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Abstract

In today’s world, deep learning (DL) models for image classification are standard in many areas,
including for the identification of flora. Several models are used for this purpose, but most
focus on flora spread all around the world. In this work, we present DL models specialised for
the identification of autochthonous Portuguese flora. To build the models, we gathered images
from Flora-On, a web portal for Portuguese flora by Sociedade Portuguesa de Botânica, and
iNaturalist, the well-known site for crowd-sourced citizen science identifications of fauna and
flora by the California Academy of Sciences and the National Geographic Society. We assembled
three datasets, containing between 16,000 and 36,000 images and covering between 600 and 1,100
species. We then used the Google Auto ML cloud service to derive TensorFlow Lite models for
each dataset. The models were then deployed in a web application that allows their comparative
assessment. We compared the performance of the three models using three test groups, and
the model with better performance was further compared to the state-of-the-art model used
by PlantNet, a well-known site for crowd-sourced citizen science specialised in flora, showing
promising results.

Keywords: biodiversity, flora, deep learning, image classification, citizen science

i





Resumo

No mundo de hoje, os modelos de deep learning (DL) para classificação de imagens são aplicados
em muitas áreas, incluindo a identificação da flora. Vários modelos são usados para esse fim,
mas a maioria abrange a flora de todo o mundo. Neste trabalho, apresentamos modelos de
DL especializados na identificação da flora autóctone portuguesa. Para construir os modelos,
reunimos imagens do Flora-On, um portal Web para a flora portuguesa da Sociedade Portuguesa de
Botânica, e do iNaturalist, um conhecido projeto de ciência-cidadã global que regista avistamentos
de fauna e de flora criado pela California Academy of Sciences e pela National Geographic Society.
Construímos três conjuntos de dados, contendo entre 16.000 e 36.000 imagens e cobrindo entre
600 e 1.100 espécies. Em seguida, usamos o serviço Google Auto ML para derivar modelos do
TensorFlow Lite para cada conjunto de dados. Os modelos foram então integrados numa aplicação
Web para uso público generalizado. Comparamos depois o desempenho dos três modelos usando
três grupos de teste, e o modelo com melhor desempenho foi ainda comparado ao modelo de
última geração usado pelo PlantNet, um conhecido site de ciência-cidadã especializada em flora,
obtendo resultados promissores.
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Chapter 1

Introduction

Even though there are countless species on our planet, many still unknown to science [44], how
many plants or animals can the average person recognize, let alone name? Some live right next to
us while others can only be seen in other parts of the world. Whatever the case, all of them are
part of the biodiversity that fills this world with unique places and landscapes. Biodiversity can
be perceived as the variation of life at all levels of biological organization [7], from the simplest
forms of life like bacteria, all the way to complete ecosystems. This includes plants, animals,
fungi, and microbial life forms, and all of them contribute to the welfare of their respective
ecosystems, which are essential to life on earth.

Throughout history, biodiversity has taken many hits, and now more than ever [28], changing
weather patterns, pollution, invasive species, and over-exploitation pose as the main threats to
its balance [18]. With all of this happening, it is mandatory the monitoring of species to measure
the health of ecosystems, which is not an easy task to accomplish due to the lack of financial and
human resources available to scientists. For this to work, it is necessary to sensitize and educate
people to contribute with much-needed information and help scientists in this task. In recent
years, a number of apps and web services to collect sightings and for automatic identification
of flora species have appeared. Most services available can identify a wide range of species all
across the globe. These services help people identify species through image recognition, using
machine learning techniques, more specifically, deep learning.

1.1 Problem Statement

Work Proposal and Objectives

The Parque Biológico de Gaia (PBG) is an institution under the jurisdiction of the Câmara
Municipal de Gaia, Established in 1983, with the focus on the preservation of local biodiversity
and a total area of around 87 acres, the institution is host to many exhibitions and is an active
participant in a variety of projects involving the different aspects of environmental protection
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2 Chapter 1. Introduction

[27].

One project in specific, developed in association with the Department of Computer Science
of the Faculty of Sciences of the University of Porto FCUP, was a citizen science mobile app,
called Gaia, as well as a web server, to monitor the local biodiversity [37]. To engage the large
numbers of users required for an effective monitorization such an app must provide interesting
feedback. Automatic identification of the animal or plant being observed/photographed is highly
regarded by users and provides an instant reward.

Our goal in this dissertation is to build upon this earlier work and to introduce in it key user
reward mechanism, through a web service that automatically identifies Portuguese flora species.

Methodology

We started by gathering information regarding the use of deep learning for image classification
of flora and fauna, and Citizen Science on smartphones, as well as web services. Afterwards, we
conducted a study case to test the tools to be used in the project, i.e., Google Auto ML and
TensorFlow.

Following that, we used a similar workflow for the dissertation project. We started by gathering
the datasets necessary and generating the models. With the models ready, we developed the
Web application and integrated those same models in it.

In the final stages, we tested the models with different test groups and compared their
performance through a series of metrics. The best of those models was then tested against
state-of-the-art model. Finally, we present our conclusions regarding the project and describe
the future work.

1.2 Dissertation structure

In Chapter 2 we explain some background, revolving around flora and machine learning, necessary
to understand the project. In Chapter 3 we describe some of the most known mobile apps whose
purpose is automatic identification of species. We take a look at each app interface, as well as
their architecture, and compare them. In Chapter 4 we describe a case study, done in a museum,
where a model was developed to identify sections of a specific exhibit. In Chapter 5 we portray
the development of the project, from generating the models to the implementation of the web
service. In Chapter 6, we depict the results and analysis of the different tests executed with the
models developed. We also display a comparison between a market established model and our
best model. Finally, in Chapter 7, we expose our conclusions and detail future work.



Chapter 2

Background

In this chapter we introduce the background for the thesis proposal, including: a description
of standard terminology used to classify species in taxonomic terms (Section 2.1); reference to
some biodiversity data repositories of interest (Section 2.2); the use of Gaia app for monitoring
biodiversity (Section 2.3); and machine-learning concepts, in particular regarding Convolutional
Neural Networks (CNNs) (Section 2.4).

2.1 Taxonomy

Before 1735, there was no defined way of categorizing nature’s biodiversity, although some work
was published by scientists like John Ray [32] in 1682, where he described around 18000 species
of plants, and Joseph Pitton de Tournefort [42] in 1700, where he described around 9000 species.
In 1735, a Swedish botanist named Carl Linnaeus, published the first edition of his major work,
"Systema Naturae" [22], where he introduced the binomial naming system to describe species,
along with classes like order and genus. This work is the reason Carl Linneaus is considered by
many the father of modern taxonomy.

