 0.75% Acorn Woodpecker 0.48%
American Bushtit 0.89% American Crow 1.15%
American Dusky Flycatcher 1.66% American Grey Flycatcher 1.67%
American Robin 2.27% Anna’s Hummingbird 0.57%
Ash-throated Flycatcher 1.55% Bell’s Sparrow 0.66%
Bell’s Vireo 1.04% Bewick’s Wren 0.52%
Black Phoebe 0.71% Black-chinned Sparrow 2.15%
Black-headed Grosbeak 1.46% Black-tailed Gnatcatcher 0.78%
Blue-grey Gnatcatcher 1.28% Brewer’s Sparrow 2.12%
California Gnatcatcher 0.65% California Quail 0.85%
California Scrub Jay 0.42% California Thrasher 0.99%
California Towhee 0.63% Canyon Wren 1.17%
Cassin’s Finch 1.17% Cassin’s Vireo 1.83%
Chestnut-backed Chickadee 1.31% Clark’s Nutcracker 0.91%
Common Poorwill 0.82% Common Yellowthroat 1.46%
Dark-eyed Junco 0.76% Elegant Tern 0.48%

4 Chapter 2. Context

Table 2.2: Bird Species list and Duration Percentage (2)

Bird Species Percentage Bird Species Percentage

Flammulated Owl 1.70% Forster’s Tern 0.95%
Great Horned Owl 1.47% Green-tailed Towhee 1.18%
Grey Vireo 1.42% Hermit Thrush 1.22%
Hermit Warbler 2.29% House Finch 1.24%
House Wren 0.71% Hutton’s Vireo 0.82%
Juniper Titmouse 1.70% Lark Sparrow 2.55%
Lazuli Bunting 1.90% Lesser Goldfinch 1.21%
Lincoln’s Sparrow 1.82% Long-eared Owl 1.62%
MacGillivray’s Warbler 1.01% Marsh Wren 0.85%
Mountain Chickadee 0.51% Mountain Quail 1.04%
Northern Flicker 0.93% Northern Mockingbird 2.11%
Northern Pygmy Owl 0.93% Northern Raven 0.64%
Northern Saw-whet Owl 0.41% Nuttall’s Woodpecker 0.33%
Nutting’s Flycatcher 0.90% Oak Titmouse 0.64%
Orange-crowned Warbler 0.92% Pacific Wren 0.91%
Pacific-slope Flycatcher 0.64% Phainopepla 1.32%
Pygmy Nuthatch 1.07% Red Crossbill 0.25%
Red-winged Blackbird 1.54% Ridgway’s Rail 0.78%
Rock Wren 2.09% Rufous-crowned Sparrow 1.13%
Slate-colored Fox Sparrow 1.90% Snow Goose 0.78%
Song Sparrow 0.55% Spotted Owl 0.72%
Spotted Towhee 0.50% Steller’s Jay 0.51%
Swainson’s Thrush 1.93% Thick-billed Fox Sparrow 0.85%
Tricolored Blackbird 0.32% Verdin 0.77%
Warbling Vireo 1.44% Western Meadowlark 0.99%
Western Screech Owl 0.99% Western Wood Pewee 1.13%
White-breasted Nuthatch 0.62% White-crowned Sparrow 1.04%
White-headed Woodpecker 1.28% Wilson’s Warbler 0.93%
Wrentit 0.58% Yellow-billed Magpie 0.65%
Yellow-breasted Chat 1.64%

The figure 2.1 presents the sum of the sample duration in seconds for each bird species in
the dataset. It shows the variation of the available data from species to species, with the
lowest being 185 seconds and the highest 1877 seconds.

2.2. Value Analysis 5

Figure 2.1: Scatter chart of the sample duration for each species

2.2 Value Analysis

2.2.1 New Concept Development (NCD)

Peter Koen (Koen et al. 2002) developed a model, the New Concept Development (NCD),
in which there are 5 key elements: the identification and analysis of the opportunity, the
generation, enrichment and selection of ideas, and the concept definition.

Each one of these elements are analysed below, following with the effective methods, tools
and techniques (Koen et al. 2002) to analyze each element.

Opportunity Identification

A bird classification method could be useful for anyone who hears a bird singing and wonders
what species it is. It could also be useful for bird sound databases (e.g. Xeno-canto) to
automatically verify if an audio file of a bird species uploaded by one of its users was correctly
classified.

The classification method could be implemented into a service or an application that these
people could use to help identify a bird species by recording a sound clip of the bird singing.

Effective Methods, Tools and Techniques (Koen et al. 2002):

6 Chapter 2. Context

• Road-mapping;

• Technology trend analysis;

• Customer trend analysis;

• Competitive intelligence analysis;

• Market research;

• Scenario panning.

Opportunity Analysis

Recently, deep learning models normally used for visual recognition contexts have been used
to classify sounds. It seems like it is a viable solution to the sound classification problem as
it has outperformed other approaches (Piczak 2015).

This means that a bird classification method could use deep learning models.

Effective Methods, Tools and Techniques:

Many of same methods, tools and techniques used in the opportunity identification are
used in this element as well, such as road-mapping, technology trend analysis, competitive
intelligence analysis, customer trend analysis, and scenario planning. In opportunity iden-
tification, these tools were used to determine if an opportunity existed. In this element,
considerably more resources are expended, providing more detail on the appropriateness and
attractiveness of the selected opportunity (Koen et al. 2002).

Idea Generation and Enrichment

There are multiple deep learning models that can be applied to this audio classification
problem, the most prominent should be selected to be researched and tested.

On the audio classification problem, the audio data that feeds the deep learning model
should be pre-processed and have its relevant features extracted. Pre-processing and feature
extraction methods should be researched and tested.

Effective Methods, Tools and Techniques (Koen et al. 2002):

• Discovering the archetype of the customer (Archetype research identifies the unstated
"reptilian" or instinctive part of the brain);

• Identifying new technology solutions;

• An organizational culture that encourages employees to spend free time testing and
validating their own and others’ ideas.

• A variety of incentives to stimulate ideas;

• Inclusion of people with different cognitive styles on the idea enrichment team;

2.2. Value Analysis 7

Idea Selection

After generating and enriching ideas, the ones that standout after researching should be
selected for the development of a solution.

The selected technologies for the development of the solution are described throughout the
document.

Effective Methods, Tools and Techniques (Koen et al. 2002):

• Portfolio methodologies based on multiple factors (not just financial justification) using
anchored scales, such as technical success probability, commercial success probability,
reward, strategic fit, strategic leverage;

• Formal idea selection process with prompt feedback to the idea submitters;

• Use of options theory to evaluate projects.

Concept Definition

The concept of the product to be developed is a method capable of classifying a bird species
by its chirp sound. The development will be done using deep learning techniques, audio
pre-processing and feature extraction.

The development of this method could help people or databases to correctly classify a bird
species.

Effective Methods, Tools and Techniques (Koen et al. 2002):

• Carefully defining the project goals and outcomes;

• Setting criteria for the corporation that describe what an attractive (in terms of fi-
nancial, market growth, market size, etc.) project looks like;

• Rapid evaluation of high-potential innovations;

• Early involvement of the customer in real product tests (even before the product is
completed);

• Understanding and determining the performance capability limit of the technology;

• Pursue alternative scientific approaches.

2.2.2 Value

Any business activity is essentially about value exchange. Value exchange is defined as
the delivery of a good or service, and having its value received and rewarded by a peer
or customer, either within or outside one’s company. Value has been defined in different
theoretical contexts as need, desire, interest, standard, attitudes and preferences, which
makes it very dependent on perception (Nicola, E. P. Ferreira, and J. J. P. Ferreira 2012).

8 Chapter 2. Context

Value for the Customer

Value for the customer is the personal perception of the the customer regarding the advan-
tages arising out of the association with an organization’s offering. These advantages can
occur as a reduction in sacrifice, the presence of benefits, and the result of the weighed
combination of sacrifices and benefits (Woodall 2003).

Perceived Value

Different customers perceive different value for the same products/services. In addition,
organizations involved in the purchasing process can have different perceptions of customers’
value delivery (Ulaga and Eggert 2006).

Figure 2.2: A Longitudinal Perspective on Value for the Customer (from
Woodall 2003)

A longitudinal perspective with the benefits and sacrifices can be used to interpret the value
for the customer. It contains four temporal values:

• Pre-purchase: desires and preconceived ideas of the customer regarding the value of
the product;

• Transaction: customer value defined in the moment of the transaction, acquisition or
exchange;

• Post-purchase: phase in which the customer evaluates his purchase;

• After use: reflects the usage experience and the period in which the sale or exchange
is done by the customer.

The classification of bird species through audio could help people correctly assume a bird
species, which in effect could remove outliers from bird databases.

It could also get more people interested in birdwatching, because birds could be easily rec-
ognized by recording a sample of them singing and the classification method would tell them
the species.

Some rare birds could also be identified using the classification method, if the classification
model is trained with the species.

Table 2.3 shows the benefits and sacrifices for each temporal value that customers of this
method would experience.

2.2. Value Analysis 9

Table 2.3: Longitudinal Value Perspective

Benefits Sacrifices

Pre-purchase
Convenience
Customisation
Knowledge

Price

Transaction Acquisition costs

Post-purchase
Convenience
Customisation

Dataset gathering time
Deep learning model training time

After use
Convenience
Customisation
Knowledge

2.2.3 Value Proposal

A value proposal describes the difference between a company’s offer and those of its com-
petitors, explaining why customers buy from the company (Lindic and Da Silva 2011).

A value proposition is about the customer but intended for the company’s use, it defines
exactly what the organization intends to provide to the customer’s life (Lanning 2014). It
defines how an organization works by focusing the activities on serving their customers on
the best way possible, while maintaining profits (Barnes, Blake, and Pinder 2009).

The product intended to be developed is a method for the classification of bird species by au-
dio. This method should have a high accuracy rate in order to present reliable classifications
to its users.

The users of this method could either be any person that records a bird singing and wonders
what species it is, or a bird sound database company looking to validate the classification
of its own sounds.

There are existing bird species classification implementations available. This product will
differentiate itself by testing multiple deep learning models, as well as explore pre-processing
and feature extraction methods to raise the accuracy rate.

2.2.4 Canvas Business Model

A business model describes the logic behind of how a company creates, delivers and captures
value (Osterwalder and Pigneur 2010).

A business idea that could be associated to the theme of this dissertation is the commer-
cialization of a web service using the bird species classification method.

The users would upload an audio file of a bird singing and the service would return them the
species of the bird.

The users could be the general public (birdwatchers) accessing the service through a web
browser or an application. An Application Programming Interface (API) would also be
available for bird sound databases to use.

10 Chapter 2. Context

The table 2.4 is a visualization of the proposed Canvas Model in order to create a business
model with the theme of this dissertation.

Table 2.4: Canvas Business Model

Key Partners Key Activities Value Propositions
Customer
Relationships

Customer
Segments

Bird Sound
Databases

Software
development;
Dataset
collection

Bird species
classification;
Ease of use
and convenience;
High species
classification
accuracy

Feedback;
Technical
support

Birdwatchers;
Bird Sound
Databases

Key Resources Channels
Know-how;
Deep Learning
Framework

Birdwatching
Communities

Cost Structure Revenue Streams

Service development
and maintenance;
Hardware cost (Servers)

Advertising revenue
for the general
public (birdwatchers);
Subscription for
Bird Sound Databases

2.2.5 Analytic Hierarchy Process

The Analytic Hierarchy Process (AHP), created by T. L. Saaty 1988, is a multi-criteria
decision method that uses numeric techniques to help decision makers to select an option
out of multiple alternatives.

Developing the solution to this dissertation requires choosing or building a deep learning
architecture.

In this section, three deep learning architectures will be analyzed: LeNet (LeCun et al.
1998), AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and GoogLeNet (Szegedy et al.
2015).

2.2. Value Analysis 11

Figure 2.3: Hierarchical Decision Tree

Figure 2.3 shows the hierarchical decision tree. The objective is at the first hierarchical level,
followed by three criteria at the second level and at the third level the three alternatives.

The data used for this analysis is from Shah, Bakarola, and Pati 2018, where research was
done with the objective of getting the optimal approach for image recognition using a deep
convolutional architecture". The specific test is testing the three architectures using the
MNIST digit dataset on an Amazon Web Service (AWS) Graphics Processing Unit (GPU)
instance with an Intel Xeon E5 Central Processing Unit (CPU) with 15GB of Random
Access Memory (RAM), an NVIDIA K520 GPU with 3072 CUDA cores and 8GB GPU
memory (Shah, Bakarola, and Pati 2018).

The decision criteria are:

• Accuracy: Percentage of correct predictions

• Loss: Metric used to rank and compare each training epoch (Lower is better)

• Training Time: Time that the architecture takes to fit the dataset

With the analysis presented in the appendix A, it was concluded that the selected alternative
to be used as the deep learning architecture is "AlexNet", as it got the best result (57.78%)
compared to the other alternatives, in this specific analysis with the chosen criteria and
importance.

13

Chapter 3

State of the Art

This chapter presents the state of the art on the topics related to this thesis, such as the
Deep Learning for Sound Classification, where multiple deep learning model architectures
and the typical techniques used to evaluate these models are described. Some Deep Learning
Frameworks are presented, as well as some of the most relevant Audio Processing techniques,
which includes pre-processing and feature extraction techniques. Finally, some Existing
Approaches are also overviewed.

3.1 Deep Learning for Sound Classification

Deep Learning is a sub-field of machine learning concerned with algorithms inspired by the
structure and function of the brain called artificial neural networks (Brownlee 2019c).

The typical deep learning approach for classification of sounds is to convert the audio file
to an image, such as a spectrogram, and then use a neural network to process the image
(Boddapati et al. 2017).

The following sub-sections are overviews over these deep learning classification models, and
the evaluation methods typically used for classification models.

3.1.1 Convolutional Neural Network

An architecture that fits the audio classification problem is the Convolutional Neural Net-
works (CNN), which is a deep learning architecture that learns through images. It was
inspired by the natural visual perception of the living creatures (Gu et al. 2015).

A CNN is a deep learning architecture which can take an input image, assign importance to
multiple details in the image, such as weights and biases, and be able to differentiate one
from another. Its architecture is analogous to the connectivity pattern of the neurons in the
human brain, being inspired by the organization of the visual cortex (Saha 2018).

How it works

A CNN works by splitting its neurons into a three-dimensional structure. Each set of neuron
analyzes a small region or feature of the image, specializing themselves in identifying one
part of the image. CNN use the predictions from the layers to produce a final output of an

14 Chapter 3. State of the Art

Figure 3.1: A Convolutional Neural Network representation (Chatterjee 2019)

array of probability scores that represent the likelihood that a specific feature in an image
belongs to a certain class (MissingLink.ai 2019).

An image is an array of pixel values to a computer. These values are the only inputs
available to the computer to learn how to perform image classification. The idea behind
image classification using deep learning is that, given the array of values (pixels in an image),
the deep learning model will output values describing the probability of the image being a
certain class (Deshpande 2019). In the case of this thesis and as an example, when presented
a spectrogram of a bird singing, it could result in something in the likes of 80% for Sage
Sparrow species, 15% for Nuttall’s Woodpecker species, 5% for Hermit Warbler species.

Layers

• Convolutional Layer

The first layer in a CNN is a Convolutional Layer. The convolutional layer creates a
feature map to predict the class probabilities for each feature. It does it by applying
a filter, also known as kernel, which scans the whole image a few pixels at a time
(MissingLink.ai 2019).

The purpose of the convolution operation is to extract the high-level features from
the input image. A CNN may have multiple convolutional layers. Typically, the first
convolutional layer is responsible for capturing the low-level features such as edges,
color, gradient orientation, etc. Adding more convolutional layers makes the network
adapt to the high-level features, creating a network which has a deeper understanding
of the images in the dataset, similar to how a human would by taking in the details of
a picture (Saha 2018).

Figure 3.2 is a representation of how a convolutional layer processes the input neurons
(on the first convolutional layer these contain the pixel values from the input image).
The 32 x 32 array represented in the figure has a 5 x 5 area selected, called the
receptive field. What is selecting the area is usually called filter or kernel, it is an array
of numbers containing weights or parameters. As the filter slides, or convolves, around
the input array, it is multiplying the values in the filter with the original pixel values of
the image. All of the multiplications in the filter are summed, creating values for the
hidden layer. This process goes on for every position of the input volume, moving the

3.1. Deep Learning for Sound Classification 15

filter by 1 unit. After the filter has slid over all the locations, the resulting 28 x 28
array, the "first hidden layer", is the activation or filter map (Deshpande 2019).

Figure 3.2: 5x5 Filter producing an Activation Map (Deshpande 2019)

– Stride

The stride controls how the filter convolves around the input volume. It is the
amount by which the filter shifts, and is normally set in a way so that the output
volume is an integer and not a fraction (Deshpande 2019).

Changing the stride has an effect on how the filter is applied to the image (input)
and on the resulting size of the activation map (output) (Brownlee 2019a).

