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Abstract. The temperature distribution of a Fast Field Cycling 

(FFC) Nuclear Magnetic Resonance (NMR) electromagnet plays 

an important role in the operation of this type of apparatus. The 

designed electromagnet presents a reduced volume and is iron and 

copper based, fulfilling the technical requirements for the 

magnetic field. With this solution, it is possible to increase the 

overall performance in comparison with former similar FFC 

relaxometers. Electromagnet's simulation results evaluating the 

temperature distribution, heating effects and cooling requirements 

are presented. 

 

Key words. Temperature distribution, Electromagnet, 

Relaxometer, Fast Field Cycling. 
 

1. Introduction 
 

Nuclear magnetic resonance is a physical phenomenon 

which occurs when the nuclei of certain atoms are immersed 

in a static magnetic field and exposed to a second oscillating 

magnetic field. Some nuclei experience this phenomenon, 

and others do not, dependent upon whether they possess a 

property called spin. All isotopes that contain an odd 

number of protons and/or neutrons have a nonzero spin, 

making them susceptible to magnetic stimulus and therefore 

suitable for NMR studies. 

In nuclear magnetic resonance, nuclear spins interact with 

the applied external static magnetic field by aligning with it. 

The average alignment reflects a precession around the 

external magnetic field due to their nuclear magnetic 

moment, 𝜇𝑖. This precession has a specific frequency, the 

so called Larmor frequency, which depends on the applied 

field and nuclear species: 

 

𝝑𝑳 =
𝜸

𝟐𝛑
𝑩𝟎 (1) 

 

𝛾 stands for the gyromagnetic ratio of the nucleus. 

The alignment of the net magnetization with the external 

magnetic field can be disturbed by radio frequency pulses. 

After a perturbation the spins realign again with the 

external magnetic in a process called relaxation. 

The set of the Bloch equations describes this phenomenon 

assuming a static magnetic field �⃗⃗� = 𝐵0𝑒𝑧 and 

magnetization �⃗⃗⃗� = 𝑀0𝑒𝑧 [1-3]. 
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    (2) 

 

The time constants T1 and T2 related to the realignment of 

nuclei magnetizations with the external field are called 

relaxation rates and nuclear magnetic resonance 
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experiments are precisely used to acquire frequency 

dependence of relaxation rates. 

The spin-lattice relaxation time, T1 is the time constant for 

the physical processes responsible for the relaxation of the 

components of the nuclear spin magnetization vector �⃗⃗⃗� 

parallel to the external magnetic field, 𝐵0⃗⃗⃗⃗ ⃗ (z component, 

also named longitudinal component). Values of T1 range 

from milliseconds to several seconds [4-6]. 

Spin-spin relaxation time, T2 is at its most fundamental level 

the evolution time towards the decoherence of the 

transverse nuclear spin magnetization. Fluctuations of the 

local magnetic field lead to random variations in the 

instantaneous NMR precession frequency of different spins. 

As a result, the initial phase coherence of the nuclear spins 

is lost, until eventually the phases are disordered and there 

is no net xy magnetization. 

The Fast Field Cycling (FFC) equipment proposed in this 

document, will only measure spin-lattice relaxation time, 

T1. 

In a typical field-cycling NMR relaxometry experiment the 

sample is initially placed on a magnetic field, as high as 

possible, where it is polarized. This initial magnetic field is 

called polarization field, BoP. Typically, it is oriented with 

the z axis, and forces the nuclear spin magnetization to be 

along, �⃗⃗⃗� = 𝑀0𝑒𝑧. Following this, the magnetic field is 

switched down to a lower value BoE. In this new applied 

field, evolution field, the magnetization evolves to a new 

equilibrium, M(BE). 

The final stage of the cycle, is the detection stage. The 

magnetic field is again increased to a high value, BoD, with 

sufficient homogeneity to allow NMR signal detection, 

along with a /2 RF pulse, rotating the magnetization to the 

xy plane. A recycle delay follows, where thermal 

equilibrium and polarization is reset, in order to begin the 

next cycle. 