Taxonomy is the theory and practice of delimiting and classifying different kinds of entities
[23, 25]. In biology, the term taxonomy refers to the conception, naming, and classification of
every single living organism on earth. This process characterized by dividing the organisms into
taxons, or groups of populations which are usually inferred to be phylogenetically related. The
taxons form what is called the taxonomic hierarchy [33], illustrated in the diagram (Figure 2.1).
As we can see in the diagram, the taxonomic hierarchy is divided into eight taxons. Some of
these taxons have subcategories (i.e., subspecies).

In the diagram. The domain taxon (bottom) is the most generic one. Species is the most
specific taxon, and the name of each species is a result of a binomial nomenclature system,
meaning, it is composited of two names, first is the genus, the second is known as the specific
epithet, which distinguishes the species from others in the same genus. Taking as example the
case of the domestic cat, its species is Felis domestica, Felis is the genus, first letter uppercase,

3



4 Chapter 2. Background

and domestica is the specific epithet, all lowercase. The species of an organism is also known as
its scientific name. All of the names, whether to specify the domain or any of the other taxons,
are Latin and always written in italic, just like the example above [33].

Figure 2.1: Taxonomic Hierarchy

Nowadays, authoritative taxonomic information about a vast range of plants, animals, fungi,
and microbes is provided by the Integrated Taxonomic Information System (ITIS), a project that
is a consequence of a partnership between USA, Canadian and Mexican agencies, in collaboration
with taxonomic experts. In 2013 their database included information on more than one million
and three hundred thousand species on a global scale [35], and each of these as a unique Taxonomic
Serial Number (TSN) to make sure no organism is checked in more than once. Their website
allows costumers to search any of the taxons and provides information about the hierarchy of
that same taxon. This process is illustrated in the image below (Figure 2.2) for the genus Lilium.

Figure 2.2: ITIS - Information about the genus Lilium



2.2. Biodiversity data repositories 5

We searched a specific taxon, the genus Lilium and, as mentioned, all the information about
the hierarchy is provided, not only are displayed the names of the species belonging to this genus,
but also which taxons the genus Lilium is a part of. It is also mentioned that this genus contains
thirty-three species and nine subspecies. If we dig a little bit deeper and click on one of the
species, i.e. Lilium candidum, we obtain information like the common name, the respective TSN,
the taxonomic hierarchy and so on.

2.2 Biodiversity data repositories

2.2.1 Global Biodiversity Information Facility

Global Biodiversity Information Facility (GBIF) (Figure 2.3) is a repository that contains data
sets from all kinds of species on a global scale. it is purpose is to make biodiversity data and
information accessible worldwide, and has around 50000 data sets available.

Figure 2.3: Global Biodiversity Information Facility [8].

2.2.2 Flora-On

Flora-On is web platform (Figure 2.4) property of the Sociedade Portguesa de Botânica, that holds
information about Portuguese flora. Currently, it has around 450000 observations distributed for
2200 species, this data set is our priority, since it focuses on Portuguese data and it is verified by
specialists which makes this data rock solid for training models to identify species.
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Figure 2.4: Flora-On [20].

2.3 Machine Learning

Machine Learning (ML) can be perceived as the science of getting computers to learn and act
like humans do, and improve their learning over time in an autonomous fashion, by feeding them
data and information in the form of observations and real-world interactions [5].

A ML model solves problems in a formal and repeatable way, making judgments about the
information that is present in data sets by extracting patterns and acquiring knowledge from
the data available and predicting future instances according to a task performed in previous
observations [26]. This notion can be adapted to many areas of study, and as a result ML as
applications in medical diagnosis [17], genetic analysis [21], computer vision [36], search engines
[24], among others [46]. Our area of interest is Computer Vision (CV), where challenges like
speech recognition [11] and object detection [4] can be solved with recurrence to a subset of ML,
known as Deep Learning (DL).

2.3.1 Neural Networks

Neural Networks (NNs), or Artificial Neural Networks (ANNs), are a set of ML algorithms
designed to replicate how actual Biological Neural Networks (BNNs) and their neurons work.
Just like humans can recognize an object in an image or a pattern in a data set, these algorithms
can be used to perform such tasks and supply information to its users. Below, illustrated in
Figure 2.5, is the basic architecture of a NN. It is composed of an input layer, which takes
an input, a variable number of hidden layers, which are responsible for processing data and
extracting features, and an output layer, to classify the data. Each layer consists of a set of units
called neurons, which communicate with each other through signals. These neurons’ capabilities
come down to combining input signals with an activation function to produce output signals,
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also known as weights, which are then sent to neurons on the next layer to repeat the process.

... ... ... ...

Input Layer Hidden Layers Output Layer

IN
PU

T
O
U
TPU

T

Figure 2.5: Architecture of a Neural Network

Now, to recognize an object in an image a person needs to have seen such object before, or in
the case of recognizing a pattern in a data set, it is also necessary some experience to perform
such task. These algorithms are no different, they need to be trained to perform a specific task.

2.3.1.1 Training

In order to train a network, we need to provide labeled data so the network can compare its
predictions with the correct output and learn from it. Initially, the pixels of an image are fed to
the input layer, in which the number of neurons is equal to the number of pixels in the image,
following this, weights are assigned to the connections between these neurons and the ones on
the next layer, as defined before training.

The input is multiplied by the weight of the connection and the sum is sent to the neurons in
the hidden layer as input. Each of the neurons in the hidden layer as a value assigned called
bias, this value is added to the input sum and the result is passed through a function known
as activation function, that determines which neurons will be activated, that is, which neurons
will send information to the neurons in the next layer. This process, illustrated in Figure 2.6, is
repeated all the way to the output layer and it is referred to as forward propagation.

Once the output layer is reached, the prediction of the network is based on the neuron of the
output layer that has the highest value, these values are percentages and show how confident is
the prediction. This prediction is then compared to the actual result (i.e. labels we provide to
the network for training), and the network calculates the error based on this comparison, 2.7.
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Figure 2.6: Training of a Neural Network

Figure 2.7: Prediction of a Neural Network

The error indicates the distance between the prediction and the actual result, in other words,
the actual result should have value 1, and the other two should have 0, hence the error values
present in Figure 2.7, needless to say, the model’s prediction was wrong. Now, to learn from
these mistakes, the error values are sent backwards through the network to adjust the weights of
the connections, this process is known as backpropagation. This cycle, forward propagation -
backpropagation, is iteratively repeated with all the inputs from a data set until the weights’
values are such that the network can, correctly, predict the output in most of the cases.