Higher stride values result in lower resolution outputs, also known as downsam-
pling. Downsampling can be useful in cases where deeper knowledge of the filters
used in the model or of the model architecture allow for some compression in the
resulting feature maps (Brownlee 2019a).

(a) Stride value of 1 (b) Stride value of 2

Figure 3.3: Different values of Stride (Deshpande 2019)

Figures 3.3a and 3.3b both have a 7 x 7 input volume and a 3 x 3 filter (The third
dimension was disregarded for simplicity). The figure 3.3a with the stride value
of 1 has a resulting output volume of 5 x 5, while figure 3.3b with the stride value
of 2 is only 3 x 3. This happens because the lower stride value has to process
more values, as it has to step 1 by 1 both horizontally and vertically through the
whole matrix. As mentioned before and as it can be seen in this example, higher
stride value results in a downsampled output (Brownlee 2019a).

– Padding

16 Chapter 3. State of the Art

As convolutional layers are applied, the size of the output volume will keep de-
creasing. In the early layers, the preservation of information about the original
input volume is important so that low-level features can be extracted (Deshpande
2019).

Taking a 32 x 32 input volume and applying a 5 x 5 filter to it, using a stride value
of 1, results in an output volume of 28 x 28. The spatial dimensions decrease
(Deshpande 2019).

To keep spatial dimensions to remain the same as the input, zero padding can
be applied. Zero padding means surrounding the input volume with zeros around
the border (Deshpande 2019).

Figure 3.4: Padding value of 2 on 32 x 32 input (Deshpande 2019)

As it can be seen in figure 3.4, applying a padding of 2 on the original input
volume of 32 x 32, results in an input volume of 36 x 36. After applying the 5 x 5
filter with the stride value of 1, at the end of the convolution the output volume
will be 32 x 32 (Deshpande 2019).

• Activation Layer

After each convolutional layer, it is usual to apply an activation layer. The purpose
of this layer is to introduce nonlinearity to a system that computed linear operations
during the convolutional layers (element multiplications and summations). It also helps
to alleviate the vanishing gradient problem, which is the issue where the lower layers
of the network train very slowly because the gradient decreases exponentially through
the layers (Deshpande 2019).

– Rectified Linear Units (ReLU)

The ReLU applies the function f(x) = max(0, x) to all of the values in the
input volume, which in basic terms means that it just changes all the negative
activations to 0. This layer increases the nonlinear properties of the model and
the overall network without affecting the receptive fields of the convolutional
layer. Researches found that ReLU layers work better when compared to tanh or
sigmoid because the network is able to train faster as it is more computationally
efficient, without a significant difference to the accuracy (Deshpande 2019).

3.1. Deep Learning for Sound Classification 17

Figure 3.5: Rectified Linear Units Activation (Jain 2020)

There are also variations of the ReLU, such as Leaky ReLU, Parametric ReLU
and ReLU6, which can solve some issues when using normal ReLU (Jain 2020).

– Sigmoid

The sigmoid activation applies the function f(x) = 1/(1+e n(-x)). It is considered
computationally expensive, and it causes vanishing gradient problem and it is
not zero-centered (Jain 2020). The vanishing gradient problem occurs because
the input in converted between 0 and 1, which makes their derivatives much
smaller when compared to ReLU, which does not have a small derivative problem
(Kumawat 2020).

Figure 3.6: Sigmoid Activation (Jain 2020)

– Hyperbolic Tangent Activation Function (Tanh)

This activation applies the function f(x) = 2/(1+e n(-2x)). It is a scaled sigmoid
function, and solves non zero-centered problem as it ranges between -1 and 1
(Jain 2020).

Figure 3.7: Tanh Activation (Jain 2020)

– Softmax

18 Chapter 3. State of the Art

The softmax is used in binary and multi-class classification problems in the final
layer, also known as the output layer (Jain 2020).

• Pooling Layer

Pooling layers are referred to as a down-sampling layer (Deshpande 2019). The pooling
layer is responsible for reducing the spatial size of the convolved feature. It is used to
decrease the computational power required to process the data through dimensionality
reduction (Brownlee 2019a).

– Max Pooling: Returns the maximum value from the area of the image covered
by the kernel. It also performs as a noise suppressant by discarding the noisy
activations altogether, also denoising along with dimensionality reduction (Saha
2018).

– Average Pooling: Returns the average of all of the values from the area of the
image covered by the kernel. It only performs dismensionality reduction as a noise
suppression mechanism (Saha 2018).

Because of the noise suppression characteristics, max pooling performs better than
average pooling (Brownlee 2019a).

Figure 3.8 is a representation of the max pooling and average pooling layers.

Figure 3.8: Types of pooling with a stride value of 2 (Brownlee 2019a)

• Dropout Layer

The dropout layer removes a random set of activations in that layer by setting them
to zero, forcing the network to be redundant, as the network should be able to provide
the right classification even if some of the activations are removed (Deshpande 2019).

The purpose of the dropout layer is to help alleviate the overfitting problem. This
layer should only be used during training, and not during testing (Deshpande 2019).

• Fully Connected Layer

The last layers in a CNN are fully connected layers. The input to the fully connected
layer is the output from the final pooling or convolutional layer, which is flattened and
then fed into the fully connected layer (Arunava 2018).

– Flattening

The output from the final (and any) pooling and convolutional layer is a 3-
dimensional matrix. This layer needs to be flattened into a vector (1-dimension).

3.1. Deep Learning for Sound Classification 19

The flattened vector is then connected to some fully connected layers. These
fully connected layers are the same as artificial neural networks and perform the
same mathematical operations (Arunava 2018).

Figure 3.9 represents the flattening of an array into a vector.

Figure 3.9: Flattening (Arunava 2018)

After the fully connected layers, Arunava 2018 uses the softmax activation function
instead of ReLU in the final layer, obtaining the probabilities of the input belonging to
each different class.

Figure 3.10 is a representation of a fully connected network.

Figure 3.10: A fully connected network (Arunava 2018)

3.1.2 Recurrent Neural Network

RNN are designed to recognize patterns in sequences of data. The algorithms used in RNN
take time and sequence into account, meaning they have a temporal dimension. RNN are
applicable to images, which can be decomposed into a series of patches and treated as a
sequence (Nicholson 2019).

RNN are networks with loops in them, which allows information to persist, and thus, they
keep context of past network iterations in consideration (Olah 2019).

20 Chapter 3. State of the Art

A recurrent network can be imagined as multiple copies of the same network, each one
passing a message to its successor (Olah 2019).

It can be seen in the right side of figure 3.11, where the RNN loop is unrolled to help visualize
what happens in these loops. On the left side of the figure it has an input ’xt’, an output
’ht’ and the RNN itself ’A’ (Olah 2019).

Figure 3.11: A recurrent neural network visualization (Olah 2019)

• Vanishing gradient problem (Short-term Memory)

The vanishing gradient problem in RNN refers to the network suffering from short-
term memory. When the sequence of recurrence is long enough, the network has
trouble maintaining information from earlier time steps to the later ones. For exam-
ple, processing an audio sample, RNN may leave out important information from the
beginning of that sample (Nguyen 2019).

During back propagation, recurrent neural networks suffer from the vanishing gradient
problem. Gradients are values used to update a neural networks weights. The vanishing
gradient problem is when the gradient shrinks as it back propagates through time. In
RNN layers that get a small gradient update stop learning, usually the early layers. As
these layers do not learn, the networks can forget what it learnt in longer sequences,
thus having short-term memory (Nguyen 2019).

Long Short Term Memory Networks

Long Short Term Memory (LSTM) networks are a modified version of recurrent neural
networks. These networks were created with the intent of fixing the short-term memory
problem (Nguyen 2019).

Regular RNN have a vanishing gradient problem, where they forget information gradually.
LSTM were designed with the intent to overcome these error back-flow problems (Hochreiter
and Schmidhuber 1997).

LSTM are capable of learning long-term dependencies, retaining long-term temporal features
in audio classification may help to improve the accuracy of the bird classification given that
context is kept. LSTM remember information for long periods of time as their default
behaviour as they are explicitly designed to avoid the long-term dependency problem (Olah
2019).

3.1. Deep Learning for Sound Classification 21

Figure 3.12: Long Short Term Memory (Mittal 2019)

• Gates

– Input gate The input gate selects which value from the input should be used to
modify the memory. The sigmoid function decides which values to let through,
and the tanh function weights the values which are passed, deciding their level
of importance raging from -1 to 1 (Mittal 2019).

– Forget gate

The forget gate selects which details are to be discarded from the volume. This is
decided by the sigmoid function. Using the previous state (ht-1) and the content
input (Xt) it outputs a number between 0 (undo this) and 1 (keep this) for each
number in the cell state (Ct-1) (Mittal 2019).

– Output gate

The input and the memory of the block is used to decide the output. The
sigmoid function decides which values to let through to the next phase, and
the tanh function gives weightage to the values which are passed deciding their
level of importance ranging from -1 to 1 and multiplied with output of sigmoid
function (Mittal 2019).

• Cell state

The cell state can be seen on figure 3.12, it is the uppermost horizontal line.

It is one of the core concepts of LSTM, along with its other gates. It acts as a
transport highway that transfers relative information all the way through the sequence
chain (Nguyen 2019).

An analogy that can be used for it is that it is the “memory” of the network. The
cell state, in theory, can carry relevant information throughout the processing of the
sequence. So even information from the earlier time steps can make its way to later
time steps, reducing the effects of short-term memory (Nguyen 2019).

A new cell state is created by first point-wise multiplying the cell state by the forget
vector, which has a possibility of dropping values in the cell state if it gets multiplied

22 Chapter 3. State of the Art

by values close to 0. Then the output is taken from the input gate and a point-wise
addition is done, which updates the cell state to new values that the neural network
finds relevant (Nguyen 2019).

Gated Recurrent Unit Networks

Introduced by Cho et al. 2014, Gated Recurrent Unit Networks (GRU) aim to solve the
vanishing gradient problem which comes with a standard RNN. GRU can also be considered
as a variation on the LSTM because both are designed similarly and, in some cases, produce
similar results (Kostadinov 2019).

To solve the vanishing gradient problem, GRU uses the update gate and reset gate. These
vectors decide what information should be passed to the output, and can be trained to keep
information from the early network, without forgetting them through time. (Kostadinov
2019).

Figure 3.13: Gated Recurrent Unit Network (Nguyen 2019)

Compared to LSTM, GRU have a reduced number of parameters without compromising
accuracy, which results in faster convergence and a more generalized model. This is the
main reason behind the usage of GRU over LSTM in practical scenarios. (Perambai 2019).

• Gates

– Update Gate

The update gate determines how much of the past information needs to be
passed along. This is powerful because the model can maintain all the information
from the past, eliminating the risk of the vanishing gradient problem (Kostadinov
2019).

– Reset Gate

This gate is used for the model to decide how much information to forget
(Kostadinov 2019).

3.1.3 Convolutional Recurrent Neural Network

A CRNN is a hybrid between CNN and RNN.

CNN have been combined with RNN, they are often used to model sequential data such as
audio signals or word sequences. A CRNN is a modified CNN with the last convolutional

3.1. Deep Learning for Sound Classification 23

Figure 3.14: Convolutional Recurrent Neural Network (Chatterjee 2019)

layers replaced with a RNN. In CRNN, CNN and RNN play the roles of feature extractor
and temporal summarizer, respectively. Adopting an RNN for feature aggregation enables
the networks to take the global structure into account while local features are extracted by
the remaining convolutional layers (Choi et al. 2016).

Choi et al. 2016 found that CRNN show a strong performance relative to the number of
parameters and training time, which indicates the effectiveness of the hybrid structure in
their music feature extraction and feature summarization experience.

3.1.4 Evaluating a Deep Leaning Classification Model

The evaluation of a deep learning model is a crucial part of this dissertation.

Evaluating a Machine Learning model is usually done like this:

• Using Hold-out

Hold-out, also known as a train-test split, works by splitting the data into two parts.
A training set and a validation set. The deep learning model is trained (or fit) using
the training set, and predicting using the validation set, evaluating the accuracy of the
predictions (Brownlee 2019b).

In this thesis, each element of the training and validation set would contain a spectro-
gram (X variable, bird sound) and a label (Y variable, bird species). The training set
will both variables to train the model. The validation set will only use the spectrogram
to get a bird species prediction from the model, and then the label will be used to
validate if the prediction is correct.

Hold-out is a good approach to use when there is a lot of data or a slow model to
train, although the resulting accuracy score for the model will be noisy because of
randomness in the data, as the same model fit on different data will give different
model accuracy scores (Brownlee 2019b).

• Using k-Fold Cross Validation

The k-Fold cross validation splits the available data into k-folds, fitting the model on
k-1 folds, evaluating it on the held out fold, and repeating this process for each fold.
The result is k different models that have k different sets of predictions, and in turn,
k different accuracy scores (Brownlee 2019b).

24 Chapter 3. State of the Art

This method generates a population of accuracy scores, which is useful as a mean can
be taken to report the average expected performance of a model, as it makes it closer
to the actual performance of the model in practice (Brownlee 2019b).

Deep learning models are stochastic, meaning that they use randomness while being fit on
a dataset, such as random initial weights and random shuffling of data during each training
epoch using stochastic gradient descent (Brownlee 2019b). Stochastic gradient descent is
used in order to reduce the computational burden in the optimization of a deep learning
model, instead of calculating a gradient for the entire dataset, a random subset of data is
selected to create an estimate for the gradient (Srinivasan 2019).

This means that when a model is fit on the same dataset multiple times, it may give different
predictions, affecting the accuracy scores. The randomness makes the model more flexible
when learning, but makes the model less stable. (Brownlee 2019b).

• Fix the Random Seed

Randomness can be set to be the same every time the model is fit. This is done by
fixing the random number seed used by the model to generate weights and data shifts
between epochs (Brownlee 2019b).

This method is good when the same result is needed every time a model is run, although
it is not a good practice as it is fragile and not a recommended method for evaluating
models (Brownlee 2019b).

1 s c o r e s = l i s t ()
2 f o r i i n k :
3 t r a i n , t e s t = s p l i t _ o l d (data , i)
4 model = f i t (t r a i n .X , t r a i n . y)
5 p r e d i c t i o n s = model . p r e d i c t (t e s t .X)
6 s k i l l = compare (t e s t . y , p r e d i c t i o n s)
7 s c o r e s . append (s k i l l)

Listing 3.1: Fixing the Random Seed (Brownlee 2019b).

• Repeat Evaluation Experiments

Repeating evaluation experiments consists in running the training and prediction phases
repeatedly, usually 30 or more times according to Brownlee 2019b. This makes it so a
standard error of the mean model accuracy can be calculated, which is how much the
estimated mean of model accuracy varies from the actual mean model. This standard
error indicated how wrong a mean accuracy of a new model might be (Brownlee
2019b).

The standard error can be used to calculate a confidence interval for the mean ac-
curacy. This assumes that the distribution of the results is Gaussian, which can be
checked with an histogram, Q-Q plot, or using statistical tests on the collected scores
(Brownlee 2019b).

3.1. Deep Learning for Sound Classification 25

1 f o r i i n r e p e a t s :
2 r un_sco r e s = l i s t ()
3 f o r j i n k :
4 t r a i n , t e s t = s p l i t _ o l d (data , j)
5 model = f i t (t r a i n .X , t r a i n . y)
6 p r e d i c t i o n s = model . p r e d i c t (t e s t .X)
7 s k i l l = compare (t e s t . y , p r e d i c t i o n s)
8 r un_sco r e s . append (s k i l l)
9 s c o r e s . append (mean (run_sco r e s))

10

11 s t a n d a r d_e r r o r = s t a n d a r d_d e v i a t i o n / s q r t (count (s c o r e s))
12 i n t e r v a l = s t a n d a r d_e r r o r ∗ 1 .96
13 l o w e r_ i n t e r v a l = mean_sk i l l − i n t e r v a l
14 u p p e r_ i n t e r v a l = mean_sk i l l + i n t e r v a l

Listing 3.2: Repeat Evaluation Experiments (Brownlee 2019b).

Evaluation Metrics

This section presents the common evaluation metrics used for classification models.

• Confusion Matrix

A confusion matrix is not exactly an evaluation metric, but it is important to get a
general sense on how the model is doing.

A confusion matrix is a tabular visualization of the model predictions versus the ground-
truth labels. Each row of the confusion matrix represents the instances in a predicted
class, and each column represents the instances in an actual class (Minaee 2019).

Figure 3.15: A sample confusion matrix (edited, from: Minaee 2019)

In the figure 3.15 can be seen, as example, a confusion matrix for 2 classes As it
can be seen in figure 3.15, the diagonal elements of this matrix denote the correct
prediction for each class, while the off-diagonal elements denote the samples which
are misclassified (Minaee 2019).

– True Positive: Represents the quantity of predictions from a class that were
correctly classified as that class.

– False Positive: Represents the quantity of predictions from a class that were
incorrectly classified as that class.

– False Negative: Represents the quantity of predictions from a class that were
incorrectly classified as another class.

