
An Approach Toward Implementing
Continuous Security In Agile Environment

DOAA ASSAF
Julho de 2020

An Approach Toward Implementing Continuous

Security In Agile Environment

Doaa Assaf

Dissertation to obtain the master’s degree in

Computer Engineering, Specialization Area in

Computer and system engineering

Supervisor: Dr. Jorge Pinto Leite

Jury:

President:

[President's Name, Category, School]

Vowels:

[Name of vowel1, Category, School]

[Name of vowel2, Category, School]

Porto, July 2020

ii

92

Dedication

To my parents, Baher and Ibtisam,

For their endless love and support.

To all the people who believed in me,

To Portugal, my new beloved home.

iv

v

Abstract

Traditionally, developers design software to accomplish a set of functions and then later

add—or do not add—security measures, especially after the prevalence of the agile software

development model. Consequently, there is an increased risk of security vulnerabilities that

are introduced into the software in various stages of development. To avoid security

vulnerabilities, there are many secure software development efforts in the directions of

secure software development lifecycle process.

The purpose of this thesis is to propose a software security assurance methodology and

integrate it into the Msg Life organization’s development lifecycle based on security best

practices that fulfill their needs in building secure software applications.

Ultimately, the objective adhered to increasing the security maturity level according to the

suggested security assurance roadmap and implemented partly in the context of this thesis.

Keywords: software security assurance, SSDLC, information security, secure development

lifecycle, SAMM project, DevSecOps.

vi

vii

Resumo

Tradicionalmente, os desenvolvedores projetam o software para realizar um conjunto de

funções e, posteriormente, adicionam - ou não - medidas de segurança, especialmente após a

prevalência do modelo de desenvolvimento ágil de software. Consequentemente, há um risco

aumentado de vulnerabilidades de segurança que são introduzidas no software em vários

estágios de desenvolvimento. Para evitar vulnerabilidades de segurança, existem muitos

esforços no desenvolvimento de software nas direções dos processos do ciclo de vida desse

mesmo software. O objetivo desta tese é propor uma metodologia de garantia de segurança

de software e integrá-la ao ciclo de vida de desenvolvimento da Msg Life Company, com base

nas melhores práticas de segurança que atendem às suas necessidades na criação de

aplicativos de software seguros.

Por fim, o objetivo aderiu ao aumento do nível de maturidade da segurança de acordo com o

roteiro sugerido de garantia de segurança e implementado parcialmente no contexto desta

tese.

Palavras-chave: Garantia de segurança de software, SSDLC, ciclo de vida de desenvolvimento

seguro, projeto SAMM, DevSecOps.

viii

ix

Thanks

I am sincerely grateful to the Global Platform of Syrian Students to give me the opportunity to

be here today. Special thanks to all the great people who are working behind it, including the

former president of Portugal Jorge Sampaio and Dr. Helena Barocco.

Thanks to Professor Jorge Pinto Leite my supervisor for his invaluable guidance.

Thanks to Professor Antonio Costa for his assistance throughout the early stages of this thesis.

Thanks to Msg Life company for being such a great working environment, special thanks to my

external supervisor Nuno Alves.

Thanks to my beloved family for pushing me to be the best in all of my endeavors.

Thanks to my friends who has been always there for me, and I would like to offer my special

thanks to my bestie HSN, for reviewing this thesis and being my first supporter along the way.

x

xi

Index

1 Introduction ... 1

1.1 Background and context...1

1.2 Problem ..2

1.3 Objective and proposed approach ...3

1.4 Expected results ..4

1.5 Outlines ..4

2 State-of-the-art ... 7

2.1 Secure software definition ..7

2.2 Software security assurance definition ...7

2.3 SSDLC definition ..8

2.4 Existing SSDLC methodologies ..8
2.4.1 Microsoft SDL ...8
2.4.2 Microsoft SDL for agile ...9
2.4.3 Touchpoint .. 10
2.4.4 OWASP CLASP ... 11
2.4.5 SAMM Project ... 12

2.5 Comparison between Existing SSDLC approaches .. 14

2.6 Technical background: Methods, Techniques, and Tools for Secure Software

development .. 16
2.6.1 Risk rating methodologies ... 16
2.6.2 Analyzing attack surface .. 17
2.6.3 Threat modeling tools ... 17
2.6.4 Static code analysis tools ... 19
2.6.5 Automated security testing tools .. 20
2.6.6 Dependencies checking tools ... 21

2.7 Background and related work .. 22

3 Value Analysis ... 25

3.1 Innovation / New Concept Development (NCD) .. 25
3.1.1 Opportunity Identification .. 26
3.1.2 Opportunity Analysis ... 26
3.1.3 Idea Generation & enrichment ... 27
3.1.4 Idea Selection ... 28
3.1.5 Concept definition ... 28

3.2 Solution’s Value .. 29
3.2.1 Value ... 29

xii

3.2.2 Customer Value and Perceived Value ... 29
3.2.3 Longitudinal Perspective of Value ... 30

3.3 Value Proposition .. 31

3.4 Quality Function Deployment (QFD) ... 31

3.5 Conclusion ... 32

4 Design the SAMM project solution for Msg Life 35

4.1 Security assurance roadmap applied model .. 35
4.1.1 Use case diagram ... 38
4.1.2 Activity diagram .. 39

4.2 Conclusion ... 39

5 Implementing the solution .. 41

5.1 Phase one – preparation ... 41

5.2 Phase one - Initial security maturity assessment .. 41

5.3 Phase one - Setting the targets .. 44

5.4 Phase one - Defining the plan .. 45
5.4.1 strategy and metrics ... 45
5.4.2 Policy and compliance ... 47
5.4.3 Education and guidance ... 48
5.4.4 Threat assessment ... 49
5.4.5 Security requirements ... 52

4.65. Secure architecture .. 53
5.4.7 Design review ... 54
5.4.8 Implementation review.. 55
5.4.9 Security test .. 57
5.4.10 Issue management ... 59
5.4.11 Environment hardening .. 60
5.4.12 Operational enablement .. 60

5.5 Phase one - Implementing phase one specified activities 61

5.6 Phase one - Evaluating results ... 65

5.7 Phase two – Roadmap update .. 65

5.8 Phase two – Implementing planned activities .. 66

5.9 Phase two - Evaluating the results .. 68

5.10 CI/CD pipeline design and implementation .. 68

5.11 Security practices in the development lifecycle .. 69

5.12 Conclusion ... 70

6 Experimentation and Evaluation of the Solution 71

6.1 Investigation hypothesis specification .. 71

6.2 Identification of indicators and sources of information 71

xiii

6.3 Description of the evaluation methodology .. 72

6.4 Evaluating the results ... 72

7 Conclusion ... 75

7.1 Summary ... 75

7.2 Future directions ... 76

References ... 77

Appendix ... 81

xiv

xv

List of Figures

Figure 1 - Cost to fix defects in different phases into the SDLC without applying shift-left

(Hermiyanty, Wandira Ayu Bertin, 2017) ... 3

Figure 2 - fixing defects cost in different phases into the SDLC after applying shift-left

(Hermiyanty, Wandira Ayu Bertin, 2017) ... 4

Figure 3 - Microsoft SDL mandatory practices in each development phase (Microsoft

Corporation, 2010) ... 8

Figure 4 - Microsoft SDL activities group based on SDL/agile (Microsoft Corporation, 2010) .. 10

Figure 5 - Touchpoint artifacts in SDLC (Addison- Wesley, 2006). ... 11

Figure 6 - SAMM project functions and practices .. 12

Figure 7 - SonarQube integration with CI .. 19

Figure 8 - The NCD model (Koen et al., 2001) .. 25

Figure 9 - Longitudinal perspective on VC (Woodall 2003) ... 30

Figure 10 - The house of quality for Msg Life security assurance .. 33

Figure 11 - The security assurance roadmap phases in a timeline .. 36

Figure 12 - BSIMM V10 Financial vs. Healthcare vs. Insurance Spider Chart(Migues, Steven and

Ware, 2019) .. 38

Figure 13 – Security assurance roadmap use case diagram .. 38

Figure 14 - Security assurance roadmap activity diagram ... 40

Figure 15 – Initial security maturity evaluation test results in Msg Life Company 42

Figure 16 - Spider chart for the Msg Life roadmap in four phases .. 44

Figure 17 - progress in strategy & metrics in four phases ... 45

Figure 18 - strategy & metrics activities, objective and expected results in phase one 46

Figure 19 - strategy & metrics activities, objective and expected results in phase two 46

Figure 20 - Progress in policy and compliance within four phases .. 47

Figure 21 - Policy and compliance activities, objective and expected results in phase two 47

Figure 22 - Policy and compliance activities, objective and expected results in phase four 48

Figure 23 - Progress in education and guidance within four phases ... 48

Figure 24 - Education & guidance activities, objective and expected results in phase one 49

Figure 25 - Education and guidance activities, objectives and expected results in phase two . 49

Figure 26 - Progress in threat assessment within four phases .. 50

Figure 27 - Threat assessment activities, objectives and expected results in phase one 50

Figure 28 - Threat assessment activities, objectives and expected results in phase two.......... 51

Figure 29 - Dependency Track integrations ... 51

Figure 30 - Progress in security requirement within four phases .. 52

Figure 31 - Security requirement activities, objectives and expected results in phase two 52

Figure 32 - Progress in secure architecture within four phases .. 53

xvi

Figure 33 - Secure architecture activities, objectives and expected results in phase two 53

Figure 34 - Progress in design review within four phases .. 54

Figure 35 - Design review activities, objectives and expected results in phase one 55

Figure 36 - Progress in implementation review within four phases .. 55

Figure 37 - Implementation review activities, objectives and expected results in phase one .. 56

Figure 38 -Implementation review activities, objectives and expected results in phase two ... 56

Figure 39 - Progress in security test within four phases .. 57

Figure 40 - Security test activities, objectives and expected results in phase one 58

Figure 41 - Security test activities, objectives and expected results in phase two 58

Figure 42 - Progress in issue management within four phases .. 59

Figure 43 - issue management activities, objectives and expected results in phase two 59

Figure 44 - Progress in environment hardening within four phases .. 60

Figure 45 - environment hardening activities, objectives and expected results in phase three 60

Figure 46 - Progress in operational enablement within four phases ... 61

Figure 47 - operational enablement activities, objectives and expected results in phase three

 .. 61

Figure 48 - vulnerabilities report from static code analysis after vulnerabilities’ remediation

process ... 63

Figure 49 - Automated security test design ... 64

Figure 50 - dependency track implementation .. 67

Figure 51 - comparing the roadmap after the second phase with the initial target values 73

xvii

List of tables

Table 1 - comparing between different SSDLCs activities .. 14

Table 2 - STRIDE threats and its related violation (STRIDE chart - Microsoft Security, no date)

 .. 18

Table 3 - comparing between SSDLC models ... 27

Table 4 - Benefits and sacrifices of the customer along the process ... 30

Table 5 – Agile methodologies compliance with security requirements (Rindell, Hyrynsalmi and

Leppänen, 2015) .. 37

Table 6 - Resulting security maturity values for phase one ... 65

Table 7 - Resulting security maturity values for phase two ... 68

Table 8 - Security activities and their development phases .. 69

xviii

xix

List of source code

Code 1 - getting valid session for the automated security test ... 64

Code 2 - Running ZAP inside docker container .. 64

Code 3 - Integrating security test with Jenkins pipeline .. 89

Code 4 -Integrating SonarQube static code analysis in Jenkins Pipeline 89

Code 5 - integrating Dependency Track with Jenkins Pipeline .. 90

Code 6 - Generating BOM files for Java and JavaScript in parallel .. 91

Code 7 - merging two java subprojects BOMS and one JavaScript BOM into one final BOM

python script .. 91

xx

xxi

Acronyms

API: Application Programming Interface.

BOM: Bill-Of-Material.

BSIMM: Building Security in Maturity Model.

CI/CD: Continuous Integration and Continuous Delivery.

CRUD: create, read, update, delete operations

DevOps: Development and Operations.

DevSecOps: Development, Security, and Operations.

GDPR: General Data Protection Regulation.

HIPAA: Health Insurance Portability and Accountability Act.

MS-SDL: Microsoft Security Development Lifecycle.

OWASP CLASP: Comprehensive, Lightweight Application Security Process.

OWASP: Open Web Application Security Project.

PCI: payment card industry.

RestApi: Representational state transfer Application Programming

Interface.

SAMM: Software Assurance Maturity Model.

SDLC: software development lifecycle.

SSDLC: Secure software development lifecycle

ZAP: Zed attack proxy.

.

xxii

92

1 Introduction

The essence of this thesis is a practical solution for securing the development lifecycle through

one of the robust security approaches. In this chapter, we bottom line the objective, the

problem, concluding with the document structure.

1.1 Background and context

Cybersecurity is the second-highest concern globally in 2019 and the highest risk facing
Europe for doing business, also, data fraud or theft comes the 7th globally according to world
economic forum. (Schwab, 2019) Despite that fact, many companies don’t take security
seriously and try to avoid dealing with it as much as possible. (Pal and Pantaleo, 2005)

Thus, the security practices in many cases are considered an extra thing to do in the testing
phase into the development lifecycle. This inconsistent relationship was not clear before when
companies adapted traditional Software Development Lifecycle (SDLC) like a waterfall or
incremental model. The reason for it was because these models by nature enforce rich
documentation, no changes in the requirements and they just need to do security functions in
a predefined order. The issue raised after the agile manifesto in 20011 which requires special
behaviors and techniques that can’t get along easily with security practices inside the
companies. (Siponen, Baskerville and Kuivalainen, 2014)

That enforces many organizations and experts in both fields to put agile model and security
practices on the same page and find the appropriate level of combination between them.
Moreover, this is where Secure Software Development Lifecycle (SSDLC) comes into the
picture to help security involves in the software development lifecycle smoothly in a cost-
efficient- manner. In 2004 Microsoft releases its SDL2, it followed up by OWASP CLASP the

1 http://www.agilemanifesto.org/principles.html
2 https://www.microsoft.com/en-us/securityengineering/sdl

2

assurance process from OWASP3 and Gary McGraw Touchpoint4 7 principles, SEI Team
Software Process for Secure Software Development, SAMM project from OWASP5 also, and
many more. Each one of them has its own pros and cons in a specific working environment
and companies must choose the most appropriate one to adapt based on many factors.

1.2 Problem

The IT infrastructure landscape has subjected to exponential changes over the past decade.
The shift to agile, DevOps and dynamic applications has brought huge benefits to
organizations looking to rapid growth using advanced applications and services that fulfill the
continuous integration and continuous delivery concepts. (Kaur, Jajoo and Manisha, 2015)

However, “while the applications have stormed ahead in terms of speed, scale, and
functionality, they are often lacking in robust security and compliance”. (What is DevSecOps?
Defined, Explained, and Explored | Forcepoint, no date), mainly because of the uneasy
relationship between agile and security.

Agile development emphasizes flexibility and rapid changes, while security methodologies rely
on a more systematic approach to development. (Mougouei et al., 2013)

Going back to agile manifesto, where this can be clarified in more detail. According to the
manifesto, agile highest priority is to match up to customer needs through early and
continuous delivery, which raises an issue where security will be tolerated from poorly
security-aware customers. (Goertzel and Hamilton, 2007)

Also, changing in the requirements, has a negative impact on security, because each change in
the requirements means changing the design and the architecture in the system, that imposes
changing the system’s threat model, attack surface, and introduce new risks. (Goertzel and
Hamilton, 2007)

Agile assumes that developers are trusted to achieve the work, but that is dangerous from a
security perspective unless the developers are security-aware, comply
to secure programming, and security is integrated into their process. (Goertzel and Hamilton,
2007)

Face to face communication is preferred over documentation, this also cannot get along easily
with security, because security by principle needs to be based on actual official evidence and
documentation. (Goertzel and Hamilton, 2007)

Agile identifies the measure of success by producing working software, while in security it is
the production of the best secure application. (Goertzel and Hamilton, 2007)

Thus, achieving the right balance between these two - equally vital- aspects of the
development process is never easy. (Goertzel and Hamilton, 2007)

3 https://owasp.org/
4 http://www.swsec.com/
5 https://owasp.org/www-project-samm/

3

Msg Life is a software organization that provides insurance software products to
its customers worldwide has been using agile development approach.

