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ABSTRACT

Internet-of-Things systems are assemblies of highly-distributed and

heterogeneous parts that, in orchestration, work to provide valuable

services to end-users in many scenarios. These systems depend on

the correct operation of sensors, actuators, and third-party services,

and the failure of a single one can hinder the proper functioning

of the whole system, making error detection and recovery of para-

mount importance, but often overlooked. By drawing inspiration

from other research areas, such as cloud, embedded, and mission-

critical systems, we present a set of patterns for self-healing IoT

systems. We discuss how their implementation can improve system

reliability by providing error detection, error recovery, and health

mechanisms maintenance.

CCS CONCEPTS

• Software and its engineering → Design patterns; • Hard-

ware→ Communication hardware, interfaces, and storage.
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1 INTRODUCTION

One definition of Internet-of-Things (IoT) is that it is a network of

uniquely identifiable devices — known as things — that can be pro-

grammed, and that can sense (i.e., sensors) and change (i.e., actuate)
their environment [47]. In contrast to traditional distributed sys-

tems mainly composed of servers, computers, and mobile devices,
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IoT systems are characterized by its unprecedented scale, distribu-

tion (both logical and geographical), embeddedness, heterogeneity,

and invisibility of devices, which is forcing a paradigm shift on how

we build such systems [64].

One of the aspects that are overlooked by both the scientific

community and industry is the case for system resilience and, con-

sequently, fault-tolerance [72]. One can argue that one of the main

reasons for such is that IoT systems are developed in short devel-

opment cycles (mostly due time-to-market pressures) even if they

are larger and more complex systems than traditional ones (e.g.,
while it is easy to patch some fault in a cloud-deployed system, it is

much hard to patch a fault in the firmware of a remotely located de-

vice) [66]. Further, while some device’s proneness to failure can be

reduced by improving their hardware parts or by introducing device

redundancy, it comes with additional financial or computational

costs [50, 72].

In this paper, the terms fault and failure are used with their fault-

tolerance literature connotation. A fault (which can be active or

dormant) is the adjudged or hypothesized cause of an error, being an
error the manifestation of a fault during runtime that can lead to a

failure [9]. Failure is a deviation from delivering correct service [9].

Depending on the severity, a failure can be considered partial. We

try to avoid the use of error for simplicity purposes since it is the

term that most differs from fault-tolerance literature to software

literature [74].

Some authors argue that the current disregard for resilience

and fault-tolerance is mostly due to IoT device’s failures typically

being hard faults, which are consistent, thus easily detectable, re-

producible (easy to debug and correct), and easy to fix by end-users

by replacing the faulty unit. However, the bigger problem arises

when such a device behaves arbitrarily (intermittent faults), and

there is a lack of fail-over options [64, 66, 70]. Consider that if a

thermostat stops working (i.e., hard fault), an AC unit can fallback

to a predefined working temperature or shut down entirely. How-

ever, if the thermostat malfunctions in such a way that it reports

high-temperature readings, it can make the AC force the ambient

temperature fall below unsafe levels for a newborn. Similarly, if

a refrigerator’s temperature sensor reports erroneous readings, it

may cause food to degrade faster, possibly leading to food poisoning

for the entire household [1].

https://doi.org/10.1145/3424771.3424804
https://doi.org/10.1145/3424771.3424804
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Figure 1: SmartLab motivational scenario with interconnected sensors and actuators.

Aware of the impact that failures can have on peoples’ comfort,

security, and safety (shifting IoT from a life-enhancement technol-

ogy to a burden, or even provoke nefarious effects — sometimes

even life-threatening), several authors have proposed strategies,

approaches, and architectures towards improving the reliability of

these systems. Most of these solutions strategies to detect problems

during operation and fallback maneuvers that counter or compen-

sate those problems, recovering the system (at least to an acceptable

minimum) automatically [6, 8, 36].

Research on systems’ reliability, especially the one regarding

hardware-only systems, has been using the so-called fault-tolerance
mechanisms to improve system dependability. More recently, sev-

eral authors have been proposing self-healing as an approach to

attain system reliability. The difference between the two has been

the target of debate [10, 42]. For the scope of this paper, we regard

self-healing as the subset of fault-tolerance with a focus on provid-

ing a system with the inherent capability of actively attempting to

recover itself from an abnormal to nominal state, through strategies
that involve software and hardware (and in extreme cases, even

human) cooperation [29].

The main contribution of this paper is a pattern language with

best practices for increasing the resilience of IoT systems through

self-healing. Some patterns in the language have been discussed

in other domains, but never regarding IoT. Specializing them to

IoT enabled us to identify novel forces and solution strategies that

did not manifest in other contexts. We consider that this language

can be helpful for both system integrators that can add the pattern

language patterns as new building blocks when configuring new

systems and for IoT developers in general that can integrate the

patterns on the systems within themselves as a way of increasing

their reliability.

This paper is structured as follows: Section 2 presents a motiva-

tional scenario that introduces the reader to a typical IoT ecosystem,

and Section 3 presents the fundamental concepts along with a revi-

sion of relevant literature. Section 4 introduces the pattern language,

and the following sections, Sections 5 and 6, describe a total of 27

patterns that can be used to enable self-healing strategies in IoT

system. Some final remarks and future work directions are given

in Section 7.

2 MOTIVATIONAL SCENARIO

To better represent and contextualize the reader to IoT systems

and their typical functioning in real-world setups, we introduce the

SmartLab, a system deployed in a laboratory similar to some smart
home (or smart office-space) setups.

An example isometric representation of the laboratory, including

sensors, actuators, network infrastructure and other objects is given

in Fig. 1. The sensor devices are capable of sensing the physical

world, providing data to decision systems (e.g., rule-based systems)

that can trigger actions accordingly (actuator devices). Actuators

can also be controlled by available applications (e.g., web app) and
sensing data observed using available dashboards.

As a motivational example, we can consider the following set of

sensing-acting trigger rules:

• When somebody enters the laboratory (door status magnetic

sensor), and it is dark (lux sensor), turn on the lights (light

switch actuator);

• If there is poor air quality (air quality sensor), turn on the

fans (fan switch actuator). Depending on the hazardousness

of the values read, turn on the alarm (buzzer or RGB light

actuators).
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• Depending on the laboratory temperature — e.g., if greater
than 35

◦
C — (temperature sensor), turn on the fans (fan

switch actuator) until the temperature drops — e.g., bellow
30

◦
C.

This small set of rules shows that, depending on the ecosystem

and application domain, we can automatize several processes, rang-

ing from safety-concerning ones (e.g., air quality) to comfort and

quality-of-life ones (e.g., control ambient temperature and humid-

ity), being the only limitation the diversity of sensors and actuators

that one has available.

In scenarios such as this one, dependability becomes a signif-

icant concern. The reliability of the components and the system

can have direct implications on the system’s availability and the

conform and well-being of its users. There exists a considerable

number of reports which sustain such observation. The roadmap

proposed by Ratasich et al. [55] groups these and other issues in

three categories, namely: security (e.g., eavesdropping, jamming,

and denial of service), dependability (e.g., data corruption, protocol
violations, and misusage) and long-term concerns (e.g., aging and
environmental effects and end-of-life — unsupported — hardware).

Moreover, although many authors focus on such concerns, the

deployment and use of their proposed solutions and approaches in

scenarios such as the presented one (smart home) are most scarce.

Using mission-critical-grade components that are more heavily

tested and reliable is expensiveness in terms of cost and developing

and maintenance complexity (e.g., redundant hardware), which in-

creases development time and testing needs (which can be an issue

in time-to-market practitioners’ concerns). Nonetheless, depend-

ability concerns must no be disregarded, and best practices should
be adopted to safeguard the safety and well-being of smart-space
users.

