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Abstract

The trend towards the use of higher strength materials, such as Advanced High Strength
Steels (AHSS), created new challenges to sheet metal forming processes, both in obtain-
ing a component without defects and when using numerical simulation to predict material
behavior and deformation limits, before breakage. These new challenges shaped the need
for development of new numerical tools and constitutive mathematical models, with the
potential for better replicating the material behavior in the sheet metal forming processes.

This thesis is a contribution to take a step forward on this kind of research, while its
innovative approach seeks to provide the development and improvement of methodologies
that allow the use of new numerical tools, aiming to a more accurate prediction of material
behavior.

A suitable set of experimental tests for mechanical characterization and material forma-
bility has been defined and performed, corresponding to different strain paths and differ-
ent stress states, in order to improve the material behavior definition and consequently the
accuracy of the numerical results.

Finite element numerical simulations and experimental tests were carried out to evalu-
ate and compare the obtained results for this advanced high strength steels. The numerical
simulation combined with different constitutive models was applied to a series of bench-
mark tests, corresponding to a variety of conditions in which a material can be subjected
during the deformation process, including the deep drawing cylindrical cup, the Nakajima
and the Cross-Die tests.

In case of the deep drawing cylindrical cup, different yield criteria were evaluated
and analyzed, as well as the application of a non-associated plasticity flow rule. The
earing profiles and the wall thickness distribution showed to be sensitive to the adopted
yield criterion. The comparison with experimental data indicates that the use of a non-
associated plasticity flow rule can be more efficient, improving the accuracy of the pre-
dicted anisotropic behavior for the proposed materials.

Additionally, in order to verify and validate the applicability of ductile damage mod-
els to predict the occurrence of fractures, finite element simulations of the Nakajima and
Cross-Die tests were performed. The implemented uncoupled damage models show to
predict the same behavior and a very similar fracture location when compared to the ex-
perimental evidence.

Keywords: Sheet metal forming, Numerical simulation, Benchmark tests, Yield criteria,
Ductile damage models
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Resumo

A tendência para a utilização de materiais mais resistentes, como é o caso dos aços
avançados de alta resistência (AHSS), definiu a existência de novos desafios para a obtenção
de componentes metálicos em chapa e para o uso da simulação numérica na previsão do
comportamento do material e dos seus limites de deformação plástica, em processos de
conformação plástica de chapas metálicas. Com estes novos desafios, o desenvolvimento
de ferramentas numéricas continua a ter um grande crescimento, tal como os modelos
constitutivos que reproduzem o comportamento das chapas metálicas nos processos de
conformação plástica.

Esta dissertação procura dar um passo em frente na pesquisa científica, enquanto que a
sua abordagem inovadora pretende contribuir para o desenvolvimento e aperfeiçoamento
de metodologias que permitam a criação de novas ferramentas de modelação numérica,
com o objetivo de prever como maior rigor o comportamento mecânico de materiais
metálicos.

Foi definido e realizado um conjunto adequado de ensaios experimentais de carater-
ização mecânica e de conformabilidade, correspondendo a diversas trajetórias de defor-
mação e estados de solicitação, uma vez que a precisão dos resultados numéricos obtidos
depende da correta caracterização do comportamento do material. Simulações de elemen-
tos finitos e testes experimentais foram realizados para avaliar e comparar os resultados
obtidos para este tipo de aços avançados de alta resistência. A aplicação da simulação
numérica em conjunto com os diferentes modelos constitutivos foi feita a um conjunto
de ensaios benchmark, correspondentes a uma variedade de situações a que um material
pode ser submetido durante o processo de deformação, entre os quais a embutidura de um
copo cilíndrico, o ensaio Nakajima e o ensaio Cross-Die.

No caso da embutidura de um copo cilíndrico, foram avaliados e analisados difer-
entes critérios de cedência e também foi feita a aplicação de uma lei de plasticidade não-
associada. Os perfis das orelhas de embutidura e a distribuição da espessura na parede
do copo mostraram ser sensíveis ao critério adotado. A comparação com dados experi-
mentais indicou que a utilização de uma lei de plasticidade não-associada pode ser mais
eficiente, melhorando o rigor obtido da previsão do comportamento anisotrópico dos ma-
teriais estudados.

Adicionalmente, com o intuito de verificar e validar a aplicabilidade de modelos de
dano na previsão da ocorrência de fratura, foram realizadas simulações de elementos fini-
tos dos ensaios Nakajima e Cross-Die. Da comparação dos resultados numéricos com as
evidências experimentais existentes ressalta que os modelos de dano não-acoplados pre-
veem comportamentos muito semelhantes aos experimentais e uma previsão correta do
local da fratura.

Palavras-chave: Estampagem, Simulação numérica, Benchmarks experimentais, Critérios
cedência, Modelos de dano dúctil
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”Before you say you can’t do something, try it”

Kiichiro Toyoda
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Chapter 1

Introduction

This chapter presents the overall framework of the challenges related to sheet metal form-

ing processes, highlighting the importance of finite element numerical simulation. Addi-

tionally, the main objectives of the work carried out in this thesis are defined, taking into

consideration its technological and industrial interest. Moreover, the outline and contents

of this thesis are also presented.
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Introduction

1.1 Motivation

Sheet metal forming processes are one of the main manufacturing possibilities in the
production of metal components [1], being currently applied in a wide variety of industrial
areas, such as the automotive, naval, electrical, aeronautical and aerospace industries,
among other sectors.

Main advantages of these processes include the production of mechanical parts with
high production rates and practically full use of the raw material. Of all the forming tech-
niques, stamping is a widespread process, particularly in the automotive industry, being
responsible for large volumes of production, as well as a wide variety of components
(figure 1.1).

Figure 1.1: Use of different types of steels in the production of different automobile body structure
components (adapted from [2]).

Metal stamping transforms sheet metal into different custom shapes, using machine
presses and stamping tools. Tools usually include a punch, a die and a blank holder. These
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tools will apply external force on a flat metal sheet to promote the plastic deformation of
the material and to obtain the desired shape.

Nowadays, the tendency of increasing complexity of product geometries, as well as
the introduction of new materials and reduction of design-production cycles, a trend as
seen in transportation industries, creates a constant need for research and technological
advances. As the service life of the products has been decreasing, a quicker and flexible
development stage is required, while keeping or even improving the final quality of the
component. In general, numerous, costly and time-consuming trial-and-error cycles were
required between the design and final product phases, in which prior knowledge and ex-
perience were essential concerning the technological process, product geometry and the
material to deform. However, experience is not enough, while trial-error methodology is
very expensive with respect to both money and time. Therefore, there is a need for devel-
opment of both theoretical and experimental engineering methods enabling problems to
be solved efficiently, thus reducing manufacturing costs and the time between design and
start of production. Also, to face current trends, it is needed a continuous development
concerning materials, concerning new innovative forming processes, in addition to the
developments in tooling and manufacturing equipment.

Currently, in automotive industry there is an emphasis on weight reduction of vehicle
body in order to improve vehicle fuel economy, the corresponding emissions in green-
house gases and the lightweight design. In parallel, aspects related to passenger safety are
uninterruptedly improved, mainly due to demanding imposed legislation. One method
to accomplish these goals is to incorporate lightweight materials into the vehicle body
structure, but also capable of supporting any load to maintain its structural integrity [3, 4].

Advanced High Strength Steels (AHSS) are among the materials that are currently
seeing increased usage and implementation in weight reduction efforts due to their high
strength-to-weight ratio. However, manufacturing automotive parts with AHSS have im-
posed many challenges [5]. One of the barriers to further implementation of these mate-
rials is the observed behavior that differs from mild steels and conventional high strength
steels and, therefore, all the empirical knowledge learned over the years cannot be gen-
eralized to these new materials, needing the definition of new operating settings for the
success of the forming processes. These conditions also seem to contribute for the in-
consistent forming behavior of AHSS, i.e., unexpected fractures [6] occurring on high
curvature die radii [7], while enhanced formability is observed with combined modes of
deformation of stretching and bending [8, 9]. It is known that combination of stretching
and bending effects can influence the material formability [10, 11]. This effect seems to
be significantly more pronounced for AHSS than for conventional grades [6]. The forma-
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bility of the AHSS seem also being more sensitive to combined stretching modes as well
as deformation-induced heating, particularly in high strain rate conditions [12, 13]. As a
result, the in-plane deformation forming limit, used to predict formability of conventional
steels shows an underestimation of the forming limit strains, which prevent designers
from exploring AHSS potential formability.

Therefore, the adoption of virtual production concepts and numerical methods tends to
reduce the expensive and long experimental tryouts (tuning) in the press shop and evaluate
the material behavior during deformation. This fact is due to the greater interactivity
between the conceptualization and design phases of components and forming tools, using
numerical simulation.

The numerical simulation of sheet metal forming processes has been playing a fun-
damental role in the reduction of development times, as well as the introduction of new
materials. It allowed extending the application domain to more complex plastic defor-
mation problems [14], which involve non-linearities of the material mechanical behavior
associated with the hardening and anisotropy phenomena, strain rate and strain path sen-
sitivity, temperature effects , material internal damage [15] and friction resulting from the
contact between the material and the tools.

In the last decades, a constant and evolving effort was made in the development and
implementation of constitutive models and tools in numerical simulation, making it pos-
sible to obtain accurate and faster results. However, such accuracy depends on the correct
material characterization, as well as the definition of the process conditions. Regarding
the material behavior, several researchers have been proposed different approaches, in-
cluding hardening, anisotropy prediction, material strength degradation (damage), all of
them needing an accurate identification of corresponding parameters, usually based on
experimental information [16].

The automotive industry is a sheet metal forming sector that benefits from the use
and development of numerical tools, as it faces a growing trend of demands imposed
by environmental issues and by its consumers. From the design perspective, the stamping
sector needs forming guidelines for AHSS, based on the development of FEA constitutive
predictive models and valid formability references, having always in mind its industrial
application.
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1.2 Objectives

This work intends to take a step forward on research while its innovative approach seeks
to contribute to the development and refinement of skills in the area of numerical simu-
lation of technological processes, particularly in sheet metal forming processes, taking
into account different methodologies to determine the mechanical behavior of metallic
materials, applied to Advanced High Strength Steels, always having in mind its indus-
trial applications. These objectives incorporate a general-purpose finite element analysis
(FEA) program, more specifically, the ABAQUST M software.

The methodology considered will characterize the influence of material anisotropic
effects on the behavior of selected materials, shedding light on the mechanisms leading
to defects during processing. It is also expected that developed models will enable high-
lighting different failure mechanisms occurring in metal forming processes. Nowadays
it is accepted that the failure mode exhibits a stress dependency that at the macro scale
(i.e., in the phenomenological material laws normally used) is reflected by the inclusion
of parameters that depend on triaxiality or on the so-called Lode angle, representing more
traction or shear dependent failures.

The numerical simulation will be applied to different experimental benchmarks, rep-
resenting different types of loading conditions present in the stamping field, in order to
study and evaluate the ability of each constitutive model to predict the material’s behavior
using for such purpose, a set of parameters previously identified based on experimental
characterization tests data. It is expected that this improved knowledge will contribute to
a more suitable formability prediction in stamping processes and virtual tool tryout, using
finite element method (FEM) codes.

In brief, the work addresses material and process conditions modeling, using ever
growing computer capabilities, but exploring new ways and methodologies in simulation-
based engineering science, by means of constitutive models, in parallel with relying on
an interdisciplinary research and experimental validation.

1.3 Outline of the thesis

This thesis aims to apply the finite element method in the numerical simulation on the
sheet metal forming process, using the ABAQUST M analysis program. In addition to
current chapter (Chapter 1), where a brief introduction to numerical simulation and sheet
metal forming is presented, this thesis consists of other five chapters and appendixes.
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Chapter 2 presents some fundaments and basic concepts for the constitutive modeling
of metallic materials behavior. Different topics are covered, starting with hardening, also
considering yield criteria and including damage prediction models

Chapter 3 gives a brief description of the materials used in this study, as well as the
respective mechanical characterization and its forming limits.

Chapter 4 describes strategies for the determination and identification of parameters
for constitutive models (covered in Chapter 2), based on experimental data obtained in
Chapter 3. The identified parameters in this chapter are used as input in the numerical
simulations presented in Chapter 5.

In Chapter 5, results from the numerical simulation of experimental benchmark tests
are evaluated and analyzed to determine and predict typical defects and behaviors that
occur in metal parts obtained by the plastic deformation processes.

Chapter 6 presents the main conclusions of this thesis, along with some perspectives
and suggestions for future work.

7
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Chapter 2

Constitutive modeling

This chapter presents a brief description of the constitutive modeling of sheet metal mate-

rials, concerning its mechanical properties, plastic and damage behavior in the numerical

simulation of forming processes. Different approaches to describe the material behavior

are shown, taking always in consideration its industrial usage and applicability.
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Constitutive modeling

2.1 Introduction

Constitutive models are ever-present in scientific research, as well as in manufacturing
processes, as a tool for a more detailed understanding of some physical phenomena, which
can lead to an improvement or the development of new products. The primary purpose
of material constitutive models is to reproduce, as close as possible, the reality under
different assumptions and requirements, depending on the final goal and application area
of the model.

The prediction of material behavior during the plastic sheet metal forming operation
using numerical simulation has become an essential factor of technological interest [17].
Moreover, the ability to preview results, based on numerical simulation, allows the evalu-
ation of material attributes, the detection and prevention of possible errors or the improve-
ment and fine-tuning of the technological process, contributing to the constant increase in
efficiency in terms of time and cost reduction, as well as to improving the quality of the
final product.

In recent years, enormous efforts have been contributed to develop new constitutive
models or to modify existent ones that describe the various sheet metal behaviors math-
ematically, from hardening to damage, not overlooking the anisotropy. Such need also
arises from the introduction of new advanced materials whose behavior differs from those
already well known and whose lack of accuracy in describing the mechanical behavior is
evident [18]. Although, the accuracy of the results obtained by the numerical simulation
depends, among other factors, on the characterization of the mechanical properties of the
materials.

The level of uncertainties that are involved in material characterization creates chal-
lenges in constitutive modeling of sheet materials and therefore compromising the re-
liability of finite element simulations of forming processes [19]. The selection of the
constitutive model that best reproduces the behavior of the material, which can be char-
acterized by an arrangement of different properties (e.g. isotropic hardening with plastic
anisotropy), has an essential contribution to such precision of results. Nevertheless, the
benefit of the identified best material model has to be evaluated within its application
context, considering that other process parameters can influence the final result [20].

The introduction of digital image correlation (DIC) techniques allowed the increas-
ing of analysis area and the accuracy of obtained data, since it is possible to compare
the global deformation field between experimental and numerical directly [21]. Scien-
tific studies show that the hardening of the material is described in a very acceptable
way; however, in some cases, there are differences between the measured and calculated
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strains [22]. This finding suggests that the classic approach of some constitutive models,
in particular yield functions, which popularity are increasing in industry and numerical
simulation codes, still does not allow accurate reproduction of different types of requests.
A benchmark that demonstrates this phenomenon and that is well studied is the deep
drawing cylindrical cup test, being the earing profile of the cylindrical cup a reference
data to test and evaluated the capabilities of the constitutive models implemented in the
numerical simulation [23].

The most basic approach to model a material, regarding its application to sheet metal
forming processes, is its hardening behavior combined with a suited hardening law and a
yield criterion to model the plastic anisotropic behavior. Figure 2.1 shows a scheme with
different constitutive approaches used in numerical simulation and already available in
some commercial finite element codes that can be considered to reproduce the material’s
behavior.

Figure 2.1: Implementation complexity of different constitutive models with respect to the main
purpose

Although it is not mentioned in figure 2.1, some researchers reported that the use of
multi-scale models allows describing more accurately the deformation mechanisms which
occur at the microscopic scale. However, such models are not suitable for industrial ap-
plications, since the time required to obtain results from numerical simulation of sheet
metal forming processes makes their use unfeasible [24]. This drawback is one of the
many reasons why there is still a focus on improving classic approaches, such as harden-
ing of the material, modeling of anisotropy and degradation of material strength (damage).

12
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In this chapter, a particular focus will be given to different techniques for the mathe-
matical description of the hardening of materials, as well as the relationship between the
anisotropic models and the non-associative flow rule, a topic receiving currently more at-
tention. Besides, different methodologies for predicting damage of metallic materials dur-
ing the forming process will be addressed. The following sections describe the possible
ways to model the material behavior for application to sheet metal forming simulations.

2.2 Hardening behavior

In general, for the progress of the plastic deformation, a different stress level from the
initial state is necessary, which depends on the amount of plastic deformation imposed in
the material. This phenomenon, called hardening, defines that the yield surface varies with
the development of the plastic deformation. So, the yield condition can be mathematically
expressed in the form φ = f (σσσ)−σY (ε

p) = 0. This relation implies that yielding occurs
when the effective stress f (σσσ)=σ , which is a scalar function of the state of stress, reaches
a critical value σY , which in turn is a function of the effective plastic strain ε p. The
function σY (ε

p) is usually obtained from a uniaxial stress vs plastic strain curve [25, 26].

Figure 2.2 shows some of the models commonly used to characterize the hardening
behavior of materials during plastic deformation.

The first model shown in figure 2.2(a) refers to a material that undergoes hardening,
since the yield surface increase with loading. This type of hardening is called isotropic
hardening. It is characterized by the yield locus expanding evenly, without changing its
shape. In this hardening model, it is assumed that both tensile and compression stresses
are initially equal, i.e., the stress asymmetry that develops for different deformation tra-
jectories, such as the Bauschinger effect, can be neglected.

Finally, the second model shown in figure 2.2(b), is defined by the fact that the subse-
quent yield surface preserves their shape and dimension, but undergo rigid body transla-
tions in the plane σ1−σ2, and, for this reason, it is called kinematic hardening. This type
of hardening is applied in cases where the Bauschinger effect is important, for example,
when there is an abrupt inversion of the strain path. This is not a common situation in
plastic deformation processes, where the deformation trajectories are in general mono-
tonic, and the strain levels are very high. However, there are still hardening models which
result from a combination of the isotropic and kinematic hardening [27, 28].

It should be noted that there is still the case of a perfectly plastic material, i.e., it does
not suffer hardening and its yield surface remains constant in the stress space. For this
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(a) Isotropic hardening

(b) Kinematic hardening

Figure 2.2: Types of models used for hardening description. (Note: The scheme was constructed
based on the von Mises yield surface).

situation, the vector representing the stress state will have to vary so that its extreme point
is always located on the initial yield surface.

Considering both hardening models, only the isotropic hardening will be used in this
thesis, since there is no experimental data available to evaluate and to model the kinematic
hardening and the cases to be covered do not have emphasis on inversion of the strain
paths.

Among the different isotropic hardening laws proposed by several authors, the follow-
ing stand out:
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1. Ludwik, in 1909 [29]:

σY = σ0 +K · εn
p (2.1)

2. Hollomon, in 1945 [30]:

σY = K · εn
p (2.2)

3. Voce, in 1948 [31]:

σY = A−B
(

1− e−C·εp
)

(2.3)

4. Swift, in 1952 [32]:

σY = K(ε0 + εp)
n (2.4)

5. Hockett-Sherby, in 1975 [33]

σY = A+B(1− e−C·εn
p) (2.5)

6. Ghosh, in 1977 [34]:

σY = A(εp +B)n−C (2.6)

7. Combination of Swif and Voce law [35]

σY = α [K(ε0 + εp)
n]+ (1−α) ·

[
A+B(1− e−C·εp)

]
(2.7)

The Swift law is more appropriated to describe the behavior of materials that exhibit
isotropic hardening without saturation.

On the other hand, the Voce law is more appropriated to describe the behavior of
materials that exhibit isotropic hardening with saturation. This means, that for higher
values of plastic strain, the equivalent stress prediction will be different between these
two constitutive models.

Combining these two laws (Swift+Voce) allows to describe a material mechanical
behavior that exhibits a high initial hardening behavior and saturation for higher levels of
plastic extension.
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2.3 Plasticity yield surface models

The plasticity theory establishes relationships that allow knowing which are the condi-
tions of entry into the plastic regime of a given metallic material when it is subjected to
a determined stress state due to a loading. Most technological processes of sheet metal
forming involve multiaxial stress states, making the problem more complex than the sim-
ple uniaxial type, as in case of the tensile test.

To describe the plastic behavior of a sheet metal material for any general stress state,
a yield criterion should be considered, which allows the identification of the transition
moment from the elastic to the plastic regime. Another important point that is needed in
plasticity is the stress and strain-rate components relationship, being given by a flow rule,
which can be associated (AFR) or non-associated (NAFR). Nevertheless, the amount of
hardening and corresponding evolution of a potential surface are described by a hardening
rule during the plastic deformation.

The previous assumptions make clear that a yield criterion is a function of the stress
tensor components and for a defined stress state, the elastic limit condition is expressed
by:

φ = σ −σY = 0 (2.8)

where σ is the equivalent stress of a known yield function ( f (σσσ i j)) and σY is a material
property, usually associated with the scalar flow stress value from the hardening law.