The organization has been working on providing solutions and services to its customers as
soon as possible. So, they implement security in an ad-hoc approach, these services are
considered risky in terms of the personal data they handle, and this sort of applications is
among the highest targets to attackers globally and could affect the organizations for years
according to many reports in the last few years. (Ibm, 2019)

Hence, the organization wants to improve its security approach and improve the security of its
products, which arise the integration between its security practices and the development
process as an important issue.

1.3 Objective and proposed approach

Msg Life Company's main objective is to evaluate its current security situation and improve its
security plan.

This thesis aims to ensure that Msg Life implements an appropriate level of secure software
by fixing the current security vulnerabilities, use the best available security approach from the
very beginning of the development lifecycle and shift-left security activities6, guide secure
software activities, set the ideal behaviors and practices that enable teams to get maximum
value from Agile development, as well as from the security techniques.

which by result mitigates most common vulnerabilities earlier, and reduce the cost of flaws in
the system in the future.

Figure 1 - Cost to fix defects in different phases into the SDLC without applying shift-left

(Hermiyanty, Wandira Ayu Bertin, 2017)

6 Shift-left is a software development concept refers to moving the activities to an early stage in the
development lifecycle.

4

Figure 2 - fixing defects cost in different phases into the SDLC after applying shift-left

(Hermiyanty, Wandira Ayu Bertin, 2017)

To achieve that goal the following approach is proposed:

• Evaluating the current situation and the security maturity level in the company.
• Identifying the objectives and the exact level that we need to reach in the company
• Setting the appropriate Secure Software Development Lifecycle roadmap based on

the previous maturity evaluation, with respect of the development model in the
company and general working environment.

• Define strategic and tactical tracks for each objective.
• Implementing the previous approach.
• Evaluating the results and compare them with the objectives.

1.4 Expected results

With the development of this project, it is expected that the solution will allow the following:

• More secure software as security is a continuous concern, through a repeatable and
measurable process and integrating it with foundational software development
activities.

• Reducing or preventing damage caused by attacks.
• Early detection of flaws in the system.
• Provide secure software development reviews.
• Reducing the costs of repairing security weaknesses in applications.
• Significantly decreasing the number of vulnerabilities in the application when it is

ready to go live, thereby reducing delays in the go-live process.
• Awareness of security considerations by developers and stakeholders.
• Overall reduction of inherent business risks for the organization.

1.5 Outline

As this thesis will show, the first chapter, 1 Introduction, where the main problem is defined
along with the objectives and the expected results.

5

In the second chapter, State-of-the-art, some of the existing approaches to solve the problem
are discussed, including some well-known secure development lifecycle models and
technologies used in this field to support those approaches.

In the third chapter, Value Analysis, a study about the value of this project is included, and
the NCD model, with the QFD representation.

The detailed design of the selected approach in Msg Life will be clarified in the fourth chapter
Design the SAMM project solution for Msg Life. While the fifth chapter, Implementing the
solution, the largest chapter in this thesis, includes the organization's security roadmap and its
phases based on the selected approach, besides, the implemented part of this roadmap in the
context of this thesis.

In the sixth chapter, Experimentation and Evaluation of the Solution presents the factors that
are used to evaluate the outcomes, including test hypotheses, the evaluation methodologies,
and the statistic tests to evaluate each factor.

Finally, in the Conclusion chapter, the summary and future work are covered.

6

7

2 State-of-the-art

In the chapter, the State-of-the-Art is presented, where the concepts and methodologies
related to the problem are outlined, side by side, with the underlining technologies that assert
these approaches in the Technological Background.

2.1 Secure software definition

It is the immune software that cannot be compromised under malicious attacks and
continuously function correctly and predictably. (Goertzel and Hamilton, 2007)

Many underlying practices throughout the development must be ensured to produce a secure
software application.

To describe software as a secure software it must avoid, by all meanings, the exploitable
vulnerabilities, and flows, including the malicious code and faults that are implemented
intentionally by developers.

Moreover, the connections between the components of the software are also secured, as well
as the communication between the software and external entities. (Goertzel and Hamilton,
2007)

2.2 Software security assurance definition

According to Committee on National Security Systems (CNSS) definition, it is the software
trustworthiness by reaching and ensuring an acceptable and reasonable level of justifiable
confidence that the developing software will function correctly and predictably, and this
software cannot be compromised by direct attack or malicious code. (Jarzombek, 2012)

8

2.3 SSDLC definition

Secure Software Development lifecycle is a process model used by organizations to build
secure applications. The SSDLC Process defines how to integrate security assurance activities
such as design review, architecture analysis, code review, and penetration testing into the
development lifecycle. (Goertzel and Hamilton, 2007)

There are established methodologies that cover different software development models like
waterfall, incremental, spiral, and agile that organizations use and models they follow to
address different challenges and goals.

In the following section, secure software methodologies are disclosed in detail.

2.4 Existing SSDLC methodologies

Some SSDLC methodologies have been developed and proposed, the main ones are
summarized in this section.

2.4.1 Microsoft SDL

Microsoft SDL is the first software security assurance process that is focused on software

development. Microsoft has adopted SDL as a mandatory policy in 2004 in order to resolve

the security concerns that have previously arisen in its products. The Microsoft SDL model

consists of several security activities. The activities are categorized into mandatory and

optional activities and are grouped by the phases of the software development lifecycle

(SDLC), as shown in Figure 3. (Davis, 2013)

Figure 3 - Microsoft SDL mandatory practices in each development phase (Microsoft

Corporation, 2010)

Training

Core Security
traning

Requirements

Establish
security

requirements

Create quality
gates / bug bar

Security and
privecy risk
assessment

Design

Establish design
requirement

Analyze attack
surface

Threat
modeling

Implementation

User approved
tools

Deprecate
unsafe

functions

Static analysis

Verification

Dynamic
analysis

Fuzz testing

Attack surface
review

Release

Incident
response plan

Final security
review

Release
archieve

Response

Excute incident
response plan

9

• Microsoft has two types of activities in its SDL, the mandatory activities, where the

software must pass the following security phases(Davis, 2013):

• Pre-SDL requirement: Core security training to ensure that everyone understands the
attacker’s perspective, their goals because the security is everyone’s responsibility.

• Requirements phase: the security team gather the security requirements. Also,
establish a quality gate and bug bar to enforce a quality policy in the organization and
classifies vulnerabilities based on their effects from a list of STRIDE values: Spoofing,
Tampering, Repudiation, Information Disclosure, Denial of Service (DoS), and
Elevation of Privilege (EoP).

• Design phase: Identifies the design requirements, through an attack surface analysis
which is basically gathering all the different points where an attacker could get into a
system, and where they could get data out (User interface (UI) forms and fields, HTTP
protocol headers and cookies, APIs, Files, Databases, Other local storage). And the
core of this phase is the threat modeling where the development team consider,
document, and discuss the security implications of designs in the context of their
planned operational environment in a structured manner.

• Implementation phase: The development team decides and approves the set of tools
that will be used during the development process. And perform static code analysis
and analyzing the source code to ensure that secure coding policies are being

followed.
• Verification phase: Dynamic tests for the full software to check against security and

privacy specifications. It can be easily integrated with CI/CD tools.

• Release phase: the development team creates an incident response plan that
identifies the roles and activates in case of an emergency. The team must also
perform a Final Security Review.

The other set of activities are the optional ones for high critical software to enrich the
software assurance plan:

• Manual Code Review: Manual code review of the software or parts of it.

• Penetration Testing: perform attack scenarios that aim to unveil potential security

flaws and vulnerabilities in the system.

• Vulnerability Analysis: Investigating similar Applications that provide similar

functionalities or use similar technologies, vulnerabilities databases that could help in

avoiding potential security issues during the design and implementation.

2.4.2 Microsoft SDL for agile

Microsoft SDL works fine in big projects and the ones that rely on waterfall or incremental

model. But after the agile revolution, Microsoft SDL was hard and even impossible to comply

with it, in the form that was found in 2004. Mainly because all the SDL activities cannot be

completed in each agile sprint.

10

In agile the requirements, architecture, and design evolve over time, so the threat model as

an example becomes outdated quickly and the data sensitivity and connection to third parties

may not be immediately known.

So, another version of SDL was released, it is called SDL/agile. (SDL-Agile: Microsoft’s

Approach to Security for Agile Projects | Tech·Ed Europe 2009 | Channel , 2009)

SDL for agile breaks the SDL into three categories of requirements:

• Every-sprint requirements: the requirements so important that they must be

completed every iteration, the green activities in Figure 4.

• One-time requirements: the requirements that only must be completed once per

project no matter how long it runs, the blue activities in figure 4.

• Bucket requirements: the requirements that still need to be completed regularly but

are not so important that they need to be completed every sprint, the orange

activities in Figure 4.

Figure 4 - Microsoft SDL activities group based on SDL/agile (Microsoft Corporation, 2010)

2.4.3 Touchpoint

It is a set of best practices, it was introduced in Part II of Gary McGraw’s -Software Security:
Building Security In- book. These best practices first appeared as a set in 2004 in IEEE Security
& Privacy magazine. Since then, they have been adopted by the U.S. government. (McGraw,
2006)

Training

Core Security
traning

Requirements

Establish
security

requirements

Create
quality gates

/ bug bar

Security and
privecy risk
assessment

Design

Establish
design

requirement

Analyze
attack

surface

Threat
modeling

Implementation

User
approved

tools

Deprecate
unsafe

functions

Static analysis

Verification

Dynamic
analysis

Fuzz testing

Attack
surface
review

Release

Incident
response

plan

Final security
review

Release
archieve

Response

Excute
incident
response

plan

11

The touchpoints provide a mix of lightweight black-hat and white-hat activities. Some
touchpoints are by their nature more effective than others, and the most effective should be
adopted ones first. Touchpoints in order of effectiveness are:

1. Static analysis/Code review: entails the use of static analysis tools to detect common

vulnerabilities.

2. Architectural risk analysis: identifying possible attacks and document these

assumptions to uncover architectural flaws for mitigation.

3. Penetration testing: black-box testing for the application by using automated testing

tools.

4. Risk-based security tests: risk-based security testing of the software based on attack

patterns.

5. Considering abuse cases: an imaginary situation that describes the system behavior

when it is under attack to identify the parts that need more protection.

6. Security requirements: specify functional security requirements and emergent ones

that revealed from the abuse cases7 and attack patterns.

7. Security operations: monitoring the application after deployment.

Figure 5 - Touchpoint artifacts in SDLC (Addison- Wesley, 2006).

Another bonus practice was mentioned as well: external analysis, which suggests outsourcing

analysts to perform an independent security review or tests for the design and the

implementation.

2.4.4 OWASP CLASP

OWASP released CLASP in 2006. It is a lightweight software security assurance process; it
adopts an easy and effective approach for constructing secure software by introducing
extensions to the traditional software engineering activities and providing implementation
guidance in certain security areas. (De, Distrinet and Leuven, 2007)

7 The abuse cases is the interaction between a system and one or more actors, when the consequence
of the interaction damage the system.(Mcdermott and Fox, no date)

12

The CLASP process consists of 24 top-level activities that can be fully or partially incorporated
into software that is being constructed. They can be grouped under 7 best practices according
to the roles performed during development(The CLASP Application Security Process The CLASP
Application Security Process Introduction 1, 2005):

1. Institute awareness programs

2. Perform application assessments

3. Capture security requirements

4. Implement secure development practices

5. Build vulnerability remediation procedures

6. Define and monitor metrics

7. Publish operational security guidelines

2.4.5 SAMM Project

OWASP released this open framework in 2008 for security assurance to help organizations

formulate and implement a strategy for software security that is tailored to the specific risk

facing the organization. It can be utilized by small, medium, and large organizations using any

style of development waterfall or agile. Companies can determine which of the practices and

sophistication levels are most appropriate for them. (Chandra, no date)

It maps from CLASP activities into SAMM's practices. Each objective in SAMM can be mapped

to s existing standards (PCI, COBIT, ISO-17799/27002), by achieving this objective the

corresponding parts of existing standards are achieved.

Figure 6 - SAMM project functions and practices

13

As we see in Figure 6, SAMM project divides the practices into four top functions (OWASP,

2017) :

- Strategy & Metrics: The way the organization looks at business risk and aligning

security with it, like establishing a software security assurance program. For example,

classifying data and application based on their business risk and security goals. This

practice should be across the company.

- Policy & Compliance: understanding and meeting external legal requirements while

driving internal security standards to ensure compliance. Like complying with PCI

standard for online payment. The compliance must be clarified in the company and

for each project.

- Education & Guidance: training and guidance on security topics. For developers and

everyone involved in the development and business process, at a basic level it could

be a generic training for developers but to reach an advanced maturity level, specific

training for different stakeholders might be necessary.

- Threat Assessment: this practice contains the activities that help in identifying who

would benefit from exploiting the system and prioritizing threats. It should be

performed in an early phase of the development process, but it is never too late to do

threat assessment in an advanced phase. Besides, it needs to be checked and updated

if there are any changes in the architecture of the system.

- Security Requirements: focuses on identifying the functional and non-functional

security requirements in the requirement definitions, for example, session time out is

30 minutes.

- Secure Architecture: imply secure design principles to the system design like secure

by default principle, defense in depth, securing the weakest link.

- Design Review: asserting that software design does not include any security issues

and it avoids security flaws. Analyzing the software attack surface is one of design

review activities, that is done Based on threat model. The documents produced from

the design review need to be updated if there are any changes in the system design

each agile sprint.

- Implementation Review: reviewing the code and Analyzing it from common

vulnerabilities, its activities could be as simple as having a checklist on things we need

to make sure of, or review high-risk code manually, or using automated code analysis.

- Security testing: testing the fully implemented software in its run-time environment

from known vulnerabilities.

- Issue Management: focusing on keeping the company ready to deal with any

emergency incident issue in the software that the organization has developed.

- Environment Hardening: checking the operational environment health from

necessary patches, having good documentation for the infrastructure, and updates for

third party components.

- Operational Enablement: maintaining a good level of communication between the

Development and Operation teams for critical security data depending on each

14

release, putting a change management procedure and code signing in an advanced

level of the operational enablement.

2.5 Comparison between Existing SSDLC approaches

Comparing between MS-SDL, touchpoint, OWASP CLASP and SAMM project activities in
different phases in the SDL is presented in Table 1 (Bedi, Gandotra and Singhal, 2013) (De,
Distrinet and Leuven, 2007)(Nunez, Lindo and Rodriguez, 2020)

Table 1 - comparing between different SSDLCs activities

Development
phase

Microsoft SDL and
Microsoft SDL for
Agile

Touchpoint OWASP CLASP SAMM
project

Project
inception

Assignment of a
security advisor.

Defining several roles
(or teams).

Define the bug bar.

Define security-
related fields to track
security issues.

Core security training

None. Assignment of
a security
advisor.

Identification
of the metrics.

Evaluate
global
requirement

Security
training

Policy and
compliance

Strategy and
metrics

Education and
guidance

Requirement Identify security
objectives and
security
requirements.

Identify
security
requirements

Risk analysis.
Threat
Modeling.

Identification
of attackers
and attack
surface.

Specification
of misuse
cases with
their
mitigations.

Identification
of Security
requirements.

Risk analysis.
Threat
Modeling.

Identification
of attackers
and attack
surface.

Specification
of misuse
cases with
their
mitigations.

Identification
of Security
requirements.

15

Design and
architecture

Product risk
assessment.

Identification of the
security-critical
components.

Threat modeling

Analyzing attack
surface

Identification of
design
techniques/guidelines

Risk analysis Following
design
guidelines.

Annotation of
class diagrams
with security
information.

Threat
modeling.

Risk analysis.

Set cases of
misuse

design review

Threat
modeling.
Risk analysis.