3 PRELIMINARIES

During system development, mainly verification and validation,

IoT systems typically go through iterative fault-removal stages,

commonly known as testing. Tests can be executed against sim-

ulated environments using simulated-based testing [24], or in

controlled environments using testbeds
1
[24].

It is impossible to guarantee that testing will uncover all possible

issues with the system, especially as systems grow in complex-

ity [49]. Developers and other individuals with similar technical

responsibilities need to consider that their system might degrade

in production, reliability, availability, or even safety [9]. Such faults

can result in both hard failures (e.g., crash and hang-on) or soft
failures (generally performance-related), thus the need of fault-

tolerance [70].

Exception handling is one of the most common single-version2

fault-tolerance mechanisms, where exceptions are signaled by the
implemented error detection mechanisms as a request for initiation of
an appropriate recovery [69]. However, this kind of mechanism is

limited by knowing the possible faults that can occur and is most

specific for each one.

1
A testbed consists on a setup with real devices and end-users interactions that provides
an ecosystem to test new IoT systems [24].
2
Use of a single version of a piece of software to detect and recover from faults [69].

Several authors have contributed to the body-of-knowledge

about fault-tolerance, some in the form of patterns. In Patterns
for Fault-Tolerant Software, Robert Hanmer [31] presents 63 pat-

terns (several based on the work of other authors) for fault-tolerant

software systems. It categorizes them as architectural, detection,

error recovery, error mitigation, and fault treatment patterns. More

recently, Hanmer revisited his work, adapting it to the context of

cloud software [33].
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Figure 2: General loop architecture of a self-healing system

as defined by Khalil et al. [36].

Although IoT systems highly depend on software (both locally

and in the cloud), they aggregate hardware concerns that are not

contemplated by such literature, mostly disregarding the so-call

hardware/software co-design activity, which is fundamental to opti-

mize power/energy, performance, reliability, and overcome privacy,

and security issues [71]. The systematic mapping of fault-tolerance

solutions supports this statement for IoT by Moghaddam et al. ,
which points to the same observation; however, they mention that

some effort is being carried out to bring cloud fault-tolerance tech-

niques to lower tier of the IoT systems, namely fog and edge [48].

While several fault-tolerance solutions are based on creating

high-reliable components or allowing components to fail in the

most unnoticeable way (e.g., fail-fast, fail-silent), some authors have

proposed self-repairing systems [16, 37]. These approaches mostly

rely on standby sparing to recover the system from abnormal states,

but they can be considered one of the first strategies of automatic

system healing [37].

More recently IBM introduced the concept of Autonomic Com-

puting, with four properties [29]:

• self-configuring: the ability to readjust itself on-the-fly;
• self-healing: the ability to discover, diagnose, and react to, or

recover from, failures;
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Action Audit
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Figure 3: The self-healing pattern language for IoT systems. Each error detection pattern on the left can identify issues that

can be solved by one or more recovery & maintenance of health patterns on the right. Although these mostly direct relations

between the two pattern categories, the error detection patterns can be used together to enhance diagnosis and recovery &
maintenance of health patterns can also be used together to recover the system to an healthy state (Fig. 13).

• self-optimization: maximizing resource utilization to improve

the quality of the service;

• self-protection: anticipating, detecting, identifying, and pro-

tecting itself from attacks.

IoT systems have been primarily identified as a core example of

a system that must contemplate autonomic components [6, 7, 68].

These components — that can range from single devices (e.g., smart

locks) to whole systems (e.g., smart homes) — should be capable

of self-management, reducing the need for frequent human oper-

ation [38]. This becomes even more important in critical systems

and when devices are deployed in remote (e.g., wildfire control) or
other hard to access areas (e.g., in the user’s home).

Some IoT systems are close-loop systems. These act based on

sensors measurements in order to maintain a predictable output

(feedback-loop). Examples are Cyber-Physical Systems (CPS) and

some Industrial IoT systems [15]. Other systems are open-loop.
These take input under consideration but do not react only based

on those inputs (no feedback-loop) [12]. As a result, making IoT

open-loop (there is no verification that an actuator performed the

required operation) systems resilient is harder than closed-loop ones,
due to the lack of feedback.

Nonetheless, any kind of IoT systems should be capable of recon-

figuring themselves to recover from failures. A self-healing enabled

system should be able to detect disruptions, diagnose the failure root
cause and to derive a remedy, and recovering with a sound strategy
in a timely fashion (Fig. 2) [53].

The existing approaches for fault-tolerance (and self-healing) typ-
ically follow a reactive methodology where errors are detected and

then recovered from (e.g., complex event processing, system watch-

dogs and supervisors) (cf. device error data supervisor [54]), or a
proactive (also known as preventive) methodology where errors are

predicted and avoided before faults being triggered using machine

learning and other predictive mechanisms (cf. predictive device
monitor [54]). A combination of both can also be used [53].

4 SELF-HEALING PATTERN LANGUAGE

The patterns described in Section 5 — error detection patterns — and

6 — recovery & maintenance of health patterns — are inter-winded

and can be mapped into a pattern language. The patterns in this

language are presented in Fig. 3. The relationships specified in

Fig. 3 are first-degree relations which point to possible recovery &

maintenance of health patterns that address issues identified by

certain error detection patterns. Relationships between the patterns

in the same category also exist, and are illustrated to some extent

in the following sections.

The patterns are presented as patlets of problem-solution pairs

instead of the more structured traditional fashion of patterns. Thus,

these become more general guidelines of design, proving a small

insight on how to improve an IoT system reliability through self-

healing, but are not prescriptive implementation solutions, mostly

due to the wide range of application domains, competing standards,

and abstraction levels (ranging from hardware concerns to software

issues). Giving concrete implementations of each pattern would

force us to drill down to the specifies of the technologies used

(and, even, specific proprietary protocols and solutions), operational

context, and users’ capability to interact with the system.
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Application Layer
Cloud/Servers/Applications

Network Layer
Routers and Gateways

Perception Layer
Sensors and Actuators (Things)

Figure 4: A three-layer view of Internet-of-Things. The per-

ception layer ismade up of constrained devices with sensing

and actuating capabilities. The network layer interconnects

the different parts of the system using a plethora of proto-

cols and radios. The application layer provides storage, pro-

cessing and services to the end-users [34].

We hypothesize that several pattern sequences can exist, com-

bining the patterns that are part of the language here presented.

On the one hand, several error detection patterns are used in se-

quence to diagnosing a problem (or improve the knowledge about

a problem). On the other hand, several recovery & maintenance of
health patterns can be used in sequence to recover the system to

a healthy state. Further, several recovery & maintenance of health
patterns can be used to maintain the system stable while others (e.g.,
concurrently) try to recover certain parts of the malfunctioning

system.

We consider that most of these patterns can be used at different

layers as per the specification given in Fig. 4. As an example, missing

sensor data can be compensated at the perception layer, where

the device has some mechanism to fill in the missing values (e.g.,
average, maximum or minimum in a timebox) or at the application

layer, where, with more computing capability (e.g., cloud), data
mining strategies can be used to guess the missing values.

Additionally, we suggest that these patterns can both be used

at an integration level, where the user is building the system by

"connecting" boxes together and some of these are (or have) self-

heal features (e.g., visual programming) [25], or at a device/system

design and developing level where the logic of the devices, gateways,

and servers is coded with these patterns in mind. We believe that,

in this way, we can provide insights that apply even when taking

into consideration the current IoT fragmentation, which can be

useful for practitioners, researchers, and individuals alike.

