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Abstract 

Biomarkers are recognised sensitive early-warning tools of biological effects in aquatic 

organisms. In this scope, the main aim of this study was to investigate the potential 

usefulness of a battery of biomarkers, evaluated in different benthic macroinvertebrate 

taxa, to discriminate aquatic ecosystems with different levels of ecological status and to 

provide further clues supporting environmental management. The study took place during 

the autumn of 2013 and the spring and summer of 2014, and the study cases were two 

Mediterranean rivers (Âncora and Ferreira rivers), differing in their ecological status. The 

biomarkers determined are widely employed and comprise a large set of biochemical 

responses: the activity of enzymes (cholinesterases, glutathione S-transferases, catalase 

and lactate dehydrogenase) and the levels of lipid peroxidation. They were assessed 

seasonally and in different macroinvertebrate taxa. Thirteen water physico-chemical 

parameters were also seasonally determined, and the concentration of seven 

organophosphorus pesticides and the percentage of 32 trace metals in sediments were 

determined in the spring. This is particularly useful for water management. Based on this, 

authorities can take actions to prevent further damage in the ecological status. 

Multivariate analyses showed distinct patterns of biological response for the Calopteryx 

spp., Chironomidae and Baetis spp. taxa. Calopteryx spp. and Chironomidae, in 

particular, showed distinct response patterns for the two rivers, which were fairly stable 

across seasons. This study sets the foundations for future cost-effective biomonitoring 

campaigns in Mediterranean rivers, allowing to establish historical data important to 

understand ecosystem evolution, as well as baseline levels of diagnostic biomarkers in 

informative macroinvertebrate taxa. 

Introduction 

The EU Water Framework Directive (WFD; EC 2000) is the main legal instrument for 

the management, protection and restoration of aquatic ecosystems. It changed 

conceptually the water management in EU Member States, through the use of ecosystem 

health and sustainability principles as a basis for decision-making. Nowadays, biological 
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quality elements (BQEs), integrating the effects of all stressors, are used to evaluate the 

ecological status of surface waters. Because ecosystems are so diverse, and complex, 

fluctuating entities, one of the most technically challenging aspects faced in the 

application of the WFD is the development of systems for adequate ecological assessment 

and classification. 

For the assessment of fluvial ecosystems, indices based on the analysis of fish, 

macrophytes, phytobenthos and benthic macroinvertebrates are the BQEs recommended 

by the WFD. Each of these indices relies on surveys of the community structure, for the 

respective BQEs, to evaluate and classify a rivers’ ecological quality. They detect relevant 

changes that usually cause the elimination of more sensitive species from a particular site 

(Damásio et al. 2011). While having high ecological relevance, because of the loss of 

biodiversity, these indices are of limited interest to anticipate specific protection measures 

required to maintain ecological quality or prevent its damage. The necessity for tools that 

are fast and sensitive enough to show sub-lethal alterations in aquatic organisms, able to 

anticipate future detrimental ecological effects, has raised interest in biomarkers, as useful 

tools to complement the information from indices based on the analysis of the community 

structure. Measured at individual or sub-individual levels of biological organisation, 

biomarker responses occur on shorter timescales. In particular, multi-biomarker 

evaluations can reveal early signs of exposure and possible adverse outcomes, translating 

the integrated impact of chemical contaminants and natural stressors which animals are 

undergoing (Allan et al. 2006; Hagger et al. 2006). The incorporation of 

macroinvertebrate biomarkers in the biomonitoring of rivers and streams has thus been 

increasingly reported (e.g. Olsen et al. 2001; Berra et al. 2004; Bonzini et al. 2008; 

Minutoli et al. 2013; De Castro-Catala et al. 2015). However, studies aiming to evaluate 

the ecological quality of rivers using both biomarker- and community-based approaches 

in macroinvertebrates are still rare (Barata et al. 2005; Puertolas et al. 2010; Damásio et 

al. 2011; Prat et al. 2013). Most of these studies were based on the determination of 

biomarkers from a single and tolerant macroinvertebrate species. Some authors, however, 

have found that, depending on the species selected, the evaluation using a sole species 

may lead to misleading over- or under-estimation of the risk (Berra et al. 2004; Bonzini 

et al. 2008). These authors determined biochemical biomarkers in different 

macroinvertebrate taxonomic groups, mainly in families of the Amphipoda, Diptera, 

Ephemeroptera, Isopoda, Odonata, Plecoptera and Trichoptera orders (Berra et al. 2004; 

Bonzini et al. 2008), rather than in one single species. Their studies report differential 

taxa sensitivities for several biomarkers (e.g. involved in neurotransmission, 

biotransformation and antioxidant defences) (Berra et al. 2004; Bonzini et al. 2008), 

suggesting that particular attention should be paid to the selection of the taxa employed 

in a given monitoring scheme, so as to avoid biased risk estimations. Though samples 

obtained for genus and/or families may include species with some differential sensitivity, 

the above-mentioned results suggest that this approach of using higher levels of 

taxonomic resolution may be effective in detecting subtle gradients of contamination and 

their associated effects on the biota. Moreover, from the phylogenetic perspective, species 

from a given genus (or sister species) probably exhibit likened physiological responses 

(Colin et al. 2016). Therefore, further studies employing multiple biomarkers in 

combination with measured environmental stressors, multiple macroinvertebrate taxa and 

river types are required to evaluate the wider usefulness of this approach. These will also 

contribute to establish efficient and cost-effective biomarker strategies that can anticipate 

future ecological damage. In this context, the aims of the present study were (i) to 

investigate if a battery of biomarkers evaluated in different benthic macroinvertebrate 
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taxa could discriminate aquatic ecosystems with different levels of ecological quality; (ii) 

to understand if biomarker data can help in identifying potential problems or sources of 

contamination affecting aquatic biota, complementing the information given by 

ecological quality indices; and (iii) to identify the most favourable taxa and season(s) to 

be used in a multi-biomarker and multi-taxon analysis in cost-effective biomonitoring 

programmes. To tackle these objectives, a seasonal study was carried out in two northern 

Iberian rivers with different ecological status. Thirteen physico-chemical water 

parameters were measured in both rivers. The concentrations of seven organophosphorus 

pesticides and the percentages of 32 trace metals in the sediment were also determined in 

the spring (season of major application of pesticides in agriculture). A battery of 

biomarkers of neurotoxicity (cholinesterases activity), biotransformation (glutathione S-

transferases), antioxidant defences (catalase), oxidative damage (lipid peroxidation) and 

energy metabolism (lactate dehydrogenase) was seasonally assessed in different 

macroinvertebrate taxa collected at various sites in the two rivers. 

Materials and methods 

Study area and sampling sites 

The study was carried out during the autumn of 2013 and the spring and summer of 2014, 

in two Northern Portuguese rivers integrated in the Natura 2000 Network: Âncora River 

(41° 48′ 5.63″ N, 8° 46′ 28.57″ W) and Ferreira River (41° 11′ 15.06″ N, 8° 27′ 25.47″ 

W) (Fig. 1a). These areas differ in their ecological status, which was determined by 

Rodrigues et al. (submitted), considering the three biological quality elements 

(hydromorphological, physico-chemical and biological) recommended by the WFD. 

According to the authors, in general, Âncora River (AR) sites presented “moderate” 

ecological status classification in all seasons (except AR5 which achieved the “good” 

ecological status target in the spring and summer of 2014), while Ferreira River (FR) sites 

presented ecological status classification from “moderate” to “poor” (Rodrigues et al., 

submitted). Geographically, the AR (Fig. 1b) springs from Serra de Arga, in Viana do 

Castelo Municipality, and runs approximately 17.91 km through a steep bedrock, before 

flowing directly into the Atlantic Ocean, in Caminha Municipality (PGRH1 2016). The 

FR (Fig. 1c) springs in Paços de Ferreira Municipality, has an approximate length of 22.30 

km and joins the Sousa River in Gondomar Municipality (PGRH3 2016). 

Fig. 1 
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Geographical situation. a Location of the hydrographic basins of the Âncora River and 

Ferreira River (rectangles), in Portugal mainland. b Map of the hydrographic basin of the 

Âncora River and the distribution of the sampling sites in the Âncora River (AR1 to AR5). 

c Map of the hydrographic basin of the Ferreira River and the distribution of the sampling 

sites in the Ferreira River (FR1 to FR6) 

  

Both the AR and FR belong to the “small-sized streams of the north” national river type 

(catchment area < 100 km2), which reflects the country’s northern climate with high 

annual average precipitation (mean 1190.25 mm ± 357.80 mm) and low annual average 

temperature (mean 12.42 °C ± 1.26 °C) (INAG 2008). Both rivers are mainly located in 

areas with siliceous geology (schist, granite), presenting low mineralisation (INAG 

2008). In the hydrographic basin of the AR, the main sector of activity is agriculture 

(PGRH1 2012), and in the hydrographic basin of the FR, the industrial activity is largely 

dominant, followed by agriculture. 