Analyzing
attack
surface.

Implementation Following the secure
coding standards.

Security code
reviews.

Security testing.

Using approved tools.

Using abuse
cases and
security
requirements

Following
secure coding
guidelines.

Code reviews.

Use of static
code analysis
tools.

Security
testing

Following
secure coding
guidelines.

Code reviews.

Use of static
code analysis
tools.

 Security
testing.

Testing Dynamic analysis

Fuzz testing

Security
testing

Security
testing

Security
testing

Release and
post-release

Writing of user
manuals.

Incident response
management.

Monitoring
after release.

Writing of
user manuals.

Incident
response
management.

Code signing.

Writing of
user manuals.

Incident
response
management.

Code signing.

16

2.6 Technical background: Methods, Techniques, and Tools for
Secure Software development

There are already many tools and technologies to support security in different development
phases. In this section, some of them are presented.

2.6.1 Risk rating methodologies

It is the process of identifying and estimating the severity associated with risks to the

business, to allow eliminating them later. (Stoneburner, Goguen and Feringa, 2002)

• OWASP Risk Rating Methodology

It is one of the most known risk rating methods from OWASP. It uses the following simple
equation to estimate risks:

𝑅𝑖𝑠𝑘 = 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝐼𝑚𝑝𝑎𝑐𝑡

Using this methodology, companies can estimate the severity of risks to business and make

decisions on their top priority threats, to eliminate first. It also contains a rating system. So,

taking this decision process is more straightforward. (OWASP Risk Rating Methodology, no

date)

The process consists of six steps:

- Identifying the risks: the first step is knowing the risk.

- Factors for Estimating Likelihood: How likely to this threat to be uncovered and

exploited by an attacker. There are many factors to estimate the likelihood. Some of

them are attacker oriented like the skill level, motivation. Etc. while the other related

to the risk itself like Ease of discovery.

- Factors for Estimating Impact: Each threat has a technical impact on the application.

and business impact on the business.

- Determining Severity of the Risk: From the previous step and the overall impact, the

severity of the threats can be calculated.

- Deciding What to Fix.

- Customizing Your Risk Rating Model.

• OCTAVE

It stands for Operationally Critical Threat, Asset, and Vulnerability Evaluation. It a risk
assessment framework created by Carnegie Mellon University’s Software Engineering Institute
(SEI) in collaboration with CERT.

17

It has two distributions on for big organizations while the other one, which called OCTAVE-S
for small businesses. And it targets organizational risks more than technical ones. (Alberts et
al., 1999)

OCTAVE suffers from some main issues like being complex and it does not offer activities and
practices to mitigate web application risks. (Jagannathan, no date)

2.6.2 Analyzing attack surface

Attack Surface Analysis is about mapping out what parts of a system need to be reviewed and
tested for security vulnerabilities and understand the risky areas in the application. (Attack
Surface Analysis Cheat Sheet | OWASP, no date)

In other words, attack surface analysis identifies the exit and entry points, which are the
systems’ methods to interact with its environment. For example, a method that writes into a
log file is an exit point and the method that receives from the API is the entry points. There
are different points of entry/exit like User Interfaces (UI) points, HTTP headers, and cookies,
APIs, Files, and Databases.

There is a recursive relationship between Attack Surface Analysis and Application Threat
Modeling: changes to the Attack Surface should trigger threat modeling. (Attack Surface
Analysis Cheat Sheet | OWASP, no date)

Many tools could be involved in this process to identify the attack surface to crawl the
application and figure out the exposed endpoints like OWASP ZAP8, Skipfish9, burp suite10 and
some development tools like debuggers may also help.

2.6.3 Threat modeling tools

Threat modeling methods is a security technique, it is used to create an abstraction
architecture of the system to identify potential attacks that may arise. It helps in
understanding the system and prioritizing the issues during the security process. (Shevchenko
et al., 2018)

We have many threat modelings tools which depend on many methodologies to cover
different type of systems.

• STRIDE

It as an acronym for six major categories of security threats. It evaluates the design of the
system and categorizes the threats into the previously mentioned categories. (The STRIDE
Threat Model | Microsoft Docs, no date)

It was firstly discovered in 1999 by Microsoft and adopted by them in 2002, it is implemented
as part of the Microsoft Security Development Lifecycle (SDL). In this, data flow diagrams

8 https://owasp.org/www-project-zap/
9 https://tools.kali.org/web-applications/skipfish
10 https://portswigger.net/burp

18

(DFDs) between the entities in the system are built. STRIDE is currently the most mature
threat-modeling method. STRIDE threats and its related violation are shown in Table 2.

Table 2 - STRIDE threats and its related violation (STRIDE chart - Microsoft Security, no date)

Threat Violated property

Spoofing Authentication

Tampering Integrity

Data repudiation Non-repudiation

Information disclosure Confidentiality

Denial of service Availability

Elevation of privilege Authorization

• DREAD

Microsoft also developed this threat assessment approach, which used to calculate, rate,
compare, and prioritize the severity of risk for each threat that is classified using STRIDE. It
calculates the risk using the following equation:

𝐷𝑅𝐸𝐴𝐷 𝑅𝑖𝑠𝑘 = (𝐷𝑎𝑚𝑎𝑔𝑒 + 𝑅𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐴𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑈𝑠𝑒𝑟𝑠 + 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦)/5

Each variable in the equation is a value between 0 and 10, and the final value between 0 and

10 as well. (Threat Modeling | Microsoft Docs, no date)

• Attack tree

It is one of the oldest and most traditional ways in threat modeling, in attack tree we
represent attacks against the given system in a tree structure diagram, the root of the tree is
the goal and the nodes represent sub-goals and there are different ways of achieving that goal
with logical sequence.

The attack tree provides define the logic by using AND nodes to represent a logical sequence
of steps to get to the goal and OR nodes to represent the alternatives. (Saini, Duan and
Paruchuri, 2008).

19

• Trike

It is a framework for security auditing that was found in 2005, Trike Analyzes the relations
between the actors, assets, intended actions, and rules. It starts with identifying them, then
building a matrix represent the actors and assets and then evaluate the CRUD operation that
is assigned to each actor in the system.

After building the matrix, an iterated operation through the DFD model should be conducted
to assess the risk of attacks that may affect assets. (Saitta, Larcom and Eddington, 2005)

2.6.4 Static code analysis tools

It is the process of scanning the source code trying to find any potential security flaws; Code

analysis tools search into the code that was developed in the development phase to identify

defects, helps verify that developers are following guidance, and helps identify problems early

in the development cycle.

Many commercial, free, and open-source tools are in the market that supports different

programming languages. The following are some of them that support java and javascript, the

main two languages that are used in Msg Life.

• Sonarqube

 Is an open-source platform developed by SonarSource for continuous inspection of code
quality to perform static code analysis to detect bugs, code smells, and security vulnerabilities.

It can be integrated with continuous integration tools like Jenkins and Atlassian Bamboo. Also,
we can easily define a quality gated for implementation review and integrate that into the
CI/CD pipeline as shown in Figure 7. (Code Quality and Security | SonarQub>, no date)

Figure 7 - SonarQube integration with CI

20

• Deep Dive

Static analysis tool for byte code to assess JVM-based deployment units (Ear, War, Jar, APK). It
has many built-in features to search for code quality and security defects. (Discotek.ca Deep
Dive, no date)

FindSecBug

This tool also works on identifying weaknesses and bugs in Java-based code. It can detect 135
different vulnerability types according to the pre-defined Bugs Patterns. It has plugins for
maven, eclipse, IntelliJ, Netbeans, and Jenkins. (Find Security Bug>, no date)

2.6.5 Automated security testing tools

 A wide number of Dynamic Application Security Testing (DAST) tools are available and all

these tools have their strengths and weaknesses.

• OWASP ZAP

An open-source tool from OWASP, it provides web application security testers with many
build-in features and extra plugins to perform fuzzing, scripting, spidering, and proxying to
attack web applications. (OWASP ZAP, no date)

OWASP ZAP can be integrated with continuous integration pipeline to run an automated test
against the application before release and there is a special Docker image that provides an
easy way to run ZAP, especially in a CI/CD environment.

• Burp Suite

It is an advanced and one of the most well-known security tools, it is an integrated platform
for performing security tests. It contains many features to support security actions from initial
mapping and analysis of an application’s attack surface, through to finding and exploiting
security vulnerabilities. (Burp Suite - Cybersecurity Software from PortSwigge>, no date)

Burp has a free version, an enterprise, professional, and enterprise releases. Only the
enterprise version can be integrated with the continuous integration pipeline and can work in
headless mode.

• Arachni

 It is an open-source framework to evaluate the security of modern web applications. It is a
very high-performing, easy-to-use. It offers a web user interface that permits multiple
administrators to manage scans.

21

 It is very quick and generates a well-formed HTML report. However, the available scan
options are so customizable that it would be great to integrate with continuous integration
pipeline.

2.6.6 Dependencies checking tools

Open source is awesome and powerful but depending on so many open source libraries and

components without keeping an eye on the security potential issues that may arise is

dangerous. So, many tools were found.

• OWASP Dependency Check

According to OWASP the Dependency Check11 library can detect publicly disclosed
vulnerabilities within a project’s dependencies.

It performs this by determining if there is a Common Platform Enumeration (CPE) identifier for
the dependency. If found, it will generate a report linking to the associated CVE entries.

It also provided with plugins to integrate with CI pipeline and Maven (OWASP Dependency-
Check, no date)

• OWASP Dependency Tracker

Dependency Track12 is a Supply Chain Component Analysis platform that helps in identifying
and reducing risk from the use of third-party and open source components. It implements a
concept of Software Bill-of-Materials (BOM) which is a description of the components
presented in the codebase with their licenses, version, and patch status. (Schütz and Salecker,
2008)

Two main formats for BOM exist today, CycloneDX13 format, a specification designed for use
in application security contexts, and supply chain component analysis. And the other one is
SPDX14 Which defined as a standard for communicating software bill of material information.

It can monitor components usage across all versions of every application. The platform can be
integrated into Continuous Integration (CI) and Continuous Delivery (CD) environments and it
supports many repositories like maven and NPM. (OWASP Dependency-Tracker, no date)

Dependency Track offers easy integration with many vulnerability databases like NPM, VulDB,
NVD, the National Vulnerability Database, which is the largest publicly available source of
vulnerability intelligence. There are over 100,000 documented vulnerability in the NVD15 from

11 https://owasp.org/www-project-dependency-check
12 https://dependencytrack.org/
13 https://cyclonedx.org/
14 https://spdx.dev/
15 https://nvd.nist.gov/

22

the 1990s until now. Also, with Sonatype OSS Index vulnerability database16, OSS Index does
contain many vulnerabilities that are not present in the NVD.

2.7 Background and related work

This section discusses and Analyzes existing research and studies contributed to integrating
security with agile methods to develop secure software products.

The secure software development literature field is very immense because many techniques
have been suggested to get security activities along with agile methods (Khaim et al., 2016). A
bulk of earlier research in this field seems to be a comparison between the mostly known
secure software development methods. like MS-SDL, Common criteria, and touchpoints in
order to identify the potential integration with agile in (Singhal, 2014).

Many studies were conducted as well to measure the effect of security on agile. In this paper
(Keramati and Mirian-Hosseinabadi, 2008) the agility degree of security activities is calculated
based on simplicity, customer interaction, documentation, change tolerance, speed of
execution, informality, people-orientation, iteration and flexibility. According to the study,
building security teams, security education and guidance, and static code analysis are the top
agilic security activities.

Another approach called FISA-XP was suggested by (Singhal, 2014), this approach considers
two main measures in the selection process of the required security activities, the security
activities agility level and its effectiveness. The research exposes a method to calculate a
selection rate value based on those two factors. Hence, security activities with a higher
selection rate should be implemented. However, aligning the cut-off line that separates the
higher selection rate activities from the total set of activities depends mainly on the project
and customer’s needs.

This approach was examined on five activities from OWASP CLASP in XP model, concluding
that Performing security analysis of requirements has a very high selection rate, specifying
operational environment has a high selection rate, identifying user roles and requirements
has a medium selection rate while detail misuse cases as well as identifying global security
policy has a low selection rate.

Nevertheless, a few studies were published based on a real case study, (Dawson et al., 2010)
made an early contribution. In their article, they reveal the risk of delegating security to the
test phase and proposed a methodology for integrating software assurance into the
Department of Defense Information Assurance Certification & Accreditation Process (DIACAP)
development lifecycle that used waterfall development model and committed to The
International Information Systems Security Certification Consortium, Inc (ISC)2 security best
practices.

(Mougouei et al., 2013) discusses the risky influence of missing documentation in SCRUM
development model on security considerations. The paper claims a new enhanced version of
SCRUM called S-SCRUM, that aims to integrate security analysis and design activities into
SCRUM process.

16 https://ossindex.sonatype.org/

23

The supposed model focuses on web services. So, in order to validate it, it was tested on a
money transfer service. However, other aspects on like other security considerations
incorporate with SCRUM was not covered.

(Kainerstorfer, Sametinger and Wiesauer, 2011) in their study aim to experiment the
effectiveness of MS-SDL for small teams, on a small product, in a real-life case study.
Even though the case study was not fully complied with the MS-SDL, they successfully pushed
the security to early stages in the development process and the target of developing a secure
product was achieved. The study concluded that it is possible to incorporate security without
significantly increase the development cost.

Another recent research in this field (Nunez, Lindo and Rodriguez, 2020), the paper proposes
a new flexible model in secure software development for agile, called Viewnext-UEx, this
model was examined in Viewnext corporation. During the study, six secure development
models were investigated including OWASP CLASP, MS-SDL, BSIMM, SAMM project to find the
intersections between them. They build their model upon these cross activities. As a result,
the model is structured in a way similar to BSIMM and SAMM project. It consists of four main
development areas (Policies, secure development methodology, supervision, and
observation). By applying the model, they could successfully decrease the time spent on fixing
vulnerabilities and the number of vulnerabilities in the mentioned organization by 68%.

24

25

3 Value Analysis

Building things is easy but building the right thing that fits the market, the customer, and the

community the most, is the hard thing to achieve. In this chapter, we will highlight some of

the topics that are related to the value of this study.

3.1 Innovation / New Concept Development (NCD)

In this section we will use the NCD model which was proposed by Koen et al. in 2001, to
structure our front-end ideas in security methodologies, and end up with a well-formed
mature security assurance process.

The NCD is a terminology to understand the front-end of innovation it entails three main
parts, five core activities “Front-End of Innovation (FEI)”, the engine that powers the
elements, in the middle of the model, and the external elements that influence the innovation
process “Influencing factors”. As shown in Figure 8 (Koen et al, 2001)

Figure 8 - The NCD model (Koen et al., 2001)

26

3.1.1 Opportunity Identification

In their article, Koen et al. define the opportunity identification by recognizing the new

opportunity the company may face by design or default. (Koen et al, 2001)

And according to that definition, we can clearly acknowledge that software security has been

always a hot topic and the objective of software companies that straggle toward making their

products immune to the attackers. The main idea of this thesis comes from Msg Life Company

that wants to improve the security of its main product after they discover some issues and

flaws in their core software which is the cornerstone for many insurance companies around

the world. They notice that they don’t dedicate actual stories or tasks to ensure security,

while they focus on the functionalities of the product that they need to deliver to the

customers and they concluded the importance of integrating security as a part of their agile

development lifecycle. That is reasonable because agile does not enforce security by default

and they need a dedicated insurance security plan to perform that.

