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Abstract: Mesorhizobium contains species widely known as nitrogen-fixing bacteria with legumes, but
their ability to promote the growth of non-legumes has been poorly studied. Here, we analyzed the
production of indole acetic acid (IAA), siderophores and the solubilization of phosphate and potassium
in a collection of 24 strains belonging to different Mesorhizobium species. All these strains produce
IAA, 46% solubilized potassium, 33% solubilize phosphate and 17% produce siderophores. The
highest production of IAA was found in the strains Mesorhizobium ciceri CCANP14 and Mesorhizobium
tamadayense CCANP122, which were also able to solubilize potassium. Moreover, the strain CCANP14
showed the maximum phosphate solubilization index, and the strain CCANP122 was able to produce
siderophores. These two strains were able to produce cellulases and cellulose and to originate
biofilms in abiotic surfaces and tomato root surface. Tomato seedlings responded positively to the
inoculation with these two strains, showing significantly higher plant growth traits than uninoculated
seedlings. This is the first report about the potential of different Mesorhizobium species to promote the
growth of a vegetable. Considering their use as safe for humans, animals and plants, they are an
environmentally friendly alternative to chemical fertilizers for non-legume crops in the framework of
sustainable agriculture.

Keywords: Mesorhizobium; phylogeny; Canary Islands; plant root colonization; biofilms; plant growth
promotion; tomato; biofertilization

1. Introduction

The plant growth promoting rhizobacteria (PGPR), also named plant probiotic bacteria, are
promising biofertilizers for sustainable and environmentally friendly agriculture since they allow the
total or partial substitution of chemical fertilizers added to the crops alone or together with organic
amendments [1–3]. These bacteria take part in the plant microbiome and can live in the rhizosphere
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or endosphere of plants [4,5]. The bacteria inhabiting the inner plant tissues have advantages for
plant interactions over the rhizospheric bacteria, including the promotion of plant growth [6]. Diverse
mechanisms to promote plant growth are presented by plant probiotic bacteria, which involve direct
and indirect effects. The direct mechanisms include the synthesis of phytohormones, such as the auxin
indole-3-acetic acid (IAA), the uptake of essential nutrients through nitrogen fixation and solubilization
of several insoluble compounds, such as phosphate, and the production of siderophores, which
provides Fe to plants [7]. More recently, research has focused on potassium solubilization by different
microorganisms; some of them are able to promote plant growth [8]. Within the indirect mechanisms
are included the synthesis of antibiotics, lytic enzymes or siderophores involved in the control of plant
pathogens [7,9].

Most of these mechanisms have been reported for rhizobia belonging to different genera and
families [10–12]. In addition to their ability to fix atmospheric nitrogen with legumes [13], the
production of the auxin IAA is probably the most common direct mechanism observed in strains from
genera Rhizobium [14–16], Phyllobacterium [17] and Mesorhizobium [18,19], which can also synthesize
and secrete siderophores [14–16,19]. Phosphate solubilization is a mechanism also widespread among
PGP strains of Rhizobium [15,16], Phyllobacterium [17,20] and Mesorhizobium [19,21–23]; nevertheless,
the ability to solubilize potassium has been reported to date only for one Mesorhizobium strain [24].
Therefore, the first aim of this study was to analyze all these plant promotion mechanisms (PGP)
presented by several Mesorhizobium strains isolated from nodules of Cicer canariense in the Canary
Islands that belonged to different bacterial species.

In addition to having several in vitro plant growth promotion mechanisms, good PGPR must be
able to colonize the plant roots because this is an essential step for growth promotion [25]. The ability
to colonize the roots of different non-leguminous plants has been shown for Rhizobium strains in tomato
and pepper [14], strawberry [26], lettuce and carrots [15] and spinach [16], for a Phyllobacterium strain
in strawberry [17] and for Mesorhizobium strains in lettuce and carrots [27]. Within these vegetables, the
tomato (Solanum lycopersicon L.) is highlighted, whose production exceeds that of the other mentioned
vegetables worldwide (http://www.fao.org/faostat/en/#home). The colonization of tomato roots by
strains of Bacillus and Paenibacillus [28], Rhizobium [14], Burkholderia [29] and Azospirillum [30] has been
reported; however, to date, there are no data for Mesorhizobium strains. Therefore, the second aim of
this work was to analyze the ability of selected Mesorhizobium strains that have different in vitro plant
growth–promotion mechanisms to colonize the tomato roots.