• Accuracy

26 Chapter 3. State of the Art

The classification accuracy is defined as the number of correct predictions divided by
the total number for predictions, multiplied by 100. When the class distribution of
a dataset is imbalanced, classification accuracy is not a good indicator for a model’s
performance (Minaee 2019).

Classification accuracy is defined as:

Accuracy =
CorrectP redictions

TotalP redictions
∗ 100 (3.1)

Using figure 3.15 as an example, there are 1000 Class B samples and 100 Class A
samples. In this example, even if all the samples are predicted as the most frequent
class, a high accuracy rate would be obtained. That is not accurate as it is not an
indication that the model is actually learning, as it can be just predicting everything
as the most common class (Minaee 2019).

• Precision

Precision is a class specific performance metric. It is the fraction of samples from a
class which are correctly predicted by a model, with the samples incorrectly classified
as that class (Minaee 2019).

Precision is defined as:

P recision =
T ruePositive

T ruePositive + FalsePositive
(3.2)

• Recall

Recall, also known as Sensibility, is another class specific performance metric. It is the
fraction of samples from a class which are correctly predicted by a model, with the
samples incorrectly classified as another class (Minaee 2019):

Recal l =
T ruePositive

T ruePositive + FalseNegative
(3.3)

• F1 Score

F1 is a metric that combines Precision and Recall.

F1Score =
2 ∗ P recision ∗ Recal l
P recision + Recal l

(3.4)

3.2 Deep Learning Frameworks

A deep learning framework is an interface, library or tool which provides a clear and concise
way to create deep learning models without having to get into the details of the underlying
algorithms behind the deep learning models (Sharma 2019).

3.2. Deep Learning Frameworks 27

3.2.1 TensorFlow

TensorFlow (TF) was created by Google, with version 1.0 releasing in February 2017. It is
arguably the most popular Deep Learning framework today. Gmail, Uber, Airbnb, Nvidia and
lots of other prominent brands using it (Kharkovyna 2019).

Python is the language used to work with TF, although there are experimental interfaces for
JavaScript, C++, Java, Go, C# and Julia. TF has the ability to work on computing clusters
as well as running models on mobile platforms like iOS and Android (Kharkovyna 2019).

TensorBoard is TF’s visualization toolkit, which enables tracking experiment metrics, visu-
alizing the model graph and much more.

Starting with TF 2.0 Keras is the high level API for TF and it is extended so that all
the advanced features of TF can be used directly from tf.keras. Eager execution is now
the default, enabling debugging and prototyping faster than previous versions. One of the
downsides of TF prior to version 2.0 was the use of a static graph as opposed to a dynamic
graph, as competitors such as PyTorch use (Montantes 2019).

From Keras - TensorFlow Core 2020, three key advantages:

• User-friendly: Keras provides a simple and consistent interface optimized for common
use cases, providing clear and actionable feedback for user errors.

• Modular and composable: Keras models are made by connecting configurable building
blocks together, with few restrictions.

• Easy to extend: Custom building blocks can be written to express new ideas for re-
search. New layers, metrics, loss functions and state-of-the-art models can be created.

TensorFlow allows deploying the deep learning models on one or more CPU, as well as on
one or more GPU.

3.2.2 PyTorch

PyTorch was created by Facebook, with version 1.0 releasing in October 2018. It was devel-
oped for Facebook services but it is also used by companies such as Twitter and Salesforce.
It is based on Torch, which is another deep learning framework based on Lua (Kharkovyna
2019). PyTorch is better suited to prototyping and small projects than TF, but when it
comes to cross-platform solutions, TF is a more suitable choice (Kharkovyna 2019).

Standard debuggers are also available for PyTorch.

PyTorch is not on the supported backend list for Keras (from Backend - Keras Documen-
tation 2019).

Simillar to TensorFlow, PyTorch allows the usage of multiple CPU and GPU.

3.2.3 Keras

Keras is an open-source neural-network library written in Python. It was initially released in
March 2015, and its primary author and maintainer is François Chollet, a Google engineer.

28 Chapter 3. State of the Art

It can be used as a high-level API on top of other popular lower level libraries such as TF.
Keras is also known for its ease on prototyping as creating massive models of deep learning in
Keras is reduced to single-line functions. But this strategy makes Keras a less configurable
environment than low-level frameworks (Kharkovyna 2019).

Keras is ideal to learn and prototype simple concepts, as well as to understand the essence
of the various deep learning models and their process of learning, as coding is much more
readable and succint than other alternatives. Serialization and Deserialization API, callbacks
and data streaming using Python generators is also very mature for Keras (Kharkovyna
2019).

Keras is not comparable to TF or PyTorch because it is on the higher level of abstraction,
while the other two are on the lower level.

3.3 Audio Processing

3.3.1 Pre-processing

Signal pre-processing

The amplitude of each sound signal should be normalized to the same level to simplify further
processing (Huang et al. 2009).

In the pre-processing of anuran calls done by J. G. Colonna et al. 2012, the first step was
to standardize the signal, including the normalization of the signal and making it have zero
mean (J. G. Colonna et al. 2012).

Kortas 2020 stated that since birds sing in high frequencies, a high pass filter could be
applied to remove noise (Kortas 2020).

Syllable segmentation (J. Colonna et al. 2016)

The syllable segmentation algorithm was used by Fagerlund 2007 to classify bird songs, and
by Huang et al. 2009 and J. G. Colonna et al. 2012 to classify frog sounds.

After signal pre-processing, the signal is padded with zeros with the width equal to the length
of the half segment - β. The syllable segmentation is done by the following algorithm, where
α is the threshold for the normalized signal (ranging between 0 and 1) and β is half of the
length of the segment (J. Colonna et al. 2016).

The syllable segmentation algorithm has the following steps (from J. Colonna et al. 2016):

1. Find the maximum absolute value S(t) of the signal;

2. If S(t) < α go to step 5;

3. Select β seconds to the right and to the left of the peak, which gives us one syllable;

4. Extract the syllable from step 3 and replace the values in the signal with randomized
small numbers to simulate noise. Go to step 1;

5. End.

3.3. Audio Processing 29

The syllable extraction is illustrated in figure 3.16.

Figure 3.16: Example of syllable segmentation (J. Colonna et al. 2016)

According to Kortas 2020, the lengthier the audio from which a spectrogram is created, the
more information is retained on the image, but the deep learning model could also become
overfit1. If the data has a lot of noise or silence, there is a chance that short audio clips (up
to 5 seconds) will not catch the needed information. Therefore, longer audio clips (up to 10
seconds) can be used, which in the Kortas 2020 experiment increased the model accuracy
by 10% (Kortas 2020).

Therefore, if the Kortas 2020 method of segmenting data works with the syllable segmen-
tation method, the β seconds from the J. Colonna et al. 2016 algorithm could be from 5 to
10 seconds.

3.3.2 Feature extraction

Choosing the appropriate signal features is crucial for the process of bird species recognition,
as the acoustical environment of bird audio recordings contain noise in the signal, and there
is a big diversity among bird species songs (Wielgat et al. 2007).

Mel Spectrogram

A Mel Spectrogram is a spectrogram where the frequencies are converted to the mel scale.

The mel scale was proposed by Stevens, Volkmann, and Newman 1937.

It is a perceptual scale of pitches such that equal distances in pitch sound equally distant
to the listener. An example is that while humans can easily perceive the difference between
500hz and 1000hz, perceiving the difference between 10000hz and 10500hz is much harder,
although the difference between the two pairs are the same (Roberts 2020).

1An overfit deep learning model is a model that does not generalize from training data to unseen data. It
usually happens when the model memorizes the noise from the training data, resulting on predictions based
on the noise. An underfit model is when too few features are learnt, making the model inflexible, usually
resulting in wrong predictions (EliteDataScience.com 2017)

30 Chapter 3. State of the Art

Figure 3.17: Example of Mel Spectrogram (Roberts 2020)

Figure 3.18: Example of Mel Scale (Mel - Simon Fraser University 2005)

Mel-Frequency Cepstral Coefficients (MFCC)

The MFCC are widely used in audio classification problems, due to its computational effi-
ciency and noise robustness (Davis and Mermelstein 1980).

The MFCC reduce the amount of information needed to describe a signal for both periodic
and aperiodic signals. For the extraction of MFCC, the audio signal is divided into short
frames or windows with a given length. Then, a Fourier transform is taken from each frame,
which results in the spectrum of the frame. The spectrum is then mapped onto the mel scale
and the logs of the mel frequency spectrum are taken, followed by a direct cosine transform.
The resulting spectrum amplitudes are MFCC (Davis and Mermelstein 1980).

The figure 3.19 represents the division of the audio signal to MFCC frames. A parameter
named window step is how much the window moves before calculating the features for the
next frame, meaning the frames can overlap each other. The amount of features to be
calculated can be defined by the user, it is usually between 8 and 14 for the optimal amount
of information (Loughran et al. 2009).

3.3. Audio Processing 31

Figure 3.19: Example of MFCC extraction (edited, from: J. Colonna et al.
2016)

Kortas 2020 used MFCC on their sound based bird classification, and stated that the idea
behind the mel scale is that it is connected with the way humans hear. When a spectrogram
is connected to the mel scale, the result is a modified spectrogram, or a mel-frequency
cepstrum. This result ignores the sounds humans do not hear and plots the most important
parts (Kortas 2020).

Bark Frequency Cepstral Coefficients (BFCC)

Kaminska, Sapinski, and Pelikant 2013 used Bark Frequency Cepstral Coefficients (BFCC)
to extract features for identifying emotional states from speech.

This algorithm is a combination of Perceptual Linear Predictive Coefficients (PLP) process-
ing of the spectrum with the cosine transform to get the cepstral coefficients. Instead of
a mel filter bank, bark filters are used to create the BFCC. The main difference between
BFCC and MFCC is the power spectrum which is wrapped along its frequency axis onto the
bark frequency (Kaminska, Sapinski, and Pelikant 2013).

Revised Perceptual Linear Prediction (RPLP)

Kumar et al. 2010 used Revised Perceptual Linear Prediction (RPLP) to extract features
for the purpose of identifying a spoken language.

Instead of PLP coefficients, a mel filter bank is applied to create the RPLP. It is created by
first segmenting the signal and processing the Fast Fourier Transform (FFT) spectrum with
the mel scale filter bank. This results in a spectrum which is then converted to the cepstral
coefficients using Linear Predictive (LP) analysis with a prediction order of 20 followed by
cepstral analysis (Kaminska, Sapinski, and Pelikant 2013).

32 Chapter 3. State of the Art

Gammatone Frequency Cepstral Coefficients (GFCC)

Gammatone Frequency Cepstral Coefficients (GFCC) was created by Patterson et al. 1987.
Shao et al. 2009 found that GFCC features perform substantially better than conventional
MFCC when applied to robust speech recognition.

They are created by first decomposing the input signal into the time-frequency domain using
a bank of gammatone filters, followed a down-sampling operation of the filter-bank responses
along the time dimension. Then, the magnitudes of the down-sampled filter-bank responses
are compressed using cubic root operation, which is then decorrelated using a discrete cosine
transform (Ayoub, Jamal, and Arsalane 2016).

3.4 Existing Approaches

3.4.1 BirdCLEF

The goal of the 2019 BirdCLEF challenge was to localize and identify all audible birds within
the provided soundscape test set. Each soundscape was divided into segments of 5 seconds
(Kahl et al. 2019).

The used evaluation metric was the Classification Mean Average Precision (cmAP). For
each class ’c’, all predictions classified as that class are extracted and ordered by decreasing
probability in order to compute the average precision for that class. The mean for all classes
is computed as the main evaluation metric (Kahl et al. 2019).

cmAP =

∑C
c=1 AveP (c)

C
(3.5)

In the equation 3.5 ’C’ is the number of classes (species) and ’AveP(c)’ is the average
precision for a given species (Kahl et al. 2019).

AveP (c) =

∑nc
k=1 P (k) ∗ rel(k)

nrel(c)
(3.6)

In the equation 3.6 ’k’ is the position of an item in the list of the predicted segments for
class ’c’, ’nc’ is the total number of predicted segments for class ’c’, ’P(k)’ is the precision
at cut-off ’k’ in the list, ’rel(k)’ is an indicator function equaling 1 if the segment at rank
’k’ is a relevant one and ’nrel(c)’ is the total number of relevant segments for class ’c’ (Kahl
et al. 2019).

According to Kortas 2020, almost all of the winning solutions used CNN or CRNN, and
even though many of the recordings contained noise, the CNN performed well without any
additional noise removal, with many teams even claiming that noise reduction techniques did
not help. Data augmentation techniques seemed to be widely used, especially techniques
used in the audio processing phase such as time or frequency shift (Kortas 2020).

3.4. Existing Approaches 33

Best overall approach

Lasseck 2019 achieved top scores in most of the past editions in Bird-CLEF, as well as
outperforming all other participating teams in the 2019 challenge (Kahl et al. 2019).

The best overall cmAP on the test set was 35.6%.

• Data Preparation

All audio recordings were first high pass filtered at a frequency of 2 kHz (Q = 0.707)
and then re-sampled to 22050 Hz (Lasseck 2019).

Lasseck 2019 also created a "noise only" file from each soundscape by merging all
parts without bird activity via concatenation. The file was later used together with
other background recordings for noise augmentation (Lasseck 2019).

This was the basic pipeline used according to Lasseck 2019:

– Extract audio chunk from file with a duration of ca. 5 seconds

– Apply short-time Fourier transform

– Normalize and convert power spectrogram to decibel units (dB) via logarithm

– Convert linear spectrogram to mel spectrogram

– Remove low and high frequencies

– Resize spectrogram to fit input dimension of the network

– Convert grayscale image to RGB image

• Training Setup

Lasseck 2019 used CNN pretrained on ImageNet (Deng et al. 2009), which were then
fine-tuned with mel scaled spectrogram images representing short audio chunks. The
models were trained using PyTorch, while using PySoundFile and LibROSA python
packages for audio file reading and processing.

• Data Augmentation

Lasseck 2019 applied the following methods in the time domain regarding the audio
chunks:

– Chunk extraction at random position in file

– Duration jitter

– Local time stretching and pitch shifting

– Filter with random transfer function

– Random cyclic shift

– Adding audio chunks from files containing only background noise

– Adding audio chunks from files belonging to the same bird species(single-label)

– Adding audio chunks from files belonging to random bird species (multi-label)

– Random signal amplitude of chunks before summation

34 Chapter 3. State of the Art

– Time interval dropout

3.4.2 Avian Vocalizations (Hiatt 2019)

This solution is available in the dataset source, it was done by Hiatt 2019 as the Capstone
Project for a Machine Learning Engineer Nanodegree, who is also the person that compiled
the dataset used for this thesis (Hiatt 2020).

An interesting data pre-processing methodology was used where a data generator combines
Mel Spectrograms with MFCC. This was done by concatenating the MFCC to the top of
the Mel Spectrograms into a single 2-dimensional array, as it can be seen in the figure 3.20
(Hiatt 2019).

Figure 3.20: Feature Extraction (Hiatt 2019)

The deep learning model implemented is a Convolutional Neural Network with 3 stacks of 2-d
Convolutions using ReLU activation and MaxPooling layers followed by Dropout layers with
a rate of 0.2. The model architecture finishes with a Global Average Pooling layer, which is
followed by a fully-connected Dense layer using the softmax activation (Hiatt 2019).

The accuracy metric is used to evaluate the performance of the models. A hold-out is used,
with a 77% and 33% ratio for the training and validation sets, respectively. The documented
results were obtained using the trained model from the epoch with the minimum validation
loss value. With a minimum validation loss of 3.6049, the model achieved a validation
accuracy of 19.27%, and a training accuracy of 20.44% (Hiatt 2019).

The figures 3.21 and 3.22 present the percentage of correct classifications per species and
a confusion matrix, respectively.

3.4. Existing Approaches 35

Figure 3.21: Bar Chart with the Percentage of Correct Classifications (Hiatt
2019)

Figure 3.22: Confusion Matrix (Hiatt 2019)

37

Chapter 4

Adopted Approach

This chapter presents an overview on the adopted approach regarding the Deep Learning
Framework, Deep Neural Networks, Evaluation Methodology, Pre-processing and Feature
Extraction.

4.1 Deep Learning Framework

One of the major decisions on the development of the solution is the choosing a deep learning
framework. The frameworks selected are PyTorch and TensorFlow. They are described in
section 3.2.

The chosen framework to develop the solution is TensorFlow using Keras as the high-level
API.

Both PyTorch and TensorFlow are a good choice for the deep learning framework. Ten-
sorFlow was chosen because of its integration with Keras, and the fact that there is also
more content available online about TensorFlow and Keras than PyTorch, making it easier
to solve any problem that may occur during development. Tensorflow, in terms of creating
models for production, seems to be a better choice as deploying to a variety of devices and
other languages is seamless.

4.2 Deep Neural Networks

Another major decision for the development of the solution is what classification architecture
to use to classifying the bird sounds.