The same situation applies to 97% of the companies worldwide that adopt agile partially or

fully in 2019, this agile companies face a different level of security risks depending on many

internal and external factors. Disregarding the verity of this wide vector of differences, the

first and most effective defense line comes from inside the company to develop the most

secure software as possible and this can’t be done in ad-hoc basis, it requires some roadmap

to obtain the most from agile as well as security practices. (2019 Survey on Agility Agi l e

Transformati on From Agile experiments to operating model transformation: How do you

compare to others?, 2019)

3.1.2 Opportunity Analysis

Opportunity analysis, where we discuss in more detail the trends of the opportunity and try to
shape it into a business idea to give the company an advantage over its competitors. (Koen et
al., 2001)

Introducing security to the company comes into many forms but putting security in a robust
methodology can help the company grow with less risk. There is a variety of security solutions
that prove its abilities to improve security awareness and show its efficiency in introducing
security to the company. This security assurance plans are proposed by the security
community depending on the company’s size, architecture, products, existing SDLC,
objectives, and budget. As we discussed in the existing SSDLC models previously in chapter 2,
some of this well-known security assurance methods that may be applicable to Msg Life
company. In Table 3 we compare them into more concerning details that may affect the
selection of the solution. (Mohammad, Alqatawna and Abushariah, 2017)

27

Table 3 - comparing between SSDLC models

 MS SDL Touchpoint OWASP CLASP SAMM project

The nature of

the model

Heavyweight Lightweight Lightweight It depends

Activities

number

16 activity with

optional

activities

7 activities with

1 optional

24 activity 12 activity

Organization

size

Large Small to large Small to large Small to large

Activities

dependency

Dependent Independent Independent Independent

Easiness of

adaption

Difficult Easy Easy Easy

Education and

training

Dedicated

activity

None Dedicated

activity

Dedicated

activity

Documentation

and guidance

Rich resources Weak resources Rich resources Rich resources

Security testing White box Black box and

white box

Black box White box and

black box

3.1.3 Idea Generation & enrichment

This process represents the idea creation, evolution, and growth over time. When the

opportunity starts to evolve into a clear coherent idea, we can receive a business benefit from

it. (Koen et al., 2001)

The original idea beyond this thesis was simple. It was making the core product at the

company more secure.

From the company’s perspective, doing a penetration testing or in the best scenario,

performing it with implementing some source code analyzer like SonarQube was the most

obvious approach, that was going to fulfill their objectives. But, after assessing of the situation

in the company, diving deeper, searching for the root of the problem and checking the

security maturity level, new problems were exposed, problems like unawareness of security

best practices from the developers and stack holders, the rapid changes in the system which

28

enforce changes in the attacker surface -thanks to agile model-. De-emphasizing on

documentation activates. Under these circumstances, it became obvious that penetration

testing is not useful as a late threats' prevention defense mechanism and its result will be

outdated soon according to existing the development model.

Due to those reasons, a solution that reflects a consistent gradual change in the company was

needed, and we started to step forward securing the development lifecycle via some security

assurance method.

3.1.4 Idea Selection

Selecting the idea or approach between the set of choices that return the maximum business

value is considered very critical and influential. (Koen et al., 2001)

After discussing the situation with the stakeholders, analyzing the opportunity and comparing

between the well-known existing methodologies and tools in the secure development field,

we found that Microsoft SDL was heavyweight to implement especially when it is most

appropriate to large products and large teams; it was built around the way they are building

Microsoft Windows in big releases. This is not the case in Msg Life company. Furthermore, it

does not take you from you are to where you want to be. So, it is not a roadmap. Also, it

misses a few points, because it does not have a specific activity for operation and governance

and it lacks effective activities in the implementation phase, mainly because it focuses more

on security as a supporting quality.

While, Touchpoint is a high-level map and goals, without enough details to execute and it

doesn't define what we should do to achieve that goal, which works fine with high-security

experience experts, Thus, as Microsoft SDL, Touchpoint doesn’t seem so effective in Msg Life,

where there is no dedicated security team.

OWASP CLASP in its turn, is considered a large collection of activities without priority order,

and it is also good for experts to use as a guide.

The final option, SAMM project that equipped with rich documentation, security assessment

tools, and improvement metrics. SAMM project looks like the optimal approach to follow that

enables the company to select what they want to improve in a timely controlled roadmap.

And the decision in the company was made to follow SAMM project v1.5 methodology that

fits the objectives and benefits from the DevOps tools that already exist to integrate some

security behaviors with it, so less impact on the agile flexibility is required. Due to its

continuous nature and not a thing, you do once in a lifetime.

3.1.5 Concept definition

This process represents creating and developing a business case. (Koen et al., 2001)

29

Following SAMM project security assurance plan and integrate it with existing SDLC that

already exists in the company, will cover the objectives of Msg Life in improving security level

in its products, and more, it will be able to ensure security is being respected in its future

products. And security will not be a barrier, instead, it will part of the day to day tasks.

3.2 Solution’s Value

3.2.1 Value

Analyzing the value of the product or solution is an approach to ensure that our idea is

optimal in comparison with other alternatives to meet the customer’s needs. (Tian et al.,

2007)

The value from this work comes from the safety and mitigating security risks that face Msg

Life organization from the early steps in the development lifecycle, protecting its

confidential information, also enabling application safe operation, which by result, saves the

company’s assets, software, business, and repudiation.

3.2.2 Customer Value and Perceived Value

The concept of perceived value represents the customer's notion of the value of an offer.
(Heinonen, 2004)

In other words, the value is a balance between the benefits and sacrifices that a given offer or
idea has from the customer perspective. And whether the idea is worthy or not. And this is in
fact the same principle in security, risk, or sacrifices acceptance, and whether we accept this
risk level, and depending on that a set of security restrictions is required.
Customer value in this context is the perception of the required security level in the

development environment and the lifecycle in terms of time and effort and financial

requirements.

Taking into consideration that the company has not yet been under attack especially when its
products for internal uses in in their customers’ environments which may seem safe and less
dangerous.

This may seem unconcerned at the first sight, and security practices are just an overwhelming
for agile. But if we investigate further, and look at the statistics globally, we find out that 42%
of the small companies suffered from attacks in 2019. And 34% of attacks are insider ones
which are more harmful and can cost a company up to $8.76 million a year. (2018 Cost of
Insider Threats: Global Sponsored by ObserveIT, 2018).

These statistics give us more obvious vision of the actual situation that for sure seems
concerning. And we can conclude the value of this project where we avoid the company risks

30

that might cost the company money and repudiation and in the worst-case scenarios; fines
under GDPR regulation.

3.2.3 Longitudinal Perspective of Value

The longitudinal Perspective of Value that presented by Woodell which identifies four distinct
positions for the customer value, as shown in figure 9 and the pros and cons for each of them
(Woodall, 2003)

Figure 9 - Longitudinal perspective on VC (Woodall 2003)

Table 4 presents the benefits and sacrifices from the pre-purchase phase to after
use/experience phase for Msg Life.

Table 4 - Benefits and sacrifices of the customer along the process

Stage Sacrifices Benefits

Pre-purchase • Time.

• Effort.

• Adapting to different contexts.

• Increase knowledge.

Point of
experience

• Time: Slower sprints in agile
due to extra security load.

• Effort: need to update or
establish a bunch of
documentations, in a lot of
security-related fields at the
company level like developing
a business profile with the
managers.

• Cost of a developer’s security
training.

• The cost and time for
upgrading some legacy systems
and tools.

• Introducing security best
practices to the whole
company.

• Securing the undergoing
products.

• Establishing security behaviors
to build above it (threat
modeling, Analyzing attack
surface, automated security
tests, static code analysis...
etc) for the core products of
the company.

• Establish a security-awareness
mentality for developers.

Post-
purchase

• Effort and time to maintain the
established practices to fit new
software.

• Securing future products.

• Pre-defined security roadmap
for the next year in the
company.

31

• Mitigate common
vulnerabilities in the source
code and the final product.

• Security becomes a behavior,
not a load.

After
experience

• The time and effort to
maintain the security practices
in place.

• The cost of annual security
training for developers that
might be expensive if the
company decided to move one
more level and conduct special
training for each developer
based on his position.

• Low level of vulnerabilities.

• Less attack surfaces.

• Minimum impact in agile
speed.

• Enhance the overall security
maturity level in the company.

• Security becomes part of the
development and developers'
culture.

• Raise the readiness in worst-
case security incidents
scenarios

• Minimal impact worst-case
scenarios.

• Products are secure by
default.

• Encourage investors.

3.3 Value Proposition

A lot of definitions for this term are widely used since it was first mentioned in 1988, but all of
them refer to the same thing.

According to (Tuominen, 2004), “competitive advantage and superior value flow from
whatever unique ability a firm has to shape, reshape, configure and reconfigure those assets
to serve customer needs”.

The value that this thesis can be summarized into putting a roadmap that the company can
follow for the one year that can ensure security in the company’s products. This roadmap
requires establishing security behaviors in the company based on the latest technologies and
methodologies in this field. These practices and behaviors can easily integrate with agile and
SCRUM software development.

3.4 Quality Function Deployment (QFD)

QFD is a methodology it was first incepted in Japan in the early 1970s, it is a measure of
customer satisfaction with a product or a service, used to ensure matching the customer’s
needs into the design and the effectively responding to those needs and expectations. (Akao
and Mazur, 2003)

32

For this work, the House of Quality matrix was developed, the widely used form of QFD that
consists of six components, the customer requirements, technical requirements, a planning
matrix, an interrelationship matrix, a technical correlation matrix, and a technical
priorities/benchmarks and targets section. (Tapke et al., no date)

To define the target values in the HQD that is presented in Figure 10, we used the maturity
values that were collected from the conducted security maturity evaluation test for Msg Life,
where we used SAMM project security assessment tool.

The result of this assessment was a value in each of the 12 practices of SAMM project, this
value represents the maturity level in this practice. Based on this maturity level, the target
maturity level in these practices was defined. And the full description for the methodology
and selected targets will be found in chapter 4.

The comparison in the technical evaluation section of the HQD was developed between Msg
Life and the average maturity values for Software Companies in general and to the companies
that provide services to the insurance sector that is like Msg Life.

This data was collected from BSIMM 10 survey which is a study of real-world software security
initiatives, the model was built out of data observed in 122 firms, and 11 firms of them are
insurance companies. (Migues, Steven and Ware, 2019)

3.5 Conclusion

Careful examination and deep analysis of the proposed methodologies derives to select
SAMM project framework. This project is going to be applied in Msg Life organization since
SAMM project fits most of the claims.

Based on that model, a security assurance roadmap will be formed. This roadmap will specify
the required set of activities to improve the security maturity level in the organization.
Furthermore, incorporate these activities with the current lifecycle, making the current and
the future products more secure.

33

Figure 10 - The house of quality for Msg Life security assurance

34

35

4 Design the SAMM project solution for

Msg Life

In this chapter, the detailed design is presented based on SAMM project approach. Starting

with explaining the iterative model that we used, the stages in each iteration, and the criteria

that are used to select the set of activities throughout the roadmap.

4.1 Security assurance roadmap applied model

The roadmap timeline was established based on SAMM project approach as shown in Figure
11. Starting with the preparation phase to define our scope, which is the core platform in the
company and all customers’ projects that were built upon it and identifying is our main
stakeholders based on this target scope.

Then perform the assessment to verify which security activities already exist in Msg life, this
assessment is conducted by interviewing stakeholders in the organization and audited to
verify the correctness in each of the 12-security practices. In Appendix B the full list of the
assessment survey questions is attached. The result of this assessment is a numerical value in
each security practice based on SAMM project scoring model where the highest score is 3.

It is followed by defining our target level of maturity. Eventually, a roadmap entails the
selection of which practices to improve in each planned phase is set in place.

After establishing the roadmap. Collaborative work should exert to achieve the stated levels
by performing the prescribed activities.

At the end of the first phase, the roadmap could be adjusted based on what was
accomplished and what is emerged during the first phase, to start the next phases.

36

In our solution, the roadmap is divided into four phases each of them is three months long.
the first two phases are thesis oriented they will be described into details in the following
section while the other two are optional to the company to commit to. Figure 11 shows this
timeline and roadmap’s four phases.

Figure 11 - The security assurance roadmap phases in a timeline

Many factors should be considered to identify a realistic maturity level. The main reasons can
be summarized in the following points:

a) The size of the organization, Msg Life Iberia team in Portugal is a small team, there is

no dedicated security team nor DevOps team. Which implies two main restrictions,

the first one is the limited guidance in security inside the company. And establishing

continuous security relies normally on other fields especially the DevOps field. So,

starting from this bounded situation affects the speed of security progress.

b) The type of products. Msg Life main products are insurance software applications with

a complicated architecture, this software works internally, in most cases, in their

costumer environment which is considered out of Msg Life scope. This means

improving security in the production environment is not among the critical things that

we need to worry about. Especially during the first and the second phase of the

roadmap.

c) SAMM project recommendations, the project comes with a “how-to” guide. It

discusses some actual examples of organizations, and some recommendations for

similar issues and targets that should be considered while building the roadmap.

d) The current situation of the company, which represented by the initial maturity level,

with attention to the priorities and dependencies in the model.

e) Development approach in the company, technologies that are already in use and

budget, these factors also impact the decision for a certain level.

f) Msg life needs, perspective, and priorities. Some targets are more coherent with the

organization’s business roadmap. To achieve that the roadmap was discussed with the

organization’s main stakeholders to make sure that it fits their perspective and meets

their goals.

37

g) Some security practices show a high level of agility and automation, meaning that

they can get along with agile easily, while the others overwhelm agile process. Thus,

the decision of the needed security activities affected by their level of agility, which

was the topic of many papers in this field.

An example of that is displayed in table 5, where the requirement column represents

22 security assurance requirements associated with their security level that goes from

basic (1), heightened (2) to high (3), and the automation level for these requirements.

And finally, the level of adaption in three main agile methodologies which are extreme

programming, Kanban, and scrum, the one that is used in our case. (Rindell,

Hyrynsalmi and Leppänen, 2015)

Even if the table discusses the automation level for MS-SDL. But it indicates the

potential practices to be implemented in our solution and the way they could affect

the agile process.

Table 5 – Agile methodologies compliance with security requirements (Rindell, Hyrynsalmi and

Leppänen, 2015)

h) To make the target maturity levels more reasonable, we checked on the maturity level

in the real-world situation. So, the Building Security In Maturity Model (BSIMM) V10

was strongly considered. Figure 12 shows the average level of maturity in different

types of software companies.

38

Figure 12 - BSIMM V10 Financial vs. Healthcare vs. Insurance Spider Chart(Migues, Steven and

Ware, 2019)

4.1.1 Use case diagram

The security assurance road map use case diagram is presented in Figure 13 to clarify the
actors, where the security team, managers, and business owners are our main actors. The
security team, represented by the author, responsibilities starts from the initial phase and
design the solution, the implementation part until evaluating the results. While managers,
business owners, team leaders participate in the management part and partially in the
implementation use case. Developers and architects are seen in implementing the solution.

Figure 13 – Security assurance roadmap use case diagram

39

4.1.2 Activity diagram

The activity diagram of the security assurance roadmap is displayed in Figure 14, this

flowchart shows activities performed to set the roadmap and improve it over time.

In the flowchart, the black circle symbolizes the beginning of the activity diagram. While the

rectangles are the main building blocks, they Indicate the activities that make up the overall

process. (UML Activity Diagrams - Graphical Notation Reference, no date)

The arrows between activities outline the directional flow, or control flow, of the activity. An

incoming arrow starts an activity; once the activity is terminated, the flow proceeds with the

outgoing arrow. (UML Activity Diagrams - Graphical Notation Reference, no date)

The decision node is represented by the diamond symbol, it represents the flow of control in

branches based on the defined condition. The flowchart is terminated by the circle that serves

as the final state. (UML Activity Diagrams - Graphical Notation Reference, no date)

 Going back to Figure 14 flowchart, where the performed activities in the roadmap are

outlined. Starting from initiating the security maturity assessment and auditing for the

correctness of the assessment.

If the roadmap is already in place, meaning this is not the first phase, maybe some

adjustments should be made to improve the roadmap before execution. Otherwise, much

more effort should be made to establish a new one.

After defining the targets, setting up its corresponding security operations that lead to

reaching the defined targets, the most time-consuming activity comes into place to put these

security operations into actions.

The last activity in each phase is evaluating the results. This process is planned in our solution

for four phases and implement two of them, but it could be iterated for as many phases as

needed after that.