5 ERROR DETECTION (PROBES)

Enabling IoT systems with self-healing capabilities requires systems

capable of detecting errors and failures. In this work, we consider

error detection the process of detecting issues (both errors and fail-

ures) on the running system that can make it enter in a degradation
state or defective state, as per the loop presented in Fig. 2 [36].

An error can be in one of two states: detected if an error mes-

sage/signal indicates its presence, and latent if undetected. Error
detection can be threefold: (1) identifying that there is an error

somewhere in the system (fault correlation [33], fault ob-

server [33]), (2) identifying an error root cause (root cause anal-

ysis [33]), and (3) trigger reactive measures to recover and maintain

the system health.

The patterns described in the following paragraphs are not re-

current solutions to problems per se, but recurrent solutions on how
to detect different types of issues (faults, errors, and failures) in a

system, mostly focusing on one or more parts of the three-part pro-

cess of error detection. The application of these patterns in a system

enables it to provide information, mostly at runtime, to recovery &
maintenance of health mechanisms (which will be further described

in Section 6).

Most of the probe patterns here presented can be enhanced their

diagnostic precision by using other probes, potentially improving

the diagnostic of a specific malfunction or unexpected behavior.

Nonetheless, each probe has a well-defined target error; thus, they

are sufficient to detect the error they target (but each can have limi-

tations in finding the root cause). These relationships are presented

in the form of diagrams that appear together with the patterns

patlets. These patterns are contextualized within the scope of IoT

systems like the one presented in Section 2, among others such

as smart farming and smart cities ones. The following paragraphs
present the patterns related to the error detection category (left side

of Fig. 3).

5.1 Action Audit

In an empty home, a smoke detector has been

activated; two alarms were triggered in re-

sponse: one turning on a loud siren, and the

other messaging the homeowner. There is a real

possibility of a fire raging on, and time is of the

essence. The system automatically attempted

to perform these actions, but sometimes things

do not go as planned. Maybe the message never reached the owner;

maybe the siren was broken; maybe both of these things happened.

Some actions are critical, and when they fail, counter-measures

must be taken. Comfort, and even well-being, can depend on the

proper functioning of components. How to guarantee that required

actions are triggered when needed?

Therefore, implement a mechanism that validates each ac-

tion. The siren makes a sound, so it should be audible by a noise

sensor. The message can request human acknowledgment via a re-

ply. If these action checks fail, one can resort to alternate pathways

to mitigate potential issues, like triggering a light strobe or directly

calling 911 (cf. runtime adaption, circumvent and isolate), or

try resetting the device (cf. reset).
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Action Audit

Component Compliance

Conformant Values

Figure 5: Diagnostic enhancement tree for the action audit

pattern.

Rationale. Smart home applications and their underlying platforms

take a fire-and-forget approach when issuing commands to actua-

tors. The mistake lies in the assumption that everything will work

between the triggering of a command and the intended purpose,e.g.,
, the message was not corrupted, the communication layer is work-

ing, and the hardware is not faulty (Fig. 5). From a control-theory

perspective, IoT systems could learn to benefit from a closed-loop

approach in which, based on observational feedback, commands

are not simply assumed to have worked until the desired effective

state is achieved [51, 66]. However, performing such checks might

need additional infrastructure that allows one to probe the effect.

Depending on the nature of the action, this might be accomplished

through different hardware (the noise sensor in our example) by per-

forming a reverse computation to check if the output matches the

input constraints. [69]. Also see: acknowledgment [31, 60], test

alerts [51], test actions [51], indirect response check [56],

check physical response [56]

5.2 Suitable Conditions

It is a particularly hot day outside. So hot that

one can fry an egg on top of any of their de-

vices. The outdoor temperature sensors point to

an average temperature of 41
◦
C, but, mysteri-

ously, despite its AC unit being blasting cold air

for the last two hours, the indoor garage sensor

still points to an abnormally high temperature

of 38
◦
C. Maybe the window is broken, but the shattering glass

sensor did not trigger. On further inspection, the specification of

this particular temperature sensor state that the Recommended Op-
erating Conditions over operating free-air temperature range goes

from −10 ◦C to 50
◦
C

3
. How can the system or its parts became

aware that they can operate correctly?

Therefore, monitor if surrounding conditions are suitable

for device operation, usually known as operation thresholds or
recommended operating conditions. If values start getting unaccept-

able close limits, there is a likelihood that the device could stop

working, or (even worse), malfunction
4
. Take preemptive actions

to mitigate potential failures (cf. runtime adaption, circumvent
and isolate).

Rationale.Most commercial Integrated Circuits (i.e., chips) have
recommended operating conditions that do not perform well below

the water freezing point but go as far as 70
◦
C. The reason most IoT

3Recommended Operating Conditions are detailed descriptions of the conditions in

which the device performs as expected is typically documented in the device’s user

manual or datasheet.

4
A door that does not automatically open is a problem. A door that automatically

opens when it should not is a bigger problem.

systems disregard this problem is that devices are assumed to be

placed indoors. Nevertheless, this assumption can still be broken

in a cascading scenario such as the one presented above; 70
◦
C is

not unheard of if the device is behind a glass window with sun

shining on it. Checking for environmental constraints is a relatively

straightforward process, and most IoT devices must state their op-

erating conditions in the manuals for FCC or CE approval [20]. The

capability of flagging a device in an unreliable state allows mitiga-

tion strategies to be preemptively triggered. However, this depends

on having external data sources (independent, and redundant, sen-

sors or third-party services) that provide the data that allows one

to detect if some device is operating in ideal conditions or not
5
.

Also see: Dependability requirements [13], Environment-aware

communication protocols [13].

5.3 Reasonable Values

Things tend to act as expected. Even unex-

pected events usually present a pattern. An

outside luminosity sensor is expected to fol-

low a curve according to the sun’s position;

unless there are clouds (or a solar eclipse). Tem-

peratures do not drop from 20
◦
C to 0

◦
C in the

blink of an eye, and then immediately recover

back; there is expected inertia to it. Humidity exhibits reasonable

gradients; unless someone is taking a shower in the bathroom. All

these situations present reasonable patterns of readings one is ex-
pecting from sensors. If the readings do not fit these patterns, then

they might be untrustable.

Therefore, consider the reasonableness of the readings be-

fore blindly accepting them as valid values. Use different checks

(or a combination of them) depending on the particular sensor to

detect unreasonable situations. There will always be a degree of

confidence in this assessment, that can vary from suspicious activity
(spikes in luminosity), to outright impossibility (readings outside

working intervals). Once they are detected, different strategies can

be employed to deal with erroneous values adequately (cf. runtime
adaption, circumvent and isolate, consensus among values,

compensate, calibrate, reset).

Reasonable Values

Component Compliance

Suitable Conditions

Figure 6: Diagnostic enhancement tree for the reasonable

values pattern.

Rationale. Something that deviates from what is standard, normal,

or expected, is usually called an anomaly. There is a whole sub-

field of computer science and mathematics called anomaly detection
that might employ sophisticated algorithms to search for situa-

tions that deviate from normality, and the data itself defines what

5
Some approximation can always be made if the read values by the device itself, e.g.,
humidity, are too close to its the operating limits
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establishes as normal [19]. Notwithstanding, there are other scenar-

ios were normality is well-known: reading intervals and physics

are two extremely informative sources. In these scenarios, specific

strategies might be employed to assess the degree of confidence in
the values, up to the point of unreasonableness. Once we identify
these situations, mitigation techniques might be able to extract

a workable value by filtering out the noise; otherwise, isolation

techniques could flag the devices as unreliable (Fig. 6). One should
note that operating outside the recommended conditions might

lead to unreasonable readings, but the reverse implication is not

true. Alias: Plausible Values. Also see: Test Periodic Readings, Test

Triggered Readings [51], Mean and Variance, Correlation, Gradient

and Distance from other readings [50], realistic threshold [31],

Complex-Event Processing (CEP) [52].