For an arbitrary loading point, if φ < 0 the deformation is purely elastic (inside of the
yield surface). When the elastic limit is reached (φ = 0), the material will deform perma-
nently due to the plastic behavior. In case of the initial state, the flow stress corresponds
to the elastic limit, being the yield stress from uniaxial tensile test a standard reference
value.

In order to determine the constitutive equations of the plastic domain for a given mate-
rial, it is necessary to relate the stresses to the strain increment, knowing that the plasticity
criterion provides the combination of stresses that establish the beginning of the plastic
flow. Decomposing the stress increment vector dσσσ i j, in tangential dσσσ t

i j and normal dσσσn
i j

directions relative to the yield locus (figure 2.3), it appears that the tangential component
of the stress vector gives a neutral loading condition, without associated plastic deforma-
tion (case of purely plastic material). In contrast, the normal component will produce the
plastic strain increment (dεεε

p
i j), which is perpendicular to the yield surface, and it can be

expressed mathematically by:
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dεεε
p
i j = dλ

∂g(σσσ i j)

∂σi j
=

{
dλ = 0 , i f φ < 0
dλ > 0 , i f φ = 0

(2.9)

where g(σσσ i j) is the plastic potential function, dλ is a constant that depends on the loading

history, known as plastic multiplier and
∂g(σσσ i j)

∂σσσ i j
a vector normal to the yield surface at

the considered loading point.

The principle of normality, called also associated flow rule (AFR), is illustrated in the
principal σ1−σ2 stress space (figure 2.3) and determines the flow direction.

Figure 2.3: Representation of stress and plastic strain increment direction applied to the von Mises
yield surface.

When an associated flow rule is adopted, the yield and the plastic potential surfaces
are described by the same function, f (σσσ i j) = g(σσσ), however, for some materials, their
anisotropy cannot be well predicted. To overcome such a challenge, a non-associated flow
rule (NAFR) is considered to enhance the accuracy of material behavior characterization
[36]. For NAFR case, the yield and the plastic potential surfaces are described by different
functions, f (σσσ) 6= g(σσσ). This subject will be reviewed in more detail in section 2.3.3 of
this chapter.

In this section will be presented different plasticity criteria (isotropic and anisotropic)
that can be used to model the material plastic behavior, proposed by several authors,
highlighting the most relevant. Besides, it will be taken into consideration the conditions
under which material passes from the elastic to the plastic state and the corresponding
flow rules.

17



Constitutive modeling

2.3.1 Isotropic yield criteria

A material that returns an identical stress state when requested by different strain paths
(e.g., according to the rolling direction or transverse direction), is called isotropic ma-
terial. The isotropy means that the material has the same properties regardless of the
loading orientation. In the next following sections, some commonly used yield functions
for isotropic materials are presented.

2.3.1.1 von Mises

The von Mises yield function [37], also known as the maximum distortion strain energy
criterion, suggests that the yielding of materials begins when the second deviatoric stress
invariant J2 reaches a critical value.

When the material passes from an elastic state to a plastic state, the elastic energy
of distortion reaches a critical value that is independent of the type of the stress state
(isotropy). This comes from the relationship between J2 and the elastic strain energy of
distortion WD.

WD = J2
1+ν

E
(2.10)

In other words, the material starts to yield when von Mises stress reaches a critical
value known as the yield strength (σy). The expression of von Mises function, considering
the Cauchy stress tensor components, is:

2φ (σσσ) = (σxx−σyy)
2 +(σyy−σzz)

2 +(σzz−σxx)
2 +6

(
σ

2
xy +σ

2
yz +σ

2
zx
)
= σ f

2 (2.11)

The equation 2.11 defines the yield surface as a circular cylinder (figure 2.4(a)) whose
yield locus is a circle with radius

√
2/3σy on the π-plane (figure 2.4(d)). Consequently,

the plastic strain increments for the von Mises criterion, using the flow rule, can be given
by the following explicit equation system:

dε
p
x

dε
p
y

dε
p
z

dγ
p
xy

dγ
p
yz

dγ
p
zx


= dλ

1
2σ f



2σx−σy−σz

2σy−σz−σx

2σz−σx−σy

6τxy

6τyz

6τzx


(2.12)
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(a) Yield surface intersected by σ3 = 0 plane (b) Yield surface projected in σ1−σ2 plane

(c) Yield surface intersected by π-plane (d) von Mises yield surface in the π-plane

Figure 2.4: Yield surface of von Mises criterion.

This criterion needs only the elastic modulus, the Poisson ratio and the parameters
for the isotropic hardening law, while a standard uniaxial tensile test is enough to obtain
all the necessary data. Although the von Mises function is very valuable for isotropic
plasticity, it has notable limitations since the plastic anisotropy is not taken into account
and this model is not suitable for most of sheet metal materials.

2.3.1.2 Tresca

The Tresca [38] plasticity criterion considers that the plastic deformation starts when
the maximum shear stress τmax exceeds a critical value:

τmax =
σ1−σ3

2
(2.13)

where σ1 and σ3 are the principal stresses, with σ1 ≥ σ2 ≥ σ3.
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Replacing the previous equation 2.13 with the uniaxial condition (σ1 = σy and σ2 =

σ3 = 0), the relationship between the value of the critical shear stress and the elastic limit
(yield stress) of the uniaxial tensile test is given by:

τmax =
σy

2
(2.14)

Actually, for the Tresca plasticity criterion, only the maximum and minimum principal
stresses are responsible for the beginning of the plastic deformation, with the intermediate
tension not having any influence on the yield locus. Generalizing the stresses of this anal-
ysis to the three-dimensional Haigh-Westergaard space, it appears that the intersection of
the Tresca surface by a plane σ3 = 0 gives a distorted hexagon, as shown in figure 2.5(b).

(a) Yield surface intersected by σ3 = 0 plane (b) Yield locus

(c) Yield surface intersected by π-plane (d) Tresca yield surface in the π-plane

Figure 2.5: Yield surface of Tresca criterion.

It is usual to refer that the Tresca plasticity criterion finds a phenomenological basis
in the physical-metallurgical concepts of metallic materials. In fact, assuming that the
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crystalline network of these materials is formed by atomic planes superimposed on each
other, it is easy to assume that, since the shear stresses are responsible for the dislocation
of these planes, there must be a stress level above which the atoms of the network change
their relative positions permanently (not recoverable). Even so, the phenomenological
basis of the Tresca model can still be accepted, since the shear stresses are responsible for
the dislocations and the change of the body shape.

2.3.1.3 Hershey

In 1954, Hershey [39] proposed a non-quadratic yield function, an evolution of the von
Mises yield function, which is represented by the following expression:

φ (σσσ) = (σ1−σ2)
a +(σ2−σ3)

a +(σ3−σ1)
a = 2σ f

a (2.15)

where a is a parameter determined based on the material crystallographic structure,
and σ1, σ2 and σ3 are the principal stresses.

The Hershey yield function is reduced to von Mises function when a = 2 and return
the Tresca yield function for a→ ∞, as shown in figures 2.6 and 2.7. Since it is based on
crystallographic structure, for a material with body-centered cubic (BCC) structures, the
parameter a = 6 should be used and a = 8 for material with face-centered cubic (FCC)
structures. Taking into consideration such assumption, the Hershey yield surface, usually,
lies between von Mises and Tresca limits.

(a) Yield surface for a=8 (b) Projection in σ1−σ2 plane for different values of
parameter a

Figure 2.6: Yield surface and corresponding projection in σ1−σ2 plane for Hershey criterion.
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(a) Yield surface for a=8 (b) Projection in π-plane for different values of pa-
rameter a

Figure 2.7: Hershey yield surface represented in the π-plane.

2.3.2 Anisotropic yield criteria

The anisotropy behavior that is the variation of mechanical properties relative to the di-
rection of loading application has been one of the leading research topics, par excellence,
of the mechanical characterization of sheet metal materials used in forming processes.

Such property is influenced by several factors and considering in only metal sheets,
has its main cause in cold-rolled and non-recrystallized materials, the heterogeneous plas-
tic deformation induced during the manufacturing process, the crystallographic texture,
the percentage of chemical elements and also the thermal and mechanical treatments to
which the material was previously submitted.

The influence of anisotropy has been qualified and quantified through several param-
eters that characterize the distribution of deformations to which the material is requested.
One of the most used parameters, which is standardized, is the plastic anisotropy coeffi-
cient r, defined by the ratio (equation 2.16) between the transverse strain (ε2) relative to
the loading direction (ε1) and the thickness strain (ε3). More recently, the plastic biaxial
anisotropy coefficient rb [40] was introduced, which relates the principal strains (ε1 and
ε2) on the sheet plane (equation 2.17).

r =
ε2

ε3
=− ε2

ε1 + ε2
(2.16)

rb =
ε2

ε1
(2.17)
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One essential key of a yield function is the ability to describe and to predict the evo-
lution of the plastic anisotropy coefficient, as well as the yield stress in the plane of the
sheet metal. To evaluate this capability, it is possible to establish relations that define
the dependence of the parameters mentioned above, with the angle θ , measured from the
rolling direction and presented in the figure 2.8. It should be noted that the principal axes
of the sheet, orthotropic axes, define three planes of symmetry. The existence of these
symmetry planes makes it only necessary to determine the range from 0o to 90o.

Figure 2.8: Relationship between the yield stress and the direction of loading in the plane of the
sheet metal.

Defining σθ as the yield stress corresponding to the direction with the angle θ relative
to the rolling direction, the tensor components for a uniaxial loading can be expressed as
follows:


σxx = σθ · cos2θ

σyy = σθ · sin2θ

σxy = σyx = σθ · cosθ · sinθ

(2.18)

In the following sections, yield functions used to describe the anisotropic behavior of
metal materials are presented.
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2.3.2.1 Hill’48

In 1948, Hill introduced a generalization of the von Mises quadratic isotropic criterion
for anisotropic materials [41]. When the axes of the coordinate system match with the
axes of orthotropy, the yield criterion is given by the following equation:

2φ (σσσ) = F (σyy−σzz)
2 +G(σzz−σxx)

2 +H (σxx−σyy)
2+

2
(
L ·σyz

2 +M ·σzx
2 +N ·σxy

2)= σ f
2

(2.19)

where F , G, H, L, M e N are the material anisotropic parameters of Hill 48’, σxx, σyy and
σzz are the stresses in the rolling direction (x), transversal direction (y) and in thickness
direction (z), respectively, being σxy, σyz and σzx the shear stress components.

If F = G = H = 0.5 and N = 1.5, the Hill’ 48 criterion can be reduced to the von

Mises criterion, assuming also L = M = 1.5.

For the plane stress state condition (σzz = σyz = σzx = 0), the yield criterion can be
expressed as follows:

F ·σ2
yy +G ·σ2

xx +H (σxx−σyy)
2 +2 ·N ·σxy

2 = σ f
2 (2.20)

Applying the equation 2.9 to the yield criterion (equation 2.19), the following associ-
ations are obtained, relating the strain increment components with the stress components.

dε
p
x

dε
p
y

dε
p
z

dγ
p
xy

dγ
p
yz

dγ
p
zx


= dλ



H +G −H −G 0 0 0
−H H +F −F 0 0 0
−G −F G+F 0 0 0
0 0 0 2N 0 0
0 0 0 0 2L 0
0 0 0 0 0 2M





σxx

σyy

σzz

σxy

σyz

σzx


(2.21)

where 1/2γi j = εi j.

If the established relationships in equation 2.18 and in equation 2.20 were taken into
account, the effective stress can be expressed as:

σ f
2 = σ

2
θ

[
Fsin4

θ +Gcos4
θ +H

(
cos2

θ − sin2
θ
)2

+2 ·Ncos2
θ · sin2

θ

]
(2.22)
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for the case of σ f = σ0, the evolution of effective stress with the angle relative to the
rolling direction comes:

σθ = σ0

[
Fsin4

θ +Gcos4
θ +H

(
cos2

θ − sin2
θ
)2

+2 ·Ncos2
θ · sin2

θ

]− 1
2 (2.23)

Following a similar procedure, the evolution of anisotropy coefficient with the ori-
entation (angle relative to the rolling direction) of the sheet metal, assuming the volume
consistency (εxx + εyy + εzz = 0), is translated as:

rθ =
Fsin4θ +Gcos4θ +H

(
cos2θ − sin2θ

)2
+2 ·Ncos2θ · sin2θ

Fsin2θ +Gcos2θ
−1 (2.24)

The method for Hill’ 48 criterion parameters identification is based on yield stresses
using the equation 2.25 and assuming that G+H=1.



F =
σ2

0
2
·
(

1
σ2

90
+

1
σ2

b
− 1

σ2
0

)

G =
σ2

0
2
·
(
− 1

σ2
90

+
1

σ2
b
+

1
σ2

0

)

H =
σ2

0
2
·
(

1
σ2

90
− 1

σ2
b
+

1
σ2

0

)

N =
1
2
·

σ2
0

τ2
xy

(2.25)

where σ0 and σ90 are the angles 0◦ and 90◦, relative to the rolling direction, respectively;
σb the biaxial yield stress (for thin metal sheets it is very difficult to measure the tensile
yield stress in the through-thickness direction) and τxy the yield stress obtained from a
shear test.

Several authors started to use another approach for the calculation of the parameter N

by using the yield stress σ45, as expressed in equation 2.26. This method is used due to
the difficulty in carrying out and obtaining data from shear tests.
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N =
σ2

0
2
·
(

4
σ2

45
− 1

σ2
b

)
(2.26)

Another method used for the identification of the Hill’48 parameters and commonly
applied, is based on the plastic anisotropy coefficients, for 0◦, 45◦ and 90◦, relative to the
rolling direction, i.e., r0, r45 e r90, respectively. The identification of the parameters is
given by:

G+H = 1⇒ G =
1

r0 +1
;

H
G

= r0; F =
H
r90

; N = (F +G)

(
r45 +

1
2

)
(2.27)

With this yield function it is also possible to predict the behavior for a biaxial stress
state, in which the yield stress and the biaxial anisotropy coefficient are given by:


σb = σ0

√
1

F+G

rb =
F
G

(2.28)

2.3.2.2 Yld’89

The yield criterion Yld89, proposed by Barlat and Lian [42], is restricted to the mod-
elling of the anisotropy associated with plane stress states, being the Yld89 criterion given
by the following equation:

φ (σσσ) = a|K1 +K2|M +a|K1−K2|M + c|2 ·K2|M = 2σ f
M (2.29)

where K1 and K2 are variables based on stress tensor components, σ f the equivalent stress
obtained from the yield function and M is an integer exponent, having the same meaning
as the coefficient a used in equation 2.15 by Hershey, who concluded that the best ap-
proximation of the yield surface was given by M = 6 for BCC materials and M = 8 for
FCC materials [43].
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The variables K1 and K2 can be obtained from:


K1 =

σxx+h·σyy
2

K2 =

√(
σxx−h·σyy

2

)2
+(p ·σxy)

2

(2.30)

where the coefficients a, c, h and p are material parameters and can be identified using
the anisotropy coefficients (equation 2.31), but also using the yield stress in different
directions relative to the rolling direction (equation 2.32).

a+ c = 2; c = 2
√

r0 · r90

(1+ r0)(1+ r90)
; h =

√
r0

r90
· (1+ r0)

(1+ r90)
(2.31)

a+ c = 2 ( f or σ f = σ0); a = 2

(
σ0
τ

)M− (1−h)M

1+hM− (1−h)M ; h =
σ0

σ90
(2.32)

where p, for stress based identification method, is given by:

p =
σ0

τ

(
2

2a−2Mc

)( 1
M )

(2.33)

The strain increment components of Yld’89 criterion are identified using the same
methodology present in Hill’48 criterion, and can be written as:

27



Constitutive modeling

dε
p
xx = dλ

∂φ(σσσ)

σxx
= dλM

[
a(K1−K2) |K1−K2|M−2

(
1
2
−

σxx−hσyy

4K2

)
+a(K1 +K2) |K1 +K2|M−2

(
1
2
+

σxx−hσyy

4K2

)
+2McKM−1

2
σxx−hσyy

4K2

]

dε
p
yy = dλ

∂φ(σσσ)

σyy
= dλM

[
a(K1−K2) |K1−K2|M−2

(
h
2
+h

σxx−hσyy

4K2

)
+a(K1 +K2) |K1 +K2|M−2

(
h
2
−h

σxx−hσyy

4K2

)
−2McKM−1

2 h
σxx−hσyy

4K2

]

dε
p
xy = dλ

∂φ(σσσ)

σxy
= dλM

{
[(K1 +K2) |K1 +K2|M−2−a(K1−K2) |K1−K2|M−2

+2McKM−1
2 p2 σxy

2K2

]

(2.34)

To described the evolution of yield stresses for different orientations relative to the
rolling direction of the material, first, the variables K1 and K2 must be rearranged using
the relations of equation 2.18 and equation 2.30, giving the following expressions:


K1 =

σθ ·cos2θ+h·σθ ·sin2θ

2

K2 =

√(
σθ ·cos2θ−h·σθ ·sin2θ

2

)2
+(p ·σθ · cosθ · sinθ)2

(2.35)

Since σθ is common for both parameters, a variable change is possible in order to
simplify the equation 2.29 as a function of the equivalent stress for different angles relative
to the rolling direction . In this way, the transformation takes the following form:
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K1 = σθ ·S1⇒ S1 =

cos2θ+h·sin2θ

2

K2 = σθ ·S2⇒ S2 =

√(
cos2θ−h·sin2θ

2

)2
+(p · cosθ · sinθ)2

(2.36)

Applying the equation 2.36 in the equation 2.29, it is possible to obtain an expression
for the determination of effective stress with the angle relative to the rolling direction,
assuming that σ f = σ0.

2σ
M
0 = σ

M
θ ·
[
a|S1 +S2|M +a|S1−S2|M + c|2 ·S2|M

]
⇔

⇔ σθ = σ0 ·
(

2

a|S1 +S2|M +a|S1−S2|M + c|2 ·S2|M

) 1
M (2.37)

The same methodology is applied to predict the evolution of anisotropy plastic coeffi-
cient with the orientation of the sheet metal. Taking into consideration the equations 2.16
and 2.34 the following expression is retrieved:

rθ =− R2

R1 +R2
(2.38)

where R1 e R2 are obtained by the following form:


R1 = dε

p
xx · cos2θ +dε

p
yy · sin2θ +2dε

p
xy · sinθ · cosθ

R2 = dε
p
xx · sin2θ +dε

p
yy · cos2θ −2dε

p
xy · sinθ · cosθ

(2.39)

Note that the plastic multiplier (dλ ) and coefficient M present in equation 2.34 are
simplified and not used in the equation 2.39, because they are equal and common factors
in the numerator and denominator. Additionally, the variables K1 and K2 present also the
in equation 2.34 can be replaced by S1 and S2 since σθ is also simplified based on the
same rule.
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2.3.2.3 Yld’91

In 1991, Barlat et al. proposed an extension of Hershey’s isotropic function, knows
as Yld’91 function [44], which is a general 6 component yield criterion to describe the
orthotropic anisotropy present in metallic materials. The Yld’91 non-quadratic function
is given by:

φ (σσσ) = |S1−S2|m + |S2−S3|m + |S3−S1|m = 2σ f
m (2.40)

where S1, S1 and S3 are the principal values of the isotropic equivalent stress tensor SSS and
the exponent m recommend to be equal to 6 or 8 for BCC and FCC materials, respectively.

The stress tensor SSS is defined by a linear transformation LLL applied on the Cauchy stress
tensor σσσ , such that:

SSS = LLL ·σσσ ⇔



Sxx

Syy

Szz

Syz

Szx

Sxy


=

1
3



c+b −c −b 0 0 0
−c a+ c −a 0 0 0
−b −a b+a 0 0 0
0 0 0 f 0 0
0 0 0 0 g 0
0 0 0 0 0 h


·



σxx

σyy

σzz

σyz

σzx

σxy


(2.41)

where a, b, c, f , g and h are the anisotropic material coefficients.