4.2 Conclusion

In this chapter, the design of the suggested approach to be followed in Msg Life is clarified.
This design aims to maintain consistent security practices into a flexible security assurance
roadmap.

This roadmap timeline cracked into four main phases with full consideration of SAMM project
framework.

40

Figure 14 - Security assurance roadmap activity diagram

41

5 Implementing the solution

In this chapter, the roadmap represented by its four phases is explained after the initial

security assessment.

Also, the target maturity levels and the detailed set of activities to be implemented during all

the phases were stated as part of the first phase. The implementation of the first and second

phases is also covered in this chapter.

5.1 Phase one – preparation

In the preparation phase, the scope of the roadmap is defined by the software artifacts which
are to be included.

This group of artifacts consists of the core product in the company, in addition to all the
customers’ projects currently under development, that depend on this core product. The
number of those projects is estimated by five.

5.2 Phase one - Initial security maturity assessment

SAMM project comes with a maturity assessment tool to evaluate the current security
maturity of the target organization. The tool consists of questions that are used to evaluate
the security posture of the organization. The questionnaire was sent to product managers,
system architects, and developers in the company to assess the organization’s maturity in
each of the twelve security practices covered by the SAMM project.

Figure 15 shows the results of the initial maturity evaluation assessment under SAMM project
four main security functions. The blue section in the chart, represents the governance
function, the orange section is the construction function, the green is the verification one,
while the red symbolizes the operations function.

42

Figure 15 – Initial security maturity evaluation test results in Msg Life Company

As shown in the figure above, the company’s level in strategy and metrics is 0.07 out of 3 due

to the fact that the business risk profile is only considered partially with no available

documentation of it.

Similarly, neither a security roadmap to plan the future security improvements nor risk

categories to classify the application under development were in place. Moreover, the

security expenses of the organization such as training fees, tools licensing, and security

outsourcing are not tracked.

Similar results were seen in policy and compliance, where the company has not implemented

any of the measures advised by SAMM framework except for allowing team leaders to

request an external audit. These features, however, are not well utilized given that the

company is not compliant with any known information security framework such as e.g. PCI-

DSS. This led to the organization scoring only 0.10.

In security and guidance, the company scored 0.60, for implementing primitive security

guidance across the company. A limited number of the development teams, however,

understand the basics of secure coding and secure development best practices. While

stakeholders can pull security coaches for consultation if needed.

Under the construction main function in SAMM project model, the company is doing some

threat assessment through an informal and undocumented abuse-case analysis with minimal

43

awareness of threats and its related impact. However, high attention is paid to threats

stemmed from external software and third-party dependencies. As a result, the company

scored 0.63 in this metric.

On the other hand, the company is doing good when it comes to security requirements

scoring 1.50 maturity value. This is because requirements are specified during development.

Also, a matrix of roles and capabilities is documented and reviewed before the release of

every project.

The company achieved the highest maturity value in securing the architecture where it scored

1.85. They already have a static list of recommended third-party software. Also, in this

practice, architects and senior developers identify applicable and appropriate patterns for

each project during the design phase, alongside the reusable code components based on

established design patterns, in addition to shared security services that can be used within

projects across the organization.

In the implementation function, there is a moderate design analysis behavior, where project-

based teams specifically Analyze design elements. This analysis includes only the minimum

categories, namely:

• Authentication

• authorization

• input validation

• output encoding

• error handling

• logging

• cryptography

• session management

The teams also define how the developed system should handle high-risk functionality (such

as CRUD of sensitive data). However, this analysis is done, similarly to other security practices,

in an unstructured and non-consistent manner, where a formal process is neither defined nor

documented.

In the implementation review, a static code review analysis takes place in the Msg Life

company using SonarQube. However, the static code analysis is not fully integrated into the

organization's CI/CD pipeline leading to a situation where many teams chose to avoid using it

to scan their code. This leads to the organization scoring 0.70 in this section.

In the operation function, the score of the issue management practice was 0.60, due to a

minimalistic incident response plan, where the stakeholders know only the point of contact,

but no formal plan is in place.

In the environment hardening, the organization fulfills some security requirements to the end

customer who is responsible for the production environment. The organization also

44

recommends additional tools to the customer to protect the software while running in a live

environment. The company scored in this practice 0.45.

Since a list of security features is built into the software, options for configuration, security

impact, important security-related alerts, and error conditions are delivered to the end

customer and there is no change management plan, the company scored 0.75 in operational

enablement.

5.3 Phase one - Setting the targets

Starting with analyzing the result of the initial security assessment, and the effect of the
previously mentioned factors in section 4.1, many meetings to discuss the roadmap were
organized, and eventually cultivated to the targeted values shown below in Figure 16.

Figure 16 - Spider chart for the Msg Life roadmap in four phases

This stage was performed concurrently with the next stage. Starting from an overall maturity

level of 0,69 out of 3 concluded from the initial assessment, the value of the maturity level

metric after phase one is expected to increase by approximately 0.19, scoring 0.87 out of 3.

After phase two, it is expected to reach 1.13. During the third phase, the maturity is expected

to rise to 1.36 and finally to 1.63 after finishing the fourth phase. The full table of the exact

targeted maturity values enclosed in the appendix A Table A 1.

Furthermore, the details of the plan are presented under section 5.4.

45

5.4 Phase one - Defining the plan

The full explanation of the required activities under each security practice is described in this
section. This set of activities need to be implemented to achieve the target maturity level.

5.4.1 strategy and metrics

The outcome of every small change in this security practice would reflect on all divisions
across the organization.

The following chart in Figure 17 represents the progress in this practice for the four phases.

Figure 17 - progress in strategy & metrics in four phases

The main focus during the first and the second phases, as shown in Figure 18 and Figure 19, is

to set a general security roadmap and define the company business profile risk, based on a list

of worst-case scenarios that could lead to severe damage to the company’s business portfolio.

The goal is to analyze those scenarios from a security perspective, to evaluate their severity to

the organization’s business.

The analysis is done based on how critical each product is to the organization and the

potential impact it may have on the organization if its security were compromised.

These threats and abuse cases have different levels of financial, legal, and reputational impact

on the organization, where some could lead to violating regulatory constraints/restrictions

such as GDPR regulation. Examples of those abuse cases include data theft, data tampering,

and account hijacking.

Many tools can be used to perform a threat evaluation, such as OWASP risk rating framework,

OCTAVE, or Trike method, as described in section 2.6.1.

46

Figure 18 - strategy & metrics activities, objective and expected results in phase one

In the second phase, in addition to maintaining the security roadmap, work must be done to
increase the awareness within the organization.

Additionally, categorizing a small set of software artifacts, based on their criticality, into (Low,
Medium, High) groups is supposed to be done.

Figure 19 - strategy & metrics activities, objective and expected results in phase two

During phase three, the general target would be maintaining the same previously mentioned
activities. But the main focus would be to adjust the assurance plan to cover at least half of
the projects within the scope and map those projects into their respective risk categories.

By the end of phase four, most customers’ projects should be covered in the roadmap and
have their risks evaluated.

• Build and maintain security assurance program roadmap
within the defined scope.

• Estimate overall business risk profile.
Activity

• Establish a unified strategic roadmap for software security
within the scopoe.

• Initial list of the most critical business-level risks caused by
software.

Objective

• Roadmap that addresses the security needs in the company.

• Organization-wide understanding of how the assurance
program will grow over time.

• A list of worst case scenarios.

Expected
results

• mantain the assurance program roadmap.

• Classify applications based on business riskActivity

• Maintain the roadmap software security within the organization to
cover more project.Objective

• Customized assurance plan based on core value to the business to
cover more customer's projects in the company.

• Simple classificatin for projects within roadmap scope.

Expected
results

47

5.4.2 Policy and compliance

There are many standards and regulations which are used to assist and manage software
development and operations environment in order to handle critical data, such as the
Payment Card Industry (PCI) and Healthcare Information Portability and Accountability Act
(HIPAA).

Figure 20 - Progress in policy and compliance within four phases

In our case, we are interested in HIPAA regulation, since Msg Life company provides its

services to insurance companies which are covered by this regulation.

Becoming HIPPA complaint is not on the organization’s short team goals, trivial progress can

be accomplished in this practice, by making the main stakeholders aware of the current

compliance driver during the phase one, and conducting unofficial assessment during the

second phase of the road map, to give the stakeholders an overview on the actual compliance

status within the organization. As shown in Figure 21.

Figure 21 - Policy and compliance activities, objective and expected results in phase two

During phase three and phase four, a list of software requirements from HIPAA compliance
driver with its related “must-have” practices the company should be made. As shown in Figure
22.

• Identify external compliance driversActivity

•Understand relevant governance and compliance drivers to the
organizationObjective

• discovery regulatory requirements that affect the organization
Expected

results

48

Figure 22 - Policy and compliance activities, objective and expected results in phase four

5.4.3 Education and guidance

Programmer’s security experience level plays a major role in developing secure
software(Rindell, Hyrynsalmi and Leppänen, 2015). Besides, it is considered an agilic practice
(Keramati and Mirian-Hosseinabadi, 2008).

To get the maximum benefit from security practices, security guidance, and raise awareness
among the staff about secure programming and best practices is essential.

Figure 23 - Progress in education and guidance within four phases

Hence, a collaborative effort should be made to increase awareness about common insecure

practices. Starting with security training in the first phase, as indicated in Figure 24 and

releasing a security best practices checklist in phase two, as illustrated in Figure 25.

• Build and maintain compliance guidelinesActivity

• Understand relevant governance and compliance drivers to the
organization Objective

• Increase assurance for handling thirdparty audit with positive
outcome

Expected
results

49

Figure 24 - Education & guidance activities, objective and expected results in phase one

Figure 25 - Education and guidance activities, objectives and expected results in phase two

The target in phase three is building a centralized repository like a website or a portal. In this

website, stakeholders can find best-practices lists, FAQs, security-related essays, wiki-based

web pages where the staff can communicate and discuss security topics. During phase four,

no additional activities are planned for this practice.

5.4.4 Threat assessment

The main point beyond this practice is identifying and understanding threats in an early stage
of development lifecycle, putting security and development on the same page, and more
importantly, reduce the flaws in system design.
Thus, even when this practice is semi-automated, working on threat assessment is important

in Msg Life organization since dealing with threats is considered in an ad-hoc manner, with

scarce documentation, and the load on agile is considered acceptable with utilizing

DevSecOps tools. The progress in this practice is presented in Figure 26.

• Suggest and scadule technical security awareness trainingActivity

• Let developers be aware where to find secure programming and
deployment best prctices.Objective

• Increased developer awareness on the most common problems at
the code level

Expected
results

• Build and maintain technical guidelinesActivity

•offer development staff access to resources around the topics of
secure programming and deployment.Objective

•Maintain software with rudimentary security best practices.
Expected

results

50

Figure 26 - Progress in threat assessment within four phases

To put this in action, Microsoft threat modeling tool was used to create an initial threat model

to the most critical customers project resulted after analyzing the risk profile.

As mentioned in chapter 2 section 2.6.3, this tool depends on Microsoft STRIDE model.

In addition to establishing an attacker profile to have a better understanding of who our

enemies might be and their motivations. As explained in Figure 27.

Figure 27 - Threat assessment activities, objectives and expected results in phase one

In the second phase, as represented in Figure 28, special attention was given to third party

libraries and dependencies.

To improve the manual way of defining the dependencies, Dependency Tracker is introduced

to track external dependencies through using Bill-Of-Material, as clarified in section2.6.6.

• Build and maintain application specific threat model.

• Develop attacker profile from software architectureActivity

• Identify and understand high-level threats to the organization and
individual projects.Objective

• High-level understanding of factors that may lead to negative
outcomes

• Increased awareness of threats amongst project teams

Expected
results

51

Figure 28 - Threat assessment activities, objectives and expected results in phase two

Figure 29 shows Dependency Track and its ecosystem, where it is provided by the BOM files

with CycloneDX format -the recommended one for Dependency Track-, and it uses SonaType

OSS Index and NVD vulnerability databases to analyze the dependencies and send the

resulting report to the CI/CD tool like Jenkins.

Figure 29 - Dependency Track integrations

As an alternative of the Dependency Track, there is another solution that could be

implemented here which is the Dependency Check. But after reviewing each one capability,

the Dependency Track was the optimal choice, because it provides further information that

interests the company the most, like tracking component usage across all version of every

application, and License risk.

Similarly, there are many other tools and methodologies to build the threat model instead of

following STRIDE model like creating an attack tree or Trike, and they all work fine. the only

preference is that STRIDE is known for being a mature way to develop a threat model. Besides

• Explicitly evaluate risk from third-party components.Activity

• Tie compensating controls to each threat against internal and third-
party software Objective

• Deeper consideration of threats profile for each software project

• Detailed mapping of assurance features to established threats
against each software project.

Expected
results

52

that, Microsoft threat modeling tool makes things easier especially for other staff who are not

so familiar with security.

For phases 3 and 4, the abuse cases will be avoided due to its load on the agile process.

Instead, the focus is to create a specific threat model for more projects within the scope,

cover half of them in phase three, and the majority of them in phase four.

5.4.5 Security requirements

It is necessary to put robust and specific security requirements to be able to justify our claims
later. The security requirement in the Msg Life company is doing fine for the time being, in
comparison with the BSIMM. So, slight progress is planned in the second phase of the security
roadmap which is enough to enhance this function, as shown in Figure 30.
During phase two, a shortlist of industry best-practices that project teams should treat as

requirements is planned. As described in Figure 31.

Figure 30 - Progress in security requirement within four phases

Figure 31 - Security requirement activities, objectives and expected results in phase two

During phase three and 4, the activities will be performed toward integrating the best
practices into the requirement phase within the development lifecycle.

Since the security infrastructure like threat models, findings from design review, static code
analysis, security testing, etc. will be established, they are going to be able to give some
feedback to enhance the requirement phase and make the requirements more security-
oriented.

• Evaluate security and compliance guidance for requirementsActivity

• Consider security explicitly during the software requirements
processObjective

• Ad-hoc capturing of industry best-practices for security as explicit
requirements

Expected
results

53

5.4.6 Secure architecture

A slight enhancement in this practice is planned for phase one resulted as shown in Figure 32.

Figure 32 - Progress in secure architecture within four phases

A short checklist of secure design principles like defense in depth, securing the weakest link,
use of secure defaults, simplicity in design of security functionality, secure failure, least
privilege, avoidance of security by obscurity, etc. was published to the staff as part of the
solution, to be used during the design phase in the development lifecycle. As shown in Figure
33 which represents the activity, objective, and expected results for this activity.

On the other hand, using Bill-Of-Material concept and integrating dependency track in the
company SSDLC as mentioned before in 5.4.4 the threat assessment practice, to identify
common third-party components, boosts security in the architecture and make it easier for
the architects to evaluate and weight the reliance on external components in the system.

Figure 33 - Secure architecture activities, objectives and expected results in phase two

In phase three, as planned, an increasing number of teams and developers will be informed

and complied with secure design practices.

• A short list of security principles as a checklist against system
designs.Activity

• Insert consideration of proactive security guidance into the software
design process Objective

• Established protocol within development for proactively applying
security mechanisms to a design

Expected
results

54

5.4.7 Design review

The main focus of this practice is attack surface analysis and reviewing system architecture
from a security viewpoint prior to implementation. Where the architecture is decomposed
into smaller components, to set the trust boundaries between these parts and identify entry
and exit points, and data flaw in the application. In addition to reviewing the access control
for each of these components. As described in 2.6.2.

There is a recursive relationship between attack surface analysis and application threat model
since changes in the Attack Surface trigger changes in the threat model including session
management, authentication, and password management which directly affect the attack
surface. However, design review is considered an important but unautomated security
practice.

Given the above, the planned progress in maturity level is demonstrated in Figure 34.

Figure 34 - Progress in design review within four phases

Hence, in phase one, a baseline description of the attack surface exists to identify different

entry and exit points that can be used to interact with the system deliberately,

unintentionally, or maliciously. In our case, the most important points are APIs, user interface

(UI) forms, HTTP headers and cookies, API endpoints, Files, and Databases.