The studied neural networks on section 3.1 are:

• Convolutional Neural Network (CNN)

• Recurrent Neural Network (RNN)

– Long Short Term Memory (LSTM)

– Gated Recurrent Unit (GRU)

• Convolutional Recurrent Neural Network (CRNN)

– CNN-LSTM

38 Chapter 4. Adopted Approach

– CNN-GRU

During the implementation of the solution all of these neural networks are compared.

4.3 Evaluation Methodology

Evaluation methodologies were presented in section 3.1.4 of the state of the art.

The chosen methodology is repeating evaluation experiments using Hold-out.

The data is randomly split in two folds, the training set (with 80% of the data) and the
validation set (with 20% of the data). The training set is used to train the deep learning
model, while the validation set is used to evaluate the performance of the model with unseen
data.

Repeating the evaluation experiments is useful because deep learning networks are stochastic.
As mentioned in 3.1.4, they are stochastic because randomness is used while being fit in
the dataset, such as random initial weights and random shuffling of data on each training
epoch.

The number of times the Hold-out process is repeated will be defined later in this dissertation,
after analysing the time a model takes to train.

• Evaluation Metrics

As the objective in this dissertation is correctly identifying each bird species, the chosen
evaluation metric is Recall.

The equation 4.1 is an implementation of the recall evaluation metric to the problem:

Recal l(c) =
CorrectBirds(c)

CorrectBirds(c) + Incor rectBirds(c)
(4.1)

’Recall(c)’ is the percentage of birds from class ’c ’ that were correctly identified.
’CorrectBirds(c)’ is the amount of birds from class ’c ’ that were correctly identified.
’IncorrectBirds(c)’ is the amount of birds from class ’c ’ that were incorrectly identified
as another species.

The Weighted Arithmetic Mean of the recall for all the classes of birds (species) can
be used as the main score to evaluate a model.

4.4 Pre-processing

Pre-processing methodologies were researched and documented in the section 3.3.1 of the
state of the art.

• Standardizing the Signal

The signal needs to be standardized before being used in any further processes, such
as syllable segmentation or feature extraction.

– Convert stereo audio to mono audio;

4.5. Feature Extraction 39

– Normalize the sampling rate to 22kHz;

– Normalize the bit-depth value range.

• Removing noise by applying a high pass filter

• Syllable segmentation

The syllable segmentation algorithm proposed by Huang et al. 2009 and used by J.
Colonna et al. 2016 is an interesting approach applicable to the bird species audio
classification problem.

4.5 Feature Extraction

Multiple feature extractions are mentioned in the section 3.3.2.

The majority of implementations that achieved the best accuracy scores in the BirdCLEF
challenge (section 3.4.1) used MFCC (Kahl et al. 2019). Fagerlund 2007 also used MFCC
to classify bird sounds. Huang et al. 2009 and J. G. Colonna et al. 2012 also used them to
classify anuran sounds.

This dissertation will experiment and compare the MFCC and Mel Spectrogram feature
extractions. This choice was made due to the information and implementations available
when compared to the other feature extraction methods.

41

Chapter 5

Design of the Solution

This chapter presents the design of the solution. This chapter starts by presenting the
optimization and experiment methodologies. This chapter also describes the implementation
and structure of the constructed solution.

5.1 Methodology

5.1.1 Optimization Methodology

Before running the experiments that will evaluate the extracted features with each deep
learning model, the following will need to be optimized:

• Pre-processing methods;

• Feature extraction;

• Deep learning model.

The following figures 5.1 and 5.2 present two alternatives to how the deep learning models
could be trained to visualize their results and improvements while the three items above are
being manually optimized.

Figure 5.1: Optimization Alternative 1 - Linked Optimization

The alternative presented in the figure 5.1 consists in using the same flow of execution when
optimizing the data pre-processing, feature extraction and deep learning architectures.

The alternative presented in the figure 5.2 consists in separating the data pre-processing
and feature extraction optimization from the deep learning architecture optimization.

Having the process of data pre-processing and feature extraction optimization separated from
the deep learning architecture separated allows generating and exporting multiple datasets.
These datasets can use different data pre-processing to extract the features, and exporting

42 Chapter 5. Design of the Solution

(a) Data pre-processing optimization (b) Deep learning model optimization

Figure 5.2: Optimization Alternative 2 - Separated Optimization

them means that multiple different types of exported features are available for the deep
learning optimization process on 5.2b.

In terms of performance when testing different deep learning model architecture changes,
the alternative on 5.2b does not need to load the original audio files, pre-process and extract
the features like the alternative on 5.1 does.

Therefore, the alternative 2 presented on the figure 5.2 will be used.

5.1.2 Experiment Methodology

This section presents the methodology for the experiments that will be evaluated in the
chapter 6.

Figure 5.3 is a visualization of the process used to gather the results of each combination
of feature extraction and deep learning models, to then be evaluated and compared.

Figure 5.3: Experiment Methodology

The process starts by loading the selected exported extracted features dataset that were
previously generated as shown in 5.2a. The available datasets consist on Mel Spectrograms
and Mel Frequency Cepstrum Coefficient images generated from the data pre-processed
from the original audio dataset.

While loading, the dataset is split using Hold-out, generating a training set which contains
80% of the data, and a validation set containing 20% of the data.

5.2. Implementation 43

The five deep learning models will then run training and validation iteratively, using the same
Hold-out split.

After the five models are done training, the experiment is repeated by making another hold-
out split and running the training and validation process again. This is done to get a more
accurate result, by averaging the results of each run.

5.2 Implementation

This section presents the implementation of the solution. It starts by explaining the data
pre-processing methodology. Then the deep learning model architectures which will be used
for the experiments are presented. At the end of this section, the constructed solution is
presented.

5.2.1 Data Pre-processing

The data used for this solution was first described on section 2.1 of this document. It
consists in 2730 audio files with the MP3 file format, having different bit-rates and length.

The files are registered in an index file, which identifies the bird species of each file. The
index file also provides other information such as the location of where the sample was taken,
or the type of bird call, which is not used for the solution.

As stated in the Adopted Approach (section 4), features are extracted from the original audio
to be used as the input data for the neural networks. So, the first step in the implementation
of the solution was to generate the data that is input to the neural network.

Normalization

The first step taken in this implementation is the normalization of the audio.

Most of the original audio files were not normalized, being that the peak amplitudes were
different in many files, resulting in some audio files being quiet relative to some that were
loud.

During this normalization phase, the audio files were also converted from the MP3 file
format to the WAV file format. The selected sample-rate was 22050Hz.

The file size difference is a downside, because while the dataset using the MP3 file format
takes 1.4GB, the WAV file format version takes 9GB. But the performance increase when
loading (depending on the storage performance), is an upside because the WAV files do not
need to be decompressed when loaded, as opposed to MP3 which is a compressed audio
format.

The Python library Pydub was used to normalize the audio and export to the WAV file
format.

44 Chapter 5. Design of the Solution

Figure 5.4: Normalization

Preparing for feature extraction

Before the feature extraction, the audio data can be further improved. This process was
implemented with multi-threading support in order to speed it up.

Figure 5.5: Removing noise and splitting into multiple samples

This process starts with converting the audio channels from Stereo to Mono. Then, an
envelope filter can be applied to the audio data. This envelope basically removes parts of
the audio that are below a certain threshold and can be considered background noise.

Figure 5.6: Signal padding of Black-tailed Gnatcatcher (ID: XC17806)

The audio is also padded with values close to zero at the beginning and the end of the data
in order ease the process of splitting the audio into samples of a certain window length. The
audio padding is half of the window length used for the samples at the beginning and the
end of the audio.

The figure 5.6 presents the padding on a signal to be used on a split with a window length
of 3 seconds. Half of the window length is added to the beginning and the end of the signal
(1.5 seconds).

The Butterworth Bandpass filter (Butterworth et al. 1930) is then used to remove frequen-
cies outside of the bird vocalization range. The value used for the lowest frequency cut is
1500hz, and 8000hz for the highest. While testing the pre-processing of the audio data,
the Butterworth bandpass filter attenuates most of the noise, such as rain or wind, which

5.2. Implementation 45

Figure 5.7: Butterworth Bandpass filter on Black-tailed Gnatcatcher (ID:
XC17806)

in some cases it makes a big difference both visually and audibly regarding the clarity of the
bird chirps.

The figure 5.7 represents the Butterworth Bandpass filter applied to the signal that was
shown in the figure 5.6.

The final step is splitting the audio data into multiple samples. The process of splitting the
audio data into samples begins by finding the peaks in the sound.

Figure 5.8: Split Samples of Black-tailed Gnatcatcher (ID: XC17806)

These peaks are obtained using a function from the Python library SciPy. This function has
some parameters that can be defined, such as the peak threshold and the minimum distance
between peaks.

After getting a list of peaks, the audio data is then split into multiple samples, centered on
the peak, and all with the same length of 3 seconds in the example displayed on the figure
5.8.

As it can be seen on figure 5.8, the samples are split and centered on a certain peak. Even
though some samples overlap with other peaks, it can act as data augmentation.

46 Chapter 5. Design of the Solution

Extracting Features

After the samples were split into equal length, the data is ready for the feature extraction
step. The feature extraction process was implemented with multi-threading support in order
to speed it up.

The MFCC features were extracted using the Python library python_speech_features (Lyons
et al. 2020). The listing 5.1 presents the MFCC extraction code.

1 f rom py thon_speech_fea tu r e s impo r t mfcc
2

3 de f get_mfccs (t ime_se r i e s , samp le_rate) :
4 n f f t = (round (samp le_rate / 40))
5 r e t u r n mfcc (t ime_se r i e s , sample_rate , numcep=13 , n f i l t =26 , n f f t = n f f t

, l o w f r e q =1500 , h i g h f r e q =8000) .T

Listing 5.1: Mel Frequency Cepstral Coefficients Extraction Code

The Mel Spectrograms were extracted using the Python library LibROSA (McFee et al.
2020). The listing 5.2 presents the Mel Spectrogram extraction code.

1 f rom l i b r o s a . f e a t u r e impo r t me l s pec t r og r am
2

3 de f get_me l spect rog ram (t ime_se r i e s , samp le_rate) :
4 r e t u r n me l spec t r og r am (y=t ime_se r i e s , s r =sample_rate , n_f f t =1024 ,

hop_length =1024 , n_mels =128 , h tk=True , fm in =1500 , fmax =8000)

Listing 5.2: Mel Spectrogram Extraction Code

(a) Extracted Mel Frequency
Cepstrum Coefficients of
Black-tailed Gnatcatcher (ID:

XC17806, Sample 2)

(b) Extracted Mel Spectro-
gram of Black-tailed Gnat-
catcher (ID: XC17806, Sam-

ple 2)

Figure 5.9: Mel Frequency Cepstrum Coefficients and Mel Spectrogram vi-
sualization

The figures 5.9a and 5.9b represent the extracted features from the Sample 2 of a bird
species called Black-tailed Gnatcatcher, presented before in the figure 5.8.

The extracted features are then saved into JPEG files, sorted in folders by class name. The
Python library Matplotlib (Hunter 2007) was used to plot and save the features.

5.2.2 Deep Learning Model Architectures

This section presents the architecture of the deep learning models that were selected to be
used in this thesis on section 4.2.

5.2. Implementation 47

These models are implemented using the TensorFlow (Abadi et al. 2015) framework with
the Keras (Chollet et al. 2015) back-end on the Python language.

These models are the result of analysing and testing multiple existing deep learning model
architectures available online, such as the implementations by Adams 2020. The models
were adapted and optimized to the use case of this dissertation, some of the experiments
that were done are documented at section 6.2.1.

Convolutional Neural Network

The chosen Convolutional Neural Network architecture is composed by 6 convolutional layers
(Conv2D), and always followed by a pooling layer (MaxPooling2D).

Table 5.1: Convolutional Neural Network - Model Architecture

Type Kernel Kernel Size Notes Input Shape
1 Conv2D 8 7x7 Activation = relu 224 x 224 x 3
2 MaxPooling2D 2x2 224 x 224 x 8
3 BatchNormalization 112 x 112 x 8
4 Conv2D 16 5x5 Activation = relu 112 x 112 x 8
5 MaxPooling2D 2x2 112 x 112 x 16
6 BatchNormalization 56 x 56 x 16
7 Conv2D 32 3x3 Activation = relu 56 x 56 x 16
8 MaxPooling2D 2x2 56 x 56 x 32
9 BatchNormalization 28 x 28 x 32
10 Conv2D 64 3x3 Activation = relu 28 x 28 x 32
11 MaxPooling2D 2x2 28 x 28 x 64
12 BatchNormalization 14 x 14 x 64
13 Conv2D 128 3x3 Activation = relu 14 x 14 x 64
14 MaxPooling2D 2x2 14 x 14 x 128
15 BatchNormalization 7 x 7 x 128
16 Conv2D 256 3x3 Activation = relu 7 x 7 x 128
17 Dropout Rate = 0.5 7 x 7 x 256
18 MaxPooling2D 2x2 7 x 7 x 256
19 Flatten 4 x 4 x 256
20 Dropout Rate = 0.5 4096
21 Dense 128 Activation = relu 4096
22 Dense 91 Activation = softmax 128

Between each convolutional and pooling layer pair, a batch normalization layer is added.
These layers reduce the amount of shift on the values of the hidden layers, increasing the
learning speed and reducing over-fitting (D. 2019).

After a Flatten layer, a Dropout layer with a rate of 50% is added to reduce over-fitting.

The last layer is the fully connected layer, which is a Dense layer with the softmax activation.

48 Chapter 5. Design of the Solution

In total, this model has 933211 trainable parameters.

The table 5.1 represents the implemented Convolutional Neural Network model architecture.

Recurrent Neural Network - Long Short Term Memory

The chosen Long Short Term Memory model architecture uses a bidirectional LSTM layer.

The first layer reshapes the image data in order to have the correct dimensions for the LSTM
layer.

The table 5.1 represents the implemented Long Short Term Memory model architecture.

Table 5.2: Long Short Term Memory - Model Architecture

Type Kernel Notes Input Shape
1 Reshape TimeDistributed ; Target = -1 224 x 224 x 3
2 Dense 64 TimeDistributed ; Activation = tanh 224 x 672
3 LSTM 128 BiDirectional 224 x 64
4 Dense 64 Activation = relu 224 x 256
5 MaxPooling1D 224 x 64
6 Dense 32 Activation = relu 112 x 64
7 Flatten 112 x 32
8 Dropout Rate = 0.5 3584
9 Dense 32 Activation = relu 3584
10 Dense 91 Activation = softmax 32

In total, this model has 376955 trainable parameters.

Recurrent Neural Network - Gated Recurrent Unit

The Gated Recurrent Unit model architecture is similar to the presented Long Short Term
Memory model architecture but with the LSTM layer switched to the GRU layer and different
units on the Dense layers after the MaxPooling1D layer.

The table 5.3 represents the implemented Gated Recurrent Unit model architecture.

5.2. Implementation 49

Table 5.3: Gated Recurrent Unit - Model Architecture

Type Kernel Notes Input Shape
1 Reshape TimeDistributed ; Target = -1 224 x 224 x 3
2 Dense 64 TimeDistributed ; Activation = tanh 224 x 672
3 GRU 128 BiDirectional 224 x 64
4 Dense 128 Activation = relu 224 x 256
5 MaxPooling1D 224 x 128
6 Dense 64 Activation = relu 112 x 128
7 Flatten 112 x 64
8 Dropout Rate = 0.5 7168
9 Dense 32 Activation = relu 7168
10 Dense 91 Activation = softmax 32

In total, this model has 465627 trainable parameters.

Convolutional Recurrent Neural Network - Long Short Term Memory

The Convolutional Recurrent Neural Network using Long Short Term Memory model archi-
tecture is based on merging the Convolutional Neural Network model architecture with the
Long Short Term Memory model architecture.

Layers have been added, removed and modified in order to get better results.

A dropout layer is added in between the Convolutional layers and the Long Short Term
Memory layers in order to reduce over-fitting.

The table 5.4 represents the implemented Convolutional Recurrent Neural Network - Long
Short Term Memory model architecture.

50 Chapter 5. Design of the Solution

Table 5.4: Convolutional Recurrent Neural Network - Long Short Term Mem-
ory - Model Architecture

Type Kernel Notes Input Shape
1 Conv2D 32 Activation = relu 224 x 224 x 3
2 MaxPooling2D 224 x 224 x 32
3 Conv2D 64 Activation = relu 112 x 112 x 32
4 MaxPooling2D 112 x 112 x 64
5 Conv2D 128 Activation = relu 56 x 56 x 64
6 MaxPooling2D 56 x 56 x 128
7 Conv2D 256 Activation = relu 28 x 28 x 128
8 MaxPooling2D 28 x 28 x 256
9 Dropout Rate = 0.5 14 x 14 x 256
10 Reshape TimeDistributed ; Target = -1 14 x 14 x 256
11 LSTM 256 BiDirectional 14 x 3584
12 MaxPooling1D 7 x 512
13 Dropout Rate = 0.5 7 x 512
14 LSTM 128 BiDirectional 7 x 512
15 MaxPooling1D 7 x 256
16 Flatten 3 x 256
17 Dropout Rate = 0.5 768
18 Dense 32 Activation = relu 768
19 Dense 91 Activation = softmax 64

In total, this model has 8981307 trainable parameters.