Several cycles will occur with different parameters in order 

to observe the behavior of the spin system. As the sample 

has to experience different intensities of Bo field, there are 

two methods to achieve this. Mechanically moving the 

sample between positions of different magnetic fields, or to 

change the electrical current applied to the magnet in order 

to vary the intensity of the field. Despite the difficulties of 

achieving a short steady transition (3-100ms) between 

fields, electronically switched field cycling is the only 

known alternative for measuring the shortest relaxation 

times. 

FFC magnets are designed and optimized using simulation 

tools for their thermal and electromagnetic behavior. These 

computational tools are based on the finite element method 

and constitute an important step towards the construction of 

the magnet. 

In this work, the computational applications aimed at the 

thermal behavior of a magnet with a parallelepiped 

structure, from which the need for cooling by forced 

convection is easily understood. 

In this context, and using the analysis carried out, it was 

possible to move towards an FFC magnet with dimensions 

smaller than those developed in previous generations. This 

advance aim to allow the use of the FFC NMR technique in 

industrial development laboratories. In addition, efficient 

cooling of the magnet allows to increase the magnetic field 

and, thus, to allow the use of the technique to study the 

molecular dynamics of more samples. 

 

2. Heating Effects 
 

The core component of the FFC equipment is the 

electromagnet.  The electromagnet geometry will be based 

on the previous equipment developed in IST [7-10]. This 

geometry is composed by transformer E-shaped plates. 

These plates are piled together in order to avoid induced 

currents. The electromagnet consists of two symmetrical 

E shape plates brought together with a slight cut on each 

of the middle feet where the sample will be 

accommodated. The electromagnet's height is equal to the 

middle feet length in order to accommodate squared coils. 

In Fig. 1 the electromagnet can be observed. 

The desired parameters of the electromagnet were 

designed and compiled. Two additional coils were added 

to serve the purpose of auxiliary coils, which compensate 

permanent magnetizations of the electromagnet and the 

earth magnetic field. These coils are composed of 430 

turns each with a copper wire of 0:25 mm diameter. 

 

 
Fig. 1.  Electromagnet structure. 
 

To evaluate the total resistance of the coils, the 

experimental resistance is 9.6 ± 0.1 Ω compared to the 9.3 

Ω theoretically calculated. 

The inductance of the coils come as an important 

parameter to measure given its relation with the current 

variations necessary for field cycling. A direct 

measurement of the inductance was performed for all the 

six coils with an Inductance-meter which revealed: L = 

544.5 ± 0:1 mH. The auxiliary coils both measured an 

inductance of L = 134.2 ± 0.1 mH. 

The magnetic field creation leads to heating effects. This 

heating effects are caused by Joule losses in the coils and 

need to be assessed in order to avoid damage or melting of 

the components of the system. So one may evaluate this 

effect and understand the requirements of the cooling 

system by simulation. The Joule heating dissipation of 

then coils in the chosen case of an applied current of 3 A 

to the coils is 84 W requiring a fan as shown in Fig. 2. 
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Fig. 2.  Magnet enclosure with all parts. 

 

The coils will typically only be under such current in the 

polarization and detection phase of a fast field cycle a 

dissipation equivalent of constant 3 A happens when 

measuring the spin lattice relaxation time for a field of 0:33 

T. By considering this case we are also able to overestimate 

the cooling requirements allowing to design a reliable 

cooling system. A stationary study will be performed to 

understand the equilibrium of the system when a 3 A current 

is applied over large ranges of time, by simulation based on 

the Finite Element Method [11-18]. 

The defined problem for the Joule Heating effect can be 

summed up to: The electromagnet geometry with six coils 

dissipate a total of 84 W surrounded by air at a temperature 

of 20 ºC. The initial temperature of the system is 20 ºC , the 

heat coefficient between the air and the geometry is  

5 W=(m2K) and the thermal conduction between the iron 

and cooper is defined by the materials. Based on these 

conditions, the result for the temperature distribution can be 

observed in Fig. 3 and Fig. 4. 

 

 
Fig. 3.  Temperature Volume plot, 3D view (the axis scale is 

presented in cm). 
 