Recently, it has been shown that the formation of biofilms is essential to colonize the tomato roots
with Bacillus strains. which can also form biofilms on abiotic surfaces [31]. The formation of biofilms in
plant roots and abiotic surfaces has also been reported for Rhizobium strains able to nodulate different
legumes [32] and for Rhizobium and Phyllobacterium able to promote the growth of strawberry and
spinach plants [16,26]. These strains produce cellulose and cellulases, which are involved in biofilm
formation [32] and developed microcolonies typical of biofilm initiation in the roots of strawberry [26]
and spinach plants [16]. In the case of Mesorhizobium, the production of cellulases and cellulose has
been shown for the strain ATCC 33669T [32,33], which is currently the type strain of Mesorhizobium
jarvisii [34]. However, there are no data about the production of biofilms in biotic and/or abiotic
surfaces by any strain of genus Mesorhizobium. Therefore, the third aim of this study was to analyze the
ability of the selected Mesorhizobium strains to produce cellulases and/or cellulose and to form biofilms
in abiotic surfaces and tomato roots.

The strains actively colonizing the roots of plants can have a positive effect on their development.
In the case of tomato, many researchers have analyzed the effect of the inoculation in a wide array
of diverse bacteria, such as Pseudomonas [35–38], Methylobacterium [39], Bacillus, Burkholderia and
Pseudomonas [40], Azotobacter, Bacillus, Pseudomonas and Serratia [41], Paenibacillus and Bacillus [28],
Rhizobium [14], Bacillus, Erwinia and Pseudomonas [42], Bacillus [43], Burkholderia [29], Alcaligenes and
Bacillus [44], Streptomyces [45], Pseudomonas, Staphylococcus, Bacillus and Pantoea [46], Bacillus [47],
Arthrobacter and Pseudomonas [48] and Bacillus and Acinetobacter [49]. Nevertheless, there are no data
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about the effect of strains from the genus Mesorhizobium on tomato seedlings. Therefore, the final aim
of this study was to analyze the effect of the inoculation of two selected Mesorhizobium strains showing
in vitro PGP-activities on the growth of tomato seedlings. The results obtained showed for the first time
that, similar to those of Rhizobium, Mesorhizobium strains are promising biostimulants for tomato plants.

2. Materials and Methods

2.1. Bacterial Strains

The rhizobia used in this study were isolated from effective root nodules of C. canariense from the
Canary Islands in a previous work [50].

2.2. Phylogenetic Analysis

In this work, we performed the phylogenetic analysis of the atpD gene, amplified and sequenced
using the primers and conditions previously described [51]. These sequences and those of the type
strains of Mesorhizobium species described to date were aligned by using ClustalW software [52].
Distances calculated according to Kimura’s two-parameter model [53] were used to infer phylogenetic
trees with the Neighbor-joining method [54] with MEGA7 software [55]. Confidence values for nodes
in the trees were generated by bootstrap analysis using 1000 permutations of the data sets. The atpD
sequences were deposited in the GenBank database under the accession numbers MN999428-MN999451.

2.3. Analysis of In Vitro Plant Growth Promoting (PGP) Mechanisms

For indole-acetic acid production, bacterial cultures were grown at 28 ◦C in YMB medium [56]
supplemented with 2.5 mM L-tryptophan until reaching a stationary phase. Cells were eliminated
by centrifugation and the IAA and IAA-like compounds were measured in the supernatants using a
colorimetric method [57]. The phosphate-solubilizing ability was tested by growing the bacteria for
7–9 days in NBRIP medium [58] containing tricalcium phosphate as a source of insoluble phosphate and
observing the formation of a transparent halo around the colony. Phosphate-solubilizing effectiveness
was calculated as the ratio between the halos around the colony with respect to colony size [59].
Siderophore synthesis was evaluated by growing the bacteria for seven days in Chrome Azurol S
medium (CAS)-agar medium [60], in which siderophore-producing strains had a yellowish halo around
the colony [61]. The ability to solubilize potassium was tested using the Aleksandrov medium [62],
which contains potassium aluminum silicate as K source. The presence/absence (+/−) of the halo was
recorded at 14 days.