Convolutional Recurrent Neural Network - Gated Recurrent Unit

The Convolutional Recurrent Neural Network - Gated Recurrent Unit model architecture is
based on the presented Convolutional Recurrent Neural Network - Long Short Term Memory
but with the LSTM layer switched to the GRU layer, with double the amount of kernel units.
The second to last Dense layer also has double the amount of kernel units.

The table 5.5 represents the implemented Convolutional Recurrent Neural Network - Gated
Recurrent Unit model architecture.

5.2. Implementation 51

Table 5.5: Convolutional Recurrent Neural Network - Gated Recurrent Unit
- Model Architecture

Type Kernel Notes Input Shape
1 Conv2D 32 Activation = relu 224 x 224 x 3
2 MaxPooling2D 224 x 224 x 32
3 Conv2D 64 Activation = relu 112 x 112 x 32
4 MaxPooling2D 112 x 112 x 64
5 Conv2D 128 Activation = relu 56 x 56 x 64
6 MaxPooling2D 56 x 56 x 128
7 Conv2D 256 Activation = relu 28 x 28 x 128
8 MaxPooling2D 28 x 28 x 256
9 Dropout Rate = 0.5 14 x 14 x 256
10 Reshape TimeDistributed ; Target = -1 14 x 14 x 256
11 GRU 512 BiDirectional 14 x 3584
12 MaxPooling1D 14 x 1024
13 Dropout Rate = 0.5 7 x 1024
14 GRU 256 BiDirectional 7 x 1024
15 MaxPooling1D 7 x 512
16 Flatten 3 x 512
17 Dropout Rate = 0.5 1536
18 Dense 64 Activation = relu 1536
19 Dense 91 Activation = softmax 64

In total, this model has 15065915 trainable parameters.

5.2.3 Constructed Solution

This section presents the constructed solution by providing an overview on the used Python
files, classes and libraries.

The figure 5.10 is a visualization of the constructed solution. Some functions, function
arguments and variables have been omitted in order to simplify the diagram.

52 Chapter 5. Design of the Solution

Figure 5.10: Class and Library diagram

The solution is split into 2 independent parts:

• Data Pre-processing;

• Deep Learning.

These 2 parts can be ran independently, but are also linked by the file controller.py which
acts as an interface for the file cli.py, which is a text based menu that interacts will both
parts.

In total, the solution can be ran in 3 different ways:

5.2. Implementation 53

• Through the cli.py file, mainly used to explore the dataset

– Allows the user to load a dataset, which automatically pre-processes the audio
files

– Extract features: Mel Frequency Cepstrum Coefficients and Mel Spectrogram

– Export features

– Save and Load the dataset state

– Explore the dataset

– Preview deep learning batch generator

– Train deep learning model

– Run the experiment methodologies

• Through the dataset_manager.py file, used to quickly execute data pre-processing,
feature extraction and exporting.

– Loads dataset, pre-processes data, extracts and exports features.

• Through the deep_learning.py file, used to quickly test deep learning model architec-
tures and run the experiment methodologies.

– Run the experiment methodologies

– Test deep learning model

Data Pre-processing

This part of the solution is composed by these Python files:

• dataset_manager.py

This Python file manages all of the dataset operations.

It uses a Thread Pool when using the functions on audio_processor.py to load the
dataset files, extract and export features in order to speed up the process.

It also can save and load the state of the Dataset class using the Python library
pickle, with serializes the class and its contents to a file. This proved useful when
optimizing the feature extraction, as the dataset files did not need to be loaded and
be pre-processed each time a change was done to the feature extraction, speeding up
the process.

• audio_preprocessor.py

This Python file handles the loading of the audio files, the pre-processing, such as
the envelope, the Butterworth bandpass filter, padding the audio, and splitting into
samples.

It also handles the feature extraction and exports the features.

• dataset.py

The Python file dataset.py contains 3 classes:

54 Chapter 5. Design of the Solution

– Dataset: contains a list of Class (list of Bird Species)

– Class: contains a list of Samples, and the name of the Bird Species

– Sample: contains the original file name and the sample number, the audio time
series, the Mel Frequency Cepstrum Coefficients and the Mel Spectrogram ex-
tracted features

• mp3_to_wav.py and normalize_audio.py

These two Python files were used early on the development of this solution.

The original audio files are encoded with the MP3 format and were converted to the
uncompressed WAV format using the mp3_to_wav.py file.

The audio amplitudes were normalized using the normalize_audio.py file.

Both of these files use the library PyDub to handle the audio.

Deep Learning

This part of the solution contained in the deep_learning.py and models.py Python files.

The deep_learning.py file contains a class named DeepLearning, which provides the following
methods:

• generate_data(): Generates the training and validation sets (80% and 20% split,
respectively as a default, but can be changed), using the ImageDataGenerator from
the back-end Keras of the TensorFlow framework.

• train(): Fits the model with the training set and validates with the validation set. The
method gets the model from the models.py Python file.

The deep_learning.py file also provides the functions compare_models() and compare_features()
which automatically execute the experiment methodologies as presented on section 5.1.2.

The models.py file provides all of the deep learning models used in the experiments. The
alternatives used for the experiments in the section 6.2.1 are also in this file, but are omitted
in the figure 5.10.

55

Chapter 6

Evaluation

This chapter presents the evaluation of the solution. The section 6.1 overviews the multiple
options in the solution the be evaluated, the metrics that will be used to evaluate the options
and the hypothesis. The section 6.2 contains the multiple experiments of this dissertation.
The section 6.3 describes the statistical test that evaluates the hypothesis.

6.1 Methodology

This section presents the hypothesis and combinations that will be evaluated, as well as the
metrics used.

6.1.1 Combinations

The main objective in this dissertation is to propose a methodology able to identify a bird
species by its chirp using deep learning techniques. Multiple combinations of feature extrac-
tion methods and deep learning models will be tested.

In total, there are 10 combinations to be tested, as stated in chapter 4 5 deep learning
models and 2 feature extraction methods were selected to be tested. These combinations
are:

• CNN with: MFCC and Mel Spectrogram

• RNN LSTM with: MFCC and Mel Spectrogram

• RNN GRU with: MFCC and Mel Spectrogram

• CRNN LSTM with: MFCC and Mel Spectrogram

• CRNN GRU with: MFCC and Mel Spectrogram

6.1.2 Metrics

As stated in chapter 4, hold-out split and repeating experiments will be used to get reliable
results out of the experiments.

The main metric used to compare the deep learning models is the average recall per bird
species. Other metrics are also documented on the experiments, such as accuracy, loss and
time.

56 Chapter 6. Evaluation

6.1.3 Hypothesis

The null hypothesis claims that all the combinations of deep learning architectures with
feature extraction methods perform equally. The rejection of the null hypothesis means that
there exists at least a pair of classifiers with significantly different performances.

The Friedman test followed by the Nemenyi test are used as the statistical tests to evaluate
the hypothesis.

The Friedman test is a non-parametric statistical test for comparing more than two samples.
When the Friedman test leads to significant results, at least one of the samples is different
from the other samples (Corder and Foreman 2009). Then, the Nemenyi test can be used
to post-hoc pairwise test for multiple comparisons.

6.2 Experiments

The upcoming sections document how the deep learning model architectures were chosen
and optimized, how different feature extractions perform when combined with different deep
learning models, a result comparison and the statistical test to answer the hypothesis.

The experiments were conducted in the following environment:

• OS: Ubuntu 20.04 LTS (Focal Fossa)

• Python: version 3.6

• TensorFlow: version 2.2

• Processor: AMD Ryzen 9 3900X

• RAM: 32GB

• Graphics Card: AMD RX 580X 8GB (RadeonOpenCompute 3.5.0)

6.2.1 Deep Learning Model Architectures

During the process of constructing the solution, several deep learning model architectures
were tested.

The following sections present 3 architecture variations for each model. The variations for
each model type were selected out of a large group of networks that were built and tested.
Only 3 variations are presented in order to simplify the dissertation.

This experience elapsed a maximum of 50 epochs for each alternative. This was decided
because while pre-testing the alternatives it was found that, on the validation set, the models
stop improving, or barely improve after 50 epochs and their loss values increase, indicating
that the model is over-fitting. In order to save time between each experiment, 50 epochs
was chosen.

The experiment was repeated 3 times and the values used to evaluate the models were
averaged. On each experiment, the same training and validation data was used per model
architecture alternative. The input data used were MFCC extracted features with sample
lengths of 3 seconds.

6.2. Experiments 57

The metrics registered in this experiment were:

• At the maximum recall value:

– Maximum recall value (average);

– Epoch of maximum recall value (average);

– Time to maximum recall value (average);

– Loss at maximum recall value (average);

– Accuracy at maximum recall value (average).

The models which performed the best in these experiments are the ones detailed in section
5.2.2.

Convolutional Neural Network

The alternatives presented on table 6.1 only differ on the second to last Dense layer.

These alternatives were chosen because they performed the best compared to other layer
configurations.

Table 6.1: Convolutional Neural Network alternatives

(a) Alternative 1

1 Conv2D (8)
2 MaxPooling2D
3 BatchNormalization
4 Conv2D (16)
5 MaxPooling2D
6 BatchNormalization
7 Conv2D (32)
8 MaxPooling2D
9 BatchNormalization
10 Conv2D (64)
11 MaxPooling2D
12 BatchNormalization
13 Conv2D (128)
14 MaxPooling2D
15 BatchNormalization
16 Conv2D (256)
17 Dropout (0.2)
18 MaxPooling2D
19 Flatten
20 Dropout (0.2)
21 Dense (64)
22 Dense (91)

(b) Alternative 2

1 Conv2D (8)
2 MaxPooling2D
3 BatchNormalization
4 Conv2D (16)
5 MaxPooling2D
6 BatchNormalization
7 Conv2D (32)
8 MaxPooling2D
9 BatchNormalization
10 Conv2D (64)
11 MaxPooling2D
12 BatchNormalization
13 Conv2D (128)
14 MaxPooling2D
15 BatchNormalization
16 Conv2D (256)
17 Dropout (0.2)
18 MaxPooling2D
19 Flatten
20 Dropout (0.2)
21 Dense (256)
22 Dense (91)

(c) Alternative 3

1 Conv2D (8)
2 MaxPooling2D
3 BatchNormalization
4 Conv2D (16)
5 MaxPooling2D
6 BatchNormalization
7 Conv2D (32)
8 MaxPooling2D
9 BatchNormalization
10 Conv2D (64)
11 MaxPooling2D
12 BatchNormalization
13 Conv2D (128)
14 MaxPooling2D
15 BatchNormalization
16 Conv2D (256)
17 Dropout (0.2)
18 MaxPooling2D
19 Flatten
20 Dropout (0.2)
21 Dense (128)
22 Dense (91)

58 Chapter 6. Evaluation

The table 6.2 compares the 3 alternatives presented in the table 6.1. The values are averaged
from the result of 3 repeated experiments.

Alt.
At Maximum Recall (Validation)

Validation Set
Epoch Time

Training Set
Recall Accuracy Loss Recall Accuracy Loss

1 40.55% 44.99% 3.204 45 52m06s 97.91% 98.52% 0.1104
2 39.85% 45.49% 2.898 43 51m09s 99.08% 99.35% 0.0633
3 41.70% 46.52% 2.956 42 45m31s 98.68% 99.10% 0.0839

Table 6.2: Convolutional Neural Network alternative comparison

The alternative 3 presented on the table 6.1c is considered the best in this experiment due
to its recall on validation when compared to the others.

Recall, accuracy and loss graphs from the best run of the alternative 3 are presented in the
figures 6.1a, 6.1b and 6.1c respectively. The training line is displayed in a dark teal color
and the validation line is displayed in a gray color.

(a) Recall per Epoch (b) Accuracy per Epoch (c) Loss per Epoch

Figure 6.1: Recall, Accuracy and Loss per Epoch - Convolutional Neural
Network

Recurrent Neural Network - Long Short Term Memory

The alternatives are presented on table 6.3.

The alternative 1 (table 6.3a) differs from the alternative 2 (table 6.3b) on the Dense layer
in between the Bidirectional LSTM layer and MaxPooling1D layer.

The alternative 3 (table 6.3c) only differs in the LSTM layer, where in the alternatives 1
and 2 Bidirectional LSTM is used.

These alternatives were chosen because they performed the best compared to other layer
configurations.

6.2. Experiments 59

Table 6.3: Recurrent Neural Network - Long Short Term Memory alternatives

(a) Alternative 1

1 Reshape
2 TimeD. Dense (64)
3 Bidir. LSTM (128)
4 Dense (128)
5 MaxPooling1D
6 Dense (64)
7 Flatten
8 Dropout (0.5)
9 Dense (32)
10 Dense (91)

(b) Alternative 2

1 Reshape
2 TimeD. Dense (64)
3 Bidir. LSTM (128)
4 Dense (128)
5 MaxPooling1D
6 Dense (32)
7 Flatten
8 Dropout (0.5)
9 Dense (32)
10 Dense (91)

(c) Alternative 3

1 Reshape
2 TimeD. Dense (64)
3 LSTM (128)
4 Dense (128)
5 MaxPooling1D
6 Dense (64)
7 Flatten
8 Dropout (0.5)
9 Dense (32)
10 Dense (91)

The table 6.4 compares the 3 alternatives presented in the table 6.3. The values are averaged
from the result of 3 repeated experiments.

Alt.
At Maximum Recall (Validation Set)

Validation Set
Epoch Time

Training Set
Recall Accuracy Loss Recall Accuracy Loss

1 32.54% 37.25% 4.026 44 86m02s 84.65% 89.53% 0.4833
2 33.62% 39.20% 3.768 45 91m47s 80.05% 86.24% 0.5925
3 30.85% 37.05% 3.789 48 63m58s 71.64% 79.88% 0.7964

Table 6.4: Long Short Term Memory alternative comparison

The alternative 2 presented on the table 6.3b is considered the best in this experiment due
to its recall on validation when compared to the others.

Recall, accuracy and loss graphs from the best run of the alternative 2 are presented in the
figures 6.2a, 6.2b and 6.2c respectively. The training line is displayed in a pink color and the
validation line is displayed in a dark teal color.

(a) Recall per Epoch (b) Accuracy per Epoch (c) Loss per Epoch

Figure 6.2: Recall, Accuracy and Loss per Epoch - Long Short Term Memory

60 Chapter 6. Evaluation

Recurrent Neural Network - Gated Recurrent Unit

The alternatives are presented on table 6.5. The Gated Recurrent Unit model architecture
implementations are very similar to the Long Short Term Memory model architecture im-
plementations presented on the table 6.3, having the LSTM layers switched to the GRU
layers.

Table 6.5: Recurrent Neural Network - Gated Recurrent Unit alternatives

(a) Alternative 1

1 Reshape
2 TimeD. Dense (64)
3 Bidir. GRU (128)
4 Dense (128)
5 MaxPooling1D
6 Dense (64)
7 Flatten
8 Dropout (0.5)
9 Dense (32)
10 Dense (91)

(b) Alternative 2

1 Reshape
2 TimeD. Dense (64)
3 Bidir. GRU (128)
4 Dense (128)
5 MaxPooling1D
6 Dense (32)
7 Flatten
8 Dropout (0.5)
9 Dense (32)
10 Dense (91)

(c) Alternative 3

1 Reshape
2 TimeD. Dense (64)
3 GRU (128)
4 Dense (128)
5 MaxPooling1D
6 Dense (64)
7 Flatten
8 Dropout (0.5)
9 Dense (32)
10 Dense (91)

The table 6.6 compares the 3 alternatives presented in the table 6.5. The values are averaged
from the result of 3 repeated experiments.

Alt.
At Maximum Recall (Validation Set)

Validation Set
Epoch Time

Training Set
Recall Accuracy Loss Recall Accuracy Loss

1 33.59% 38.24% 3.964 44 105m14s 82.51% 87.62% 0.5431
2 33.39% 38.25% 3.931 47 109m58s 61.30% 85.09% 0.6130
3 31.27% 36.91% 3.861 47 71m29s 72.85% 80.28% 0.7777

Table 6.6: Gated Recurrent Unit alternative comparison

The alternative 1 presented on the table 6.5a is considered the best in this experiment due
to its recall on validation when compared to the others.

Recall, accuracy and loss graphs from the best run of the alternative 1 are presented in the
figures 6.3a, 6.3b and 6.3c respectively. The training line is displayed in an orange color and
the validation line is displayed in a blue color.

6.2. Experiments 61

(a) Recall per Epoch (b) Accuracy per Epoch (c) Loss per Epoch

Figure 6.3: Recall, Accuracy and Loss per Epoch - Gated Recurrent Unit

Convolutional Recurrent Neural Network - Long Short Term Memory

The alternatives are presented on table 6.7.

The alternative 1 presented on the table 6.7a is similar to the alternative 3 presented on the
table 6.7c, differing only on the LSTM layers. These 2 alternatives were chosen because
they performed the best compared to other layer configurations.