2.3.1.2 Overfitting and Underfitting

Whether it is before, during or after the training of a network, there are two problems to account
for, overfitting and underfitting. The first happens when the data supplied to train the network is
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very similar, this results in results very uniform which causes the network to make bad predictions
with inputs that differ from the data used for training, so a solution is to select a data set
for training that has a variety of angles or environments to help the network predict better.
The second happens when the data used for training the network is not enough, that way, the
network will not capture the patterns of the data, and this will also cause the network to predict
successfully at a lower rate, networks need vasts amounts of data to capture features and patterns.

2.3.2 Deep Learning

Deep Learning (DL) has evolved hand in hand with the digital era, which has brought about
an explosion of data in all forms and from every region of the world, simply known as big data.
This happened because DL models need vasts amounts of training data to be successful.

Conventional ML techniques were limited in their ability to process natural raw data, they
needed this data to be pre-processed so that later patterns could be detected or classified. This
pre-processing required careful engineering and considerable domain expertise to design a feature
extractor that transformed the raw data, such as the pixel values of an image, into a suitable
internal representation or feature vector [19]. DL models allow a machine to be fed raw data and
automatically discover the representations needed for detection or classification [19], which are
known as Deep Neural Networks (DNNs), and are based on ANNs, or simply NNs [38].

2.3.3 Convolutional Neural Networks

CNNs are a DL model and can be split into two main sections, feature extraction, that is
gathering features from the input, and classification, classify the input according to its features.
For feature extraction it uses a series of convolution layers, which are followed by Fully Connected
Layers (Fully Connected Layers (FCLs)), these layers compose the classification section, as we
can see in Figure 2.8.

Figure 2.8: Typical CNN architecture. Adapted from [45].
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Convolutional Layers

Convolution is a mathematical operation applied to the input using a filter, also known as kernel,
as illustrated in Figure 2.9. The kernel slides over the input image one pixel at a time, starting
from the top left, it multiplies its values with the overlapping values of the image while sliding
over it and adds all of them up to output a single value for each overlap until the entire image is
traversed. Convolution is the main characteristic of a CNN, this operation facilitates learning
because reduces the size of the output, using a filter, while keeping the main features.

Figure 2.9: Example of convolution.

Activation functions

The purpose of these functions is to help decide which neurons need to be activated. They usually
appear in the middle or end of a CNN, right after a convolutional layer. The most common
activation function is the Rectified Linear Unit (ReLU), which simply converts all of the negative
values to zero and keeps the positive values the same, as shown in Figure 2.10. Therefore, neurons
with negative values are not activated.
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Figure 2.10: ReLU function.

Pooling layers

There are two kinds of pooling, average pooling and max pooling. Average pooling returns the
average of all the values from the portion of the image covered by the kernel, while the max
pooling selects the maximum number of the same values. In Figure 2.11 is illustrated an example
of max pooling. The pooling operation improves statistical efficiency and reduces the size of the
inputs for the next layer, this process is called downsampling or subsampling (Figure 2.8).

Figure 2.11: Max pooling, using a 2 by 2 filter.

Fully Connected Layers

Once all the data has gone through the convolutional layers, it is to be used by FCL to predict
a label for the input. The result of the convolutions is first flattened into a single vector of
values. In these layers, all the neurons in a layer are connected to all the neurons in the next
layer, just like a usual NN, which means weights and bias are assigned to connections and
neurons respectively, to determine the label that best fits the input. Forward propagation and
backpropagation are used to adjust these values so the output is the correct one.
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Softmax function

The outputs of the last layer of a CNN are not in the probabilities format. Softmax is an
activation function used in the end of a CNN to turn the output values into probabilities. This
function gathers the output values into a vector of size n, and normalizes it into a probability
distribution of n probabilities. The sum of the probabilities must always be 1. Each provability
is assigned to a label.

2.3.4 Transfer Learning

As we know, neural networks require large amounts of data to learn from. Learning, which
is accomplished by training, can take many hours, or even days. A valuable solution to this
problem is the concept of transfer learning, that is, the use of pre-trained models of neural
networks that already have information about the general characteristics of a wide range of
classes, related or not to the ones we want the network to identify. This allows to take advantage
of such information and save considerably amounts of time by training just a fraction of the
network, depending on the part of the network that is going to be trained different techniques
may be applied. Considering the architecture of CNNs, feature extraction and fine-tuning are
commonly used to apply transfer learning. Feature extraction is when only the layers in the
classification section are trained from scratch. Since these layers lead to classification, they are
trained to classify the new data. In the case of fine-tuning, besides training the layers present in
the classification section, some of the top convolutional layers, which contain the most specific
features of the data, are also trained to "fine-tune" the parameters that lead to classification.



Chapter 3

State of the Art

In this chapter are described some solutions regarding image classification in the environmental
quest area, mainly solutions that are associated with portability, i.e. mobile applications. In the
end, is depicted a discussion about the characteristics of these solutions.

3.1 Comparable Solutions

In this section are portrayed and compared different solutions that apply the concept of image
recognition, more specifically, mobile apps, which are the focal point of this dissertation. All of
them are related to the environment and with a substantial variety of organisms, animals, plants
and even fungi. Even though this dissertation focuses on plants, particularly the ones located
in Porto district, it is also important to consider mobile applications with a more vast range of
organisms, since every used technique should be analyzed and compared to make a solid and
fundamental decision about the application’s architecture to develop.

3.1.1 PlantNet

PlantNet is a large-scale participatory platform and information system dedicated to the
production of botanical data through image-based plant identification [29]. The application is
translated in eleven languages and, in 2017, it had been downloaded by more than 3 million
users in about 170 countries [2]. The application interface is illustrated below in Figure 3.1.