Physico-chemical, hydromorphological and biological parameters 

Water physico-chemical parameters were seasonally monitored (autumn of 2013 and 

spring and summer of 2014, i.e. except in winter due to high river discharge during this 

season), simultaneously with the macroinvertebrate sampling campaigns. The total 

dissolved solids (TSS, mg/L), pH, water temperature (°C), dissolved oxygen 

concentration (mg O2/L) and percent saturation (% DO), salinity (PSU) and conductivity 

(μS/cm) were measured using a multi-parameter portable meter (HI 9829, Hanna 

Instruments). Nutrient concentrations (nitrates, nitrites, ammonium ion and total 

phosphorus in mg/L), the chemical oxygen demand (COD) value (mg/L) and the total 

suspended solids (mg/L) were determined in the laboratory. COD and nutrients were 
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determined using a Hanna Instruments multi-parameter bench photometer following the 

manufacturer’s protocols (Hanna Instruments 2014), and TSS was measured through the 

method described by the American Public Health Association (APHA 1992). Physico-

chemical parameters were classified, considering the maximum limit values established 

for the “good” ecological status in Northern Portuguese rivers (INAG 2009). 

The scores of the hydromorphological and biological indices, determined for the same 

sites and seasons for which organisms for biomarker analyses were collected (obtained 

from Rodrigues et al., submitted), were used for statistical tests and multivariate analysis. 

The biological quality of sampling sites was assessed through the North Invertebrate 

Portuguese Index, which evaluates the local community of benthic macroinvertebrates 

(IPtIN) (INAG 2009; EC 2013). The hydromorphological quality was assessed through 

the indices of Habitat Quality Assessment (HQA) and Habitat Modification Score (HMS). 

For this, the River Habitat Survey (RHS) methodology (Raven et al. 1997, 2002, 2009) 

was followed. The HQA index provides an indication of the overall habitat diversity in 

the river channel and riparian corridor, and the HMS index provides a useful indication 

of possible artificial modifications undergone in the morphology of the river channel. 

Analysis of pesticides 

To avoid the influence of rainfall events (e.g. runoff, dilution or infiltration) on pesticide 

analyses, sediment sampling campaigns were carried out in late spring. Seven 

organophosphorus pesticides used in agriculture in the studied areas were analysed, 

namely chlorpyrifos, chlorpyrifos methyl, chlorfenvinphos, diazinon, dimethoate, 

malathion and parathion methyl. Sediment samples for pesticide analysis were obtained 

in triplicate from each sampling site; the first centimetre of sediment was collected, as 

suggested by Rubal et al. (2009), and kept at − 20 °C until analysis. 

Reagents 

Seven organophosphorus pesticide standards (chlorfenvinphos, chlorpyrifos, chlorpyrifos 

methyl, diazinon, dimethoate, malathion and parathion methyl) and the internal standard 

(IS)—triphenyl phosphate, with ≥ 99% purity—were obtained from Sigma-Aldrich (St. 

Louis, MO, USA). Acetonitrile (MeCN) and n-hexane, with chromatography grade, were 

from Merck™ (Darmstadt, Germany). 

Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) tubes contained 1.5 g 

sodium citrate dehydrate (Na3Cit·2H2O), 1.5 g sodium chloride (NaCl), 6 g magnesium 

sulphate (MgSO4) and 0.750 g disodium citrate sesquihydrate (Na2HCit·1.5H2O) 

(Correia-Sá et al. 2012). The clean-up tube had 150 mg magnesium sulphate (MgSO4), 

50 mg PSA and 50 mg C18 (Correia-Sá et al. 2012). The clean-up tubes and the 

QuEChERS were purchased from UCT® (Bristol, PA, USA). A Simplicity 185 apparatus 

(Millipore from Molsheim, France) generated the required ultrapure water (18.2 MΩ-

cm). 

A standard solution was prepared for each pesticide (10,000 μg/L in n-hexane) and stored 

at − 18 °C. These stocks were used to prepare standard mixture solutions of different 

concentrations in n-hexane. The mixture solutions were used as spiking levels (50 ng/g 

dry weight (dw), 100 ng/g dw, 200 ng/g dw), calibration curves and control solutions. 

Calibration curves were prepared from matrix-matching calibration solutions (between 
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20 and 300 ng/g of dw). The IS solution (100 ng/g dw concentration in n-hexane) was 

added to all experiments. 

Extraction procedure 

After lyophilisation, sediment samples were sieved using a 2-mm sieve (i.e. including 

granule, sand, silt and clay sediment size classes, which represent more than 50% of the 

sediment at all sampling sites; Rodrigues et al., submitted). Then, the material with a grain 

size ≤ 2 mm in diameter was ground in a grinder (Ultra Centrifugal Mill ZM 200) in order 

to obtain a homogeneous sample with grain sizes ≤ 0.25 mm. Subsequently, pesticides 

were extracted and analysed. The extraction procedure was carried out according to 

Fernandes et al. (2013). Each sediment sample (5 g) was placed into a 50-mL centrifuge 

polypropylene tube. For validation studies, spikes (50 μL, 100 μL and 200 μL) were made 

using working standard solutions, as to yield the necessary analyte concentrations. The 

IS solution (10 μL) was added to all reagent blanks and samples (to yield 100 ng/g dw). 

An aliquot of the upper layer from each tube was placed into a vial and concentrated just 

to dryness using a gentle nitrogen stream. The residue obtained was reconstituted in n-

hexane. The sample was subsequently capped, vortexed and then analysed in gas 

chromatography (GC). 

Analysis by gas chromatography–flame photometric detector 

Organophosphorus analysis was done with the Shimadzu GC-2010, equipped with a gas 

chromatography–flame photometric detector (GC-FPD) and a phosphorus filter. A ZB-

XLB capillary column (Zebron, Phenomenex) of 30 m with 0.25 μm film thickness and 

0.25 mm internal diameter was used. The seven pesticides were separated using the 

following oven programme in the GC: 50 °C with a 1-min holding time period, ramped 

at 10 °C/min to 140 °C with a 1-min holding time period, ramped at 5 °C/min to 180 °C 

with a 2-min holding time period and finally ramped at 5 °C/min to 270 °C with a 5-min 

holding time period. The injector was at splitless mode (250 °C); the detection was done 

at 290 °C. The carrier gas was helium (Linde Sogás); a constant (1 mL/min) flow rate 

was used. 

Determination of sediment trace elements by X-ray fluorescence 

Sediment samples for trace element analysis were collected in late spring from different 

points in each study site. These samples were used to prepare a composite sample 

representative of each site. In laboratory, sediment samples were sieved with a 2-mm-

diameter (most representative fraction at all sites) sieve and dried in an oven at 65 °C for 

about 24 h. The dry samples were then milled to a particle size of ≤ 0.25 mm diameter 

and homogenised, in order to obtain fine-grained and homogeneous samples. The samples 

were put into the standard cell of an Instru-Med with the aid of a stainless steel spatula. 

For inversion of the samples’ cup, the soil was hold firmly, with the aid of a paper disc, 

against the upper Polypropylene X-Ray Film from Premier Lab Supply (TF-240–255, 2.5 

cm diameter and 4 μm gauge). 

A Niton® XL3t X-ray fluorescence (XRF) analyser was used. The instrument had a high-

performance Si PIN diode detector equipped with a silver anode X-ray miniature tube; 

the excitation potential was up to 40 kW. The mining mode was selected for the analysis. 

A qualitative analysis of 32 trace elements was done: silver (Ag), arsenic (As), gold (Au), 
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barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), cesium (Cs), 

copper (Cu), iron (Fe), mercury (Hg), potassium (K), manganese (Mn), molybdenum 

(Mo), nickel (Ni), lead (Pb), palladium (Pd), rubidium (Rb), sulphur (S), antimony (Sb), 

scandium (Sc), tin (Sn), strontium (Sr), tellurium (Te), titanium (Ti), thorium (Th), 

uranium (U), vanadium (V), tungsten (W), zinc (Zn) and zirconium (Zr). In the 

hydrographic basin of the AR, the main sector of activity is agriculture, and in the 

hydrographic basin of the FR, industrial activities (e.g. metallurgical industries, furniture 

polishing factories, hardware, mechanical locksmithing, slit-cut exploitation) are largely 

dominant, followed by agriculture, presenting more potential sources of trace metal 

pollution. XRF was used to measure elements in the sediments, and the results were 

shown in percentage (%). 