2.4. Tomato Root Colonization and Biofilm Production Assays

Strains CCANP14 and CCANP122 were labeled with the green fluorescent protein (GFP) following
a previously described protocol [63]. Tomato seeds were surface disinfected with 70% ethanol for 30 s
followed by 5 min in 50% diluted commercial bleach. After six washes with sterile-distilled water, seeds
were spread on 0.75% agar plates. Two days after germination, seedlings were transferred to 1.5% agar
10 cm × 10 cm square plates and each seedling was inoculated with 250 µL of a bacterial suspension
(0.5 of OD600; 4 × 108 CFU mL−1) and incubated in a growth chamber (16 h-light/8 h-dark cycle).
Mock-inoculated controls were also included. Seedlings were viewed under a confocal microscope
(Leica TCS SPE) five days after inoculation. Propidium iodide (7.5 µM) was used to counterstain plant
root cells. The ability of strains CCANP14 and CCANP122 to form biofilms in abiotic surfaces was
measured using the method of microtiter plate assay with crystal violet post-staining, following the
protocol described by Robledo et al. [32]. The strains were grown in the minimal medium [32] and
measurements were taken at 24, 48 and 72 hours. Biofilm data were treated with one-way ANOVA and
the Tukey’s post hoc test at p ≤ 0.05, using RStudio version 1.1.463. Cellulase production was tested
onto CMC double-layer plates as described previously [64] and the presence/absence of the halo was
recorded at 7 days. Cellulose detection assays were performed as described by Robledo et al. [32].
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2.5. Microcosm Plant Assays

For these assays, tomato (Solanum lycopersicum var. cherry) seeds were surface disinfected with
70% ethanol for 30 s followed by diluted commercial bleach (2.5% sodium hypochlorite) for 5 min.
After six washes with distilled water, seeds were placed on 1% agar plates. Four days after germination,
seedlings were planted in (12 cm × 12 cm) plastic pots containing 500 g of sterilized peat (Pro-line
green peat, Compo, Münster, Germany). Sixteen plants per treatment were inoculated with the strains
CCANP14 and CCANP122, independently, with 1 mL of bacterial cultures (five units in the McFarland
standard, 1.5 × 109 CFU·mL−1). As a control, a set of uninoculated plants were grown in the same
conditions. Plants were irrigated with water every two days once a week with a nutrient solution [65]
supplemented with 0.4 g·L−1 KNO3. Tomato plants were grown in a plant growth chamber with an
8 h-light/16 h-dark cycle. Five weeks after inoculation, the plants were harvested, roots washed with
distilled water and fresh and dry weight (70 ◦C in an oven until constant weight was reached) of tomato
shoots and roots were measured. For dry-weight measurement, the samples were dried in an oven at
80 ◦C. The dry plants were used for ionomic analyses, which were performed by the Ionomic service at
IPNA (CSIC) using an ICP-OES AVIO500, Perkin Elmer equipment. Prior to analysis, the obtained
data were checked for normality (Shapiro-Wilk test) and for homogeneity of variances (Levene’s test),
and then, they were subjected to one-way ANOVA, using Fisher’s test (p = 0.05) by SPSS (version 21.0)
statistical software (IBM, Chicago, IL, USA).

