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ABSTRACT

This paper presents a multi-core H.264/AVC encoder suitable
for implementations in small and medium complexity em-
bedded systems. The proposed structure results from an ef-
ficient hardware/software co-design methodology, where the
encoder software application is highly optimized and struc-
tured in a very modular and efficient manner, so as to al-
low its most complex and time consuming operations to be
offloaded to dedicated hardware accelerators. The consid-
ered methodology adopts a simple and efficient core inter-
connection mechanism to easily allow the inclusion and the
removal of such optimized processing cores. Experimental re-
sults obtained with the implementation in a Virtex4 FPGA of
an H.264/AVC encoder using an ASIP IP core as a ME hard-
ware accelerator have proven the advantages of this methodol-
ogy. For the considered system, speedup factors greater than
15 were obtained with a very modest increase of the involved
hardware resources.

Index Terms— Hardware/software co-design, Multi-
core, Embedded systems, Video coding, H.264/AVC

1. INTRODUCTION

The H.264/AVC standard is nowadays the de-facto standard
for video applications, due to its high coding efficiency and
flexibility[1]. Such powerful characteristics are mostly owed
to: i) the extensive set of novel coding tools introduced in
H.264/AVC, such as inter-prediction using multiple reference
frames and variable block sizes, quarter-pixel precision for
the Motion Estimation (ME) and Motion Compensation (MC)
techniques, several intra-prediction modes, improved 4×4 in-
teger transform, or entropy coding techniques; ii) the several
combinations of profiles and levels that are made available by
this standard, which allow to select the most suitable encoder
configuration for a given application.

This work was supported by the Portuguese Foundation for Science and
for Technology (INESC-ID multiannual funding) through the PIDDAC Pro-
gram funds and by the PROTEC Program funds under the research grant
SFRH / PROTEC / 50152 / 2009.

For the most typical applications usually implemented in
small and medium complexity embedded systems, such as
video telephony, video conferencing or low resolution video
recording (e.g.: web cameras), the baseline and main profiles
are typically adopted. This design option allows discarding
the most compute intensive and memory consuming opera-
tions of the video encoder, and therefore to fine tune the video
encoder implementation to the more modest computational
and memory capabilities offered by this class of devices. Nev-
ertheless, the increased computational complexity of the cod-
ing tools that are considered in these profiles still imposes
very tight constraints to such implementations. Consequently,
the development of embedded video coding systems support-
ing the above mentioned applications usually results from an
efficient hardware/software co-design approach.

In this procedure, both the hardware and the software
are designed together in order to make sure that the target
application functions properly and meets the performance
goals. Typically, in modern multimedia embedded systems
the hardware consists of a heterogeneous multi-core struc-
ture populated with one General Purpose Processor (GPP)
and multiple specialized hardware accelerators that imple-
ment the most critical operations. The partitioning and load
balancing issues are addressed by the software component,
which is designed and compiled onto the target processing
structure in the most optimized way as possible. By follow-
ing this hardware/software co-design approach it becomes
possible to achieve the intended global system performance,
provided that the application execution can be efficiently par-
allelized and that the hardware accelerators offer effective
speedup values.

In the latter years, several dedicated and programmable
hardware structures have been proposed as hardware ac-
celerators for different operations of the H.264/AVC video
encoder [2, 3, 4]. The reported speedup values for such
structures are generally high, and quite often very impres-
sive. Nevertheless, they only focus on the implementation
of the considered algorithm and on its execution within the
hardware structure, disregarding the problem of embedding
the accelerator in the overall multi-core hardware structure.
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Such integration task consists of two different aspects. On
the one hand, it addresses the interconnection of the hard-
ware accelerator with the multi-core structure, which may
require an extra effort to develop supplementary circuitry so
as to adapt the accelerator interface to the existing multi-core
communication structure. In fact, this is a quite frequent task,
owing to the fact that hardware accelerators typically present
custom and optimized specific interfaces. On the other hand,
it considers the development of an efficient software device
driver for the hardware accelerator, in order to being possible
to have fast, low latency and sustained communication with
such processing core within the multi-core structure.