5.4 Unimpaired Connectivity

An edge device is attempting to send its read-

ing back to the server (i.e., the message recip-

ient), but the server is not answering back. De-

pending on the reading’s importance, the value

might be discarded or saved to be resent later.

However, memory is not infinite, and the ur-

gency of the message might require immediate

action. If the failure remains, the device might be forced to decide a

secondary course of action (i.e., Diversity). How to ensure that the

different entities in a system are alive and can communicate with

other parts?

Therefore, start by checking if the infrastructure supports

the intended connectivity by attempting communication to

a secondary target, but through the same connectivity tissue.

This can be done by any system part (e.g., a coordinator trying to
access a device or a device trying to reach a third-party service). If

the message recipient is on the cloud, ping a different known server

on the internet can ping another edge device if it is local. If it is

concluded that the communication infrastructure is defective, try

resetting it or using another one (cf. runtime adaption, reset);
if you can communicate with other devices through that same

medium, look for the problem elsewhere (cf. within reach).

Unimpaired Connectivity

Suitable Conditions

Figure 7: Diagnostic enhancement tree for the unimpaired

connectivity pattern.

Rationale. A simple diagnostic (ping to a secondary service) might

discard a connectivity problem. Knowing the difference between

the two conditions (the message recipient being down, and the

connectivity tissue malfunctioning) might allow the system to take

different actions; if the connectivity is down, one might consider

using an alternate radio to find the recipient (e.g., GSM, Lora or

ZigBee). A typical example would be a fog device that triggers a

rule that would make an alarm go off via aWiFi connection. Further

checks (e.g., action audit) reveal that the order was not fulfilled.

Most devices in the local network fail the heartbeat checks, and

attempts to connect to other cloud-based services and edge devices

are failing. Switching to a secondary radio protocol (e.g., 433MHz)

might allow the intended goal to be carried (Fig. 7). Also see: Dead

Spots (RF holes) [4], Locate disconnected client [4], Performance

Isolation [4]

5.5 Within Reach

Edge sensors that report frequent reading, such

as temperature ones, are usually working con-

tinuously, and the system can readily observe

that they exist because of their constant mes-

sage throughput. Edge actuators, like alarms,

might only actuate in rare circumstances. The

rough confidence that a device will not fail to

operate when needed (in this case, disregarding failures of the de-

vice mechanical parts) is directly proportional to how well (and

often) previous communications were successful. How can one

know that some system part is available and responsive when re-

quired as it is designed to idle most of the time?

Therefore, if two devices are going to trade messages infre-

quently, establish a way to increase the confidence in their

communication, forcing them to communicate event if to demon-

strate that they are operational (cf. runtime adaption).

Within Reach

Component Compliance

Suitable Conditions

Unsurprising Activity

Figure 8: Diagnostic enhancement tree for the within

reach pattern.

Rationale. There are (broadly speaking) two types of connectivity

checks: (1) a deliberate, scheduled broadcast of connectivity is called

an heartbeat [26, 31], and it usually occurs from devices (edge)

to servers/nodes (cloud/fog); (2) a point check of connectivity is

called a ping, and it usually occurs in the opposite direction of a

heartbeat, i.e., from the servers/nodes (cloud/fog) to the devices

(edge) (Fig. 8). The first is mostly used to preemptively capture

potential connectivity failures before action is needed (e.g., a failed
heartbeat from a siren might imply the system entering a warning

state). The second is mostly used as a diagnostic mechanism to find

out if the device is out-of-reach or in an abnormal state. Several

mechanisms can be used to meet these alive checks, such as the

periodic broadcast of status messages or push/pull of telemetry data

between system parts. However, one must consider that in low-

power solutions (e.g., battery-powered devices), forcing the devices

to make themselves alive when it is not needed can have a drastic

impact on their battery-life (i.e., devices that support deep-sleep will
drain more energy due to the more frequent power-cycles). Also

see: acknowledgment [31], are you alive [60], i am alive [60],

NACK [22], ACK [22].
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5.6 Component Compliance

Software is not set in stone, which is the most

significant advantage of programmable things

and their ultimate curse. We expect things to

behave and perform the same unless physical

tearing and breakdown occur. Nevertheless, the

software can also tear and breakdown, both

through usage and time, as well as through

malicious intentions or users’ configurations. Devices also gain

new capabilities, have their configurations changed (e.g., reset),
have their vulnerabilities patched, and their bugs fixed via software

updates. Moreover, these can happen more frequently, over-the-

air (OTA), and unassisted, with recent advancements. How can

we be sure that the devices are executing the software they are

expected to be running while complying with the current system

configurations (interoperability)?

Therefore, check if a particular device is running what it

should in the way it should, by frequently observing their soft-

ware versions, configurations, firmware hashes, and any other

checksum mechanisms. This check can be carried out by differ-

ent system parts (e.g., a gateway that periodically checks the edge

devices versions for updates and checksums for corruptions) or by

devices’ self-checks (that can detect modifications at runtime).

Rationale. Several reasons can render devices running unexpected

software, namely tampered devices (detected via integrity checks),

newer versions (detected via update checks), known vulnerabilities

(detected via audit checks) or misconfigurations (detected using

different types of configuration checks [41, 63]). Typical recovery ac-

tions include factory resets, reboots (cf. reset), firmware re-installs,

re-configurations, updates and downgrades (cf. flash). In some sit-

uations, where recovery is not possible, contingency actions must

be done (cf. circumvent and isolate). Ensuring the correct use of

this pattern depends on having entities (e.g., servers) that provide
the latest stable software packages along with verification check-

sums
6
. These also should have security standards that enhance

the confidence of the checks. Also see: Firmware Integrity Assur-

ance [5], Update [5], OTA upgrade [30] and OTA downgrade [30],

middleman update [24], protocol version handshake [26].

5.7 Coherent Readings

Sometimes, a fact comes to your attention that,

although entirely plausible, you know it is prob-

ably wrong. Not because of its absurdity per
se, but because you have other evidence con-

tradicting it. Sensors are the same; sometimes,

readings might be perfectly fine on their own,

but when confronted with values coming from

different sensors, they are not. For example, it is expected that mul-

tiple temperature sensors inside the same environment to report

slightly different values. Still, when one of them communicates

a wildly different one, something must be wrong. How can one

ensure that the readings are faithful and that inaccurate/incorrect

readings are flagged as such?

6
Nonetheless, these checks can have some intermediaries, i.e., middleman update [24]

Therefore, compare values from different sources, and check

if they are in accordance so that erroneous readings can be detected

(cf. redundancy, diversity, consensus among values). If one

sensor is consistently reporting widely different values, maybe you

should try resetting or calibrate it (cf. reset, calibrate), or maybe

just stop trusting it altogether (cf. circumvent and isolate).

Rationale. By crosschecking values coming from different sources,

we can detect problems that might not be apparent in any other

way. Multiple sources must report approximated values if they are

deployed in similar conditions. Even if the sources are entirely

different (e.g., humidity and rain detection), inconsistencies can

still be inferred (detecting rain, while the humidity sensor reports

a dry environment would be a strange occurrence). Nonetheless,

a sensor that provides "unexpected" values consistently can point

to an abnormal situation, e.g., if a fire starts in a home division,

only the sensor deployed there will be triggered. Alias: Consistent
Readings. Also see: N-Version Programming [21, 69], fail-stop

processor [60], sico first and always [3].

