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Resumo

As espículas dendríticas são protrusões encontradas na superfície das dendrites dos neurónios.
São os locais pós-sinápticos preferenciais das sinapses excitatórias, e têm sido associadas à sua
plasticidade, tendo assim fortes implicações em processos de aprendizagem, memória e neurode-
generação. Como a sua função tem sido relacionada com a sua morfologia e distribuição, a recon-
strução e análise digitais têm-se consagrado promissoras no estudo destas estruturas. A maioria
da investigação é, apesar disso, desenvolvida em laboratórios sem acesso a técnicas avançadas de
análise de imagem. A informação imagética não é eficazmente explorada, e a sua análise torna-se
laboriosa, demorada e sujeita e erros subjetivos, uma vez que os investigadores têm de depender de
medições manuais para a avaliar. Nesta dissertação, são propostos três métodos computacionais
avançados para a caracterização detalhada de espículas em imagens de microscopia fluorescente.
O primeiro é um método geométrico capaz de detetar e caracterizar a morfologia das espículas
em 3D; o segundo é um método supervisionado baseado em Deep Learning e capaz de detetar
espículas em 2D; o terceiro é um conjunto de ferramentas focadas na análise da distribuição e
relação das espículas com as sinapses inibitórias. Estas técnicas são inteiramente automáticas e
fornecem medidas objetivas da fisicalidade das espículas. As suas metodologias são originais e
mostram-se aplicáveis à deteção e estudo morfométrico das espículas, apesar de o serem com al-
gumas precauções. Em relação às distribuições, os resultados sugerem que as espículas exibem
uma correlação em número com as sinapses inibitórias em vários neurónios. Ao longo dos ramos
dendríticos, os pontos de inibição também apresentam algum grau de periodicidade. Estas consid-
erações contribuem para a caracterização da natureza das espículas, assim como da sua relação no
contexto das dendrites dos neurónios.

i



ii



Abstract

Dendritic spines are membranous protrusions from the surface of neuronal dendrites. They are
the preferential postsynaptic sites of excitatory synapses, and have been postulated to contribute
to their plasticity, thus having strong implications in processes connected with learning, memory
and neurodegeneration. As their function has been associated with their morphology and distribu-
tion, digital reconstruction and analysis have become promising approaches in the study of these
structures. Most of the research is, however, still performed in laboratories without the expertise
for advanced image analysis. The information content on the raw data is often underexplored, and
the analysis becomes laborious, time consuming and prone to error, as researchers have to rely
on manual measurement to evaluate it. In this Thesis, three advanced computational tools for the
detailed characterization of spines from fluorescence microscopy images are proposed. The first
is a geometrical method capable of detecting and characterizing the morphology of 3D dendritic
spines; the second is a supervised method based on Deep Learning and capable of detecting 2D
dendritic spines; the third is a toolbox focused on the analysis of the distribution and relationship
of spines and inhibitory synapses. These techniques are fully automatic and provide objective
measurements of the physicality of spines. Their novel methodologies are shown to be applicable
to the detection and morphometric study of spines, although with some precautions. Regarding
distributions, results suggest that spines exhibit a correlation in number to the inhibitory synapses
of several neurons. Along the dendritic branches, the inhibitory puncta was also found to express
a degree of periodicity. These considerations help to further characterize the nature of spines, as
well as their relationship within the dendrites of neurons.
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Chapter 1

Introduction

Neurons are the basic functional units of the nervous system [1]. They are able to receive, process

and transmit electrochemical signals to coordinate all the body activities.

Communication between neurons occurs at specialized junctions named synapses, which can

be either electrical or chemical. Electrical synapses physically connect two neurons by means

of a gap junction, allowing ions to flow from the pre- to the postsynaptic neuron and alter its

membrane potential. In contrast, in chemical synapses, the presynaptic cell releases substances –

neurotransmitters - into an extracellular space called synaptic cleft, where they can bind to specific

receptors of the postsynaptic cell. This, in turn, initiates ionic exchanges across its membrane and

alters the postsynaptic membrane potential as well.

Depending on the ionic concentration of both cells in electrical synapses, and on the type

of neurotransmitters in chemical synapses, the resting potential of the postsynaptic cell (around

-70mV) can increase or decrease. Synapses which contribute to each of these events are called

excitatory and inhibitory, respectively. When their balance causes the postsynaptic neuron to reach

a membrane potential above a certain threshold (around -50mV), consecutive shifts in polarity are

triggered along its axon. This phenomenon is called an action potential, and ends on the various

axon terminals, where new synapses can be formed.

In humans, studies suggest that most synapses are chemical and occur between an axon and a

dendrite [2]. Although axons release neurotransmitters only through axon terminals, dendrites can

receive them directly through the dendritic shaft, or through specialized structures called dendritic

spines.

Dendritic spines are membranous protrusions from the surface of neuronal dendrites [3]. Typ-

ically, they form one excitatory synapse (more than 90% of excitatory synapses terminate on

spines), although some spines may form multiple or even non-excitatory synapses [4]. These

structures have been postulated to underlie brain’s plastic capabilities since their discovery, im-

plying a center role in processes such as learning and memory. Their abnormality has also been

associated with numerous brain disorders, which may enable new methods of study and diagnosis

of these diseases.
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2 Introduction

To support these hypothesis, a growing body of studies has been characterizing these struc-

tures under multiple facets, which are presented in the next section as their chemical composition,

physical appearance, spatial distribution and how these attributes evolve over time. In addition,

their biological purpose is also discussed based on their connections to normal and abnormal neu-

rological processes.

1.1 Biology of Dendritic Spines

1.1.1 Composition

The location of dendritic spines within a neuron, as well as their composition in comparison with

shaft synapse sites, is illustrated in Figure 1.1.

Myelin shieths

Axon terminal

Soma
Dendrites

Axon

1

(a)

(b)

(c)



1.1 Biology of Dendritic Spines 3

Figure 1.1: Representation of a spine in different levels of magnification and activity. Structure of
a: a) neuron; b) dendritic segment of square 1; c) inhibitory and excitatory synapse, in the segment
of square 2. Adapted from [5].
.

Spines are composed of highly specialized subdomains exerting different functions in trans-

mission and plasticity [4]. The post-synaptic density (PSD) is one of these (Figure 1.1-c). It is a

protein-dense region composed by glutamatergic receptors (such as AMPAR and NMDAR), adhe-

sion proteins (such as neuroligin), and signaling systems involved in synaptic transmission. PSD’s

are not exclusive to spines, but they are more prominent in them, which gives to the excitatory

synapse its characteristic asymmetrical appearance. In addition to the PSD, the spine membrane

may contain specialized micro-domains for endocytosis or exocytosis. The cytoskeleton in spines

is mainly formed by actin filaments (F-actin), which serve as a structural framework, a regulator of

protein trafficking and, as described further below, as an active element in spine growth. Mature

spines may also contain a smooth endoplasmic reticulum, intracellular membranous structures

(e.g. spine apparatus, a specialized form of endoplasmic reticulum), mitochondria and protein

synthesis machinery (e.g. polyribosomes), able to translate mRNA molecules from the soma into

proteins according to the local needs.

1.1.2 Morphology

Spines are largely heterogeneous in both size and shape [6]. Their shape falls along a continuous

spectrum, from short and thick, to long and bulbous. A nomenclature was introduced by Peters &

Kaiserman-Abramof to define them, which proposed three classes:

− stubby (lacking an apparent neck);

− thin (containing a small bulbous head and a thin, long neck);

− mushroom (containing a large mushroom-shaped head);

In addition, the term filopodia was also defined for elongated dendritic protrusions that are longer

and do not possess distinctive heads. These types of protrusions are illustrated in Figure 1.2.

With respect to size, spines are typically shorter than 2 µm (whereas filopodia are longer than

5 µm), and their head has between 0.001 to 1 µm3, which typically constitutes more than 80% of

their total size.
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Figure 1.2: Schematic drawings of filopodia and spine morphologies based on the three-category
classification.

1.1.3 Distribution

Spines are found on the dendrites of most principal neurons in the brain, including, in the cere-

brum: pyramidal neurons (cortex and hippocampus), medium spiny neurons (basal ganglia), bi-

tufted and multipolar neurons (amygdala) and neuron types I, II and III (also in basal ganglia);

and in the cerebellum: Purkinje cells [7]. The distribution along the dendrites also varies. The

intermediate portion of dendrites is, generally, where spines are most frequent, although there are

exceptions, such as the dendrites of the hippocampal CA3 pyramidal neurons, where the proximal

regions hold large, complex, branched spines called thorny excrescences. Generally, spine density

varies from 1 to 10 spines per 1 µm of dendrite in mature neurons [8]. This number is dependent,

as mentioned, on the position along the dendrite, the cell type (e.g. hippocampal CA1 pyramidal

and granule cells usually have 2-4 per µm, while Purkinje cells around 10 per µm), and the age,

which will be discussed in the next topic of this section.

1.1.4 Development

Spine maturation affects both its composition, distribution, morphology and motility. Over the

first week of life, spines are rather thin and elongated and gradually gain a typical mushroom-

like structure as the tissue matures [9]. As mentioned above, filopodia density decreases and

the general motility becomes less noticeable, except for experience-driven synaptogenesis events.

Structurally, immature spines do not contain well-developed organelles such as a spine apparatus

and a smooth endoplasmic reticulum. In addition, spines contain more polyribosomes when their

formation is at its peak, which suggests that new synapses require a larger number of locally syn-

thesized proteins. Despite some differences between immature and mature spines being known,

their origin and growth mechanism are still debatable [10]. There are three hypotheses for the

former: the first suggests spines form from filopodia, which are transient by nature; the second

that spines grow from existing shaft synapses on dendrites; and an intermediate hypothesis sug-

gests that filopodia connects to an axon terminal and retracts to generate a shaft synapse, where

a spine will later develop. Regarding their growth, a recent study [11] showed how G-actin, the
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monomers of F-actin which compose the cytoskeletal, may be responsible for the phenomena.

These molecules are organized in arrays inside the spine head, as presented in Figure 1.3.

Figure 1.3: Proposed mechanism in [11] for spine expansion. F-actin, a part of the spine cytoskele-
ton, exhibits treadmilling, a constant migration of actin monomers from one end to the other. In
stable spines, this cycle is equilibrated. LTP induction, however, slows down the departure of actin
monomers, increasing the size of F-actin and generating the driving force that expands the spine
head.

It was found that G-actin undergoes a constant cycle, leaving the pointy end of the array and

attaching to the barked end, a behavior called treadmilling. When spines are frequently stimulated,

the depolymerization rate at the pointy end decreases, which makes new monomers accumulate at

the barked end and increase F-actin length. This would thereby generate a force on the membrane

capable of enlarging the dendritic spine. This is also supported by other studies which note that

most signaling pathways controlling spine shape seem to directly or indirectly regulate the actin

cytoskeleton [10][12].

1.1.5 Function

Although spines have been studied under multiple facets, their impact in networks, and hence their

function, is still debatable. Nonetheless, it has been suggested that spines act as an isolated bio-

chemical and electrical compartment, which enables each synapse to be regulated independently

[13][14][15] . As a result, individual synapses can be strengthened or weakened, increasing the

specificity of the formation of neural networks. The ability of synapses to change their strength in

response to their activity is what is meant by the term synaptic plasticity [16], and the reason why

they are closely associated with this phenomenon.

The main mechanism thought to promote synaptic plasticity is Long-Term Potentiation (LTP),

in which synaptic connections become stronger by a brief period of frequent activation [17]. Fre-

quent activation translates into a frequent arrival of action potentials into a certain axon terminal,

which results in a high number of neurotransmitters in the synaptic cleft. In the most studied type

of LTP, these neurotransmitters activate the AMPA receptors (AMPAR) of the postsynaptic neu-

ron’s membrane (Figure 1.1-c), which depolarizes and enables calcium to flow through its NMDA

receptors. The calcium influx initiates a set of intracellular mechanisms that cause more AMPAR
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to be inserted in this region of the membrane, which makes it further sensible to ions and thus

more likely to be activated in the future.

Spines can affect this process in different ways. To be inserted in the synaptic site, AMPAR

must either diffuse laterally through the membrane, or be carried by exocytosis vesicles [13]. It

was found that spine necks restrict the lateral diffusion of AMPAR [18][19] [20]. For instance,

AMPAR at spines with a distinguishable neck exhibit a twofold slower rate of lateral mobility

compared to those without one. Additionally, endocytic and exocytic zones were found within

the spines, which can be regulated and thus affect the number of AMPAR in the membrane. Cal-

cium ions can also be controlled by spines, which keeps them in internal stores where they can

be released to cause sudden bursts, promoting AMPAR trafficking among other molecular chains.

Spines may also function as electrical compartments, capable of modulating the amplitude, ki-

netics and integration of synaptic potentials [13]. For instance, studies suggest that long spine

necks attenuate synaptic potentials between the spine head and the parent dendrite, influencing

their contribution on the formation of an action potential [21].

The connections of spine and glial cells are also not well understood. It has been observed

that, for instance in the cerebellum, lamellar Bergmann glial (BG) appendages enclose tightly

almost every spine of Purkinje cells. This is typical in the beginning of synaptogenesis, when both

BG processes and spines are highly motile. When this stage ends, spines are fully ensheathed

and the motility of both elements drastically decreases. The hypothesis that glial processes can

bound spines to restrain their movement has been studied [22], but still to no conclusion. On

the other hand, its has been verified that covered spines usually form large groups, which could

mean that glial processes have a role in regulating the number of these structures. Astroglia in the

hippocampus has also been observed to participate in the covering of spines. This process seems to

happen unevenly across regions inside the hippocampus, and it has been correlated with different

physiological states. To inspect if spines are responsible for the selective behavior of glial cells,

the morphology of spines has also been studied within an environment populated with astrocites

[23]. Recent discoveries found that glial membranes occur substantially closer to the PSDs of thin

dendritic spines compared with mushroom spines. Since mushrooms spines have larger heads and

are associated with stronger synapses, glial cells may selectively approach more volatile spines to

increase their number and promote specific neural pathways, influencing the process of learning.

1.1.6 Dysfunction

Spine’s behavior can also reflect several pathologies, such as Alzheimer’s Disease, Schizophrenia,

Mental Retardation and Autism Spectrum Disorders. These affect spines differently, or vice-versa,

as described in the following topics.

1.1.6.1 Alzheimer’s Disease

Alzheimer’s Disease (AD), the most common cause of dementia, manifests through early memory

deficits, followed by the gradual decline of cognitive and intellectual functions. It is characterized
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by loss of neurons and synapses in the hippocampus, cerebral cortex and subcortical regions, as

well as the formation of beta amyloid (Aβ ) plaques and neurofibrillary lesions (e.g. caused by the

aggregation of the tau protein). Mutations in three major genes implicated in Aβ metabolism (APP,

PSEN1 and PSEN2) have been associated with familial AD 1. These mutations cause an increased

production of pathogenic Aβ oligomers that are responsible for inducing spine alterations and

reducing spine density.

In humans, several imaging techniques have been applied to neurological tissues of Alzheimer’s

Disease patients [24]. The first relevant experiment was done by using electron microscopy on

biopsy tissues, and reported a significant loss of synapses compared with cognitively normal

controls. Follow-up studies on post-mortem tissue were able to analyze brain regions which are

not amenable to biopsy, and reported significantly fewer synapses in the inferior temporal gyrus

(which plays an important role in verbal fluency), in the CA1 region, in the dentate gyrus and in the

posterior cingulate gyrus (which is a cortical region affected early during the onset of Alzheimer’s

disease). More recently, a post-mortem study using intracellular injections of Lucifer yellow in the

brains of 5 Alzheimer’s disease patients revealed that intraneuronal tau aggregates are associated

with a progressive alteration of dendritic spines. Further evidence for the loss of synaptic function

comes from in vivo PET imaging studies, which by using radionuclide-labeled agonists for spe-

cific neurotransmitter receptors, are able to measure the abundance of these receptors in various

brain regions and associate them with synapse densities and distributions.

In transgene mouse models, expressing mutant human APP, studies also suggest alterations

in spine density and morphology in the hippocampus, even before the development of amyloid

plaques. This suggests that Aβ oligomers initiate synapse alterations before neurodegeneration,

and thus their analysis may be a powerful diagnosis and evaluation tool in patients with AD

[10][12].

1.1.6.2 Schizophrenia

Schizophrenia is a psychiatric disorder involving disturbing thoughts, emotions and perceptions

of the reality. It emerges in late adolescence or early adulthood. Postmortem studies in human

brains reported grey matter loss and altered spine density in the cortex and hippocampus [25].

Schizophrenia has been constantly associated with selective group of genes. The three most stud-

ied in relation to synapse and spine function are the DISC1, ERBB4 and NRG1. In cultured corti-

cal neurons, a DISC1 knockdown2 reduced spine area, and in mice carrying mutations in this gene,

spine numbers in the hippocampus decreased. However, in another transgenic mouse, in which

mutations were induced prenatally, spine density in cortical pyramidal neurons was increased. This

suggests DISC1 controls spine morphology in a specific developmental and mutation-depended

1Familial AD is a form of AD which can be diagnosed in patients under 65 years, and is the result of a genetic
predisposition.

2Gene knockdown is an experimental technique by which the expression of one or more of an organism’s genes is
reduced.
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manner, which can be assessed by the detection of spine numbers and shape in the mentioned

brain regions.

1.1.6.3 Intellectual Disability

Fragile X Syndrome (FXS), the most common inherited form of intellectual disability, is char-

acterized by reduced limited cognitive ability, hyperactivity, hypersensitivity, anxiety, impaired

visuospatial processing and developmental delay [12]. It is caused by a trinucleotide (CGG) re-

peat expansion, that by inactivating the FMR1 gene on the X chromosome, leads to the absence

of fragile X mental retardation protein (FMRP), resulting in FXS. Studies in patients and animal

models of FXS have identified marked alterations in dendritic spine morphology. Several studies

report abnormally long, thin and immature filopodia-like spines, which suggests that retardation

in neuronal connectivity is the reason for brain dysfunction in these patients [10].

1.1.6.4 Autism Spectrum Disorders

Autism Spectrum Disorders (ASDs) include autism, Asperger syndrome and pervasive develop-

mental disorder-not otherwise specified [8]. They are characterized by impairment of social in-

teractions and adaptation, and are mostly heritable (around 80%), suggesting that the disease is

largely determined by genes and not by the environment. Despite the high heritability, the iden-

tification of genetic factors in ASDs has been proved difficult, due to their associated genetic

heterogeneity. Similarly to FXS, ASD is accompanied by an increase of immature elongated spine

density. Its detection and determination of the responsible proteins could unveil important genes

in these disorders, improving the current understanding of the diseases.