The principal values of SSS can be obtained from the determination of the eigenvalues
or using the following approach:



S1 = 2
√

I2cos
(

θ

3

)
= z

1
3 + z

1
3

S2 = 2
√

I2cos
(

θ

3
− 2π

3

)
= w · z 1

3 +w · z 1
3

S3 = 2
√

I2cos
(

θ

3
+

2π

3

)
= w · z 1

3 +w · z 1
3

(2.42)

where
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θ = arccos

(
I3

I3/2
2

)

z = I3 + i
√

I2− I3 = I3/2
2 [cos(θ)+ isin(θ)]

w = e−2iπ/3

(2.43)

The second (I2) and third (I3) stress invariants are given by:

I2 =
S2

xx +S2
yy +S2

zz +2
(
S2

yz +S2
zx +S2

xy
)

6

I3 =
SxxSyySzz +2SyzSzxSxy−

(
SxxS2

yz +SyyS2
zx +SzzS2

xy
)

2

(2.44)

For the prediction of equivalent stress evolution with the angle relative to the rolling
direction, the following expression can be considered:

σθ = σ0 ·
(
|S1−S2|m + |S2−S3|m + |S3−S1|m

2

)− 1
m

(2.45)

The strain increment components, necessary for the representation of the plastic anisotropy
coefficient as a function of the orientation angle (like equation 2.38 using equation 2.39),
result from the derivatives of the yield function in relation to the stress tensor components,
expressed as:

φ (σσσ) = 2σ f
m =⇒

∂σ f

∂σi j
=

1
2m ·σθ

m−1
∂φ

∂σi j
(2.46)

where:

∂φ

∂σi j
=

3

∑
k=1

3

∑
l=2

6

∑
m=1

∂φ

∂Sk

∂Sk

∂ Il

∂ Il

∂ sm

∂ sm

∂σi j
(2.47)
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2.3.2.4 CPB06

Cazacu et al. [45] proposed a plasticity criterion with a special focus on materials with
a hexagonal compact (HC) structure. The yield function, designated as CPB06, allows
the description of the stress differential phenomenon and is given by:

φ (σσσ) = (|Σ1|− kΣ1)
a +(|Σ2|− kΣ2)

a +(|Σ3|− kΣ3)
a = K (2.48)

where k is a material parameter that describes the effect of stress differential, the param-
eter a is integer and positive, which allows greater flexibility to this criterion, and Σ1, Σ2

and Σ3 are the eigenvalues of the transformed tensors (ΣΣΣ=CCC ·σσσ ), being Ci j the anisotropic
material parameters.

The physical meaning of the material parameter k can be obtained from uniaxial tests.
In fact, according to the proposed criterion, it is expressed by the ratio between uniaxial
tensile (σt) and uniaxial compression (σc) yield stresses as:

k =
1−h
1+h

being h =

2a−2
(

σt

σc

)a

(
2

σt

σc

)a

−2


1
a

(2.49)

For any integer value of a and k = 0, there is no difference between the response in
tension or compression. In particular, for a = 2 and k = 0, this criterion is reduced to the
von Mises criterion.

The principal values of Σ, for a thin sheet case, are determined using the following
expressions:

Σ1 =
1
2

(
Σxx +Σyy +

√
(Σxx +Σyy)

2 +4Σ2
xy

)

Σ2 =
1
2

(
Σxx +Σyy−

√
(Σxx +Σyy)

2 +4Σ2
xy

)

Σ3 = Σzz

(2.50)

where

32



Constitutive modeling

Σxx =
1
3

[
(2 ·C11−C12−C13)σxx +(−C11 +2 ·C12−C13)σyy

]

Σyy =
1
3

[
(2 ·C12−C22−C23)σxx +(−C12 +2 ·C22−C23)σyy

]

Σzz =
1
3

[
(2 ·C13−C23−C33)σxx +(−C11 +2 ·C12−C13)σyy

]

Σxy =C66 ·σxy

(2.51)

The yield function expressed in equation 2.48 can be reduced to the yield stress (σ0),
obtained from the uniaxial tensile test along rolling direction, being also a reference value
for the equivalent stress using the following form:

σ0 =

[
K

(|Φ1|− kΦ1)
a +(|Φ2|− kΦ2)

a +(|Φ3|− kΦ3)
a

] 1
a

(2.52)

where the constants of Φ1,2,3 can be calculated from:

Φ1 =
1
3
(2 ·C11−C12−C13)

Φ2 =
1
3
(2 ·C12−C22−C23)

Φ3 =
1
3
(2 ·C13−C23−C33)

(2.53)

To predict the material yield stress (σθ ) for different angles relative to the rolling
direction, the equation 2.18 is applied into equation 2.55 and rearranging the equation 2.52
the following form is given:

σθ = σ0

[
K

(|Φ1|− kΦ1)
a +(|Φ2|− kΦ2)

a +(|Φ3|− kΦ3)
a

]− 1
a

(2.54)
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considering for that

Σxx =
1
3

[
(2 ·C11−C12−C13)cosθ

2 +(−C11 +2 ·C12−C13)sinθ
2
]

Σyy =
1
3

[
(2 ·C12−C22−C23)cosθ

2 +(−C12 +2 ·C22−C23)sinθ
2
]

Σzz =
1
3

[
(2 ·C13−C23−C33)cosθ

2 +(−C11 +2 ·C12−C13)sinθ
2
]

Σxy =C66 · sinθ · cosθ

(2.55)

The strain increment components, necessary for the representation of the plastic anisotropy
coefficient as a function of the orientation angle result from the derivatives of the yield
function in relation to the stress tensor components, expressed as:

dε
p
i j =

K
1−a

a
θ

a
∂φ

∂σi j
(2.56)

where:

∂φ

∂σi j
=

3

∑
k=1

3

∑
l=2
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2.3.3 Non-associated flow rule - NAFR

In general, the development of plasticity criteria is based on the associated flow rule
(AFR), in which the yield and plastic potential functions are identical and follow the
assumption of normality, as shown in figure 2.9(a).

Of the implemented criteria in the numerical simulation of sheet metal forming pro-
cesses, most are governed by the associated flow rule, and the results obtained show a
good similarity with the experimental data. However, studies have shown that for some
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anisotropic materials, both steel and aluminum alloys, the accuracy of the plastic behavior
prediction would need to be improved.

(a) Associated flow rule (b) Non-associated flow rule

Figure 2.9: Different types of plastic flow directionality.

This fact is due to the limitation of the AFR law in describing the yield stresses and
the plastic anisotropic coefficients simultaneously through only one function, as shown in
figure 2.10.

(a) Yield stresses (b) Plastic anisotropic coefficients

Figure 2.10: Prediction of the yield stresses and r-values for different orientations relative to the
rolling direction based on AFR Hill’48 function using two sets of parameters

As seen in figure 2.10, the yield stresses are well modeled by the set of parameters
AFR-Set1, but the plastic anisotropic coefficients are not correctly predicted. In the case
of the AFR-Set2, the anisotropy coefficients are properly described, but the evolution of
yield stresses does not show any agreement with the experimental points.
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To overcome the challenge of modeling the anisotropic behavior of metallic mate-
rials with accuracy, some more advanced and sophisticated models have been proposed
to predict the behavior of the material in these two aspects (yield stress and anisotropy
coefficients) [40, 46, 47, 48]. Although the accuracy can be improved, the identifica-
tion process of the parameters also becomes more complex, as more experimental data is
needed, increasing the required work, verification time and the computational cost.

In order to overcome the limitations of the associated flow rule, recently, increasing
attention has been given to the non-associated flow rule (NAFR), and several approaches
have been proposed [36, 49, 50], where the yield surface and the plastic potential surface
are described by two unrelated and independent functions (figure 2.9(b)). This approach
allows the possibility of describing the material’s behavior with higher accuracy, as shown
in figure 2.11.

(a) Yield stresses (b) Plastic anisotropic coefficients

Figure 2.11: Comparison of the yield stresses and r-values predictions for different orientations
relative to the rolling direction based on AFR and NAFR Hill’48 function.

As seen from the predictions in figure 2.11, it is possible to describe both yield stresses
and anisotropy coefficients. Since there are two functions for NAFR, the constitutive co-
efficients can also be separated, one set for the yield surface and another for the plastic po-
tential surface. This independence provides a reduction in difficulty and complexity in the
identification process of such parameters when compared with the AFR [36]. However,
for both cases, the complexity of mathematical formulations increases with an increase in
the constitutive model flexibility.

Figure 2.12 presents the integration scheme and variables identification process used
in the formulation of NAFR.
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Usually, for the AFR law the plastic multiplier is equal to the equivalent plastic strain
increment (∆λ = ∆ε

p) and the following scheme can be used in a AFR formulation,
assuming that ∂ψ

∂σσσ
= ∂φ

∂σσσ
and g(σσσ)

f (σσσ) = 1. Although, for the case of NAFR this does not

happen anymore (∆λ 6= ∆ε
p because ∂ψ

∂σσσ
6= ∂φ

∂σσσ
and g(σσσ)

f (σσσ) can take any positive value), so a
more complex and precise approach is needed [50, 51], as expressed from equation 2.65
to 2.68. Finally, the consistency condition ensures that the stress state remains on the
yield surface during plastic deformation.
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1) Elastic predictor

i) Given an elastic trial strain εe
n+1 = εe

n +∆εe, evaluate elastic trial stress:
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ii) Check plastic consistency:
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go to 3) (2.63)

else go to 2)

2) Plastic corrector by solving the system for the unknowns

i) Newton-Raphson method is computed for each step i as follow:
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U pdate variables

else go to i)

3) Return

Figure 2.12: State update procedure for NAFR implementation.
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2.4 Damage - models and criteria

Currently there is an emphasis on automobile industry related with weight reduction
of automotive body, safety and vehicle fuel economy, due to restrictions on the environ-
mental gas emissions [52]. To accomplish this goal, a new generation of materials is
used. However, their lower formability in sheet forming operations, leading to premature
fracture, is challenging the numerical simulation in prediction of such material behavior
[53].

In the classic theory of plasticity, a hardening law combined with a plasticity criterion
is enough to evaluated and analyze the behavior of a metallic component in any engi-
neering area when subject to a loading condition that leads to a point before the material
forming limit. However, for a stress state that leads to plastic deformation, above the lim-
its of formability (e.g., strains higher than uniform deformation (beginning of necking) in
the case of the uniaxial tensile), the changes that occur in the material microstructure are
no longer negligible, playing an essential role in ductile fracture prediction.

The damage represents the physical process of a cumulative degradation of a material
that can lead to its macroscopic collapse, which is related to the density of its internal
defects. Such phenomenon is the result of the nucleation, growth and coalescence of voids
present in the microstructure [53, 54]. The amount of degradation depends on the type
of material, the loading condition that is subjected, its application, among other factors.
In terms of macroscopic properties, the degradation is associated with the decrease of
stiffness, strength and ductility, being indicators used to quantify the degradation level, as
well as to calibrate constitutive model parameters applied in the prediction of the onset of
damage and consequent fracture.

The numerical validation of critical strains in sheet metal forming processes is still
very often based on the classic forming limit diagrams and such analysis cannot take into
consideration the variation of strain paths and microscopic ductile damage behavior [55].
The scientific community has made an increasing effort to improve the understanding of
the damage initiation phenomenon and the corresponding accumulation of ductile ma-
terials. In this context, several damage models have been proposed based on different
approaches.

Recently, Stoughton and Yoon [56] described a new path independent failure criterion,
based on the combination of stress-based FLD and Tresca’s criterion, to predict necking
and fracture in sheet metal forming processes, however, it still needs some improvements.

As alternative to previous approach, several damage models based on stress states
are used to predict failure during the forming process [57, 58, 59]. Bai and Wierzbicki
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[60, 61] studied and evaluated different groups of damage models, and classified them
as empirical, physics based and phenomenological models. However, to measure experi-
mentally internal damage variable is extremely challenging, therefore other variables are
considered and the stress state can be characterized as a function of: triaxiality η , hydro-
static pressure p, and the Lode angle parameter θ (figure 2.13).

Figure 2.13: Equivalent stress as a function of triaxiality and Lode angle parameters.

Triaxiality is defined as the ratio between the mean stress (σm) and the equivalent
stress (σ ) obtained from von Mises yield function:

η =
σm

σ
(2.70)

The hydrostatic pressure is defined as the opposite value of the mean stress (p=−σm).
The Lode angle parameter is the ratio of the third and second stress tensor invariants or
can be directly related to the normalized value of the third invariant of the deviatoric stress
tensor using the following equation:

θ = 1− 2
π

arccos(ξ ) , with ξ =
3
√

3
2

J3

(J2)3/2 (2.71)

According to the previous definition, the Lode angle parameter varies between -1
(compression) and 1 (tension). For a plane stress case (σ3 = 0), the Lode angle parameter
is a function of the stress triaxiality (figure 2.14) [62] by:

θ = 1− 2
π

arccos
[
−27

2
η

(
η

2− 1
2

)]
f or −2/3≤ η ≤ 2/3 (2.72)
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Figure 2.14: Lode angle parameter as a function of the stress triaxiality for plane stress conditions
[62].

Constitutive models for damage prediction are predominantly applied to the manu-
facturing process design, but can also be used in the troubleshooting area, process safety
and operative learning field. Unfortunately, the development of mathematical physics
based constitutive models that are robust, accurate and precise, and at the same time fast
and flexible, is still very challenging. Besides the classification announced by Bai and
Wierzbicki [60], damage models can be divided into two main categories: coupled and
uncoupled models.

In the case of coupled models, generally, some of the constitutive parameters have a
physical meaning since they are related to properties and characteristics inherent to the
material, which sometimes implies the need for more complex and challenging experi-
mental tests to identify such parameters. On the other hand, in the case of uncoupled
models, there is no direct physical relationship with the constitutive parameters, whose
identification can be carried out through simple experimental tests (e.g., uniaxial tensile
or bending tests). This is one of the main reasons that make uncoupled models interesting
and frequently used, both in the sheet metal forming industry and in scientific researches.

In general, coupled damage models can be developed from physical or phenomenolog-
ical observations. On the other hand, uncoupled damage models are generally empirical
or also phenomenological based on observations. Nevertheless, as previously above, the
level of accuracy and complexity of the models must always be adequately adjusted so
that it is able to describe the behavior of a material for a given request.
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2.4.1 Coupled models

In coupled damage models, both physics based or phenomenological, the degradation
of the mechanical strength, also known as softening, is due to the presence of voids in the
microstructure of ductile materials. These models are well-known in the scientific area,
since it is possible to couple material plasticity with damage, and consequently, fracture.

For physics based models (e.g. GTN damage model), the influence of voids is com-
monly represented by the material porosity or void volume fraction. In other hand, phe-
nomenological models (e.g. Lemaitre and Chaboche damage models) are usually related
with the mean density of forces that actuate in the resistant area.

2.4.1.1 GTN

The model for the description of damage and fracture proposed by Gurson [63] was
developed based on homogenization theory, considering spherical and cylindrical voids.
To describe material degradation, a single microstructural variable is defined, the void
volume fraction, which take into account the nucleation, growth and coalescence of voids
during loading, as shown in figure 2.15.

Figure 2.15: Schematic representation of the process of nucleation, growth and coalescence of
voids [64].

Several improvements were proposed by many researchers, due to the restrictions of
the original model, being the Tvergaard [65] and Needleman [66] contribution, known as
GTN model, the most influential and regularly used. They modified the original porosity
variable ( f ) to a new porosity parameter ( f ∗), which take into consideration the effect of
void nucleation and coalescence process, which is triggered by constant fc representing

42



Constitutive modeling

critical void volume fraction. The corresponding GTN damage model yield function is
expressed by:

φ =

(
σ

σY

)2

+2q1 f ∗cosh
(

3
2

q2
σH

σ

)
−
(

1+q3 f ∗2
)

(2.73)

where q1, q2 and q3 are model parameters, σ and σY are the equivalent von Mises and
flow stress, respectively, and σH the hydrostatic stress.

The modified porosity parameter f ∗ is calculated by:

f ∗ =


f f ≤ fc

fc +
1/q1− fc

fF − fc
( f − fc) f > fc

(2.74)

where fF is the volume void fraction at fracture and fc is the critical volume void fraction.

The evolution law of porosity is given by the sum ḟ = ḟG + ḟN , accounting for void
growth rate ḟG and nucleation ḟN , and each variable is expressed by:

ḟG = (1− f ) tr (ε̇εε p)

ḟN =
fN

SN
√

2π
exp

[
−1

2

(
ε̇p− εN

SN

)2
]

ε̇p

(2.75)

where fN is volume fraction, εN and SN are the mean strain for void nucleation and corre-
sponding standard deviation, while ε̇p defines plastic strain rate and tr (ε̇εε p) the hydrostatic
component of the plastic strain rate tensor.

Over the past decades, some improvements were made to the original Gurson or GTN
constitutive models, to take into account effects such as the void size [67, 68], void shape
[69], kinematic hardening [70], the micro voids shear localization [71, 72, 73], among
others [74].

2.4.1.2 Lemaitre

To avoid a micromechanical approach Lemaitre damage model [54] adopts a thermody-
namical framework and assumes the principle of strain equivalence, by substituting in the
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constitutive equations of the virgin material the Cauchy stress tensor σσσ by the effective
stress tensor represented as:

σ̃σσ =
σσσ

1−D
(2.76)

where D is an a isotropic damage internal variable identified as an effective surface den-
sity of microdefects at the faces of a material representative volume element.

The damage variable D can assume values between 0 (undamaged state) and 1 (rupture
of the element into two parts). The evolution law for the internal damage variable is
defined as:

Ḋ =
γ̇

1−D

(
Y
S

)s

(2.77)

where S is damage denominator and s is the damage exponent, being γ̇ the plastic consis-
tency parameter and Y the damage energy release rate, which can be given by:

Y =
1

2E (1−D)2

[
(1−ν)σσσ ::: σσσ −ν (tr (σσσ))2

]
(2.78)

where E and ν are the Young modulus and Poisson ratio, respectively.

2.4.2 Uncoupled models

Uncoupled damage models can connect failure with plastic behavior, although it is not
possible in the opposite away. Like in coupled damage models, plasticity is also affected
by the voids present in the material.

The basis of many uncoupled damage models, either empirical or phenomenological,
is the stress triaxiality [75, 76], being a function of the strain at failure. The crack occurs
when a critical strain value is reached, which is a result of the integral of a cumulative
strain path function. This postulation became the origin of a series of proposed and reg-
ularly used constitutive damage models, being the damage initiation criteria the major
difference between them.

These types of models can take into account shear fracture, being one fundamental
attribute for sheet metal forming processes.

44



Constitutive modeling

2.4.2.1 Johnson-Cook

As the plastic deformation proceeds, the damage model proposed by Johnson-Cook
[77] takes into account the path dependency by accumulating damage. Due to their rela-
tive simplicity, this model uses a limited number of constants and strain at fracture ε f is
primarily dependent on stress triaxiality η , plastic strain rate ε̇p and temperature θ . The
general expression for the strain at fracture is given by:

ε f =
(

d1 +d2 · ed3η

)[
1+d4ln

(
ε̇p

ε̇0

)]
(1+d5θ) (2.79)

where d1, d2, d3, d4, d5 are material parameters and where is evident the exponential de-
pendence of the strain at fracture on triaxiality η , this one being defined as a function of
hydrostatic stress and equivalent von Mises stress.

The criterion for failure is met when the following condition is satisfied:

D =
∫

∆ε
p

ε f
= 1 (2.80)

being D the damage variable and ∆εp the equivalent plastic strain increment.

2.4.2.2 Hosford-Coulomb

Mohr and Marcadet [78] proposed a phenomenological ductile damage model applied to
metallic materials, known as the Hosford-Coulomb model. Such model aims to predict
ductile fracture in industrial practice, based on the assumption that the onset of fracture
is imminent with the formation of a primary or secondary band of localization. In this
ductile damage model, the strain at fracture is a function of triaxiality and Lode angle
parameter, and it is expressed by:

ε f = b(1+ c)
1
n

(
{1

2
[( f1− f2)

a +( f2− f3)
a +( f3− f1)

a]}
1
a + c(2η + f1 + f3)

)− 1
n

(2.81)
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The expressions given by fi are trigonometric functions dependent on the Lode angle
parameter, allowing the transformation of coordinates,

f1 =
2
3

cos
[

π

6
(
1−θ

)]

f2 =
2
3

cos
[

π

6
(
3+θ

)]

f3 =−
2
3

cos
[

π

6
(
1+θ

)]
(2.82)

where the Lode angle parameter lies within the triaxiality range of [-2/3 2/3] for a plane
stress condition.

The Hosford-Coulomb ductile damage model has four parameters: a, b, c and n.
Based on engineering experience, the authors propose to assume the exponent n equal to
0.1, since small adjustments of the parameters a and b can usually attenuate the effect of
this guess on the strain to fracture. The parameters are directly related with experimental
equivalent plastic strain to fracture values, using the following expressions:

ε f
ST = b

(
√

3
1+ c

(1+2a−1)
1
a

) 1
n

ε f
UT = b

ε f
PST = b

(
√

3
1+ c

(1+2a−1)
1
a +2c

) 1
n

ε f
BT = b

Taking into account the previous relationships, parameter b is calculated directly using
the ε f

UT or ε f
BT experimental values, then allowing the identification of parameter c,

also using the ε f
ST and ε f

PST (equation 2.83). Parameter a must be identified based on
an implicit iterative method using equation 2.84 and within the 1 ≤ a ≤ 2 to guarantee
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uniqueness of the solution.

c =

1−
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ε f
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ε f
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)n
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(2.83)
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ε f
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)n

(2.84)
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Chapter 3

Materials, characterization and
formability

This chapter presents the proposed sheet metal materials, which were used for this re-

search. Additionally, its mechanical characterization is defined, the corresponding con-

stitutive models are used and the methodology to obtain its parameters. Adequate experi-

mental tests are selected and performed, having in mind the validation and assessment of

models which will be implemented and developed.