5.8 Internal Coherence

Actions are being performed in your system;

e.g., turning switches on, regulating the AC and

the windows blinds, activating the irrigation

system. . . All these actions lead to changes in

the system, whose state is usually mirrored in-

ternally (i.e., instead of continually asking if a

switch is on or off, one usually stores the latest

known state). Sometimes, though, devices act on their own (e.g.,
due to a reset or human intervention) and change the state without

(or failing to) informing the rest of the system. As an example, con-

sider a light power switch that can be controlled by (1) manually

toggling the switch, (2) a mobile application, and (3) a configured

light-sensing trigger action. Depending on message delays, packet

losses, system reboots or, even misconfigurations, the system can

enter in an inconsistent state, where it no longer knows the state

of the lights and can lead the user to make incorrect decisions.

The problem increases when there are more configurations beyond

a simple on/off state, such as using the same example, light col-

ors/temperature. How can wemake sure the internal representation

of the system reflects its actual state?

Therefore, perform regular checks of the system’s internal

representation when possible,making sure that it correctly mir-

rors the actual devices’ state. This is specially important after a

reset or a flash and might require the device to rebuild internal

state.

Internal Coherence

Action Audit

Component Compliance

Figure 9: Diagnostic enhancement tree for the internal co-

herence pattern.
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Rationale. The maintenance of an internal representation of the

system exists for several purposes, the most common one being per-
formance or to avoid constantly querying a device about its status.

However, this assumption that changes in the system are always

successfully reported (Fig. 9). Any small overlook in reporting can

easily create inconsistencies between the physical setup and its

internal representation, which might eventually cascade in the deci-

sion process leading to a degraded/defective state. Alias: Internal
Consistency.Also see: device registry [54], system monitor [62],

Resource Discovery for Fault Detection [73].

5.9 Stable Timing

Your devices are continuously talkingwith each

other, sending messages to inform about a par-

ticular value, or asking another device to exe-

cute a specific action. However, timing is ev-

erything. Two messages in the wrong order are

enough to leave the system in a defective state;

delayed readings can be the difference between

taking the appropriate action in time to prevent damage or the

information no longer being relevant. How can we detect data that

is not arriving on time, on an irregular basis, or in the wrong order?

Therefore, have mechanisms that can detect if devices are

sending messages at the expected intervals, and taking the

expected time to respond to the messages they are receiving. If they

are not, you can try to reset them (cf. reset), use other sensors (cf.
runtime adaption, circumvent and isolate), or mitigate the

problem (cf. debounce).

Rationale. Timing can be critical in IoT systems, and system degra-

dation might cause devices to start taking more time to act upon

the messages they are receiving. These delays can cause mischief.

Sometimes the time between a reading and a device carrying the

appropriate action can be the difference between preventing a fire

or irreparable damage, sometimes two steps in the reverse order

might be the difference between a vital switch staying on or off.

Also see: Data-Driven Synchronization [11], Bubble Razor [28],

DFix [44]

5.10 Unsurprising Activity

Home is where you know how to set the ther-

mostat just right, and you expect that perfect

temperature to be maintained indefinitely. That

should be easy enough, turn the A/C off if it is

too hot, and the heater if it is too cold. At first

glance, these two simple rules might seem ob-

vious enough, but they hide a serious problem.

As the temperature fluctuates around that desired temperature, a

futile and power-hungry battle between the heater and A/C rages

on, with each one taking turns trying its best to push the problem

into the other’s hands. How can this kind of suspicious activity be

detected?

Therefore, check if any device is sending a suspicious num-

ber of messages, as that might indicate severe hardware or logic

problem.

Unsurprising Activity

Component Compliance

Coherent Readings

Reasonable Values

Internal Coherence

Resource Monitor

Figure 10: Diagnostic enhancement tree for the unsurpris-

ing activity pattern.

Rationale. The inappropriate usage of a device might degrade its

lifetime or result in an undesired usage from it. Such usage can

result from a damaged or malicious device or entity that would

continuously ask the device to perform the same operation (Fig. 10).

By monitoring the messages being sent to a device, and establishing

a reasonable usage restriction to it, it would be possible to identify

misuse patterns, informing the recovery & maintenance of health
mechanisms in place (e.g., Circumvent and Isolateand Reset). Also

see: blacklist [58], whitelist [58]

5.11 Timeout

You want to trigger an action and be sure that

it executes within a given time frame. If it does

not, an error must have occurred. For example,

you want to alert a homeowner that they did

not enable his home alarm, despite being out

of the house. If the alarm is not enabled within

20 minutes, you want to call him to ensure that

they are aware that the alarm is disabled. How can one be sure that

a particular action is executed?

Therefore, keep a timer running since the first action and

observe if a reaction happened, if the timer runs out without

the reaction, an error has occurred. The root cause can range from

a device issue, i.e., action audit to a network disruption i.e., unim-
paired connectivity, within reach.

Timeout

Component Compliance

Suitable Conditions

Unsurprising Activity

Figure 11: Diagnostic enhancement tree for the timeoutpat-

tern.

Rationale. When a device requests an action from another, the

time it takes for the action to be completed might be critical (Fig. 11).

If the action fails to complete within the acceptable time frame, the

triggering device should be able to trigger an alternate action. For

that, it should run an internal timer, during which it observes if
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the action has concluded. When the timer runs out, if the desired

reaction is not observed, an alternate action is triggered, to which

a Timeout probe can be used as well, working as a maintenance of
health mechanism. Also see: limit retries [26, 31]

5.12 Conformant Values

Devices can sometimes have faults in their hard-

ware (and, sometimes, in their software) that

can lead them to behave out of their specifi-

cation. Per example, sensor devices that use

percentage values in their reading can not out-

put negative value nor values above 100%. How

can we assure that sensors are operating ac-

cordingly to their manufacturer specification?

Therefore, check if the device readings are in conformance

with the device reading thresholds, which are stated in the de-

vice specification.

Conformant Values

Coherent Readings

Reasonable Values

Component Compliance

Suitable Conditions

Figure 12: Diagnostic enhancement tree for the confor-

mant values pattern.

Rationale.Most common hardware present in IoT devices is low-

cost and has, typically, a high-proneness to failure. One of the pos-

sible outcomes of failure can be, for example, a sensor producing

values that are not part of their specification (Fig. 12). In such scenar-

ios, the system should be able to distinguish between valid values

or out-of-spec ones, allowing recovery & maintenance of health
measures to be put in place (e.g., compensate and circumvent

and isolate) Also see: Threshold Check [69], Reasonableness

Check [69].

5.13 Resource Monitor

Entities in IoT system, ranging from low-power

devices to powerful servers, have constraints

such as processing power, storage capacity,

bandwidth, among others
7
. Spikes in system

usage can lead to malfunctions and severally

impact the Quality-of-Service (QoS). The need

appears to oversee the resources that the sys-

tem is consuming both in real-time as well as historically.

Therefore, monitor the system resources at all times, rang-

ing from battery levels to network operation and resource usage,

providing insights on the system’s bottlenecks and related issues.

7
Even for cloud computing, limitations exist associated with the cost and availability

of resources

Rationale. System need for resources varies during its operation.

As an example, a smart home system can sit mostly idle during

the time that the house is empty; however, as inhabitants arrive

home and interact with the system, the resource usage can spike.

While most cloud-based systems can scale resources on-demand,

the devices spread around the house (i.e. fog and edge devices),

which are typically very limited (e.g. processing power) can eas-

ily provoke issues in the system (such as QoS degradation). Thus,

resource monitor can both provide insights on current issues on

the system as well as on potential issues, allowing them to per-

form actions accordingly (e.g., balancing). Also see: external

monitoring [65], resource monitoring [46].

6 RECOVERY & MAINTENANCE OF HEALTH

If errors are detected in a system, enabling the system to self-heal
requires recovery &maintenance of healthmechanisms. These mech-

anisms act per the probes, reacting to the information reported by

them (i.e., if a probe detects an error recovery or maintenance of

health mechanism should be triggered, avoiding system degrada-

tion or, even, recovering from a defective state).