The main spine associated proteins whose genes and/or gene expression are affected by the de-

scribed diseases are presented in Table 1 of the Appendix. There are still other pathologies with

also affect dendritic spines, such as drug addiction (increased density and larger spine heads) and

Parkinson’s disease (reduced density by 27% and shortening). It was also found that in the ma-

jority of these diseases, treatments that alleviated their cognitive symptoms also have been shown

to reverse their respective spine pathologies, indicating the importance of these microstructural

perturbations in the neurodevelopment of such disorders.

As shown in this section, spine shape is supposed to be closely related to its function. Size is

also considered determinant, as a larger spine volume will imply a larger PSD area, which will, in

turn, increase the number of receptors and docked vesicles in the presynaptic bouton. With more

neurotransmitters being passed between neurons, the synapse will become stronger, reinforcing

a given neural network. Incidentally, altered spine morphology and density have been observed

in several neurological disorders. Anatomopathological analysis of brains of patients affected by

Alzheimer’s disease, schizophrenia, intellectual disabilities and autism spectrum disorders indicate

protein anomalies which misregulate these characteristics [10] (in Appendix). These findings
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underscore the importance of the physical and spatial behavior of spines in regulating proper

brain function, and hence of techniques capable of studying them. As the physical and spatial

condition of spines can be visually assessed, imaging and subsequent image analysis are the main

methods for studying dendritic spines. They can be designed to handle 2D or 3D images, having

each modality its own advantages. 3D imaging and processing benefits from capturing the real

geometry of neurites, which can only be approximated by 2D methods. Besides, overlaid neurites

in the direction of the microscope lens result in unrealistically merged shapes in 2D, which can

not only compromise the accurate silhouette of spines, but also their counting. On the other hand,

2D methods are easier, faster, and have lower equipment requirements to be performed. Both

modalities are sought from the research communities, although in recent years 3D methods have

been predominant [26]

Considering the intimate relation between dendritic spines characteristics (number, morphology,

spatial distribution, etc.) and several pathological conditions, this Thesis aims at the development

of advanced computational tools for the detailed characterization of spines from fluorescence mi-

croscopy images. In neuroscience laboratories, fluoresce microscopy is still a research workhorse

for studying neuronal structures, but not many labs have the expertise for advanced image analy-

sis. The information content on the raw data often ends up being underexplored, and the analysis

often become laborious, time consuming and error prone when researchers have to rely on manual

counting and measurements. This work contributes with several free, open-source computational

tools to aid in the detailed analysis of dendritic spines. The subject-matter was proposed by profes-

sors Paulo Aguiar (Advisor) and Ana Luísa Carvalho (Co-Advisor), under a collaboration between

Instituto de Investigação e Inovação em Saúde/Instituto Nacional de Engenharia Biomédica and

Centro de Neurociências e Biologia Celular in University of Coimbra.

The experimental work developed in this Thesis can be divided into three main branches. The

first is a novel geometrical 3D image processing algorithm, implemented in MATLAB, capable

of automatically detect, segment and measure dendritic spines in image stacks. The second is a

machine learning 2D image processing method, implemented in Python, meant to automatically

detect dendritic spines in images. The third is a set of statistical tools, implemented in MAT-

LAB, with the purpose of analyzing and unveiling hidden patterns from a set of measurements of

synapses, carried either in spines or in the dendritic shaft. The three branches can also be viewed as

means of studying spines under different aspects: for the first, spatially and physically (detection

and volumetric measurements); for the second, spatially (detection); and for the third, spatially

and physically/chemically (the data comprises information on the distribution of synapses as well

as the quantity of certain neurotransmitters, which correlates to synaptic strength and, in spines,

to size).

The following chapters are organized as follows. Chapter 2 presents relevant State of the Art

techniques in Imaging and Image Processing of dendritic spines performed until the date of writing
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this work. Chapter 3 outlines the Imaging procedure used to gather image data to be processed,

and describes in detail the three data processing algorithms developed in the course of this The-

sis. Chapter 4 presents the results of the three methods and discusses their implication on modern

neuroscience. Chapter 5 concludes by outlining the achievements of this work and sharing con-

siderations made by the author.



Chapter 2

State of the Art

Given the biological significance of dendritic spines and how it can be visually assessed, several

methods have been devised to image and analyze their characteristics. In this section, microscopy

techniques and image analysis algorithms are described, outlining the breakthroughs as well as the

limitations of past and current approaches.

2.1 Image Collection of Dendritic Spines

In order to be distinguished, spines (and neurons) must first be stained with an appropriate marker.

Golgi staining was the first to be used to this end, and still one of the most reliable histological

techniques in the morphological evaluation of dendritic spines . Other techniques include the use

of fluorescent dyes (such as Lucifer yellow), antibodies (such as anti-IgA), and fluorescent proteins

produced either by controlled mutations or viral vectors (such as lentivirus and rabie virus) [27].

2.1.1 Widefield Microscopy

Golgi staining has been used in conjunction with widefield microscopy. Despite its simplicity,

this technique greatly underestimates the number of spines present on a given stretch of dendrite,

due to the lack of z-plan resolution and the small volume of spines (the underestimation can be

higher than threefold on hippocampal neurons and even higher on Purkinje cells). To offer better

resolution, this optical technique is also used with fluorescent dyes, but in return images become

blurred, due to the emitted fluorescence being detected not only from in focus photons, but also

from molecules excited out of the focal plane.

2.1.2 Confocal Microscopy

Confocal microscopes solve the previous limitation by using a pinhole to selectively collect emis-

sion from the focal point. This is a powerful tool to image changes in spine density and plasticity in

brain slices and cultured neurons with nearly diffraction-limited resolution. Confocal microscopy

11
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has been used to image fluorescently labeled structures and Golgi staining was not considered

suitable for these observations .

2.1.3 Two-photon Microscopy

This technique is able to restrict the fluorescence excitation intensity needed, for instance, in

confocal microscopy, and thus reduce photo-damage and photo-bleaching. It can be used in vivo

through a craniotomy, and shows a high focus range (0.5-0.8 mm) with high resolution.

2.1.4 Micro-endoscopy Microscopy

As many brain areas are inaccessible to conventional optical microscopy, to increase focal range

even further, an optical micro-probe can the inserted into a specifically targeted deep structure.

Adjusting the position of the microscope into the probe, a focal depth of more than 1 cm can be

achieved with this highly invasive technique.

2.1.5 Electron Microscopy

This would be the method of election in the detailed study of the composition and activity of

spines, since it has a higher resolution than the others. However, to evaluate large amounts of

spines (to estimate spine densities as an example), this type of microscopy can be slow, since broad

areas have to be run to capture a sufficient amount of spines. Moreover, the required equipment

is found more rarely in Neuroscience laboratories than techniques such as confocal microscopy,

and for these reasons, the present work focuses on the study of spines from confocal microscopy

images.

Images from different types of microscopies are presented in Figure 2.1.
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(a) (b) (c)

(d) (e)

Figure 2.1: Neuronal images collected by different microscopy techniques - a) widefield mi-
croscopy (scale bar: 25 µm) [28]; b) confocal microscopy (scale bar: 2 µm) [29]; c) two-photon
microscopy (scale bar: 10 µm) [24]; d) micro-endoscopy microscopy (scale bar: 2 µm) [30]; e)
electron microscopy (scale bar: 200 nm) [31].

2.2 Image Analysis of Dendritic Spines

As current high-resolution imaging techniques allow the collection of massive amounts of three-

dimensional anatomical data, the limiting factor in the quality to spine morphology studies has

become its accurate quantification and classification [27]. Manual or computer-assisted manual

segmentations are slow processes, prone to subjective errors and changes in criteria from study

to study. Thus, automated spine detection and characterization algorithms are mainly expected

to: remove subjective errors from spine counting; quantify spines based on objectively defined

morphological parameters; perform a fast, accessible and automatic analysis on large datasets.

Current solutions can be categorized into two approaches: global and local. Global approaches

process the initial image in its entirety, to then determine which of the processed pixels/voxels

belong to spines. These methods can further be divided into skeleton- and surface-based, according

to the region of the neurite they use to distinguish spines from the dendritic shaft. Generally, these

methods are computationally intensive, and tend to scale poorly with image size, although there

are preprocessing techniques which can reduce significantly the number of operations performed.

In contrast, local methods first locate an initial point, usually inside one or multiple spines, and
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then exploit local image properties to segment the whole target structure. They process only pixels

close to these structures, and so can also be termed “exploratory algorithms”. The processing speed

is generally higher than global methods, although they require initial seed points, which can either

be identified manually, or automatically by a simple heuristic method.

Both approaches start with a preprocessing step, which take the quality of the data set into

consideration. Automated image segmentation is hampered by noise (inevitable statistical fluctua-

tions and irrelevant structures), low resolution (in optical microscopes, ultimately limited by light

diffraction), inhomogeneous contrast (imperfect distribution of the dye) and background gradients

(nonuniform illumination). To some extent, these artifacts can be removed by image processing

operations such as smoothing, deconvolution (which corrects the point spread function PSF of the

optical system), shading correcting and morphological filtering. When both high magnification

and large field of view are required, it is also often necessary to make montages, which integrates

multiple images (image registration) and stitching to avoid discontinuities.

2.2.1 Global approach

The general sequence of tasks followed by this approach, after Image Preprocessing, is: Dendrite

Extraction, Spine Detection and Spine Classification [32][33]. Dendrite Extraction remains the

most challenging task as it must allow the correct identification of their protrusions as spines in

order to make the following steps successful. It commonly begins with a binarization step by an

adaptive threshold, to yield an initial segmentation of the dendrites (alternative methods based

on contour segmentation have also been proposed). Next, a skeletonization algorithm is usually

applied, although dendrite centerlines can be obtained by filtering the grayscale images directely

with an Hessian of Jacobian operator, or by applying nonmaximum suppression. The result of

the skeletonization often contains errors (e.g. detached spines, false protrusions), which can be

rectified by geometric methods that take the diameter of the dendrite, the length and/or shape of

the spines into consideration. Among the first generation of spine segmentation algorithms, the

method demonstrated by Koh et al. (2002) [34] provides automatic detection and quantification of

3D spines, through measures of length, volume, density and shape. The method first extracted the

dendritic centerline, and then geometric analysis was performed to detect attached and detached

spines according to the shapes of each candidate region. Multiple regions could be then merged

into one spine according to their combined shapes. It showed a sensitivity of 95% (percentage

of correct spines that were detected automatically compared to manual detection). However, the

method is based on geometric constraints of spines and led to false positives dependent on the level

of the shape threshold. Of the more recent tools, NeuronStudio, from Rodriguez et al. (2008)

[15], proposes to first remove the dendrite, then connect a series of spherical shapes along its

centerline, and finally detect spines sufficiently close to it, replacing them also with spheres. The

program’s number of detections were comparable to the ones from manual spine counting, and

also performs at a fast rate. However, it exhibits shortcomings in identifying individual spines

from clusters, as well as in lacking image segmentation capability to characterize spines in terms

of size, shape, volume, amongst other features. From around the same time (Cheng, Zhang, et.
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al., 2007) [35], NeuronIQ is a tool which allows both spine density and morphological features to

be determined. After extracting the dendrite centerline, a level-set model is used to segment and

detect spines. Its sensitivity was 96%, but had a considerable number of false positives, so it was

later improved by the same authors. The most recent implementation of the method (Zhang et.

al., 2010) [36], calculates the centerlines by a gradient vector flow (GVF) method. Then, Eigen

values of the Hessian matrix for each candidate spine voxel are used to classify if it belongs to

any of their distinctive shapes. If so, a level-set method is initiated to segment the final spines.

Its sensitivity was of 90% and, in general, it remained too slow for systematic analysis of large

neuronal populations. GVF results are displayed in Figure 2.2.

Figure 2.2: GVF method for centerline determination using the default parameters (black arrows)
and a strong smoothing criterion (red arrows). Adapted from [26].

Rather than using spine segmentation directly after removing the dendrite, Janoos et al. (2009)

[37] proposed to first use a level-set method for segmenting the entire dendrite and spines and then

extract its surface. Then, curve-skeletons were extracted using the medial geodesic function. Fi-

nally, according to the diameter of the circles, spines were identified from the dendrite, with a

sensitivity of 95,3%. As the tips of the spines can be identified by the previous method (cor-

respond to circles with minimal diameter), these points can be used by segmentation methods

that start to segment the spine from its tip, as it is the case with one developed by Son et. al.

(2011) [38]. This serves to recognize the integrability of some programs and the benefits of their

open-source design. Apart from the commercial solutions already mentioned (NeuronStudio and

NeuronIQ), there are others that while focused primarily on neuron tracing, are worth referring,

such as Neurolucida, FilamentTracer and FARSIGHT. These suffer from some of the same limi-

tations previously described, but are available as a purchasable service/software (Neurolucida and

FilamentTracer) or as freeware and open-source (FARSIGHT), which can be an advantage over

academic algorithms in a software development context.
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2.2.2 Local approach

In direct contrast to the above-mentioned centerline extraction and spine detection pipeline, a sec-

ond category of spine segmentation explores the image only locally, around relevant structures,

rather than processing the entire image. There are at least two advantages of the local over the

global approach: the latter (1) usually only works well in uniformly high signal-to-noise ratio

images, (2) and it is computationally wasteful (specially in 3D, where only a fraction of the im-

age data contains relevant structures). The lack of efficiency can be compensated by additional

methods such as Octree, aimed to reject partitions of the 3D space which are not intersected by

the neuronal structure, as shown in Figure 2.3. Nonetheless, the volumes that do not get rejected

are usually largely empty (corresponding to the cubes that are not in red in the smallest picture of

Figure 2.3), which will increase the computation time unnecessarily in subsequent tasks.

Figure 2.3: Octree calculated for a dendritic section of a neuron to improve processing efficiency.
Adapted from [15].

Contrary to global methods, where critical points are usually identified only in last stages,

local methods often start with the detection of topological relevant points (either manually or using

heuristic automatic detection schemes). He et al. 2012 [39] proposed a method that first detects

the tips of the spines, and then uses a region growing or GVF base method to extract the entire

spine. The tips are detected by juxtaposing cross sectional areas along the dendrite limited by its

membrane or spine membrane, depending if the site has spines. As these sites will generate much

greater cross-sectional areas, their most distant point is taken and used to segment the respective

spine. This method shown a sensitivity of 97% and is far more computationally efficient than

combining centerline extraction and GVF methods. A cross-sectional representation is shown in

Figure 2.4.

More robustness can the acquired if the algorithm can be constrained between a starting and

ending point defined by the user. In this manner, a cost function can be employed to promote

segmentation in intracellular voxels as well as the approximation to the end point [40].
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Figure 2.4: Detection of spine tip area using minimal cross-sectional curvature. Adapted from
[39].

Besides a few limitations already outlined in the description of these methods, there are others,

regarding practicality, yet to be overcome. For instance, the support of different image formats is

not offered by the majority of these methods, which impedes cooperative work between research

teams. A large number of user-settable parameters is also necessary in various applications, which

turns the task less automatic and can lead to an arbitrary regulation of the program controls by the

researcher. These parameters are suggested to be reduced, or turned into biophysically meaningful

and in independent of underlying technical issues. Moreover, although there is a considerable set

of metrics these programs are able to analyze, the extent to which they capture essential functions

of dendritic spines is questionable. New methods are therefore encouraged, by several authors, to

incorporate novel descriptors of spine morphology, be restrained in the number of user-definable

parameters and facilitate data interchangeability, while also fulfilling the goal of surpassing manual

methods in either efficacy, objectiveness and speed [41].
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Chapter 3

Methods

3.1 Image Collection of Dendritic Spines

All images used by the Geometrical and Machine Learning algorithms of this Thesis have been

acquired by the researcher group led by Professor Ana Luísa Carvalho, in Centro de Neurociências

e Biologia Celular de Coimbra. Five image stacks were collected from organotypic cultures of

neurons from the hippocampus of Wistar rat, with ages P6/P7 and genders male/female, using

a Confocal Laser Scanning microscope (Zeiss LSM710). The images were acquired with a 63x

objective with a 2x optical zoom. All image stacks were created with a spatial resolution of

66nm×66nm×19nm per voxel.

For the Synapse Toolbox, pyramidal neurons from the hippocampus (CA1 region) of rats from

age P21 were imaged. Fibronectin intrabodies were used to label inhibitory postsynaptic com-

partments along the dendrites. Specifically, the intrabody used recognized gephyrin, a scaffolding

protein that is essential for GABA receptor clustering at inhibitory synapses, and was fused to

tandem-dimer tomato (Geph-FingR-tdT) to label these in red. The delivery of this probe was

done by in utero electroporation together with a plasmid that expressed cytoplasmic EGFP, to

also label the dendrites and excitatory synapses, both in green. To validate this in vivo procedure,

i.e., to verify that Gphn-FingR-tdTom puncta represent true inhibitory synapses and accurately re-

port the expression levels of endogenous gephyrin, neurons expressing Gphn-FingR-tdTom were

immunostained with antibodies against either a presynaptic marker of GABAergic synapses (the

vesiclular GABA transporter, vGAT) or endogenous gephyrin. It was found that, in both dis-

sociated hippocampal cultures as well as in cryosections of the hippocapmpus, the intensity of

gephyrin expression correlated remarkably well with the intensity of Gphn-FingR-tdTom in dis-

sociated neurons. These results assured that Gphn-FingR puncta reports reliable both the location

and the strength of inhibitory synapses along dendrites.

19
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3.2 Image Analysis of Dendritic Spines

This section describes the three algorithms used to analyze images of dendritic spines, either di-

rectly by image processing techniques, or indirectly by statistical correlations of data extracted

from the images. The first to be introduced is the Geometrical 3D algorithm. It was developed

in MATLAB 2018a, and is capable of detecting, segmenting and measuring dendritic spines in

3D image stacks. The second is the Machine Learning 2D algorithm. It was implemented in

Python 3.6, using the Anaconda distribution with the Spyder IDE, and focus on the spine detec-

tion in 2D images using a deep learning approach. The third is the Synapse Toolbox. It was

also developed in MATLAB 2018a and aims at comparing a set of measures from inhibitory

and spine synapses. The source code for these three programs and all their methods/algorithms

is available on github through the respective URLs: https://github.com/varjak/geom3Dspines;

https://github.com/varjak/deep2Dspines; https://github.com/varjak/synToolbox.