As we can see, Figure 3.1a illustrates the home interface, on top of the image, “World flora”
is the name of the database being used, that is, the data is organized in different databases,
each according to a location [29], i.e. if the user uploads a picture of a plant that lives in Africa,
the application only identifies such plant if the Africa database is selected, note that some
databases have species in common. Still in the home interface, it is presented a feed, where recent
observations from others users are displayed. To get the app to identify a plant, the upload of a
picture is needed, and for that, there is the camera symbol present in the home interface (Figure
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3.1a). Once the user clicks there, the interface present in Figure 3.1b appears on the screen,
and as we can see, there are the usual two options, upload a photo from the gallery, or take on
right away. After the picture is selected, it is necessary to specify what is that the user wants
to be identified (Figure 3.1c). Following that, the top results regarding the identification are
shown (Figure 3.1d) and the list of candidate species predicted is displayed in decreasing order of
confidence and each species is illustrated by the most similar picture of that species, this allows
improving the interact identification process by illustrating the candidate species with images
consistent with the observed individual plant.

(a) Home (b) Upload (c) Designation (d) Results

Figure 3.1: PlantNet App Interface

In the results (Figure 3.1d) users can share their observation with the community, whether
they have identified it or not, which will then be validated by one of three tools available [2]:

• A web platform called IdentiPlante that is hosted by one of the largest networks of amateurs
and expert botanists in the world

• A gamified web application called ThePlantGame that is based on a set of data-driven
algorithms

• Embedded validation mechanisms in the Android and Web front-ends themselves

All these validation tools allow the app to cover a growing number of flora and species.

Images are computed by a CNN that is periodically trained, the used CNN architecture is
the inception model by Szegedy et al. 2015 [39]. The network is pre-trained with the ImageNet
dataset [14] and periodically fine-tuned on PlantNet. The data, in January 2017, was composed



3.1. Comparable Solutions 15

of 332 thousand pictures distributed for 10 thousand species. As an observation might be
composed of several pictures of the observed plant, the CNN does predictions for every one
of them, therefore these predictions need to be fused, so a weighted average of the softmax
probability vectors is calculated to supply a final prediction. Note that users may submit a
picture of leaves and flowers of the same plant at the same time, in that case, pictures tagged as
flower are more weighted than pictures tagged as leaf because flowers are more discriminant
than leaves. The identification of a species can only be done with a connection to the internet, it
does not run locally.

3.1.2 iNaturalist and Seek

iNaturalist is a joint initiative by the California Academy of Sciences and the National Geographic
Society, it is a platform for sharing information about all kinds of different species. It has a
website [15] and a citizen science mobile application (Figure 3.2) that allows users to contribute
with observations to help specialists monitor biodiversity across the globe. This application is
to record observations of users and details of said observations, such as the location. Seek is a
mobile application also developed by iNaturalist because they wanted to create a kid-friendly
app that the kids could use without exposing details of the observations such as their exact
location, which is illegal without the consent of the parents, in some countries. This said, the
app is only for automatic identification of species, it is not a citizen science app.

3.1.2.1 iNaturalist Interface

(a) Home (b) Observations list (c) Observation Details (d) Suggestions

Figure 3.2: iNaturalist App Interface
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On the home screen, the user can check its observations (Figure 3.2b) through the side menu,
once there, it is possible to edit any observation that is registered already or create a new one
by clicking on the plus represented in the lower right corner of the screen. By creating a new
observation, a few details need to be filled (Figure 3.2c) and one of them is the species. Just like
PlantNet, it is possible to add more than one picture of the species, and in the details screen,
there is a box that says "What did you see?", which if we click it, supplies possible names for the
species to help the user (Figure 3.2d). As said before, this app is a citizen science app to register
observations, but it uses models of image classification to provide suggestions for possible name
species.

3.1.2.2 Seek Interface

(a) Home (b) Results

Figure 3.3: Seek App Interface

As mentioned before, Seek is a straight-up automatic identification of species kind of app, to
identify a species the user just needs to click on the camera icon present in the home interface
(Figure 3.3a) and as soon as the user provides a picture, whether, from the camera or the local
memory, the app returns the name of the species present in the picture (Figure 3.3b).

These apps use a dataset that contains data from the iNaturalist website [15], all of the
images present in this same dataset were verified by multiple citizen scientist [43], it is composed
of 675000 images of over 5000 thousand species. This dataset is different than others in the
sense that the pictures are not distributed uniformly throughout the various species, that is, as
some species are more likely to be observed than others, this discrepancy between the number
of images per species helps the CNN model to predict with better precision [43] since common
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species are more likely to be observed than species that are rare to be seen on a day-to-day
routine, for example, the dataset has around 150000 pictures of plants and only around 5000 of
fungi, this because we are way more likely to see a plant than fungi. Within these classes, the
same happens. The CNN model used with this dataset is Inception ResNetv2 SE [12].

3.1.3 Merlin Bird ID

Merlin Bird ID is a mobile application to identify birds from all over the world, developed by The
Cornell Lab of Ornithology. Dedicated to service and impact, the Cornell Lab is an expert and
trusted voice and partner for communities around the globe working together for conservation.
Founded in 1915 by Arthur A. Allen, their mission is to interpret and conserve the earth’s
biological diversity through research, education and citizen science focused on birds [3].

(a) Home (b) Uploaded Picture (c) Details (d) Best Matches

Figure 3.4: Merlin Bird ID App Interface

The interface is pretty simple, to identify a bird species users click on the "Photo ID" button
present on the home screen (Figure 3.4a). Next, the user selects a picture, from the local memory
or takes on using the camera, and arranges it to fit the bird in the middle of the screen (Figure
3.4b) so the precision of the prediction can be more accurate. Further, the date and location of
the observation can be described (Figure 3.4c) although both of them are optional, hereupon the
picture is submitted to be analyzed. In Figure 3.4d are displayed the best matches, users can see
the list of results and the details of each of them.
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3.1.4 PlantSnap

PlantSnap was founded in 2016, it emerged from a simple idea from the founder, he came
face-to-face with a plant whose identification he wondered about. The app was created as a way
to connect people to the natural world, their database can identify over 600 thousand different
species of plants and trees all over the world, with a precision of 90% [31].

(a) Feed (b) Results

Figure 3.5: PlantSnap App Interface

The app uses technologies as auto-detect and augmented reality to help users taking a photo
that is better for the app to identify the plant in question. It has a feed, where users can share
their observations and see other users’ observations as well (Figure 3.5a) a picture is uploaded
using the camera or the gallery, as usual, by clicking in the "snap" icon on the bottom of the
screen (Figure 3.5). The results have the format illustrated in Figure 3.5b. With 30 million
downloads and more than 125 million pictures identified, it is one of the most used apps for
identifying plants’ species [31].