3. Results

3.1. Phylogenetic Analysis of the atpD Gene

In this work, we analyzed the atpD gene of 24 Mesorhizobium strains isolated in the Canary Islands
from nodules of C. canariense, because this gene, which was not sequenced in our previous study [61],
is commonly used for the differentiation of Mesorhizobium species. Furthermore, it is available for
three recently described species, Mesorhizobium denitrificans, Mesorhizobium carbonis and Mesorhizobium
zhangyense, for which the glnII gene, commonly included in the identification schemes of Mesorhizobium
strains, is not available. The phylogenetic analysis of this gene showed that the analyzed strains
belong to six clusters (I to VI) and four lineages (A to D) (Figure 1). Some of them can be confirmed
as belonging to already described species (as they showed around 99% similarity values), namely,
CCANP14, CCANP48, CCANP79 and CCANP82 to M. ciceri, CCANP3, CCANP99 and CCANP113
to M. opportunistum, CCANP1 to M. australicum and CCANP122 to M. tamadayense (Figure 1 and
Table 1). The remaining strains were phylogenetically related to several Mesorhizobium species, but
the similarity values were equal to or lower than 98% (Table 1). The strains CCANP11, CCANP29,
CCANP33, CCANP68, CCANP78 and CCANP96 were closely related to M. muleiense with similarity
values equal to or lower than 97%. The strains CCANP84 and CCANP87 have M. septentrionale as
the closest relatives with 97.7% similarity value. The strains CCANP34, CCANP35 and CCANP38
show similarity values near to 98% to M. caraganae. The strains CCANP55 and CCANP61 were closest
related to M. jarvisii with 96.6% similarity. Finally, the strains CCANP63 and CCANP130 formed
independent phylogenetic lineages having 95.4% and 96.4% similarity, respectively, with respect to
their closest related species M. robiniae and M. shonense.
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Figure 1. Neighbor-joining phylogenetic tree based on partial atpD gene sequences (870 nt) showing
the position of the strains from this study within the genus Mesorhizobium. Bootstrap values calculated
for 1000 replications are indicated. Bar, 2 nt substitutions per 100 nt. Accession numbers from GenBank
are given in brackets.
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Table 1. Characteristics of Mesorhizobium strains isolated from Cicer canariense root nodules analyzed in this study.

Strains Closest Species atpD Gene
Similarity (%)

Cluster or
Lineage

IAA
(µg mL−1)

Phosphate
Solubilization ¥

Potassium
Solubilization ¥

Siderophore
Production §

CCANP 1 M. australicum 98.6 B 8 0 1.50 1
CCANP 3 M. opportunistum 99.2 IV 23 2.00 1.41 0

CCANP 99 M. opportunistum 98.7 IV 23 0 0 0
CCANP 113 M. opportunistum 98.9 IV 23 0 1.10 0
CCANP 11 M. muleiense 96.8 I 33 0 1.10 0
CCANP 29 M. muleiense 97.0 I 40 1.40 1.10 0
CCANP 33 M. muleiense 96.8 I 35 0 0 0
CCANP 68 M. muleiense 96.8 I 37 1.72 0 0
CCANP 78 M. muleiense 96.8 I 24 0 0 0
CCANP 96 M. muleiense 96.8 I 33 2.10 ng 0
CCANP 14 M. ciceri 99.1 VI 68 2.40 1.39 0
CCANP 48 M. ciceri 99.8 VI 35 2.25 1.82 0
CCANP 79 M. ciceri 100 VI 49 2.06 1.57 0
CCANP 82 M. ciceri 100 VI 42 1.58 1.49 0
CCANP 34 M. caraganae 97.9 III 10 0 0 0
CCANP 35 M. caraganae 98.0 III 8 0 0 0
CCANP 38 M. caraganae 98.0 III 6 0 0 0
CCANP 63 M. robiniae 95.4 A 5 0 0 0
CCANP 55 M. jarvisii 96.6 V 40 0 0 0
CCANP 61 M. jarvisii 96.6 V 36 0 0 1
CCANP 84 M. septentrionale 97.7 II 31 0 0 0
CCANP 87 M. septentrionale 97.7 II 35 0 0 0
CCANP 122 M. tamadayense 99.4 C 69 0 1.22 1
CCANP 130 M. shonense 96.4 D 53 0 1.44 1

¥: Solubilization index. No solubilization (≤1 mm), low solubilization (1–1.5 mm) medium solubilization (1.5–2 mm) and high solubilization (≥2 mm). §: Siderophore production index.
No activity (0 mm), 1 (>0 and ≤5 mm). ng: no growth.
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3.2. In Vitro PGP Mechanisms