3.2.1 Geometrical 3D Algorithm

The proposed geometrical method resembles both global and local approaches for spine segmen-

tation described in Chapter 2. While the entire image is preprocessed and thresholded to obtain

two dendrite masks, these masks are not necessarily submitted to any further processing steps.

For instance, if spine coordinates were to be manually annotated, they could be used to locally

segment spines in these masks, which would deem this algorithm exploratory. On the other hand,

a proposed spine detection method can be run to extract the dendritic centerline of one of these

masks and find the spine coordinates automatically. This type of operation is typical from global

methods, although here only the spine coordinates are used from the centerline analysis, making

the overall algorithm independent of the underlying technique, as long as spine coordinates are

determined.

The algorithm is organized into modules, which are described in the following sections and

illustrated in Figure 3.1, together with the parameters each one uses.
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Preprocessing
Median Filtering

Vesselness Filtering

Dendrite Segmentation
Hessian Thresholding

Smoothing Filtering

Global Thresholding

Spine Detection
Skeletonization

Graph Representation

Graph Selection

Cycle Removal

Branch Trimming

Graph Correction

Branch Extension

Spine Segmentation
Spine Tracing

Spine Delimitation

Spine Extraction

Spine Shrinking

Spine Measurement

Spine coordinates

Median stack

Hessian stack
Tubular stack

Median stackHessian stack

Spine stack

Figure 3.1: Workflow of the proposed geometrical 3D algorithm.

3.2.1.1 Preprocessing

Following image collection, the 3D image stack was deconvolved to compensate for the effect of

the optical system (estimated by the point spread function). This was done by the researchers who

prepared the image, and thus a deconvolution step was not required for this work. The algorithm

begins by loading a set of images and organizing them into a 3D matrix. The images can either

be grouped already in a .tif format file, or stored individually in the loading folder as .png or .jpg

format files. Then, the color channel (in case the images have more than one, such as in RGB

images) with the maximum sum of intensities of all layers is automatically selected from the 3D

matrix to convert it to grayscale. The image stack used throughout this section was RGB (with

the red channel being the only one with non-zero values) and had a .tif format. Figure 3.2 shows

it as a 2D image for visualization purposes. The 2D representation of the stack was generated by

a maximum intensity projection along its Z axis. The red region shows the imaged dendrites, and

the black the background.

After loading, a 5×5×height median filter is applied to the grayscale stack. The height of the

filter is calculated based on the ratio between the Z and X (or Y) axis resolution of the image stack,

which is usually greater than 1 for confocal microscopy images. The calculation is the following

(for odd integer lengths or widths)1:

height = f loor
(

f loor
(

length
2

)
× 1

round(ratio)

)
×2+1 (3.1)

1 f loor denotes the rounding operation of a number to its nearest lower integer, and round to its nearest integer.
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Figure 3.2: Maximum intensity projection of the image stack given to the geometrical algorithm to
illustrate its inner works. The maximum projection was also done in MATLAB. The image stack
had a size of 1024pixels× 1024pixels× 46pixels, with each voxel measuring 66nm× 66nm×
19nm. The scale bar was inserted based on these values, and may pose as a reference to further
image transformations as well.

The filtered image is shown in Figure 3.3 (as a maximum intensity projection). As spines

occupy a small portion of the images, turning them hard to see, most of the following figures will

depict a small region of interest, shown in the right section to Figure 3.3.

The resultant image is still affected by noise, mainly on the border of the dendrites. The ap-

plied median filter uses local statistic information to remove outlier pixels without creating new

intensity levels. However, it does not consider the geometry of the foreground, which greatly

characterizes both the dendritic shaft and spines. To take advantage of this information, the sec-

ond order derivative content of the images was analyzed, by first convolving the images with a

Gaussian filter, then calculating the gradient of the filtered image, and finally calculating a second

gradient for each image produced by the first.

The gaussian second order derivative measures the contrast between the regions inside and

outside of a range [-σ , σ ], regulated by standard deviation σ of the gaussian kernel, in the direction

of the derivative. Similarly to the median filter, the gaussian kernel was also made to have a smaller

height than its length and width, expressed by Equation 3.1. In addition, the σ of the Z axis was

decreased to span the filter with smaller values along this direction, since, in reality, one filter Z

unit corresponds to a larger distance than one X and Y unit. The rectification followed Equation
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Figure 3.3: Maximum intensity projection of a) - the median filtered stack; b) – a slice of the
median filtered stack.

3.2, and its effect is illustrated in Figure 3.4.

σz =
σx

ratio
(3.2)

0.21×
10-3

0.084 0.618 0.084
0.21×
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0.03×
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Figure 3.4: A slice of a 5x5x3 gaussian filter with σ = 0.5 along the XZ plane aimed at an image
with a vertical resolution (µm/pixel) of twice of the horizontal resolution. (X axis is horizontal and
Z axis is vertical). Given the anisotropy ratio of 2, the sequence of values across Z is a sampled
version of the sequence across X, with a sampling rate of 1 value per 2.

The three second order gaussian derivatives, for each axis, are represented in Figure 3.5 for

one of the slices of the image stack.



24 Methods

(a) (b) (c)

Figure 3.5: Second-order gaussian derivatives for slice 9 of the image stack: a) – Gxx (red) Gxy

(orange) Gxz(yellow) ; b) – Gyx (green) Gyy (brown) Gyz (cyan); c) – Gzx (blue) Gzy (purple) Gzz

(pink).

To combine the derivative information into an accurate descriptor of the structure’s morphol-

ogy, the nine derivative values for each voxel were organized into 3×3 matrices called the Hessian

matrices. It has been shown [42][43] that the eigenvectors of the Hessian matrix define the prin-

cipal N directions in which the second order derivatives of an image, with N dimensions, can be

decomposed2. Each eigenvector is associated with an eigenvalue, which correlates to the curvature

found in the direction of its eigenvector. By comparing the magnitude of the eigenvalues, struc-

tures with regular curvatures along their axis can be enhanced, such as tubes, blobs and plates.

The magnitude relationship associated with each shape is depicted in Figure 3.6 for a 3D image,

where λ1, λ2 and λ3 are the eigenvectors sorted by their module.

Figure 3.6: Structure morphology according to the eigenvalue comparison of the Hessian matrix

The evaluation of the Hessian matrix for each voxel is achieved by Equation 3.3. It combines

2 In 2D (N=2), for instance, the first eigenvector (the one whose corresponding eigenvalue has the largest absolute
value) points in the direction of greatest curvature (second derivative), while the second (the one whose corresponding
eigenvalue has the smallest absolute value) points in the direction of least curvature, while also being orthogonal. [44]
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three measures of the Hessian matrix - Ra, Rb and S - weighted by three factors - α , β and γ - and

outputs the level of resemblance between the neighborhood of the voxel and one of the structures

presented in Figure 3.6.

O(λ1) =


(

1− e−
R2

a
2α2

)
×

(
e
− R2

b
2β2

)
×
(

1− e
− S2

2γ2

)
if λ j < 0 for M < j ≤ N

0 otherwise

(3.3)

Each structure is encoded by the constant M ( M C 0,1,2, for blobs, tubes and plates respectively).

The constant N refers to the dimensionality of the image (in this case, N=3) and j to one of the

N eigenvalues (j C 1, 2, 3). Ra and Rb are ratios comparing different eigenvalues of the Hessian

matrix. Each one varies according to the structure M being targeted, as shown in Equation 3.4 and

3.5.

RA =
∏

N
i=M+1 |λi|

∏
N
i=M+2 |λi|

N−M
N−M−1

(3.4)

RB =
∏

N
i=M |λi|

∏
N
i=M+1 |λi|

N−M+1
N−M

(3.5)

For instance, if tri-dimensional tubes (N = 3 and M = 1) were to be targeted, these expressions

would take the following form:

RA =
λ2

λ3
(3.6)

RA =
λ1√
λ2λ3

(3.7)

As eigenvalues are sorted according to their module, and their values are inversely proportional to

the proximity of a border (shown in Figure 3.6), it can be noted that RA measures the circularity of

the cross section of the tube, and RB the relation between its length and diameter. Both ratios vary

along the interval [0,1] and, by Equation 3.3, it can be inferred that the highest tubular response

corresponds to the longest and thinnest circular structure 3.

The circularity measure proposed by Equation 3.7 promotes a higher enhancement response

for cylinders with a circular cross section. However, dendrites and spines exhibit a range of ellipti-

cal cross sections [45] which are not appropriately captured by the previous expression. Moreover,

it is not evident that Ra should vary linearly across every value of (λ2)/(λ3). For instance, simi-

lar cross sections with high circularity could benefit from having a non-proportional response in

3For blobs, the numerator of RB becomes lambda0, which is not defined, and for plates, the denominator of RA
becomes raised to infinity, leading to an indetermination. Each value is set to zero and infinity, respectively, which
cancels their influence in the enhancement function.
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relation to sections with low circularity, which could be promptly discarded as non-dendritic ma-

terial. To allow different response behaviors and expand the range of maximum response, a set

of alternative cross section measures were designed and are presented here in both analytical and

graphical form. The target_ratio in following MATLAB expressions defines the ratio from which

the response is forced to be maximum.

(a) (b)

Figure 3.7: Customable Ra parameters for the calculation of the tube response.

Ra_parabolic = ( -(( (1/target_ratio).*(lambda2/lambda3)-1)).^2+1 ...

);

Ra_elliptical = (1/target_ratio).*sqrt(target_ratio^2-( (lambda2/lambda3...

)-target_ratio ).^2 );

Ra_linear = (1/target_ratio).* (lambda2/lambda3);

Ra_gaussian = exp( -(((lambda2/lambda3)-target_ratio).^2)./(2*(target_ratio...

/3)^2));

The final variable in the enhancement function is S, which aims to characterize the intensity level

of the region being analyzed. As Ra and Rb are geometrical measures, they would not distinguish

small fluctuations in the background as noise, which could yield unexpected results. To discard

low intensity regions, characterized by low magnitude derivatives (and hence eigenvalues), the

Frobenius matrix was chosen. Following previous recommendations [42] and an empiric trial, all

constant weights a B and gamma were fixed at 0.5.

S =

√√√√ N

∑
j=1

λ 2
j (3.8)

Independently of how the length of the structures are compared by the arguments of the enhance-

ment function, their range is still limited to the standard deviation chosen for the Gaussian filter

introduced before. As the they are unknown and can vary across image regions, a single standard

deviation is not feasible to characterize the structures accurately. Therefore, a multiscale Hes-

sian analysis was implemented, which repeatedly calculates the enhancement of every voxel (or

a subset of voxels, which would be discussed in the next section) for a defined set of standard

deviations. In each iteration, each enhancement value is compared to the previous for the same
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voxel, and only the maximum is preserved. Figure 3.8 shows the enhancement results targeting

circular tubes, blobs, plates, and elliptical tubes, with an elliptical mapping from eigenvalue ratio

into Ra and a maximum response set from a ratio of 0.75.

(a) (b) (c) (d)

Figure 3.8: Enhanced region of interest according to three types of structures: a) Tubes; b) –
Blobs; c) - Plates; d) - Elliptical tubes.

All images express a common problem, that is, the lack of several spine necks. Moreover, the

circular tube response shortens the diameter of the dendrite shaft and spines, the plate responses

enlarges them, and the blob response cuts multiple segments of both parts. The elliptical tube

response appears to combine both the circular tube and the plate response, by preserving both

elliptical and circular structures, although privileging the latter.

Neither of these images were deemed suitable to proceed into a segmentation phase, due to

their inaccurate depiction of dendritic size and spine necks. Thus, a new strategy was adopted,

which consisted in using two complementary masks instead of a single realistic mask. One mask

would have all spines connected to the dendritic shaft, at the expense of being larger than the

dendrite and containing irrelevant structures such as out-of-focus neurites. The other mask would

have low noise levels and have all spine heads depicted, at the expense of being smaller than

the actual dendrite and lacking on several spine necks. The strategy implied an extensive use of

the first mask, enabling the algorithm to detect spines and trace their complete bodies due to the

presence of necks. The other mask would be used solely to correct the spine coordinates laid

outside the spine heads, in the detection module. In the end, a third segmentation would take place

inside the first mask, to identify the spines more accurately. This strategy allows the program to

segment spines without an accurate dendrite segmentation, expanding the segmentation options

for spine classification. Furthermore, if an accurate segmentation was to be achieved, it could

replace each of the above-mentioned masks without changing any other parameter, attesting for
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the program’s versatility.

The circular tube response features all the characteristics of the second mask, but the intensity

values of spines are low, making them hard to segment. To solve this issue, a second version

of the circular tube enhancement algorithm was implemented [42]. It yields a higher and more

stable enhancement response across tubular structures of different radius, making them easier to

segment.

The altered function is presented in Equation 3.9.

T (λ ) =


0 if λ2 > 0∨λ3 > 0

λ 2
2 (λp−λ2)(

3
λ2+λ3

) if λ2 ≤ λp/2

1 otherwise

(3.9)

λ2 is unchanged, although λ3 is normalized into λp, as stated in Equation 3.10. This step takes

into account the standard deviation of the Gaussian filter, to balance the enhancement response of

tubular structures with different radius. The parameter τ controls the intensity of the response, and

was set to the maximum value of 1.

λp =

λ3 if λ3(x,s)< τ×minxλ3(x,s)

τ×minxλ3(x,s) otherwise
(3.10)

The enhancement response for the same region of interest is shown in Figure 3.9.

Figure 3.9: Enhanced region of interest according targeting normalized tubular structures.

This image was carried to the segmentation phase, described in the next section, where the

creation of the first mask is also detailed.
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3.2.1.2 Dendrite Segmentation

The thinner mask was obtained by thresholding the regularized tubular response image of Figure

3.9. Due to its high contrast (as τ was set to its maximum value), a global threshold level was

proved sufficient, set to 5% of the image’s format range (0.05 on double type images in the range

of [0,1]).

The larger mask was calculated based on the Hessian matrices introduced in the last section.

As shown, the enhancement of each voxel entailed the construction of an Hessian matrix, the

extraction of three eigenvalues, the comparison between them in the form of ratios, and the cal-

culation of the enhancement response. All these steps make up for a computationally expensive

process, which is further repeated for every standard deviation used in the gaussian filters. Observ-

ing Equation 3.9, it can be noted that an enhancement response is not null only if the following

condition is verified.

ω = λ2 < 0∧λ3 < 0 (3.11)

The enhancement function then becomes, schematically:

T =

response if ω

0 otherwise
(3.12)

This implies that if ω could be assessed before calculating the eigenvalues of the Hessian matrix,

there would be no need to proceed with further calculations as the enhancement response would

be null. In this thesis, one approach was followed [46] to limit the number of voxels requiring

further processing in the calculation of the regularized tubular response. The selected subset of

voxels forms a mask, which represents a high probability region of finding dendritic voxels. This

mask connects all spines and was therefore used as the larger mask throughout this algorithm.

The mask is calculated by first representing the eigenvalues of an Hessian matrix in the poly-

nomial form:

pH(λ ) = det(λ × I3−H3) = λ
3 + c1×λ

2 + c2×λ + c3 (3.13)

Where, in MATLAB code,

C1 = - (fxx + fyy + fzz);

C2 = fxx .* fyy + fxx .* fzz + fyy .* Gzz - Gxy .* Gxy - Gxz .* Gxz...

- Gyz .* Gyz;

C3 = Gxx .* Gyz .* Gyz + Gxy .* Gxy .* Gzz + Gxz .* Gyy .* Gxz - Gxx...

.* Gyy .* Gzz - Gxy .* Gyz .* Gxz - Gxz .* Gxy .* Gyz;

c1, c2 and c3 are the coefficients of the polynomial, calculated by a combination of Hessian

elements (second derivatives), and the eigenvalues are the roots of the polynomial. c1 has also the
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following property:

c1 =−
N

∑
k

λk (3.14)

To obey ω , the two roots of highest magnitude of the polynomial must be negative. This can be

inspected according to two Theorems:

Theorem 1: If the real parts of all roots of p are negative, then all coeficients c are null or

positive.

Theorem 2 (Routh-Hurwitz criterion): The number of roots of p which positive real parts, is

equal to the number of sign chances in the Routh array of p.

The Routh array, for pH(λ ), is composed of [c1, c2, c3]. Following these statements, three

conditions can be derived that do not satisfy ω:

1. c1 ≤ 0

2. c2 ≤ 0∧ c3 = 0

3. c1 < 0,c3 > 0,∧c1× c2 < c3

Condition (1) holds because c1 ≤ 0 implies λ1 +λ2 +λ3 > 0. The three lambdas are sorted by

their modules in a growing order, so if λ2 and λ3 are negative (as ω requires), then λ1+λ2+λ3 < 0,

which contradicts the above expression. Condition (2) holds because c3 = 0 yields pH(λ ) =

λ × (λ 2 + c1× λ+c2). By the zero-factor property, the lambda outside the parenthesis is equal

to zero, implying the lambdas inside must be negative to obey ω . However, if c2 is negative, by

Theorem 1 the polynomial inside parenthesis does not have only negative roots, which contradicts

Omega.

Finally, condition (3) holds because it implies there are two sign changes along the Routh array.

By Theorem 2, this means there are at least two null or positive lambdas in p, which opposes ω as

well

Thus, after the computation of the Hessian matrix for each voxel, only the ones where neither

of these conditions is met are subjected to the eigenvalue analysis. Their coordinates form a

Hessian mask, which together with the mask of the tube response, are utilized in the subsequent

steps of this algorithm. Both are presented in Figure 3.10.

The two masks were also processed to enhance their qualities. The tubular response mask was

dilated with a spherical structure element of radius 3, expanding the volume of its spines, which

will improve the spine coordinate correction in the next module. The processed tubular mask is

shown in Figure 3.11.

The Hessian mask, in turn, was blurred by convolving it with an average kernel of 3x3x3, and

thresholding it with a value of 30% of its range. This resulted in a smoothed version of the mask,

which will facilitate the spine tracing in a later module. The effect of the smoothing is depicted in

Figure 3.12.
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(a) (b)

Figure 3.10: Slice nº 9 of the unprocessed binary masks from the a) – tubular response; b) –
Hessian analysis.

Figure 3.11: Slice nº 9 of the processed tubular binary mask.