Biomarkers 

Sampling and storage of macroinvertebrates 

Different tolerant and sensitive benthic macroinvertebrate taxa were selected for 

biomarker analysis, based on their presence in most sites of both rivers (according to 

preliminary data obtained in the spring of 2013). Organisms were seasonally sampled 

(autumn, in November 2013; spring, in June 2014; summer, in September 2014) at each 

sampling site of the AR and FR (Table 1). For both rivers, despite increased sampling 

effort, not all taxa could be found in all of the studied seasons. Sampling of the biological 

material (using a 500-μm-mesh hand net) took place in different organic (macrophytes 

and coarse particulate organic matter) and inorganic (blocks, stones, gravel and sand + 

silt + clay) substrates that covered the river bed. Organisms were placed in plastic vessels 

filled with river water and immediately taken to the laboratory. Each taxonomic group 

(Table 1) was sorted out alive, directly from the plastic containers, with tweezers for 

Odonata and Trichoptera and plastic pipettes with tips of different sizes for Diptera and 

Ephemeroptera. They were identified morphologically up to the family or genus level 

(Tachet et al. 2002) using a magnifying glass. For some taxa, identification up to the 

genus level was not possible (Simuliidae, Chironomidae and Polycentropodidae families) 

or would be very time-consuming (requiring a microscope to see morphological details) 

and stressful for the organisms. Five to one hundred benthic macroinvertebrates of each 

taxon, depending on the sizes of the organisms (five each of Trichoptera: Hydropsyche 

spp. and Polycentropodidae; Odonata: Gomphus spp., Boyeria spp. and Calopteryx spp.; 

Hemiptera: Nepa spp.; 20 each of Ephemeroptera: Baetis spp., Caenis spp., Abrophlebia 

spp. and Ephemerella spp.; 50 and 100 each of Diptera: Simuliidae and Chironomidae, 

respectively; organisms of the same taxon were of similar size), were placed in different 

microtubes and promptly frozen in liquid nitrogen. Microtubes were then preserved at 

− 80 °C until biomarker analysis. Before this procedure, preliminary laboratory tests were 

made to optimise the removal of organisms from the containers, so as to minimise stress 

to organisms, as well as to determine the number of organisms of the same taxa to be 

integrated in each pool, in order to ensure the amount of biomass needed to record 

enzymatic activity. 

Table 1 Benthic macroinvertebrate taxa (genus or family) sampled for biomarker 

analysis in the Âncora and the Ferreira rivers in each season 
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Biomarker analysis 

In this study, as well as in most studies using insect larvae (e.g. Berra et al. 2004; Barata 

et al. 2005; Bonzini et al. 2008; Minutoli et al. 2013), the analysis of all biomarkers was 

performed in triplicate pools (three independent replicates for each taxon using the whole 

body of the organisms), per study site and taxon. For the measurement of lactate 

dehydrogenase (LDH) activity, the microtubes first underwent three frozen/unfrozen 

cycles (at − 20 °C and room temperature). Their content was then homogenised in ice-

cold Tris/NaCl buffer (pH 7.2), followed by centrifugation at 3300×g and 4 °C, for 3 min, 

as described by Diamantino et al. (2001). The resulting supernatants were used to assess 

the enzyme activity by the method of Vassault (1983), in a microplate reader. Briefly, the 

method measures the pyruvate consumed due to NADH oxidation; the reaction is 

followed at 340 nm wavelength. For the determination of cholinesterase (ChE) activity, 

homogenisation was done in ice-cold phosphate buffer (0.1 M; pH 7.2) and centrifugation 

was carried out at 3300×g and 4 °C for 3 min (Guilhermino et al. 1996). ChE activity was 

measured in the supernatant by Ellman’s method (Ellman et al. 1961). Briefly, this 

method consists in measuring the rate of production of thiocholine, as acetylthiocholine 

is hydrolysed by enzymatic action. Thiocholine complexes with 5,5′-dithiobis(2-

nitrobenzoic acid) (DTNB), leading to the formation of a yellow compound, whose 

increase can be followed at 412 nm in a microplate reader. The substrate used in all the 

assays was acetylthiocholine, measuring the whole activity produced by the forms of 

ChEs that may be present in the samples (Guilhermino et al. 1996). For the determination 

of antioxidant enzymes (catalase (CAT), glutathione S-transferase (GST)) and the levels 

of lipid peroxidation (LPO), the homogenisation was done in phosphate buffer (with 0.1% 

Triton X-100; 50 mM; pH 7.0) and the centrifugation took place at 15,000×g and 4 °C 

for 10 min. Aliquots of the supernatant were used to determine each biomarker (GST, 

CAT and LPO). The activity of GST enzyme was measured following the method of 

Habig et al. (1974). The reaction is based on the conjugation of reduced glutathione 

(GSH) with 1-chloro-2,4-dinitrobenzene (CDNB), which can be measured in a microplate 

(Frasco and Guilhermino 2002) at a 340 nm wavelength. The measurement of CAT 

activity was done by following the consumption of H2O2 in a spectrophotometer at 240 

nm, according to Aebi (1984). The extent of LPO was assayed through the quantification 

of the amount of thiobarbituric acid-reactive substances (TBARS) at 535 nm, following 

the method of Buege and Aust (1978). Briefly this method is based on the reaction of the 
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lipid peroxidation by-products, as malondialdehyde (MDA), with the 2-thiobarbituric 

acid (TBA). Catalase activity is presented in micromoles/minute/milligram of protein. All 

other enzyme activities are presented in nanomoles/minute/milligram of protein. The 

amount of TBARS is presented in nanomoles of MDA equivalents/milligram of protein. 

All measurements were done in triplicate except for LPO which was measured in 

duplicate. The concentration of protein in the samples was quantified with the method of 

Bradford (1976), also using a microplate reader, at a wavelength of 600 nm, and using as 

standard bovine γ-globulins purchased from Sigma-Aldrich (USA). All microplate 

determinations were carried out in a Thermo Scientific™ Multiskan GO Microplate 

Spectrophotometer. CAT activities were assessed in a UV/Vis spectrophotometer (UV-

3100PC, VWR). All enzymatic activities, and respective protein measurements, were 

done at 25 °C. 

Statistical data analysis 

The spatial variation of biomarker responses in the different macroinvertebrate families 

in each season and river was visualised in Tukey boxplots, showing data distribution, 

medians and quartiles (Chambers et al. 1983). 

Since most of the variables analysed in this study failed the test of Shapiro–Wilk for 

normality and/or the test of Levene for homogeneity of variance across groups, we opted 

for non-parametric statistical testing. Differences between rivers in each season regarding 

environmental (water physico-chemical parameters, hydromorphological indices and 

sediment parameters, i.e. percentage of metals and concentration of pesticides) and 

biological (community index and biomarker responses in the taxa that were common to 

both rivers, i.e. Chironomidae, Baetis spp., Calopteryx spp. and Boyeria spp.) parameters 

were assessed with the Kruskal–Wallis test. A pairwise post hoc analysis was done with 

the Wilcoxon rank sum test, corrected for the familywise error rate, to detect which water 

physico-chemical parameters and hydromorphological and biological indices differed 

among seasons or among sites within each river (Hollander and Wolfe 1973). For all 

statistical tests performed, a significance level of 0.05 was considered. 

Multivariate analysis was used for a better assessment of biomarker applicability for 

diagnostic purposes. To minimise problems of missing values, high dimensionality and 

difficulty in obtaining complete data for some taxa (resulting from their high sensitivity 

to environmental quality), multivariate analysis was done using only data from the more 

widespread, abundant or bigger-sized (requiring less organisms for the biomarker 

determinations) macroinvertebrate taxa, i.e. Calopteryx spp., Baetis spp. and 

Chironomidae. Furthermore, multivariate analysis was restricted to spring and summer 

data, because these were the seasons for which all biomarkers could be determined at all 

sampling sites in both rivers. First, a detrended correspondence analysis (DCA) was 

applied to determine the relative length of the data gradient. This was used to decide on 

the suitable data analysis technique (i.e. unimodal or linear response). Then and since all 

of our DCA gradient lengths were < 2, a principal component analysis (PCA) was 

employed to characterise the main patterns of taxon-related, spatial and seasonal variation 

in biomarker responses (according to Ter Braak and Prentice 1988). To assess response 

profiles of the three taxa, PCA was done first using biomarker levels and the 

macroinvertebrate index as quantitative variables, taxa and season (spring and summer) 

as qualitative supplementary variables and water physico-chemical parameters and 

hydromorphological indices as supplementary quantitative variables. Following the 
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principal components (PCs) extracted and the analysis of the cloud of individuals, 

subsequent PCAs were carried out for each taxon individually, with river and season as 

supplementary qualitative variables. 