The following paragraphs delve into the patterns that correspond

to the common recovery &maintenance of healthmechanisms. These

mostly rely on the information provided by the error detection

mechanisms described in the previous section; thus, probes and
recovery & maintenance of health mechanisms work in tandem

to enable a system to self-heal. Most of these patterns can work

together in order to restore the system to a healthy state.

As previously, withing the scope of IoT systems, smart spaces
such as the one presented in Section 2. The following paragraphs

describe the pattern of the recovery & maintenance of health (right

side of the Fig. 3).

6.1 Redundancy

Things are prone to fail, both in hardware (e.g.,
power-spikes) and software (e.g., corrupted
software update). Even when the different sys-

tem entities report what seems to be reasonable

values (cf. Reasonable Values), there is no as-

surance that it is the real value, since there is

no comparison point. In cities, if the air quality

control was made by only one sensor, there was no way to dis-

tinguish a strange reading (e.g., due to a broken sensor or by a

spike provoked by a heavy-duty vehicle passing by) if there is no

other record to compare with. How can we ensure that the system

provides correct service at all times?

Therefore, use redundant mechanisms to achieve the same

goal, allowing one to both make decisions on which report to

believe in, or to trigger the same action using another way.

Rationale. In more sensitive scenarios, there is a need to deploy

redundant units (i.e., redundancy in space) that can report the same

measurements or trigger the same actions to make the system sur-

vive to partial failures into account the extra costs. Such redundancy

can be achieved by deploying similar or equal sensing or acting

devices, communication channels (e.g., different radios), process-
ing units (e.g., microservices), third-party services providers (e.g.,
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Figure 13: The recovery & maintenance of health patterns and their sequences of actions (service restorations) towards normal

state. Some of the patterns provide the foundations for others (no color), others work as maintenance of health (blue-colored)

and, finally, the remaining work as system recovery mechanisms (green-colored).

using both Amazon Alexa and Microsoft Cortana), and even dif-

ferent power-sources to support the running system (e.g., solar
and batteries). In sensing scenarios (e.g., environmental) it can be

possible to use redundancy in time which consists on taking sev-

eral measurements in a time-window and only report the most

correct (e.g., common) reading (i.e., dropping outliers), viz., rea-
sonable values. Also see: failover [31], remote storage [31],

passive replication [60], semi-passive replication [60], semi-

active replication [60], active replication [60], Different types

of wide-area networks [66], 1+1 redundancy [26]

6.2 Diversity

Having multiple components, such as light

bulbs, in the same space for the same purpose

have the nice side-effect of acting as redundant

components when one of them fails. However,

this is tightly coupled with the cost of the de-

vice; more expensive objects, such as AC units,

are usually deployed in a minimum-required

number in the same environment. How can we improve the recov-

ering and maintenance of health capabilities in a system where

some components are not redundantly deployed?

Therefore, use different entities to achieve a common goal

and reduce the impact of faulty parts. There are sometimes al-
ternative ways of achieving a common goal without adding new

entities to the system. During the daytime, a way to compensate

a broken light can be to open the windows’ blinds and let in sun-

light. Lowering the temperature can also be achieved by opening a

window instead of turning on the AC.

Rationale. Redundancy per se, e.g., triple modular redundancy, is

rare in IoT systems due to the associated costs for mostly non-

critical tasks. Nevertheless, alternative (and possibly already exis-

tent) mechanisms can be used to accomplish tasks that are not part

of their primary functions, reducing the systems’ points of failure.
Diversity does not need to be applied only to devices; mechanisms

such as communication channels (e.g., WiFi, Bluetooth, 433Mhz)

can also be the target of diversity, mitigating the effects of Unim-

paired Connectivity. Nonetheless, adding diversity to the system

will increase its complexity, thus possibly impacting the system’s

overall cost, maintainability, and understandability. Some authors

have been proposing the idea of automatic workarounds to leverage
the already existent diversity (and redundancy) on the system to

recover from failures [17]. Also see: circuit breaker [39], De-

sign Diversity [9], Automatic Workarounds [17], Protocol Switch-

ing [57].

6.3 Runtime Adaption

Devices typically have different operating

modes which are enabled in different setups

or operation conditions. Consider the example

of a lightbulb that connected by ZigBee to the

main hub; if there is no hub present, the bulb

can be controlled by a dedicated remote control.

Another example is the case of WiFi-connected
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smart plugs; the first time that they are turned on, an Access Point

(AP) is created (or a Bluetooth connection) that allows the user to

enter the home WiFi credentials, and then the plug connects itself

to the home network. However, after things are configured once,

the devices typically do not employ fallback measures. In the smart
plug case, if there are disruptions on the WiFi service, the user will

not be able to access their smart home system, even if changing

the smart plug to AP-mode would temporarily fix the issue. Since

IoT systems typically rely on low-cost components that might be

deployed in harsh environments, which increase the likelihood

of soft-errors (e.g., intermittent erroneous sensing data or issues

on communication) [18], fallback strategies can be crucial in pre-

serving system operation. How can the system deal with different

system degradation (partial failures) while still providing services

to the user?

Therefore, enable the system to adapt during runtime, allow-

ing the system to use different infrastructure seamlessly (physical

or virtual, i.e., Avatar or Digital Twin [58]) during operation. When

the usual infrastructure recovers to a healthy state, the system must

change back to the usual channels [53]

Rationale. There are several devices/services that already have

the built-in capabilities to provide services even when facing some

degree of service degradation. However, typically, these capabilities

are not taken advantage in a resilience perspective. The soft-errors
can allow the system to continue operating but can require a certain

amount of adaptation to the runtime conditions. If the device is

low on battery, its transmission power (e.g., WiFi) can be impacted.

However, changing to a more low-powered communication pro-

tocol can allow the system to continue operating for more time

without human intervention. Further, if a device cannot connect

to the communication infrastructure, it can create its own AP for

giving users the ability to control or get data from the device. Simi-

larly, if the system depends on a device to report e.g., environment

temperature, if there is a failure in receiving data from that device,

the system can fall back automatically to a different source (e.g.,
third-party weather service). Several solutions employ the concept

of Avatar or Digital Twin, virtual representations of devices that,

beyond making the bridge between the virtual and real-worlds, are

capable of some adaptation such as using other physical units in

case of detecting errors or simulate the behavior of the real coun-

terpart if none is available (cf. compensate). It must be considered

that these adaptations can compromise the system’s capabilities

(e.g., data-rate), which may not be viable in certain scenarios.Alias:

Dynamic Binding, Reconfiguration.Also see: circuit breaker [39],

reintegration [31], device shadow [59].

6.4 Debounce

A new temperature sensor was added to the

smart home to improve the control of room

temperature (with more precision than an al-

ready existent sensor). However, the cooling

system began to show unpredictable behaviors

from time to time. The sensor might have been

broken; yet, replacing it with a new sensor unit

did not solve the issue. Further investigation, mostly by reading

the cooling system user manual, showed that the system was try-

ing to collect sensing data from the sensing device at a rate above

its sensing period, which lead the cooling system to misbehave

(since it had no data to decide upon). How can we meet the device

operational constraints without compromise the system operation?

Therefore, filter or aggregate events tomeet operational tim-

ing constraints, ensuring that the target device receives (or is able

to collect) data at the expected frequency. Optionally aggregate

them with an average, maximum, minimum, or other strategies to

provide the device’s relevant data.

Rationale. Both sensors and actuators have several operating con-

straints, such as power supply, accuracy, and operation range.