It’s worth mentioning two last remarks regarding the Preprocessing and Segmentation sec-

tions. The first is that the segmentation of the Hessian mask is actually performed during the

Preprocessing function of the program. This happens as the calculation of the Hessian matrices al-

ready takes place in the preprocessing step leading to the tubular image, and this mask was already

implemented to avoid computational overload. It was described here solely due to the nature of
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(a) (b)

Figure 3.12: Scatter plot of the Hessian mask a) before and b) after the smoothing operation.

its formation. The second is that more combinations of Preprocessing and Segmentation methods

were experimented during the course of this work, but none of them produced reliable results.

This obstacle motivated the choice of the describe strategy as a mean to overcome it. Following

the workflow of Figure 3.1, both masks are carried to the next stage.

3.2.1.3 Spine Detection

The detection of spines was performed on the Hessian mask. The mask was transformed into a

skeleton, using the bwskel command available in MATLAB 2018a. As it is a part of MATLAB’s

repertoire, it is optimized and does not suffer from the time issues reported in other articles [41],

regarding the skeletonization of dendrites. The end- and branchpoints of the skeleton (connected

to one, and three or more pixels, respectively) were determined by the bwmorph3 command, in-

troduced in the same version. The skeleton and both types of points are shown in Figure 3.13.

The general idea behind the detection method is to first identify the dendritic shaft in the skele-

ton of Figure 3.13, then considering each of its branches as one spine. Bifurcated branches are

trimmed to their first branchpoint, and the end of every branch (after trimming) is intersected with

the tubular mask, to guarantee they belong to the foreground. Finally, each spine candidate is

pushed away from their correspondent branchpoint on the dendritic shaft, until they are near the

edge of the foreground, to facilitate spine tracing. This approach implies a different set of opera-

tions on distinctive points based on their relationship with others. Thus, it becomes necessary to

find the connections between adjacent points of interest (branchpoints and endpoints). Resorting

to Graph Theory, the relationships between points of interest (POI) were represented with a graph,

a structure meant to model pairwise relations between objects. A graph can be created from an

adjacency matrix, which is a square symmetrical matrix establishing the connection of an object i

to an object j, by assigning a nonzero value to the position (i,j). This matrix can be binary, repre-

senting solely the connected and unconnected objects, or real valued, expressing also the weight of

each connection. Two adjacency matrices were created: one connecting branchpoints, and another

connecting branchpoints with endpoints. To populate them, the branchpoints of the skeleton were
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Figure 3.13: Skeleton of the region of interest. Green points represent branchpoints and red points
represent endpoints

removed, leaving its “bones” unconnected. Each bone was identified with MATLAB’s command

bwlabeln and analyzed individually. Figure 3.14 presents the colored bones of the considered

region of interest.

For each bone, a pair of new endpoints was calculated, and for each new endpoint a direct

neighborhood was defined. Every branchpoint coordinate triplet was checked to whether it be-

longed to the neighborhood of each extremity of the bone (upper right square of Figure 3.14). If

the two neighborhoods were matched to two branchpoints, then these points were found to be con-

nected, and the length of the bone was inserted into the branchpoint adjacency matrix, according

to the position of both branchpoint coordinates in the coordinate vector. The neighborhood was

also matched against the old endpoints, to populate the branchpoint-endpoint adjacency matrix. A

similar matching process was performed on the neighborhood of branchpoints (instead of the ex-

tremities of the bones), to connect adjacent branchpoints which otherwise would not be associated

(lower right square of Figure 3.14). Based on the branchpoint adjacency matrix, the connections

between branchpoints were represented in graph form. The graph is shown in Figure 3.15, with

nodes disposed similarly to branchpoint (solely for visualization purposes) and edges with the

length of their connections.

The next step in the algorithm is the selection of a single graph from the multiple graphs that

could possibly be generated until now. The condition for selection was defined to be the number

of endpoints connected to each graph. As most endpoints are included in branches rising from the

dendritic shaft, and each branch will be regarded as a candidate spine, the number of endpoints
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Figure 3.14: Bones of the skeleton. The presence of branchpoints and endpoints is inspected in
the extremities of each bone, as well as surrounding the branchpoints themselves.

was regarded as an estimation of the number of spines. The graph with the larger number of

endpoints was selected, to allow the detection of as much spines as possible. If multiple dendrites

are present in the original image, this process can be repeated for the consecutive “spiniest” graphs

to increase the number of coordinates generated. In the considered region of interest, there are

no other graphs, so the one presented was chosen by default. In practice, the selection method

was written as follows. For every branchpoint, the number of connected endpoints was counted

(corresponding to the number of nonzero values in each row of the branchpoint-endpoint matrix)

and summed across branchpoints of the same graph. Isolated graphs were distinguished by the

command conncomp, and the one with the largest endpoint count was selected. As shown in Figure

3.15, the graph includes a series of cycles which correspond to adjacent branchpoints found by the

skeletonization algorithm. Figure 3.14 (lower right) depicts one of these cases. A cyclic graph

can hinder the computation of several tasks, such as finding the longest path. Moreover, some of

their nodes could pose as false branches and be classified as spines, leading to the generation of

incorrect spine coordinates by the end of this module. Hence, a cycle removal step was written,

capable of finding all cycles below a specified number of nodes and reducing them into a single

node, with the connections of all other nodes in the cycle. To find the cycles, an opensource

function credited to J. Jeffry Howbert was incorporated and altered for this project. It works by

finding every triplet of nodes in a graph, selecting one of its noncentral nodes, and iterating over

the remainder of the graph, using a depth search approach, to find the other. If found, the cycle is
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Figure 3.15: Graph connecting the branchpoints of the skeletonized dendrite.

counted as well as its number of elements. The algorithm is illustrated in Figure 3.16.

?

Figure 3.16: Schematic of the algorithm followed by the function cycleCountBacktrack, credited
to J. Jeffry Howbert. The blue filled circles represent one of the triplets found by the algorithm,
and the white filled circles the nodes that are checked from one side of the triplet. Dead ends are
abandoned, and the algorithm stops when (1) the other side of the triplet is found; (2) there are no
more nodes explore; (3) or the length of the path exceeds a predefined limit.

As the function did not outputted the sequence of nodes composing each cycle by default, this

change was implemented, in the form of a variable that saves the correct nodes during the process.

After finding the cycles, the branchpoint adjacency matrix is altered by adding to the row and

column of the first node of each cycle, the rows and columns of the rest within the same cycle, and
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deleting them afterwards. Figure 3.17 shows the different phases of the cycle removal process.

(a) (b) (c)

Figure 3.17: The cycle removal process: a) identification of cycles; b) connection transfer to a
single node within a cycle; c) result after removal.

The branchpoint adjacency matrix was then merged with the branchpoint-endpoint matrix.

They were kept separated until this point because endpoints do not form cycles, and they would

just increase the computational time of the cycle removal phase. The global graph is shown in

Figure 3.18 a). To identify branches of the graph as candidate spines, its shaft needs first to be

calculated. The shaft is distinguished from the branches by its larger length. MATLAB offers a

function named graphallshortest paths which calculates the length of the shortest path between

every pair of nodes in a given graph. This function was used to determine the two extremities of

the shaft, by choosing the pair with the highest distance in between. However, the sequence of

nodes from one extremity to the other is not outputted by the function, and so the extremities of

the shaft were fed into a second function, named shortest path, to get the shortest path between

them as a sequence of nodes. The dendritic shaft is shown highlighted in the graph in Figure 3.18

b)4.

Knowing the shaft of the graph, the branches were trimmed by determining the neighbors of

each node of the shaft, with the function neighbors, and keeping only the ones not belonging to the

shaft itself. These, together with the shaft nodes, make the graph of a trimmed dendritic skeleton,

with all spine candidates identified. Figure 3.18 c) shows the result of the trimming process.

4 Note that since both branchpoints and endpoints are used in the calculation of the longest path (the dendritic shaft),
the ends of the dendrite will be cataloged as the ends of the shaft and not erroneously as spines.
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(a) (b) (c)

Figure 3.18: The branch identification and trimming process: a) the graph containing both branch-
point and endpoints; b) – the graph with identified branches 5; c) the graph with trimmed branches.

The spine candidate coordinates were then subjected to a correction phase. Both spine and

branchpoint coordinates were compared with the foreground of the tubular mask. Every spine

that didn’t belong to the foreground or was connected to a branchpoint that did not, was removed.

This reduced both spines marked outside the dendrite and inside the dendritic shaft, in cases when

the branch point was incorrectly marked in the periphery of the shaft. The correction phase is

illustrated in Figure 3.19.

The last phase of the detection module aims at improving the position of the spines which

passed the correction phase. The tracing module has a higher success rate if it starts from near the

spine tip, and so the spine points were pushed away from the respective branchpoints in an attempt

to reach this region. They were positioned three pixels from the edge of the foreground, as shown

in Figure 3.20.

From lower to upper branchpoint, it can be observed that the first spine point did not move,

due the fact of being already close to the surface of the dendrite; the second spine point moved

into a position where the tracing has higher odds of succeeding; the third spine point moved into a

position far from the tip of the spine 6, although considerably better than the original; and the forth

5The weight of the lower and upper branches was manually assigned to a high value to exclude them of being
classified as branches. This was done for visualization purposes, as the region being presented cuts the original dendrite,
producing two artificial segments whose small length would trick the branch classification, if not compensated.

6The region actually belongs to a combination of two spines, which were too close to be distinguished by the
segmentation module. The tracing phase will attempt to segment it as a whole, which is facilitated by the spine point
reallocation.
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(a) (b) (c)

Figure 3.19: Correction of spine candidates (marked in blue): a) – Hessian mask with all spine
and branchpoints (marked in dark gray); b) – Tubular Mask with the same points; c) Hessian mask
with the corrected spine coordinates.

Figure 3.20: Reallocation of corrected spines into the neighborhood of an edge. Branchpoints,
corrected spines and reallocated spines are represented with dark gray, cyan and red crosses, re-
spectively.

spine approached the tip, although it was already well positioned. To improve the location of spine

points such as the first and third, an alternative procedure was written. In addition to moving the

points until the last three voxels of the dendrite are reached, the alternate method also estimates

de direction of movement, by scanning the dendrite around the branch point, with equally distant
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segments of a large length. The scanning around the third branchpoint is illustrated in Figure 3.21.

This process is also called Rayburst and will be extensively used in the tracing phase.

Figure 3.21: The scanning of the region around the branchpoint by multidirectional rays.

The rays were projected from the branch point until they reached a surface or the length limit,

and were saved as vectors spherical coordinates in reference to the branchpoint. A 2D interpolation

was performed to increase the number of points and fit them into a surface in a spherical coordinate

system, which is presented in Figure 3.22.

Figure 3.22: Final points of every ray represented by spherical coordinates and connected with a
surface. The empty spheres represent the original points, the blue-fill marks those corresponding
to a local maximum, and the red sphere represents the spine point determined by the last phase.
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There are three main peaks regarding vector length. Two of them correspond to the opposite

directions of the dendritic shaft (detected by the two blue rays in Figure 3.21), and one to the spine

close to the branchpoint. The aim of the alternate reallocation phase was to move the spine point

along the direction of its nearest peak. For this case, the spine point would be moved successfully

to the tip of the spine. However, for cases where the branchpoint is marked close to the tip of

the spine, such as the upper point of Figure 3.20, the nearest ray length peak would not the along

the direction of the tip, but of the neck or even outside the spine. By making the position of

the spine points insignificant, this method would have to be more elaborate to account for every

possible relationship between the branchpoint and the dendrite. As so, it was chosen to consider

the spine coordinates from the skeletonization phase instead, and apply a simpler method to move

the spine points towards the tip of the structures. These were regarded as the final coordinates of

the detection phase and carried to the spine segmentation module.

3.2.1.4 Spine Segmentation

The spine segmentation phase aims at separating each spine from the dendritic shaft of the Hessian

mask. As spines are connected to the shaft by their neck, the region of separation should be

the beginning of the neck (its proximal region), which has first to be identified. To this end, an

exploratory algorithm was developed, able to trace the spine from its detected coordinates to the

proximal neck region, based on the Rayburst tracing technique [15]. Once the region is identified, a

delimitation phase draws the border between shaft and spine, and an extraction step isolates spines

by preserving their voxels while removing the rest. The Tracing, Delimitation and Extraction

phases are presented individually through the remainder of this module.

Tracing The concept of the Rayburst tracing relies on estimating the orientation of a tubular

structure by projecting multiple rays from one of its interior points onto its surface. The rays are

equally distant and can be applied in several dimension spaces. To use them in the dendritic im-

ages, a core of 129 equally distant 3D rays were discretized into paths so they could be intersected

with the image. In this section, one ray will be regarded as a line cast without parallel, i.e., the two

segments projected in opposite directions from the center of the core will be regarded as a single

ray. The continuous and discrete cores are shown in Figure 3.23.

These cores are used to estimate the topology of the structure and find the tracing direction.

For instance, in a perfect infinite 2D cylinder, the shortest ray cast from any given point inside it

corresponds to a line with the diameter of the cylinder. The centerline of the strucure can then be

traced by moving a point from the center of the shortest ray in the direction orthogonal to the ray.

In 3D, the shortest ray may not correspond to the diameter of the cylinder, but will be perpendicular

to a line that will. A 2D Rayburst can be performed after it, slicing the first shortest ray in half,

and calculating its own shortest ray, which will be a line with the diameter of the cylinder. The

centerline can be traced analogously as before, by moving a point from the center of the second

ray in the direction orthogonal to the plane formed by the two shortest rays. This procedure is

illustrated in the left graph of Figure 3.24 with a cross section of a perfect 3D cylinder.
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(a) (b)

Figure 3.23: Continuous and discrete cores of 129 multidirectional 3D rays.

Figure 3.24: Shortest rays and center points of a 3D Rayburst viewed in the cross section of a) a
regular cylinder, and b) an irregular structure. The red cross represents the starting position of the
process. The yellow line represents the shortest ray of the 3D Rayburst centered on the starting
position, and the yellow circle its middle point. The blue line represents the shortest ray of the
2D Rayburst centered on the yellow point, and the blue circle its middle point, which is also the
estimated center of the cylinder. For the atypical structure, the estimated center is corrected by
applying a 1D Rayburst parallel to the shortest ray of the 3D Rayburst, and calculating its middle
point.

However, dendrites and spines are not regular cylinders. In these cases, besides the 3D and

2D cores, a “1D core” (a single ray) is cast parallel to the first shortest ray, and from the center

of the second, to correct the position of the tracing point due to the structure’s irregularity. The

method is more robust and further facilitates the tracing of spines on the smoothen Hessian mask.

The right graph of Figure 3.24 illustrates it on the cross section of an atypical surface.

The proposed method was applied for each detected spine. The core of 129 rays, saved as

a matrix with 129 vectors pointing equally distributed directions, was converted to a cell 7 with

the coordinates of generic discrete paths for each ray. The paths were then centered around the

spine coordinates, and the correspondent intensity values of the image were sampled in the same

order as the coordinates of the path. Counting from the center, each half of the intensity vectors

was scanned for its first zero, which corresponds to the background voxel next to the surface in

one of the directions of the ray. The elements after the first zero were removed, and the Euclidian

distance between both ends of the trimmed path was calculated and saved in the same cell. The

shortest ray was found by locating the path with the minimum Euclidian distance, and saved as

7A MATLAB container able to save vectors with different lengths.
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the 1D ray core. The center point of the path was located, and the process was repeated for the 2D

(composed by all coplanar rays of the 3D core) and 1D cores. After estimating the center point

of the spine’s cross section, the cross product between the shortest rays of both the 3D and 2D

Rayburst was calculated, to determine the direction of tracing. A unit vector along this direction

was then added to the center point, to determine the next position where the Rayburst should be

applied, repeating the process. The algorithm is exemplified in Figure 3.25, on one of the spines

belonging to the selected region of interest.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.25: The proposed Rayburst algorithm applied to one spine: a) - the initial position cal-
culated by the detection module; b) – The 3D Rayburst cast on the initial position, shown with
continuous rays to improve the visualization; c) – The shortest continuous (yellow) and discretized
ray (blue) of the 3D Rayburst and its center point (yellow); d) – The 2D Rayburst cast on the 3D
Rayburst’s center point; e) - The shortest continuous (yellow) and discretized ray (blue) of the 2D
Rayburst and its center point (blue); f) - The 1D Rayburst cast on the 2D Rayburst’s center point;
g) - The single continuous (yellow) and discretized ray (blue) of the 1D Rayburst and its center
point (red); h) – The final point with the direction of tracing (black arrow); - i) The final point of
the second chain of Raybursts connected to the first; j) – The final tracing path with the estimated
neck point and its direction along tracing (blue cross and arrow), and the last tracing point and
direction classified as not belonging to the spine (black cross and arrow).
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The direction of tracing, represented by the black arrow of Figure 3.25 h), is calculated by the

cross section between two shortest rays. Depending on the order of the calculation, the resultant

vector may point to one of two opposing directions. The direction leading to the neck of the spine

is not known by the algorithm beforehand, so two different tracings are carried per spine, each

in one of the opposing directions. The double tracing allows the algorithm to not depend on any

user-defined initial vector, as it is usually required [47], having the initial seed as its only requisite.

The final tracing is shown in Figure 3.268 9.

Figure 3.26: The completed double tracing for a chosen spine.

The aim of the tracing phase it to find a point close to the neck of the spine, so that a border

can be marked and the spine can be distinguished from the dendrite by being on one side of the

border. Therefore, the tracing phase must properly stop when it reaches the region of the neck.

The stopping conditions are several and encompass different scenarios which can arise during

tracing. The tracing cannot leave the mask bounds for instance, and will stop when a background

pixel is encountered. The same is valid for the image bounds. The tracing is also limited by a

number of steps. (set to 15). This condition is useful to reduce computational costs when the trac-

ing begins on a spine point incorrectly detected inside the dendrite shaft. The last two conditions

regard the detection of a neck point, and were defined as the distance between consecutive tracing

points, and the angle between consecutive moving directions. When one step performed by the

tracing is larger than a predefined threshold (set to 3.6 voxels, more than the tripe of a normal

voxel step), the tracing stops since it assumes the step was made to the outside region of the spine,

8The final tracing path was chosen not to be connected to the initial position as a visualization preference. Since the
tracing steps begin in the point calculated by the first Rayburst chain, the path was chosen to only be represented from
that point on..