Although core integration might seem like an implemen-
tation specific problem, its impact on the effective speedup
values provided by the hardware accelerators is very signif-
icant, since it greatly restricts the parallel execution of the
encoder tasks. Such performance impact in the global system
speedup (S) can be evaluated using Eq. 1, which presents Am-
dahl’s law taking into consideration not only the speedup pro-
vided by the hardware accelerator (SHA) and its contribution
to the whole system (F), but also the parallelization overhead
and communication time (κ0).

S =
1

(1−F)+ F
SHA

+κ0
(1)

To reduce κ0 and minimize the core integration effort, stan-
dardized interconnection and communication structures can
be adopted in the design of the multi-core hardware structure.
Such design option further allows the reuse of the hardware
accelerator in distinct systems, as well as it eases its runtime
insertion and removal in the multi-core structure, which is
highly relevant for reconfigurable platforms such as the ones
supporting Reconfigurable Video Coding (RVC).

Several different bus solutions are typically available for
small and medium scale embedded systems that can be used
to achieve these goals, such as the ARM Advanced Micro-
controller Bus Architecture (AMBA), the IBM Core Connect
bus, the Altera Avalon Interface Bus or the OpenCores Wish-
bone bus. Despite having different architectures and inter-
faces and supporting distinct protocols, the communication
performance levels provided by each of these buses are some-
what similar. Hence, the selection of a particular bus intercon-
nection structure in the implementation of a given embedded
system is often a consequence of the bus interface that is al-
ready available in the GPP of such system. For this reason,
the widespread usage of ARM processors facilitated the grad-
ual emergence of the royalty free AMBA bus has one of the
most efficient and flexible bus type solutions in commercial
embedded systems. Nevertheless, the specific bus protocols
and interconnection structures provided by this bus for both
high performance and low power and complex systems have
significantly contributed to this end.

This paper presents an efficient hardware/software co-
design methodology to develop multi-core H.264/AVC en-

coders using the AMBA bus. Such methodology addresses
not only the realization of a modular and optimized software
application for video coding in medium complexity embed-
ded systems, but also the design of the supporting multi-core
structure. In addition, the proposed methodology also allows
to easily adapt the interface of a custom hardware accelerator
to the AMBA bus interface. The experimental results ob-
tained with the implementation of an H.264/AVC encoder us-
ing an Application Specific Instruction Set Processor (ASIP)
core as a ME hardware accelerator are very promising and
demonstrate the advantages of this methodology.

This paper is organized as follows. In Section 2 the
hardware/software partitioning issue is discussed and the
basic components of the multi-core architecture are intro-
duced. Sections 3 and 4 present the hardware and software
components of the proposed H.264/AVC video encoder, re-
spectively. Experimental results are provided in Section 5
and Section 6 concludes the paper.

2. HARDWARE/SOFTWARE PARTITIONING

Partitioning a design into its hardware and software compo-
nents is the first and one of the most critical tasks in the design
process of an embedded system. At the hardware level, this
usually consists in the selection (and quite often in the im-
plementation) of the system Central Processing Unit (CPU),
memory and peripheral devices, as well as the design of an in-
terconnection network to accommodate all the devices. These
are time consuming and error prone tasks that have became
increasingly difficult and far too expensive, due to the in-
volved complexity of modern embedded systems and the tight
constraints on area, power consumption and performance that
system developers face. As a result, modern hardware designs
are typically based on pre-designed and pre-tested Intellectual
Property (IP) cores to mitigate these issues.

Soft-core processors are HDL models of microproces-
sors that can be customized and implemented as IP cores.
They provide several advantages over custom designed pro-
cessors, such as reduced cost, increased flexibility and easy
customization (to better comply with the target application
requirements), platform and technology independency and
greater immunity to obsolescence. As a result, the use of
soft-core processors has widespread in the embedded systems
domain. Several different soft-core processors are nowadays
provided by commercial vendors and open source commu-
nities, including the Altera Nios II processor, the Xilinx Mi-
croBlaze processor, the Sun OpenSPARC, the Gaisler Leon3
processor and the OpenCores OpenRISC processor.