49



(This page was deliberately left blank)
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3.1 Dual-phase steels - 500, 600 and 780 grades

In this research, advanced high strength steel (AHSS) produced by SSAB company
were used, namely three grades of dual-phase (DP) steel sheets (DP500, DP600 and
DP780), with an initial thickness of 0.8 mm. Table 3.1 lists the percentage of alloying
elements present in each material chemical composition.

Table 3.1: Chemical composition [%] of the dual-phase steels: DP500, DP600 and DP780.

Material C Si Mn P S Cr Ni Mo V Ti Cu Al Nb B N EC1

DP500 0.079 0.31 0.65 0.003 0.003 0.03 0.03 0.0 0.01 0.0 0.01 0.038 0.0 0.0003 0.003 0.20

DP600 0.089 0.20 0.85 0.014 0.004 0.03 0.03 0.0 0.01 0.0 0.01 0.046 0.019 0.0003 0.004 0.24

DP780 0.138 0.20 1.52 0.011 0.002 0.03 0.03 0.0 0.02 0.0 0.01 0.038 0.014 0.0002 0.003 0.40

The alloy elements in dual-phase steels have different types of purposes. Carbon (C)
strengthens the martensite and determines the phase distribution, also acting as an austen-
ite stabilizer. Silicon (Si) promotes ferrite transformation and manganese (Mn) is a ferrite
solid solution strengthener. Additionally, micro-alloying elements such as Vanadium (V)
or Nitrogen (N) can be used as precipitation strengtheners, but also in the refinement of
the microstructure. The small amount of Nb in the DP600 and DP780 materials promotes
finer grains and a more homogeneous distribution on DP microstructure, resulting in a
higher strength and better ductility [79].

To visualize the microstructure of the dual-phase steels, a scanning electron microscopy
(SEM) was performed in the material samples. The microstructures of these steels ob-
served by SEM are shown in figure 3.1. Additionally, table 3.2 presents the average grain
size values of the ferrite and the percentage of martensite content for each dual-phase
steel, determined from microstructural observations.

Table 3.2: Average size of ferritic grains (D) and volume percentage of martensite (VM) for the
initial materials

Material D [µm] VM [%]

DP500 21.8 13

DP600 10.1 18

DP780 5.9 25

1EC =C+ Mn
6 + Ni+Cu

15 + Cr+Mo+V
5
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(a) DP500 (b) DP600 (c) DP780

Figure 3.1: Initial microstructure obtained from SEM of the dual-phase steels.

As seen in the figure 3.1 and listed in table 3.2, the dual-phase steels present a soft
ferrite matrix with small islands of martensite particles (lighter areas). From DP500 to
DP780, the average grain size decreases (22, 10 and 6 µm respectively) and in an opposite
way, the volume fraction of martensite content increases, from 13% to 21% and 37%,
respectively.

Such values indicate that DP500 should be the material with higher ductility but lower
strength. In contrast, DP780 shall be the steel with higher strength, but its ductility shall
be compromised due to the smaller ferrite grain size.

(a) DP500 (b) DP600

(c) DP780

Figure 3.2: Experimental pole figures {111} and {110} from initial materials; RD - rolling direc-
tion of the sheet.

52



Materials, characterization and formability

Pole figures from ferritic grains obtained by EBSD (Electron backscatter diffraction)
show the existence of a γ fiber (111<uvw>) type crystallographic texture with a rein-
forcement of the 111<110> component (figure 3.2), which is typical of rolled steel sheets
[80].

In the following sections, a detailed description and analysis of material behavior is
performed.

3.2 Mechanical characterization

This section gives the description of the experimental test methodologies employed for
the mechanical characterization of the three grades of dual-phase steel.

Different types of mechanical tests have been performed in order to study and ob-
tain different material properties. Monotonic uniaxial tensile and compression tests were
conducted at various loading orientation to the sheet rolling direction. The anisotropic
plastic coefficients (r-values) were also determined for the same loading conditions of
tensile tests. Additionally, hydraulic bulge tests and stacked disc compression tests were
performed to obtain the biaxial stress-strain flow curve and the biaxial anisotropy, respec-
tively.

Each one of these experimental tests has been performed at least three times, except
the compression tests, thus leading to more than 200 tests in total. Yet, depending on
the complexity of the elasto-plastic constitutive models, only a fraction of these tests are
needed to completely identify and model the material behavior. Also, the goals to perform
such amount of trials include the validation of hardening models and the improvement of
description of the plastic anisotropy, in addition to ensuring repeatability of the results or
understanding their dispersion.

3.2.1 Uniaxial tensile test

The uniaxial tensile test is a standard experimental test and the one used to determine
the fundamental mechanical properties of materials. Within these properties, the most
relevant are the modulus of elasticity (E), coefficient of Poisson (ν), yield stress of the
material (Re or Rp0.2), ultimate tensile strength (Rm), elongation after rupture (A), as well
as, the anisotropy coefficients of the material (important property in case of metal sheets,
due to the manufacturing process).

Uniaxial tensile tests are usually performed monotonically until the fracture of ma-
terial, at a constant strain rate. However, it is possible to perform the test at different
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strain rates and different stress states, using strategies such as multiple loading cycles and
relaxation periods to capture and characterize a specific behavior of the material.

The experimental test is performed at a constant speed, which will lead to an increase
of the applied force to the specimen (material hardening) with increasing elongation. The
evolution of the material elongation shall be recorded by the extensometer placed in the
area of the useful length of the specimen that is being tested.

3.2.1.1 Stress-strain flow curves

The tensile tests for the selected materials were performed according to ASTM E8M
[81]. Five different loading conditions were defined, i.e., different directions relative to
the rolling direction (0o, 22.5o , 45o , 67.5o and 90o). The geometry of the specimens was
obtained by machining a rectangular strip. The experimental conditions of the test are
given in table 3.3.

Table 3.3: Experimental conditions of uniaxial tensile tests.

Loading directions 5

Number of experiments for each direction 3

Crosshead speed (grip) 5 mm/min

Data acquisition 20 Hz

Clip gage initial length - l0 50 mm

Temperature 23 oC

Relative humidity 56%

The specimens were tested at room temperature with a constant crosshead speed, re-
sulting in an initial strain rate on the order of 1e−3 s−1, until the material rupture on a
100 kN hydraulic testing machine (MTS 810). For the acquisition of elongation in the
uniform section of the specimen, and therefore measurement of corresponding strains, an
extensometer with an initial length of 50 mm was used. In order to guarantee the repeata-
bility of the results, several tests were performed for each material and loading direction,
making a total of 45 tests. For a clear and easier analysis of the stress-strain flow curves
obtained from the performed uniaxial tensile tests, only one result for each loading direc-
tion is shown in figure 3.3. All data can be consulted in the appendix A, where the 45
obtained tests results are plotted and repeatability observed.
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(a) DP500

(b) DP600

(c) DP780

Figure 3.3: Experimental engineering stress-strain curves (left) and true stress-strain curves
(right) for different loading directions.
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(a) Yield stress (0.2% offset) (b) Ultimate tensile strength

(c) Uniform elongation (d) Total elongation

(e) A80 (f) Elasticity modulus

Figure 3.4: Average mechanical properties obtained from uniaxial tensile test and corresponding
result dispersion for the three AHSS dual-phase steels.
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Figure 3.3 shows that the obtained engineering stress-strain curves of the three AHSS
grades evaluated become almost flat for maximum force, thus meaning a reduced strain
hardening, after an initial stage of high hardening behavior, at initial yielding.

Another property that can be observed in figure 3.3 is the material strength, either its
yield stress or ultimate tensile strength. As expected, DP780 exhibits a higher yield point
than the DP500 and DP600 (figure 3.4(a)), but a lower ductility. This behavior can be ex-
plained by the higher percentage of hard martensite phase in the material microstructure.

On the other hand, when analyzing figures 3.3 and 3.4, DP600 steel, although having
higher strength than DP500, has its deformation limits on similar level to DP500, not
following an usual rule of ’increasing strength, decreasing ductility’, which is followed
by DP780 (e.g. figures 3.4(c) and 3.4(d)).

Although the selected dual-phase steels have different ultimate tensile strength values,
the flow stress curves show a relatively high slope at lower strains, meaning that this
AHSS exhibit a higher initial work hardening.

Table 3.4: Mechanical properties of dual-phase steels obtained from tensile tests for different
angles relative to the rolling direction.

Material Angle [o] Rp0.2 [MPa] Rm [MPa] eu [%] A80 [%]

DP500

0 379.7 558.7 16.4 22.3
22.5 403.8 580.6 15.0 21.0
45 408.5 585.9 14.8 20.1

67.5 401.3 583.9 15.0 21.3
90 390.6 577.8 15.3 21.8

DP600

0 429.6 645.3 16.1 21.0
22.5 427.3 642.7 17.2 21.8
45 430.4 640.0 16.7 21.5

67.5 436.6 652.5 16.3 20.3
90 437.0 658.4 15.6 19.8

DP780

0 521.2 818.2 13.1 16.9
22.5 540.8 852.1 12.9 16.2
45 537.6 847.5 13.8 18.0

67.5 543.7 861.3 12.2 15.1
90 550.0 872.3 11.7 14.3

One difficulty faced during the uniaxial tensile tests was the necking occurrence and
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corresponding failure of the material outside of the gage measurement length. This ef-
fect occurred for DP600 specimens for 67.5o relative to the rolling direction. However,
additionally samples have been tested, so that all the needed data could be collected.

3.2.1.2 Determination of anisotropic r-values

Usually, sheet metal materials may have mechanical properties dependent on loading
direction, which suggests that some anisotropy exists. The strain plastic anisotropy of a
sheet metal can be characterized, under plane stress conditions, through uniaxial tensile
tests carried out on specimens taken from various angles relative to the rolling direction
in the sheet plane. The parameter commonly used to characterize this behavior is the
anisotropic r-value and it is defined as the ratio between the true plastic strain in the width
(ε p

22) to the strain in the thickness (ε p
33), as shown in following expression:

r =
w
w0
t
t0

=
ε

p
22

ε
p
33

(3.1)

where w0, t0 and w, t represent, respectively, the initial width and thickness, and the width
and thickness at the defined instant.

The thickness true plastic strain is calculated from the principle of volume constancy,
thus, the equation 3.1 can be simplified as:

r =
ε

p
22

ε
p
33

=−
ε

p
22

ε
p
11 + ε

p
22

(3.2)

where ε
p
11 is the true plastic strains in the axial direction of the specimen.

The methodology mentioned in the standard [82] to continuously measure the strains
is performed by using extensometers in both axial and transverse directions during the
tensile test. Another alternative is using a manual procedure, where a grid pattern is cre-
ated on specimen surface. The material is stretched up to a certain deformation level and
manually one measures the corresponding strains. Often these measurements are taken at
a particular value of strain, e.g. at e = 15%. Despite being a widely used methodology,
the accuracy of anisotropy measurement may be compromised by the lack of information
in the plastic regime, since only one point is obtained.

To improve the accuracy and the amount of information on material anisotropic behav-
ior, in this research, the evaluation of the true plastic strains and corresponding r-values

58



Materials, characterization and formability

is performed through the technique of digital image correlation (DIC), which allows the
measurement of the deformation field evolution for a defined area on the specimen.

In order to perform the experimental tests, it is necessary to prepare the specimens for
DIC analysis. In DIC, it is required to paint the specimen surface in white and then create
a random black speckle pattern on (average speckle size of about 50 µm), as illustrated
in figure 3.5. This pattern will allow the DIC cameras to detect the black dots and then
capture their relative displacements.

Figure 3.5: Specimen preparation for r-value measurement using DIC.

The experiments were performed on a 300 kN testing machine (Instron 5900R) at an
initial strain rate of 1e−3 s−1. To measure the strain field, images were taken at a frequency
of 20 Hz with a 5MP camera (Basler acA2440-75um, 2448x2048 pixels) in conjunction
with a high resolution lens (Fujinon HF50HB-1B, f2.3/50 mm). The commercial software
VIC-2D.v6 was used to compute the strain field (logarithmic Hencky strains) considering
a step size of 7 and a set size of 25 for a defined region of interest. In table 3.5 it is defined
the list of main principal experimental conditions applied for determination of anisotropic
r-values of current dual-phase steels.

Table 3.5: Experimental conditions used for r-value determination.

Loading directions 5

Number of experiments for each direction 3

Crosshead speed (grip) 5 mm/min

Data acquisition 20 Hz

Temperature 23 oC

Relative humidity 53%

Figure 3.6 presents the experimental relationship between thickness strain and trans-
verse strain during the tensile test for each defined loading direction and material. Using
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a linear regression to fit the experimental points, the corresponding anisotropic r-value is
determined from the line slope. Additionally, table 3.6 shows the measured experimental
r-values obtained from the linear fitting in figure 3.6, as well as, the corresponding normal
anisotropy (R) and planar anisotropy (∆R).

(a) DP500 (b) DP600

(c) DP780

Figure 3.6: Evolution of transverse and thickness plastic strain and corresponding anisotropic
coefficient for five angles relative to the rolling direction.

Table 3.6: Measured experimental anisotropy coefficients of dual-phase steels using DIC tech-
niques.

Material r0 r22.5 r45 r67.5 r90 r ∆r

DP500 0.971 0.888 0.851 1.002 1.110 0.946 0.190

DP600 0.695 0.783 0.935 0.899 0.811 0.844 -0.182

DP780 0.648 0.802 0.922 0.891 0.824 0.829 -0.186
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In order to evaluate and analyze the results obtained by DIC, a comparison was per-
formed (figure 3.7) with the data obtained through the standard manual procedure defined
in the corresponding standard. The plastic strain ratios were measured only for 0o, 45o

and 90o relative to the rolling direction. The attained axial strain level was 0.14, 0.12 and
0.09 for DP500, DP600 and DP780, respectively.

(a) DP500 (b) DP600

(c) DP780

Figure 3.7: Comparison of obtained r-value coefficients using DIC techniques and the standard
manual procedure.

As seen in figure 3.7, there is a small difference between the obtained values using
the classic method and DIC. In general, the r-values obtained by the classic approach
are higher than those obtained from DIC. However, if the ratio between the true plastic
strains along the width and thickness of the specimen remains constant during the axial
deformation, as verified in figure 3.6, how can such difference be explained?
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After an exhaustive analysis of the deformation field using the DIC images from the
experimental test, it is possible to verify the existence of deformation bands in the mea-
surement area, as shown in figure 3.8.

Since in the standard manual procedure, it is necessary to define a grid of points on
the surface of the specimen, the distance between them can include different axial strains.
If the distance between the points is higher than the band, an average plastic strain will be
computed, which leads to an increase of the corresponding anisotropic coefficient, as the
one observed in figure 3.7.

(a) r0 for DP500 (b) r45 for DP600 (c) r90 for DP780

Figure 3.8: Axial true strain (ε11) field obtained from DIC of dual-phase steels.

3.2.1.3 Temperature induced by plastic deformation

In the sheet metal forming process, the transformation speeds of the materials depend
on the technological process and the equipment to be used. A uniaxial tensile test can
be carried out at different strain rates to simulate the actual processing conditions of the
materials. However, it must be taken into account that the plastic deformation generates
heat and, consequently, an increase of specimen temperature [83, 84, 85].

A main objective of this section is to investigate and evaluate the temperature evolu-
tion associated with specimen plastic deformation for different strain rates using the three
dual-phase steel grades. Uniaxial tensile tests for the selected materials were performed
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according to ASTM E8M [81] along the rolling direction. To measure the specimen
temperature, non-contact infrared thermography (IFR) techniques were applied simul-
taneously with DIC. Such methodology allows the acquisition of the surface specimen
temperature field evolution for an area of interest. The major challenge, when using these
techniques together, is the correct location of the white light used to capture DIC im-
ages so that, it does not interfere with the use of infrared thermal camera optical field.
Figure 3.9(a) shows the experimental apparatus needed to perform the tensile test under
these conditions.

(a) Experimental apparatus (b) Specimen surface

Figure 3.9: Experimental setup used to measure the strain fields and temperature evolution.

Also, both surfaces of the specimen must be carefully prepared. To obtain and acquire
accurate results from IFR, the corresponding surface must be coated with matt black, to
ensure an emissivity nearly to 1, while for DIC, a black speckle pattern is painted on top of
matt white, as presented in figure 3.9(b). A FLIR A325 thermographic camera was used
to measure the temperature field having an accuracy of ± 2 oC and a response time lower
than 12 ms, while for the DIC a 5 MPixel camera (Basler acA2440-75um, 2448x2048
pixels) in conjunction with a high resolution lens (Fujinon HF50HB-1B, f2.3/50 mm).
The commercial ThermaCAM Researcher Pro software was used to acquire the images
and compute the temperature field, whilst the VIC-2D was considered to obtain the strain
field.

The specimens were tested at room temperature with three crosshead speeds (0.49, 5
and 79.5 mm/min), resulting in an initial strain rate on the order of 1.6e−4, 1.6e−3 and
1.6e−2 s−1 respectively, up to the fracture, on a Instron 5900R testing machine using a
100 kN load cell. A summary of the experimental conditions is given in table 3.7.
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Table 3.7: Experimental conditions of uniaxial tensile tests.

Crosshead speed (grip) 0.49, 5 and 79.5 mm/min

Data acquisition 3.75, 7.5 and 60 Hz

Clip gage initial length (DIC) - l0 50 mm

Temperature 23.6 oC

Relative humidity 54%

However, when the machine crosshead speed is constant, the deformation speed (strain
rate) decreases as the specimen increases its length, but for small variations in the length,
the change in the strain rate value is not significant and can be assumed to be constant.
Figure 3.10 presents the temperature evolution measured in specimen surface with engi-
neering strain considering different crosshead speeds for the dual-phase steels.

(a) DP500 (b) DP600

(c) DP780

Figure 3.10: Temperature evolution with engineering strain considering different crosshead
speeds for the dual-phase steels.
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Figure 3.10 shows the evolution of temperature, measured in the fracture zone of the
specimen, as a function of the engineering strain. For the lowest crosshead speed (v =
0.49 mm/min) and therefore, a lower initial strain rate, the temperature distribution in the
analyzed section remained almost constant for the three materials. This can be explained
by the heat dissipation by convection to the air and by conduction through the grips.
However, for the other two strain rates, there is a gradual increase in temperature that
occurs in all tested materials. For these cases, the heat dissipation rate will be much lower
than the heat generated by mechanical work.

With the increase of strain rate from 1.6e−4 to 1.6e−3, there is an average increase
of 13.5 oC in the specimen, being more evident for the higher strain rate (1.6e−2), where
temperatures between 77oC and 94 oC are registered and an average increase in tempera-
ture of 44.1oC compared to the previous situation. In all cases, the maximum temperature
occurs in the area where the fracture occurs, corresponding to what is expected, since it is
the area where the highest deformations are measured.

This relationship between the temperature and plastic strain can be seen in figures 3.11, 3.12
and 3.13 for the different strain rates, respectively. The moment before the material frac-
ture, the infrared thermographic images show an increase in the temperature in the center
of the specimen towards the ends, similar to the behavior observed in the strain field
obtained by the digital image correlation.

(a) e=5% (b) e=15% (c) Fracture

Figure 3.11: Evolution of temperature and true strain (ε1) fields with deformation of DP600 for a
crosshead speed of 0.49 mm/min.
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(a) e=5% (b) e=15% (c) Fracture

Figure 3.12: Evolution of temperature and true strain (ε1) fields with deformation of DP600 for a
crosshead speed of 5 mm/min.

(a) e=5% (b) e=15% (c) Fracture

Figure 3.13: Evolution of temperature and true strain (ε1) with deformation of DP600 for a
crosshead speed of 79.5 mm/min.

Another analyzed result was the evolution of temperature as a function of the normal-
ized engineering strain e

emax
, where emax corresponds to maximum attained engineering

strain value for each experiment. Since in the previously observed data, the maximum
temperatures were similar for the same experimental conditions, regardless of the tested
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material. The obtained temperature evolution curves are shown in figure 3.14 for each
considered strain rate.

(a) v=0.49 mm/min (b) v=0.49 mm/min with normalized eng. strain

(c) v=5 mm/min (d) v=5 mm/min with normalized eng. strain

(e) v=79.5 mm/min (f) v=79.5 mm/min with normalized eng. strain

Figure 3.14: Comparison of temperature evolution with engineering strain of the dual-phase steels
for the same crosshead speed.
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As seen, the increase in temperature seems to be related only with specimen strain rate,
independently the material strength or ductility when the normalized engineering strain
is considered. For the same experimental conditions, the response and corresponding
increase in temperature of the three dual-phase steels is almost identical for the entire
range, even the maximum attained temperature values show a good agreement between
the different materials. Also, for the analyzed strain rate values, the stress-strain curves
for each material are very close, i.e., the dual-phase steels do not exhibit strain rate effect,
as shown in figure 3.15.

(a) DP500 (b) DP600

(c) DP780

Figure 3.15: Comparison of engineering stress-strain curves of the dual-phase steels for different
crosshead speeds.
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3.2.2 Hydraulic bulge test

Although the uniaxial tensile test is the most used in the mechanical characterization
of sheet metal materials, it should be noted that the obtained deformation limits there are
not those which the material can withstand if other loading conditions are applied. Due
to the plastic instability that appears in the uniaxial tensile test, the stress-strain curve
can only be defined for lower values of true strain, when compared to different loading
conditions, such biaxial loading. Therefore, such experimental tensile test data will need
to be extrapolated to characterize the material at higher values of strain, which can give
different results, according to the extrapolation method.