9The Rayburst can also be used to estimate the topology of a structure with the aim of reconsctruting it. For each
tracing point, the shortest rays were saved and used to form ellipses fitting the cross section of the spines. Each ellipse
was then connected by a meshing strategy which generated a fixed number of points on the circumference of the ellipse
and united them with triangular faces. The results for the selected region of interest are presented in the Appendix.
In spite of approximating the surface, the meshes were deemed inaccurate, which led to the method described in this
section.
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where the shortest rays will be drastically larger than the previous ones, and the consecutive re-

centering steps performed on each ray may detract the tracing point from the path. Alternately, a

large difference of tracing directions (set to 45º or more) is also interpreted as the entrance on the

dendritic shaft, since its axis is nearly perpendicular to the axis of dendritic spines, and may devi-

ate the orientation of the shortest rays. The conditions were based on two hypothesized scenarios

that could indicate the departure from a spine. These are illustrated in Figure 3.27.

Figure 3.27: Two scenarios where the tracing point leaves the spine. The gray crosses represent
the last tracing point, the yellow lines the shortest ray of the second Rayburst, the red circles the
second to last tracing point, and the black arrows the tracing directions.

As shown in Figure 3.27, the conditions consider two distinct tracing behaviors which depend

mainly on the length of the spine. In the left case, the second Rayburst of the last tracing point

casts its shortest a ray between the neck (or its neighborhood) and the dendritic wall, diagonally to

the previous moving direction. The ray cannot reach closer regions of the wall since the spine tip,

in their opposing direction, is too distant from the tracing point. Hence, the point will be centered

far from the previous, while the direction will be moderately tilted. In the right case, the short

length of the spine enables the shortest ray to terminate in a closer region of the wall, positioning

the tracing point close to the previous but with a drastically different orientation.

In every step of the tracing, this set of conditions is verified and if one is violated, the process

ceases. Still, because two tracing paths are completed for each spine, it remains to know which

one ended on the neck. To determine it, the conditions that were violated by both are compared

and the path which infringed the ones most typical of a spine departure is chosen. Additionally, the

condition analysis also serves to discard tracings that did not reach a spine’s neck, or encountered

a condition that invalidated both tracings, such as reaching the image bounds. The actions held by

the algorithm for each pair of violated conditions is organized in Figure 3.28, where arrows point

to paths deemed to have ended on the neck, based on its infringements.

The simultaneous infringement of the angle and distance conditions was considered the most

typical of tracings leaving the neck, which should correspond to similar scenarios to the one pre-

sented in the left part of Figure 3.27. It is chosen between all combinations except when the other

path reached the image bounds, which indicates an incomplete spine. For the same reason, the

image bounds infringement invalidates every other path independently of its infringement. Angle

and distance are interchangeable, and the path is chosen according to the longest distance travelled

between both. The step limit was privileged against angle and distance to account for long spines

that had one path terminated erroneously, and the other not reaching the neck due to insufficient
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Figure 3.28: Decision table based on tracing infringements

number of steps. Such situation is depicted in Figure 3.29 (left). Steps are also preferential to

the image bounds condition for long spines where the seed point is near the tip (promoted by the

detection module), shown in Figure 3.29 (middle left). If both paths terminate by the step limit,

however, neither is chosen, since they most probably traveled through both directions of the den-

drite shaft, due to an incorrectly marked seed point (Figure 3.29, right). Finally, if the tracing

was made in a direction perpendicular to the axis of the spines, and both paths terminate by mask

bounds, the tracing is discarded as well (Figure 3.29, middle right). These scenarios approximate

the reasons which make the tracing stop, but may not always be verified for every image and re-

gion. The table can therefore be adjusted to account for the most frequent reasons associated with

the end of tracing in the neck region.

Figure 3.29: Atypical tracing stopping scenarios handled by the condition comparison.

The tracings were also made invulnerable to the angle and distance condition in their first two

steps. Since the seed point may be anywhere inside the spine and lead to unexpected first steps

both in distance and direction, this feature prevents cases similar to the one depicted in the left end

of Figure 3.29„ while making the minor assumption that it is possible to give at least two steps

inside the spine from its seed point.

After each tracing, a tracing report is issued to the console presenting the condition that led

to its termination. For the paths ended by the distance and/or angle conditions, the values that
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triggered them are also specified. Figure 3.30 shows the report for the spine of Figure 3.26.

Figure 3.30: Tracing Report for the spine of Figure 3.36.

Once every double tracing has ended and the paths terminating on the neck are chosen, their

second to last tracing points and directions are saved (or last in case the infringement was on the

step limit) and carried to the delimitation process, described below.

Delimitation The delimitation of spines is performed by positioning a plane in the neck point,

normal to its tracing direction. As the neck points and directions may not be perfectly positioned

and oriented, the plane must be rectified to ensure all the voxels connected to one of its sides

belong to a spine.

Geometrically, if a rectangle of limited length is positioned in an arbitrary point within a 3D

image with both foreground and background, one of the following three cases will occur: (A0) all

of its border points will intersect the foreground; (B0) some of its border points will intersect the

foreground; (C0) none of its border points will intersect the foreground;

In the neck region of spines, case (A) may occur if the rectangle is not large enough to intersect

the surface of the dendrite. This case does not provide any information on the topology of the

dendrite, since it can occur nearly anywhere in the foreground. If, however, the rectangle is made

large compared to the diameter of the dendrite, case (A) is mitigated and the three possibilities are

reduced to (B) and (C). Case (B0) may arise from two different situations. If the plane intersects

the dendrite longitudinally, its opposite border points will share the same approximate behavior,

either by being both on the foreground (the right and left side of the rectangle, for instance) or

outside the foreground (the top and bottom sides, for instance). If, however, the plane intersects

the dendrite diagonally, and it is not large enough to surround it, more pixels of one side will

intersect the foreground than the other. Case (C0) occurs when the plane is positioned transversely

inside the spine. It can also take form when it’s positioned transversely to the dendrite, although

this is rare since the neck points from the tracing that passed the condition analysis are seldomly

inside the dendrite and oriented along its axis.

Since case B0 may correspond to two different conformations, it was divided in case A and

B, which correspond to the intersection of one border (approximately) with the dendrite, and the

intersection of two borders (approximately) with the dendrite, respectively. Case C0 was retitled

to C. For each case, an algorithm was written to adjust the initial plane into the transition between
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dendrite and spine, facing the spine. Figure 3.31 shows a schematic of each case and of the

sequence of steps to perform accordingly.

A

A

translation 

to spine

B

C
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C

rotation 

to spine

B

B
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C
C
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dendrite

C
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Figure 3.31: The plane rectification process. Cases (A), (B) and (C) are represented by letters and
drawings if different from the last. The possible results are denoted with a contour around the
letter. Dashed contours indicate that the result corresponds to the plane of the previous iteration,
also drawn with a dashed line. The transformation between planes is written.

After the plane is placed in the tracing point, the case it corresponds to is inspected. In 2D,

as shown in Figure 3.31, the cases can be distinguished by the position of the line ends alone.

In 3D however, the borders of the plane have to be analyzed to determine if they are evenly

intersecting the structure, or if the intersection is prevalent in one side 10 of the rectangle. Figure

3.32 exemplifies the positioning of an initial plane in one of the neck points of the region of

interest.

To analyze the intensity profile of the rectangle, one slice with the same size, position and

orientation is extracted from the image. The extraction is held by an opensource function named

extractSlice and credited to Pangyu Teng. The function extracts specific voxels and turns them into

a 2D matrix of intensities and coordinate indexes. The code was modified so that the top values of
10By side, what is meant is not an actual edge of the rectangle, but a broad direction from its center point. The

intersection can be found on one corner for example, referred as one side of the shape.
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(a) (b)

Figure 3.32: Positioning of the initial rectangle in the neck point of a spine.

the matrices correspond to the top region of the slice in the 3D volume, which was not always de

case.

After the extraction, only the central connected component is kept from the intensity matrix,

corresponding to the cross section in contact with the neck point. This allows the rectangle to have

any length above the diameter of a spine, since any structure unconnected to the neck point, and

thus unrelated with the spine in question, is discarded.

To determine if there is any kind of symmetry between the edges of the slice, all pixels outside

the edge are removed (by intersecting the image with a binary square ring), and the centroid

between the edge points is calculated. If the centroid falls into a central square, with 3/5 of the

length of the slice, the border points are deemed symmetric and the plane follows case (A). If

the centroid falls into the 1/5 of the slice closer to an edge, the border points are considered

asymmetric and the plane follows case (B). If the slice does not possess border points, then the

plane is classified as case (C). Figure 3.33 shows the slice, border points and centroid for the

example of Figure 3.32.

(a) (b) (c)

Figure 3.33: The calculation of border symmetry in the extracted slice. A) the slice; b) its border
points; c) their centroid and the translational region

Since the centroid falls into the central square, Figure 3.32 depicts a case (A), where the plane
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is located inside the dendritic shaft. As so, the first action is to translate it in the direction opposed

to the tracing, leading it to the spine. For every translation, a new slice is extracted and the border

symmetry is verified to check if the plane transitioned to another case. The first translation is

shown in Figure 3.34, along with the extracted slice.

(a) (b)

Figure 3.34: First translation. A) The new plane in the 3D volume; b) the extracted slice.

Since the border points are distributed asymmetrically along the edge, the plane has transi-

tioned to case (B), and the translation process stops. The border asymmetry indicates that the

plane is not intersecting the spine equally, and therefore has to be rotated. To do so, a rotational

axis is calculated in the extracted slice, and positioned in the correspondent site of the 3D plane.

The calculation begins by finding the cartesian line equation between the border centroid and the

center point of the slice. As the centroid estimates the region where the plane intersects the den-

drite, the rotation will be performed to carry the centroid in the direction of the spine and align

both sides of the plane. In the opposite side, the region intersecting the spine correctly should not

move, and hence the rotation axis should be positioned adjacently to this intersection, making this

region nearly static while rotating the centroid region. For every pixel, the subcoordinates of their

isolated corners are calculated, and the corner further away to the centroid is determined. The

rotational axis is positioned in this corner, perpendicular to the line whose equation was found

before, and the vector connecting the central point and the closest point to the axis (rotation arm)

is calculated. The coordinate matrix outputted by the extractSlice function is used to create a local

coordinate system for the slice within the global coordinate system of the image. The transforma-

tion matrix between spaces is calculated, and used to orientate the rotational axis and arm in the

3D space. Since the center of the slice is the translated neck point, the vector arm is cast from

this point in the 3D space, yielding the position where the rotational axis will the centered. The

centroid, central and corner points, as well as the rotational arm and axis are marked in Figure

3.35 for the previous slice.

Each rotation was set to 3º degrees, after which a new slice is extracted to check if the plane
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Figure 3.35: The major points and vectors calculated for the rotation of the plane. The centroid,
central and corner points correspond to the red point, blue cross and green point, respectively. The
arm vector is shown in gray, and the rotational axis in orange.

transitioned from cases. The rotation in the 3D space 11 is shown in Figure 3.36, with the same

elements of the slice of Figure 3.35 (minus the centroid). The slice coinciding with the rotated

plane is shown in Figure 3.36.

(a) (b)

Figure 3.36: Rotation of the plane in the direction of the spine.

Figure 3.37: The slice extracted after the first rotation.

11The rotation is applied on the arm vector around the rotational axis. This operation is achieved by a publicly
available function named rodrigues_rot which is credited to Ismail Hameduddin.
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Since there are no more border points, the plane is only intersecting the spine neck, specifically

in the region immediately after the dendrite shaft. Therefore, the rotation process stops, and the

center position and orientation of the last plane are saved. The final plane and normal direction is

presented in Figure 3.38.

Figure 3.38: The final plane positioned in the proximal region of the neck towards the spine.

The sequence of transformations followed Figure’s 3.31 strategy for planes beginning in case

(A). For these cases, there is a shortcut to the final plane that is triggered if the final translation

gives rise to a plane of case (C). If so, as the translation steps are small (1 voxel), the translation

phase ends making a perfect slice, without the need of a rotation step and thus ending the process.

The strategy handling initial case (C) planes has opposite direction translations and rotations

to the one exemplified, but features two new characteristics, one of them hinted by the dashed dots

surrounding some plane letters. Hence, it will be demonstrated as follows. The strategy for initial

case (B) planes is an intermediate version of both other strategies and will not be exemplified to

avoid redundancy.

In an initial case (C), the plane is already surrounding the spine, although with an expected ori-

entation and location. Figure 3.39 exemplifies this scenario with a 3D plane and the correspondent

slice.

Since the distance from the dendrite shaft is unknown, the first action to apply on the plane is

the translation along the tracing direction, until it becomes either a case (A) or (B). The sequence

of translations are shown in Figure 3.40.

From the symmetry analysis of the slice of Figure 3.40, the last translational plane is catego-

rized as a case (B). If it were to be rotated directly as in the last example, the edge intersecting

the dendrite would never leave the shaft, since it would correspond to the rotational axis. The

rotational axis must be always outside the surface of the dendrite or spine, the prevent the cross

section of expanding to shaft territory. Therefore, when the plane is adjusted from the outside of

the shaft, the last plane is discarded, represented by the dashed contours, and the rotation process

is applied to the one before it. As the rotation axis requires an edge centroid to be calculated, and

the previous slice does not possess any border points since it is a case (C), the edge centroid of the

discarded plane is used to this effect. This allows the rotation to proceed in the correct direction,
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(a) (b)

Figure 3.39: Initial case (C) plane (a) and extracted slice (b).

(a) (b)

Figure 3.40: The translational process applied to the initial plane: a) the plane instances; b) the
slice of the last plane (dashed).

on a plane with insufficient information to determine it. Figure 3.41 shows the rotational apparatus

on both the plane and slice.

For each rotation, a slice is extracted to evaluate if the plane transitioned to a case (B). The

asymmetry analysis is based on the central component of the slice, which can be compromised if

the center being rotated leaves the foreground. This is particularly uncertain for long rotational

processes, such as the one being exemplified. To prevent an escape from canceling the delimita-

tion, when the intensity of the central point turns to zero, the rotational arm is set to half of its

previous length. As the escaped central point and the rotational axis limit the cross section of the

spine, halving the rotational arm will adjust the central point exactly to the middle of the section,

and allow the rotation to proceed its course. Figure 3.42 depicts this event and the response by the

program.
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(a) (b)

Figure 3.41: The plane (a) and slice (b) prior to their first rotation towards the dendrite.

(a) (b)

Figure 3.42: Adjustment of the plane triggered by the escape of its center point: a) – the rotational
plane centered around a background pixel; b) – the corrected rotational plane, re-centering it to
the foreground.

With the rotated point re-centered, the process continues until it reaches case (B). This transi-

tion implies that the side being rotated towards the dendrite has passed its surface by one rotational

step. This event is depicted in Figure 3.43.

As so, the last plane is discarded, similarly to the last translational plane, and the position and

orientation of the one before are saved as the final boundary. Figure 3.44 presents the final plane

and slice.

After the final plane is positioned, a rectification report is issued to the console, outlining the

number of transformations and transitions the initial plane went through. The report for the last

example is presented in Figure 3.45.

The final planes are saved as a pair of position and direction vectors, and the data is carried to

the spine extraction phase.
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(a) (b)

Figure 3.43: Last rotational plane and slice.

(a) (b)

Figure 3.44: Last rotational plane and slice.

Figure 3.45: Rectification report for the illustrated C case. The upper case letters represent the
cases experienced by the planes, and the lower case ‘e’ the escape of the center of the slice. The
transformations are shown along with their number and limit.

Extraction In this phase, the spines of the masks are segmented with a region growing method,

limited by both the mask and the planes. A function named regionGrowing and shared publicly
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by Daniel Kellner was used and modified to consider both plane points and directions previously

calculated. This routine starts by saving the seed point into a vector and checking if its direct

neighbors fulfill a set of conditions. The seed point is removed when its neighbors are checked

and the ones that pass the conditions are added. These are also marked as white voxels in a

matrix with the side of the image. The process repeats for each point present in the vector, until

it becomes empty. The conditions examine if the points belong to the image limits, if they were

already considered, and if their intensity is within a certain with respect to the seeding point. The

range was set to a value below one, since the routine is being applied to the foreground of a binary

mask. To check if the points belonged to the side of the plane facing the spine, the dot product

between the normal of the plane and the vector connecting the plane to a considered point was

calculated. The positive sign of the result implies the point is on the correct side. As the spine

points from the detection phase can be on a different side of the plane than the actual spine, as

shown in the example of Figure 3.32, the seed point is instead calculated as the voxel attached

to the center of the plane, in the direction of its normal. A maximum distance to the seed is

also checked, to prevent over segmentations in cases the planes are not positioned correctly. The

algorithm runs iteratively for every delimited spine, and produces a binary matrix containing all

spines. This matrix is shown in Figure 3.46 for the chosen region of interest.

Figure 3.46: Extracted spines by region growing.

The matrix can then be corrected in the shrinking phase, or passed directly with the neckpoints

to the Measurement module. The shrinking phase is described in the following section.
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Shrinking This phase aims at reducing the size of the extracted masks. These are unaltered

parts of the Hessian_stack, which overestimated the location of voxels belonging to dendrites in

the original image. To correct them, they were intersected with the median stack delivered by the

Preprocessing module, which yielded their intensity profiles.

In confocal miscroscopy, one of the main noise sources is Poisson (or statistical) noise. This

is proportional to the number of photons recorded in a given pixel, which in turn correlates to

intensity [48]. It has also been suggested that the size of errors introduced by confocal imaging

make up 5–7% of the mean intensity values of a given region [49]. Based on these considerations,

a relative threshold was set to 2% of the maximum intensity found inside a given mask. The

low value accounts for the image being already median filtered, and serves to exclude the zero

pixels inside each mask. The threshold was not applied directly to the spine volume, but as a

condition in the region growing routine previously introduced. This allows it to be applied only

on voxels connected to the seed point, preventing a result containing isolated voxels. However,

it was observed that the grayscale region growing may degrade the masks irregularly in some

regions, producing results more atypical than the ones from the extraction phase. Since it does

not account for any shape descriptors, as the Hessian analysis did (with the second derivatives),

the size reduction does not seem to compensate the regularity loss of the Hessian mask, and so it

was turned into an optional feature. It is also reasonable to make this process facultative to allow

other masks to be used in the program, without altering their morphology by default. In either

case, the final spine masks and neck points are then passed to the Measurement module for their

quantification.