Thereafter, analyzing attack surface can abbreviate the test efforts because It is considered as

a pre-seed to the automated test.

55

Figure 35 - Design review activities, objectives and expected results in phase one

In phase two, there is no planned change in this practice. But in phases three and four, the

number of projects having their attack surface analyzed should increase to reach half of the

projects defined in the scope.

Also, in phase three there should be quality gates for design, by setting a particular point in

the software development lifecycle where a project cannot pass until a design review is

conducted and findings are reviewed and accepted.

5.4.8 Implementation review

As discussed before in section 5.2 in Msg Life there is an initial static code analysis to highlight
potential vulnerabilities in the source code using the SonarQube tool that is described in
section 2.6.4. Nevertheless, the static code analysis is not fully considered among the
development team.

Figure 36 - Progress in implementation review within four phases

As part of the security assurance roadmap, the static code analysis is integrated with the
CI/CD process and activated from phase one. Consequently, the source code will be tested
after each commit/push.

In Figure 37 the activity, objective, and expected results are presented.

• Identify software attack surface Activity

• Support ad-hoc reviews of software design to ensure baseline
mitigations for known risks.Objective

• High-level understanding of security implications from perimeter
architecture

• Lightweight process for conducting project-level design reviews

Expected
results

56

Figure 37 - Implementation review activities, objectives and expected results in phase one

In phase two, the quality gates of the code review will be activated to provide feedback on the
discovered vulnerabilities and prevent any critical ones to be in the production environment.
As represented in Figure 38.

Figure 38 -Implementation review activities, objectives and expected results in phase two

Since critical vulnerabilities are going to be addressed because of this practice. Some security

fixes in the source code for the core system should be done even if this change cannot be

measured by SAMM project directly. More details in section 5.5.

For phase three, there are no changes in this practice. But in phase four, all the developers

and other stakeholders should be more aware of the static code analysis results and it must

be reviewed constantly by them. Also, create a sub-plan to address findings in legacy code.

• Integrate code analysis into development process Activity

• Make implementation review during development more accurate
and efficient through automationObjective

• Development enabled to consistently self-check for code level
security vulnerabilities

• Stakeholders aware of unmitigated vulnerabilities.

Expected
results

• Establish release gates for implementation review Activity

• Mandate comprehensive code review process to discover
language-level and application-specific risks.Objective

• Increased confidence in accuracy and applicability of code analysis
results

• Organization-wide baseline for secure coding expectations

• Project teams with an objective goal for judging code-level security

Expected
results

57

5.4.9 Security test

It is the practice of testing the web application to find exploitable vulnerabilities. These
vulnerabilities may exist in operating systems, application flaws, missed configurations, or
risky end-user behavior. There are two types of security tests, manual security tests like
penetration testing or automated security test that is considered among agilic practice.
(Felderer et al., 2016)

Normally, the security test has two main modes, the first one is the active test, where the test
is trying to perform actual attacks that involve interactions. On the other hand, the passive
test, which is more like observing the system with no direct interaction. (Scarfone et al., 2008)

To integrate the security tests in the CI/CD process, we need to implement the automated
security test. For our solution, OWASP ZAP is used because it is an opensource tool and satisfy
our needs, other options like Burp suit are considered as an alternative. (Vulnerability
Scanning Tools | OWASP, no date)

Figure 39 - Progress in security test within four phases

The first phase of the security assurance roadmap includes preparing a generic automated
test. And integrate this automated test with the CI/CD pipeline. Figure 40 shows the objective
and expected results of this activity.

58

Figure 40 - Security test activities, objectives and expected results in phase one

The second phase of the roadmap includes a customized automated security test to meet
each artifact logic, allowing to activate the release gates with each build and keep the staff
updated about the vulnerabilities in the code. As shown in Figure 41.

Figure 41 - Security test activities, objectives and expected results in phase two

Phase three targets raising the awareness among stakeholders about the automated test

results, document general test cases based on security requirements and common

vulnerabilities, increase the number of projects covered by the security test to reach all the

projects within the scope and customize the automated test per customer project according

to its specific logic.

• Utilize automated security testing tools

• Integrate security testing into the development process
Activity

• Establish process to perform basic security tests based on
implementation and software requirements.

• Make security testing during development more complete and
efficient through automation.

Objective

•Deep and consistent verification of software functionality for
security

• Development teams enabled to self-check and correct
problems before release

• Stakeholders better aware of open vulnerabilities when
making risk acceptance decisions

Expected
results

• Employ application-specific security automated test

• Establish release gates for security testing Activity

• Ensure baseline security before deployment.Objective

• Organization-wide baseline for expected application performance
against attacks

• Customized security test suites to improve accuracy of automated
analysis

• Project teams aware of objective goals for attack resistance

Expected
results

59

 During phase four, perform penetration testing on critical parts of the system prior to release,

is planned and increase the awareness among the development team so all of them are aware

of the security test results.

5.4.10 Issue management

This practice's main focus is the incident response plan aims to identify, respond to, and
recover from security incidents to prevent damages like service outage, data loss or theft, and
illicit access to organizational systems.

Here, the company already has a known point of contact in case of security issues which
clarify the result in Figure 42, but there is no incident response plan in place. Thus, the second
phase of the security roadmap guarantees designating the point of contact and his surrogate
besides publishing an initial plan. As described in Figure 43.

Figure 42 - Progress in issue management within four phases

Figure 43 - issue management activities, objectives and expected results in phase two

In phase three, the main exertion in this practice is dedicated to increasing the robustness of
the incident response plan by document the organization’s incident response process as well
as the procedures that team members are expected to follow.
Plus, setting up a consistent security issue disclosure process to communicate with costumers,
in addition, to release patches since software is being operated by parties external to the

• Create informal security response team, and informal insicent
response planActivity

• high-level plan for responding to issue reports or incidents.Objective

• Lightweight process in place to handle high-priority issues or
incidents

Expected
results

60

organization. That’s as planned will be limited to the most critical business areas before
extending that to be across the company during phase four.

5.4.11 Environment hardening

As mentioned earlier, the operation environment is out of the scope. So, a limited and late

enhancement was given to this security practice during phases three and four. As presented in

Figure 44.

Figure 44 - Progress in environment hardening within four phases

During phase three, as displayed in Figure 45, the definition of the expected operating
platforms should be created and maintained. This specification should be jointly created with
development staff, stakeholders, support, and operations team, etc.
During phase four, the security team or operations team reviews optional tools for protecting
software with project stakeholders like firewalls, IPS…etc.

Figure 45 - environment hardening activities, objectives and expected results in phase three

5.4.12 Operational enablement

Similar to previous security practices, operational enablement is considered out of the thesis

scope. But a limited advancement could be made during phase three and four.

• Maintain operational environment specificationActivity

• Understand baseline operational environment for applications and
software componentsObjective

• Clear understanding of operational expectations within the
development team

Expected
results

61

Figure 46 - Progress in operational enablement within four phases

Preparing documentation for the most important error and alert messages which require the
user and the operator attention and how to respond to that.
Later, during the fourth phase, this should turn into a guide that contains security-related
configuration options, event handling procedures, installation and upgrades guides,
operational environment specifications, security-related assumptions about the deployment
environment, etc. As described in Figure 47.

Figure 47 - operational enablement activities, objectives and expected results in phase three

5.5 Phase one - Implementing phase one specified activities

In the previous section, we described in detail a set of activities that need to be implemented
to achieve our security goals. In this section, the implementation process of those activities
during the first phase of the assurance roadmap is revealed.

Starting with strategy and metrics, a list of worst-case scenarios has been established as
described in section 5.4.1. and basic risk assessment was made to prioritize projects with the
highest risk to cover first by the roadmap.

In education and guidance, a list of courses that require approximately one day per developer
on secure programming and security best practices were proposed to the company
management to be planned and scheduled. Based on the plan in section5.4.3.

• Document procedures for typical application alertsActivity

• Enable communications between development teams and operators
for critical security-relevant dataObjective

•Improved communications between software developers and users
for security-critical information

Expected
results

62

In threat assessment, Microsoft threat modeling tool was used to create an initial threat
model to the most critical system that was concluded from analyzing the business risk profile.
As result, the threat model was established for the core product in the company. This tool
depends on Microsoft STRIDE. And a more than 90 threat was identified including network
failure, erroneous input, SQL injection, pretending of wrong identity, unauthorized usage,
data manipulation…Etc.

Furthermore, in this practice, an attacker profile was established and published to the
company’s internal confluence17 to have a better understanding of who might be our enemies
and what could be their motivation. As described in section 5.4.4.

In design review, the attack surface was Analyzed based on the threat model, part of this
process was documented, resulting in a list of APIs, endpoints, databases...etc. to provide it
with appropriate countermeasures later. As mentioned in section5.4.7.

In the implementation review, the SonarQube was updated and fully integrated with the
Jenkins CI/CD pipeline to perform the static code analysis per commit/push to the Git server
for the projects in the scope. As planned in section 5.4.8.

After successfully integrating SonarQube and analyzing the resulting issues from static code
analysis, critical vulnerabilities emerged from the core product. Based on that, fixes are
delivered to remediate those issues outside SAMM project model.

100% of the vulnerabilities reported by SonarQube from different severity levels (Blocker,
critical, major, and minor) in the core product and one customer project, were resolved, and
100% of the security hotspot issues, which are pieces of security-sensitive code that may or
may not be a vulnerability, were reviewed as well.

Accordingly, the majority of those vulnerabilities marked as false positive18 while only 13.1%
were considered actual issues. As demonstrated in Figure 48 which shows the security rating
is improving over time and the number of security issues before and after that vulnerabilities’
remediation process.

17 Collaborative tool used to help teams cooperate and share knowledge.

18 A false positive happens when the static code analysis tool raises a red flag of vulnerability
when it is not. (Static Code Analysis | OWASP, no date)

63

Figure 48 - vulnerabilities report from static code analysis after vulnerabilities’ remediation

process

In security test, OWASP ZAP security scanner was used as mentioned in section 5.4.9 to test
the RestAPI for one of the customers' projects, including the services from the core system.

To perform the security test two things are needed, the first one is a valid description of the
RestAPI that needs to be tested, plus a valid session to test the endpoints that need
authentication and authorization.

in our solution, we used OpenApi19 specification, which is a machine-readable interface file for
describing, producing, consuming, and visualizing RESTful web services, to provide the
automated security test a starting point and a Python script was used to get a valid session
from the server and attach it to each request that needs authentication.

19 https://swagger.io/specification/

64

The automated security test is configured through a configuration file to define a list of
security tests to be performed (some of them are passive while the others are active) and
integrated with the CI/CD pipeline.

More details of the automated security test are shown in Figure 49.

Figure 49 - Automated security test design

 Jenkins pipeline triggers the automated security test script. The runner script gets a valid
session from the tested RestAPI first to provide OWASP ZAP with it. Using the following
command when the body.json is a JSON object contains a valid credential:

Code 1 - getting valid session for the automated security test

Next, the test script attaches the latest session ID from the previous step and launches
OWASP ZAP Docker container providing it the configuration file (config.prop) using the
following command:

1. docker run -v "****' + projectName + '''":/zap/wrk/:rw owasp/zap2docker-
weekly zap-api-scan.py -t openApi.yaml -f openapi

2. -z " -configfile /zap/wrk/config.prop"
3. -c api-scan.conf -d -r api-scan-report.html''')

Code 2 - Running ZAP inside docker container

Once OWASP ZAP finishes its tests on the targeted RestAPI, it publishes the security test
report to Jenkins in HTML formal.

65

5.6 Phase one - Evaluating results

According to what has been accomplished during this phase, Table 6 draws the conclusion of
phase one, where all the planned activities were applied, and the second phase of the security
roadmap is ready to set out.

Table 6 - Resulting security maturity values for phase one

Practice
Phase one expected
values Phase1 result

Strategy & metrics 0.33 0.33

Policy & Compliance 0.20 0.20

Education & Guidance 0.70 0.70

Threat Assessment 0.83 0.83

Security Requirements 1.50 1.50

Secure Architecture 1.85 1.85

Design Review 1.35 1.35

Implementation Review 1.35 1.35

Security Testing 0.52 0.52

Issue Management 0.60 0.60

Environment Hardening 0.45 0.45

Operational Enablement 0.75 0.75

5.7 Phase two – Roadmap update

Upon terminating phase one in the roadmap, the second phase should be initiated by
streamlining the roadmap if needed. Therefore, a few changes were made to improve the
roadmap with more accurate and consistent targets.

In the Policy and compliance, considering the compliance requirements for the third party
regulatory does not seem so realistic activity to do during the discussed one-year roadmap.
So, it was avoided, changing the policy and compliance maturity values for phase three and
phase four to 0.60 and 0.85 consecutively.

In the design review practice, the design quality gates seem to be an extra and unnecessary
load for agile process. Based on that, the decision was to avoid it, making the target maturity
value for this practice 1.35 for phase three and 1.50 for the fourth phase.

Similarly, in the implementation review, as planned on the initial roadmap, the organization
will derive a code review checklist based on security requirements. Since this activity is a
manual activity that could slow down agile and the static code analysis is placed, it was
excluded from the roadmap. By changing that, the targets for implementation review for
phases two, three, and four are 2, 2, 2.5 consecutively.

66

In security test, the corresponding maturity values for phase three and four to 1.68 and 2.08
where changed as well because documented test cases for security requirements, is a time-
consuming process to be done during the development lifecycle, so it was replaced by the ad-
hoc test cases setting approach. also, the penetration test is postponed to be implemented
later.

5.8 Phase two – Implementing planned activities

In this section, we have a short description of how the activities that are already defined in
the previous stage was implemented to achieve the security goals.

In strategy and metrics practice, improving the roadmap to include more projects from the
scope was accomplished. Also, OWASP Risk Rating Methodology was used to estimate the
overall security risks and its related document was published to the internal company’s
Confluence after reviewing, to be viewed by stakeholders. According to section 5.4.1.

In policy and compliance, HIPAA informal compliance checklist which composes of general
questions about the measures the organization should have was not fulfilled by the company
as described in section 5.4.2.

In education and guidance, a checklist of security best practices based on OWASP secure
coding best practices20, Oracle security guidelines21, and prioritized based on the results from
static code analysis to be more oriented to the actual development issues. Finally. It was
published to the company’s Confluence where it can be accessed by developers. As previously
planned in5.4.3 section.

In threat assessment, to evaluate threats from third-party dependencies, Dependency Tracker
which is one of DevSecOps tools provided by OWASP and described previously in chapter 2
section 2.6.6 to track external dependencies and how each threat and vulnerability in the
external dependencies affect the final product. dependency Track tool was integrated with
the continuous integration pipeline to give immediate, accurate and per build results
regarding the external dependencies. As discussed in section 5.4.4.

It worth mentioning here, Dependency Track depends on Bill-Of-Material, so Bill-Of-Material
was introduced to the company prior to implementing it and CycloneDx is used for this
purpose.

Since the Dependency Track does not support multiple BOM description for one project, and
the company uses Java programming language and Maven as a building tool, besides using
JavaScript for the frontend part, the BOM needs to be generated separately for the frontend
and the backend and merged afterward. A special script to do this functionality is attached in
Appendix E Code 7.

Figure 50 contains four charts shows the increased number of projects covered by
Dependency Track, the auditing progress, the number of dependencies, and components that
are used in those projects.

20 https://owasp.org/www-project-secure-coding-practices-quick-reference-guide/
21 https://www.oracle.com/java/technologies/javase/seccodeguide.html

67

Figure 50 - dependency track implementation

In the security requirement, the best-practices were not published to the company as

discussed in 5.4.5. So, the target of this practice was not met.

In securing the architecture, a secure design principles checklist was published to the

Confluence of the company. So, it can be accessed and viewed by the stakeholders. The main

resource of those principles was CERT official website22. According to the plan in section 5.4.6.

Also, to enrich the design guidance documentation, a list of API secure design principles was

established based on OWASP top 10 for APIs23, which was published in 2019.