Despite their general-purpose nature, each of these soft-
cores offers different performance characteristics and features
that are suitable for some specific applications [5]. For exam-
ple, the Nios II and the MicroBlaze processors are specifically
optimized for FPGA implementations. On the other hand,
both the OpenRISC and the Leon3 processors are free soft-
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cores with similar performance levels, but that can be imple-
mented both in FPGA and ASIC platforms. Furthermore, the
Leon3 processor presents two other characteristics that give it
significant advantages over the other soft-cores: i) it comes
with a vast library of peripheral IP cores that can be used
without additional costs to implement embedded systems; ii)
it makes use of the well-known and extensively used AMBA
bus to interface the processor with both on-chip and off-chip
memories and other peripherals. As a result, the proposed
hardware/software co-design methodology is herein demon-
strated using a Leon3 processor as the system CPU and an
FPGA device as the prototyping platform. Nonetheless, it can
be successfully applied using any other soft-core processor
and implementation technology.

In what concerns the software component of the embed-
ded system, it addresses the design of a program to imple-
ment the considered application algorithms and to support
the communication between all the system hardware compo-
nents. Such development task is usually realized in two dis-
tinct phases. The first phase, which is quite independent of
the system hardware component, consists in the description
of the application algorithm using a software programming
language. This involves the decomposition of the application
into elementary functions, which are subsequently converted
into functional modules and coded. Then, code profiling tools
are usually applied to assess the performance and memory re-
quirements of such functional modules. By using such ap-
proach, system designers are able to identify the most critical
functional modules of the application during the earlier de-
velopment stages and promptly optimize them so as to com-
ply with the application specification. For embedded system
applications, one of the commonly adopted optimization tech-
niques is in fact the use of hardware accelerators to implement
the most complex and time consuming functional modules.
On the other hand, the second phase of the software design
procedure takes place only after the system hardware com-
ponent has been completely specified. It concerns not only
the coding of the developed algorithms in an especially effi-
cient manner, by taking into consideration the system hard-
ware components and using the most complex and efficient
modes of the software compiler tools, but also the data trans-
fers between all hardware components required for the proper
system operation. In addition, it also encompasses the joint
test of the hardware and software components after its inte-
gration to guarantee the desired system performance levels.

In the last few years, several software applications of
H.264/AVC encoders have been proposed. Among them, the
JM versions of the reference software (or some adaptations
of it) are the most commonly used. Moreover, several com-
plexity analyses of the H.264/AVC standard have also been
reported in literature [1], which have allowed to identify the
most critical functional blocks of a H.264/AVC encoder. The
results of such studies, which are summarized in Fig. 1, have
demonstrated that the Inter Prediction module is undoubtedly

Inter Prediction 

87,8%

Intra Prediction 

1,0%

Transform & 

Quatization 1,6%

Interpolation 2,6%
Deblocking 

Filtering  0,5%CABAC 0,5%
Others 7,6%

Fig. 1. Relative complexity requirements of the H.264/AVC
coding software.

the most time consuming function of a video encoder. Conse-
quently, the proposed hardware/software co-design method-
ology will be applied to implement a multi-core encoder con-
formant to the H.264/AVC reference software model (version
14), where the ME operation will be offloaded to a hardware
accelerator in order to improve the encoder performance. A
Leon3 processor is used to realize all the remaining oper-
ations of the encoder. Nevertheless, it is worth noting that
the same design methodology can equally be applied when
considering different video coding software applications and
hardware accelerators.

3. MULTI-CORE PROCESSOR FOR VIDEO CODING

The hardware component of the proposed H.264/AVC en-
coder consists of a multi-core processing structure optimized
for small and medium complexity embedded system imple-
mentations. In this system, the CPU consists of a Leon3 soft-
core processor that was configured to give support to most
operations involved in the video encoder software applica-
tion. Besides this CPU, the multi-core architecture also in-
cludes additional processing units capable of executing other
operations of the video encoder in a more efficient manner
and in parallel with the CPU, such as the estimation of Mo-
tion Vectors (MVs) for Inter Prediction coding or user I/O
interfacing. In the following, more detailed descriptions of
the Leon3 processor and of the IP core adopted as the sys-
tem ME processor are presented. The adopted methodology
to efficiently integrate such ME hardware accelerator in the
proposed multi-core structure is also revealed.