3.2.1.5 Spine Measuring

In this module, each spine mask is identified by the bwlabeln command, and iterated over to

calculate an individual set of measurements. Spines are plotted in 3D with a number on his top,

and the measurement data for each is compiled into a table, linking each row with the number of

each spine. The set of measurements is the following:

• Volume

• Surface Area

• Solidity

• Centroid proximity

Volume is equal to the number of voxels of each spine, and thus evaluates its size, which in

turn is correlated with synaptic strength. The surface area can be used with the volume to estimate

the resemblance of spines with certain shapes, and aid in the classification of their type. Solidity

is defined by the ratio of voxels between a structure and its convex hull (the minimally convex

volume encapsulating the structure). It is a measure of concavity, and can be used to evaluate the

length and thickness of the neck in comparison with the head. The centroid proximity is calculated
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with respect to the neck, using the plane points from the previous module, and it offers a way of

evaluating how far the head, typically including the center of mass of the structure, is from the

dendrite shaft.

The first three measures are directly calculated by MATLAB’s command regionprops3. The

centroid is also calculated by this command, and the Euclidian distance is taken between it and the

plane point, marking the beginning of the neck.

All results are presented in the Results and Discussion section of this work.

3.2.2 Machine Learning 2D Algorithm

The 2D image data used in the development of the supervised detection method was created by

applying a maximum projection to four 3D image stacks. The images were then preprocessed

using the tubular response similarly to what was detailed in the last section, although applied in

2D to adapt to the data format. These preliminary steps were done in MATLAB, and the results

are shown in Figure 3.47.

(a) (b) (c) (d)

Figure 3.47: Preprocessed 2D dendritic images for the Machine Learning detection algorithm

The algorithm designed to identify the spines in these images uses a Convolutional Neural

Network (CNN), a variant of Deep Learning networks capable of extracting features automatically

from image data and learning the underlying patters of the structures required to be identified. The

program was developed in Python, using the Anaconda distribution, and the network was built

using the Keras library run on top of the GPU version of the Tensorflow backend.

As required by supervised methods in general, a dataset containing images both with and

without the target structures has first to be created. Spines occupy small regions of the available

images, and so the dataset for this method is formed by equally sized windows extracted from

the four images. The dataset is then used to train the algorithm to identify spines and evaluate

the performance on a part of the dataset not used for training. After the training, a model is

generated in .h5py format, and used to predict the presence of spines in new windows in form of

a probability. Since the aim of this method is to identify spines contained in the images with both

spine and non-spine material, the model is used iteratively across every pixel of the preprocessed

image, to evaluate if a neighborhood, of the same size of the dataset windows, contains spines.

The output is an array of probability values, which is then reshaped into a grayscale image with



58 Methods

the size as the original. A post-processing step is then applied to threshold the image and eliminate

some noise created by the classification phase.

3.2.2.1 Creation of the Dataset

The creation of the dataset is done by manually classifying small windows from the original im-

ages. This process can suffer from the subjectivity of the evaluator, since their location can be

chosen to facilitate the classification and disregard more ambiguous regions which will be en-

countered by the algorithm in the prediction phase. If the choice of the location was to be random,

however, as spines are in a very small proportion compared to the rest of the image, the creation of

the dataset would take impractically long periods of time and the majority of images would corre-

spond to the background of the dendrites. To make the image annotation impartial, yet producing

relevant information in the shortest amount of time possible, a method resembling an interactive

quiz was devised, which selects relevant windows from the images and presents them to the user.

The user is then invited to choose to classify them as spines, non-spines, to pass if he can’t deter-

mine confidently which class to attribute, or to exit the process. The quiz is illustrated in Figure

3.48, in the console of the Spyder IDE.

Figure 3.48: Interactive quiz for the creation of a dataset.

The algorithm begins by loading the preprocessed images and applying a threshold of 0.1 (for

the images of type double and range [0,1]) to locate their pixels above and below this level. As

the images are the outputs of a tubular response, their signal-to-noise ratio is high, which makes

the pixels above the threshold to most probably belong to the dendrite structure. The coordinates

of both high and low intensity pixels are saved into separate arrays. The program then chooses

one coordinate from one of these arrays, with a strong bias (0.9 to 0.1) to the high intensity pixels,

to increase the chances of capturing a dendritic spine. A window of size set to 25 pixels is then
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extracted around the chosen location, and presented to the user, which is requested to classify it.

Depending on the input, the program either saves the image into a 3D array and indicates its class

on a binary vector of the same length, or ignores it. If the user chooses to ignore it by skipping,

this process is repeated, otherwise it stops. In this case, since the windows classified as spines will

be less than other cases, even with the intensity bias (since dendrites shafts are predominant above

the threshold), the algorithm deletes a number of non-spine dendrites so that the final arrays for

both classes have equal length. Then, each array is split into two parts, one spanning ¼ths of the

length and the other ¾ths. The longest arrays are saved for the training phase, while the shortest

for the testing phase. The arrays are saved in .npy format, to be used either by the Replication

module or directly to the Training and Testing module.

3.2.2.2 Replication of the Dataset

Neural networks often require great amounts of data to yield reliable results (some reaching mil-

lions of samples [50]). Since the dataset is composed of four images with a limited amount of

spines12, the classified arrays can be expanded artificially to enhance the performance of the algo-

rithm. This was done with a Keras class named ImageDataGenerator which, based on parameters

(such as rotation range, resize level, and others), produces a defined number of randomly trans-

formed copies of a given image. The only transformations allowed in this phase were rotation,

set to range of 360º, and random horizontal flips. Size was not changed and the window was not

translated since the center could escape the target structure. Although the horizontal flips simply

alter the disposition of the image, rotations create artificial zero-valued regions around the cor-

ners, which would be problematic as they do not depend on the structure being targeted and would

be nonetheless learned in the training phase. To solve this issue, although the window size pre-

sented in the quiz is set to 25 pixels, the actual windows saved are extracted from the image with

a higher length. In the Replication phase, these windows are rotated randomly by the generator,

and cropped around the center, yielding a final window of 25 pixels. The extra length is calcu-

lated such that a 45º rotation and the following cropping do not create any zero-value pixels. The

replication number was set to 30 copies after experimentation. The augmented dataset was then

saved similarly as before, to be loaded in the Training and Testing phases. An example of three

transformations made on one of the windows is shown in Figure 3.49.

12 From the four images used, 70 spines were collected. Neural networks performance typically scale with the
amount of data used, which can reach hundreds of thousands of samples. The replication step was written to remedy
the absence of more images, although it should not substitute additional original images in case they are available.
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(a) (b) (c) (d)

Figure 3.49: Original window (a) and three replications from the thirty generated

3.2.2.3 Training

In this phase, the data is used to teach a neural network how to identify spines on images with

the size of the windows generated. A convolutional neural network is a sequence of filters and

routines that are applied to an initial image, to yield a probability score of how similar it is to a

certain class. The network has dynamic parameters, called weights, that are repeatedly convolved

with the initial image and its transformations along the network. The weights are organized into

small matrices called filters, and slide through the image multiplying each of the region values

with the correspondent weight. After each slide, a new image is formed, and multiple filters

are often used to form stacks of multiple images. The stacks can then be passed through an

activation function, which alters their elements based on their value. The activation function is

typically a non-linear function, to increase the possible element combinations after the convolution

phase. After the activation phase, the matrices are normally subjected to a pooling phase, in

which their elements are sampled following a predefined rule, and the matrices are reduced in

size. This process repeats to form deeper nets, which are considered to capture more complex

patterns present in the images. When the network reaches the last pooling layer, the matrices are

converted into an array, and passed through a different activation function, which outputs a value

for every class of the classification problem. The values are considered to express the similarity

between the image and each class. As each image of the dataset has a label identifying its class, the

calculated values are compared with the values from the label by a loss function (the label takes

the form of a binary vector, populated with zeros except in the position correspondent to its class),

and a disparity measure (loss) is determined. An optimization routine then takes this measure

and variates the weights of the convolutional phases to lead the output of the next convolutional

process into a value with lower loss. The variation is often applied in the direction of the larger

loss decrease, which is achieved if the optimization method is set to Gradient Descent. Each

convolutional process is referred to as an epoch and usually, the higher their number the more

accurate are the estimation in the training images. This can be disadvantageous, however, since

the network can become too familiarized with the dataset and produce unpredictable results in

newer data. This is what is termed by overfitting, and strategies to reduce it include decreasing the

number of epochs, blocking a set of weights from varying (called dropout), or dividing the training

set to produce a validation set and selecting the networks which perform well on the validation
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set instead on the training images. In this phase, different architectures were considered and one

was chosen based on the results on the windows of the test phase, and on the visual analysis of

the network’s ability to predict the position of spines in the complete preprocessed images. The

chosen architecture is depicted in Figure 3.50.

CONV
RELU

POOLING CONV
RELU

POOLING CONV
RELU

POOLING FLATTEN FC
RELU

SIGMOID

Figure 3.50: Architecture of the chosen network for the spine classification problem.

The number filters the three convolution steps (also referred to as layers) was set to 32, 32

and 128, respectively in its order (following the common practice of setting them to a power of

two), and their shape maintained constant with 3x3 weights. Every activation function following

the convolutions was chosen to be ReLu, which preserves the value of the positive elements while

setting to zero those which are negative. The pooling phases followed the maximum value rule,

downsampling the matrices by substituting the pixels from a movable region (set to measure 2x2)

with their maximum value. After the last pooling phase, the matrix is converted into an array and

each element is multiplied by weight to produce a reduces array with length equal to the number

of classes. This layer is called fully connected layer (FC) as it uses all values from the array to

calculate each probability value (connects all inputs to an output), contrarily to the convolutional

layer that only considers local values for each calculation. The values are finally passed to the

sigmoid function which outputs the score of the image for each class. To calculate the loss, the

cross entropy is calculated, which is based on the logarithmic difference between the score and the

label. The optimizer set to alter the weights that produced the best results was Adam, an approach

to Gradient Descent which varies how much each weight is altered. The dataset was divided into

a training and validation group, and the process until the creation of the model was repeated in a

2-fold cross validation. The network accuracy and losses for the training and validation datasets

were plotted for each epoch, and considered in conjunction with the accuracy from the testing

phase.

3.2.2.4 Testing

The testing phase uses the training model to predict the classes of the set of testing windows. The

model is a Keras object and has a method named predict for this effect. The algorithm outputs an

accuracy which represents its ability to classify spines in unknown windows of 25x25 pixels. After

considering this results, the model was finally used to predict the location of spines in a complete

image, which is performed by the Prediction module.
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3.2.2.5 Prediction of spine locations

The projection of the same image presented in the geometrical method component was chosen to

be subjected to the prediction capabilities of this algorithm. Recurring to the same class method

of the testing phase, the model was used in each 25x25 pixel window of the image to output the

probability result of it containing a spine. Instead of extracting a new window iteratively to predict

its class, the windows were first grouped into a 3D numpy array, which fastens the prediction in

exchange of requiring an extra space in the disk (around 1GB for the 1024x1024 image). The

probability array was reshaped to be of the size of the preprocessed image, which is presented in

Figure 3.51. It was then carried to a post-processing phase to be filtered and segmented.

Figure 3.51: Spine predictions in form of probabilities, for the first image used in the dataset.

3.2.2.6 Post processing

To preserve the high probability regions of the scores image, a threshold slightly beneath half the

image range was set (0.4 for the double type [0, 1] image). Then, the skimage.measure library was

important to identify the connected components with the function label. By visual observation, the

predictions image contains the identification of spines as circular objects, while some boundaries

of the dendrites are also presented but with an elongated shape. Hence, the circularity of every

connected component was measured by the regionprops function of the same library. Only the

objects with high circularity (above 0.9) were selected. The objects components with an area less
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than 3 pixels were also discarded to further eliminate misclassifications. The results are presented

in the Results and Discussion chapter.

3.2.3 Synapse Toolbox

The data collected for the Synapse Toolbox was stored in .csv format files, each containing mea-

surements from all inhibitory or spine synapses from a single dendritic branch. Each branch

was associated with a specific dendritic region (basal or oblique) from a specific cell, as multiple

neurons and regions were used for the measurements. For instance, the data from the inhibitory

synapses of branch 1 of the oblique dendrites of cell 1 would be in a file designated by:

Cell_001_Oblique_branch_001_shaft.csv

The type of synapses is quoted in each file as ‘shaft’ or ‘spine’, referring to their location.

These terms will be used interchangeably with ‘inhibitory’ and ‘excitatory’ in the remainder of this

section, since inhibitory and excitatory synapses are usually located in those respective regions.

However, exceptions exist, as 10% of excitatory synapses are estimated to reside in the dendritic

shaft, and 30% of inhibitory synapses have been recently attributed to dually innervated spines

[51], which carry both an excitatory and an inhibitory synapse. As the measurement method

technically identified inhibitory synapses and spine synapses, and no two types were found to

coincide in the same location, the two nomenclatures will be used without distinction.

Each file is consistently formatted, with a header spanning two rows followed by a set of rows

representing synapses, each with three measurements: distance from beginning of branch, synaptic

strength and branch length. The shaft data from branch 1 of the basal region of cell 20 is shown

in Figure 3.52. All files, corresponding to 9 cells and 52 branches in total, were stored in a single

folder.

Figure 3.52: Data from Cell_020_Basal_branch_001_shaft.csv

The MATLAB program designed to handle these files is divided into functions, described

below.
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3.2.3.1 Load Data

Function:

Load_Data()

The first function is meant to read the desired files and store their data into a struct object, to be

used by all later functions. Its call in the main script is done with the following line:

dataStruct = Load_Data();

This function starts by opening a search window to allow the user to select the folder containing

all the .csv files. Then, it reads the name of every file and decomposes them into cell number,

region and branch number. Based on them, it asks the user to type the desired values, so it can

selectively load the data from the .csv files into the dataStruct, as illustrated in Figure 3.53.

Figure 3.53: Interactive selection of the synaptic data based on cell, region and branch.

3.2.3.2 Graphical Display

Function:

Display_Branches(dataStruct)

The second function represents the data graphically so it can be easily read. Each synapse is

represented as a circle, with a radius proportional to their intensity, positioned along a branch

according to their distance value. The followed model is shown in Figure 3.54.

d
r

Figure 3.54: Chosen graphical model of a synapse.

Each synapse is plotted iteratively as a circle with a radius mapped linearly from its intensity

value. To add information to the plot, the synaptic density is also calculated with a moving gaus-

sian window across each branch. The standard deviation for the windows for both synapses was
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chosen to be 1.2 µm. This value was chosen empirically with the precaution of being higher than

0.2 µm, the approximated light diffraction limit for the experimental setting in which synapses

were imaged. To convert to window units, this value was multiplied by the resolution, chosen to

be of 10 units/µm. For each type of synapse, each branch was converted to a binary vector, with

ones being the location of the synapses. The vectors were convolved with the windows to create

the synaptic density vectors, which could then be plotted on top of the branches. Optionally, the

density can also be calculated considering the intensity of each synapse. In this case, instead of

a binary vector, each branch is represented by a vector with intensity values in the position of the

synapses, then to be convolved with the gaussian window.

The rest of the functions were designed to analyze the loaded data. Based on the model of Figure

3.54, a single synapse can be viewed as a distance or intensity. Furthermore, a set of synapses can

be viewed as a set of distances, intensities, or simple by their number. The following functions

explore these quantities, either with metrics targeting individual synapses, such as an intensity, or

groups, such as a density. All functions distinguish inhibitory from excitatory synapses, so their

results can be observed individually and compared. The algorithms are organized as follows.

3.2.3.3 Distance and intensity counts per cell

Functions:

Inspect_spineHistogram_Distances(dataStruct_cell)

Inspect_inhibHistogram_Distances(dataStruct_cell)

Inspect_spineHistogram_normDistances(dataStruct_cell)

Inspect_inhibHistogram_normDistances(dataStruct_cell)

Inspect_spineHistogram_Sizes(dataStruct_cell)

Inspect_inhibHistogram_Sizes(dataStruct_cell)

Inspect_spineHistogram_normSizes(dataStruct_cell)

Inspect_inhibHistogram_normSizes(dataStruct_cell)

The first set of functions characterize the data by counting how frequent fixed ranges of dis-

tances and intensities are in each selected cell. They select all distance and intensity values from

inhibitory and excitatory synapses in a single cell and plot them using MATLAB’s command

histogram with automatic bin width. These functions have also normalization variations, in

which distance and intensity values are divided by branch length, to make the analysis indepen-

dent of their absolute value. These functions are inside for-loops which iterate over the cells

selected in Load_Data(), allowing them to plot the results for every cell in a single run.

3.2.3.4 Distance vs intensity per cell

Functions:

Inspect_normDistance_Intensity(dataStruct_cell, color_now)
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Inspect_Distance_normIntensity(dataStruct_cell, color_now)

After characterizing the distance and intensity values of synapses, these quantities were then

correlated in a single plot. Each synapse was plotted with its distance and intensity (or their

normalized variants) as its coordinates, to test if there was any sort of proportionality between the

two.

3.2.3.5 Total excitatory distances, intensities and number vs total inhibitory distances, in-
tensities and number

Functions: Inspect_totalExciInhi_rawData(dataStruct_cell, color_now)

Synapses were then characterized collectively by branch, by calculating the sum of distances,

intensities and their number for each branch, plotted against the same quantities but for the oppo-

site type of synapse.

3.2.3.6 Total intensity vs branch length

Functions:

Correlate_TotalIntensity_BranchSize(dataStruct)

Expanding on the last method, total intensity for each type of synapse was also graphed against

branch length, to verify the hypothesis of longer branches having more and stronger synapses.

3.2.3.7 Inter-distances and inter-intensity counts

Functions:

Analyse_inhib_interDistances(dataStruct)

Analyse_spine_interDistances(dataStruct)

Analyse_spineDistances_around_Spines(dataStruct)

Using the distance and intensity data of each synapse, the distance differences between con-

secutive synapses and the intensity differences between consecutive spines were calculated. The

calculated values were pooled with the values from all other chosen cells and plotted using the

histogram command. For the inter-distance plot, the bin width was empirically chosen to be 0.3

µm for excitatory synapses and 4 µm for the inhibitory counterparts (since the data was scarcer);

the same was done for every branch, with a bin width of 1 µm for excitatory and 6 µm for in-

hibitory synapses. For the inter-intensities, the bars were normalized to approximate a probability

density function, and the bin widths were set to automatic. As a consecutive spine can have an

intensity higher or lower than the previous, both negative and positive differences were used in

the histogram plot. The inter-distance data was also represented as a gamma probability density

function, using the commands “gamfit” and “gampdf”. To serve as a comparison reference, an
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exponential probability density function with equal mean was generated, using “exppdf”. Both

functions were plotted on top of the inter-distance histogram to facilitate their visual interpreta-

tion. Synaptic density was the next quantity to be analyzed, as described below.