Boxplots, statistical tests and multivariate analyses were done with the Statistical 

programme R, package version 3.4.2, including the Rcmdr and FactoMineR packages (Le 

et al. 2008; R Core Team 2017; Fox and Bouchet-Valat 2018). 

Results 

Physico-chemical parameters 

Significant differences between the AR and FR (p < 0.05) were found for dissolved 

oxygen (concentration, DO; % saturation, % DO) in summer, ammonium ion in autumn 

and water temperature, nitrates, nitrites, conductivity, salinity, total dissolved and 

suspended solids in all seasons (Table 2). The FR reached higher values than the AR for 

most parameters, except for water temperature in autumn and summer, and dissolved 

oxygen (DO and % DO) in summer. Significant seasonal differences were found for water 

temperature in both rivers, for COD, nitrates and total phosphorus in the AR and for 

dissolved oxygen (DO and % DO) and nitrites in the FR (Table 2). In both rivers, all 

physico-chemical parameters, except nitrites in the AR and water temperature, DO and 

% DO in the FR, differed significantly among sites (Table 2). 

Table 2 Spatial and seasonal variation of water physico-chemical parameters 

determined in the Âncora River (AR) and Ferreira River (FR) 
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Overall, DO and % DO values were within the limit values for “good” ecological status 

of Northern Portuguese rivers (i.e. DO ≥ 5 mg O2/L; % DO 60–120% of saturation) in 

both studied rivers and in all seasons (Table 2), except for the % DO at all FR sites in 

summer. In the FR, lower DO and % DO means were observed in the summer compared 

to autumn and spring (Table 2). 

In the AR, COD and phosphorus levels were significantly higher in spring compared to 

the remaining seasons (Table 2). High levels of phosphorus (i.e. P > 0.10 mg/L) were 

observed at all AR sites in spring, as well as in AR1, AR3 and AR4 in summer. Although 

nitrate values observed at all AR sites and seasons were considered “good” (i.e. NO3
− 

≤ 25 mg/L), spring values were significantly lower than those observed in autumn and 

summer (Table 2). 

In the FR, high levels of nutrients (i.e. P > 0.10 mg/L; NO3
− > 25 mg/L; NO2

− > 0.1 mg/L; 

NH4
+ > 1 mg/L) were found in all seasons, especially at the downstream sites (FR4 to 

FR6). Conductivity, salinity and TDS were also higher at the downstream sites compared 

to the upstream sites (Table 2). In the FR, the amount of nitrites differed significantly 

between seasons, with higher values occurring in spring compared to autumn and summer 

(Table 2). 

Biological and hydromorphological indices 

Scores of the biological (IPtIN) and hydromorphological (HQA and HMS) indices, 

determined in the same sites and seasons as the macroinvertebrate sampling campaigns 

for biomarker measurements, were obtained from Rodrigues et al. (submitted). According 

to the IPtIN index, AR sites presented “good” or “high” ecological status in almost all 

studied seasons (AR3 and AR5 had “moderate” ecological status in autumn), while FR 

sites presented ecological status from “moderate” to “bad” (Rodrigues et al., submitted). 

Regarding the hydromorphological characterisation of the sampling sites, despite the 

HQA index revealing that almost all AR sites (except AR3 in summer) and some FR sites 

(FR1, FR3 and FR4) had high physical habitat heterogeneity (“high” ecological status), 

the HMS index indicated that, in general, channel morphology of both rivers was 

artificially modified (except at AR3). 

Significant differences between rivers (p < 0.05) were found for all indices in the different 

seasons, except for HQA in the summer (p = 0.0541), with the AR reaching higher IPtIN 

and HQA scores and lower HMS scores than the FR (Table 6 in Appendix 2). In both 

rivers, significant differences between sites were found for the biological and 

hydromorphological indices determined, but not among seasons. 

Pesticides and trace elements in the sediment 

Calibration curves were performed for standards dissolved in solvent and for matrix 

standard extracts. Because of the presence of matrix interferences, a matrix-matched 

calibration curve was more appropriate for the quantification of such pesticides in the 

samples of sediments. For all pesticides, and over the range of concentrations tested, these 

were found to be linear for both studied rivers, as indicated by the very high values of the 

determination coefficient (r2 > 0.99) (Table 7 in Appendix 3). For all pesticides, limit of 

detection (LOD) and limit of quantification (LOQ) were in a range from 11.7 to 27.2 ng/g 

dw and from 39 to 90.8 ng/g dw, respectively. 
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Recovery experiments were performed in duplicate, at three concentrations (50 ng/g dw, 

100 ng/g dw and 200 ng/g dw), for sediment with a grain size ≤ 0.25 mm. The results 

obtained ranged between 71 and 118%, with 2–10% relative standard deviation (RSD). 

The recovery experiments for sediments with larger grain sizes (≤ 2 mm) showed lower 

recovery percentages than expected at the level of 100 ng/g dw, mainly for dimethoate 

and chlorpyrifos. Finally, the ultrasonic bath followed by standard EN 15662 citrate–

QuEChERS procedure enabled better recoveries of pesticides with the extraction for 

sediment samples ≤ 0.25 mm grain size and spiked at 50 ng/g dw (recoveries between 83 

and 114%; Table 7 in Appendix 3). All pesticide analyses were performed with sediment 

samples of ≤ 0.25 mm grain size, and only the presence of chlorpyrifos was detected in 

both rivers, at AR1 and AR3 from the AR and at FR1, FR2 and FR5 from the FR (Table 

3). 

Table 3 Chlorpyrifos concentration in the sediment of the sampling sites of the 

Âncora (AR1 and AR3) and Ferreira (FR1, FR2 and FR5) rivers where it was 

detected 

 
   

Significant differences between rivers were found for the percentage of Zr (p = 0.0060), 

Sr (p = 0.0050), Th (p = 0.0084), Pb (p = 0.0352), Zn (p = 0.0263), Ti (p = 0.0446) and 

Ba (p = 0.0266), with the FR reaching higher percentages of these elements (Table 4). 

Percentages of elements Se, Hg, Au, Co, Sc, Cs, Te, Cd, Ag, Pd, S and Sb were below 

the limit of detection at all sites of both rivers. 

Table 4 Percentage of trace elements (Mo, molybdenum; Zr, zirconium; Sr, 

strontium; U, uranium; Rb, rubidium; Th, thorium; Pb, lead; Zn, zinc; W, tungsten; 

Cu, cooper; Ni, nickel; Fe, iron; Mn, manganese; Cr, chromium; V, vanadium; Ti, 

titanium; Ca, calcium; K, potassium; Ba, barium; Sn, tin) present in the sediment 

of the sampling sites of the Âncora (AR1 to AR5) and Ferreira (FR1 to FR6) rivers, 

in spring 
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Biomarker responses 

Significant seasonal (Table 8 in Appendix 4) and spatial differences were found within 

each river (identified by stars in Figs. 2, 3 and 4; Table 9 in Appendix 4) for some of the 

analysed taxa. 

Fig. 2 

 

Boxplots of the enzyme activities (cholinesterases, ChE; glutathione S-transferases, GST; 

catalase, CAT; thiobarbituric acid-reactive substances, TBARS; lactate dehydrogenase, 

LDH) and lipid peroxidation levels (measured as thiobarbituric acid reactive substances, 

TBARS) in different macroinvertebrate taxa (Baetis spp., Baet; Boyeria spp., Boyer; 

Caenis spp., Caen; Calopteryx spp., Calopt; Chironomidae, Chir; Gomphus spp., Gomp) 

sampled from the Âncora and the Ferreira River sites (AR1 to AR5; FR1 to FR6) in 

autumn. The length of each box shows the range of the central 50% of the values, with 
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the box edges at the first and third quartiles. A star identifies taxa for which biomarker 

activities differed significantly between sites (p < 0.05), according to the non-parametric 

Kruskal–Wallis test 

  

 

 

Fig. 3 

 

Boxplots of the enzyme activities (cholinesterases, ChE; glutathione S-transferases, GST; 

catalase, CAT; thiobarbituric acid-reactive substances, TBARS; lactate dehydrogenase, 

LDH) and lipid peroxidation levels (measured as thiobarbituric acid reactive substances, 
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TBARS) in different macroinvertebrate taxa (Abrophlebia spp., Abrop; Baetis spp., Baet; 

Boyeria spp., Boyer; Caenis spp., Caen; Calopteryx spp., Calopt; Chironomidae, Chir; 

Ephemerella spp., Ephem; Gomphus spp., Gomp; Hydropsyche spp., Hydro; Nepa spp., 

Nepa; Polycentropodidae spp., Poly; Simuliidae, Simul) sampled from the Âncora and 

the Ferreira River sites (AR1 to AR5; FR1 to FR6) in spring. The length of each box 

shows the range of the central 50% of the values, with the box edges at the first and third 

quartiles. A star identifies taxa for which biomarker activities differed significantly 

between sites (p < 0.05), according to the non-parametric Kruskal–Wallis test 

  