3.1. The Leon3 CPU

The Leon3 processor is one of the most used free proces-
sor soft-cores available today [5]. It has been specifically
designed for embedded applications by the European Space
Agency, although nowadays it is maintained by Gaisler Re-
search. It consists of a highly configurable and fully synthe-
sizable core written in VHDL, implementing a 32-bit RISC
architecture conforming to the SPARC v8 definition.
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Fig. 2. Block diagram of the conceived multi-core processor
for video coding.

This processor soft-core is based on a 7-stage instruc-
tion pipeline Harvard micro-architecture with 32-bit internal
registers. The core functionality can be easily and greatly ex-
tended by means of the AMBA-2.0 AHB/APB on-chip buses.
The Advanced High-performance Bus (AHB) is used to con-
nect the Leon3 processor with high-speed controllers, such
as the cache and the memory controllers. This programmable
memory controller provides interfaces to PROM, SRAM and
SDRAM chips, and supports external memory access and
memory mapped I/O operation. On the other hand, the Ad-
vanced Peripheral Bus (APB) is used to access most on-chip
peripherals and is connected to the Leon3 processor via an
AHB/APB Bridge.

The Leon3 processor considered in this work is based on
version gpl-1.0.20-b3403 of the GRLIB and results from a
careful customization process to guarantee the desired perfor-
mance levels and minimize the hardware resources required
for its implementation. Hence, the adopted processor config-
uration incorporates a hardware divide and multiply unit, an
interrupt controller, separate data and instruction associative
caches and an SRAM memory controller, all with AMBA-
AHB interface. Moreover, it also encompasses the DSU and
JTAG controllers for FPGA/PROM programming and debug-
ging purposes, a RS-232 UART for I/O operations and user
interaction, two 32-bit timers, and a hardware accelerator to
realize the ME operation. All these peripherals are connected
to the system AMBA-APB bus, as it can be seen in Fig. 2.

3.2. The ME hardware accelerator

The ME unit of the proposed multi-core video encoder con-
sists of an efficient ASIP IP core that was recently pro-
posed [4]. Such processing structure significantly optimizes
the ME operation, by allowing the programming of a broad
class of powerful, fast and/or adaptive ME search algorithms.
Moreover, its increased flexibility supports the implementa-
tion of the most used Macroblock structures in block match-
ing algorithms, i.e., the traditional fixed 16× 16 pixels block
size, as well as any of the variable block size structures
adopted in the H.264/AVC standard [1].

To achieve these goals, this ASIP implements a minimum

and specialized instruction set supported by an optimized dat-
apath, that includes a specialized arithmetic unit to efficiently
compute the Sum of Absolute Differences (SAD) similarity
function for block matching algorithms. The efficiency of this
functional unit is owed both to the simplicity of its internal
architecture and to the implementation of early-termination
techniques in the ME procedure, which allow it to provide for
a reduction in the ME computation time of up to 50%. The
processor datapath also includes a dedicated Address Genera-
tion Unit (AGU), that is responsible for fetching all the pixels
involved in the estimation of a MV and to store them in lo-
cal scratchpad memories. This feature allows exploiting the
data locality in the ME procedure and to minimize the com-
munication between the ASIP and the main frame memory of
the encoding system. The AGU is also capable of working
in parallel with the remaining functional units of the ASIP,
thus providing concurrent operation for the block matching
and the data transfer tasks, and therefore to further speedup
the ME operation.

Regarding to the interface of the ASIP IP core, it presents
a quite reduced number of interface signals and uses very
simple communication protocols to exchange data and ac-
cept commands from external devices. This design feature
not only eases the implementation in ASIC of such an IP
core, but also permits the straightforward integration of such
chips in almost any video coding platform. However, such
enormous flexibility also inflicts some penalty in the effective
speedup value provided by this specialized processing struc-
ture for two main reasons. Firstly, due to the diminished width
of the I/O data bus (8-bit wide) that significantly constraints
the communication bandwidth to the core. Secondly, due to
the use of full interlocked protocols for all communication
operations, which greatly delays the data transfer operations.
As a result, several modifications must be introduced to the
interface of such ASIP IP core, so that it can be efficiently
integrated in the proposed multi-core as a ME hardware ac-
celerator.