3.2 Run-through

In terms of interface, the apps are all similar, the user uploads/takes a picture and the results
are displayed. A particular case about PlantNet, the user needs to specify what is in the picture,
meaning, a leaf, flower, fruit, bark, habit, or other. About the observation, some information
can be registered, in the case of Merlin Bird ID, the location and date are optional for the user
to specify, in the case of iNaturalist, considering this is primarily a citizen science app, some
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details can also be specified besides the ones mentioned before, such as location visibility, it can
be open, obscured or private, and it is possible to register if the plant is captive or cultivated.
An interesting feature about PlantNet and PlanSnap, both present a social feed where users can
share and see each other’s’ observations.

These apps have different areas of study, Merlin Bird ID is the only app mentioned specialized
in birds, it identifies over 4500 bird species from North and South America, Europe, Asia, and
Australia. iNaturalist and Seek are the ones with the widest range, they identify all kinds of
species, whether it is plants, birds, reptiles, fungi, and so on, from all over the world. PlantNet
and PlantSnap identify plant species only, although PlantSnap includes trees too, also from
everywhere.

One important aspect we noticed, only Merlin Bird ID and Seek can identify species locally,
meaning, they don’t need the connection of the internet to process and analyze the pictures, this
probably because, as Merlin only focuses on birds their dataset has about 4500 species, and Seek
has about 14000 species, these numbers are small compared to apps like PlantSnap that has 600
thousand species that compose their dataset. While with small numbers the computation can be
executed in the mobile device and still give good results within proper time, apps with datasets
somewhat extensive, e.g. PlantSnap, need to be connected to the servers so the computation can
be executed there, because it is way more complex than other examples, and if executed locally
would take a lot of time and it would not work on some mobile phones.

Below, the table 3.1, illustrates the essential characteristics of each of the analyzed mobile
applications.
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Chapter 4

Case Study

This chapter describes a brief case study we made at a museum venue that illustrates in a simple
manner how Google Auto ML Vision and TensorFlow can be used for deriving and deploying DL
models for image classification. The aim was to derive a simple DL model to identify museum
sections that could be later be deployed to classify live images obtained using a smartphone. We
describe the museum venue (Section 4.1), then the process of deriving (4.2) and deploying (4.3)
the DL model.

4.1 Galeria da Biodiversidade da Universidade do Porto

Galeria da Biodiversidade da Universidade do Porto (GBUP) is a place in which the arts connect
with biology and natural history, fostering a wide range of sensorial experiences, crafted to
celebrate the diversity of life. Herein, visitors will encounter a set of exhibitions, one of which is
permanent and organized according to 15 major topics covering major aspects of the biological
and cultural diversity we now know. The permanent exhibit at GBUP, illustrated in the photos
of Figure 4.1, provides an amazingly rich and diversified set of museographic resources, ranging
from mechanical models to sophisticated multimedia and audiovisual installations.

To get familiarised with the practical aspects of model derivation and deployment, we decided
to perform a simple case study focused on the permanent exhibition at GBUP. The other goal
was to make a preliminary evaluation of if and how DL models could be used in conjunction
with smartphone apps for indoor location, the subject of another ongoing project.
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(a) Folhas (b) Baleia (c) Caixa de ovos

Figure 4.1: Photos from different sections of the GBUP exhibit.

4.2 Model derivation

Google AutoML Vision (AMLV) is a cloud service to perform automated training of a deep
neural network and obtain the resulting DL model in several formats [10]. Figure 4.2 illustrates
the necessary steps necessary to generate a model using AMLV. In brief, AMLV requires a
dataset of images and their classification labels to perform automatic training of a CNN. After
training, the resulting model can be obtained in several formats including TensorFlow Lite, the
most adequate form of model deployment for web-based or Android smartphone apps.

AutoML Vision

MODEL

CSV

Pictures Cloud
Storage

Dataset CNN Tensorflow model.tflite

Figure 4.2: Workflow for deriving the GBUP model.

To derive the model, we started by taking photos of different sections of the exhibit, such as
those shown back in Figure 4.1, and placed them in a bucket in the Google Cloud Storage [9]
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(GCS), a pre-requisite by AMLV to store image files. We then prepared a CSV file with the
image labels for each picture that should be used to train the model. The CSV file is composed
of path-label pairs, where a path refers to the GCS path for an image and a label classifies the
image in a certain category, as follows:

Location,Label

gcs://path/to/image.png,Baleia

...

Table 4.1 lists the classification labels and the corresponding number of images in the resulting
dataset. Once AMLV processes the CSV file and the images, it displays the dataset as shown in
Figure 4.3, which can now be used train a CNN.

Table 4.1: Number of images per section of the GBUP exhibit.

Section # Images
animais brancos 246
animais negros 211

baleia 70
caes 37

caixa de ovos 29
caixa de perspetivas 31

caracois 29
cheiros 15

comprimidos 30

Section # Images
corça 82
espigas 48

exposição vertival de animais 577
folhas 70

ovos esféricos e ovóides 13
pavão 31

sementes 33
veado 47
nula 104

Figure 4.3: Google Auto ML – dataset panel.

AMLV separates the images of each label into three groups, training, validation, and testing
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randomly sampled from the data set with the following proportions: 80 %, 10% and 10%. For
example, in Table 4.1, we have 70 images for the baleia label, hence AMLV uses 56 for training,
7 for validation and 7 seven for testing. Once training is done in the cloud, a process that lasts
several hours, AMLV provides precision and recall metrics (discussed later in Chapter 6) for the
generated model, providing a glimpse of how, potentially, good or bad, the model is. Figure 4.4
illustrates the evaluation panel for the museum model.

Figure 4.4: Google Auto ML – evaluation panel.

4.3 Model deployment

Figure 4.5: Google Auto ML – export options.

Once a DL model is derived by AMLV, it can be deployed in a number of ways and for
a plethora of platforms, including mobile and web applications, illustrated in Figure 4.5. For
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deploying this model in an Android mobile app, we exported the model as a TensorFlow Lite
format [40]. We then integrated the model into a TensorFlow Lite demonstration app for image
classification [41] to test it out.

Figure 4.6 provides a few screenshots from the Android app running live at GBUP. The app
works by capturing video frames on-the-fly and submitting the frame images to the DL model
interpreter for classification. The model returns a confidence level from 0 to 100 per each of
the labels, and the app displays the labels with the highest confidence level along with the live
video feed. As shown in the screenshots, and by comparison to the photos presented earlier in
Figure 4.1, an accurate classification with high confidence could be obtained for some of the
museum sections, in spite of the modest size of the dataset we used to derive the model.