Amongst those constraints, there is some that limit how many

times a device can trigger a certain action, namely, how often read-

ings can be collected from a sensor, and how many times or with

which frequency an actuator can be triggered, namely: (1) sens-

ing periods and (2) mechanical/electrical life and operation/release

time. If a system does not respect these parameters, in the case

of sensors, it can result in undefined behavior (e.g., ranging from

failures to collect values to collecting random data). In the case

of actuators, this can reduce the life-spawn of devices, or even,

having hazard repercussions. However, in most cases, humans will

not notice if the system delays the triggering of a device (or delay

the report of a value) a second or so (e.g., any delay will possibly

lead users to keep pressing the ON button until the lights turn on,

cf. timebox) [66]. Thus, the system must implement mechanisms

that debounce events to meet the system’s operational constraints.

While these issues are often dealt with at system development and

testing phases, end-users can be impacted by the nonexistence of

such mechanisms when upgrading their systems. Also see: qeue

for resources [31], reqest delay [53], protective automatic

controls [31], shed load [31], slow it down [31].

6.5 Balancing

A street access control sub-system (part of a

smart city system) has variable load. While the

system ismostly idle during the night andweek-

ends, during the work-days, the system is at

its usage peak (e.g., due to commuting). Dur-

ing this time, other hardware in the smart city
might be sitting mostly idle. How can we en-

sure that the system is responsive at all times?

Therefore, distribute software and load between available re-

sources to meet service demands. Do so by abstracting the un-

derlying hardware and distributing the computational units auto-

matically between the available hardware.

Rationale. The processing demands of a system can change rapidly

due to peaks in usage (e.g., access control or increase in the home

inhabitants’ activity) or the appearance of heavier computational

tasks (e.g., surveillance video processing). However, even during

peaks, there can exist parts of the system that are idle (or, even,

available redundant parts, cf. redundancy) that can be leveraged

to meet the system usage demands during peaks (returning then to

normal operation when they are not further needed, cf. runtime
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adaption). Also see: share the load [31], protective auto-

matic controls [31], orchestration manager [14].

6.6 Compensate

A dehumidifier was brought to eliminate musty

odors and prevent the growth of mildew in

the house. However, to avoid having it turned

on at all times, an additional humidity sensor

was brought that provides information that al-

lows controlling when and for how long the

dehumidifier is active. However, in several sit-

uations, the dehumidifier was not turning on due to issues with its

sensing counterpart (due to, as an example, unimpaired connec-

tivity or stable timing). How to ensure that devices perform as

expected even when there have some operational problems in their

sensing counterpart?

Therefore, have mechanisms that can compensate missing

or erroneous information, at least during an established period

of time.

Rationale.While the system operation is best when all of its parts

are working correctly, the malfunction of one part (cf. reasonable
values, unimpaired connectivity and suitable conditions)

should not jeopardize the entire system. In these scenarios, mech-

anisms should be put in place to compensate for the missing in-

formation, allowing the system to keep operating. In the case that

there is another source of data that can be used (cf. runtime adap-
tion and redundancy), they should be adopted. However, when

none of these alternatives exists (or are available), strategies such

as using an average of the last measurements can be considered and

used [9]. However, the confidence in this calculated values lowers as

the time passes by, thus additionally, considerations about a graceful
degradation should be taken (e.g., by setting and using a default —

reference — value) [27]. Also see: Kalman Filter [40], Interpolation

and Correlation [61, 73], Linear and Non-Linear models [73]

6.7 Timebox

Having components that are both manually

controlled on-site and remotely (e.g., using a

mobile application) leads the user to expect the

same kind of behavior in both. However, while

operating devices remotely, several constraints

can slow the feedback-loop, such as network

lag. This can lead to the user to keep sending

the same request (e.g., turn on the sprinklers) repeatedly until the

application reflects the request (e.g., showing a message informing

that the sprinklers are on). However, this behavior can provoke

malfunctions (even failures) in the system. How to prevent repeti-

tive and similar actions (user or system-induced) in a short period

from damaging the system?

Therefore, only process an order in a specific period that re-

spects the system operational constraints, filtering (e.g., dropping)
the remaining requests within the timebox.

Rationale.When a state change request is made, sending the same

request repeatedly to the make the action happen faster does not
have real effects (since the system will always take some time to

change to the requested state). However, if this behavior is not

controlled, it can compromise the system; thus, similar or equal

requests made within a pre-defined timebox should be discarded.

Even if the system is required to respond to all the requests (or if

the requests are different), it can only go as quickly as the system

operational thresholds (cf. debounce).Also see: limit retries [31],
limit number of retries [56]

6.8 Checkpoint

A smart home system can keep information

about several aspects, such as lights state

(on/off), presence (detection of motion in the

last minutes) and last device activation’s (e.g.,
vacuum cleaner robot). However, in the case of

a general system restart (by some error or on

purpose), the system will act as new, changing

all devices to default values, thus changing the lights accordingly,

resetting the last time presence was detected, and starting to clean

the house again (e.g., activating the vacuum cleaner robot) even

if it was cleaned just before the system restart. How to avoid the

fallback to default values in such cases?

Therefore, preserve the current system state, avoiding the rep-

etition of actions or changing devices states to default values after

a disruptive recovery action.

Rationale. The correct functioning of an IoT system depends on

preserving parts (or all) of the system current state (i.e., checkpoint),
enabling the system to restore to the last known state if a system

error or restart/reset happens (cf. reset). This allows the system to

recovery seamlessly (i.e., rollback), without repeating tasks and/or

bothering the user to restore to the most current configurations.

Also see: checkpoint [31], what to save [31], rollback [31],

roll-forward [31], checkpoint [26], snapshot [26]

6.9 Reset

As the system operates, several faults can hap-

pen without triggering an error (i.e., latent
faults), going unnoticed by the users and, even,

by the system itself. However, these faults can

build up, leading to system errors and, possibly,

system failures. How can we reduce the prob-

ability of errors and failures being triggered as

time passes? Further, several issues can appear during service de-

livery that can compromise the correct operation of devices (e.g.,
wrong user inputs, electromagnetic radiation, or power spikes) that

can lead the device to present undefined behaviour. How can we

restore the device to a healthy state?

Therefore, perform system resets, periodically (e.g., during idle
periods) or when some error is detected, working both as mainte-

nance of health mechanism and, possibly, as a fault removal proce-

dure.

Rationale. Reboot and reset strategies have been used for a long as

a way to improve systems reliability both in terms of software (e.g.,
application restart [66]) and hardware (e.g., hardware watchdog
timers) concerns [1, 2, 23]. The continuous system operation can

lead to the creation of several latent faults that can be triggered,
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leading to system errors and failures. Even if one could argue that

with more resilient (e.g., rigorously tested and verified) software

and hardware, the probability of a system entering in an error or

failure state is reduced, IoT systems are known to be built with low-

cost components with high failure rates (e.g., communication issues,

sensing imprecision’s) [18, 35]. These resets can be both soft-resets
and hard-resets, depending on what they preserve in terms of the de-

vice’s internal state. For example, soft-resets provably will only work
for non-permanent faults (e.g., if a fault is preserved in a checkpoint

— cf. checkpoint —, a hard-reset should be performed). However,

depending on the device or system, rebooting/reset the system pe-

riodically can introduce inconsistencies in operation (e.g., system
state synchronization) than can negatively impact the system. Fur-

ther, since reboot/reset can restart all its processes, any dormant

storage corruption can provoke malfunctions. Also see: routine

maintenance [31], routine exercises [31],data reset [31], roll-

forward [31]

6.10 Consensus Among Values

Triggering an alarm can have serious conse-

quences, so, commonly, alarm systems rely on

several and, sometimes, different sensors to

keep the environment under check. However,

a miss-configured or malfunction sensor can

report some nefarious condition (e.g., CO2 lev-
els) without being correct. How can the system

deal with such a report without erroneously triggering the alarm

system?