3.3. Interconnection strategy

Computational demanding embedded systems can have their
functionality optimized or extended by making use of hard-
ware accelerators. In the particular case of the Leon3 proces-
sor, such accelerators can be integrated in the system archi-
tecture either as Leon3 co-processors (a single co-processor
is allowed per Leon3 core) or through the AMBA-2.0 AHB
and APB on-chip buses. However, the bus integration strategy
is often highly preferable, due to the “bus-centric” nature of
Leon3 processor systems. Moreover, this strategy also allows
a less complex and time consuming integration of existing IP
cores, which can be reutilized from other system designs.

The AMBA-2.0 AHB interface addresses the require-
ments of high-performance designs. It supports multiple bus
masters and enables a highly efficient interconnection be-
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tween them in a single frequency system. Several different
features are provided by this bus specification to guarantee
its high-performance, namely: wide data bus configurations
(128/64/32 bits), burst transfers, split transactions, single
clock edge operation, etc. On the other hand, the AMBA-2.0
APB interface is optimized for minimal power consumption
and reduced interface complexity. Hence, it appears as a local
secondary bus of the AHB interface to isolate the low band-
width transactions necessary to access the peripheral config-
uration registers and all data traffic involving low bandwidth
peripherals. Revision 2.0 of the APB specification introduces
significant changes that greatly improve the performance and
flexibility of this bus interface. More specifically, after revi-
sion 2.0 it became easier to achieve much higher operating
frequencies for the APB peripherals.

For the particular case of the proposed multi-core hard-
ware structure for video coding either one of the two AMBA-
2.0 interfaces can be used. Nevertheless, since a single hard-
ware accelerator is considered in this system and owing to
the reduced amount of data to be transferred between the ME
IP core and the main encoding system [4], the APB interface
outcomes as the optimal choice in terms of integration com-
plexity and performance.

The adaptation of the ASIP IP core introduced in subsec-
tion 3.2 to the AMBA-2.0 APB bus was realized in three dif-
ferent steps. Firstly, the programming interface of the APB
ME IP core was specified by taking into consideration the
existing interface signals of the ASIP and the commands re-
quired for its operation. Such interface is depicted in Fig. 3
and encompasses three different sets of memory mapped reg-
isters for a complete system interaction with the core. The
set/clear control registers and the core status register provide
the necessary means to control and evaluate the core opera-
tion, respectively. The Address, Data Input and Data Output
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Fig. 3. Multi-core processor memory map for the APB pe-
ripherals and the ME IP core user interface.
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Fig. 4. Block diagram of the APB ME IP core.

registers allow to upload the pixel data and the core firmware,
i.e., the ME algorithm implemented by the processor, to the
ASIP. Finally, the remaining three 32-bit registers are used
to retrieve the most important output results of the ME oper-
ation: the best matching MV coordinates and its correspond-
ing SAD value. The memory region identified as Reserved in
Fig. 3 hides a set of memory mapped registers from the user
interface that can be used for debugging the core operation in
run-time.

The second step of the implemented interconnection strat-
egy focused on a set of optimizations to the ASIP motion es-
timator in order to increase its communication bandwidth. In
this scope, the ASIP interface had its data bus width upgraded
to 32-bits, which also imposed some adjustments in the de-
sign of the processor’s AGU. Nonetheless, other very im-
portant changes were also introduced in the AGU, aiming at
some optimizations of the implemented communication pro-
tocols. As a result of such modifications, the full interlocked
protocols were discontinued and data read/write operations
are now supported using plain load/store instructions over the
Data Input and Data Output core interface registers.