3.2.3.8 Density autocorrelation

Functions:

Analyse_inhib_interDistances_autoCorr Analyse_spine_interDistances_autoCorr...

To evaluate the periodicity of the synapses, a density autocorrelation was performed. For each

type of synapse, each branch was represented as a binary vector with ones as its synapses. Instead

of feeding these vectors directly into an autocorrelation command, they were transformed into

density vectors, to smooth the data and to obtain broader but more robust results. Similarly to

what was done for the density displays, each vector was convolved with a gaussian window, with

standard deviation of 0.5 µm for excitatory synapses and 1.5 µm for inhibitory synapses, both

multiplied by a resolution of 10 units/µm. Optionally, the density vectors could also consider the

intensity of each synapse, using these values instead of the ones in the otherwise binary vectors.

The density vectors were then fed into the “xcorr” command and their results plot separately for

excitatory and inhibitory synapses.

3.2.3.9 Excitatory density around inhibitory synapses

Functions:

Analyse_spineDensity_around_inhibSynapse(dataStruct)

To evaluate the influence of inhibitory synapses on excitatory stimuli, a neighborhood of ap-

proximately 40 µm around each inhibitory synapse was analyzed. The set of densities spanning

these neighborhoods were extracted from the excitatory density vectors (built as previously men-

tioned) and stored for each inhibitory synapse. Then, the mean and standard deviation were taken

for each distance in the neighborhood, and plotted in the same graph.

3.2.3.10 Mean inhibitory intensity vs excitatory density

Functions:

Inspect_SizeA_branchDensityB(dataStruct_cell)

The mean intensity and standard deviation of the inhibitory synapses were calculated for every

branch in the selected cells. The densities of the excitatory synapses were calculated for the

same branches, and both values were plotted as coordinates in a scatter plot, with different colors

corresponding to different cells.
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3.2.3.11 Inhibitory intensity vs distance to nearest neighbor

Functions:

Correlate_inhIntensity_distanceNN(dataStruct)

Finally, the intensity of inhibitory synapses was correlated to the distance between them and

the nearest inhibitory synapse. For each one, the minimum distance between it and the others was

calculated and plotted against their intensity.

All figures generated by the toolbox functions are presented in the correspondent Results and

Discussion section of this report.
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Results and Discussion

4.1 Geometrical 3D Algorithm

The proposed geometrical method was validated using the ground truth from a manually seg-

mented image with dendritic spines. The manual segmentation was performed using ImageJ’s

IntSeg 3D plugin, an opensource tool for 3D image annotation created by Prof. Martin Heisen-

berg and his research team from the University of Würzburg, in Germany.

The performance of the method was evaluated objectively in terms of spine counting and

segmentation. Although dendrite segmentation is not the aim of this work, the calculated masks

are also discussed in this section, to contextualize subsequent results. Finally, the measurement

values are presented, and interpreted considering the morphology of the correspondent segmented

spines.

Following preprocessing, the dendrites were segmented from the 3D image data to create a

region where spines could be detected and classified based on their morphology and context within

the dendrite. From the second derivative and intensity content of the image, two complementary

masks were created, one exhibiting spine necks although susceptible to noise (Hessian mask), and

the other with a higher signal to noise ratio but incomplete necks (tubular mask). The comparison

of each is shown by their contours in Figure 4.1, overlaid on top of the median filtered preprocessed

image.

Although the Hessian mask classifies background voxels incorrectly in some regions of the

image, it is not evident if it overestimates the foreground in true dendritic domains. In the bot-

tom spine of Figure 4.1-b), for instance, the blue contour seems to more accurately enclose the

intensities of the spine and neck, while the tubular mask suggests a non-uniform shape which does

not seem to correlate with the intensity profile of the region. It was due to the ambiguity of the

dendrite borders that the proposed shrinking step was made optional, allowing the spine regions

of the Hessian mask to be considered as the final segmentation.

After dendrite segmentation, the automatic detection was performed. For the same image as of

Figure 4.1, the detected spine coordinates are shown in Figure 4.2, overlaid with the tubular mask

to facilitate the visualization.
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Figure 4.1: Contour comparison between the Hessian (blue) and tubular mask (red), overlaid on a
slice of the median filtered stack.

The number of spines counted was 87. During the detection module, the three skeletons from

the Hessian mask with most endpoints were selected to enhance the probability of detecting spines.

However, neither of the last two had any spine points in the foreground of the tubular image, so

they were discarded by the correction phase. From the 87 points, 46 were found belonging to the

ground truth manually calculated, giving a precision of approximately 53%. As the ground truth

includes 103 spines, this leads to a recall of 45% and an F1 score of 49%. This value is considered

low and can be justified by two main reasons. First, slight variations between the Hessian mask and

the ground truth could cause some points to be placed in the neighborhood of the correspondent

spine, falling outside the ground truth image. In fact, if the ground truth was to be eroded by a

spherical mask with a diameter of 3 voxels, the precision would increase to 69%, and to 72% if the

diameter was set to 5 voxels. In these cases, the detection could still be useful as a semi-automatic

tool to locate spines, since it suggests small regions where the probability of encountering a spine

is moderately high. The second reason is due to the influence of noise on the Hessian mask.

Since this mask considers the maximum second derivative response of the image convolved with

Gaussian filters of different standard deviation, the presence of unfocused structures or noise can

be captured by the calculation of neighborhood voxels, increasing the thickness of the foreground.

Figure 4.3 shows that an unfocused dendrite edge can cause an artificially large Hessian mask.

In this case, the thinning method creates a skeleton which does not represent the real structure,

leading to inaccurate detection of spine coordinates.
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Figure 4.2: Spine coordinates (shown as red crosses) from the detection module.

(a) (b) (c) (d)

Figure 4.3: The effect of unfocused structures on the results of the detection module: a) Unfocused
dendritic edge; b) Hessian mask in that region; c) Skeleton of the Hessian mask; d) Correctly
(orange) and incorrectly (magenta) detected coordinates on a slice of the ground truth.
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The reduction of noise by a stronger preprocessing step or a different thresholding technique

reducing its effect (both without compromising the spine necks) would increase the quality of

the results. If these challenges are surpassed, the method could use their results without further

configuration.

It’s worth mentioning that the noise reduction in the image collection phase may also be a

possibility of improving the results. However, this task could be tightly connected to the equipment

used for the acquisition, and expecting higher quality images than the ones provided (which show

both noise and unfocused structures) might decrease the applicability of the program.

The final segmentation results are presented in Figure 4.4, numbered according to the order of

segmentation.

Figure 4.4: Final segmentation of the dendritic spines.

The spines are displayed as 3D volumes and thus can be interactively analyzed within MAT-

LAB’s environment. Their final number is 44, approximately half of the detection coordinates,

roughly the number of detected coordinates found to belong to spines (46). The segmentation was

evaluated based on the confusion matrix with respect to the ground truth, which is presented in

Figure 4.5.

The highest number correspond to the true negatives, i.e., voxels that were determined cor-

rectly as background. The image is dominated by background voxels however, which would be
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Predicted 

non-spine

Predicted 

spine

Real non-

spine
48117126 28141

Real spine 65247 23982

Figure 4.5: Confusion matrix of the final segmentation.

expected to be discarded as spine candidates, at least in their majority. The true positives have the

lowest value of the remaining three, calculates relatively less spines correctly than incorrect spines

or correct background voxels. The precision and recall reflect this performance, with respective

values of 46% and 29%. This leads to the low value of the F1 accuracy measure of 34%. One of

the reasons explaining such a performance level is the missed detection of spines in the detection

module, and the detection of incorrect ones. Considering the correct coordinates, some remain in

the shaft close to the spine, which can sabotage the tracing phase and reduce the number of can-

didate sites even further. The thickness of the Hessian mask not only affects the detection phase,

but also the tracing, making an unclear path for the algorithm to travel through the spines and less

drastic difference of the foreground between the spine and the shaft, reducing the efficacy of the

stopping conditions.

One of the main faults is therefore attributed to the preprocessing and neurite segmentation

stages. The attempt of performing a reliable segmentation in masks of incomplete qualities led to

the constant influence of artefact’s in every stage of the procedure, which surpassed the benefits

both offered and undermined the results. As the spine segmentation module bases its algorithms in

geometric properties still considered valid, it is projected that the improvement of the preliminary

phases will improve the results significantly.

The quantification of the segmented spines is shown in Figure 4.6 and 4.7, divided in two due

to their combined extent.

The volume and surface areas can be taken to describe the shape of spines. For instance,

spine 18 seems to be spherical by visual inspection, and if the radius of an hypothetic sphere was

calculated with their volume and and area, the results would be approximately the same (around

6 voxels), which indicates its close resemblence to this shape. The solidities close to one also

indicate a high convexity, although are values above one outputed by MATLAB’s routine are

suspicious. In theory, the solidity is calculated by the ratio between the volume of a given object

and a convex shape enclosing it. The values were not expected to be higher than one, which will

require some investigation. The centroids were calculated to facilitate the distribution of volume

amongst spines, and can therefore be useful in the classification between types of spines.

In spite of being undermined by the preliminary phases, this component still proposes an

enhanced Rayburst tracing method, a fully original delimination phase and a set of objective mea-

sures, leading to the increasingly automated study of these structures.
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Figure 4.6: Measurement results for the first 20 segmented spines

Figure 4.7: Measurement results for the last 24 segmented spines
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4.2 Machine Learning 2D Algorithm

The performance of the Deep Learning based detection method was evaluated on small regions

in the training, validation and testing phase, and finally in on a complete image in the prediction

phase. The training/validation loss and accuracy are presented in Figure 4.8 for each epoch.

Figure 4.8: Performance of the neural network on both training and testing phases

As expected, during training the classification results improve over training iterations (epochs),

expressed by either an increase of accuracy and a decrease in loss. The classification was compared

to both the training and the validation set, since a 2-fold cross validation scheme was designed.

Although it does not exclude the possibility of overfitting, these results show there is a consistent

improvement of classification ability during this phase.

The algorithm was then tested against a small new test of windows, and outputed a classi-

fication accuracy of 87%. This was regarded as a positive result, although some networks with

different architectures yielded higher accuracies. The reason why they were not selected was due

to their poor performance on the final image. This network was considered to have a desirable

balance between classification success and error, so that it didn’t express a too high dependency

on the training set.

Supported by the previous evaluations, the model was used in the prediction phase to originate

a probability image, which by the post-processing phase, was transformed into the image of Figure

4.9.

The image was compared with the ground truth and the follow confusion matrix was calcu-

lated:
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Figure 4.9: Final classification results by the 2D detection method

Predicted 

non-spine

Predicted 

spine

Real non-

spine
1039407 1008

Real spine 6805 1356

Figure 4.10: Confusion matrix of the final segmentation of the supervised method

The high number of true negatives is once again to the high ratio of background in relation

to foreground. The method exhibits a precision value of 57%, a recall of 17% and a F1 measure

of 26%. This algorithm, contrarily to the previous, does not aim the segmentation of spines, but

solely its detection. Its underestimation of foreground pixels (lowering the values of recall and F1)

is thus secondary, being the accurate marking of spines (independently of the size of the markers)

preferable.

The number of detected spines by the algorithm takes the value of 90, a level closer to the

manual selected 103 spines. Similarly to the geometrical algorithm, however, only 45 of those

coordinates belong to manual selected spines. It is possible that, in some cases, the method was
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able to detect the presence of a spine, but because it is based on a local window estimate, the center

of the window turned to be slightly outside the border, generating a high spine probability value

in a background pixel. In these cases, the suggestion of regions containing spines might be useful

for semi-automatic detection methods, although their exact locations are not reliably inferred.

The size of the dataset might also had a central role in the accuracy of the method. Only 70

original images were collected, and replicated into 2100. The original collection hardly matches

the amount of data extracted in similar classification problems, which can reach hundreds of thou-

sands, and so a larger image dataset is recommended.

This component stands as a fast classification method, trained with a reduced number of im-

ages and a simple architecture.

4.3 Synapse Toolbox

The results of all functions introduced in the Methods section are presented below in the same

order of introduction.

4.3.1 Graphical Display

Spines and inhibitory synapses were displayed graphically to enhance the visual interpretation of

the unprocessed data. Figure 4.11 and 4.12 shows the distribution of each type in every branch of

one arbitrarily chosen cell. The data is presented in two forms: one dividing each branch in two

to separately plot each type of synapse (4.11), and another plotting them in the same line together

with the density estimation for each type (4.12). The type of synapse is differentiated by color,

their intensity by their circle diameter, and their position along the dendritic branches by their

distance values, which are in respect to the beginning of the branch.

Figure 4.11: Graphical display of the synapses of Cell 21.
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Figure 4.12: Graphical display of the synapses of Cell 21 with density profiles

As shown, spines are predominant in the measured dendrites of cell 21. This was to be ex-

pected, since studies suggest nearly 80% of synapses in the mammalian cortex are excitatory [52].

The ratio was found to be, however, more disparate, as this cell, for instance, had a percentage of

92% of spines in relation to the totality of synapses.

4.3.2 Distance and intensity counts per cell

To characterize the distance of synapses from the beginning of their branch and their intensity,

these values were grouped in small intervals and plotted as histograms. Figure 4.13 shows the

distance and intensity plots (normalized or not by branch length), for both types of synapse of

three different cells.

As the bin width was set to automatic and there are more spines than inhibitory synapses,

the number of their bins is also higher. The lower number of inhibitory data also hinders its

interpretation, yet it was chosen not to merge the inhibitory data of different cells to increase its

number out of precaution, since the data variability between cells was typically higher than the

variability between branches of the same cell in several tests.

The histograms characterizing the position of synapses do not appear to show a unique behav-

ior, suggesting there is no preferential distance for either spines and inhibitory synapses to form

along the dendrite. This corroborates the conclusions drawn by [53] who, by using quantile anal-

ysis, found the locations of spines to be completely spatially random in their dataset, regardless of

the maturity of the neurons. Contrarily, the peak value of the intensity histograms suggests a pref-

erential synaptic intensity in every cell (although inhibitory synapses suffer from few synapses).

The peak becomes higher if the intensities are normalized, further suggesting that the preferential

intensity may depend on branch length.
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Figure 4.13: Distance histograms for the synapses of three distinct cells

A preferential value was also found by [54], but in spine actual size instead of fluorescence in-

tensity. The volumes were measured by 3D reconstructions, and the distribution of spine volumes

was also broad and asymmetrical, with a peak of 0.06 µm3. Such similarity supports the validity

of using fluorescence intensity to qualify spine volume.
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Figure 4.14: Intensity histograms for the synapses of three distinct cells

4.3.3 Distance vs intensity per cell

Distance and intensity were correlated to inspect the existence of regions with preferential inten-

sities along branches, and a possible spatial proportionality across them. Figure 4.15 shows the

correlations for both types of synapses, on three different cells.

From the plots, it can be apparent that the data aligns horizontally near the intensity level 1.

However, the coefficients of determination (R2) for each linear regression were considered low,

with 0.044 being their highest value, and corresponding to the excitatory synapses of cell 24. To

complement this information, no significant relation between synaptic distance to the soma and

intensity was also found by [54], who calculated a R2 of 0.014 on data from layer 2/3 of pyramidal

neurons. Thus it appears that distance along branch and dendrite is unrelated to the mechanisms

which control the morphology of spines in pyramidal cells.
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Figure 4.15: Correlation between distances and intensities, considered individually per cell

4.3.4 Total excitatory distances, intensities and number vs total inhibitory distances,
intensities and number

The correlation between distances, number and intensities between synapses of different types in

each branch, is displayed in Figure 4.16.

As it can be observed, for every branch (tagged with the letter B plus its number in the cell)

the sum of distances from each type of synapses express a stronger linearity than their number.

This suggests the position of synapses depend on their number, to compensate its variations and

preserve a distance linearity. R2 was found to be 0.75 for total distances. In regards to total

intensity, the points exhibit a poor correlation with R2 equal to 0.47.
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Figure 4.16: Correlation between the number and intensity of inhibitory and excitatory stimuli

4.3.5 Total intensity vs branch length

Figure 4.17 correlates the sum of intensities (for each type of synapse, in each branch of each cell)

with branch length.

The sum of intensities exhibits a small dependency (R2 equal to 0.76) with branch length,

as shown in the left graph of Figure 4.17. The same is not verified, however, for the inhibitory

stimuli, whose strength seems independent from the length of their branches, as shown in the right

graph (R2=0.50).
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Figure 4.17: Excitatory and inhibitory intensities correlated with branch length

4.3.6 Inter-distances and inter-intensity counts

To analyze the spatial relationship between synapses and their neighbors of the same type, the

distance between every consecutive pair was calculated. The histograms of these inhibitory and

excitatory inter-distances are shown in Figures 4.18, considering the branches of one cell, and

4.19, considering three different cells.

The data from the previous three cells was merged to make these plots, in favor of the quantity

of the inputs, since otherwise they would be too scarce for a histogram representation spanning

their range of distances, as it is evident from the lack of data of Figure 4.18, specially for shaft

synapses.

From visual inspection of Figure 4.19, it may be noticed that some spine inter-distances seem

to cluster, although in the inhibitory type they are even more ambiguous. In the excitatory plot of

the three cells, a decrease in the initial part of the of the histogram is noticeable, which indicates

spines may repel each other under a certain distance. This is emphasized by the experimental

exponential distribution function (blue), which behaves similarly to the exponential function based

on random data (red), except for the beginning, where the experimental function forms a valley,

indicating a lack of small distances between synapses.

Figure 4.20 shows the inter-intensity bar plot for the sorted synapses of the same three cells,

as well as for a random permutation of their order.

There seems to be a bias towards low differences in intensity. However, the same occurs to the

randomly permutated data, which by this method of analysis, makes the tendency insignificant.
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(a)

(b)

Figure 4.18: Histograms of the inter-distances of the a) inhibitory and b) excitatory synapses of
Cell 21, per branch.
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Figure 4.19: Histograms of the inter-distances of the inhibitory and excitatory synapses of Cells
20, 22 and 24.

Figure 4.20: Distribution of the intensity differences between consecutive spines (inter-intensities)
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4.3.7 Density autocorrelation

The autocorrelation analysis was done to inspect if there is any periodicity amongst the positions

of synapses. Figures 4.21 and 4.22 show the results for inhibitory and excitatory synapses, respec-

tively.