Fig. 4 
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Boxplots of the enzyme activities (cholinesterases, ChE; glutathione S-transferases, GST; 

catalase, CAT; thiobarbituric acid-reactive substances, TBARS; lactate dehydrogenase, 

LDH) and lipid peroxidation levels (measured as thiobarbituric acid reactive substances, 

TBARS) in different macroinvertebrate taxa (Abrophlebia spp., Abrop; Baetis spp., Baet; 

Boyeria spp., Boyer; Caenis spp., Caen; Calopteryx spp., Calopt; Chironomidae, Chir; 

Ephemerella spp., Ephem; Gomphus spp., Gomp; Hydropsyche spp., Hydro; Nepa spp., 

Nepa) sampled from the Âncora and the Ferreira River sites (AR1 to AR5; FR1 to FR6) 

in summer. The length of each box shows the range of the central 50% of the values, with 

the box edges at the first and third quartiles. A star identifies taxa for which biomarker 

activities differed significantly between sites (p < 0.05), according to the non-parametric 

Kruskal–Wallis test 

  

In the AR, the medians of ChE activity were, in general, higher for Baetis spp. (103.6–

304.3 nmol/min/mg protein, except at AR5 in autumn, with a median of 3.5 nmol/min/mg 

protein), compared to the other analysed taxa (Figs. 2, 3 and 4). Most AR1 taxa presented 

lower medians of ChE activity in spring and higher medians in summer, compared to the 

other sampling sites (Figs. 3 and 4). In addition, significant seasonal differences in ChE 

activities (p < 0.05; Table 8 in Appendix 4) were found for Boyeria spp. and Baetis spp., 

with higher activities in summer compared to the spring for Boyeria spp. and compared 

to autumn and spring for Baetis spp. In the FR, Baetis spp. and Caenis spp. showed higher 

median values of ChE activity (Baetis spp., 36.0–185.6 nmol/min/mg protein; Caenis 

spp., 70.8–255.3 nmol/min/mg protein) than the remaining taxa (Figs. 2, 3 and 4). In this 

river, Boyeria spp. and Calopteryx spp. had higher ChE activity in summer compared to 

the other seasons, and Baetis spp. had higher ChE activity in autumn in comparison to 

spring and summer (p < 0.05). 

In the autumn, the medians of GST activity at AR sites were clearly lower for Baetis spp. 

(4.5–6.6 nmol/min/mg protein) compared to the other taxa analysed (26.6–107.3 

nmol/min/mg protein; Fig. 2). In spring, most taxa presented medians of GST activity 

below 30 nmol/min/mg protein, but medians above this value were observed, mainly for 

Calopteryx spp. (AR1 to AR5, 46.6–135.6 nmol/min/mg protein; Fig. 3). In summer, 

Odonata (Calopteryx spp., Boyeria spp., Gomphus spp. and Abrophlebia spp.) showed 

medians of GST activity above 40 nmol/min/mg protein at almost all sites, especially at 

AR1 (Fig. 4). Significant seasonal differences in GST activity (p < 0.05; Table 8 in 

Appendix 4) in macroinvertebrates from the AR where found for Boyeria spp., with 

higher activities occurring in autumn compared to spring and summer, for Baetis spp. and 

Calopteryx spp., with higher values in spring and/or summer compared to autumn, and 

for Abrophlebia spp., with higher values occurring in summer compared to spring. Higher 

medians of GST activity were observed in Calopteryx spp. in the FR in all seasons and 

sites (63.1–151.8 nmol/min/mg protein, except in FR6 in autumn, with a median of 21.9 

nmol/min/mg protein), compared to the other analysed taxa (Figs. 2, 3 and 4). In this 

river, significant differences (p < 0.05) in GST activity were found between summer and 

spring for Boyeria spp. and Caenis spp., with higher values occurring in summer. There 

were also significant differences (p < 0.05) in GST activity between spring and the 

remaining seasons in Baetis spp., with lower values occurring in spring, and between 

summer and the remaining seasons in Chironomidae, with lower values occurring in 

summer. 
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The medians of CAT activity in the different taxa analysed in both rivers were mostly 

below 20 μmol/min/mg protein, although medians above this value were observed for 

some taxa in spring and summer, in both rivers (Figs. 2, 3 and 4). For example, almost all 

taxa showed a median of CAT activity close to or higher than 20 μmol/min/mg protein at 

AR1 site in summer (18.5–46.7 μmol/min/mg protein, except Baetis spp. with a median 

of 15.7 μmol/min/mg protein; Fig. 4). Significant seasonal differences in the activity of 

this enzyme (p < 0.05; Table 8 in Appendix 4) were found in Boyeria spp., Baetis spp., 

Calopteryx spp. and Ephemerella spp. in the AR, and in Boyeria spp., Baetis spp. and 

Caenis spp. in the FR, with higher CAT activities occurring in the summer in AR taxa 

and in the spring in FR taxa. 

In both rivers studied, medians of TBARS levels were generally below 2 nmol/mg protein 

for all taxa, but higher medians were observed for Baetis spp. in both rivers (e.g. at AR1 

in the summer and at FR3 in the autumn with a median of TBARS levels of 5.4 and 4.1 

nmol/mg protein, respectively; Figs. 2, 3 and 4). TBARS levels only varied significantly 

among seasons (p < 0.05; Table 8 in Appendix 4) for Baetis spp., namely between spring 

and the remaining seasons in the AR, and between the spring and summer in the FR, with 

lower levels occurring in the spring in both rivers. 

In most AR taxa, medians of LDH activity were, in general, below 10 nmol/min/mg 

protein in the spring (0.5–9.6 nmol/min/mg protein, except in Baetis spp. at AR2 and in 

Calopteryx spp. at AR4, with medians of 24.7 nmol/min/mg protein and 13.6 

nmol/min/mg protein, respectively; Fig. 3). In summer, the Chironomidae family showed 

medians close to or higher than 10 nmol/min/mg protein at all sites (8.8–26.7 

nmol/min/mg protein). In this season, at AR1, most taxa presented activities above 10 

nmol/min/mg protein (four of six taxa had medians of LDH activity ranging from 10.8 to 

26.7 nmol/min/mg protein) (Fig. 4). In the AR, significant seasonal differences (p < 0.05; 

Table 8 in Appendix 4) in LDH activity were found for Chironomidae, Gomphus spp. and 

Abrophlebia spp., with higher values occurring in summer compared to spring. For the 

FR’s taxa, medians of LDH activity were lower than 10 nmol/min/mg protein in autumn 

(Fig. 2). In spring and summer (mainly spring), medians above 10 nmol/min/mg protein 

(11.4–31.8 nmol/min/mg protein) were observed for Chironomidae, Calopteryx spp. and 

Simuliidae, at most sampling sites (Figs. 3 and 4). In this river, significant seasonal 

differences (p < 0.05; Table 8 in Appendix 4) in LDH activity were found for 

Chironomidae, being this activity lower in autumn compared to the remaining seasons, 

as well as for Calopteryx spp. and Hydropsyche spp., with higher values occurring in 

spring compared to autumn for Calopteryx spp. and compared to summer for 

Hydropsyche spp. 

Overall, regarding the biomarker activities in taxa common to both rivers (Chironomidae, 

Baetis spp., Calopteryx spp. and Boyeria spp.), significant differences between rivers 

were found for TBARS levels and LDH activity in Calopteryx spp. in spring (TBARS: p 

= 0.0211; LDH: p = 0.0472); Calopteryx spp. from the AR showed higher levels of 

TBARS than those from the FR, and Calopteryx spp. from the FR exhibited higher LDH 

activities than those from the AR. For Baetis spp., cholinesterases (ChE) activities 

differed significantly between rivers, in both autumn and summer (autumn: p = 0.0062; 

summer: p = 0.0062). Higher activities were measured in Baetis spp. from the FR in 

autumn and in Baetis spp. from the AR in the summer. There were also significant 

differences between rivers in CAT activity for Baetis spp. in the summer (p = 0.0090), 

with Baetis spp. from the AR showing higher activities than Baetis spp. from the FR. 
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Multivariate analysis 

The results of the PCA done to characterise the overall response patterns of Calopteryx 

spp., Baetis spp. and Chironomidae are presented in Fig. 5. The first two principle 

components (PC1 and PC2) extracted summarised 50.3% of the total variability observed 

in the data (Fig. 4). Biological variables GST and LDH, CAT and IPtIN, and ChE and 

LPO were found to be highly correlated one to the other, respectively. PC1 established a 

gradient of response of the taxa examined, opposing Calopteryx spp. to Baetis spp. (Fig. 