The alternative 2 presented on 6.7b was the first one created. It is based on joining a
Convolutional Neural Network alternative with a Long Short Term Memory alternative.

62 Chapter 6. Evaluation

Table 6.7: Convolutional Recurrent Neural Network - Long Short Term Mem-
ory alternatives

(a) Alternative 1

1 Conv2D (32)
2 MaxPooling2D
3 Conv2D (64)
4 MaxPooling2D
5 Conv2D (128)
6 MaxPooling2D
7 Conv2D (256)
8 MaxPooling2D
9 Dropout (0.5)
10 TimeDist. Reshape
11 Bidir. LSTM (256)
12 MaxPooling1D
13 Dropout (0.5)
14 Bidir. LSTM (128)
15 MaxPooling1D
16 Flatten
17 Dropout (0.5)
18 Dense (64)
19 Dense (91)

(b) Alternative 2

1 Conv2D (8)
2 MaxPooling2D
3 BatchNormalization
4 Conv2D (16)
5 MaxPooling2D
6 BatchNormalization
7 Conv2D (32)
8 MaxPooling2D
9 BatchNormalization
10 Conv2D (64)
11 MaxPooling2D
12 BatchNormalization
13 Conv2D (128)
14 MaxPooling2D
15 Reshape
16 TimeD. Dense (64)
17 Bidir. LSTM (128)
18 Dense (64)
19 MaxPooling1D
20 Dense (32)
21 Flatten
22 Dropout (0.5)
23 Dense (32)
24 Dense (91)

(c) Alternative 3

1 Conv2D (32)
2 MaxPooling2D
3 Conv2D (64)
4 MaxPooling2D
5 Conv2D (128)
6 MaxPooling2D
7 Conv2D (256)
8 MaxPooling2D
9 Dropout (0.5)
10 TimeDist. Reshape
11 Bidir. LSTM (512)
12 MaxPooling1D
13 Dropout (0.5)
14 Bidir. LSTM (256)
15 MaxPooling1D
16 Flatten
17 Dropout (0.5)
18 Dense (64)
19 Dense (91)

The table 6.8 compares the 3 alternatives presented in the table 6.3. The values are averaged
from the result of 3 repeated experiments.

Alt.
At Maximum Recall (Validation Set)

Validation Set
Epoch Time

Training Set
Recall Accuracy Loss Recall Accuracy Loss

1 45.12% 46.65% 4.193 41 74m26s 94.83% 96.64% 0.1914
2 32.25% 39.22% 3.042 46 54m28s 53.48% 65.79% 1.346
3 44.69% 46.52% 4.069 38 75m35s 95.60% 96.56% 1.807

Table 6.8: Convolutional Recurrent Neural Network - Long Short Term Mem-
ory alternative comparison

The alternative 1 presented on the table 6.7a is considered the best in this experiment due
to its recall on validation when compared to the others.

6.2. Experiments 63

Recall, accuracy and loss graphs from the best run of the alternative 1 are presented in the
figures 6.4a, 6.4b and 6.4c respectively. The training line is displayed in a red color and the
validation line is displayed in a blue color.

(a) Recall per Epoch (b) Accuracy per Epoch (c) Loss per Epoch

Figure 6.4: Recall, Accuracy and Loss per Epoch - Convolutional Recurrent
Neural Network - Long Short Term Memory

Convolutional Recurrent Neural Network - Gated Recurrent Unit

The alternatives are presented on table 6.9.

The Convolutional Recurrent Neural Network - Gated Recurrent Unit model architecture
implementations are very similar to the Convolutional Recurrent Neural Network - Long
Short Term Memory model architecture implementations presented on the table 6.7, having
the LSTM layers switched to the GRU layers.

64 Chapter 6. Evaluation

Table 6.9: Convolutional Recurrent Neural Network - Gated Recurrent Unit
alternatives

(a) Alternative 1

1 Conv2D (32)
2 MaxPooling2D
3 Conv2D (64)
4 MaxPooling2D
5 Conv2D (128)
6 MaxPooling2D
7 Conv2D (256)
8 MaxPooling2D
9 Dropout (0.5)
10 TimeDist. Reshape
11 Bidir. GRU (256)
12 MaxPooling1D
13 Dropout (0.5)
14 Bidir. GRU (128)
15 MaxPooling1D
16 Flatten
17 Dropout (0.5)
18 Dense (64)
19 Dense (91)

(b) Alternative 2

1 Conv2D (8)
2 MaxPooling2D
3 BatchNormalization
4 Conv2D (16)
5 MaxPooling2D
6 BatchNormalization
7 Conv2D (32)
8 MaxPooling2D
9 BatchNormalization
10 Conv2D (64)
11 MaxPooling2D
12 BatchNormalization
13 Conv2D (128)
14 MaxPooling2D
15 Reshape
16 TimeD. Dense (64)
17 Bidir. GRU (128)
18 Dense (64)
19 MaxPooling1D
20 Dense (32)
21 Flatten
22 Dropout (0.5)
23 Dense (32)
24 Dense (91)

(c) Alternative 3

1 Conv2D (32)
2 MaxPooling2D
3 Conv2D (64)
4 MaxPooling2D
5 Conv2D (128)
6 MaxPooling2D
7 Conv2D (256)
8 MaxPooling2D
9 Dropout (0.5)
10 TimeDist. Reshape
11 Bidir. GRU (512)
12 MaxPooling1D
13 Dropout (0.5)
14 Bidir. GRU (256)
15 MaxPooling1D
16 Flatten
17 Dropout (0.5)
18 Dense (64)
19 Dense (91)

The table 6.10 compares the 3 alternatives presented in the table 6.9. The values are
averaged from the result of 3 repeated experiments.

Alt.
At Maximum Recall (Validation Set)

Validation Set
Epoch Time

Training Set
Recall Accuracy Loss Recall Accuracy Loss

1 44.47% 47.05% 3.570 47 86m37s 91.73% 93.56% 0.3046
2 28.61% 37.61% 3.085 46 54m40s 40.77% 55.47% 1.751
3 46.27% 48.94% 3.414 41 82m53s 92.14% 94.12% 0.3007

Table 6.10: Convolutional Recurrent Neural Network - Gated Recurrent Unit
alternative comparison

The alternative 3 presented on the table 6.9c is considered the best in this experiment due
to its recall on validation when compared to the others.

6.2. Experiments 65

Recall, accuracy and loss graphs from the best run of the alternative 3 are presented in the
figures 6.5a, 6.5b and 6.5c respectively. The training line is displayed in a red color and the
validation line is displayed in a blue color.

(a) Recall per Epoch (b) Accuracy per Epoch (c) Loss per Epoch

Figure 6.5: Recall, Accuracy and Loss per Epoch - Convolutional Recurrent
Neural Network - Gated Recurrent Unit

6.2.2 Combinations

This experiment intends to evaluate the performance of each type of extracted feature with
each of the best performing model architectures from the experiment documented on section
6.2.1.

The extracted features that will be tested are these:

• MFCC with 3 second sample lengths;

• MFCC with 1.5 second sample lengths;

• Mel Spectrograms with 3 second sample lengths;

• Mel Spectrograms with 1.5 second sample lengths.

Examples of these extracted features can be seen in the figures 6.6 and 6.7.

(a) Extracted MFCC (3 sec-
onds)

(b) Extracted MFCC (1.5 sec-
onds)

Figure 6.6: Extracted Mel Frequency Cepstrum Coefficients (American Crow,
ID: XC110263, Sample 4)

66 Chapter 6. Evaluation

(a) Extracted Mel Spectrogram
(3 seconds)

(b) Extracted Mel Spectrogram
(1.5 seconds)

Figure 6.7: Extracted Mel Spectrogram (American Crow, ID: XC110263,
Sample 4)

The deep learning model architectures are described on section 5.2.2.

In total the experiment will test 5 deep learning model architectures with 4 different extracted
features, which means 20 different combinations to be compared.

In order to get a consistent result, the experiments will be repeated 5 times and averaged.

The results of this experiment are presented in the table 6.11.

6.2. Experiments 67

Table 6.11: Extracted Features and Deep Learning Model Architecture Com-
bination Comparison

Comb.
At Maximum Recall (Validation Set)

Validation Set
Epoch Time

Training Set
F. Models Recall Acc. Loss Recall Acc. Loss

M
FC

C
s
3s

CNN 40.50% 45.41% 3.040 47 57m 98.82% 99.13% 0.0787
LSTM 32.44% 38.01% 3.778 47 91m 77.86% 84.65% 0.6491
GRU 35.50% 39.53% 3.979 46 107m 85.69% 89.77% 0.4622
CRNN
LSTM

44.76% 46.10% 4.233 42 74m 96.17% 97.01% 0.1556

CRNN
GRU

44.40% 47.81% 3.470 41 88m 90.80% 92.79% 0.3498

M
FC

C
s
1.
5s

CNN 38.82% 44.44% 3.134 45 52m 98.19% 98.76% 0.1116
LSTM 27.27% 33.65% 3.909 45 89m 71.99% 80.79% 0.7931
GRU 31.36% 36.23% 4.097 46 111m 79.56% 85.26% 0.6354
CRNN
LSTM

42.36% 43.95% 4.404 43 76m 91.97% 93.81% 0.2796

CRNN
GRU

43.35% 46.47% 3.539 40 82m 90.82% 92.64% 0.3476

M
el
Sp

ec
tr
og
ra
m

3s

CNN 47.51% 43.05% 2.574 40 68m 99.05% 99.37% 0.0761
LSTM 26.27% 33.32% 3.832 44 95m 65.85% 75.80% 0.9608
GRU 28.23% 33.48% 4.271 43 110m 75.96% 83.36% 0.7034
CRNN
LSTM

47.95% 50.30% 3.475 48 93m 94.40% 95.60% 0.2140

CRNN
GRU

50.17% 53.13% 3.003 45 98m 90.64% 92.70% 0.3659

M
el
Sp

ec
tr
og
ra
m

1.
5s CNN 44.21% 49.28% 2.957 41 68m 98.76% 99.14% 0.0813

LSTM 24.62% 32.51% 3.790 47 101m 62.68% 73.29% 1.051
GRU 27.56% 32.51% 4.071 46 115m 79.56% 85.46% 0.6354
CRNN
LSTM

46.46% 48.48% 3.763 40 78m 91.30% 93.39% 0.3109

CRNN
GRU

47.92% 50.71% 3.286 46 102m 89.74% 91.95% 0.3935

Overall, both Mel Frequency Cepstrum Coefficients and Mel Spectrogram performed better
with a sample length of 3 seconds when compared to the 1.5 second sample length versions,
as it can be seen in the table 6.11

The best combination on this experiment is using the Mel Spectrogram with 3 second
sample length as the extracted features, and the Convolutional Recurrent Neural Network
- Gated Recurrent Unit as the deep learning model. This combination achieved an average
recall of 50.17% on epoch 45. The figures 6.8, 6.9 and 6.10 present the recall, accuracy

68 Chapter 6. Evaluation

and loss of the Convolutional Recurrent Neural Network - Gated Recurrent Unit using Mel
Spectrograms. In the figures, the training line is orange and the validation line is blue.

Figure 6.8: Recall per epoch of CRNN-GRU using Mel Spectrogram

Figure 6.9: Accuracy per epoch of CRNN-GRU using Mel Spectrogram

6.2. Experiments 69

Figure 6.10: Loss per epoch of CRNN-GRU using Mel Spectrogram

The Convolutional Neural Network and the Convolutional Recurrent Neural Networks per-
formed better than the 2 tested Recurrent Neural Network models.

The figures 6.11a, 6.11b and 6.11c compare the validation performance of the 3 models
in recall, accuracy and loss respectively. The Convolutional Neural Network is represented
in a Gray color, the Convolutional Recurrent Neural Network - Long Short Term Memory
is represented in a Blue color, and the Convolutional Recurrent Neural Network - Gated
Recurrent Unit is represented in a Green color.

(a) Recall per Epoch (b) Accuracy per Epoch (c) Loss per Epoch

Figure 6.11: Recall, Accuracy and Loss per Epoch - Top 3 models using mel
spectrogram

The figure 6.11c shows that the 2 Convolutional Recurrent Neural Networks have a similar
loss curve. It also shows that the Convolutional Neural Network becomes less over-fit per
epoch than the others, as its loss values seem to decrease or stay constant, as opposed to
the 2 other models.

70 Chapter 6. Evaluation

Best Models

This section documents an experiment where the top 3 models of the last experiment are
tested for 100 epochs, as the previous tests were only conducted up to 50 epochs.

The top 3 models were the Convolutional Neural Network and the 2 Convolutional Recurrent
Neural Networks, and using the Mel Spectrogram with a 3 second sample length. The
experiment results are present on the table 6.12.

Model
At Maximum Recall (Validation)

Validation
Epoch Time

Training
Recall Accuracy Loss Recall Accuracy Loss

CNN 46.67% 51.56% 2.857 89 201m 99.40% 99.52% 0.0426

CRNN
LSTM

47.92% 49.93% 3.878 84 209m 96.35% 96.57% 0.144

CRNN
GRU

51.36% 53.75% 3.020 82 210m 93.76% 95.11% 0.2431

Table 6.12: Top 3 model comparison

Training the models for 50 more epochs only improved performance of the Convolutional
Recurrent Neural Network - Gated Recurrent Unit model, resulting in an increase of the recall
by 1.19%, accuracy also increased by 0.62%, with the loss only increasing by a negligible
0.017, meaning that model did not over-fit by training for more epochs.

The Convolutional Recurrent Neural Network - Long Short Term Memory model did not
improve as expected, as the model was already becoming over-fit on 50 epochs, as shown
by its loss curve in the figure 6.11c.

The Convolutional Neural Network, which was the most promising to improve because of
its loss curve in the figure 6.11c, also did not improve its recall value, although its accuracy
improved by 8.51%.

The recall, accuracy and loss graphs on the validation set of this experiment is presented on
the figures 6.12, 6.13 and 6.14.

The lines in the graphs have smoothing applied to them in order to improve readability.
They were generated in TensorBoard with a 0.5 smoothing value. The original lines without
smoothing are slightly visible as shadows behind the smoothed lines.

6.2. Experiments 71

Figure 6.12: Recall per epoch of CNN, CRNN-LSTM and CRNN-GRU using
Mel Spectrogram

Figure 6.13: Accuracy per epoch of CNN, CRNN-LSTM and CRNN-GRU
using Mel Spectrogram

72 Chapter 6. Evaluation

Figure 6.14: Loss per epoch of CNN, CRNN-LSTM and CRNN-GRU using
Mel Spectrogram

From all the models tested in this dissertation, the Convolutional Recurrent Neural Network -
Gated Recurrent Unit described in the section 5.2.2 is considered the best model architecture
for this dissertation.

When used with the Mel Spectrogram with a sample length of 3 seconds as the feature
extraction method, the model performed the better than the others, achieving a recall of
51.36% and an accuracy of 53.75% after training for 82 epochs.

Tables 6.13 and 6.14 list all the species in the dataset, and the percentage of the duration
relative to the total duration of all species samples on one experiment.

Table 6.13: Percentage of Correct Classifications per Bird Species (1)

Bird Species Percentage Bird Species Percentage

Abert’s Towhee 59.56% Acorn Woodpecker 48.64%
American Bushtit 90.00% American Crow 44.44%
American Dusky Flycatcher 72.22% American Grey Flycatcher 65.31%
American Robin 64.29% Anna’s Hummingbird 71.11%
Ash-throated Flycatcher 5.00% Bell’s Sparrow 21.67%
Bell’s Vireo 74.70% Bewick’s Wren 27.27%
Black Phoebe 61.36% Black-chinned Sparrow 10.00%
Black-headed Grosbeak 60.00% Black-tailed Gnatcatcher 76.92%
Blue-grey Gnatcatcher 15.79% Brewer’s Sparrow 54.72%
California Gnatcatcher 0% California Quail 64.29%
California Scrub Jay 18.87% California Thrasher 47.87%
California Towhee 37.50% Canyon Wren 21.05%

6.2. Experiments 73

Table 6.14: Percentage of Correct Classifications per Bird Species (2)

Bird Species Percentage Bird Species Percentage

Cassin’s Finch 27.78% Cassin’s Vireo 61.54%
Chestnut-backed Chickadee 58.82% Clark’s Nutcracker 76.92%
Common Poorwill 33.33% Common Yellowthroat 65.31%
Dark-eyed Junco 56.20% Elegant Tern 77.78%
Flammulated Owl 47.14% Forster’s Tern 51.82%
Great Horned Owl 20.59% Green-tailed Towhee 68.60%
Grey Vireo 89.36% Hermit Thrush 44.44%
Hermit Warbler 82.35% House Finch 50.91%
House Wren 93.22% Hutton’s Vireo 19.23%
Juniper Titmouse 38.46% Lark Sparrow 54.55%
Lazuli Bunting 65.12% Lesser Goldfinch 23.88%
Lincoln’s Sparrow 87.29% Long-eared Owl 51.11%
MacGillivray’s Warbler 44.23% Marsh Wren 66.67%
Mountain Chickadee 44.62% Mountain Quail 64.00%
Northern Flicker 0% Northern Mockingbird 50.00%
Northern Pygmy Owl 13.10% Northern Raven 65.22%
Northern Saw-whet Owl 22.92% Nuttall’s Woodpecker 67.92%
Nutting’s Flycatcher 44.07% Oak Titmouse 50.00%
Orange-crowned Warbler 38.61% Pacific Wren 34.48%
Pacific-slope Flycatcher 46.15% Phainopepla 18.92%
Pygmy Nuthatch 53.33% Red Crossbill 77.78%
Red-winged Blackbird 31.03% Ridgway’s Rail 47.78%
Rock Wren 100% Rufous-crowned Sparrow 21.74%
Slate-colored Fox Sparrow 57.14% Snow Goose 78.95%
Song Sparrow 35.53% Spotted Owl 45.45%
Spotted Towhee 47.66% Steller’s Jay 48.15%
Swainson’s Thrush 69.09% Thick-billed Fox Sparrow 71.43%
Tricolored Blackbird 26.67% Verdin 56.60%
Warbling Vireo 30.23% Western Meadowlark 58.82%
Western Screech Owl 78.26% Western Wood Pewee 36.36%
White-breasted Nuthatch 68.15% White-crowned Sparrow 63.41%
White-headed Woodpecker 38.18% Wilson’s Warbler 59.38%
Wrentit 38.57% Yellow-billed Magpie 52.94%
Yellow-breasted Chat 28.57%

6.2.3 Result Comparison

From the experiments in the section 6.2.2, the feature extraction Mel Spectrogram with 3
second sample lengths was concluded to be better than the other implementations in the
solution, as it performed better than the others overall. The best model architecture that

74 Chapter 6. Evaluation

was implemented in the solution is considered the Convolutional Recurrent Neural Network
using Gated Recurrent Unit layers, as it achieved the best results when compared to the
other implementations.