Therefore, evaluate information fromseveral sources before

taking a decision, increasing the level of confidence on the action

to take, minimizing the likelihood of mistakes.

Rationale. When several sources report data upon which the sys-

tem acts, all the information should be considered. In most cases,

malfunctions can be easily identified and discarded by comparing

the collected information and only considering the information

with which the majority agrees with (i.e., voting). More advanced

mechanisms can be used that also take into account the trustability

of the reported values (cf. compensate) [66]. Nonetheless, there
can be situations where the majority of the sensors are reporting er-

roneous values. In such situations, depending on factors such as the

importance of such readings, more sensors can be added and/or the

misreports should be considered and, at least, communicated to the

system owner/administrator. Also see: voting [26, 31], Anomaly

Detection [67]

6.11 Circumvent and Isolate

As the system operates along time parts of it

can reach end-of-life (e.g., an A/C which no

longer can achieve the target temperature), hav-

ing high-failure rates which can impact the

overall system operation and, possibly, threaten

the user comfort and well-being. How can the

system deal with failing parts without compro-

mising its correct operation?

Therefore, circumvent and isolate failing parts, by disabling

faulty components and reconfiguring the system to ignore those,

avoiding system-wide disruptions.

Rationale. System parts can have errors and failures, ranging from

hardware/software issues to provoked malfunctions (both inten-

tional and unintentional) that can impair the system’s operation

as a whole. When such problems are detected, and their origin is

identified, mechanisms should be triggered that circumvents and

isolate the failing part. Suppose that the A/C unit is defective. In that

case, the system must not rely on it anymore (until there is a repair

intervention) and use alternative ways to achieve the same goal, cf.
runtime adaption (e.g., during summer, to lower the temperature,

opening the home windows can be an acceptable solution). Also

see: roll-forward [31, 60], error containment barrier [31],

riding over transients [3, 31], leaky bucket counter [3, 31],

qarantine [31], input guard [32], output guard [32], loose af-

filiations [33], circuit breaker [39], output interlocking [56]

6.12 Flash

Things can be deployed in remote areas with

only periodic maintenance cycles (e.g., every
three months). During this time, the devices are

exposed not only to environmental conditions,

but they also can be stolen or modified by an

adversary (i.e., user with malicious intent). In

such cases, if the device remains part of the

system, it cannot be trusted (since software modifications could

have been performed), cf. circumvent and isolate. A reset is not

enough if the running software modifications where permanent.

How to regain control of the device?

Therefore, flash the device with a trusted software version ,

remotely (if possible), or by collecting and redeploying the equip-

ment. This can also be known as factory reset or wipe and reinstall.

Rationale.Most of the low-cost devices that are part of IoT systems

are prone to physical attacks due to the limitations of encryption

(mostly resulting from the limited computational power). When

a device shows suspicious activity (cf. unsurprising activity),

mechanisms should be triggered to reclaim control of the device,

remotely if possible to flash the device with a trusted software

version over-the-air or physically by collecting and redeploying the

device.When recovery is not possible, there should exist a kill switch
that erases/destroys the device, limiting what the attacker can do to

the system. Also see: remote lock and wipe [58], blacklist [58],

whitelist [58], bumpless update [26], updateable software [26]

6.13 Calibrate

Devices sensors and actuators can deviate from

their expected behavior due to decalibrated el-

ements (both in software and hardware). Typi-

cally, decalibration errors are consistent, show-

ing up every time a new measurement/action

is taken. Regarding sensors, even if they are

designed to have high-accuracy, the storage,

transport, setup of the devices, along with being subject to heat,

cold, shock, humidity, and other nefarious conditions, can lead to
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decalibration. We can consider, as an example, that most

of the sensors require ADC calibration for accurate readings, and

power monitoring chips must be calibrated before being used for

measuring the energy consumption [43]. Regarding actuators, as

an example, a potentiometer can decalibrate with its usage and lead

to unexpected outcomes. How can we ensure the accuracy of the

data collected by the sensing devices and the actions carried out by

actuating devices?

Therefore, (re)calibrate the device to meet the expected be-

haviour, by remote or in-situ hardware tuning, potentially sup-

ported by cooperating sensors.

Rationale. Several sensing devices have calibration requirements

that must be realized to make the devices properly function. Further,

as time goes by, some of these devices can suffer some decalibration

due to several causes, such as usage. As an example, a motion sensor

must be calibrated in terms of trigger-periodicity and detection

range. If one or both of these configurations are erroneously done

or suffer from some decalibration (e.g., malicious modifications),

it will cause the device to misfunction, unsurprising activity,

thus a recalibration is needed. Additionally, we can consider that

several communication infrastructure and protocols can require

calibration to work properly in the environments they are deployed

to (e.g., find the right WiFi channel that is less used can improve

communication reliability). Also see: ProCal [43], SensorTalk [45]

6.14 Rebuild Internal State

System internal state (partially or as a whole)

can suffer from inconsistencies due to the con-

current nature of the IoT systems (e.g., due to
multiple ways of interact with the system parts).

Refer to internal coherence for an example

on the incoherence that can be introduced by

the concurrent inputs of a light system. How

can we restore to a stable and coherent system state that reflects

the real-world system state?

Therefore, rebuild the internal state of the system to comply

with the current system state. internal coherence probe can

trigger this. The system can be restored by querying the existing

devices about their state or recover from external state storage.

Rationale. IoT systems are concurrent, with several inputs that
can come from a wide range of origins (e.g., mobile applications,

external APIs or physical device triggers — buttons). However,

as the system operates, events (e.g., power-surge) can lead the

system to an inconsistent state. In these cases, a checkpoint is not

enough since the state of different system parts can be different

from the existent checkpoint. Further, there is no need for a reset.

Thus, the system part can rebuild its internal state by observing the

current environment or system state. Also see: safe state [26],

bootstrapper [26], start-up negotiation [26]

8
It is important to note that in a sensing device, the sensor itself is only one component

in the measurement system.

7 CONCLUSION

As connected objects (both sensors and actuators) widespread

across application scenarios (from domestic applications to indus-

try), these Internet-of-Things systems’ dependability has the utmost

importance. While several authors address this issue, most of them

focus on creating an external system (e.g., auditors and watchers)

and rely on those to maintain the system in a healthy state. Thus,

there is a lack of a collection of building blocks that can be adopted

by system developers and integrators to increase their systems’

reliability without the need to resort to external solutions.

In this paper, we present a set of 27 patterns and a pattern lan-

guage that can be used to improve the reliability of IoT systems

by enabling them to self-heal. These patterns are organized in two

main categories, namely: error detection (probes) and recovery &
maintenance of health; and are mostly based on previous work on

related fields such as cloud computing, space systems engineering
and critical and industrial systems and are revised under the con-

straints of the IoT paradigm. Although some of these patterns are

not novel per se, their contextualization on IoT systems is (at least

for the most of them) and imposes new considerations, both from a

fault-tolerance perspective as well as from a self-healing perspective,
being our focus the second one. Moreover, these patterns appear in

the literature as a disperse, non-systematic way and mostly disre-

gard relationships between them (no pattern language or any other

relation is defined).

During this research, we also have potentially identified other

patterns that we consider future work. Among those, the ones

focused on assessing the resilience of a system. As an example,

drills can be used to deliberately provoke failures in a system

to check if the maintenance of health & recovery mechanisms is

working as supposed (cf. failure injection and chaos engineering).
We also envision future work to evolve further the design and

implementation of one or more proofs-of-concept that leverages

the pattern language here described [25].
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