5). This component was linked to biomarkers ChE and LPO and to the macroinvertebrate 

index (IPtIN). ChE exhibited a stronger positive correlation with this dimension (r = 0.86, 

p < 0.001) than LPO (r = 0.67, p < 0.001) and IPtIN (r = 0.47, p < 0.001). Calopteryx spp. 

appeared to show lower levels of ChE and LPO; opposite trends were exhibited by Baetis 

spp. The results also indicated that taxon responses were stable across seasons (Fig. 5). 

PC2 was linked to GST (r = 0.67, p < 0.001), to CAT (r = 0.61 p < 0.001) and, to a lesser 

extent, to LDH (r = 0.54, p < 0.001) and IPtIN (r = 0.44, p < 0.001), all positively 

correlated with this dimension. Calopteryx spp. tended to show higher levels of GST, 

LDH and CAT activities, opposed to the response patterns of Baetis spp. CAT activity 

tended to be associated with higher scores of the macroinvertebrate index. Overall, the 

three taxa showed distinct patterns of biological responses, prompting the subsequent 

analysis of each taxon separately. 

Fig. 5 
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Results of the PCA carried out with taxa and season as qualitative supplementary 

variables. Qualitative variables were the biomarkers—ChE, GST, CAT, LPO (measured 

as TBARS levels) and LDH determined in Calopteryx spp., Baetis spp. and 

Chironomidae—and the North Invertebrate Portuguese Index (IPtIN). Water physico-

chemical parameters (water temperature, Temp; pH; dissolved oxygen concentration, 

DO; percent of saturation of dissolved oxygen, % DO; chemical oxygen demand, COD; 

conductivity, Cond; salinity, Sal; total dissolved solids, TDS; total suspended solids, TSS; 

total phosphorus, P; nitrates, NO3
−; nitrites, NO2

−; ammonium ion, NH4
+) and 

hydromorphological indices (Habitat Quality Assessment, HQA; Habitat Modification 

Score, HMS) were included in the analysis as quantitative supplementary variables. 

Concentration ellipses are shown for each taxon (Baetis spp., Baet; Calopteryx spp., 

Calopt; Chironomidae, Chiron) 

  

All of the three taxa clearly exhibit distinct response patterns for the two rivers studied 

(Fig. 6). However, PCA based on either Calopteryx spp. or Chironomidae explained 

higher percentages of variability in the datasets. Biological responses were also found to 

be fairly stable across seasons for all of them. Two significant dimensions were extracted 

for Baetis spp. and Chironomidae, representing 54.2% and 61.4% of the overall 

variability in the dataset, respectively. Three significant dimensions were extracted for 

Calopteryx spp., expressing 85.2% of the total variability in the dataset. Overall, for each 

taxon, PC1 and PC2 summarised a representative amount of the total variance of the 

dataset (Fig. 6). Hence, interpretation of the results obtained was based on these 

components. For Calopteryx spp., PC1 established a spatial gradient between the rivers, 

with LPO, ChE and GST showing strong correlations with this dimension (Fig. 6, top). 

Although less strongly, IPtIN and CAT were also significantly correlated with PC1. 

Calopteryx spp. from the FR were under environmental stress, i.e. exposed to higher 

levels of nitrates, nitrites, ammonia and phosphates and pH. In the FR, this taxon 

exhibited inhibition of ChE and CAT activities, unlike in the AR. As previously observed, 

IPtIN values, and consequently the ecological status of this watercourse, were also higher 

in the AR than in the FR. Conversely, high LPO levels also tended to occur in the AR, 

suggesting that Calopteryx spp. were under chemical stress. Analysis of the cloud of 

individuals in the dataset revealed that AR macroinvertebrates showing higher LPO levels 

were collected at the AR1 and AR2 sampling sites. PC2 further distinguished the two 

rivers. Biological variables correlated with this dimension were LDH, GST and IPtIN. 

Calopteryx spp. from the FR exhibited high LDH and GST activities, particularly those 

from FR5 and FR6 sites, which presented “poor” ecological status, as indicated by low 

IPtIN index scores (Fig. 6, top). In contrast, for Chironomidae, LDH, ChE and CAT 

(correlated mainly to PC1) and LPO (correlated to PC2) were the biomarkers producing 

discrimination of the two rivers (Fig. 6, middle). In the AR, biomarkers associated to PC1 

were also associated to higher values of the IPtIN index, whereas the FR tended to show 

inhibition of these biomarkers and higher LPO levels, particularly at some sites. 

Fig. 6 
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PCA biplots showing the relationships among quantitative biological variables, and the 

spatial gradients established, for each studied taxon. Concentration ellipses estimated for 

each river (Âncora River, AR; Ferreira River, FR) are also plotted. Legend as in Fig. 5 

  

Discussion 

Nowadays, the Water Framework Directive (WFD) requires new ecological perspectives 

with broad multi-disciplinary approaches (Martinez-Haro et al. 2015). In this study, we 

aimed to understand if a battery of widely recognised biochemical biomarkers, evaluated 

in different macroinvertebrate groups tolerant and sensitive to pollution, could 

complement the ecological approaches currently applied in assessing and monitoring the 

aquatic environment. All the biochemical parameters used in this study could be altered 

by xenobiotic exposure and were already successfully used as environmental biomarkers 

in field studies using benthic macroinvertebrates (e.g. Olsen et al. 2001; Berra et al. 2004; 

Barata et al. 2005; Minutoli et al. 2013; Kaya et al. 2014). Most of these studies employed 

one single species for biomarker determination. However, since distinct taxonomic 

groups may have different sensitivities to environmental stressors, the selection of the 

most adequate bioindicator species/taxon is not straightforward. Hence, this study 

adopted a multi-taxon and a multi-biomarker evaluation to identify the most informative 

taxa, together with a consolidated evaluation of the macroinvertebrate community index 

recommended by the WFD and evaluation of water physico-chemical quality. 

Environmental parameters 

Concerning the water physico-chemical parameters, in the AR, levels of phosphorus 

above the maximum limit value considered “good” for Northern Portuguese rivers (P 

> 0.10 mg/L; INAG 2009) were observed mainly in spring and summer, which seems to 

be related to the occurrence of forest fires in the vicinity of some sampling sites (AR1 

and AR3), as well as to the increased fertiliser application in agricultural lands close to 

the river banks (AR2 and AR4). In the FR, the high levels of nutrients (i.e. NH4
+ > 1 

mg/L; NO3
− > 25 mg/L; NO2

− > 0.1 mg/L; P > 0.10 mg/L; INAG 2009) found in all 

seasons and sites, particularly at the downstream sites (FR4 to FR6) in spring and 

summer, seemed to be related not only to agricultural practices but also to discharges 

from urban areas and wastewater treatment plants. 

Organophosphorus pesticides (OPs) are acetylcholinesterase inhibitors and have been 

widely applied because they are effective insecticides (Girard 2013). Regarding OP 

analysis in the sediment of the rivers studied, sediment grain size proved to be an 

important parameter for the extraction and quantification of the pesticides studied (higher 

recoveries were obtained with grain sizes ≤ 0.25 mm compared to the grain sizes ≤ 2 mm), 

and only chlorpyrifos was present in 40% and 50% of the AR and FR sampling sites, 

respectively. Chlorpyrifos is extensively used and continuously introduced into the 

environment being therefore considered a pseudo-persistent organic pollutant (Bonansea 

et al. 2013; Li et al. 2014). This pesticide has been used as a replacement for other OPs 

(namely, chlorfenvinphos, diazinon and parathion methyl) banned by the EU (Regulation 

EC No. 2009/1107) (Terrado et al. 2009). It has been applied over all types of crops (urban 

and agricultural) and as powder for insect control (Masiá et al. 2015). 
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Sediments are habitat and shelter for benthic macroinvertebrates, as well as the major 

repository of contaminants (organic and inorganic) that reach surface waters (Bettinetti 

et al. 2012). The Directive 2013/39/EU (EU 2013), which regards priority substances (PS) 

in the field of water policy, establishes 45 PSs and sets environmental quality standards 

(EQS) for these pollutants, including chlorpyrifos (with a maximum allowable 

concentration of 0.1 μg/L). This directive has also biota EQS for some hydrophobic PS, 

and for these PS, biota becomes the “default” monitoring matrix (EU 2013). Biota EQS 

are related mainly to fish for most PS, but for a few PS, biota EQS refer to crustaceans 

and molluscs or to all three groups. The promotion of the “default” use of a suitable biota 

matrix as another option to water gives cost-effectiveness and flexibility for the 

laboratories. It can also counterbalance the analytical challenges of nearly non-detectable 

levels of several PS in water, as a result of their hydrophobic nature (Dosis et al. 2017). 