An alternative solution is to perform biaxial hydraulic bulge tests since this type of
loading allows obtaining more experimental information about the material behavior, with
higher values of plastic deformation when compared to the tensile test, thus improving its
mechanical hardening characterization.

The biaxial hydraulic bulge is a test whose design and configuration promotes the
material to be in a biaxial stress state. This state is achieved by sealing and restricting a
circular sheet along its perimeter and injecting oil under pressure into the central under-
side zone. With this mechanical characterization test, it is possible to obtain the biaxial
stress-strain curve of the tested material. In case of the available equipment, which was
used during this research, the specimen is deformed plastically using hydraulic pressure
[86, 87], as shown in figure 3.16, yet other means can be used to obtain the same effect
[88, 89].

Figure 3.16: Representative scheme of the hydraulic bulge test and its key variables (dimensions
in mm) - adapted from [87].

Additionally, an advantage of using the biaxial hydraulic test is the lack of contact (and
therefore no friction) in the area of characterization interest, which makes the analytical
solution less complicated.

The experimental set consists of a circular die and a circular blank holder, which
restrict the specimen at its periphery during the test by means of a drawbead, which also
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prevents any leakage of oil. The dimensions of the tools used in the experimental test are
presented in table 3.8 [90].

Table 3.8: Tools dimensions of the hydraulic bulge test.

Parameter Value [mm]

Die diameter - φdie 150

Die radius - rm 13

Drawbead diameter - φdrawbead 190

Specimen diameter 250

The acquisition of the fundamental data for the characterization of the material is
performed by a measurement system, which acquires the values and its evolution during
the deformation process [91]. In order to obtain the biaxial stress-strain curve based on
the experimental data, the membrane theory is used.

The biaxial bulge test is used to characterize materials with low thicknesses (typical
values below 2 mm), being the case of metal sheets. This range of values, coupled with the
size of the die diameter, shall correspond to ratios of bulge diameter to sheet thickness,
which are advised to be higher than 100 [92] or higher than 50 [93]. In this way, the
bending effects in the test can be neglected and therefore the stresses along the thickness
(σ3) are assumed to be zero.

Based on the previous concepts, a relationship between the variables of hydraulic
pressure (p), sheet thickness at each instant (t), the radius of curvature (ρ) and biaxial
stress (σb) is established. Since the stresses in the principal directions are assumed to be
equal (σ1 = σ2), as well as, the radii of curvature (ρ1 = ρ2) when considering the case of
axissymmetry, the expression that translates the previous relation is the following:

σb =
p ·ρ
2 · t

(3.3)

The determination of the radius of curvature (ρ) and the thickness of the specimen (t)
at the pole can be obtained by a measurement system, shown in figure 3.17(a), or using
the digital image correlation, as mentioned also in the ISO standard [94].

The calculation of the radius of curvature is given by a simple geometric construction,
expressed as:

ρ =

(Dcv
2

)2
+h2

2 ·h
− t

2
(3.4)

70



Materials, characterization and formability

where h is the measured distance between the displacement transducer and the support of
the spherometer, and Dcv the diameter established by the spherometer, as shown in the
diagram of figure 3.17(b).

(a) Mechanical measurement
system

(b) Scheme of the mechanical measurement sys-
tem

Figure 3.17: Experimental device for measurement and acquisition of fundamental variables dur-
ing the biaxial hydraulic bulge test.

The acquisition of these variables is carried out on the outer surface of the sheet metal,
however, the membrane theory only applies to the neutral axis [92], thereby half of the
thickness is removed at the calculated radius [95].

Finally, the thickness of the sheet metal is calculated using equation 3.5, measuring the
initial thickness (t0) and determining the value of the thickness strain (εt). The thickness
of the material (t) will decrease, which is calculated by:

t = t0 · e−εt (3.5)

The reduction of the thickness in the specimen concentrates in the center and can be
considered a geometric restriction since the fracture will occur in such area. Assuming
that the material as incompressible, i.e., the sum of all strains is zero and therefore the
volume of material remains constant during the experimental test, the thickness strain (εt),
also known as biaxial strain (εb), can be determined based on the following expression,
considering the strains in the sheet plane (ε = ε1 = ε2):

εb = εt =−2 · ε (3.6)

where ε is the membrane strain.

The value of membrane strain is obtained by measuring the expansion of a circle
whose initial diameter is Dst0 . For the acquisition of such variable, a strain gage is used

71



Materials, characterization and formability

in the measurement system, which follows the plastic deformation of the sheet metal
throughout the experimental test. As the diameter of the circle increases, taking a value
of Dst , the membrane strain is given by:

ε = ln
(

Dst

Dst0

)
(3.7)

3.2.2.1 Equi-biaxial stress-strain curve

In order to obtain the biaxial stress-strain curve of the dual-phase steel sheet materials,
the equations 3.3 and 3.6 are used. Experimental characterization tests were performed
with a constant pressure increment and controlled ambient temperature. The test condi-
tions are given in table 3.9.

Table 3.9: Experimental conditions used in hydraulic bulge test.

Parameter Value

Specimen diameter 250 mm

Hydraulic pressure increment 1 bar/s

Room temperature 23
o
C

Relative humidity 56 %

Figure 3.18 presents the obtained biaxial stress-strain curves for the materials used in
this research, as well as, the evolution of hydraulic bulge pressure with specimen pole
total height.

(a) Equi-biaxial stress-strain curves (b) Evolution of pressure with pole height

Figure 3.18: Obtained biaxial stress-strain and pressure vs. height curves for the studied dual-
phase steels (DP500, DP600 and DP780).
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As already seen in the tensile test, DP780 steel is the material with the highest strength,
being the DP500 the material with the lowest one. However, the plastic deformation
ability is higher in the DP500 than in the DP780, as expected. A balance between strength
and formability is seen by DP600 steel, since its characteristics lie between the other two
materials, although its behavior on ductility is very similar to DP500. These results are
related to the microstructure of the material since the DP500 is the material that presents
a lower percentage of martensite and consequently lower mechanical strength.

Table 3.10 presents some variables acquired during the experimental tests for each
analyzed material.

Table 3.10: Obtained properties from hydraulic bulge test for the different dual-phase steels.

Material
Burst pressure Total height Biaxial stress

[bar] [mm] [MPa]

DP500 88.4 52.7 414.8

DP600 98.0 51.7 442.6

DP780 120.8 42.9 585.1

3.2.2.2 Transformation of stress-strain biaxial bulge curve and combination with
tensile data

One advantage of using the biaxial hydraulic bulge test is the ability to obtain infor-
mation and data of the material behavior for higher levels of plastic deformation when
compared to those obtained with the tensile test. This advantage makes it possible to
extend the hardening curve of the material using the biaxial curve. However, due to the
different stress states present in each test, the stress-strain curves cannot be directly com-
pared and/or combined.

After performing these two experimental tests, there are two hardening curves for
the same material (σ = f (ε) corresponds to uniaxial tensile test along the sheet rolling
direction and σb = f (εb) corresponds to the biaxial hydraulic bulge test curve). Therefore,
it is necessary a transformation of the biaxial curve into an equivalent one, based on the
equivalent plastic work per unit volume (W ). This methodology has been used by several
researchers with satisfactory results [88, 96, 97].

Although, this process could be carried out in inverse order, the standard (and com-
monly used) hardening curve of the material is the stress-strain curve from the uniaxial
tensile test along the rolling direction.
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Defining Wu and Wb as the equivalent plastic work of uniaxial tensile test and bulge
test, respectively, it is possible to establish a link between the two curves when both
equivalent plastic works take the same value (Wu =Wb), i.e.:


σ →Wu =Wb→ σb

ε →Wu =Wb→ εb

(3.8)

Assuming the incompressibility of the material and considering that the stress state at
the pole is such that σ1 = σ2 = σb, the stress-strain data from both tests are related by the
following expression:

σ

σb
=

εb

ε
= k (3.9)

where k is a constant.

The relationship between the equivalent plastic work and stress-strain data and the
methodology for its calculation can be obtained from the integration of σ = f (ε) for the
entire plastic domain, being translated by equation 3.10.

W (ε) =
∫

ε f

εi

σ(ε) ·dε (3.10)

Since there is no σ = f (ε) function that fully translates the relationship between these
the two variables, a trapezoidal rule is used to simplify the integral present in the equation
3.10, where:

W (ε)≈
i=n−1

∑
i=1

(εi+1− εi) ·
σi+1 +σi

2
(3.11)

Taking into consideration the principle of equivalent plastic work, several methods
can be used to determine the "optimum" value of k parameter, as shown in figure 3.19.
However, based on studies in the literature [88, 96, 97], the method that provides the best
results is for the equivalent plastic work that corresponds to the maximum attained value
of stress and strain in the tensile test (σmax→Wumax =Wb→ σb⇒ k = σmax

σb
), as shown in

figure 3.19(a).
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(a) Maximum equivalent plastic from ten-
sile test

(b) Half of equivalent plastic from tensile
test

(c) Average k parameter (d) Stress relation

(e) Strain relation

Figure 3.19: Relation between equivalent plastic work and stress/strain obtained from each test
(uniaxial tensile, bulge) by using the methodologies.

Such transformation enables the combination of the hardening curves by including the
converted bulge data in the equivalent stress-strain curve. This allows a better identifica-
tion of the constitutive law parameters that reproduce the mechanical hardening behavior,
which is used as an input in numerical simulation. The hardening stress-strain curves
using the converted biaxial are shown in figure 3.20, for each dual-phase steel under this
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study, considering the identified parameter k present in table 3.11.

Table 3.11: Obtained properties from hydraulic bulge test for the different dual-phase steels.

Material DP500 DP600 DP780

k 0.898 0.955 0.874

Figure 3.20: Equivalent stress-strain curves using the converted biaxial bulge data and combined
with tensile test results.

It can be observed that implementing such methodology, there is good continuity for
the extension of the hardening curve based on the bulge test, for the dual-phase steels.

76



Materials, characterization and formability

3.2.3 Compression test

The compression test consists of the uniaxial application of a compressive load on a
specimen. One result obtained from this test is the relationship between the linear defor-
mation, obtained by measuring the distance between the platens or grips that compress
the specimen, as a function of the load applied at each instant. The uniaxial compression
test is standardized in the scientific community, according to the standard ASTM E9-19
[98] and it can be applied to cylindrical or sheet specimens.

Besides the yield stress that can be obtained from the stress-strain curve, the compres-
sion test also allows the determination of material anisotropy using round discs. These
properties are essential, especially if the material presents some stress differential (SD)
effect, i.e., tension-compression asymmetry.

In the following sections, uniaxial in-plane compression tests were performed to eval-
uate the yield stresses of the dual-phase steels for the rolling and transverse directions.
Additionally, stacked disc compression tests were conducted to obtain the biaxial anisotropy
of the materials. The acquired information is used in the calibration process of parameters
for constitutive models and to improve the description of the material behavior.

3.2.3.1 Uniaxial in-plane stress-strain curve

Performing uniaxial in-plane compression tests on sheet metal specimen is a real chal-
lenge. When a sheet is subjected to compressive loads, the buckling tends to be more
significant due to its slenderness. This phenomenon is intensified, especially when the
ratio between the reference length and thickness of the specimen is high.

In recent years, several researchers have proposed several solutions to overcome the
buckling effects in compression tests. The objectives are to maximize the compression
strains and to allow a uniform distribution of stresses and strains throughout the area of
analysis.

The most common method is to use an anti-buckling device that applies a lateral com-
pressive load to stabilize the specimen during plastic deformation [99, 100, 101, 102]. The
lateral stability is achieved with the use of supports between the specimen, but the mea-
surement of the strain field is more complicated, without forgetting the friction between
the contact surfaces, which may influence the obtained results, no matter how much effort
is made to minimize its effect. On the other hand, some authors modify the geometry
of the specimen [103, 104, 105], through miniaturization techniques, decreasing the ratio
between the reference length and the sheet initial thickness. As expected, the lower the ra-
tio between length and thickness, the higher is the level of compression strains measured
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without instability. The use of miniaturized test specimens for mechanical characteriza-
tion has intrinsic difficulties, mainly in the accurate measurement of load forces and strain
fields.

In this work, compression tests of miniaturized specimens were performed using an
equipment (figure 3.21(a)) developed specifically for this type of request [105]. Two
different loading conditions were defined, rolling and transverse direction (0o and 90o).
The geometry of the specimens, shown in figure 3.21(b), was obtained by machining a
rectangular strip. The experimental conditions of the test are given in table 3.12.

(a) MSTD equipment and DIC apparatus (b) Specimen geometry

Figure 3.21: Experimental setup used to perform MSTD (Mini Sample Tester Device) and corre-
sponding geometry.

Table 3.12: Experimental conditions of uniaxial tensile tests.

Loading directions 2

Crosshead speed (grip) 0.5 mm/min

Data acquisition 10 Hz

Clip gage initial length - l0 1.5 mm

Temperature 23 oC

Relative humidity 52%

The specimens were tested at room temperature with a constant crosshead speed on a
5 kN testing machine (MSTD - Mini Sample Tester Device). For the acquisition of elon-
gation in the uniform section of the specimen, and therefore measuring of corresponding
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strains, the digital image correlation was considered. Due to the size of the in-plane uni-
form area, the average speckle size is lower than 15 µm. The DIC images were taken
with a 5 MPixel camera (Basler acA2440-75um, 2448x2048 pixels) in conjunction with a
telecentric lens (Infaimon OPE-TC-23-09, 45 mm). The commercial software VIC-2D.v6
was used to compute the strain field (logarithmic Hencky strains) considering a step size
of 7 and a set size of 25 for a defined region of interest. The stress-strain flow curves ob-
tained from the performed uniaxial compression tests are presented in figures 3.22, 3.23
and 3.24.

(a) Eng. stress-strain curve (b) Strain field

Figure 3.22: Stress-strain curves and true strain (ε1) field obtained from DP500 uniaxial compres-
sion tests.

(a) Eng. stress-strain curve (b) Strain field

Figure 3.23: Stress-strain curves and true strain (ε1) field obtained from DP600 uniaxial compres-
sion tests.
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(a) Eng. stress-strain curve (b) Strain field

Figure 3.24: Stress-strain curves and true strain (ε1) field obtained from DP780 uniaxial compres-
sion tests.

The figure figures 3.22, 3.23 and 3.24 show that these results with mini-samples have
a hardening evolution very similar to the results obtained by the uniaxial tensile test with
the standard sample dimensions. It is also observed that in compression the reached strain
values were lower than in tensile, mainly due to the buckling phenomenon. Since the
cross-section area is theoretical identical between the dual-phase steels, the behaviors are
not very different. However, locally, the measured true strains have higher values, as seen
in figures 3.22(b), 3.23(b) and 3.24(b).

Moreover, with these results, it is possible to identify the yield stresses of the material
for a compressive stress state, allowing a better identification of the constitutive model
parameters and improving the material behavior description. The yield stresses obtained
from the compression tests for the rolling and transverse directions of each dual-phase
steel are given in table 3.13.

Table 3.13: Yield stresses [MPa] obtained from uniaxial compression tests.

Loading Material
directions DP500 DP600 DP780

RD 346.7 381.0 509.1

TD 358.7 386.2 534.0

3.2.3.2 Stacked disc - rb value

The stacked disc compression test, which corresponds to a through-thickness loading,
is equivalent to an equibiaxial stress state, concerning the work hardening. A material
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property that can be measured is the biaxial plastic anisotropy [40]. This coefficient is
also known as rb and is defined as:

rb =
ε

p
22

ε
p
11

(3.12)

In this work, stacked disk compression tests were performed in order to obtain the
biaxial anisotropy coefficient of the studied dual-phase steels, which is a requirement for
some anisotropic yield models.

For the identification of such property, discs with an initial diameter of 10 mm were
stacked and loaded in compression using two polished parallel platens. The discs were
obtained from a punching machine in order to guarantee that all stacked discs had the
same cross-section area and concentric.

Other important care in this type of test is the assembly process. During the assembly,
all the contact interfaces, either between discs surfaces or between the contact points
of upper and lower tools with the specimen, were well-lubricated with graphite grease.
Additionally, a teflon foil with 0.15 mm was considered in the contact interface between
platens and the specimen. Concentricity and axial alignment were also ensured in order
to avoid any deviation from axial compression loading and to deform homogeneous the
specimens under frictionless conditions.

Figure 3.25 shows an assembled stacked specimen that was obtained by pilling up
five discs. The choice of 5 discs is related to the structural integrity of the specimen,
because the use of stacks with a higher number of discs generates instability problems, by
triggering the sliding between them.

Figure 3.25: Experimental apparatus and dual-phase steel specimen between the compression
platens.
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To obtain the respective in-plane strain components (ε p
11 and ε

p
22), the diameters of

each disc were measured before and after deformation. Also, the through-thickness strain
(ε p

33) was measured by considering the initial and final thickness. All of the true plastic
strain components were calculated as:


ε

p
11 = ln dRD

dRD0

ε
p
22 = ln dT D

dT D0

ε
p
33 = ln t

t0

(3.13)

where dRD and dT D are the diameters associated with rolling and transverse direction of
the sheet, respectively.

For a better description of the material behavior regarding the biaxial rb coefficient,
the specimens were subjected to different levels of plastic strain. However, the acquisition
or direct measurement of strains is hugely complicated, and to obtain different amounts
of plastic deformation, different maximum load values were established since the exper-
imental test is performed in a load control mode. To impose the biaxial compression
loading a hydraulic MTS 810 test machine with a 100 kN load cell was used.

The force range was defined between 70 kN and 90 kN, in order to guarantee a dis-
placement that enables reaching the plastic regime. As the maximum imposed load is
limited by the load cell (100 kN), the failure of the specimen when the maximum load
capacity is reached was not attained. The test conditions are given in table 3.14 and fig-
ure 3.27 presents the strains measured in the specimen located in the middle (figure 3.26)
for the three applied load levels to the dual-phase steels.

Table 3.14: Experimental conditions used in stacked disc compression test.

Parameter Value

Initial disc diameter 10 mm

Number of stacked discs 5

Cross-head speed 1 mm/min

Applied force

70 kN (only for DP500)
80 kN (only for DP600 and DP780)

85 kN
90 kN
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(a) DP500 (b) DP600

(c) DP780

Figure 3.26: Comparison between initial disc (before deformation) and the middle disc after
deformation for the different applied conditions (force increase from left to the right for each
material).

(a) DP500 (b) DP600

(c) DP780

Figure 3.27: Longitudinal and transverse strain relation of five circular stacked discs obtained
from axial compression test of dual-phase steels.
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As seen in figure 3.27, the transverse strains (ε p
22) were plotted as a function of the

longitudinal strains (ε p
11) and a linear fit for all load cases was performed to model the

experimental points. The value of rb was defined as the slope of the linear fit. The
experimental value of such parameter was found to be 0.96, 0.92 and 0.91 for DP500,
DP600 and DP780, respectively.

Despite the obtained values not being far from the unit (isotropy), all the dual-phase
steel exhibit biaxial anisotropy, more evident in the case of DP600 and DP780 than in case
of DP500. In general, the studied materials are likely to deform more along to the rolling
direction, taking the shape of an ellipse, as seen in figure 3.26. In the opposite direc-
tion, the dual-phase steels present some resistance to plastically deform in the transverse
direction when subjected to a biaxial compression stress state.

Experimental values of force and displacement were also measured to plot the corre-
sponding evolution, as shown in figure 3.28.

(a) DP500 (b) DP600

(c) DP780

Figure 3.28: Force vs. displacement curves of five circular stacked discs obtained from dual-phase
steels axial compression test.
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In the work of Barlat et. al [40], disc compression tests were performed using only
one disc. In such research, it is stated that the measurements were accurate and reliable,
and friction was expected to be low and roughly isotropic. Since the previously presented
methodology to obtain the rb parameter requires the correct stacking of the discs along to
the rolling direction, using only one disc simplifies the experimental procedure. There-
fore, experimental tests were carried out using one disc for two contact conditions with the
tools: without any lubrication (dry) and with graphite grease. The obtained results were
compared for the same conditions using a stacked specimen, as shown in figure 3.29.

(a) Biaxial rb anisotropy (b) Force vs. displacement curves

Figure 3.29: Comparison of rb value and force vs. displacement curves between one disc and five
stacked discs using different lubricant conditions for dual-phase steel DP500.

As seen, the calculated ratio when using only one specimen is almost 1, for both
contact conditions. The friction does not allow the material to flow, which could lead
to an inaccurate result. That is a main reason why at least five stacked discs should be
considered to perform the experimental test, in order to minimize such phenomenon.
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3.3 Formability analysis

Sheet metal formability can be defined as the ability of metal to deform without necking
or fracture into a desired shape. Every sheet metal can be deformed without failing only
up to a certain limit, which is normally known as forming limit curve (FLC). Usually is
experimentally determined for defined linear strain paths, by using Marciniak test, where
a sheet metal sample is strained by a flat-bottomed cylindrical punch having a frictionless
in-plane deformation, or by using Nakajima test, in which the sample is deformed by
an hemispherical punch (out-of-plane) and by varying the sample width, different linear
strain paths can be obtained.