The last step in the development of the APB ME hard-
ware accelerator consisted in the design of a hardware cir-
cuit to adapt the AMBA APB interface signals to the ASIP
IP core interface. Such APB wrapper is composed mostly
by hardware registers and simple control logic (e.g.: address
decoders and data multiplexers), which support the user pro-
gramming interface depicted in Fig. 3 and implement the APB
bus protocol. The same circuitry also gives support to the run-
time debug facility that was previously mentioned, by mak-
ing available two hardware breakpoints and the usual step,
goto and run commands which is why it is identified as In-
Circuit Emulator (ICE) in Fig. 4. In addition, the conceived
APB wrapper also includes a local clock generator module in
order to enable the ME hardware accelerator to operate at a
different frequency than the system’s CPU and AMBA inter-
faces.

4. THE P264 VIDEO CODING SOFTWARE

The software component of the proposed video encoder is
based on a parallel programming platform for H.264/AVC
video encoders that has been recently proposed in the litera-
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ture: the p264 [6]. The p264 implementation herein described
is intended for embedded system applications. Consequently,
it presents some modifications to its base software description
so as to improve its performance for such class of systems.

In its original distribution, the p264 is a flexible and highly
modular parallel framework derived from version JM14.0 of
the H.264/AVC Reference Software Model. It aims at pro-
viding efficient implementations of video encoders in multi-
core systems, while still maintaining full compliancy with the
original reference encoder. To achieve such goals, and by
comparison with the H.264/AVC Reference Software Model,
the p264 presents several improvements and optimizations
in its most elementary algorithms and functions that signif-
icantly increase its performance levels and reduce the appli-
cation memory requirements. For embedded system imple-
mentations, these are very important issues due to the mod-
est computation and memory capabilities offered by most of
these systems.

Among all the modifications that were introduced in the
p264, there are two particular aspects that are worth highlight-
ing. First of all, the redesign of all its most important data
structures in order to allow the cache access patterns to be
efficiently exploited. This task consisted not only in the reor-
ganization of such data structures, but also in its resizing and
consequent shrinking, to guarantee maximum exploitation of
the spatial and temporal locality properties of caches. The
second aspect concerns to the most important code improve-
ments that were performed in p264 to minimize code redun-
dancy and speedup the program execution. In this scope, the
several software modules of the encoder were re-organized
in a more compact and modular way, which also involved
a careful cleaning of the code and reutilization of common
functions to discard redundant and pointless time consuming
operations. Furthermore, a set of initialization functions was
also made available for each software module. Such func-
tions minimize the time consumed by control tasks during the
video encoding operation, by pre-computing and gathering all
the required data in its local structures. This strategy also in-
cluded the adaptation of the memory allocation mechanism to
static memory allocations.

Other more specific modifications that were also required
to be introduced in the p264 software platform in order to
better adapt it to the embedded system application realized in
this work focused the interaction with the hardware acceler-
ators. More specifically, it consisted in the development of
modular and low complexity device drivers for the hardware
accelerators, based on a simple yet effective Application Pro-
gramming Interface (API). Due to the modularity of both the
p264 and of the proposed device driver, the developed API
allows to easily replace the original software implementation
of any functional module of the video encoder application by
a system call to its corresponding hardware accelerator. Con-
sequently, a special attention was given in the development
of all API functions concerning the data transfers to the hard-

Table 1. Implementation results of the multi-core processor
in the Xilinx Virtex4 XC4VLX100.

Unit Leon3 ME IP Multi-core
Uniprocessor Core Processor

Slices 7615 15% 1272 2% 8594 17%
LUTs 14458 14% 2325 2% 16309 16%
BRAMs 32 13% 10 4% 42 17%
DCMs 1 8% 1 8% 2 16%
DSP48 1 1% 2 2% 3 3%
Frequency 60 MHz 90 MHz 60/90 MHz

Table 2. Implementation results of the ME IP core in the
Xilinx Virtex4 XC4VLX100.

Unit ME ASIP ICE
Slices 920 1% 558 1%
LUTs 1334 1% 994 1%
BRAMs 10 4% 0 0%
DCMs 0 0% 0 0%
DSP48 2 2% 0 0%
Frequency 90 MHz 675 MHz

ware accelerator, so as to guarantee the optimal efficiency and
maximize the speedup provided by such structure.