However, no directive has included EQS for pesticides in sediments (as well as soil or 

sludge) (Kvičalová et al. 2012), even though the need to do it is recognised by the EU 

(EU 2013). 

OPs ought to be monitored because they may elicit damage to benthic organisms 

(Montuori et al. 2016). Only a few studies in Europe have determined the presence of 

currently used pesticides in other environmental compartments besides water (e.g. Masiá 

et al. 2013, 2015; Montuori et al. 2015; Ccanccapa et al. 2016; Cembranel et al. 2017). 

Regarding the results of those studies, chlorpyrifos is a frequently detected pesticide in 

the sediments of European rivers, at lower (e.g. Cembranel et al. 2017; Masiá et al. 2013; 

Montuori et al. 2015) and higher (e.g. Ccanccapa et al., 2016; Masiá et al. 2015) 

concentrations than those observed in the AR and FR (mean value of the samples that 

presented chlorpyrifos, 23.2 ng/g dw in the AR and 20.8 ng/g dw in the FR). For example, 

Masiá et al. (2015) reported that chlorpyrifos was present in 7% and 93% of the samples 

collected from the Llobregat River (Spain) in September/October 2010 and 

October/November 2011, respectively, with mean concentrations of 0.39 ng/g dw and 

26.13 ng/g dw, respectively (concentrations up to 131 ng/g dw). Ccanccapa et al. (2016) 

also found this pesticide in all sediment samples collected from the Júcar River (Spain) 

in September/October 2010 and October/November 2011, with median concentrations of 

2 ng/g dw and 3.15 ng/g dw, respectively, and in 22% and 11% of the sediment samples 

collected from the Tugar River in September/October 2012 and October/November 2013, 

with median concentrations of 63.75 ng/g dw and below 0.01 ng/g dw, respectively 

(Ccanccapa et al. 2016). 

Here, the analysis of pesticides in the sediments of both rivers was carried out based on a 

single campaign in spring. However, long-term data is essential to assess global changes 

in fluvial systems, since the transport of pesticides to environmental compartments such 

as sediments is affected by aspects that change over time such as hydrological (e.g. flow, 

depth) and climatic (e.g. precipitation, wind, temperature) conditions and closeness of 

agricultural lands to surface waters (Ccanccapa et al. 2016). 

Several of the elements that were present in sediments reflect the industrial and other 

activities in surrounding areas. Some fertilisers and pesticides used in agriculture near the 

river banks of both rivers studied contain elements such as K, Fe, S, Ca, Mg and Cu. 

Higher percentages of some heavy metals, namely Zr, Th, Pb, Zn, Ti and Ba, were found 

in the FR compared to the AR, as a result of higher anthropic pressures in the FR (e.g. 

higher industrial activity). Sediments of both rivers were mainly composed by coarser 

particles (pebble and granule, very coarse and coarse sand, > 80% in the AR and > 60% 
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in the FR; Rodrigues et al., submitted) to which trace metals have low affinity, thus 

contributing to the low retention of trace elements in sediments (Eggleton and Thomas 

2004). Although the percentage of heavy metals in the sediment of both rivers was low 

or not detected, a quantitative analysis of trace elements (e.g. using the analytical 

technique ICP-MS) is recommendable, since it is much more sensitive than the qualitative 

analysis used is this study, and heavy metals (most of the trace elements analysed) are 

highly persistent and can be toxic to life even in trace amounts. 

Biological parameters 

Although FR sites showed lower ecological status than AR sites (Rodrigues et al., 

submitted), not all taxa common to both rivers showed significant differences between 

rivers regarding biomarker responses. Baetis spp. and Calopteryx spp. showed significant 

differences between rivers regarding some biomarker activities/levels, although not in all 

seasons, while Chironomidae and Boyeria spp. showed similar biomarker responses in 

both rivers, for all seasons. 

Overall, the here-evaluated biomarker responses observed in macroinvertebrate taxa 

showed generally low levels of variation, though they differed between rivers. They also 

were of lower magnitude compared to those observed in other studies in which the same 

biomarkers were measured in macroinvertebrates sampled from polluted Mediterranean 

rivers (Barata et al. 2005; Puertolas et al. 2010; Damásio et al. 2011; Prat et al. 2013). 

ChE and CAT activities found in this study were within the ranges reported by Berra et 

al. (2004), who performed the first attempt to evaluate the basal-level activities of ChE, 

CAT and GST in different macroinvertebrate families collected from two Italian rivers. 

However, the GST activities observed in this study were, in general, of lower magnitude 

than those reported by Berra et al. (2004). It is well known, though, that species and/or 

populations of distinct genetic make-up, geographic regions and/or previous history of 

exposure to environmental contamination may exhibit differences in biochemical and 

physiological parameters (Boets et al. 2012; Jin et al. 2012). This further highlights the 

importance of characterising local baseline responses and the need for site-specific 

evaluations. 

Results of the present study showed that specific biomarker levels varied from taxon to 

taxon. This has also been previously observed in other works (Berra et al. 2004; Bonzini 

et al. 2008), as species’ response to pollutants differ depending on their biotransformation 

capacity, feeding, type of habitat, trophic level and other environmental factors (Ramos 

et al. 2015). For example, organisms of two genera of the Ephemeroptera order, thought 

to be in the mid-range for tolerance to many environmental stressors (Harrington and 

Born 2000; Menetrey et al. 2008), namely Baetis spp. (analysed for both rivers) and 

Caenis spp. (analysed only for the FR), showed higher ChE activities compared to the 

other taxa analysed. The differential sensitivity of ChE found for various taxa suggests 

they may respond with different intensities when exposed to toxicants able to interfere 

with the enzyme activity, probably due to differential inhibition constants (Berra et al. 

2004). Another example is that organisms of the Odonata order analysed in both rivers 

(Calopteryx spp., Boyeria spp., Gomphus spp. and Abrophlebia spp.), which are 

considered sensitive to organic pollution (Alba-Tercedor and Sánchez-Ortega 1988), 

displayed higher GST activities (especially Calopteryx spp. in the FR) in all seasons 

compared to the other taxa analysed. Higher GST activities in Odonata compared to other 

benthic macroinvertebrate taxonomic groups (e.g. Ephemeroptera, Diptera, Plecoptera 
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and Trichoptera) were also observed by Berra et al. (2004), and this seems to indicate that 

Odonata have greater biotransformation capabilities, compared to other taxa. 

In both rivers studied, significant spatial differences in biomarker responses within the 

same season were observed for some taxa. Nevertheless, a single analysis of the responses 

observed was not able to differentiate sites with different ecological status, as happened 

in other studies (e.g. Damásio et al. 2011). There were, however, situations in which 

biomarkers detected biological sub-lethal effects of chemical or other stress exposure (i.e. 

effects that are not detected at the community level), rather than those associated with 

high nutrient concentrations and habitat degradation, thus complementing the information 

given by the ecological quality monitoring procedures currently used in the scope of the 

WFD. In autumn, AR2 and AR5 sites had “moderate” ecological status, according to the 

IPtIN index, while the remaining sites had “good” ecological status (Rodrigues et al., 

submitted). At AR5 in autumn, all macroinvertebrate taxa analysed (including Baetis 

spp.) showed decreased ChE activities compared to the other AR sites, which seemed to 

be associated with pesticide inputs resulting from ground leaching caused by rainfall 

(agricultural land near the river banks) or to interactions of contaminants and 

environmental factors. Apparently, this contamination did not persist in spring and 

summer, pointing out that the contamination sources which caused the observed 

biochemical changes were not acting continuously. None of the studied OPs was found 

at AR5 in spring. In this season, only AR4 did not show “good” ecological status 

according to the IPtIN index (Rodrigues et al., submitted) but higher inhibition of ChE 

was observed at AR1 (compared to the other AR sites), where the highest concentration 

of chlorpyrifos was also detected (24 ng/g dw). The pattern of ChE inhibition found in 

most taxa was not observed at AR3 or in FR sites, where chlorpyrifos was detected at 

apparently lower concentrations. In fact, the occurrence of a particular contaminant in the 

environment does not mean that this contaminant is bioavailable, and thus, no conclusion 

can be drawn regarding its possible harmful biological effects, or even any measurable 

biological effects (Lam 2009). Therefore, the biomarker approach is useful to 

complement chemical analysis, providing early-warning information about the exposure 

to and/or effects of contaminants on organisms and the possible need for more detailed 

investigations to be carried out. The AR1 site in summer was the only AR site/season 

with “high” ecological status according to the IPtIN index (other sites had “good” 

ecological status). Here, higher median values of activities of enzymes responsible for the 

normal neural function (ChE) were found, compared to the remaining sites and seasons, 

although AR1 also showed higher levels than other sites of biotransformation (GST), 

antioxidant (CAT) and metabolic (LDH) enzyme activities in most taxa analysed. In this 

regard, it is noteworthy that several forest fires occurred in a nearby area of AR1 in the 

summer. Deposition of atmospheric particulate matter resulting from organic combustion 

may have triggered the activity of those enzymes to cope with the exposure. Although 

TBARS levels at all sites were of low magnitude, compared to those observed in 

macroinvertebrates from polluted rivers and streams (Barata et al. 2005; Puertolas et al. 