In the implementation review, a new capability was added to SonarQube to send a webhook
to the Jenkins pipeline. Where the new arisen vulnerabilities are reported back to the
developer. As previously mentioned in 5.4.8.

In the security test, more developers are aware of the automated security test, and its
generated report through presenting a use case to the company. Also, a baseline of quality
gates is established. The quality gates could fail the CI/CD pipeline whenever a critical issue
was found before reporting that back to the developer via Slack, the communication platform
that is widely used in the company. As proposed in section 5.4.9.

In issue management, a baseline of the incident response plan was established and published
to stakeholders in the company’s internal Confluence.

The main steps are described based on CREST research project incident response guide. Which
divides the process into 3 main phases, starting with Preparing for a cybersecurity incident by
performing a criticality assessment. And responding to a cybersecurity incident, which means
identifying the cybersecurity incident and taking appropriate action and recovering from a
cybersecurity incident. Finally, the follow-up phase, that includes reporting the incident to
relevant consumers and stakeholders, post-incident review, and the learned lessons. (Creasy,
2013)

22 https://www.us-cert.gov/
23 https://owasp.org/www-project-api-security/

68

5.9 Phase two - Evaluating the results

Based on the implemented activities in this practice, Table 7 presents the maturity values
improvement during this phase. Where almost all the targeted values are achieved. Except for
the targeted value in the security requirements and the targeted value in the security test was
not fully achieved.

Table 7 - Resulting security maturity values for phase two

Practice
Phase two expected
values Phase2 result

Strategy & metrics 0.60 0.60

Policy & Compliance 0.35 0.20

Education & Guidance 1.35 1.35

Threat Assessment 1.00 1.00

Security Requirements 1.75 1.50

Secure Architecture 2.00 2.00

Design Review 1.60 1.60

Implementation Review 2.10 2.10

Security Testing 1.27 1.17

Issue Management 0.83 0.93

Environment Hardening 0.45 0.45

Operational Enablement 0.75 0.85

5.10 CI/CD pipeline design and implementation

To decrease the load on agile process, the CI/CD scripted pipeline is designed for the core
product in the company as shown in Figure C 1 in the appendix, to achieve the maximum
automation possible.

The pipeline is triggered, per commit/push to the Git server, to pull the changes and generate
the BOM files that describe the dependencies for the subprojects in parallel. As Code 5 shows.
These BOM files are merged to be uploaded to Dependency Track in Code 7.

Dependency Track Analyzes the dependencies and reports them back to Jenkins to check the
quality gates. After that, the SonarQube is launched to do the static code analysis and report
back to Jenkins if the test passes the quality gates or not. As clarified in Code 4.

Based on that, the pipeline status is reported to Slack. Followed by launching all costumers’
projects that depend on the core product.

Each customer project runs its pipeline in a way similar to the one for the core product. As
illustrated in Figure C 2 in the appendix. After triggering the pipeline, it is expected to check

69

the project dependencies using Dependency Track, check the dependency track quality gates.
Then, perform the static code analysis in SonarQube and check its quality gates.
Followed by doing the automated security test and publish its report. Finally, report back to
the developer.

5.11 Security practices in the development lifecycle

In Table 8 below the implemented security activities are summarized alongside their security
practice and development phase.

Some of the activities’ development phases were not mentioned explicitly in SAMM project
guide. So, it was concluded from other resources like (Nunez, Lindo and Rodriguez, 2020) and
MS-SDL model for agile.

Table 8 - Security activities and their development phases

Security
practice

Security activity Development
phase

Strategy &
metrics

• Build and maintain a security assurance
program roadmap within the defined scope.

• maintain the assurance program roadmap.

transversal
through all the

lifecycle

• Estimate the overall business risk profile.
• Update business classification based on

business risk
Requirements

Policy &
Compliance

• Identify external compliance drivers
Transversal

through all the
lifecycle

Education &
Guidance

• Technical security awareness
• Technical guidelines

Transversal
through all the

lifecycle

Threat
Assessment

• Build and maintain an application-specific
threat model.

• Develop an attacker profile from software
architecture

• Explicitly evaluate risk from third-party
components.

Requirements
and design

Security
Requirements

• Evaluate security and compliance guidance
for requirements

Requirements

Secure
Architecture

• Apply secure design principles Design

Design Review • Identify software attack surface Design

Implementation
Review

• Integrate code analysis into the development
process

• Check static code analysis release gates
Implementation

Security Testing
• Utilize automated security testing tool that is

integrated into the development process
• Check the release gates for security tests

Implementation
and testing

70

Issue
Management

• Incident response plan Post-release

Environment
Hardening

• Maintain operational environment
specification

Post-release

Operational
Enablement

• Document procedures for typical application
alerts

Implementation
and post-
release

5.12 Conclusion

Throughout this chapter, the first and second phases are fully fulfilled, including their
substages. Accordingly, the underlying security activities were explained. The implementation
of the specified activities that included in the first and second phases was also achieved.

Hence, the maturity level after those two phases was changed, in the following chapter, we
demonstrate more details about those outcomes.

71

6 Experimentation and Evaluation of the

Solution

In computer science we build new systems, find new techniques and sometimes we establish

new trends, sometimes it is obvious when we achieved our goals and satisfied our objectives

and how to evaluate that. But, in the information security field, it is a hazy operation to

measure the impact explicitly because we are working on preventing bad actions.

In this chapter, we clarified the hypothesis, the indicators, and how we evaluated our work in

our security assurance roadmap.

6.1 Investigation hypothesis specification

Adding security assurance practices to the existing SDLC within the organization, using the
proper methodology, and considering security as a continuous concern in each phase during
the development by shifting-left security to an early phase could significantly increase the
security maturity level in the company and decrease the cost of fixing flaws and vulnerabilities
without overwhelming agile process.

6.2 Identification of indicators and sources of information

Implementing continuous security is a set of activities, so we expect the indicators to be
across the organization and its targeted project scope in four different security functions
which will be reflected in the maturity test result after each phase of the roadmap in SAMM
project.

The indicators and the source of information in the maturity context for the two implemented
phases can be summarized into the four main functions of SAMM project like the following:

72

In the governance function: the existence of the security assurance strategy, setting up the
developers’ secure programming guidelines and training, and a list of the most critical
business-level risks.

In the threat assessment function, the indicators can be classified into a continuously updated
threat model, attacker profile, and attack surface analysis. High-level understanding of factors
that may lead to negative outcomes, increased awareness of threats amongst project teams,
and having a consistent and automated process to detect threats from third-party
components.

In the verification function: the indicators are the percentage of tested projects using the
automated security tests and analyzed using static code analysis and establishing and control
these two practices with quality gates. Also, the awareness among the development staff of
the security tests is considered an indicator here.

In the operation function, the indicators that can be observed here are the existence of a
lightweight process to handle high-priority issues or incidents, and assign the organization
point of contact.

The final and explicit source of information is the decreased number in the vulnerabilities and
flaws in the final products that are detected by static code analysis and security tests over
time, in comparison with the security issues that already discovered in the application.

6.3 Description of the evaluation methodology

Our proposed evaluation methodology is represented by conducting a security maturity
evaluation test to assess the situation after implementing continuous security practices into
the development lifecycle and compare it with the expected level of security maturity value
that specified in the objectives.

 SAMM project comes with a robust maturity assessment tools to help to assess the
company’s situation in each phase along with the roadmap and compare the maturity level for
each security practice with the initial value to measure the progress in this practice and
compare it with the target values to measure the achievement whether the targets were met
or not.

For our work, we established the roadmap for Msg Life for one year. The roadmap consists of
four phases. Those four phases contain the core and the most appropriate activities that
respects agile process. The first and second phases are implemented in the context of this
thesis, while the other two phases are up to the company to commit to them after the
internship period.

6.4 Evaluating the results

We discussed earlier in section 5.3, the targeted maturity values for all the roadmap.

73

In section 5.6, the maturity values resulting from phase one are presented. After some
changes in the roadmap as shown in section 5.7, the targeted values in the road map are
updated for some security practices. And the results after implementing phase two of the
roadmap are presented in section 5.9.

Figure 51 clarifies the results; the figure shows a comparison between the initial roadmap
expected maturity values over the four phases and the resulting maturity levels after
implementing the first phase (the red area) and the second phase (the area in yellow).

Figure 51 - comparing the roadmap after the second phase with the initial target values

The full tables of the initial security maturity values and the security maturity values after
phase two are attached in Table A 1 and Table A 3 in the Appendix.

In view of the foregoing results, the targeted values in the model are almost achieved, the
overall security maturity value increased from 0.69 to 1.13 out of 3 and the code-based
vulnerabilities has been reviewed and resolved. thus, the objective of this thesis was achieved.

74

75

7 Conclusion

7.1 Summary

Software security is a cornerstone of today’s software industry. There are various security
assurance approaches to integrate it with the development process.

In the context of this thesis, we pursued the goal to establish a secure development process.
Hence, many ways to introduce security to agile companies were discussed, and after
analyzing many available approaches, we selected OWASP SAMM Framework which is one of
currently evolving approaches.

In Msg Life company, we planned for an iterative roadmap, established it for four main
phases, and implemented the required activities in the first two phases. To track the result,
we used the security maturity evaluation process, which a part of OWASP SAMM.

During phase one, the focus was to develop the initial roadmap, based on a realistic
assessment, in addition to establishing the required fundamentals using a carefully selected
set of activities across the scope of targeted projects. The number of projects which are within
this phase was limited to a small set, prior to spreading them out to cover more projects and
involving the stakeholders more in this process in the following phases.

The second phase mainly targeted the verification activities, as well as increasing the maturity
level of the activities performed in the previous phase and automate much of the process
through the CI/CD pipeline.

Phase three and four aim to enhance the overall security maturity level according to the
roadmap. After finalizing the one-year roadmap, the organization can iterate again to further
enhance security.

Based on results from the evaluation reporting after the first and second phases, applying
SAMM project security assurance roadmap has resulted in more secure software and reduced
vulnerabilities findings and the cost stemmed from the risk and from fixing them.

76

7.2 Future directions

In Msg Life, there are many aspects to further enhance the security posture as described in
the roadmap, by performing the defined activities and applying them to the existing
development lifecycle.

Moreover, an additional refinement can be done afterward, thanks to the iterative approach
of the roadmap (preparation, assessment, identifying the targets, setting the activities, and
evaluating the results). A considerable work can be done, particularly under the governance
security function concerning compliance with HIPAA regulatory, empowering the
development guidance, extending the automated security test, and customizing it.

Additionally, improving the CI/CD pipeline performance could be a bonus since the execution
time of the pipeline could significantly increase, leading to less productivity.

Overall, aligning the security activities with Scrum Development Process (pregame phase,
game phase, aftergame phase) can lead to smoother integration between agile and security.

In summary, SAMM project showed an acceptable level of flexibility and adaptation in agile.
However, the outcome can be far more pragmatic if there is a different version of the
framework, that takes the agile nature of the process more into consideration, and measure
the effect of each security practice on agile to make sure that it doesn’t exceed a given
threshold i.e. time spent per sprint, automation level, people involved.

77

References

2018 Cost of Insider Threats: Global Sponsored by ObserveIT (2018).
2019 Survey on Agility Agi l e Transformati on From Agile experiments to operating model
transformation: How do you compare to others? (2019).
Akao, Y. and Mazur, G. H. (2003) ‘The leading edge in QFD: Past, present and future’,
International Journal of Quality & Reliability Management. MCB UP Ltd, pp. 20–35. doi:
10.1108/02656710310453791.
Alberts, C. J. et al. (1999) Operationally Critical Threat, Asset, and Vulnerability Evaluation SM
(OCTAVE SM) Framework, Version 1.0.
Attack Surface Analysis Cheat Sheet | OWASP (no date). Available at: https://owasp.org/www-
project-cheat-sheets/cheatsheets/Attack_Surface_Analysis_Cheat_Sheet (Accessed: 23
February 2020).
Bedi, P., Gandotra, V. and Singhal, A. (2013) ‘Innovative strategies for secure software
development’, Software Design and Development: Concepts, Methodologies, Tools, and
Applications, 4–4, pp. 2099–2119. doi: 10.4018/978-1-4666-4301-7.ch097.
Burp Suite - Cybersecurity Software from PortSwigger (no date). Available at:
https://portswigger.net/burp (Accessed: 23 February 2020).
Chandra, P. (no date) ‘Software Assurance Maturity Model http://www.opensamm.org’,
Agenda.
Code Quality and Security | SonarQube (no date). Available at: https://www.sonarqube.org/
(Accessed: 23 February 2020).
Creasy, J. (2013) ‘Cyber Security Incident Response Guide’, Crest, pp. 1–56.
Davis, N. (2013) ‘Secure Software Development Life Cycle Processes’, pp. 1–29. Available at:
http://resources.sei.cmu.edu/asset_files/whitepaper/2013_019_001_297287.pdf.
Dawson, M. et al. (2010) ‘Integrating software assurance into the software development life
cycle (sdlc) meeting department of defense (dod) demands’, Journal of Information Systems
Technology and Planning, 3(6), pp. 49–53. Available at:
http://web.ebscohost.com.library.capella.edu/ehost/pdfviewer/pdfviewer?sid=af3a1ddd-
558e-4441-8b04-f936954d83b8@sessionmgr14&vid=2&hid=12.
De, B., Distrinet, W. and Leuven, K. U. (2007) The OWASP Foundation OWASP Day CLASP, SDL
and Touchpoints compared. Available at: http://creativecommons.org/licenses/by-
sa/2.5/http://www.owasp.org/ (Accessed: 17 February 2020).
Discotek.ca Deep Dive (no date). Available at: https://discotek.ca/deepdive.xhtml (Accessed:
23 February 2020).
Felderer, M. et al. (2016) ‘Security Testing: A Survey’, in Advances in Computers. Academic
Press Inc., pp. 1–51. doi: 10.1016/bs.adcom.2015.11.003.
Find Security Bugs (no date). Available at: https://find-sec-bugs.github.io/ (Accessed: 23
February 2020).
Goertzel, K. and Hamilton, B. A. (2007) Assurance. Available at:
https://www.researchgate.net/publication/279351339.
Heinonen, K. (2004) ‘Reconceptualizing customer perceived value: The value of time and place
Customer dominant logic View project Design of Multichannel Services View project’, Article
in Journal of Service Theory and Practice. doi: 10.1108/09604520410528626.
Hermiyanty, Wandira Ayu Bertin, D. S. (2017) Applied software measurments - Global analysis
of productivity and quality. 3rd edn, Journal of Chemical Information and Modeling. 3rd edn.