We have analyzed four of the most commonly PGP properties found in rhizobia, namely, IAA and
siderophore production and phosphate and potassium solubilization, in the 24 Mesorhizobium strains
from this study. The obtained results showed that they had at least one of these mechanisms (Figure 2).
The IAA production was the most widespread trait of all strains synthesized in this auxin, although
they varied greatly in the produced amounts from 5 to 69 µg mL−1 (Table 1). None of the strains
possessed the four tested mechanisms; however, nine strains belonging to M. ciceri, M. tamayadense and
M. australicum displayed three of them (Figure 2 and Table 1). Solubilization of tricalcium phosphate
was detected in the four strains of M. ciceri, one strain of M. opportunistum and three strains related
to M. muleiense (33%). Solubilization of potassium was detected in the four strains of M. ciceri, two
strains of M. opportunistum, one strain of M. australicum, the strain of M. tamadayense, one strain related
with M. shonense and three strains related to M. muleiense (46%). Both phosphate and potassium
solubilization showed the highest indexes for the strains of species M. ciceri (Figure 2 and Table 1). The
less frequent PGP trait in Mesorhizobium is the siderophore production, which was positive only in four
strains (17%), two of them belonging to M. australicum and M. tamadayense and the other two strains
related to M. jarvisii and M. shonense (Figure 2 and Table 1).
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Figure 2. Four-set Venn diagram showing the number of the Mesorhizobium strains that have one or
various of the following plant growth promotion mechanisms: IAA and siderophore production and K
and P solubilization.

3.3. In vitro Biofilm Formation and Tomato Root Colonization

The biofilm formation, as we previously mentioned, is essential to colonize the plant roots,
a process that also involves bacterial cellulose and cellulases. For the analysis of biofilm formation and
cellulose and cellulase production, we selected two strains, M. ciceri CCANP14 and M. tianshanense
CCANP122, because both strains produced the highest amounts of IAA; 68 µg mL−1 and 69 µg mL−1,
respectively. Furthermore, CCANP14 showed the highest phosphate solubilization index and a high
potassium solubilization index; CCANP122 also solubilizes potassium and produces siderophores. The
in vitro biofilm formation assay revealed that the two Mesorhizobium strains are able to form biofilms
(Figure 3A). An increase in the biofilm formation along the time was also found for both strains with
significant differences only between the biofilm formation after 24 and 48 h for the strain CCANP14
(Figure 3Ab). Despite the lack of statistical significance, CCANP122 appeared to exhibit better biofilm
formation than CCANP14, particularly at 24 h (Figure 3Aa). Both strains were able to produce cellulose
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in media containing Congo Red (Figure 3 Ba and Bb) and to produce cellulases, although the strain
CCANP14 showed the highest activity (Figure 3 Bc and Bd).

Confocal scanning laser microscopy (CSLC) of GFP-tagged mesorhizobial strains showed
that the two strains can colonize cherry tomato roots to different degrees and formed the typical
three-dimensional biofilm structure (Figure 3C). Cherry tomato roots inoculated with strain CCANP14
displayed mature biofilms on the entire roots and root hairs (Figure 3Cb) five days post-inoculation,
while CCANP122 (Figure 3Cc) colonized roots and root hairs in a more discrete manner.
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Figure 3. Panel (A) shows the absorbance values at OD570 of CV-stained biofilms formed on PVC plates
by strains CCANP14 and CCANP122 at different incubation times (a) and evolution along the time of
these values (b). Each graph bar represents the average of at least six wells. Error bars indicate the
standard deviation. Values followed by the same letter do not differ significantly according to Tukey’s
pos hoc test at p ≤ 0.05. Panel (B) shows the production of cellulose-like polysaccharides in Congo Red
containing plates by the strains CCANP14 (a) and CCANP122 (b) and cellulase production on CMC
(carboxy-methyl-cellulose) by the strains CCANP14 (c) and CCANP122 (d). Panel (C) shows tomato
roots stained with propidium iodide as a negative control (a) and inoculated with GFP-tagged strains
CCANP14 (b) and CCANP122 (c) observed with confocal laser scanning microscopy which showed
the bacterial colonization at five days post-inoculation. Bars: 100 µm (a) and 200 µm (b,c) (50 µm in
squared panels in (b and c)).