Figure 4.21: Periodicity analysis of inhibitory synapses by means of autocorrelation methods

Figure 4.22: Periodicity analysis of excitatory synapses by means of autocorrelation methods

The central peaks result from the correlation of the signal with itself, shifted by 0 µm, and

hence it should not be viewed as a sign of periodicity. In the excitatory graphs, no other outstanding
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peaks are visible, which suggests a non-periodic disposition of spines across the dendrite. On the

contrary, in the inhibitory synapse’s plots, there are noticeable peaks evenly spaced, at least for

branches 1 and 4. This could indicate a periodicity of inhibitory synapses, however the scarce

inhibitory data for each branch could be biasing the autocorrelation results, and hence, branches

with more inhibitory synapses should be considered to support this observation.

4.3.8 Excitatory density around inhibitory synapses

Inhibitory synapses can be positioned in the neighborhood of spines to block their effect. Depend-

ing on the side where they are formed, the effect can be stronger (the proximal side) or weaker

(the distal side). To evaluate if there was a tendency in positioning spines and and inhibitory

synapses in a specific order, the density of spines were evaluated in a surrounding length of 40 µm

surrounding inhibitory puncta. The results are shown in Figure 4.23.

Figure 4.23: Spine density profile around inhibitory synapse for multiple branches of one cell

The graph is highly irregular and do not follow a distinctive behavior. No pattern was found

to underlie spine formation in inhibitory sites, or vice-versa.

4.3.9 Mean inhibitory intensity vs excitatory density

Given that dendrites are more strongly populated with spines than inhibitory synapses, and that

the number of inhibitory synapses does not appear to correlate with the one of their excitatory

counterparts, it was hypothesized that the inhibitory/excitatory balance could be controlled differ-

ently for each type of synapse. For instance, cells could in-crease the excitatory stimuli in their

dendrites by forming more spines, but increasing the inhibitory stimuli by increasing the intensity

of inhibitory synapses. To test this hypothesis, the mean inhibitory intensity was plotted against

spine density, as shown in Figure 4.24.
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Figure 4.24: Variation of the mean inhibitory intensity against the density of spines per branch.

The variance of the mean intensities is too large to infer any concrete conclusion. If that was

not the case and the centers remained in the same position, an horizontal linear correlation could

be investigated, but even proven significant, it would oppose the previous hypothesis, as inhibitory

branch intensity would appear to not depend on spine density.

4.3.10 Inhibitory intensity vs distance to nearest neighbor

To study how the position of inhibitory synapses affects each other intensities, the graph of Figure

4.25 was made, in which inhibitory intensity is plotted against distance to the nearest neighbor, for

one cell.

Figure 4.25: Influence of the position of the nearest inhibitory synapse on inhibitory intensity
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Although points do not appear to follow a strictly random behavior, no strong evidence of

proportionality was found between the two variables.
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Chapter 5

Conclusions and Future Work

Dendritic spines have been postulated to underlie cognitive processes such as learning and mem-

ory, as well as several neurodegenerative diseases, including Alzheimer’s disease, schizophrenia,

intellectual disability, and autism spectrum disorders. Although their role is not completely un-

derstood, recent studies suggest that their morphology and distribution are correlated with their

function. These characteristics can be captured by imaging cultures of neurons and digitally an-

alyzing the produced images. In this Thesis, three advanced computational tools are proposed,

capable of analyzing fluorescence microscopy image data to offer a detailed characterization of

spines. These techniques are fully automatic and evaluate objectively the shape, dimension and

locations of spines, as well as their relationship with shaft synapses.

In the course of this project, a broad set of scientific domains was explored and used towards

the problematic of spines. In the geometrical method, novel 3D image processing techniques,

offered by the latest version of MATLAB’s repertoire, were studied and applied. These include

the thinning algorithm of the detection module, as well as the volume characterization in the

measuring module. Others were adapted from existing functions, such as the anisotropic filters

in both preprocessing and dendrite segmentation modules. A third group was created, namely

the tubular evaluator in the dendrite segmentation module, and the Rayburst tracing and plane

delimitation algorithms in the spine segmentation module. Apart from these, graph theory and

spatial geometry were studied for the detection and spine segmentation modules, respectively. In

the machine learning method, modern artificial intelligence areas were delved into to produce

a supervised method of identifying spines in 2D images. Moreover, the Python programming

language was learned by the author and used to write the convolutional neural network and all

associated routines. In the Synapse Toolbox, subjects from signal processing subjects, such as

periodicity estimation based on autocorrelations, were applied to extract information from the

provided data. With its broad scope, this Thesis granted a major learning opportunity for the

student, who took it to contribute to the study of spines and expand his knowledge on different

domains.
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The first contribution is presented as the geometrical method, which is capable of characterizing

the shape, dimension and locations of spines in 3D. In this method, it is shown that dendrites can

be segmented based on their intensity and curvature, depicted by the second derivative content

of the image. The segmentation follows a cylinder enhancement metric, proposed by [45], with

anisotropic filters, to compensate for the resolution mismatch of the image stack across different

axis. This metric, however, was proven to be insufficient for enhancement the dendrites without

losing the necks of spines. Therefore, an intermediate result, originally designed to limit the

volume in which tubular structures can be found, was used as the final segmentation result. Since

it has a higher tolerance to irregular structures, this mask (Hessian mask) successfully preserves the

necks, but is more susceptible to noise, being larger in noisy regions. The preservation of necks is

a challenge in dendrite segmentation, and often implies intricate tactics to be addressed. Contrarily

to spine segmentation, dendrite segmentation was not the focus of this Thesis, and therefore this

simpler strategy was chosen to segment the dendrites, which undermined subsequent phases in

certain regions but correctly segmented the structures in the ones cleared from noise.

The enhancement result was also kept to correct situations where the algorithm might treat

the background as a spine, due to abnormalities in the mask. As the initial enhancement method

only targets cylinders with a circular cross section, a set of new variations was created to consider

multiple cross sections and adapt to the thickness of the neurites. Ultimately, an elliptical enhance-

ment metric was chosen, which yielded a low noise and high intensity image, further converted

into a second mask (tubular mask) by a simple threshold technique.

From the Hessian mask, spines were detected by first reducing the foreground to a skeleton,

and then manipulating its branchpoints and endpoints until they defined the dendrite shaft and

spines, respectively. The thinning phase was observed to be fast and computationally light, con-

trarily to what previous studies suggested for 3D images [41]. The routine is part of MATLAB’s

latest capabilities, and it was proven reliable for the thinning of dendrites.

Following thinning, the branchpoint and endpoint relationships in the skeleton were found

by a novel algorithm as well. In this algorithm, the branchpoints and endpoints are removed,

reducing the skeleton to isolated “bones”. Then, each of these points is matched against a direct

neighborhood of each bone tip. Points matched with the same bone are deemed connected. This

method worked for every case and allowed the reliable representation of the skeleton into a graph,

which is easier to manipulate.

Using the graph, the shaft can be found by determining its longest path. Hence, the tracing of

the entire dendrite is avoided, which would be computationally expensive and subjected to many

shaft irregularities. The only obstacle for its calculation is the presence of cycles, which would

make the longest path infinite. These can be removed, however, by searching on each branchpoint

for a path that both leaves and enters it, and reducing it to one of its points, transferring to it all the

connections from the rest.

Spines can then be regarded as all the points directly connected to the shaft. This approach

may exclude double spines from being detected, but ensures every spine is detected just once, in

spite of how many points the thinning might produce in their place. After checking if these points
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belong to the tubular mask, they were pushed away from their respective shaft branchpoints, until

they were near the surface of the foreground. This step improved the success rate of the tracing

phase, allowing more spines to be segmented in later stages.

From all the spines marked in the ground truth image, 45% were identified by the automatic

detection method. Due to the disparity between the Hessian mask and the ground truth, several

were detected outside the ground truth’s foreground, and therefore were not counted as success

cases. For instance, the dilation of the ground truth with a spherical element of 5 voxels of diameter

would increase this number to 61%. The mask also made the detection unfeasible in regions

populated with noise, as it became larger and agglomerated spines with the shaft. Furthermore,

this result does not distinguish types of spines. In reality, stubby spines are more difficult to detect

than their thin or mushroom counterparts, which is the reason that some studies consider the latter

types or present a much lower accuracy to stubby [34]. This result encompasses all types, in a

mask highly susceptible to noise and with no tolerance between it and the ground truth.

Spines can be extracted if their neck is found. Previous studies trace the dendritic shaft to

find spine necks. In this project, spines are traced, from their detected points, to find their necks.

An innovative tracing technique combining 3D, 2D and 1D Raybursts was developed to this end.

By tracing spines instead of the shaft, this approach greatly reduces the tracing duration, avoids

all irregularities that may be found across the large extent of the shaft, and does not compromise

other spines if at any moment the tracing fails to continue. Moreover, no initial direction or center

point is needed, since two opposite tracings are performed for each spine (forcing one to reach the

neck) and each can adapt its path for any position inside the spine. A original neck identification

method is also proposed, which considers the difference of angle and position of the last tracing

iteration, as well as the iterations, mask and image limits. It can further be adjusted to best adapt

to the properties of the image if needed. All spines that were detected in the considered region of

interest were correctly traced by this method.

Following neck detection, a new method of separating shaft from spine was designed. It only

requires an approximate neck point and the direction towards the spine, as it works exclusively by

analyzing the cross section of the foreground. Based on its shape, it applies rotations and trans-

lations to an imaginary plane, initially centered around the neckpoint, in order to fit it precisely

between the spine and the shaft. All spines traced in the region of interest were correctly delimited

by this method. It can also save premature and late tracing endings, which may happen in cases

where spines are too long for the tracing to reach the neck, or if the tracing fails to identify it and

ends in a close region on the shaft.

Once limited, spines are extracted by a binary region growing method, beginning inside each

spine and ending on their mask and neck limits. In spite of having a voxel limit to discard cases

where the delimitation failed, all spines in the region of interest were correctly extracted.

To counteract the undesirable high thickness the dendrite mask might have, a grayscale region

growing method is also available, which acts after the spine extraction to reduce their size based

in the intensities of their interior. As some regions in the initial image were correctly segmented,

this option was not used in the examples shown in this work.
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The segmentation of spines expressed an F1 score of 34%. This module was, however, eval-

uated on the automatically detected spines described above, which had an already low accuracy

level (F1 score equal to 49%). Thus, this value reflects, to a high extent, all the misdetections,

which either did not provided points for some spines, or provided unsuitable points, such as ones

inside the shaft and far from the spine, which could not be saved in the tracing nor delimitation

phases. Moreover, even in the correctly determined spine points, if local noise is present, the mask

can be enlarged to a degree where spines may not be distinguished from the shaft. Such cases

are sure to sabotage the tracing phase, preventing more spines to be segmented. As the misde-

tections are mainly due to the enlarged mask as well, the usage of a reliable dendritic mask is

sure to greatly improve the accuracy of both the detection and spine segmentation modules. As

an alternative, in cases where no different mask can be provided, if a manual annotation of spines

was to be performed, it would also reduce the misdetections. This would improve the accuracy of

the segmentation, at the cost of turning the method semi-automatic.

The last phase of the geometrical method consisted in quantifying the segmentation results.

Four properties were chosen: volume, surface area, solidarity and centroid proximity. Volume

effectively characterizes the dimension of spines, and can be used together with area to infer their

shape as well. For instance, both measures can be used to estimate the radius of an equivalent

sphere, with the difference between radius expressing how similar the structure is to an actual

sphere. Solidity takes another approach at estimating shape by measuring how much an equivalent

convex shape would be filled by the spine. For instance, it can be used as a descriptor of how thin

the neck is compared to the head, since a high disproportion would yield a high volume of empty

space inside the equivalent shape. Centroid proximity tells where most of the volume concentrates

in respect to the shaft, which can be used to estimate where the spine head is. All the results were

verified visually, and are proposed as a set of new metrics capable of quantifying the morphology

and dimension of spines.

The second contribution is presented as the machine learning method, which is capable of de-

tecting the locations of spines in 2D. Instead of employing a thinning method, this component fol-

lows a deep learning algorithm for spine classification. Since there are few to none spine datasets,

an interactive questionnaire is proposed, which selects windows out of the dendrite image and

asks the user to classify them. The selection considers different probabilities depending on the

intensity levels of the image, to account for the disproportionality between background and spine

pixels. In the end, the longest group of windows is trimmed so that each class has the same number

of samples. This method is easy to operate, reduces time in comparison to a completely random

selection, and provides an objective way of selecting spine locations.

To account for a possibly small image, or for one having few spines, a replication method

was designed, applying rotations and horizontal flips to the windows. These transformations are

applied randomly, which ensures an unbiased replication process, and can be set to increase the

dataset to any desirable number of samples.
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The dataset is then used to train a machine learning model to classify spines and test its perfor-

mance. A convolutional network with three convolution layers was built for this effect. It yielded

an 87% accuracy on the test set, composed of windows, and it was then chosen to predict spines

on complete images. The prediction works by first cropping the image in small windows, and

using the network on each one of them. The probabilities outputted by the neck are then resized

to match the original image. The last phase is a post-processing step which eliminates small and

non-circular noise.

From all the spines marked in the ground truth image, 44% were identified (nearly the same

as the 45% value from the geometrical detection). Similarly to the geometrical detection, several

spines were detected in the periphery of the ground truth spines, excluding them from the calcu-

lation. No spine types were distinguished, and since stubby spines are more easily confused with

the shaft, the low performance of the algorithm in this type of spines lowered the overall accuracy.

The main reason justifying this result, however, is attributed to the dataset. Deep learning net-

works often require thousands of images to be reliable. Instead, the dataset presented was made

with only 70 windows. Although their number was augmented, the original information was still

drastically low, which may not have been sufficient to prepare the model for a diverse set of spines.

Thus, it is deduced that a larger set of images would increase the performance greatly.

The final contribution is presented as the Synapse Toolbox, capable of correlating spine and

shaft data gathered by fluorescence images. This component is prepared to accept data including

the distance from synapses to the beginning of their branch, their intensity and their branch’s

length. The data is kept in the general-use .csv files, named with the cell, dendritic region and

branch their synapses belong to. An interactive selection is proposed to load the data according

to the desired cells, regions and branches, facilitating the data handling by the user. From this

component, it was concluded that synapses, mainly inhibitory, express some periodicity, opposed

to the idea of being distributed randomly across the dendrites. Synapse intensities, normalized

by branch length, were found to be roughly constant between branches, especially for inhibitory

synapses. Exceptions were encountered in spines, some larger branches exhibited a lower density

than smaller branches. In many cells, a correlation between the number of inhibitory and excitatory

synapses was also found, suggesting a close relationship between spines and other synaptic sites

within the same cell.

Described above is the context of the work, the areas of study that were explored by the author,

the outlining of each proposed method and the highlight of their results. The impact of these

contributions into the research panorama around spines is mentioned in the next section, as well

as their future directions suggested by the author.
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5.1 Achievements

Despite the central role of spines in many neurological processes, and the broad set of imaging

techniques able to depict them, most of their research is still performed in laboratories without

the expertise for advanced image analysis. This leads to an ineffective and inefficient usage of

the image’s information, since not all data is accessed, and the part that is arises from a laborious,

time consuming and subjective manual analysis. This work offers three free, open-source compu-

tational tools to aid in the detailed analysis of dendritic spines. Images, image stacks or plain spine

measurements can be analyzed to characterize their physicality. All tools are automatic, and offer

the detection, segmentation and measuring of spines with objective metrics. The programs are

also organized into modules, making their selection easy, and facilitating further improvements.

Other methodologies and variables can also be easily integrated if desired, such as a manual seg-

mentation phase or dendrite segmentation mask. With these methods, several ideas were tested

and validated successfully against the problems presented. New characteristics about the behavior

of spines were also discovered, unraveling some aspects of their nature. By implementing new

ideas with state of the art techniques, the programs provide a functional workbench that can be

promptly used in the study of these structures.

5.2 Future Work

Regarding new directions and improvements, a set of suggestions are described below for each

component.

In the geometrical method, as emphasized, the improvement of the dendrite segmentation

phase would greatly benefit the detection and segmentation of spines. Efforts should be directed

towards having an accurate representation of dendrites with spine necks, allowing for more spines

to be identified, and each more accurately. As far as new directions, the interactive measurement

of lengths in the extracted 3D spines would be an interesting addition, since it would allow users

to make their own measurements, easily and without further coding. This could be made in a

software such as Blender, by providing the spine masks calculated in MATLAB and programming

the interactive tools through its Python API.

In the case of the machine learning approach, the expansion of the dataset would be the primal

suggestion. New images could be used to generate more windows through the dataset creation

method, or an external spine dataset could be used directly in the training and testing of the neural

network. The network could also experiment new variations. For instance, transfer learning could

be incorporated by using classification models trained on generic datasets. This could improve

the identification of transversal image features without the need for a dendrite specific database.

There are also quite some possibilities to adjust the networks layers and parameters to the spine

classification problem, which could also be tested and empirically explored.
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Regarding the synapse statistical toolbox, the function repertoire could be expanded based on

new hypothesis regarding the behavior of spines. More data could also be gathered as it would

turn calculation such as the periodicity estimate more reliable.

Although being simply operated, each component would benefit for the construction of a

graphical user interface as well. Since the components are written in MATLAB and Python, this

feature would eliminate the need for fundamental programming skills in either language, making

it accessible to more members of the research community.

These measures would expand the capabilities of the proposed method, further contributing to

the characterization of spines, as well as their relationship within the dendrites of neurons.
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Disorder Protein involved
Role in
dendritic spine morphogenesis

Reference

Alzheimer’s disease

Kalirin
↑ spine size and
density

[55]

ApoE ↓ spine density [56]

Preselinin-1
↑ spine size and
density

[57]

Drebrin A
↑ spine size and
density

[58]

Calcineurin
(PP2B)

↓ spine density [59]

Schizophrenia

DISC1
↑ or ↓ spine
size and density

[60]

NRG1
↑ spine size and
density

[61]

ErbB4
↑ spine size and
density

[62]

Kalirin
↑ spine size and
density

[55]

Fragile X Syndrome FMRP ↑ spine density [63]

Austism Spectrum Disorders

Neuroligin-3 ↑ spine density [64]
Neuroligin-4 ↑ spine density [65]
Neurexin1 ↑ spine density [66]
Shank3 ↑ spine density [67]
Shank2 ↑ spine size [68]

Epac2
↓ spine size and
stability

[69]

Figure A.1: Spine associated proteins whose genes are altered in a set of neurodegenerative disor-
ders.
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