This implementation can be compared to the implementation created by Hiatt 2019 (see
section 3.4.2). The results from that implementation uses the accuracy at the minimum
validation loss epoch, and a 77% training and 33% validation hold-out split.

The following results use the same Mel Spectrogram with the 3 second length and the
Convolutional Recurrent Neural Network using Gated Recurrent Units that performed better
in this thesis, but to compare with the Hiatt 2019 implementation, the results are taken from
the minimum validation loss epoch, and a 77% training and 33% validation hold-out split
was also used.

The table 6.15 compares the best implementation in this thesis with the Hiatt 2019 imple-
mentation.

Implementation
At Minimum Loss (Validation Set)

Validation Set
Epoch

Training Set
Accuracy Loss Accuracy

This Thesis 44.26% 2.657 6 70.74%
Hiatt 2019 19.27% 3.605 85 20.44%

Table 6.15: Result Comparison

The results present on the table 6.15 show that the best implementation in this dissertation
achieved a better accuracy score than the Hiatt 2019 implementation.

For consistency with the rest of this thesis, the table 6.16 adds the usual information doc-
umented on the other experiments of this thesis, using the same experiment from the table
6.15.

At Minimum Loss (Validation Set)
Validation Set

Epoch Time
Training Set

Recall Accuracy Loss Recall Accuracy Loss

33.84% 44.26% 2.657 6 13m16s 58.11% 70.74% 1.315

Table 6.16: Full results from the Result Comparison experiment

Recall, accuracy and loss graphs from the experiment in this section are presented in the
figures 6.15a, 6.15b and 6.15c respectively. The training line is displayed in a dark teal color
and the validation line is displayed in a gray color.

6.2. Experiments 75

(a) Recall per Epoch (b) Accuracy per Epoch (c) Loss per Epoch

Figure 6.15: Recall, Accuracy and Loss per Epoch - Comparing Results ex-
periment

The figures 6.16 and 6.17 present a confusion matrix and the percentage of correct classifi-
cations per species, respectively. It uses the model trained to the maximum validation recall
value instead of the minimum validation loss value. The implementation used to generate
these graphs is based on the Hiatt 2019 implementation (see section 3.4.2 for comparison).

Figure 6.16: Confusion Matrix

76 Chapter 6. Evaluation

Figure 6.17: Bar Chart with the Percentage of Correct Classifications (Ro-
tated)

6.3. Statistical Test 77

6.3 Statistical Test

This section documents the statistical tests to answer the hypothesis presented in the section
6.1.3.

The combinations used for this test are the ones that were compared in the section 6.2.2.

The python package Autorank (Herbold 2020) was used to perform the statistical test.

The package only needs a dataframe with a minimum of 5 results for each combination to
perform the statistical tests, generate a textual description of the results, as well as the plot
of the results.

The values used to compare the combinations are the average recall per bird species that
was generated from each repetition on the experiment of section 6.2.2 that was used to
calculate the mean recall for each combination that is registered in the table 6.11.

The statistical analysis was conducted for 20 populations with 5 paired samples, which are
the 20 combinations of feature extractions with the deep learning models, and the 5 mean
recall per species values of each combination, respectively. The family-wise significance level
of the tests is α = 0.05.

The first step is verifying if all populations are normal with the Shapiro-Wilk test (Shapiro
and Wilk 1965). The null hypothesis that the population is normally distributed failed to
be rejected as the minimal observed probability value (p-value) is 0.16 which is higher than
0.05, therefore, it can be assumed that all populations are normal.

The second step is verifying if all populations have the same variance. The Bartlett’s test for
homogeneity (Snedecor and Cochran 1967) is applied and the null hypothesis that the data is
homoscedastic is rejected, which means that the data can be assumed to be heteroscedastic,
and thus, the populations have different variances.

The third step is verifying if at least one of the samples if different from the other samples.
The non-parametric Friedman test (Friedman 1940) is used to determine if there are any
significant differences between the mean values of the populations. The null hypothesis of
the Friedman test that there is no difference in the central tendency of the populations is
rejected, therefore it can be assumed that there is a statistically significant difference median
values of the populations.

The last step is using the Nemenyi test (Nemenyi 1962) as the post-hoc pairwise test for
multiple comparisons to infer which differences are significant. The differences between
populations are significant if the difference of the mean rank is greater than the Critical
Distance (CD = 13.26) of the Nemenyi test.

The results of this test are presented in the table 6.17 and figure 6.18, which ranks the Mel
Spectrograms with 3 second sample lengths combined with the Convolutional Recurrent
Neural Network using Gated Recurrent Unit layers (3s MELS CRNN-GRU) as the best
combination (population). The combinations with the Mean Rank from 1 to 14.2 (see table
6.17) are considered to not be significantly different, as they are within the Critical Distance
of 13.26.

The Mean Rank (MR), Mean value (M), Standard Deviation (SD), Confidence Intervals
(CI), Effect Size (ES) and the Magnitude of the ES is reported for each combination in the
table 6.17.

78 Chapter 6. Evaluation

Combination MR M SD CI ES Magnitude

3s MELS
CRNN-GRU 1.000 0.502 0.005 [0.480, 0.523] 0.000 negligible

1.5s MELS
CRNN-GRU 2.600 0.479 0.001 [0.477, 0.482] 6.710 large

3s MELS
CRNN-LSTM 2.800 0.479 0.005 [0.457, 0.502] 4.635 large

3s MELS CNN 3.600 0.475 0.004 [0.458, 0.492] 6.284 large

1.5s MELS
CRNN-LSTM 5.000 0.465 0.001 [0.459, 0.470] 10.824 large

3ms MFCC
CRNN-LSTM 6.600 0.448 0.008 [0.412, 0.483] 8.544 large

3s MFCC
CRNN-GRU 7.000 0.444 0.004 [0.425, 0.463] 13.126 large

1.5s MELS CNN 7.400 0.442 0.006 [0.413, 0.471] 10.709 large

1.5s MFCC
CRNN-GRU 9.000 0.433 0.002 [0.422, 0.445] 18.235 large

1.5s MFCC
CRNN-LSTM 10.000 0.424 0.004 [0.403, 0.444] 17.032 large

3s MFCC CNN 11.000 0.405 0.005 [0.382, 0.428] 19.846 large

1.5s MFCC CNN 12.000 0.388 0.004 [0.372, 0.405] 27.187 large

3s MFCC GRU 13.000 0.355 0.005 [0.332, 0.378] 30.355 large

3s MFCC LSTM 14.200 0.324 0.017 [0.244, 0.404] 13.942 large

1.5s MFCC GRU 14.800 0.314 0.004 [0.296, 0.331] 43.559 large

3s MELS GRU 16.400 0.282 0.007 [0.251, 0.314] 37.154 large

1.5s MELS GRU 17.000 0.276 0.011 [0.225, 0.326] 26.826 large

1.5s MFCC LSTM 18.000 0.273 0.003 [0.257, 0.289] 55.243 large

3s MELS LSTM 18.600 0.263 0.009 [0.221, 0.304] 33.262 large

1.5s MELS LSTM 20.000 0.246 0.013 [0.185, 0.307] 25.699 large

Table 6.17: Summary of populations

6.3. Statistical Test 79

Figure 6.18: Critical Distance Diagram (Rotated)

81

Chapter 7

Conclusion

The main objective of this dissertation is to contribute to the development of a reliable
methodology that classifies bird species by their chirp, using deep learning techniques. If a
methodology was always correct on predicting the species of a bird, it could change the way
specialists of the domain work, as it would save them the time of manually identifying the
bird species.

In this document, an audio pre-processing methodology was presented that normalized the
audio, removed noise outside of the bird vocalization range and split an audio file into
multiple equal length samples by detecting syllables or peaks. The audio samples then have
their features extracted in one of two methods. These are the Mel Spectrograms and the
Mel Frequency Cepstrum Coefficients.

The classification methodology for this solution uses one of the two types of extracted
features to train a Deep Learning model, which can then be used to predict the species of a
bird, by first pre-processing the audio file using the same audio pre-processing methodology
that was used on the dataset used to train the model.

An optimization methodology was created with the intent of testing and refining both the
pre-processing methodology and the Deep Learning models. During the experiments con-
ducted using this methodology, multiple alternative Deep Learning model architectures were
tested, and three alternatives of each model are documented in the section 6.2.1. The
deep learning models are different alternatives of Convolutional Neural Networks, Recurrent
Neural Networks and Convolutional Recurrent Neural Networks. The alternatives which per-
formed the best of each deep learning model type are present in the section 5.2.2, and are
used for the following experiments.

The second experiment methodology of this dissertation uses one alternative of each Deep
Learning model type that scored the best in the optimization experiments. These models
are the ones in the section 5.2.2. The methodology also tests four different types of input
data, which are two versions of the Mel Spectrogram and the Mel Frequency Cepstrum
Coefficients, one with a 3 second sample length and the other with 1.5 second sample
length. Each of the 4 types of input data is combined with the 5 deep learning models,
resulting in 20 different combinations for this experiment. This experiment concluded that
the Deep Learning models perform better with the Mel Spectrogram feature extraction with
a 3 second sample length. These experiments are documented on the section 6.2.2.

The third experiment uses the best models of the last experiment, which were the Con-
volutional Recurrent Neural Network using Gated Recurrent Unit layers, the Convolutional
Recurrent Neural Network using Long Short Term Memory layers and the Convolutional
Neural Network. This experiment is conducted for 100 epochs instead of the 50 used for

82 Chapter 7. Conclusion

the other experiments, and used the Mel Spectrogram feature extraction with the 3 second
sample length. These experiments are documented on the section 6.2.2.

The third experiment concluded that the deep learning model that performed better is the
Convolutional Recurrent Neural Network using Gated Recurrent Unit layers (see section
5.2.2, table 6.12), which, on the validation set (20%), obtained a recall of 51.36% and an
accuracy of 53.75%.

The final experiment is comparing the best methodology obtained in this thesis with another
implementation (Hiatt 2019), while using the same experiment environment. The method-
ology from thesis performed better, achieving an Accuracy value on the validation set of
44.26%, while the other obtained 19.27%. This comparison is documented on the section
6.2.3.

7.1 Further Improvements

In a perspective of continuing this work, the following points could be considered:

• Improving the audio pre-processing methodology: Other audio pre-processing and fea-
ture extraction techniques could be tested, some of these are mentioned in the State
of the Art such as:

– Data Preparation and Data Augmentation techniques, like the ones used by
Lasseck 2019 (see section 3.4.1);

– Feature Extraction methods (see section 3.3.2).

• Use further optimized Deep Learning models: Although multiple variations of the
models are presented along this document, there can be better implementations with
different architectures and hyper-parameters. Transfer learning and techniques such
as Lowering the Learning Rate could also be used, as well as training the models for
more epochs.

• Conduct more experiments using different types of bird sound datasets.

83

Bibliography

Abadi, Martin et al. (2015). TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. Software available from tensorflow.org. url: https://www.tensorflow.org/.

Adams, Seth (2020). Audio-Classification. [Online; accessed 7. Jun. 2020]. url: https:
//github.com/seth814/Audio-Classification/tree/2f0032d81dcfa3d662cab1c
1c4e7e30520f7edd6.

Arunava (2018). “Convolutional Neural Network”. In: Medium. issn: 1777-7605. url: htt
ps://towardsdatascience.com/convolutional-neural-network-17fb77e76c05
(visited on 12/27/2019).

Ayoub, Bouziane, Kharroubi Jamal, and Zarghili Arsalane (2016). “Gammatone frequency
cepstral coefficients for speaker identification over VoIP networks”. In: 2016 International
Conference on Information Technology for Organizations Development (IT4OD). doi:
10.1109/IT4OD.2016.7479293.

Backend - Keras Documentation (2019). [Online; accessed 19. Jan. 2020]. url: https:
//keras.io/backend.

Barnes, Cindy, Helen Blake, and David Pinder (2009). Creating and Delivering Your Value
Proposition: Managing Customer Experience for Profit. Kogan Page Publishers. isbn:
978-074945859-1. url: https://books.google.pt/books/about/Creating_and_
Delivering_Your_Value_Propo.html?id=8d73CPt_khwC&redir_esc=y.

Boddapati, Venkatesh et al. (2017). “Classifying environmental sounds using image recog-
nition networks”. In: Procedia Comput. Sci. 112, pp. 2048–2056. issn: 1877-0509. doi:
10.1016/j.procs.2017.08.250.

Brownlee, Jason (2019a). A Gentle Introduction to Padding and Stride for Convolutional
Neural Networks. url: https://machinelearningmastery.com/what-is-deep-learn
ing/ (visited on 12/24/2019).

– (2019b). How to Evaluate the Skill of Deep Learning Models. url: https : / / machi
nelearningmastery . com / evaluate - skill - deep - learning - models/ (visited on
01/25/2019).

– (2019c). What is Deep Learning? url: https://machinelearningmastery.com/what-
is-deep-learning/ (visited on 12/21/2019).

Butterworth, Stephen et al. (1930). “On the theory of filter amplifiers”. In:Wireless Engineer
7.6, pp. 536–541.

Chatterjee, Chandra Churh (2019). “An Approach Towards Convolutional Recurrent Neural
Networks”. In: Medium. url: https://towardsdatascience.com/an- approach- t
owards- convolutional- recurrent- neural- networks- a2e6ce722b19 (visited on
12/28/2019).

Cho, Kyunghyun et al. (2014). Learning Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. arXiv: 1406.1078 [cs.CL].

Choi, Keunwoo et al. (2016). Convolutional Recurrent Neural Networks for Music Classifi-
cation. arXiv: 1609.04243 [cs.NE].

Chollet, François et al. (2015). Keras. https://keras.io.

84 BIBLIOGRAPHY

Colonna, Juan Gabriel et al. (2012). “Feature subset selection for automatically classifying
anuran calls using sensor networks”. In: The. 2012 International Joint Conference on Neu-
ral Networks (IJCNN), pp. 1–8. issn: 2161-4393. doi: 10.1109/IJCNN.2012.6252794.

Colonna, Juan et al. (2016). “Automatic Classification of Anuran Sounds Using Convolu-
tional Neural Networks”. In: ResearchGate, pp. 73–78. doi: 10.1145/2948992.2949016.

Corder, Gregory and Dale Foreman (2009). “Nonparametric Statistics for Non-Statisticians:
A Step-By-Step Approach”. In: pp. 79–80. doi: 10.1002/9781118165881.

D., F. (2019). “Batch normalization in Neural Networks - Towards Data Science”. In:
Medium. url: https://towardsdatascience.com/batch- normalization- in- neu
ral-networks-1ac91516821c.

Davis, S. and P. Mermelstein (1980). “Comparison of parametric representations for mono-
syllabic word recognition in continuously spoken sentences”. In: pp. 357–366. issn: 0096-
3518. doi: 10.1109/TASSP.1980.1163420.

Deng, Jia et al. (2009). “ImageNet: A large-scale hierarchical image database”. In: 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 248–255. issn: 1063-6919.
doi: 10.1109/CVPR.2009.5206848.

Deshpande, Adit (2019). A Beginner’s Guide To Understanding Convolutional Neural Net-
works. url: https://adeshpande3.github.io/A-Beginner’s-Guide-To-Understand
ing-Convolutional-Neural-Networks/ (visited on 12/23/2019).