3.4. Microcosm Plant Assays

The obtained results of the tomato inoculation with the strains CCANP14 and CCANP122
are shown in Table 2. Fresh and dry shoot and root lengths and weights of the inoculated plants
were significantly higher than those of the uninoculated ones. Additionally, significant differences
were found between the two inoculation treatments, except in the shoot length. The inoculation
with CCANP14 produced the highest values in the remaining parameters (Table 2). Therefore, the
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inoculation of tomato seedlings with either of these two bacteria had a positive effect on plant growth,
although the strain CCANP14 yielded the best results.

Table 2. Effect of inoculation of Mesorhizobium ciceri strain CCANP14 and Mesorhizobium tamadayense
strain CCANP122 on the vegetative parameters of tomato plants.

Treatments SL (cm/Plant) RL (cm/Plant) SFW (g/Plant) RFW (g/Plant) SDW (g/Plant) RDW (g/Plant)

Control 12.71 (±1.17) a 24.89 (±1.02) a 4.18 (±0.53) a 0.43 (±0.01) a 0.27 (±0.02) a 0.05 (±0.01) a
CCANP14 20.46 (±1.03) b 34.33 (±1.64) c 15.95 (±1.44) c 3.15 (±0.38) c 1.52 (±0.15) c 0.38 (±0.05) c
CCANP122 23.25 (±1.80) b 29.08 (±1.20) b 14.34 (±1.11) b 2.16 (±0.17) b 1.15 (±0.09) b 0.21 (±0.02) b

Values followed by the same letter in each treatment are no significantly different from each other at p = 0.05 according
to Fisher’s Protected LSD (Least Significant Differences). The numbers in parentheses are standard deviations. SL
and RL: Shoot and Root length, respectively. SFW and RFW: Shoot and Root Fresh Weight, respectively. SDW and
RDW: Shoot and Root Dry Weight, respectively.

The inoculation has an insignificant effect on the N and P content of plants (Table 3). Nevertheless,
a significantly higher content of Ca was found in the shoots of plants inoculated with CCANP14
and the content of K and Na were significantly higher in those inoculated with CCANP122. The Zn
content was significantly lower in the inoculated plants with respect to the control plants and the Mn
content was significantly lower in the plants inoculated with the strain CCANP122 with respect to the
control plants. The Fe content was significantly different between the plants from the two inoculation
treatments and lower than in the control plants (Table 3).

Table 3. Effect of inoculation of Mesorhizobium ciceri strain CCANP14 and Mesorhizobium tamadayense
strain CCANP122 on the mineral content of tomato shoots.

Treatments N
(g kg−1)

P
(g kg−1)

Ca
(g kg−1)

K
(g kg−1)

Mg
(g kg−1)

Na
(g kg−1)

Fe
(mg kg−1)

Mn
(mg kg−1)

Cu
(mg kg−1)

Zn
(mg kg−1)

Control 4.4
(±0.2) a

3.1
(±0.2) a

12.6
(±0.8) a

54.5
(±2.4) a

4.9
(±0.4) a

1.4
(±0.1) a

157.3
(±8.6) ab

45.8
(±2.5) a

7.8
(±0.5) a

66.0
(±2.8) a

CCANP14 3.9
(±0.1) a

3.1
(±0.2) a

18.4
(±1.8) b

58.1
(±1.6) a

5.4
(±0.4) a

1.3
(±0.1) a

195.8
(±3.6) a

38.0
(±2.5) ab

9.5
(±1.2) a

47.3
(±2.3) b

CCANP122 4.2
(±0.1) a

3.5
(±0.1) a

11.6
(±0.4) a

66.4
(±1.2) b

3.8
(±0.1) a

2.0
(±0.1) b

107.5
(±5.4) b

36.0
(±2.3) b

8.8
(±0.3) a

44.8
(±4.7) b

Values followed by the same letter in each treatment are no significantly different from each other at p = 0.05
according to Fisher’s Protected LSD (Least Significant Differences). Units are expressed in g kg−1. The numbers in
parentheses are standard deviations.