2010; Damásio et al. 2011; Prat et al. 2013), the highest TBARS levels recorded in this 

study occurred in Baetis spp. at AR1 in summer. 

Multivariate analysis 

Results suggest that employing a battery of well-established biomarkers, measured in 

different macroinvertebrate taxa with different sensitivities to environmental stressors, 

gives a more complementary and integrative perception of ecosystem health than the use 
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of a single taxon, by encompassing multiple exposure routes, several forms of biological 

integration of environmental cues and distinct taxa sensitivities. However, for a 

continuous cost-effective biological monitoring of rivers, the choice of adequate taxa and 

sampling seasons is relevant. Baetis spp., Chironomidae and especially Calopteryx spp. 

seemed to be more sensitive in detecting subtle gradients of toxic substances and their 

effects than the remaining taxa analysed. These organisms were widespread in the studied 

areas and abundant or bigger sized, providing sufficient biological material for the 

measurement of the whole battery of biomarkers, in most or all sampling sites and 

seasons. 

The PCA done to investigate overall response patterns of Calopteryx spp., Baetis spp. and 

Chironomidae showed that biomarker responses in all taxa were stable across seasons 

(summer and spring) and clearly distinguished Calopteryx spp. from Baetis spp. patterns 

of biological response to contamination. Calopteryx spp. exhibited lower levels of ChE 

and LPO and higher levels of GST, LDH and CAT activities, while Baetis spp. showed 

opposite trends. 

The PCAs of the biomarkers measured in Calopteryx spp. and Chironomidae individually 

clearly discriminated the FR (with low ecological quality) from the AR (higher ecological 

quality). For example, Calopteryx spp. from the FR exhibited inhibition of ChE and CAT, 

as opposed to Calopteryx spp. from the AR. This taxon also showed higher GST and LDH 

activities in the FR compared to AR, particularly at the downstream sites (FR5 and FR6), 

which presented the worst IPtIN scores, as well as higher levels of nutrients. 

Acetylcholinesterase (AChE) belongs to the cholinesterase family of enzymes (ChEs), 

which has been detected in both vertebrates and invertebrates. It acts on the hydrolysis of 

the acetylcholine neurotransmitter at cholinergic synapses and neuromuscular junctions. 

Inhibition of its activity is known to cause neurotoxic effects. Organophosphorus and 

carbamate pesticides are specific AChE inhibitors that cause deleterious effects on the 

target organisms. High inhibition by these anti-cholinesterasic agents leads to death of 

the exposed animals. However, AChE inhibitors can also be inhibited by other pollutants 

(such as some metals and PAHs), contaminants of emerging concern (as 

pharmaceuticals), or even undetermined complex mixtures of contaminants (Payne et al. 

1996; Garcia et al. 2000; Schulz and Liess 2000; Berra et al. 2006; Pestana et al. 2009; 

Domingues et al. 2010; Siebel et al. 2010; Damásio et al. 2011; Santos et al. 2012). CAT 

is one of the enzymes most responsive to reactive oxygen species (ROS) in both 

vertebrates and invertebrates (Halliwell and Gutteridge 1999). Various toxicants, such as 

pesticides, metals (Stohs and Bagghi 1995) and polychlorinated biphenyls (PCBs) 

(Winston and Di Giulio 1991; Orbea et al. 2002), provoke oxidative stress by increasing 

the production of ROS (Barata et al. 2005; Sahan et al. 2010). Oxidative damage occurs 

when the production of ROS and its elimination by the antioxidant defences are 

unbalanced (Halliwell and Gutteridge 1999; Lushchak 2011). The GST enzymatic 

complex acts on detoxification of xenobiotics (e.g. PAHs, mixtures of pollutants, 

pesticides, oils) and is a defence against oxidative damage (Saenz et al. 2010). LDH plays 

a role in the anaerobic energy production, and its induction is an indication that additional 

energy is required to readily deal with the chemical stress caused by exposure to 

contaminants (DeCoen and Janssen 1997; Jo et al. 2001; Rodrigues et al. 2013, 2015). 

Thus, its association with the previous mentioned enzymes is also reasonable, suggesting 

that Calopteryx spp. from the FR, especially at FR5 and FR6, may have been exposed to 

a low concentration of xenobiotic(s) but were able to cope with the exposure by obtaining 

additional energy for antioxidant protection and detoxification processes, since no 
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oxidative damage was observed. Lipid peroxidation, measured in this study as TBARS 

levels, is a very relevant outcome of oxidative stress, which can lead to changes in the 

physico-chemical properties of cellular membranes and deterioration of the cell, which, 

in turn, disrupts vital functions (Rikans and Hornbrook 1997). Higher LPO levels were 

observed in the AR, particularly at the AR1 and AR3 sites, probably as a consequence of 

forest fires that occurred upstream of AR1 and near AR3, suggesting that the organisms 

were under chemical stress. The PCAs also revealed little seasonal variation in the 

biological variables (both the biomarkers and the macroinvertebrate community index), 

suggesting that, under the present climate scenario, monitoring in either season may 

provide sufficient informative data for the weight-of-evidence approach adopted. Future 

work should hence also focus on further investigating possible seasonal gradients of 

response occurring in the AR and FR during these and the other seasons of the year. 

Successive sampling may provide enough samples of Calopteryx spp. or Chironomidae 

(these taxa allowed to discriminate responses between rivers and provided useful 

information to identify specific sampling sites under higher environmental stress) for this 

purpose. 

As to the taxonomic resolution for biomarker analysis, though toxic effects on biota are 

known to be most noticeable at lower levels (Rubal et al. 2009), the identification of 

benthic macroinvertebrate species is extremely time-consuming and expensive (Marshall 

et al. 2006). Also, because of morphological immaturity, some individuals cannot be 

identified to species level; some specimens may also be cryptic or represent little known 

groups (Cook et al. 2008; Liu et al. 2003; Pfrender et al. 2010; Weiss et al. 2014). A good 

example is the immature stages of chironomids. These are usually the most species-

diverse and abundant freshwater macroinvertebrates, but their identification to species or 

even genus level is technically very difficult or impossible using traditional morphology-

based methods (Jones 2008). The present results support the notion that determination of 

biomarkers in higher-level taxa constitutes an expedite, rapid and cost-effective approach, 

useful for their integration in monitoring programmes for ecological quality assessment. 

Globally, the biological information provided by biomarkers is essential to evaluate toxic 

effects and conveys the results of the exposure to various stressors, including known and 

unknown chemicals to which animals are exposed (Guimarães et al. 2011). Finally, 

biological monitoring of AR and FR sites should be continued, in order to verify how the 

state of organisms or ecosystem health is progressing and to take timely mitigation 

actions, if necessary. That would help avoiding that biological effects of contaminants 

may result in irreversible long-term changes, including biodiversity loss due to the 

disappearing of sensitive taxa. 

Conclusions 

Overall, biomarker responses obtained in both studied rivers indicated that sub-lethal 

biological effects may occur in apparently healthy ecosystems, such as the AR (e.g. higher 

LPO levels in Calopteryx spp. and Baetidae spp. at AR1). The results further indicate that 

the use of a multi-biomarker battery, sensitive to water contamination, may give 

information to complement the diagnosis of future ecological impairment or to establish 

reference sites. Results also suggest that a set of well-established biomarkers measured in 

different macroinvertebrate taxa provides a global complementary view of ecosystem 

health, as it integrates several exposure routes and forms of biotic integration of the 

environment, as well as distinct taxa sensitivities. Calopteryx spp., Chironomidae and 
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Baetis spp. and the spring and summer were the most useful taxa and seasons for 

multivariate analysis, which showed distinct patterns of biological response in the three 

taxa. The integrated analysis indicated that the most useful taxa to implement a cost-

effective application of biomarkers for diagnostic purposes would be Calopteryx spp. and 

Chironomidae. These taxa allowed to discriminate responses among rivers and provided 

useful information to identify specific sampling sites under higher environmental stress. 

Looking at these taxa, with a wider distribution, abundant and/or of bigger body size, will 

help minimise problems, such as missing values, high dimensionality and difficulty in 

obtaining complete data for some taxa (resulting from their high sensitivity to 

environmental quality). Each of these taxa presented clear biological response patterns 

for the two rivers studied, which reflected different ecological statuses in line with the 

macroinvertebrate index recommended by the WFD. 
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