(a) Folhas (b) Baleia (c) Caixa de ovos.

Figure 4.6: TensorFlow Lite app screenshots.

Overall, this case study allowed us to get experience with the different tools we later used
for flora identification models, described in the following chapters. It also provided a promising
preliminary evaluation of the use of DL models in conjunction with smartphone apps for indoor
location.





Chapter 5

Development

This chapter presents the different steps for building DL models for flora identification comprising
the data collection workflow, the model derivation via AMLV, and the model integration in a
Web application that provides classifications for images submitted by users. First, we describe
the construction of the DL models (Section 5.1). Next, we describe the DL deployment in the
web application and the app implementation (Section 5.2).

5.1 Model development

AutoML Vision

flora-on.pt

inaturalist.org dataset

dataset

model

model

model

Web
Application

Figure 5.1: Overview of model development.

As discuss in Chapter 2, several data repositories can be used as possible sources of cataloged
flora images. From these, we found it convenient to build flora datasets from images found in the
Flora-On web portal by Sociedade Portuguesa de Botânica [1], and from the iNaturalist citizen
science platform that were tagged as “research-grade” observations [13]. The aim was to derive
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DL models using a workflow, illustrated in Figure 5.1, that is similar in nature to the preliminary
case study (Chapter 4), but involves image datasets that can have great volume and variety.

Flora-On provides a comprehensive archive of autochthonous Portuguese flora in terms of
covered species, even if the number of images available is not vast. Moreover, images consist
of photos taken by botanic experts that tend to exhibit distinctive traits for a given species.
As for iNaturalist, we could easily obtain a catalog of flora images from iNaturalist through
the standardised interface of the GBIF portal, specifying Portugal as the country of interest.
Images from iNaturalist tend to have varying quality, cover less species, and are classified by
a crowd-sourcing process that may be error-prone when compared to a controlled process by
botanic experts, but, on the other hand, a higher volume of images is available. We later also
collected iNaturalist images from Spain, trying to cover under-represented species.

Flora-On.csv

iNaturalist (PT + Spain).csv

Flora-On + iNaturalist (PT).csv

Flo

iNatflo

iNatAutoML Vision

1

2

3

1

2

3

Figure 5.2: Dataset construction and resulting models.

Once the image data was appropriately stored in the cloud for use by AMLV, we played
mix-and-match with it by creating three datasets:

1. Flo: derived from Flora-On images alone;

2. iNat: derived from iNaturalist images, both from Portugal and Spain, and;

3. iNatFlo: derived from Flora-On images and iNaturalist images from Portugal, i.e., using
Flora-On as supplement to iNaturalist images from Portugal, rather than iNatularist photos
from Spain
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From these datasets, we derived corresponding DL models, as illustrated in Figure 5.2. The
overall process of deriving models using AMLV was the same as described earlier in Chapter 4.

5.1.1 CNN structure

Figure 5.3 illustrates the basic architecture of the (deep) CNN embedded in all the TensorFlowLite
models derived using AMLV. The screenshot fragments were obtained using the Netron tool for
visualisation of deep learning models [34]. The neural network is 173-layers deep with distinctive
top and bottom layer, but a repetitive structure in the middle layers. We discuss these next.

(a) Initial layers. (b) Middle pattern layers. (c) Final layers.

Figure 5.3: CNN structure.
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As we can see, through Figure 5.3a, the CNN used starts with a series of convolutional layers.
These layers all have different parameters, particularly the filter, also known as kernel. The
input is an image with the parameters 224x224x3, those being, height, width, and the number of
channels, respectively. An input image usually has 3 channels, RGB. In the five layers, two kinds
of convolutions are executed, a normal convolution and a depth-wise one.

In the middle layers (Figure 5.3b), the result of a convolutional layer is used in two fronts
and then put together through an Add layer. This kind of layer requires a list of tensors as input,
and they must have the same shape, in this case, 1x56x56x24. The output also has that same
shape. Tensors are the results of the layers.

Regarding the final layers (Figure 5.3c), we have two more convolutional layers and a Mean
layer. This layer takes a tensor and it does the mean of the integer of one of the tensor’s axis.
Following this, we have the fully connected layers and the softmax function, just like described
in section 2.3.3.

5.2 Web application

We now describe the functionality of the web application developed to process flora images and
present classification results to the users. Figure 5.4 illustrates the many steps of that process.
The basic idea from the user’s perspective is that he/she selects a certain number of images from
one species and submits them. Following that, a web page with the results is displayed. The
remaining of the section focuses on each step in detail.

results.html

Homepage tensorflow List of
results

SQLite3
Database

Classifications

Tests

Figure 5.4: Web app scheme.
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5.2.1 User interface

The homepage of the app, Figure 5.5, is a simple one. It has three fields, two mandatory, User
and Species, and an optional text area for comments.

Figure 5.5: Web app homepage.

User, just like the tag suggests, is the name by which the person that submits the images
for analyses is identified. Species corresponds to the species of the plant present in the images
submitted. In the case of the user not knowing or wishing to specify what species is (or are) in
the images, the option None is available. The images are selected through the button Select
image(s). The comments area is optional, just in case the user wants to add some note about the
images being submitted. The Upload image(s) button starts the backend process to obtain the
results.

Figures 5.6a and 5.6b are examples of pictures submitted, and both of the same species as
mentioned. Results show the image, its name, and the table with the first five classifications
assigned by each model (Figure 5.7). Classifications are accompanied by their respective confidence
values. The blue table cells represent the classifications that match the one submitted by the
user.
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(a) Tulipa sylvestris 1. (b) Tulipa sylvestris 2.

Figure 5.6: Some of the images tested.

(a) Results Figure 5.6a.

(b) Results Figure 5.6b.

Figure 5.7: Tests results for Tulipa sylvestris.

5.2.2 Implementation

This app was developed using HTML, JavaScript and CSS for the frontend, and Python Flask
for the backend. Flask is a micro web framework written in Python [6]. Figure 5.8 and Listing
5.1 represent the project structure and the APIs used throughout the process, respectively.
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App

db dicts models static templates__init__.py __init__.wsgi

imgs js stylesthumbnails

Figure 5.8: Project structure.

� �
from flask import Flask, render_template, url_for, redirect, request, session

import tensorflow as tf

import numpy as np

from PIL import Image

import sqlite3� �
Listing 5.1: Imported APIs.