4. Discussion

The strains analyzed in this study were previously distributed into 12 phylogenetic groups after
the analysis of the housekeeping genes dnaK, gyrB, truA, glnII, thrA, recA and rpoB. The strains from
some of these groups were identified as M. australicum, M. ciceri, M. opportunistum and M. tamadayense,
but most of them belonged to an undescribed species of genus Mesorhizobium [66]. From these
seven housekeeping genes, glnII and recA have been traditionally used for Mesorhizobium species
differentiation and the description of new species. Nevertheless, for some recently described species of
this genus, despite their genomes having been sequenced, the glnII gene is not available, whereas the
atpD gene sequences are available in GenBank.

Therefore, the atpD gene sequences allowed us to compare our mesorhizobial strains with all
described species within the genus Mesorhizobium. The results obtained in the present work showed
that the atpD gene phylogeny was overall congruent with that obtained after the analysis of other
protein-coding genes [66]. Thus, the atpD gene phylogeny confirmed the previous identification of
the strains belonging to M. australicum, M. ciceri, M. opportunistum and M. tamadayense (clusters IV
and VI and lineages B and C) (Figure 1) [66] as well as the phylogenetic location of strains within
the clusters of M. caraganae (cluster III) and M. septentrionale (cluster II) (Figure 1) [66]. However, the
phylogenetic position of some strains has changed because more than 10 Mesorhizobium novel species
have been described since the publication of our previous work in the year 2014 [66]. This occurred
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with the strains CCANP55 and CCANP61 (cluster V), which had M. huakuii as their closest relative [66],
whereas we show that currently the closest species is M. jarvisii [34] and confirm that the strains within
this cluster V belong to a new Mesorhizobium lineage (Table 1). The strains CCANP11, CCANP29,
CCANP33, CCANP68, CCANP78 and CCANP96 (cluster I) belong to a very divergent cluster that was
originally defined as a M. tianshanense-like group [66]. Moreover, according to the atpD gene, their
closest related species is M. muleiense (Table 1), which is included within a big clade of species with
M. tianshanense (Figure 1). The strain CCANP63 (lineage A) formed an independent lineage related to
M. caraganae [66] and has atpD gene sequence more similar to M. robiniae (Table 1), (Figure 1). Finally,
the strain CCANP130 (lineage D) formed an independent lineage in our previous work [66] as well as
in the atpD gene phylogeny, although the sequence of this gene was more similar to that of M. shonense
(Table 1). Therefore, the results of the atpD gene analysis are congruent with those previously obtained
after the analysis of other protein-coding genes [66].

Noteworthy is that the phylogenetic distances in the sequences of some housekeeping genes for
several recently described Mesorhizobium species are lower than those found in older described species,
as occurred for example for Mesorhizobium japonicum and M. jarvisii, whose classification into different
species was mainly supported by the DNA-DNA relatedness values found between them [67]. Taking
these two species as reference (Figure 1), the strains from clusters I, II, III and V and from lineages A
and D belong to putative new species of genus Mesorhizobium, confirming the high taxonomic diversity
of the Mesorhizobium strains occupying the Cicer canariense nodules (Table 1).