EliteDataScience.com (2017). Overfitting in Machine Learning. [Online; accessed 15. Feb.
2020]. url: https://elitedatascience.com/overfitting-in-machine-learning.

Fagerlund, Seppo (2007). “Bird Species Recognition Using Support Vector Machines”. In:
EURASIP J. Adv. Signal Process. 2007.1, pp. 1–8. issn: 1687-6180. doi: 10.1155/2007/
38637.

Friedman, Milton (1940). “A Comparison of Alternative Tests of Significance for the Problem
of m Rankings”. In: Ann. Math. Statist. 11.1, pp. 86–92. doi: 10.1214/aoms/1177731944.
url: https://doi.org/10.1214/aoms/1177731944.

Gavali, Prof. Pralhad et al. (2019). “Bird Species Identification using Deep Learning”. In:
International Journal of Engineering Research & Technology 8.4. issn: 2278-0181. url:
https://www.ijert.org/bird-species-identification-using-deep-learning.

Gu, Jiuxiang et al. (2015). Recent Advances in Convolutional Neural Networks. arXiv: 1512.
07108 [cs.CV].

Herbold, Steffen (2020). “Autorank: A Python package for automated ranking of classifiers”.
In: Journal of Open Source Software 5, p. 2173. doi: 10.21105/joss.02173.

Hiatt, Sam (2019). “Avian Vocalizations - Report”. In: Kaggle. url: https://www.kaggle.
com/samhiatt/avian-vocalizations-report.

– (2020). Avian Vocalizations from CA and NV, USA - Kaggle. [Online; accessed 1. Jul.
2020]. url: https://www.kaggle.com/samhiatt/xenocanto-avian-vocalizations-
canv-usa.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In: Neural
Comput. 9.8, pp. 1735–1780. issn: 0899-7667. doi: 10.1162/neco.1997.9.8.1735. url:
http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Huang, Chenn-Jung et al. (2009). “Frog classification using machine learning techniques”.
In: Expert Syst. Appl. 36.2, Part 2, pp. 3737–3743. issn: 0957-4174. doi: 10.1016/j.
eswa.2008.02.059.

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment”. In: Computing in Science
& Engineering 9.3, pp. 90–95. doi: 10.1109/MCSE.2007.55.

Jain, Vandit (2020). “Everything you need to know about “Activation Functions” in Deep
learning models”. In: Medium. issn: 8498-2253. url: https://towardsdatascience.

BIBLIOGRAPHY 85

com/everything-you-need-to-know-about-activation-functions-in-deep-
learning-models-84ba9f82c253.

Kahl, Stefan et al. (2019). “Overview of BirdCLEF 2019: Large-Scale Bird Recognition in
Soundscapes”. In: CLEF.

Kaminska, Dorota, Tomasz Sapinski, and Adam Pelikant (2013). “Comparison of perceptual
features efficiency for automatic identification of emotional states from speech”. In: 2013
6th International Conference on Human System Interactions (HSI), pp. 210–213. issn:
2158-2254. doi: 10.1109/HSI.2013.6577824.

Keras - TensorFlow Core (2020). [Online; accessed 27. Jan. 2020]. url: https://www.
tensorflow.org/guide/keras.

Kharkovyna, Oleksii (2019). “Top 10 Best Deep Learning Frameworks in 2019”. In: Medium.
url: https://towardsdatascience.com/top-10-best-deep-learning-frameworks-
in-2019-5ccb90ea6de.

Koen, Peter A et al. (2002). “Fuzzy front end: effective methods, tools, and techniques”.
In: The PDMA toolbook 1 for new product development.

Kortas, Magdalena (2020). “Sound-Based Bird Classification”. In: Medium. url: https :
//towardsdatascience.com/sound-based-bird-classification-965d0ecacb2b.

Kostadinov, Simeon (2019). “Understanding GRU Networks”. In: Medium. url: https://
towardsdatascience.com/understanding-gru-networks-2ef37df6c9be (visited on
12/28/2019).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information processing
systems, pp. 1097–1105.

Kumar, Pawan et al. (2010). “Spoken Language Identification Using Hybrid Feature Extrac-
tion Methods”. In: ArXiv abs/1003.5623.

Kumawat, Dinesh (2020). 7 Types of Activation Functions in Neural Network - Analytics
Steps. [Online; accessed 1. Jul. 2020]. url: https://www.analyticssteps.com/blogs/
7-types-activation-functions-neural-network.

Lanning, Michael J. (2014). “Delivering Profitable Value A Revolutionary Framework to
Accelerate Growth, Generate Wealth, and Rediscover the Heart of Business”. In:

Lasseck, Mario (2019). “Bird Species Identification in Soundscapes”. In: CLEF.
LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11, pp. 2278–2324.

Lindic, Jaka and Carlos Marques Da Silva (2011). “Value proposition as a catalyst for a cus-
tomer focused innovation”. In:Management Decision. doi: 10.1108/00251741111183834.

Loughran, Róisín et al. (2009). “The Use of Mel-frequency Cepstral Coefficients in Musi-
cal Instrument Identification”. In: International Computer Music Conference Proceedings
2008. issn: 2223-3881.

Lyons, James et al. (2020). “jameslyons/python_speech_features: release v0.6.1”. In: Zen-
odo. doi: 10.5281/zenodo.3607820.

Martinsson, John (2017). “Bird Species Identification using Convolutional Neural Networks”.
PhD thesis. url: https://odr.chalmers.se/handle/20.500.12380/249467.

McFee, Brian et al. (2020). “ librosa/librosa: 0.7.2”. In: doi: 10.5281/zenodo.3606573.
Mel - Simon Fraser University (2005). [Online; accessed 5. Jun. 2020]. url: https://www.
sfu.ca/sonic-studio-webdav/handbook/Mel.html.

Minaee, Shervin (2019). “20 Popular Machine Learning Metrics. Part 1: Classification &
Regression Evaluation Metrics”. In: Medium. url: https://towardsdatascience.com/
20-popular-machine-learning-metrics-part-1-classification-regression-
evaluation-metrics-1ca3e282a2ce.

86 BIBLIOGRAPHY

MissingLink.ai (2019). Convolutional Neural Network Architecture: Forging Pathways to the
Future. url: https://missinglink.ai/guides/convolutional-neural-networks/c
onvolutional-neural-network-architecture-forging-pathways-future (visited
on 12/23/2019).

Mittal, Aditi (2019). “Understanding RNN and LSTM”. In: Medium. url: https://tow
ardsdatascience.com/understanding- rnn- and- lstm- f7cdf6dfc14e (visited on
12/27/2019).

Montantes, James (2019). “TensorFlow vs PyTorch vs Keras for NLP - Exxact”. In:Medium.
url: https://towardsdatascience.com/tensorflow-vs-pytorch-vs-keras-for-
nlp-exxact-8e51dd13c3f5.

Nemenyi, Peter (1962). “Distribution-free multiple comparisons”. In: Biometrics. Vol. 18. 2.
International Biometric Soc 1441 I ST, NW, SUITE 700, WASHINGTON, DC 20005-
2210, p. 263.

Nguyen, Michael (2019). “Illustrated Guide to LSTM’s and GRU’s: A step by step expla-
nation”. In: Medium. url: https://towardsdatascience.com/illustrated-guide-
to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21 (visited on
12/28/2019).

Nicholson, Chris (2019). A Beginner’s Guide to LSTMs and Recurrent Neural Networks. url:
https://pathmind.com/wiki/lstm (visited on 12/27/2019).

Nicola, Susana, Eduarda Pinto Ferreira, and J. J. Pinto Ferreira (2012). “A NOVEL FRAME-
WORK FOR MODELING VALUE FOR THE CUSTOMER, AN ESSAY ON NEGOTI-
ATION”. In: Int. J. Info. Tech. Dec. Mak. 11.03, pp. 661–703. issn: 0219-6220. doi:
10.1142/S0219622012500162.

Olah, Christopher (2019). Understanding LSTM Networks. url: https://colah.github.
io/posts/2015-08-Understanding-LSTMs (visited on 12/27/2019).

Osterwalder, Alexander and Yves Pigneur (2010). Business model generation: a handbook
for visionaries, game changers, and challengers. John Wiley & Sons.

Patterson, Roy D et al. (1987). “An efficient auditory filterbank based on the gammatone
function”. In: a meeting of the IOC Speech Group on Auditory Modelling at RSRE. Vol. 2.
7.

Perambai, Abhishek (2019). “A deep dive into the world of gated Recurrent Neural Networks:
LSTM and GRU”. In: Medium. url: https://medium.com/analytics-vidhya/lstm-
and-gru-a-step-further-into-the-world-of-gated-rnns-99d07dac6b91 (visited
on 12/28/2019).

Piczak, Karol J. (2015). Environmental sound classification with convolutional neural net-
works. IEEE. doi: 10.1109/MLSP.2015.7324337.

Roberts, Leland (2020). “Understanding the Mel Spectrogram - Analytics Vidhya - Medium”.
In: Medium. url: https://medium.com/analytics-vidhya/understanding-the-mel-
spectrogram-fca2afa2ce53.

Saaty, R. W. (1987). “The analytic hierarchy process—what it is and how it is used”.
In: Mathematical Modelling 9.3, pp. 161–176. issn: 0270-0255. doi: 10.1016/0270-
0255(87)90473-8.

Saaty, Thomas L (1988). “What is the analytic hierarchy process?” In: Mathematical models
for decision support. Springer, pp. 109–121.

Saha, Sumit (2018). “A Comprehensive Guide to Convolutional Neural Networks the ELI5
way”. In: Medium. issn: 3211-6453. url: https://towardsdatascience.com/a-compre
hensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a
53 (visited on 12/23/2019).

BIBLIOGRAPHY 87

Shah, Parth, Vishvajit Bakarola, and Supriya Pati (2018). “Optimal Approach for Image
Recognition using Deep Convolutional Architecture”. In: ArXiv abs/1904.11187.

Shao, Yang et al. (2009). “An auditory-based feature for robust speech recognition”. In:
pp. 4625–4628. doi: 10.1109/ICASSP.2009.4960661.

Shapiro, S. S. and M. B. Wilk (1965). “An Analysis of Variance Test for Normality (Complete
Samples)”. In: Biometrika 52.3/4, pp. 591–611. issn: 00063444. url: http://www.jstor.
org/stable/2333709.

Sharma, Pulkit (2019). Top 5 Deep Learning Frameworks, their Applications, and Com-
parisons! [Online; accessed 27. Jan. 2020]. url: https://www.analyticsvidhya.com/
blog/2019/03/deep-learning-frameworks-comparison.

Snedecor, George Waddel and William Gemmell Cochran (1967). Statistical methods. Iowa
state university press.

Srinivasan, Aishwarya V. (2019). “Stochastic Gradient Descent—Clearly Explained !!” In:
Medium. url: https://towardsdatascience.com/stochastic-gradient-descent-
clearly-explained-53d239905d31.

Stevens, Stanley Smith, John Volkmann, and Edwin B Newman (1937). “A scale for the
measurement of the psychological magnitude pitch”. In: The Journal of the Acoustical
Society of America 8.3, pp. 185–190.

Szegedy, Christian et al. (2015). “Going deeper with convolutions”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 1–9.

Ulaga, Wolfgang and Andreas Eggert (2006). “Value-Based Differentiation in Business Re-
lationships: Gaining and Sustaining Key Supplier Status”. In: Journal of Marketing - J
MARKETING 70, pp. 119–136. doi: 10.1509/jmkg.2006.70.1.119.

Wielgat, Robert et al. (2007). “HFCC based recognition of bird species”. In: Signal Processing
Algorithms, Architectures, Arrangements, and Applications SPA 2007, pp. 129–134. issn:
2326-0319. doi: 10.1109/SPA.2007.5903313.

Woodall, Tony (2003). “Conceptualising ’Value for the Customer’: An Attributional, Struc-
tural and Dispositional Analysis”. In: Academy of Marketing Science Review 12.

Xeno-Canto (2020). [Online; accessed 11. Feb. 2020]. url: https://www.xeno-canto.org.

89

Appendix A

Calculations for the Analytic
Hierarchy Process

The fundamental scale defined by R. W. Saaty 1987 was used to obtain the values in the
table A.1.

Table A.1: Comparison Matrix

Criteria Accuracy Loss Training Time
Accuracy 1 3 5
Loss 1/3 1 3
Training Time 1/5 1/3 1

Column Total 23/15 13/3 9

The accuracy was established to be the most important criteria, the loss being the second,
and the least important the training time.

The table A.2 presents the normalized comparison matrix with the priority vector, which is
the weight of the criteria.

Table A.2: Normalized comparison matrix with estimated weights

Criteria Accuracy Loss Training Time Weights
Accuracy 0.6522 0.6923 0.5556 0.7235
Loss 0.2174 0.2308 0.3333 0.2605
Training Time 0.1304 0.0769 0.1111 0.1061

1.000

The normalized comparison matrix with the priority vector shows that the most important
criteria is the accuracy (0.7231), followed by the loss (0.2157) and finally the training time
(0.0612).

The Consistency Ratio (CR) can be used to verify the consistency of the values from the
matrix. To calculate it, λmax which is the maximum Eigen value must be first obtained.

It can be obtained by first multiplying the comparison matrix with the priority vector, which
originates a new vector, as shown in table A.3. Each element of this new vector can then

90 Appendix A. Calculations for the Analytic Hierarchy Process

be divided by the each respective priority vector element, and the average of the values is
the Eigen value λmax.

Table A.3: Calculating the new vector

1 3 5 0.7235 2.0355
1/3 1 1 x 3 = 0.8200
1/5 1/3 1 0.1061 0.3376

λmax = average(
2.0355

0.7235
,
0.8200

0.2605
,
0.3376

0.1061
) = 3.0477 (A.1)

Now the Consistency Index (CI) can be obtained with the following formula, where ’n’ is the
matrix order:

CI =
λmax − n
n − 1 =

3.0477− 3
3− 1 = 0.0239 (A.2)

Then, to complete the consistency verification, the CR needs to be calculated. It is obtained
by dividing the CI by the Random Index (RI), which can be obtained from table A.4.

Table A.4: Random Index values for n order squared matrices

1 2 3 4 5 6 7 8 9 10 11

0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

CR =
CI

RI
=
3.0477− 3
3− 1 = 0.0412 (A.3)

As CR is lower than 0.1, the values of the relative priorities are consistent.

Now the peer comparison matrix can be constructed, using each of the selected alternatives.
The matrix is also normalized in order to obtain the priority vector.

After the priority vector values (or weights) for all of the alternatives are obtained the
alternative priority can be calculated. To calculate it, a matrix with the values of the priority
vector values is created. This matrix is then multiplied by the criteria priority vector. The
result is the alternative priority vector.

Table A.5: Peer comparison matrix for the criteria accuracy

Accuracy LeNet AlexNet GoogLeNet
LeNet 1 1/2 2
AlexNet 2 1 3
GoogLeNet 1/2 1/3 1
Total 3.5 1.8333 6

Appendix A. Calculations for the Analytic Hierarchy Process 91

Table A.6: Normalized peer comparison matrix for the criteria accuracy with
priority vector (weight)

Accuracy LeNet AlexNet GoogLeNet Weight
LeNet 0.2857 0.2727 0.3333 0.2972
AlexNet 0.5714 0.5455 0.5 0.5390
GoogLeNet 0.1429 0.1818 0.1667 0.1638

1.0000

Table A.7: Peer comparison matrix for the criteria loss

Loss LeNet AlexNet GoogLeNet
LeNet 1 1/3 3
AlexNet 3 1 5
GoogLeNet 1/3 1/5 1
Total 4.3333 1.5333 9

Table A.8: Normalized peer comparison matrix for the criteria loss with pri-
ority vector (weight)

Loss LeNet AlexNet GoogLeNet Weight
LeNet 0.2308 0.2174 0.3333 0.2605
AlexNet 0.6923 0.6522 0.5555 0.6333
GoogLeNet 0.0769 0.1304 0.1111 0.1061

1.0000

Table A.9: Peer comparison matrix for the criteria training time

Training Time LeNet AlexNet GoogLeNet
LeNet 1 5 9
AlexNet 1/5 1 5
GoogLeNet 1/9 1/5 1
Total 1.3111 6.2 15

Table A.10: Normalized peer comparison matrix for the criteria training time
with priority vector (weight)

Training Time LeNet AlexNet GoogLeNet Weight
LeNet 0.7627 0.8065 0.6 0.7231
AlexNet 0.1525 0.1613 0.3333 0.2157
GoogLeNet 0.0847 0.0323 0.0667 0.0612

1.0000

92 Appendix A. Calculations for the Analytic Hierarchy Process

Table A.11: Alternative priority calculation

Accuracy Loss Training
Time

Criteria
Priority

Alternative
Priority

LeNet 0.2972 0.2605 0.7231 0.7235 0.3596
AlexNet 0.5390 0.6333 0.2157 x 0.2605 = 0.5778
GoogLeNet 0.1638 0.1061 0.0612 0.1061 0.1526