In summary the main APIs used and corresponding role are:

• flask: the overall Python framework to build web applications;

• tensorflow: TensorFlow Lite functionaliyy;

• numpy: a library for numeric datatypes and mathematical functions;

• Image: an image processing library;

• sqlite3: access to Sqlite3 databases;

5.2.3 Backend

Once the data is submitted, it is treated in the function upload_image (Listing 5.2).

� �
1 @app.route("/upload-image", methods=["GET", "POST"])

2 def upload_image():

3 if request.method == "POST":

4 if request.files:

5 images = request.files.getlist("images[]")

6
7 if request.values:

8 f\_name = request.form[’fname’]

9 expert\_label = request.form[’species\_in’]
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10 comments = request.form[’comments’]

11 if comments == "":

12 comments = "null"

13 else:

14 print(’No values in request!’)

15 redirect(request.url)

16
17 extension = True

18
19 for image in images:

20 if not check_extension(image.filename):

21 print("Error: file extensions allowed %s!" %

(ALLOWED_EXTENSIONS))

22 extension = False

23
24 if extension == False:

25 redirect(request.url)

26 else:

27 names = ""

28 for image in images:

29 filename = secure_filename(image.filename)

30 image.save(os.path.join(app.config["IMAGE_UPLOADS"], filename))

31 names = names + filename + ","

32 print(’Image has been saved!’)

33
34 return redirect(url_for(’loading_results’, names=names,\

35 f_name=f_name, expert_label=expert_label, comments=comments))

36 else:

37 print(’No image selected!’)

38 redirect(request.url)

39
40 return render_template("upload.html")� �

Listing 5.2: Function upload_image.

In the first part of the function (Listing 5.2) we get the list of filenames for the submitted
images (lines 4-5) and gather the information from the User, Species and comments areas (lines
7-12). In case some mandatory value is missing, we do a redirect to the homepage (lines 13-15)
so the request can be submitted again with the proper data. After obtaining the files, we check
if the putative image files are images in a supported format (lines 19-22). The extensions allowed
are JPG, PNG, and JPEG. We use a variable extension, which is initially set to True, and its
value changes in case the function check_extension returns False for at least one of the
images. In that case, the user is redirected to the homepage to make a new request (lines 24-25).

Assuming every image passes the extension check, we verify the integrity of every image
file, save them in the proper directory, and gather their names in a sentence, (lines 26-31).
Through the redirect procedure (lines 34-35) all of this data is then passed to the function
loading_results (Listing 5.3).
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Since we integrated three models into our web application, each image will be given three
classifications, one per model. Moreover, each classification consists of a list of the top 5 results
determined by the model. We decided to store all the information returned by the models for the
submitted images in a lightweight, local, SQL database implemented using SQLite3. Figure 5.9
illustrates the scheme we used to store the information. The table Tests the data submitted by
the user as well as the general information about the tests, such as the date and the ID. Table
Classifications stores the outputs of every model, and the reference to the image tested (red
circle).

Tests

Classifications

ID Test ID Model Classification 1 Confidence
Level 1 ... Classification 5 Confidence

Level 5

1 1 Flo Acacia prominens 42 Acacia longifolia 2

2 1 iNat Acacia longifolia 29 - -

3 1 iNatflo Acacia longifolia 56 - -

ID Filename User Date Species IMG Notes

1 image.png user1 22 - 04 - 2020 Acacia
Longifolia

blob data
type null

Figure 5.9: Database tables.

Now that we clarified how and where we store the information, below is displayed the
loading_results function, mentioned before, in which we execute the tests with the images
and store the information in the tables shown in Figure 5.9.

� �
1 @app.route(’/results/<names>/<f_name>/<expert_label>/<comments>’,

methods=[’GET’,’POST’])

2 def loading_results(names,f_name,expert_label,comments):

3 if request.method == ’GET’:

4 conn = connect_to_db()

5 cursor = conn.cursor()

6 today = date.today()

7 names = names.split(’,’)

8 del names[-1]

9 rowspan = len(names)

10 inat = []

11 fl_inat = []

12 flora = []

13 index = [1,1,2,2,3,3,4,4,5,5]

14 for name in names:

15 id = get_id(cursor,’tests’)

16 expert_id = f_name
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17 filename = app.config["IMAGE_UPLOADS"] + ’/’ + name

18 thumbnail_name = app.config["IMAGE_THUMBNAILS"] + ’/’ + name

19 generate_thumbnail(filename,thumbnail_name)

20 img_blob = converttoBinary(filename)

21 data_tests =

(id,name,expert_id,str(today),expert_label,img_blob,comments)

22 insert_in_db(conn,’tests’,data_tests)

23
24 for i in range(3):

25 model = Model(MODEL_FILES[i], LABEL_FILES[i])

26 output = model.classify(MODEL_NAMES[i],filename)

27 while(len(output) < 12):

28 output.append("")

29 if MODEL_NAMES[i] == "iNaturalist":

30 inat.append(output)

31 elif MODEL_NAMES[i] == "Flora_On_and_iNat":

32 fl_inat.append(output)

33 else:

34 flora.append(output)

35 classif_id = get_id(cursor,’classifications’)

36 data_classifications = (classif_id,id,MODEL_NAMES[i],output[2],\

37 output[3],output[4],output[5],output[6],output[7],\

38 output[8],output[9],output[10],output[11])

39 insert_in_db(conn,’classifications’,data_classifications)

40 conn.commit()

41 conn.close()

42 if request.method == ’POST’:

43 return redirect(url_for(’upload_image’))

44 return

render_template("results.html",index=index,row_span=rowspan,inat=inat,\

45 fl_inat=fl_inat,flora=flora,names=names,\

46 f_name=f_name,expert_label=expert_label,comments=comments)� �
Listing 5.3: Function loading_results.

In this first section of the function we do a little pre-processing, (lines 4-13) initiate the
connection with the database, retrieve the date, and store the names of the images in a proper
way to be used later in the function. Arrays inat, fl_inat, and flora is where we store the
results of the respective models, iNat, iNatflo, and Flo. The index array is to be used later when
presenting the results.

Now, for each image (line 14) we extract every field needed to fill the Tests table (lines 15-21).
First, we get the ID, which is unique per image. Afterwards, we generate a thumbnail of the
image to be used later for displaying the results. We do this to present the results uniformly.
The function takes as arguments the location of the original image and the location where the
thumbnail is to be stored. Variables filename and thumbnail_name hold those same arguments
respectively.