3.3.1 Nakajima test

Nakajima et al. [106] proposed to use metal sheet strips with different widths, stretched
by a hemispherical punch (figure 3.30(a)), to obtain the material forming limit curve. By
varying the sample width, different strain paths can be achieved and different limit points
can be calculated (figure 3.30(b)).

(a) (b)

Figure 3.30: (a) Tool dimensions and FLD setup used in Nakajima tests; (b) Obtained FLC points
for different specimen widths.

The Nakajima testing apparatus uses a hemispheric punch of 101.6 mm diameter, a
die and a blank holder (figure 3.31). The blank holder includes a drawbead to restrain the
blank and also to avoid the stress concentration in the transition from the strip section to
the measurement area.
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Nakajima test experiments were performed according to the standard ISO 12004-2
[107], to measure the formability of current dual phase steels, as well as obtaining corre-
sponding forming limit curves. Furthermore, this test allows the simulation of conditions
very similar to those of the stamping processes, since it takes into accounts the friction
between the punch and the sheet metal [108].

Figure 3.31: Universal testing machine used for Nakajima test and FLD determination.

The experimental points present in the diagram are obtained by measuring a grid with
circles applied on the surface of the sheet metal. With the plastic deformation, the circles
become ellipses (stretching zone) or increase their diameter (biaxial expansion zone), as
shown in figure 3.32.

Figure 3.32: Measurement of true principal strains using a grid of circles.

The methodology of experimental determination of the major and minor strains val-
ues on the sheet metal surface was performed by measuring a selected reference circle
previously and comparing with measurement after the plastic deformation of necking or
fracture. The true major and minor strains are determined by the following equations:
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εma jor = ln
(

a
d0

)
(3.14)

εminor = ln
(

b
d0

)
(3.15)

where a and b are the major and minor dimensions on the ellipse, respectively, and d0 the
initial diameter of the reference circle.

The specimens defined for testing may vary according to the need and accuracy in the
representation of material behavior, but the following widths provide satisfactory results:
25, 50, 75, 100, 125 and 175 mm [109, 110].

Figure 3.33: Specimen dimensions used in Nakajima experimental tests.

3.3.1.1 Forming limit diagram - FLD

All experimental tests were conducted on a hydraulic machine, as seen in figure 3.31,
having the tooling setup with a punch, a die and a blank-holder. The friction between
punch and blank was minimized by applying a Teflon foil at the top of the punch, in
addition to a lubricant at the sheet surface (Ferrocoat N 6130). Necking or fracture visu-
alization determined the moment to stop the test and proceed to strain measurements of
the sample.

The determination of FLC can be done through several methods, but in this research,
the method used was the so-called No5 of Zurich [111], which was set by International
Deep Drawing Research Group (IDDRG). This method, which is a variant of Bragard
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method, applies to measurements performed on grids of tangled circles, applied in this
study by an electrochemical etching process. For interpolation, it was followed the rec-
ommendation of using the circles whose deformation differences of adjacent circles is
less than 5%.

The obtained experimental data points are represented by a curve that has been ad-
justed using the least squares approximation approach. This methodology performs a
fitting for the stretch region and another fitting for the expansion region. Figure 3.34
shows the forming limit curves of the selected dual-phase steels and the corresponding
experimental points.

(a) DP500 (b) DP600

(c) DP780

Figure 3.34: Forming limit curve and corresponding experimental points for the selected materi-
als.

The obtained punch force vs. punch displacement curves are shown in figure 3.35.

89



Materials, characterization and formability

(a) (b)

(c) (d)

(e) (f)

Figure 3.35: Punch force evolution with displacement of each dual-phase steel for the blank
widths: a) 25 mm; b) 50 mm; c) 75 mm; d) 100 mm; e) 125 mm; f) 175 mm.
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3.3.2 Deep drawing cylindrical cup test

In order to determine the limit drawing ratio (LDR) and evaluate the drawability of the
dual-phase materials, experimental deep drawing cylindrical cup tests were performed us-
ing a hydraulic testing machine, as shown in figure 3.36(a). The tool setup is composed by
four parts: a die, a flat blank holder, a cylindrical punch and a stopper. The punch has 60
mm of diameter while the die diameter is 62.4 mm with a 10 mm radius (figure 3.36(b)).

(a) (b)

Figure 3.36: a) Deep drawing cylindrical cup experimental setup; b) tool dimensions in mm.

Limiting drawing ratio (LDR) is defined as the ratio (equation 3.16) between the high-
est circular blank diameter (Dblankmax) that can be drawn into a cylindrical cup without
fracture and the selected punch diameter (Dpunch).

LDR =
Dblankmax

Dpunch
(3.16)

Different methodologies can be used to determine the material limiting drawing ratio.
One method is drawing several cups, increasing the drawing ratio by small amounts until
the limiting drawing ratio is reached. Another method is using the maximum obtained
drawing punch force for each defined blank diameter, as presented in figure 3.37.

Figure 3.37: Drawing force as a function of blank and punch diameter ratio.

The last method was used since a lower number of experiments is needed to determine
the critical blank diameter. The criterion to obtain the LDR is to plot the maximum
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drawing force as a function of the ratio between blank and punch diameters, as well as,
the maximum force attained when fracture occurs.

It is expected that the required force to draw a cup increases linearly with blank di-
ameter until the critical value is exceeded. A horizontal line represents the maximum
attained punch force when fracture will occur and the intersection point between the two
lines indicates the limiting drawing ratio of the tested material.

To performed the deep drawing cylindrical cup tests, circular specimens with different
initial diameters were defined in order to determine the critical drawing diameter for each
material. The minimum blank diameter is 105 mm and increments of 10 mm are con-
sidered up to the maximum diameter of 135 mm. A stopper ring was produced from the
same sheet material of the blank (same thickness), and the purpose is to keep a minimum
gap between the blank holder and die, thus preventing or minimizing ironing of blank
flanges at the final stage of deep drawing. During the experimental tests, a lubricant was
applied to both sides of the circular blank to reduce the friction forces between the blank
and tools contact surfaces. The corresponding experimental conditions of the cylindrical
cup tests are presented in table 3.15.

Table 3.15: Experimental conditions of deep drawing cylindrical cup tests.

Specimen diameters 105, 115, 125, 135 and additionally 130 mm

Punch speed 5 mm/s

Blank holder force

DP500 DP600 DP780
φ105 50 kN 75 kN 75 kN
φ115 75 kN 100 kN 105 kN
φ125 100 kN 110 kN 115 kN

φ135 and φ130 100 kN 110 kN 115 kN

Lubricant conditions 15 g/m2 of oil ( FERROCOAT N6130)

Environmental temperature 24 oC

Humidity 52%

3.3.2.1 Limit drawing ration - LDR

For the first three initial blank diameters (105, 115 and 125 mm) a fully drawn cup (fig-
ure 3.38) was successfully obtained for each dual-phase steel. The experimental evolution
of punch force during the cup drawing was measured, as well as, the corresponding dis-
placement for each material and for each defined blank diameter. The obtained punch
force vs. punch displacement curves are shown in figure 3.39.
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Figure 3.38: Cylindrical cups obtained for DP780 material using a blank diameter of 105, 115
and 125 mm (left to right, respectively).

(a) (b)

(c)

Figure 3.39: Punch force evolution with displacement of each dual-phase steel for the blank
diameters: a) 105 mm; b) 115 mm; c) 125 mm.
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As seen, all the curves for punch force vs. displacement show a similar behavior,
wherein DP780 needs a higher punch force in this drawing operation, due to its higher
strength, as expected.

When the blank diameter is increased from 125 to 135 mm, it is not possible to draw
a cup and fracture occurs near to the punch radius. To reduce the range where the critical
diameter would be, the initial blank diameter was decreased from 135 mm to 130 mm and
the same result of fracture was obtained, as shown in figure 3.40.

Figure 3.40: Fracture experimental cases when the critical blank diameter was exceeded (DP780
using the blank diameters of 135 mm and 130 mm, left to right, respectively.

(a) (b)

Figure 3.41: Punch force evolution with displacement of each dual-phase steel for the blank
diameters: a) 135 mm; b) 130 mm.

This means that the limiting drawing blank diameter should lie between 125 and 130
mm. The corresponding force vs. displacement curves plotted for each blank diameter,
are presented in figure 3.41.

Considering the punch force as function of displacement curves for every case, a linear
regression is fitted to the maximum punch force of the fully drawn cups, which intersects
a horizontal line that corresponds to the maximum load of fracture experiments. The
intersection point gives the limiting drawing ratio of the material. Figure 3.42 presents
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the obtained drawability limits based on the deep drawing cylindrical cup test for each
dual-phase steel.

(a) DP500 (b) DP600

(c) DP780

Figure 3.42: Maximum drawing force as a function of blank and punch diameter ratio.

As mentioned by ASTM E517 standard [82], the average normal anisotropy, r param-
eter, is considered a measure of material drawability. With this in mind, it is possible to
observe that the DP500 shows a higher limiting drawing ratio (LDR=2.15), when com-
pared to other DP steels (2.08 for DP600 and 2.09 for DP780), which is consistent with
the higher value of planar anisotropy.

3.3.2.2 Earing profiles

Another evaluated result was the earing profile of the cups, which was measured taking
as reference the flat bottom of the cup. For this analysis and comparison the blank diam-
eter of 125 mm was selected. The measurements and results will correspond to the cup
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height, as defined in figure 3.43, with the evolution of the angular direction, as shown in
the same figure (anti-clockwise).

Figure 3.43: The ear height profiles were measured around the cup circumference starting from
rolling direction (RD=0o); three anti-clockwise rotations (full 360o) were performed for each
cylindrical cup.

The cylindrical cups were measured using a digital dial gauge micrometer and rotat-
ing them by means of an electric motor. The corresponding setup is presented in fig-
ure 3.44. The measurements acquired with the digital dial gauge micrometer are relative
measurements, with the zero-height defined for 0o to the rolling direction. Therefore, ad-
ditional measurements were needed, in order to obtain the total cup height as defined in
figure 3.43. Such additional measurements were acquired using a High Precision Height
Gauge, Mitutoyo Heightmatic 600 mm.

Figure 3.44: Setup for measuring the earing height evolution: the cup is rotated using an electric
motor while a digital dial gauge micrometer acquires the data.
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In figure 3.45 the obtained height of cup ears are presented, for each dual-phase steel
material, considering the initial blank diameter of 125 mm.

(a) DP500 (b) DP600

(c) DP780

Figure 3.45: Earing profile for 125 mm blank diameter.

DP500 shows a lower ear height for 45o relative to the rolling direction for both draw-
ing diameters, but the other two materials show a higher value for the same angle. This be-
haviour is related with the anisotropy coefficient evolution, where the DP600 and DP780
have a similar tendency as opposed to the DP500.

Being considered the planar anisotropy (∆r) a measure of tendency to form ears in the
cylindrical cup flange along the direction of the higher r-value [82], the obtained results
show a good agreement with the experimentally obtained planar anisotropy coefficients
for each material.

The DP500 steel has the highest ear height at 90o relative to the rolling direction,
while the both DP600 and DP780 have the highest ear at 45o.
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3.3.2.3 Wall thickness distribution

The anisotropy of the material leads to a non-uniform thickness distribution of the
cylindrical cup. In this section, a experimental measurement of the thickness distribu-
tion of the cup wall is presented, for the final stage of the deep drawing process. Two
approaches were considered (figure 3.46): first method corresponds to measurements on
sections from planes through cup axis (vertical sections), along rolling, transverse and
diagonal; the second method refers to measurements for sections on planes normal to cup
axis (horizontal circular sections) and different cup heights.

(a) Measurements on sections from planes
through cup axis (vertical sections)

(b) Measurements for sections on planes normal to
cup axis (horizontal circular sections) and dif-
ferent cup heights

Figure 3.46: Defined sections used to perform the cup thickness measurements.

The sections along perimeter are spaced 5 mm height apart (figure 3.46 only shows 10
mm height apart), with the first cutting section starting at a distance of 10 mm from the
base of the cylindrical cup up to 45 mm.

Figure 3.47 shows the behavior of the thickness distribution for the different sections.
Considering the figures 3.45 and 3.47, the cup thickness value is related to the section
cup height, i.e., a higher wall thickness corresponds to a lower ear height. As seen, the
thickness distribution for a height of 45 mm, which is the closest defined section to the cup
border, presents a smoother wave behavior when compared with the earing cup profile.
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(a) DP500

(b) DP600

(c) DP780

Figure 3.47: Thickness distribution for vertical section (left) and circular section (right) for
DP500, DP600 and DP780 cups (initial blank size = 125 mm).
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3.3.3 Fracture at low triaxiality levels

The classic forming limit diagrams can not provide information about the material
formability limits for lower values of stress triaxiality, such a shear stress state. The ac-
quired results will allow an improvement in the description of the material behavior using
the ductile damage models, especially for the Johnson-Cook (JC) and Hosford-Coulomb
(HC) models, since the GTN cannot predict fracture for shear stress states.

In order to obtain the critical strains for a shear loading condition, a specific speci-
men geometry was considered and used. The geometry of the specimens, shown in fig-
ure 3.48(b), was based on the work of [112] and obtained by machining a rectangular
strip. The experimental conditions of the test are given in table 3.16.

(a) Specimen and DIC camera (b) Specimen geometry and setup

Figure 3.48: Experimental setup used to perform the shear loading a specific specimen geometry.

Table 3.16: Experimental conditions of shear tests.

Crosshead speed (grip) 0.4 mm/min

Data acquisition 5 Hz

Temperature 24 oC

Relative humidity 49%
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All experiments were performed at room temperature with a constant crosshead speed
on a INSTRON 5900R testing machine with a 5 kN load cell. For the acquisition of
strain field, the digital image correlation was considered. Due to the size of the in-plane
reading area, the average speckle size is lower than 15 µm. The DIC images were taken
with a 5 MPixel camera (Basler acA2440-75um, 2448x2048 pixels) in conjunction with a
telecentric lens (Infaimon OPE-TC-23-09, 45 mm). The commercial software VIC-2D.v6
was used to compute the equivalent strain. The obtained force vs. displacement curves of
the shear loading are presented in figures 3.49, 3.50 and 3.51.

(a) Engineering stress-strain curve (b) Equivalent strain field

Figure 3.49: Force displacement curves and strain field obtained from DP500 shear loading.

(a) Engineering stress-strain curve (b) Equivalent strain field

Figure 3.50: Force displacement curves and strain field obtained from DP600 shear loading.
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(a) Engineering stress-strain curve (b) Equivalent strain field

Figure 3.51: Force displacement curves and strain field obtained from DP780 shear loading.

Figures 3.49, 3.50 and 3.51 show that the current dual-phase steels present a higher
forming limit for a shear stress loading state. It is also observed that the DP500 and
DP600 have the same value of equivalent strain, 0.94 and 0.95 respectively, just before
the final fracture moment. Also, the DP780 is the material that presents a lower measured
strain limit (0.74).
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Chapter 4

Identification of constitutive parameters

This chapter is dedicated to the identification process of developed and implemented

constitutive model parameters and corresponding material behavior modeling. Isotropic

hardening laws are defined, as well as the yield criteria to reproduce the anisotropic be-

havior. Besides, ductile damage models are defined and considered to predict the degra-

dation of material strength.
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Identification of constitutive parameters

4.1 Optimization procedure and objective function

One of the crucial points for an accurate description of the material’s behavior through
constitutive models is the correct identification of the associated parameters. This task
can be accomplished by adjusting the numerical prediction results to the experimental
data using optimization methods, in which the main objective is the minimization of an
objective function, as shown in the scheme of figure 4.1 that was implemented in the
MATLAB R© program.

Figure 4.1: Flow chart describing parameter identification based on optimization algorithms and
minimization of the error between numerical predictions and experimental values.

In this work, different algorithms were selected and implemented according to the
parameters to be identified. In the case of hardening laws, the fminsearch function (avail-
able in the MATLAB command library) was chosen, in which it finds the minimum of
the mean square error (MSE) between the hardening law prediction data and the experi-
mental stress-strain curve obtained from the combination of tensile and bulge tests results,
by varying the constitutive parameters. The method works independently on how many
unknown variables must be identified. The fminsearch function uses the Nelder-Mead
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simplex direct search method algorithm, which does not use numerical or analytic gradi-
ents [113].

The identification of the yield criteria parameters is based in the experimental yield
stresses (table 3.4 and table 3.10) and the anisotropic coefficients (table 3.6). For the
Hill’48 yield criterion, the explicit expressions were used to identify the parameters,
nonetheless, in the case of the Yld’91 and CPB06 yield criteria, a Genetic Algorithm
was used to minimize an objective function, given the large number of possibilities that
exist to minimize the objective function and local minimums. Since the error associated
with the yield stresses is higher than the r-values error, the normalized yield stresses were
adopted, having the yield stress according to the rolling direction as a reference value.

A similar methodology was adopted in the parameter identification process of the
ductile damage models. The goal is the minimization of an objective function, considering
the difference between the predicted and experimental strain at failure as a function of
the stress triaxiality. However, for cases where no expression directly relates these two
variables (without any mathematical manipulation), an inverse numerical analysis, using
an optimization algorithm, was developed to obtain the parameters of the damage models.
The inverse analysis, implemented on MATLAB R©, uses an iterative procedure to obtain
the best fitting parameter values that minimize the objective function, based on finite
element numerical simulation results.

4.2 Flow curve

In order to predict the hardening behavior of the material for higher values of plastic
strain when compared to those obtained by the uniaxial tensile test, constitutive models for
hardening (also known as hardening laws) are used. These models react to the evolution
of the yield surface, which is characterized by the equivalent stress and depends on the
internal variable’s evolution of the material.

Since the data from the hydraulic bulge test was considered in this work, the descrip-
tion of the hardening curve had a significant improvement, minimizing the errors that
result from extrapolation. The flow curve obtained from the combination of the uniaxial
tensile test results with the bulge test data will be used as a reference base for the identi-
fication of hardening law parameters. Additionally, a comparison will also be performed
between using only the uniaxial tensile test data and the hardening curve that combines
the tensile and bulge stress-strain curves.

The identification of parameters for constitutive model is carried out using the opti-
mization method presented in the previous section, implemented in the MATLAB R© tool.
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Tables 4.1 to 4.3 present the identified parameters for each material. It should be noted that
only a few hardening laws were considered, some of them choosen due to its widespread
use.

Table 4.1: Identified parameters for hardening laws for DP500, based on experimental stress-
strain data.

Hardening
Parameters

σY (ε p=0)

law [MPa]

Hollomon K=829.60 n=0.1336 —
Voce A=380.80 B=343.03 C=11.303 380.8
Swift K=832 ε0=0.0032 n=0.1370 378.6

Swift-Voce α=0.4502
K=1297.14 ε0=0.0030 n=0.1455

379
A=232.87 B=165.13 C=12.065

Table 4.2: Identified parameters for hardening laws for DP600, based on experimental stress-
strain data.

Hardening
Parameters

σY (ε p=0)

law [MPa]

Hollomon K=972.48 n=0.1389 —
Voce A=432.74 B=405.38 C=11.648 432.7
Swift K=975.73 ε0=0.0032 n=0.1426 430.5

Swift-Voce α=0.4086
K=1328.42 ε0=0.0021 n=0.2035

430.9
A=468.13 B=205.85 C=13.588

Table 4.3: Identified parameters for hardening laws for DP780, based on experimental stress-
strain data.

Hardening
Parameters

σY (ε p=0)

law [MPa]

Hollomon K=1164.23 n=0.1155 —
Voce A=523.26 B=469.85 C=18.149 523.3
Swift K=1164.25 ε0=0.0010 n=0.1161 519.1

Swift-Voce α=0.8328
K=1674.54 ε0=0.0019 n=0.0530

519.1
A=-2875.23 B=1051.28 C=18.438

107



Identification of constitutive parameters

Considering the parameters presented in tables 4.1 to 4.3, the corresponding hardening
evolution curves were plotted and they are shown in figure 4.2.

(a) DP500 (b) DP600

(c) DP780

Figure 4.2: Comparison between the equivalent stress-strain curve and hardening laws, for the
different materials.

As seen in figure 4.2, the hardening behavior of the dual-phase steels for higher values
of plastic strain is better characterized by the combined Swift+Voce law (equation 2.7).
However, for some sheet metal forming processes, e.g. air bending, where the strain levels
are below 0.4 for the DP500 and DP600, and 0.3 for the DP780, the hardening curve given
by Swift law shows to be well suited. Hollomon law also describes the same behavior,
although not being representative for very small strains, due to starting its curve from
point (0,0).