The heating effect reaches an equilibrium temperature of 

302 K. The hottest parts correspond to the coils and the 

sample site area, with lower temperatures in the borders of 

the electromagnet. Such differences are not significant 

given the high conductivity of the iron. The simulation 

shows the expected effects and confirm the need of a 

cooling system in order to avoid damages to the 

equipment. 

 

 
Fig. 4.  Temperature Volume plot, top view. 
 

3. Cooling of the electromagnet 
 

It is infeasible to operate the fast field cycling 

measurements for extended periods of time without a 

proper cooling system. 

An air cooling flow will be applied to the simulation so 

one may understand and determine the flow requirements 

to keep the system between a safe temperature range. 

Given the geometry of the problem it is of interest that the 

air performs a vertical path so the air flows through the 

center of the geometry and the surface of the coils where 

the heat is generated. 

In the simulation, it is considered the cooling due to: 

“Laminar Flow” and “Heat Transfer in Solids”. In the 

Laminar Flow the domain selected is the surrounding air 

box around the electromagnet and two approaches are 

defined. The first allows for the free exit of the flow and is 

defined as the top surface of the air box, while the last 

represents the cold air flow input that will cool the system, 

and is defined as the bottom surface of the box. A vertical 

flow is ensured by these definitions. 

The second approach, “Heat transfer in Solids”, 

automatically considers the heat transfer from the coils to 

the iron electromagnet. A heat transfer rate is calculated 

depending on the flow instead of the “Convective 

Cooling” in the Joule Heating which requires a defined 

fixed heat transfer. 

The last and important consideration is the ”Mesh”. Given 

the air flow and the sharp edges of the geometry high 

gradients in velocity fields, and pressure are expected.  

This defines the physics of the cooling problem, but a 

few observations should be noted: 

- It is desirable that the flow performs a vertical path, but 

this does not mean the flow begins it path vertically. It is 

possible that an horizontal inlet flow is used, and the flow 

is forced to perform a vertical path. Since the cooling 

system is not yet defined, an approximation is required for 

the air path. A total vertical path is suitable given that the 

air will indeed flow through the inner geometry. 
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- In the real problem the flow will not assume a laminar 

flow, but a quite turbulent one given the geometry and the 

changes the orientation of the flow. Turbulent flow is 

extremely expensive in terms of computational power, and 

would not be feasible to simulate given the available 

computing power of the simulation machine. 

Laminar flow provides heat transfer only through 

conduction because in laminar flow the air is flowing in 

sheets with little mixing between them. The layer of air that 

touches the geometry is heated. That layer also does not mix 

with the other layers of air above it. The heat can only be 

transferred from one layer to the next by contact 

(conduction). The turbulent flow has no sheets. This means 

that more fresh cold gas will contact the surface resulting in 

a faster heat transfer rate due to a larger average temperature 

difference between the geometry and air. Given this the 

laminar flow consideration leads to an over estimative of the 

required flow, which is desirable in order to allow for 

several hours of NMR measurements. The ”Inlet” and 

”open boundary” are an exaggeration in terms of the 

available area since a compact equipment is desired - most 

likely the flow will both enter and exit by considerable 

smaller areas. The exaggeration of the inlet area is not a 

considerable effect since the majority of the air is forced 

through the middle of the geometry and the smaller the inlet 

area the more turbulent will be the flow, leading to 

improved heat transfer to the air. Finally, the exaggeration 

in the outlet area isn’t considered significant since the flow 

has already gone through electromagnet and performed its 

cooling effect. 

In order to evaluate the air flow cooling effect different flow 

rates are computed. The software allows for parametric 

swept of variables and the considered values of the flow rate 

are : 57.6; 80; 92; 108; 158 and 170 m3/h. This was obtained 

after research and evaluation of different available fans in 

the market that could be implemented in this case. The 

defined problem for the cooling effect can be summed up 

to: The electromagnet geometry with six coupled coils, each 

dissipating a total of 14 W at an initial temperature of 20 ºC. 

An air laminar flow is immediately forced through the 

bottom of the electromagnet (in an area slightly bigger than 

the electromagnet’s plane area) and leaves through the top 

(equal area of the inlet) cooling the geometry. The inlet 

forces air at 20 º C and has a defined flow rate (m3/s). 