5. IMPLEMENTATION AND EXPERIMENTAL
RESULTS

The functionality of the proposed multi-core H.264/AVC
video encoder was properly validated in a practical realiza-
tion based on FPGA technology. At the same time, such
implementation was also used to assess the performance
gains provided by the presented hardware/software co-design
methodology. The considered implementation platform con-
sisted in the GR-CPCI-XC4V development board from Pen-
der Electronic Design. Such development system includes a
Virtex4 XC4VLX100 FPGA device from Xilinx, a 133 MHz
256 MB SRAM memory bank, and several peripherals for
control, communication and storage purposes. The imple-
mented video encoder makes use of some of these resources,
such as the on-board FPGA configuration PROMs, the JTAG
interface and the standard RS-232 UART port, which were
both used for FPGA/PROM programming and also for I/O
and debugging purposes.

5.1. Implementation results

Tables 1 and 2 present the implementation results that were
obtained with the realization of the proposed multi-core hard-
ware structure using the Virtex4 XC4VLX100 FPGA device.
Such implementation was conducted using the Xilinx ISE
10.0i tools and making use of the configuration and con-
straints files for the GR-CPCI-XC4V development board
contained in the gpl-1.0.20-b3403 version of the GRLIB.

The results depicted in Table 1 evidence the low area
usage requirements of the proposed multi-core realization,
and thus its suitability for applications on small and medium
complexity embedded systems. These results also show the
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marginal increase in the implementation area of the multi-
core structure owed to the insertion of the ME hardware
accelerator, which costs less than 13% of the initial circuit
implementation requirements and a couple of extra DSP
slices. However, it should be noted that about 40% of the
hardware resources required to implement the APB ME IP
core concern the implementation of the ICE module, as it can
be seen in Table 2. More specifically, almost half of such
logic circuitry is used to provide the run-time debug facility.
Hence, the total cost of having the ME hardware accelera-
tor in the proposed multi-core structure can be reduced in
about 20% for implementations of the APB ME IP core not
requiring run-time debug support.

In what concerns the operating frequencies of the two
processors, the obtained experimental results reveal that the
Leon3 processor can operate with a maximum clock fre-
quency of 60 MHz, while the ME hardware accelerator is
capable of operating with clock frequencies up to 90 MHz.
As a result, the maximum operating frequency of the pro-
posed video encoder is constrained to 60 MHz, which is a
relatively low value considering the typical clock frequencies
reported for multimedia applications. Nevertheless, it is im-
portant to note that higher operating frequencies are possible
to be attained for the Leon3 processor by considering FPGA
devices other than the existing in the adopted prototyping
platform or even by considering different implementation
technologies. As an example, for ASIC implementations the
Leon3 processor is capable of operating with clock frequen-
cies as high as 400 MHz [5]. The clock frequency results that
are depicted in Table 1 also fully justify the design option of
including a clock generator module in the wrapper circuit of
the APB ME IP core. With this approach, it becomes possible
to implement several ME algorithms with different complex-
ity constraints in the same ME processor, thus allowing a
better balance of the required operating frequency and the
resulting power consumption.

5.2. Performance analysis

The performance gains provided by the multi-core H.264/AVC
encoder were experimentally assessed by encoding a set
of benchmark QCIF video sequences with quite different
characteristics, both in terms of movement and spatial de-
tail, namely: bream, carphone, foreman, mobile and table-
tennis. Such assessment was accomplished by programming
the Full-Search Block Matching (FSBM), the Three-Step
Search (3SS) and the Diamond Search (DS) ME algorithms
in the ME hardware accelerator and by considering the video
coding parameters presented in Table 3. Figures 5 and 6
depict the obtained experimental results.

Figure 5 clearly demonstrates the huge reduction in the
computation time of the ME operation that was obtained
with the integration of the ME hardware accelerator within
the multi-core system, which validates the proposed hard-

Table 3. Configuration parameters of the implemented video
encoding system.