Additionally, in order to analyze and evaluate the differences between using and not
using the data from the hydraulic bulge test in the identification of parameters for the hard-
ening law, a comparison with the constitutive models previously determined is performed
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and shown in figure 4.3.

(a) DP500 (b) DP600

(c) DP780

Figure 4.3: Comparison of the equivalent stress-strain curve using additionally the data from the
biaxial hydraulic bulge test in the selection of the constitutive model hardening law.

Based on figure 4.3, using only the data from the tensile test leads to a higher hard-
ening of the material in the extrapolation zone. On the other hand, using the data from
the biaxial bulge test, it is possible to improve the hardening prediction and getting higher
accuracy to describe the material behavior.
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4.3 Yield locus

To reproduce the material’s mechanical behavior as close as possible, three different
yield criteria were selected: Hill’48, Yld91 and CPB06. Additionally, it was considered a
non-associated flow rule approach based on Hill’48 function, for both yield and potential
surfaces.

In case of Hill’48 criterion the corresponding parameters can be identified based on
stresses, using the expressions 2.26 and 2.25, and based on r-values considering the equa-
tion 2.27. For the NAFR approach, the parameters to describe the yield surface are based
on stresses (Hill48 σ -based) and the parameters used to reproduce the potential surface are
based on plastic anisotropic coefficients (Hill48 r-based). For the other models (Yld91 and
CPB06), a Genetic Algorithm (GA) was used to minimize an objective function, which
evaluates the difference between the predicted and experimental values. The considered
material properties for the identification stage were:

• uniaxial tensile yield stresses: σ0, σ22.5, σ45, σ67.5, σ90

• biaxial stress: σb

• uniaxial compression yield stresses: σ c
0 , σ c

90

• plastic anisotropic coefficients (r-values): r0, r22.5, r45, r67.5, r90

• plastic biaxial anisotropic coefficient: rb

Some assumptions were established in the identification process for each criterion.
The parameters associated with through-thickness material properties, which are quite
challenging to assess in metallic sheets, were assumed to be equal to the isotropic condi-
tion value, which is the case of L and M equal to 1.5 for Hill’48, as well as, the anisotropy
coefficients C44 and C55 of CPB06 and f and g of the Yld91 criterion assumed to be equal
to 1. Also, for CPB06, the parameter C11 was considered constant and equal to 1, the pa-
rameter a equal to 2 and the variable k an average value result using the equation 2.49 and
the two uniaxial compression yield stresses. The other CPB06 six parameters were identi-
fied for a range between ([-5 5]) [114]. The same applies to the four unknown parameters
of the Yld91 criterion, where the range considered was from 0 to 5. The parameter m is
equal to 6, since the studied materials are steels, having a Body Centered Cubic (BCC)
crystal structure.

Table 4.4 presents a summary of the used experimental reference data, which it was
already shown in section 3.2.
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Table 4.4: Summary of experimental data used for yield criteria parameters identification.

DP500 DP600 DP780

Uniaxial tensile yield stress

σ0 379.7 429.6 521.2
σ22.5 403.8 427.3 540.8
σ45 408.5 430.4 537.6

σ67.5 401.3 436.6 543.7
σ90 390.6 437 550

Biaxial stress

σb 414.8 442.6 585.1

Uniaxial compression yield stress

σ c
0 346.7 381 509.1

σ c
90 358.7 386.2 534

Plastic anisotropic coefficient

r0 0.971 0.695 0.648
r22.5 0.888 0.783 0.802
r45 0.851 0.935 0.922

r67.5 1.002 0.899 0.891
r90 1.11 0.811 0.824

Plastic biaxial anisotropic coefficient

rb 0.96 0.92 0.91

The obtained values for the three dual-phase steels are presented in tables 4.5, 4.6 and
4.7 for DP500, DP600 and DP780, respectively. The corresponding contours of the yield
surfaces and predicted normalized yield stresses and r-values, as well as the initial yield
and potential surfaces for the NAFR approach are presented in figures 4.4, 4.5 and 4.6,
respectively.
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Table 4.5: Identified yield criteria parameters for DP500.

Hill48 F G H N
r-based 0.4438 0.5074 0.4926 1.2850
σ -based 0.3914 0.4465 0.5535 1.3090

Yld91 a b c h m
0.9538 1.0026 0.9914 0.9404 6

CPB06 C11 C12 C13 C22 C23 C33 C66 k
1 -0.6677 0.6056 1.0254 1.03 -1.0987 -1.5684 0.134

(a) Yield surface contours (b) Initial NAFR yield and potential surface based on
Hill’48

(c) Normalized yield stress evolution (d) r-value evolution

Figure 4.4: Predicted yield surfaces and evolution of yield stresses and r-values of Hill’48, Yld91
and CPB06 models for DP500 steel.
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Table 4.6: Identified yield criteria parameters for DP600.

Hill48 F G H N
r-based 0.5056 0.59 0.41 1.5721
σ -based 0.4543 0.4878 0.5122 1.5215

Yld91 a b c h m
1.0094 1.0621 0.9359 1.0187 6

CPB06 C11 C12 C13 C22 C23 C33 C66 k
1 -3.5067 -2.4307 0.8531 -2.3768 2.1045 4.1801 0.189

(a) Yield surface contours (b) Initial NAFR yield and potential surface based on
Hill’48

(c) Normalized yield stress evolution (d) r-value evolution

Figure 4.5: Predicted yield surfaces and evolution of yield stresses and r-values of Hill’48, Yld91
and CPB06 models for DP600 steel.
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Table 4.7: Identified yield criteria parameters for DP780.

Hill48 F G H N
r-based 0.4772 0.6068 0.3932 1.5414
σ -based 0.3458 0.4477 0.5523 1.4831

Yld91 a b c h m
0.9797 1.0769 0.9150 1.008 6

CPB06 C11 C12 C13 C22 C23 C33 C66 k
1 -0.7924 -1.9396 0.7397 -0.6387 -2.8879 -2.0155 0.040

(a) Yield surface contours (b) Initial NAFR yield and potential surface based on
Hill’48

(c) Normalized yield stress evolution (d) r-value evolution

Figure 4.6: Predicted yield surfaces and evolution of yield stresses and r-values of Hill’48, Yld91
and CPB06 models for DP780 stress.
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As seen in figures 4.4, 4.5 and 4.6, all the selected yield criteria were able to de-
scribe and predict quite well the r-value evolution of DP600 and DP780, overlapping
completely the experimental plastic anisotropic coefficient points, except for Hill’48 cri-
terion using σ -based parameters. However, in the case of prediction for the yield stresses,
distinct anisotropic behaviors can be observed. Yld91 criterion reproduced the DP600
yield stresses for 0o and 90o relative to the rolling direction but fails at 45o, unlike the
CPB06 prediction, being closer at 45o. On the other hand, an opposite behavior of DP780
is observed for Yld91 and CPB06 predictions.

For DP500, the CPB06 yield criterion was capable of reproducing the yield stresses
(except at 22.5o) and r-value evolutions simultaneously, showing higher flexibility, like
the NAFR approach. The Hill’48 σ -based clearly fails to reproduce r-value points, but it
goes through experimental normalized yield stress values. In case of Yld91 and Hill’48 r-
based, both can predict the plastic anisotropic coefficients, although Hill’48 r-based has a
better performance than Yld91 to describe the normalized yield stresses, showing a closer
45o prediction.

Regarding the yield surfaces, none of the yield criteria can reproduce completely every
point of experimental data. The aptitude of CPB06 to reproduce the stress differential
shows to be high, presenting a better and closer prediction of the uniaxial compression
points, except for DP500, where an overestimation of σ c

0 was made. For the three dual-
phase steels, Yld91 and Hill’48 r-based present similar yield surface shapes, inside of the
Hill’48 σ -based yield surface, which was the only criterion passing through σb point, as
well as, CPB06 for DP500.

In general, if an associated flow rule (AFR) is considered, the CPB06 yield criterion
shows a good performance to reproduce closely the material anisotropic behavior, both
normalized yield stress and plastic anisotropic coefficients. However, for an accurate pre-
diction of such properties, the non-associated flow rule approach using the simple Hill’48
function seems to be an excellent option due to the ability to reproduce the normalized
yield stresses and r-values independently and simultaneously. Both options have pros and
cons, the CPB06 criterion can reproduce stress differential effects, while for the case of
the NAFR method, the identification process of Hill’48 parameters is simpler and more
explicit.

4.4 Damage criteria

To model the degradation of material strength during the deformation process, three
ductile damage models were selected and their performance evaluated: GTN, Johnson-

115



Identification of constitutive parameters

Cook and Hosford-Coulomb. For the identification of the corresponding parameters, dif-
ferent methodologies where applied. In the case of Johnson-Cook damage model, the
equation 2.79 was used in the minimization of the difference between the predicted and
experimental strain at failure as a function of the stress triaxiality. The strain rate and
temperature effects were not included and therefore parameters d4 and d5 are not defined.

For the Hosford-Coulomb damage model a more straight-forward approach is used,
since it has explicit expressions (equation 2.83) to calculate the corresponding parameters.

To characterize the behavior of the material using the GTN damage model, seven
parameters are needed, but a mutual correspondence can be considered [115]. According
to literature, the parameters q1, q2 and SN may be kept constant [116]. However, GTN
damage model doesn not have a explicit relationship between stress triaxiality and the
equivalent strain at fracture, therefore, an inverse finite element numerical analysis was
performed to obtain the best fitting parameter. A finite element 3D explicit analysis for
uniaxial tensile test and for hydraulic bulge test was created, having the damage model
parameters as an input to the numerical simulation using Abaqus/Explicit code. Both
numerical models use the same hardening behavior, according to the data presented in
section 4.2.

The uniaxial tensile specimen was discretized by eight node solid elements with re-
duced integration (C3D8R type from Abaqus Library), having four elements through
thickness. Due to the symmetry, only one quarter of the real setup was considered, as
shown in figure 4.7(a). Material rolling direction is assumed to be along loading direc-
tion.

(a) Element size of 1x1x0.125 mm in uni-
form section

(b) Element size of 2x2x0.125 mm in
central area

Figure 4.7: Uniaxial tensile and hydraulic bulge discretization used in the FE model.

In case of bulge test, a quarter of the model was modeled with discretization of four
layers through thickness of eight node solid elements with reduced integration (C3D8R
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type from Abaqus Library), as shown in figure 4.7(b). The blank is subjected to a pre-
scribed increasing linear increment pressure of 1 bar/s, in order to reproduce the same
experimental conditions. The bulge test tools are discretized by analytical rigid surfaces.
At each iteration, the damage model parameters are determined by comparing the numer-
ical force vs. elongation curve of uniaxial tensile test with essential experimental data,
and pressure vs. pole height behavior in the case of the hydraulic bulge test.

The validation of the predicted numerical results is ensured by the correlation with
experimental data.

Tables 4.8, 4.9 and 4.10 present obtained parameters for every considered damage
model in current thesis.

Table 4.8: Identified Johnson-Cook damage model parameters for the three dual-phase steels:
DP500, DP600 and DP780.

Jonhson-Cook d1 d2 d3

DP500 0.667 0.273 -6.17
DP600 0.662 0.289 -5.99
DP780 0.428 0.313 -6.57

Table 4.9: Identified GTN damage model parameters for DP500 and DP780.

GTN q1 q2 q3 = q2
1 f0 fC fF εN SN fN

DP500 1.86 0.8 3.46 0.9998 0.01684 0.018 0.09 0.03 0.0104
DP780 1.76 0.83 3.10 0.9997 0.0239 0.026 0.085 0.2 0.0445

Table 4.10: Identified Hosford-Coulomb damage model parameters for the three dual-phase
steels: DP500, DP600 and DP780.

Hosford-Coulomb a b c n

DP500 1.799 0.72 0.040 0.1
DP600 1.767 0.71 0.043 0.1
DP780 1.661 0.47 0.069 0.1

Figure 4.8 and figure 4.9 show the 3D surfaces of dual-phase steels for the identified
Hosford-Coulomb damage model parameters and the evolution of the equivalent plas-
tic strain as a function of the stress triaxiality for Hosford-Coulomb and Johnson-Cook
damage models, respectively.
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(a) DP500 (b) DP600

(c) DP780

Figure 4.8: Equivalent strain at fracture as a function of stress triaxiality and the Lode angle
parameter, considering a proportional loading.
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(a) DP500 (b) DP600

(c) DP780

Figure 4.9: Hosford-Coulomb and Johnson-Cook equivalent strain at fracture as a function of
stress triaxiality considering a plane stress state.
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Chapter 5

Numerical simulation applied to
stamping

In this chapter, the validation and assessment of the constitutive models are performed.

A series of finite element numerical simulation were considered and applied to different

forming conditions, such as deep drawing cylindrical cup, Nakajima test, hole expan-

sion and a cross-die geometry. The aim was the prediction of the AHSS behavior using

the previously obtained experimental data and the corresponding identified constitutive

model parameters. A comparison between the numerical simulation results and the ex-

perimental data is also made.

121



(This page was deliberately left blank)



Numerical simulation applied to stamping

5.1 Cylindrical cup -Swift test

To evaluate the mechanical characterization and the considered yield criteria to de-
scribe the dual-phase steels behavior, a finite element model was created based on the
experimental deep drawing cylindrical cup test, as shown in figure 3.36(b). The tool setup
contains a stopper ring produced from the same sheet material and the same thickness, to
prevent or reduce the pinching effect at the end of the cup drawing stage, by keeping a
minimum gap between the die and blank holder. Additionally, the punch has an impor-
tant feature, which allows the minimization of misalignment effects between the circular
blank relative to the tools.

An explicit analysis of the deep drawing cup was considered using Abaqus/Explicit
code to perform numerical simulations. Due to the symmetry of the test, only 1/4 of
the experimental setup was taken into account to create a 3D finite element model (fig-
ure 5.1(a)).

(a) (b)

Figure 5.1: Cylindrical cup test finite element 3D model: a) setup and position of tools and blank;
b) blank mesh in XY plane.

The sheet blank and the stopper were discretized by three layers of eight node de-
formable elements with reduced integration (C3D8R type from Abaqus Library), being
the tools (die, punch and blank holder) modeled as rigid analytic surfaces. The spacial
discretization of blank XY plane can be seen in figure 5.1(b). A constant value of 0.05
was established to model the Coulomb friction between surfaces. Regarding the material
modeling, the identified constitutive parameters in the chapter 4 were considered. The

123



Numerical simulation applied to stamping

sheet blank elastoplastic behavior is described by the Hill’48, Yld’91 and CPB06 yield
criteria, combined with an isotropic hardening defined by the Swift+Voce constitutive
model. An associated flow rule (AFR) was assumed for the three yield criteria, as well
as a non-associated flow rule (NAFR) applied only to Hill’48 criterion. All constitutive
models were implemented in a user material subroutine (Abaqus code - VUMAT).

Taking into consideration, the limiting drawing ratio obtained from this test (2.15,
2.08 and 2.09 for DP500, DP600 and DP780, respectively), in the numerical analysis, an
initial blank diameter of 125 mm was used for the three AHSS materials.

5.1.1 Punch force evolution with displacement

Figure 5.2 shows the punch force evolution with the displacement comparison between
the experimental data and the results obtained from numerical simulation using the three
yield criteria and the NAFR approach.

(a) DP500 (b) DP600

(c) DP780

Figure 5.2: Punch force evolution with punch displacement using the considered yield criteria.
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It can be observed that the experimental punch force evolution is quite well predicted
by the numerical simulation for the three dual-phase steels, for every yield criterion.
These results show that selected hardening law follows an appropriate description of ma-
terial behavior. Although taking into consideration the influence of friction coefficient
value, the attained maximum punch in numerical simulation for the DP500 material is
similar to the experimental evidence.

As mentioned in [117, 118], the predicted punch force evolution is very sensitive to
the friction conditions, which can increase or decrease the maximum punch force, as well
as, the initial slope of the evolution punch force. One the other hand, the punch force
evolution is not very sensitive to the selected yield criteria under this drawing operation
and proposed materials.

5.1.2 Earing profiles

The earing height profiles of the cylindrical cups were evaluated for the three dual-
phase steels using the selected yield criteria. The obtained predictions were compared
with experimental 360o measured points, taking as reference the flat bottom of the cup.
Figures 5.3, 5.4 and 5.5 present the obtained height of cup ears from the numerical simu-
lation for DP500, DP600 and DP780, respectively.

(a) Hill’48, Yld91 and CPB06 AFR approaches (b) AFR and NAFR using Hill’48 function

Figure 5.3: Comparison of numerical earing height profiles of DP500 with experimental data for
the different implemented yield criteria.
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(a) Hill’48, Yld91 and CPB06 AFR approaches (b) AFR and NAFR using Hill’48 function

Figure 5.4: Comparison of numerical earing height profiles of DP600 with experimental data for
the different implemented yield criteria.

(a) Hill’48, Yld91 and CPB06 AFR approaches (b) AFR and NAFR using Hill’48 function

Figure 5.5: Comparison of numerical earing height profiles of DP780 with experimental data for
the different implemented yield criteria.

As expected, all the considered yield criteria, as well as the NAFR approach based
on Hill’48 function, give the same number of ears when compared to the experimental
evidence, with the exception of Hill’48 σ -based for the DP780, in which only 2 ears
where predicted.

In the case of DP500 earing profile predictions, the numerical tendency of earing
height evolution from 0o to 90o relative to the rolling direction is identical to the exper-
imental behavior, having a higher ear height at 90o and a valley at 45o. However, the
difference between maximum and minimum ear height values is higher for all considered
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yield criteria, although the non-associated flow rule (NAFR) is closer to the experimental
data than the others predictions.

An opposite behavior is observed for DP600, in which the earing profile evolution
shows valleys at 0o and 90o and peaks at 45o. Here, the most significant difference also
observed is the amplitude predicted by the numerical simulation based on the associated
flow rule, which is higher than the one obtained experimentally, apart from the case of
Hill’48 σ -based, which predicts almost an isotropic behavior (amplitude between the
maximum and minimum height very low). On the other hand, the prediction given by a
non-associated flow rule provides a tendency closer to the experimental points, especially
at 45o, in comparison with the other approaches and yield criteria.

Since the DP780 and DP600 have the same behavior regarding the anisotropic plastic
coefficients, the obtained results by the numerical simulation are also similar. The am-
plitude between the extreme values remains the main difference for the proposed yield
criteria. Once again, NAFR predicts an earing height profile closer to the experimental
evidence when compared to the other numerical results, however, for 90o the numerical
prediction overestimates the ear height.

Overall, the approach based on a non-associated flow rule provides a closer evolution
to the experimental data, however, for some angles the accuracy of obtained results can
still be improved. Nevertheless, the variability and dispersion that outcome from the ex-
perimental tests must be taken into account, not only in the measurement of earing height
profiles, but also the properties used in the constitutive model parameters identification
procedure. It is visible that the experimental evolution of the cup height is not symmetri-
cal concerning the orthotropic planes, which implies a greater distance or approximation
by the numerical predictions. This phenomenon can be affected by different factors, such
as the initial blank centring (despite the existence of a device that minimizes such effect)
or even the variation of the initial blank thickness.

5.1.3 Thickness Distribution

In this section, a comparison of the experimental data and numerical thickness distribu-
tion along the cup wall for different heights (figure 3.46) is presented, for the final stage
of the deep drawing process. The corresponding line for measurement follows the ma-
terial rolling, diagonal and transverse directions. A relationship between the cup height
and sheet thickness was considered in such analysis, being the wall thickness measured
perpendicularly to the cup axis.
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(a) Rolling direction (RD) (b) Diagonal direction (DD)

(c) Tranverse direction (TD)

Figure 5.6: Thickness distribution along vertical wall of DP500 using different yield criteria.

As seen in figure 5.6, the overall tendency of the wall thickness is similar for all the
proposed yield criteria and quite well reproduced when compared to the experimental
data points. Along the vertical cup wall, the thickness values are typically higher than the
initial thickness, as a consequence of the compression stress state in the circumferential
direction.

As expected, for the diagonal direction (45o to RD) the increase of the cup wall thick-
ness is higher, since for this direction the anisotropic plastic coefficient is greater than the
other values.

For this material, only the Hill’48 r-based yield criterion gives a different behavior,
underestimating the increase of the cup wall thickness along the rolling and transverse
direction, but giving a closer distribution for the diagonal direction. Again, it should be
noted that the differences between the numerical and experimental results are very low
and at the same level of the variations observed experimentally (figure 3.47).
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(a) Rolling direction (RD) (b) Diagonal direction (DD)

(c) Tranverse direction (TD)

Figure 5.7: Thickness distribution along vertical wall of DP600 using different yield criteria.

In case of DP600 wall thickness numerical predictions (figure 5.7), there is a clear
overestimation of the thickness increase after the 30 mm for the rolling and transverse
directions using the proposed yield criteria, except the Hill’48 r-based which predicts an
wall thickness evolution almost identical to the experimental tendency.

For the diagonal direction (45o), the overall tendency of the wall thickness is similar
for all the proposed yield critera and well described when compared to the experimental
data.