78

doi: 10.1017/CBO9781107415324.004.
Ibm (2019) Cost of a Data Breach Report 2019.
Jagannathan, V. (no date) The OWASP Foundation OWASP Threat Modeling Architecting &
Designing with Security in Mind. Available at: http://www.owasp.org (Accessed: 26 June
2020).
Jarzombek, J. (2012) Software Assurance: Enabling Security and Resilience throughout the
Software Lifecycle.
Kainerstorfer, M., Sametinger, J. and Wiesauer, A. (2011) ‘Software security for small
development teams: A case study’, ACM International Conference Proceeding Series,
(December 2011), pp. 305–310. doi: 10.1145/2095536.2095590.
Kaur, K., Jajoo, A. and Manisha (2015) ‘Applying agile methodologies in industry projects:
Benefits and challenges’, Proceedings - 1st International Conference on Computing,
Communication, Control and Automation, ICCUBEA 2015. Institute of Electrical and Electronics
Engineers Inc., pp. 832–836. doi: 10.1109/ICCUBEA.2015.166.
Keramati, H. and Mirian-Hosseinabadi, S. H. (2008) ‘Integrating software development
security activities with agile methodologies’, in AICCSA 08 - 6th IEEE/ACS International
Conference on Computer Systems and Applications, pp. 749–754. doi:
10.1109/AICCSA.2008.4493611.
Khaim, R. et al. (2016) ‘A Review of Security Integration Technique in Agile Software
Development’, International Journal of Software Engineering & Applications, 7(3), pp. 49–68.
doi: 10.5121/ijsea.2016.7304.
Koen, P. et al. (2001) ‘Providing clarity and a common language to the “fuzzy front end”’,
Research Technology Management. Industrial Research Institute Inc., 44(2), pp. 46–55. doi:
10.1080/08956308.2001.11671418.
Mcdermott, J. and Fox, C. (no date) Using Abuse Case Models for Security Requirements
Analysis.
McGraw, G. (2006) ‘Software Security: Building Security in’, in Proceedings - International
Symposium on Software Reliability Engineering, ISSRE, p. 6. doi: 10.1109/ISSRE.2006.43.
Microsoft Corporation (2010) ‘Microsoft SDL_Version 5’, p. http://www.microsoft.com/en-
us/download/confirmati. Available at: https://www.microsoft.com/en-
us/download/details.aspx?id=29884.
Migues, S., Steven, J. and Ware, M. (2019) BSIMM10 LICENSE.
Mohammad, A., Alqatawna, J. and Abushariah, M. (2017) ‘Secure software engineering:
Evaluation of emerging trends’, in ICIT 2017 - 8th International Conference on Information
Technology, Proceedings. Institute of Electrical and Electronics Engineers Inc., pp. 814–818.
doi: 10.1109/ICITECH.2017.8079952.
Mougouei, D. et al. (2013) ‘S-Scrum : a Secure Methodology for Agile Development of Web
Services’, 3(1), pp. 15–19.
Nunez, J. C. S., Lindo, A. C. and Rodriguez, P. G. (2020) ‘A preventive secure software
development model for a software factory: A case study’, IEEE Access, 8, pp. 77653–77665.
doi: 10.1109/ACCESS.2020.2989113.
OWASP (2017) ‘Software Assurance Maturity Model Version 1.5’, (Cc), p. 72.
OWASP Dependency-Check (no date). Available at: https://owasp.org/www-project-
dependency-check/ (Accessed: 23 February 2020).
OWASP Dependency-Track (no date). Available at: https://owasp.org/www-project-
dependency-track/ (Accessed: 23 February 2020).
OWASP Risk Rating Methodology (no date). Available at: https://owasp.org/www-
community/OWASP_Risk_Rating_Methodology (Accessed: 4 July 2020).
OWASP ZAP (no date). Available at: https://owasp.org/www-project-zap/ (Accessed: 23
February 2020).

79

Pal, N. and Pantaleo, D. C. (2005) The agile enterprise: Reinventing your organization for
success in an on demand world, The Agile Enterprise: Reinventing your Organization for
Success in an On Demand World. Springer US. doi: 10.1007/b106720.
Rindell, K., Hyrynsalmi, S. and Leppänen, V. (2015) ‘A comparison of security assurance
support of agile software development methods’. doi: 10.1145/2812428.2812431.
Saini, V., Duan, Q. and Paruchuri, V. (2008) ‘Threat modeling using attack trees’, Journal of
Computing Sciences in Colleges, 23(4), pp. 124–131.
Saitta, P., Larcom, B. and Eddington, M. (2005) Trike v.1 Methodology Document [Draft].
Available at: http://www.opensource.org/licenses/mit-license. (Accessed: 23 February 2020).
Scarfone, K. et al. (2008) Special Publication 800-115 Technical Guide to Information Security
Testing and Assessment Recommendations of the National Institute of Standards and
Technology.
Schütz, D. and Salecker, J. (2008) ‘Bill Of Material’, in. Available at:
https://www.researchgate.net/publication/277270226_Bill_Of_Material (Accessed: 28 June
2020).
Schwab, K. (2019) The Global Competitiveness Report.
SDL-Agile: Microsoft’s Approach to Security for Agile Projects | Tech·Ed Europe 2009 | Channel
9 (no date). Available at: https://channel9.msdn.com/Events/TechEd/Europe/2009/SIA205
(Accessed: 31 January 2020).
Shevchenko, N. et al. (2018) THREAT MODELING: A SUMMARY OF AVAILABLE METHODS.
Singhal, S. A. (2014) ‘Selection of security activities for integration with Agile methods after
combining their agility and effectiveness’, International Journal of Web Applications, 6(2), pp.
57–67. Available at:
https://pdfs.semanticscholar.org/f786/b34d6aa7d83314a7307e59e4ab683131bf6f.pdf.
Siponen, M., Baskerville, R. and Kuivalainen, T. (2014) ‘Integrating Security into Agile
Development Methods Philosophy of Science and Information Systems View project IT Culture
View project Integrating Security into Agile Development Methods’. doi:
10.1109/HICSS.2005.329.
Static Code Analysis | OWASP (no date). Available at: https://owasp.org/www-
community/controls/Static_Code_Analysis (Accessed: 28 June 2020).
Stoneburner, G., Goguen, A. and Feringa, A. (2002) Risk Management Guide for Information
Technology Systems Recommendations of the National Institute of Standards and Technology.
STRIDE chart - Microsoft Security (no date). Available at:
https://www.microsoft.com/security/blog/2007/09/11/stride-chart/ (Accessed: 23 February
2020).
Tapke, J. et al. (no date) I E 361 House of Quality Steps in Understanding the House of Quality
House of Quality Steps in Understanding the House of Quality.
The CLASP Application Security Process The CLASP Application Security Process Introduction 1
(2005). Available at:
https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf
(Accessed: 17 February 2020).
The STRIDE Threat Model | Microsoft Docs (no date). Available at:
https://docs.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v=cs.20)?redirectedfrom=MSDN (Accessed: 23 February 2020).
Threat Modeling | Microsoft Docs (no date). Available at: https://docs.microsoft.com/en-
us/previous-versions/msp-n-p/ff648644(v=pandp.10)?redirectedfrom=MSDN (Accessed: 23
February 2020).
Tian, C. et al. (2007) ‘Business value analysis of IT services’, in Proceedings - 2007 IEEE
International Conference on Services Computing, SCC 2007, pp. 308–315. doi:

80

10.1109/SCC.2007.36.
Tuominen, M. (2004) ‘Channel collaboration and firm value proposition’, International Journal
of Retail & Distribution Management, 32(4), pp. 178–189. doi: 10.1108/09590550410528953.
UML Activity Diagrams - Graphical Notation Reference (no date). Available at:
https://www.uml-diagrams.org/activity-diagrams-reference.html (Accessed: 3 July 2020).
Vulnerability Scanning Tools | OWASP (no date). Available at: https://owasp.org/www-
community/Vulnerability_Scanning_Tools (Accessed: 28 June 2020).
What is DevSecOps? Defined, Explained, and Explored | Forcepoint (no date). Available at:
https://www.forcepoint.com/es/cyber-edu/devsecops (Accessed: 9 March 2020).
Woodall, T. (2003) ‘Conceptualising “value for the customer”: an attributional, structural and
dispositional analysis’, Academy of Marketing Science Review.

81

Appendix

82

Appendix A

Table A 1 – Target maturity values in the initial roadmap

Practice Initial value Phase1 Phase2 Phase3 Phase4

Strategy & metrics 0.07 0.33 0.60 0.87 1.20

Policy & Compliance 0.10 0.20 0.35 0.85 1.10

Education & Guidance 0.60 0.70 1.35 1.60 1.60

Threat Assessment 0.63 0.83 1.00 1.25 1.67

Security Requirements 1.50 1.50 1.75 2.10 2.25

Secure Architecture 1.85 1.85 2.00 2.25 2.25

Design Review 1.00 1.35 1.35 1.75 2.00

Implementation Review 0.70 1.35 2.10 2.25 2.75

Security Testing 0.00 0.52 1.27 1.90 2.22

Issue Management 0.60 0.60 0.83 1.43 1.58

Environment Hardening 0.45 0.45 0.45 0.60 1.00

Operational Enablement 0.75 0.75 0.75 1.00 1.10

Table A 2 - The maturity values after being updated at the beginning of the second phase

Practice Initial value Phase1 Phase2 Phase3 Phase4

Strategy & metrics 0.07 0.33 0.60 0.87 1.20

Policy & Compliance 0.10 0.20 0.35 0.60 0.85

Education & Guidance 0.60 0.70 1.35 1.60 1.60

Threat Assessment 0.63 0.83 1.00 1.25 1.67

Security Requirements 1.50 1.50 1.75 2.10 2.25

Secure Architecture 1.85 1.85 2.00 2.25 2.25

Design Review 1.00 1.35 1.35 1.35 1.50

Implementation Review 0.70 1.35 2.00 2.00 2.50

Security Testing 0.00 0.52 1.27 1.68 2.08

Issue Management 0.60 0.60 0.83 1.43 1.58

Environment Hardening 0.45 0.45 0.45 0.60 1.00

Operational Enablement 0.75 0.75 0.75 1.00 1.10

83

Table A 3 - The maturity values after finishing the second phase

Practice Initial value Phase1 Phase2 Phase3 Phase4

Strategy & metrics 0.07 0.33 0.60 0.87 1.20

Policy & Compliance 0.10 0.20 0.35 0.60 0.85

Education & Guidance 0.60 0.70 1.35 1.60 1.60

Threat Assessment 0.63 0.83 1.00 1.25 1.67

Security Requirements 1.50 1.50 1.50 2.10 2.25

Secure Architecture 1.85 1.85 2.00 2.25 2.25

Design Review 1.00 1.35 1.35 1.35 1.50

Implementation Review 0.70 1.35 2.00 2.00 2.50

Security Testing 0.00 0.52 1.17 1.68 2.08

Issue Management 0.60 0.60 0.83 1.43 1.58

Environment Hardening 0.45 0.45 0.45 0.60 1.00

Operational Enablement 0.75 0.75 0.75 1.00 1.10

84

Appendix B

Figure B 1 - Security assessment questionnaire for Governance security function

Figure B 2 Security assessment questionnaire for Construction security function

85

Figure B 3 - Security assessment questionnaire for Verification security function

Figure B 4 - Security assessment questionnaire for Operations security function

86

Appendix C

 Figure C 1- CI/CD pipeline design for the Core system

87

Figure C 2 - CI/CD pipeline design for Customers' project

88

Appendix D

Figure D 1 - CI/CD pipeline execution for the core product in the company

Figure D 2 - CI/CD pipeline execution for one of the customer's project

89

Appendix E
1. stage('automated security test'){
2. steps{
3. node("******"){
4. checkout([$class: 'GitSCM', branches: [[name: '*/****']],

doGenerateSubmoduleConfigurations: false, extensions:[[$class: 'CleanBeforeChe
ckout', deleteUntrackedNestedRepositories: true]], submoduleCfg: [], userRemot
eConfigs: [[credentialsId: '*****', url: '******.git']]])

5. bat (script: "python ****.py", returnStatus: true)
6. stash name: "api-report-scan", includes: "api-scan-report.html"
7. }
8. }
9. }
10. stage ('publish automated security test report'){
11. steps{
12. node("*****"){
13. unstash "api-report-scan"
14. archiveArtifacts allowEmptyArchive: true, artifacts: 'api-scan-

report.html', onlyIfSuccessful: false
15. }
16. }
17. }

Code 3 - Integrating security test with Jenkins pipeline

1. stage('**** SonarQube Analyze'){
2. steps{
3. withSonarQubeEnv(installationName:***,credentialsId:'***') {
4. bat'''mvn sonar:sonar Dsonar.projectKey=***Dsonar.host.url=***'''
5. }
6. //check the quality gate for the project
7. script{
8. timeout(time: 15, unit: 'MINUTES') {
9. def lifeQualitygate = waitForQualityGate()
10. if (lifeQualitygate.status != "OK") {
11. catchError(buildResult: 'SUCCESS', stageResult: 'FAILU

RE') {
12. bat "Pipeline aborted due to quality gate coverage

 failure in : ${Qualitygate.status}"
13. bat "exit 0"
14. }
15. }
16. }
17. }
18. }
19. }

Code 4 -Integrating SonarQube static code analysis in Jenkins Pipeline

90

1. stage ("publish BOM to the dependency track & check qualiity gates"){
2. steps{
3. dependencyTrackPublisher artifact: '*** BOM.xml',
4. failedNewCritical: 1,
5. failedNewHigh: 1,
6. failedNewLow: 2,
7. failedNewMedium: 2,
8. failedTotalCritical: ***,
9. failedTotalHigh: **,
10. failedTotalLow: **,
11. failedTotalMedium: **,
12. projectId: '***’,
13. synchronous: true,
14. unstableNewCritical: 1,
15. unstableNewHigh: 1,
16. unstableNewLow: 1,
17. unstableNewMedium: 1,
18. unstableTotalCritical: 1,
19. unstableTotalHigh: 1,
20. unstableTotalLow: 2,
21. unstableTotalMedium: 2
22. }
23. }

Code 5 - integrating Dependency Track with Jenkins Pipeline

1. stage("Generating the BOMs"){
2. parallel{
3. stage('BOM for project1'){
4. steps{
5. bat '''
6. cd ***
7. mvn org.cyclonedx:cyclonedx-maven-plugin:makeAggregateBom
8. '''
9. }
10. }
11. stage('BOM for project2'){
12. steps{
13. bat '''
14. cd ***
15. mvn org.cyclonedx:cyclonedx-maven-plugin:makeAggregateBom
16. '''
17. }
18. }
19. .
20. .
21. .
22. . etc..
23. stage ('BOM for javascript dependencies'){
24. steps{
25. bat '''
26. cd ***
27. npm install
28. cyclonedx-bom -o js-BOM.xml
29. '''
30. }
31. }
32. }
33. }

91

Code 6 - Generating BOM files for Java and JavaScript in parallel

1. from xml.dom import minidom
2. import os
3. subProjectABOM = minidom.parse('../**/bom.xml')
4. subProjectBBOM = minidom.parse('../**/bom.xml')
5. jsBOM = minidom.parse('js-bom.xml')
6. subProjectAComponentList = subProjectABOM.getElementsByTagName('component')
7. subProjectBComponentList = subProjectBBOM.getElementsByTagName('component')
8. jsComponentList = jsBOM.getElementsByTagName('component')
9. # merging js bom with subProjectA bom into one temp bom
10. i = 0
11. for component in jsComponentList:
12. component = jsBOM.getElementsByTagName("component")[i]
13. comp = subProjectABOM.importNode(component, True)
14. subProjectABOM.getElementsByTagName('components')[0].appendChild(comp)
15. i += 1
16. bomXml = subProjectABOM.toxml().encode("UTF-8")
17. BOM = open("temp-BOM.xml", "wb")
18. BOM.write(bomXml)
19. BOM.close()
20.
21. tempBOM = minidom.parse('temp-BOM.xml')
22. tempComponentList = tempBOM.getElementsByTagName('component')
23. # merging temp bom with subProjectB and the result is the final bom
24. subProjectBComponentBomRef = set()
25. element = 0
26. for component in subProjectBComponentList:
27. subProjectBComponentBomRef.add(subProjectBBOM.getElementsByTagName('compon

ent')[element].getAttribute("bom-ref"))
28. element += 1
29. for tempComponent in tempComponentList:
30. if tempComponent.getAttribute("bom-

ref") not in subProjectBComponentBomRef:
31. comp = subProjectBBOM.importNode(tempComponent, True)
32. subProjectBBOM.getElementsByTagName('components')[0].appendChild(comp)

33. # fix the encoding of the resulted file
34. bomXml = subProjectBBOM.toxml().encode("UTF-8")
35. BOM = open("final-BOM.xml", "wb")
36. BOM.write(bomXml)
37. BOM.close()
38. os.remove("temp-BOM.xml")
39. BOM1 = minidom.parse('final-BOM.xml')
40. ComponentList = BOM1.getElementsByTagName('component')
41. print(len(subProjectAComponentList), "dependency from subProjectA, ", len(subP

rojectBComponentList),
42. "dependency from subProjectB and", len(jsComponentList), " js were merge

d successfully into ", len(ComponentList),
43. " dependency -no redundancy-")

Code 7 - merging two java subprojects BOMS and one JavaScript BOM into one final BOM

python script