Profile / Level Baseline / 4.4
GOP Sequence IP...P

INTRA Prediction Modes All
INTER Prediction Modes 16×16

Reference Frames 1
ME Algorithm FSBM

ME Search Range 32×32
ME Precision Integer-Pixel

ME Error Metric SAD
Entropy Coding UVLC

In-loop Deblocking Filter Enabled
Rate Control Engine Disabled

ware/software co-design methodology. Such results also
validate the usage of the AMBA APB bus as the optimal in-
terface for the considered ME processor. In fact, and despite
its low complexity, it provides a negligible communication
penalty (κ0 in Eq. 1). Such conclusion can be easily drawn
by comparing the ME computation time required by the APB
ME IP core against the transfer times for the pixel data and
for the ME results, which are detailed in Table 4 and are about
0% of the total encoding time.

By using such data it is therefore possible to compute
the speedup values for the ME operation owed to the usage
of a ME hardware accelerator. In addition, by considering
Eq. 1 as well as the data in Fig. 1 it is possible to estimate
the global speedup value that is achieved for the whole video
encoding system, and a more precise assessment of the ad-
vantages resulting from the proposed hardware/software co-
design methodology. Fig. 6 depicts the partial and global
speedup values for all the considered ME algorithms, by tak-
ing a Leon3 uniprocessor video encoding system as the refer-
ence platform.

Although impressive, the speedup values that were achieved
for the ME task with the adopted design strategy were some-
what expected due to the performance levels provided by the
adopted ME IP core [4]. Nonetheless, despite the signifi-
cant impact of ME in the global video encoding operation,
the global speedup values obtained for the whole video en-
coder are quite more modest, owing to the low operating
frequency of the Leon3 processor. As a result, although the
ME hardware accelerator allows the computation of MVs in
real-time for the QCIF image format, the implemented video
encoding system is only capable of encoding one video frame
every couple of seconds. Still, better performance levels
are attainable for different FPGA devices or implementation
technologies. In such performance enhanced video coding

Table 4. Time consumption of the ME operation using the
APB ME IP core.

ME Algorithm FSBM FSBM DS 3SS
ME computation time [ms] 2912 200.9 28.0 19.7
SA transfer time [ms] – 0.71 0.71 0.71
MB transfer time [ms] – 0.16 0.16 0.16
MV transfer time [ms] – 0.99 0.99 0.99
Processing core Leon3 ME IP Core
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Fig. 5. Average relative time consumption per frame encoded using different ME algorithms and hardware structures.
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Fig. 6. Obtained speedup using the ME IP core and different
ME algorithms.

systems, the proposed hardware/software co-design method-
ology could even be successfully applied to implement video
encoders with multiple ME processors working in parallel,
thus easily allowing real-time ME for higher resolution image
formats (i.e., SD or HDTV).

6. CONCLUSIONS

A multi-core H.264/AVC encoder suitable for implementa-
tions of small and medium complexity embedded systems
was presented. The development of such video encoder was
done by using an efficient hardware/software co-design strat-
egy to guarantee that the video encoder functions properly
meet its performance goals. Using such methodology, the
hardware component of the video encoder was implemented
using a heterogeneous multi-core structure, composed by a
Leon3 CPU, and a flexible core interconnection structure ca-
pable of accommodating several hardware accelerators. In the
proposed implementation, only the ME task of the video en-
coder was implemented using a hardware accelerator, due to
its huge complexity requirements. Such specialized processor
consisted of a flexible and efficient ASIP IP core that was re-
cently proposed in the literature. Several optimizations were
also applied to such accelerating core in order to increase its
communication bandwidth. For the software component of
the video encoder, an implementation of the p264 video en-
coding software, conveniently optimized for embedded sys-
tem applications, was considered. Experimental results ob-

tained with the implementation in a Virtex4 FPGA of the pro-
posed H.264/AVC encoder demonstrated the advantages of
the adopted hardware/software co-design methodology. For
the considered system, where a single hardware accelerator
was used to speedup the ME task, speedup factors greater
than 15 were obtained for the ME task and over 3 for the
global encoding operation. Such performance gains were ob-
tained with a very modest increase of the involved hardware
resources.
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