The results of the computation are 3D plots of three physical 

quantities: pressure, temperature and air flow velocity. The 

direction of the flow can be evaluated by the velocity plots. 

 

 
Fig. 5.  “Arrow Volume” plot and two ”Slice” plots. 
 

The axis scale is presented in m. The black arrows 

represent the air path, which flows from bottom to top 

through the geometry (Fig. 5). The ”Slice” plots show a 

high velocity in the middle of the geometry (sample site). 

In the lateral view of a single centered ”Slice” plot allows 

better observation of the flow velocity (Fig. 6). The flow 

assumes the highest velocity in the exit at the center and 

limits of the geometry. The cooling effects occurs mainly 

in the bottom surface of the coils and lateral surfaces of the 

outer coils since higher velocity implies enhanced heat 

transfer. Very low cooling occurs in the inner surfaces of 

the coils. An increase in distance separating the coils 

would favor the air cooling.  

 
Fig. 6.  Geometry centered ”Slice” plot, side view. 

 

The temperature data proves that an effective cooling 

occurs with the air flow method. For a flow rate of 0:03 

m3/s the maximum temperature in the equilibrium 

corresponds to 46 ºC and a minimum of 32 ºC in the 

electromagnet. 
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Fig. 7.  Temperature ”Surface” plot. The axis scale is presented 

in m. 

 

The highest temperature occurs in the middle of the 

electromagnet where the coils are placed. A relative colder 

area is observed in the outer edges without being a 

significant gradient, proving the high thermal conductivity 

of the electromagnet. This definitely is an important cooling 

factor since it spreads out the heat increasing the total 

transferred energy to the air by increasing the contact area 

where a temperature gradient exists between electromagnet 

- air. Such temperatures are acceptable in the perspective 

that no damage is inflicted to the system when such flow 

rate is applied for a constant current of 3 A. The temperature 

plot for a 0.03 m3/s inlet flow rate can be seen in Fig. 7 and 

Fig. 8. The bottom view of the same plot shows that this side 

benefits of lower temperature. This is explained by the fact 

that is the surface that first interacts with the air where it is 

at its coldest. 

 
Fig. 8.  Temperature ”Surface” plot, bottom view. The axis scale 

is presented in m. 

 

Other flow rates were also computed where the same 

conclusions are observed but with different equilibrium 

temperatures. The equilibrium temperatures for different 

flow rates are compiled in Table I. 

 

Table I. Maximum (Max. T.) and minimum (Min. T.) equilibrium 

temperature in the electromagnet for a given flow rate. 

Flow [m3/s] Flow [m3/h] Max. T. [ºC] Min. T. [ºC] 

0.016 57.6 64.2 49.9 

0.022 80 53.4 39.4 

0.026 92 49.3 35.6 

0.03 108 45.9 32.4 

0.044 158 38.9 26.6 

0.047 170 37.9 25.9 

 

The last set of plots correspond to the Pressure. Although 

this is not a crucial parameter to consider since all the 

system will be constituted of solid materials that are not 

significantly affected by pressure gradients it can be seen 

as a verification step of the correct definition of the 

problem. On one hand a higher pressure is expected in the 

bottom where lower velocities occurs on the other hand 

lower pressure for the top where the air assumes its higher 

velocity. This is confirmed by the ”Contour line” plot of 

Fig. 9. 

 

 
Fig. 9: Pressure ”Contour line” plot, side view. 

 

4.  Conclusion 
 

For a FFC NMR magnet operating within the magnetic 

field range of 0 and 0:33 T, the thermal effects and cooling 

requirements were evaluated allowing for the projection of 

feasible systems. The computational simulation allowed to 

estimate air flow rates for safe measurements over 

extended periods of time. The sample heating system was 

projected and some components acquired and defined, 

which guarantees NMR resonance conditions. 

The advantages of the developed FFC magnet relatively to 

the generality of magnets are: reduced electromagnet's 

volume and weight, low power consumption, high 

homogeneity prole, feasible and low power cooling 

system. [19] 
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