The capacity of species from genus Mesorhizobium to fix atmospheric nitrogen in symbiosis with
legumes is widely known [68]; nevertheless, the presence of other in vitro plant growth promoting
mechanisms has been less studied [12,19]. Among these mechanisms, IAA production is one of the
most widespread PGP traits among Mesorhizobium strains [19] and this finding has been confirmed
in this study, where the levels of IAA produced by some strains, particularly M. ciceri CCANP14
and M. tamadayense CCANP122 are similar to those found in Rhizobium strains able to promote the
tomato growth [14]. The phosphate solubilization of tricalcium phosphate was one of the first plant
growth promotion mechanisms reported for genus Mesorhizobium, specifically for a strain nodulating
Cicer arietinum [69]. Later, it was confirmed that Mesorhizobium strains nodulating this legume were
effective phosphate solubilizers [19,21], which is in agreement with the results from this study, where
we found that strains related to M. muleiense and those of M. ciceri, two species originally isolated from
C. arietinum nodules, showed the highest phosphate solubilization indexes (Table 1). The solubilization
of potassium has only been reported to date for one strain of genus Mesorhizobium closely related to
Mesorhizobium plurifarium isolated from rape rhizospheric soil [24]; now, this is the first report about the
capacity to solubilize potassium of strains from different Mesorhizobium species isolated from legume
nodules. The siderophore production was reported for some strains nodulating C. arietinum in the
last years of the past decade [70] and later, Brígido et al. [19] reported this mechanism for several
Portuguese strains nodulating this legume. In our work, siderophore production was detected in
only four strains (Table 1). Therefore, it might be concluded that IAA production is a common PGP
mechanism in Mesorhizobium strains, whereas phosphate solubilization and siderophore production
are variable in agreement with the results of Brígido et al. [19]. These results are in agreement not only
with those found for Mesorhizobium strains, but also for other rhizobia [14].

Some of these rhizobia can colonize the roots of non-legumes, as occurs with two Rhizobium
strains that can colonize, amongst others, the roots of tomato [14]. In the case of genus Mesorhizobium,
the root colonization of Arabidopsis thaliana, Daucus carota (carrots) and Lactuca sativa (lettuce) by
two strains isolated from Lotus has been reported [27,71]; nevertheless, this is the first report about
the ability of Mesorhizobium strains to colonize tomato roots. Root colonization is an essential step
for plant growth promotion, and commonly, the better bacterial growth promoters also are good
root colonizers, as occurs with several strains assayed on tomato plants, such as Paenibacillus and
Bacillus [28], Rhizobium [14] and Burkholderia [29].
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Some plant growth promoting strains are particularly effective in the promotion of tomato
seedlings, whose production is carried out in nurseries exclusively dedicated to the commercialization
of different seedlings, representing one of the most important economic resources in the agronomic
field. For this reason, in many works the effect of different plant growth promoting bacteria on tomato
seedlings have been evaluated, such as Burkholderia [40], Azotobacter and Serratia [41], Rhizobium [14],
Bacillus [40,41,43,47], Pseudomonas [37,38,40,41] and Arthrobacter [48]. Nevertheless, this is the first study
about the effect of Mesorhizobium strains on the growth and development of tomato seedlings. The
obtained results showed that both of the assayed strains significantly improve the growth of shoots and
roots of tomato seedlings without significantly affecting the percentages of the main macronutrients,
N and P. This increase can be due to the biostimulant effect mediated by the IAA produced by these
strains, as was reported for other bacteria producing this phytohormone [40]. Moreover, the significant
increase of Ca is remarkable in seedlings inoculated with the strain CCANP14 because tomato plants
have high requirements for this element involved in nutrition and tomato resistance to bacterial wilt
diseases [72]. Additionally, there is a notable increase of K in seedlings inoculated with the strain
CCANP122 since this element is involved in plant water regulation [73]. In the case of Mn and Zn,
although their content was lower in inoculated plants, the values were higher than those considered
enough for a suitable growth of tomato plants [74]. Although the ability to promote barley by a strain
of Mesorhizobium mediterraneum [69] and Indian mustard by other strains of Mesorhizobium loti [75] had
been previously reported, this is the first report about the ability of strains from different Mesorhizobium
strains to promote the growth of the seedlings of a vegetable widely cultivated worldwide.

5. Conclusions

The results from this study showed that strains of different Mesorhizobium species have several plant
growth-promoting mechanisms in addition to symbiotic N fixation, including IAA and siderophores
production and phosphate and potassium solubilization. Selected PGPR strains of M. ciceri and
M. tamadayense produce cellulases and cellulose that are able to form biofilms in abiotic surfaces and
in roots of tomato increasing the growth of the seedlings of this plant. This is the first report about
the potential of different Mesorhizobium species to promote the growth of a vegetable and considering
their safety for human, animal and plant health after decades of use as bioinoculants. They are
environmentally-friendly alternatives to chemical fertilizers for non-legume crops in the framework of
sustainable agriculture.
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