Since the DP600 has an opposite anisotropic behavior than the DP500, for the diagonal
direction the increase of the cup wall thickness is lower than the other directions, as a
consequence of the higher ear cup height.
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(a) Rolling direction (RD) (b) Diagonal direction (DD)

(c) Tranverse direction (TD)

Figure 5.8: Thickness distribution along vertical wall of DP780 using different yield criteria.

Figure 5.8 presents the cup thickness distribution along the vertical wall for DP780 us-
ing the different yield criteria. As seen, all the constitutive models show a good agreement
with experimental points for the diagonal direction. However, for the rolling direction and
for the transverse direction, some differences between the numerical predictions are vis-
ible. The Hill’48 r-based underestimates the thickness increase and the Hill’48 σ -based
overestimates the thickness after the 30 mm.

For this material, The obtained cup thickness distributions using the Yld91 yield cri-
teria and the NAFR approach based on Hill’48 function show a good correlation with the
measured experimental data for all the considered sheet directions, for the final stage of
the deep drawing process.

Figures 5.9, 5.10 and 5.11 show the distribution of the equivalent plastic strain and
also the distribution of equivalent stress for each considered yield criteria for the DP500,
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DP600 and DP780, respectively.

(a) Equivalent plastic strain

(b) Equivalent stress

Figure 5.9: Equivalent plastic strain and equivalent stress contours for DP500 cylindrical cup
using the different yield criteria: Hill’48 r-based, Hill’48 σ -based, Yld91, CPB06, NAFR, from
left to right, respectively.

(a) Equivalent plastic strain

(b) Equivalent stress

Figure 5.10: Equivalent plastic strain and equivalent stress contours for DP600 cylindrical cup
using the different yield criteria: Hill’48 r-based, Hill’48 σ -based, Yld91, CPB06, NAFR, from
left to right, respectively.
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(a) Equivalent plastic strain

(b) Equivalent stress

Figure 5.11: Equivalent plastic strain and equivalent stress contours for DP780 cylindrical cup
using the different yield criteria: Hill’48 r-based, Hill’48 σ -based, Yld91, CPB06, NAFR, from
left to right, respectively.

It is observed that the strain distribution presents an opposite behavior when compared
to the earing height profile. In the zone near to the cylindrical cup border, the equivalent
plastic strain presents higher values, as a result of the ironing caused by the blank holder.
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5.2 Nakajima test

To evaluate and validate the ability to predict damage and formability limits using the
previous defined damage models, a finite element analysis is carried out considering the
Nakajima test and the obtained results are compared with experimental data.

Numerical simulations were performed using a 3D finite element explicit analysis with
Abaqus/Explicit code and defining a full model for the Nakajima test (figure 5.12(a)).

(a) (b)

Figure 5.12: Nakajima test finite element 3D model: a) setup and position of tools and blank; b)
blank mesh in XY plane (1x1 mm element in center).

The sheet blank was discretized by three layers of eight node deformable elements
with reduced integration (C3D8R type from Abaqus Library), being the tools (die, punch
and blank holder) modeled by analytical rigid surfaces. The spacial discretization of
blank XY plane can be seen in figure 5.1(b). A constant Coulomb friction coefficient
of 0.05 was defined for the interacting surfaces. Regarding the material modeling, the
identified constitutive parameters in the previous sections were considered. The sheet
blank elastoplastic behavior is described by the Swift+Voce hardening law.

For the Johnson-Cook (JC) and Hosford-Coulomb (HC) damage models the anisotropic
Hill’48 r-based yield criterion was considered. Johnson-Cook and GTN ductile damage
models are available in FE program, on the other hand, the HC model was implemented
in a user material subroutine.
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5.2.1 Forming limits and punch force evolution

Limit strain values from the numerical simulation were obtained using the same ex-
perimental methodology. Each ductile damage model FLC was formed by a fitted curve
to the strains points acquired from different sample widths (as seen in figure 3.33) using
the least-squares method. The comparison of DP780 forming limit curves, determined
experimentally and using the ductile damage models is shown in figure 5.13.

Figure 5.13: Comparison between the experimental points and numerical forming limit curves
using the different damage models for the dual-phase steels.

Globally, the forming limit curves obtained from numerical simulation using the dam-
age models and presented in figure 5.13 show a similar tendency compared to the ex-
perimental data. The GTN and Hosford-Coulomb criteria predictions of forming limit
curve give a closer result to the experimental data for the drawing zone, while in case of
Johnson-Cook damage model, the numerical points are more dispersed. Also, this dam-
age model seems to have a higher formability in plane strain state and a lower limit in the
stretching region, being more evident in equibiaxial loading case.

By comparison, the formability prediction for DP780 using these three ductile damage
models with experimental results, it can be concluded that the Hosford-Coulomb damage
model gives a better approximation and shows a closer overall prediction to current exper-
imental data. However, with a smaller initial relative density, the formability prediction of
GTN can be increased and the FLC could be closer in plane strain and stretching region
(right side of FLD) but a possible overestimation in drawing region (left side of FLD)
could be happen.

Additionally, a comparison of punch force vs. displacement curves were performed,
in order to evaluate the numerical and experimental data, being also a complement to the
FLD analysis.
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Figure 5.14 shows the curves of punch force vs. displacement evolution during de-
formation for each selected sample width or strain path, defined in this work. Numerical
results for current damage models and experimental data are compared on the same graph.

(a) width = 25 mm (b) width = 50 mm

(c) width = 75 mm (d) width = 100 mm

(e) width = 125 mm (f) width = 175 mm

Figure 5.14: Comparison of experimental punch force evolution for different specimen widths,
with the numerical results from the damage models.
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From figure 5.14, it can be observed that the evolution of punch force predicted is
very similar to the experimental punch force. Additionally, this comparison allows the
evaluation of punch stroke at which fracture occurs.

Since GTN damage model has a closer forming limit curve to the experimental data in
the drawing zone, like the Hosford-Coulomb prediction, the punch stroke is in a very good
agreement with experimental observation. In contrast, the Johnson-Cook model shows a
smaller value of punch stroke for all of defined sample widths, except for the plane strain
case.

Figure 5.15 shows a comparison between the experimental samples and the Hosford-
Coulomb damage model fracture predictions. The obtained numerical results present a
good agreement with experimental evidence, validating the ability of this type of consti-
tutive models to predict the region where the material will fail.

(a) width = 25 mm (b) width = 75 mm

(c) width = 175 mm

Figure 5.15: Comparison of experimental fracture location with the numerical results from the
Hosford-Coulomb damage models.
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5.3 Cross-Die test

The applicability of the proposed damage models is illustrated by means of a deep
drawing Cross-Die failure case of a cross-shaped (figure 5.16(b)) sheet metal component.
This type of test was selected since it has a similar loading condition to those observed in
the industry. To compare the performance of the different ductile damage models for the
fracture prediction of such component, a finite element analysis is performed considering
the Cross-Die test. The process is comparable to the deep drawing cylindrical cup (Swift)
test, but different on the resulting final geometry.

Numerical simulations were performed using a 3D finite element explicit analysis
with Abaqus/Explicit code and defining only one quarter of the real experimental setup
(figure 5.17).

(a) (b)

Figure 5.16: 3D finite element model for Cross-Die test: a) setup and position of tools and blank;
b) blank symmetry.

The sheet blank was discretized by three layers of eight node deformable elements
with reduced integration (C3D8R type from Abaqus Library), making a total of 15138
elements, being the tools (die, punch and blank holder) modeled by discretized rigid sur-
faces. The spacial discretization of blank XY plane can be seen in figure 5.17(a), while
the punch and die meshes are shown in figures 5.17(b) and 5.17(c), respectively.

The blank size is 270x270 mm square and a 60 mm punch stroke was considered,
which corresponds to the height of a successful obtained part. The punch and die radii
have constant values of 20 mm and 14 mm respectively, having the punch a total width of
180 mm and the die an opening of 186 mm. A constant blank holder force of 200 kN was
applied for DP5000 and 300 kN in the case of DP780 steels.
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(a) Blank (b) Punch (c) Die

Figure 5.17: Finite element discretization of tools and blank used in the Cross-Die numerical
analysis.

A constant Coulomb friction coefficient of 0.05 was defined for the interacting sur-
faces. Regarding the material modeling, the identified constitutive parameters in the pre-
vious chapter 4 were considered. The sheet blank elastoplastic behavior is described by
the Swift+Voce hardening law. For the Johnson-Cook and Hosford-Coulomb damage
models the anisotropic Hill’48 r-based yield criterion was considered. Johnson-Cook and
GTN ductile damage models are available in FE program, on the other hand, the HC
model was implemented in a user material subroutine.

5.3.1 Fracture location and equivalent plastic strain distribution

Figure 5.18 shows the predicted numerical results and the corresponding fracture loca-
tion, as well as, the equivalent plastic strain and triaxiality level contours to the moment
before fracture for the dual-phase steel DP500.

For this type of loading condition and material, the three models predict different
zones where the material will fail, as shown in figure 5.18(a). The GTN damage model
predict possible fracture location that can be observed in numerical results using the
Johnson-Cook damage model and the Hosford-Coulomb damage model.

However, all the fractures were predicted for areas where the triaxiality levels are
high, between a plane strain state and an equibiaxial stress state. The maximum attained
value of the equivalent plastic strain is related with fracture location, with the exception of
Johnson-Cook damage model, which predicts a different zone (near punch head radius).

138



Numerical simulation applied to stamping

(a) Damage variable and volume void fraction

(b) Equivalent plastic strain

(c) Triaxiality

Figure 5.18: Comparison of the predicted fracture location using the different damage models
and corresponding contours for DP500: Johnson-Cook, GTN and Hosford-Coulomb, from left to
right, respectively.

Additionally, the GTN damage model overestimate the development of damage, pre-
dicting the fracture initiation for lower values of equivalent plastic strain and a consequent
lower component height. Regarding the triaxiality contours, the obtained results from the
three damage models show a similar behavior, as expected, since the geometry and load-
ing conditions are the same.

The same methodology was applied to analyze the obtained numerical results for
DP780. Figure 5.19 show the predicted numerical results and the corresponding frac-
ture location, as well as, the equivalent plastic strain and triaxiality level contours just
before fracture.
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(a) Damage variable and volume void fraction

(b) Equivalent plastic strain

(c) Triaxiality

Figure 5.19: Comparison of the predicted fracture location using the different damage models
and corresponding contours for DP780: Johnson-Cook, GTN and Hosford-Coulomb, from left to
right, respectively.

As seen in figure 5.19, the three models predict the occurrence of fracture for DP780
in the same local of the component. The fracture location is characterized by higher
levels of triaxiality, near to the plane strain levels, where the ability to plastic deform the
material is more limited. Another aspect that can be observed is the premature fracture
prediction and consequently a lower height of the component by the GTN damage model
in comparison with the other two damage models. This fact is confirmed by the lower
value of the equivalent plastic strain present in the part at moment before the fracture,
which it is also an indicator of a possible location.
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5.3.2 Evolution of punch force with displacement

The punch force vs. punch displacement evolution was also analyzed and figure 5.20
presents the obtained numerical predictions for DP500 and DP780. Additionally, it was
considered, as a reference, a punch vs. displacement curve without using damage models.

(a) DP500

(b) DP780

Figure 5.20: Punch force evolution with punch displacement using the considered yield criteria.

For the two selected dual-phase steels, the numerical predictions of punch displace-
ment at failure are different. GTN damage model predicts fracture at lower punch dis-
placement and consequently a lower punch force for both materials (34 mm for DP500
and 25 mm for DP780), since the volume void fraction variable start to increase its value
at an early stage of the drawing process, overestimating the damage development when
compared to the other damage models.

Regarding the Johnson-Cook damage model and the Hosford-Coulomb damage model,
both predict closer punch displacement at fracture (49 mm and 53 mm for DP500, and
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36 mm and 48 mm for DP780, respectively), and also an identical punch force evolution
tendency, until the internal damage variable of Jonhson-Cook reaches the critical value
and a consequent material failure. In all of the numerical simulations performed using the
Hosford-Coulomb model, the fracture occurs after the maximum force peak.

The difference observed in the numerical results, specially when using the GTN dam-
age models, can be attributed to the parameter identification procedure, which in turn is
related with triaxiality values. The tests used for Johnson-Cook and Hosford-Coulomb
parameter identification are for a wide range of triaxiality stress states, from low triaxil-
ity (shear test) to high triaxiality (bulge test), considering also the tensile test result and
the plane strain data. In case of GTN, the tests used have higher triaxiality values (ten-
sile+bulge). Since the component shows critical strain localization for for plane strain
triaxiality levels, this means that GTN and corresponding damage parameters, which may
have different solutions, are not adjusted to predict failure in this component, although
experimental tests should be performed to validate such results.
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Chapter 6

Conclusions

This chapter highlights the main conclusions from this research, as well as, some consid-

erations for future work concerning the modeling of the material behavior and its usage

in the numerical simulation of sheet metal forming processes.
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Conclusions

6.1 Final remarks

The use of numerical tools is currently part of the development stage of products in
sheet metal forming industries, and one of the main objectives of numerical simulation
is to predict, with acceptable precision, the material behavior, as well as, the occurrence
of defects in the obtained parts by providing alternative solutions to overcome problems.
However, the increasing complexity in geometries and the use of new materials and corre-
sponding non-traditional behaviors, combined with shorter development times and other
factors inherent to the sheet metal forming process, always create new challenges and
make numerical simulation an indispensable tool in this manufacturing process. The
present thesis made use of the finite element method in the numerical simulation of sheet
metal forming processes, where different constitutive models were applied to reproduce
the anisotropic and damage behavior of three AHSS.

Within the scope of this thesis, the mechanical behavior of the advanced high strength
steels DP500, DP600 and DP780 has been investigated under various loading conditions.
Accordingly, uniaxial tensile tests, uniaxial and disc compression, and also hydraulic
bulge tests have been performed to cover a wide range of stress states, which are present
in complex sheet metal forming parts. The obtained results of the mechanical properties
and stress-strain flow curves revealed that the loading condition significantly influences
the plastic response of the material in terms of strain level, being evident for the bulge
test. Additionally, the results of the uniaxial tensile tests performed at different strain rates
showed that the amount of heat generated by plastic deformation has an independent trend
to the material strength and shows a similar evolution when a normalized engineering
strain is considered.

The combination of data from the tensile test with the results from the biaxial bulge
test proved to be an approach with excellent results in reproducing the behavior of the
material for higher values of plastic strain, since the use of only the stress-strain curve of
the uniaxial tensile test to define the constitutive model may lead to deviations between
the extrapolation and the actual behavior of the material.

The use of deep drawing cylindrical cup test allowed the determination of the limiting
drawing ratio for selected materials, having DP500 steel the higher limit (LDR=2.15),
followed by DP780 (LDR=2.09) and DP600 (LDR=2.08). These results show a good
correlation with the measured experimental anisotropy coefficients, in which the planar
anisotropy is higher for the DP500 steel. Also, the deep drawing cylindrical cup was
used to evaluated and validate the performance of different yield criteria to predict the
anisotropic behavior of the dual-phase steels. The earing height profile predictions using
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numerical simulation with a non-associated flow rule (NAFR) showed a good agreement
when compared with experimental data points. The ability of the NAFR to predict the
yield stress evolution, as well as the plastic anisotropic coefficients independently and
simultaneous, proved to be an approach that gives efficient and accurate results.

Three ductile damage models, GTN, Johnson-Cook and Hosford-Coulomb, were de-
scribed and numerically compared for prediction of damage in sheet metal forming. Fi-
nite element analysis of the Nakajima test and a cross-shaped component was performed,
using the corresponding identified constitutive model parameters. The numerical simula-
tions of GTN show an overestimation of damage evolution. On the other hand, Johnson-
Cook and Hosford-Coulomb predicted identical behaviors and forming limits, although
the results obtained from Hosford Coulomb uncoupled damage model are closer to the
experimental data. Regarding the fracture location, all of the selected constitutive models
provided a similar result.

6.2 Future work

For a deeper knowledge of the investigated topics of research, it would be interesting
to continue this work in different paths. With this in mind, several perspectives for future
work are proposed:

• The thermomechanical behavior of these dual-phase steels induced by the plastic
deformation for different strain rates has not been thoroughly investigated; there-
fore, uniaxial tensile tests should be performed at higher strain rates (> 10−1 s−1)
using a digital infrared measurement system, to capture the temperature field in
order to analyze and to improve the material modeling;

• Implementation of more advanced constitutive models considering strain rate ef-
fects and temperature sensitivity, in order to improve the accuracy of the hardening
laws, as well as, the fracture and necking predictions;

• Regarding the material user subroutine VUMAT, different approaches of return
mapping within the Abaqus/Explicit FEM code should be considered and its ef-
ficiency evaluated (time cost and accuracy of results);

• Cyclic loading tests between a tensile and compression stress state should be per-
formed at different strain levels, to evaluate the stress differential and any Bauschinger
effect;
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• Application of current developments of experimental systems and numerical method-
ologies to different materials, such as other type of AHSS and UHSS, aluminum
alloys, metallic materials from additive-manufacturing, hybrid metallic materials,
etc;

• To develop an integrated methodology for identification of constitutive models and
corresponding parameters; it should include a minimum of manual involvement by
using identification methodologies based on optimization algorithms and artificial
intelligence, namely machine learning.
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Appendix A

Dual-phase steels
engineering and true stress-strain
curves
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Dual-phase steels
engineering and true stress-strain curves

A.1 Dual-phase steel DP500
engineering and true stress-strain curves

(a) Eng. stress-strain (b) True stress-strain

Figure A.1: Engineering and true stress-strain curves of DP500 for 0o relative to RD.

(a) Eng. stress-strain (b) True stress-strain

Figure A.2: Engineering and true stress-strain curves of DP500 for 22.5o relative to RD.
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Dual-phase steels
engineering and true stress-strain curves

(a) Eng. stress-strain (b) True stress-strain

Figure A.3: Engineering and true stress-strain curves of DP500 for 45o relative to RD.

(a) Eng. stress-strain (b) True stress-strain

Figure A.4: Engineering and true stress-strain curves of DP500 for 67.5o relative to RD.

(a) Eng. stress-strain (b) True stress-strain

Figure A.5: Engineering and true stress-strain curves of DP500 for 90o relative to RD.
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Dual-phase steels
engineering and true stress-strain curves

A.2 Dual-phase steel DP600
engineering and true stress-strain curves

(a) Eng. stress-strain (b) True stress-strain

Figure A.6: Engineering and true stress-strain curves of DP600 for 0o relative to rolling direction.

(a) Eng. stress-strain (b) True stress-strain

Figure A.7: Engineering and true stress-strain curves of DP600 for 22.5o relative to RD.
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Dual-phase steels
engineering and true stress-strain curves

(a) Eng. stress-strain (b) True stress-strain

Figure A.8: Engineering and true stress-strain curves of DP600 for 45o relative to RD.

(a) Eng. stress-strain (b) True stress-strain

Figure A.9: Engineering and true stress-strain curves of DP600 for 67.5o relative to RD.

(a) Eng. stress-strain (b) True stress-strain

Figure A.10: Engineering and true stress-strain curves of DP600 for 90o relative to RD.
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Dual-phase steels
engineering and true stress-strain curves

A.3 Dual-phase steel DP780
engineering and true stress-strain curves

(a) Eng. stress-strain (b) True stress-strain

Figure A.11: Engineering and true stress-strain curves of DP780 for 0o relative to rolling direc-
tion.

(a) Eng. stress-strain (b) True stress-strain

Figure A.12: Engineering and true stress-strain curves of DP780 for 22.5o relative to RD.
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Dual-phase steels
engineering and true stress-strain curves

(a) Eng. stress-strain (b) True stress-strain

Figure A.13: Engineering and true stress-strain curves of DP780 for 45o relative to RD.

(a) Eng. stress-strain (b) True stress-strain

Figure A.14: Engineering and true stress-strain curves of DP780 for 67.5o relative to RD.

(a) Eng. stress-strain (b) True stress-strain

Figure A.15: Engineering and true stress-strain curves of DP780 for 90o relative to RD.

166



Appendix B

Deep drawing cylindrical cup
force-displacement curves of dual-phase
steels
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Deep drawing cylindrical cup
force-displacement curves of dual-phase steels

B.1 Swift test
force evolution with displacement of DP500 for dif-
ferent blank diameters

(a) (b)

(c)

Figure B.1: Punch force evolution with displacement of DP500 for the blank diameters: a) 105
mm; b) 115 mm; c) 125 mm.
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Deep drawing cylindrical cup
force-displacement curves of dual-phase steels

B.2 Swift test
force evolution with displacement of DP600 for dif-
ferent blank diameters

(a) (b)

(c)

Figure B.2: Punch force evolution with displacement of DP600 for the blank diameters: a) 105
mm; b) 115 mm; c) 125 mm.
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Deep drawing cylindrical cup
force-displacement curves of dual-phase steels

B.3 Swift test
force evolution with displacement of DP780 for dif-
ferent blank diameters

(a) (b)

(c)

Figure B.3: Punch force evolution with displacement of DP780 for the blank diameters: a) 105
mm; b) 115 mm; c) 125 mm.
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