To store the image in the database it is necessary to convert it BLOB (line 20). The variable
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img_blob holds that conversion. Now that we have all the information about the image in
the proper data types, we use the variable data_tests to hold them together and the function
insert_in_db (Listing 5.4) to insert them to the database.

� �
1 def insert_in_db(conn,db,query):

2 cursor = conn.cursor()

3 if db == ’tests’:

4 try:

5 cursor.execute( ’ ’ ’INSERT INTO t e s t s
6 VALUES (? ,? ,? ,? ,? ,? ,?) ’ ’ ’,query)
7 conn.commit()

8 except sqlite3.Error as error:

9 print(’Failed to insert data in table tests - ’, error)

10 elif db == ’classifications’:

11 try:

12 cursor.execute( ’ ’ ’INSERT INTO c l a s s i f i c a t i o n s
13 VALUES (? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,? ,?) ’ ’ ’,query)
14 conn.commit()

15 except sqlite3.Error as error:

16 print(’Failed to insert data in table classifications - ’, error)

17 else:

18 print(’Error: table {} not found!’.format(db))� �
Listing 5.4: Function to insert data in the database.

We use this function to fill both the Tests and Classifications tables. The variable conn holds
the connection to the database, db is the table to fill, and query is the information to be stored.

Back to the loading_results function (Listing 5.3), lines 24-39 is the section where we
test the image with each of the three models mentioned, gather the results, and store them in
the classifications table of the database. We start by creating a variable of the class Model, for
that we need to supply two arguments: the TFLite file, which contains the model, and a text
file. This last file contains every label that the model was trained to identify. Once done, we can
use the function classify, of this class, to get the classifications for the images from the model.
This function returns the name of the model that identified the picture, the name of the picture,
and five classification - confidence pairs provided by the model. This information is stored in
one variable, output, and later inserted in the database. Sometimes, when models happen to be
very confident in the first classification, they return less than five classification - confidence pairs.
In that case, we fill the gaps until the output variable has the right number of arguments to be
stored in the database.

To later present the results to the user, we organize the results of the tests per model. For
that, we separate them into three arrays, one per model. Finally, the last step is to obtain the
IDs for each of the classifications. We accomplish that by using the function get_it, just like
we did to obtain the IDs for the tests. To insert in the table classifications of the database, we
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gather all the information to fill the table in one variable, data_classifications, and send it to the
function insert_in_db (Listing 5.4).

After completing this process for every picture submitted, all that is left is to send the
information to the HTML page (lines 44-46). Index and row_span are just details to help put
the information in the right place. The arrays inat, fl_inat, and flora contain the results of the
tests performed on the images according to the models iNat, iNatflo, and Flo respectively. The
array names holds the names of the images submitted. f_name, expert_label, and comments
contain the data with which users filled the homepage form (Figure 5.5). Finally, Listing 5.5
shows how we render the data in the results.html page. For each picture, we display the filename,
a thumbnail of the image, and a table with the tests’ results. The top row of the table contains
the #. It represents the order of the classifications that each model assigned to the image. Also,
in the top row are the names of the three models. The remaining rows display the labels and
the respective value of confidence assigned by the models, ordered descending. Once the table
is complete we use a JavaScript function to color the classifications that match the Species
submitted by the user.

� �
1 {%for i in range(row_span)%}

2 <h3>{{names[i]}}</h3>

3 <img src="{{url_for(’static’,filename=’thumbnails/’+names[i])}}"

alt="Plant image!"/>

4 <table class="customers" id="{{names[i]}}">

5 <tr>

6 <th></th>

7 <th>iNaturalist</th>

8 <th>FloraOn</th>

9 <th>iNaturalist + FloraOn</th>

10 </tr>

11 {% for j in range(0,9,2)%}

12 <tr>

13 <td>{{index[j]}}</td>

14 <td>{{inat[i][j+2]}} - {{inat[i][j+3]}}</td>

15 <td>{{flora[i][j+2]}} - {{flora[i][j+3]}}</td>

16 <td>{{fl_inat[i][j+2]}} - {{fl_inat[i][j+3]}}</td>

17 </tr>

18 {% endfor %}

19 <script type="text/javascript">

20 var id = "{{names[i]}}";

21 var label = "{{expert_label}}";

22 console.log(id,label);

23 get_rows(id,label);

24 </script>

25 </table>

26 <hr>

27 {% endfor %}� �
Listing 5.5: Data rendering.
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Evaluation

In this chapter we provide an evaluation of the three flora identification models we developed,
using test images that form three test groups, including one composed by images provided by
a domain specialist. The specialist test group is also used for a comparison with the PlantNet
identification service. We first describe the evaluation methodology (6.1) in terms of models, test
groups, and evaluation metrics. We then present comparative results for the three models (6.2).
The chapter ends with the comparative assessment to PlantNet (6.3).

6.1 Methodology

6.1.1 Models

Table 6.1: Model characteristics.

Model Dataset Images Species Genus
Flo FloraOn 16633 1124 574
iNat iNaturalist PT & Spain 37478 625 192

iNatflo iNaturalist PT + FloraOn 36758 1427 659

As explained in the previous chapter, we derived three different models trained with distinct
image sets: FloraOn photos, iNaturalist photos, and a combination of FloraOn and iNaturalist
photos, identified in this chapter as Flo, iNat and iNatflo, respectively. The characteristics of
the models are summarized in Table 6.1 in terms of the number of images, species and genus.

Comparing the Flo and iNat model, we can observe that the Flo model is built using much
fewer images (45% of the images used in iNat; only 15 images per species on average vs. 58 in
iNat), but covers a much greater number of species (by a factor of approx. 2) and genus (by a
factor of approx. 3). The image set of Flo is also more balanced in terms of distribution of photos
per species, as we highlight later in this section. By combining iNaturalist and FloraOn images,
the iNatFlo model tries to cover as many species as possible and overcome some of limitations in

39
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data volume of the Flo model.

6.1.2 Test groups

Table 6.2: Test group characteristics.

Test group Images Species Genus
FloraOn 919 316 229

iNaturalist 4293 316 229
Specialist 219 28 25

To test the models generated we prepared 3 image data sets, called test groups. The first
two test groups, identified as FloraOn and iNaturalist, consist of a subset the images that
Google Auto ML reserved in the validation and test phases of the Flo and iNat models. These
images are identified in a CSV file that can obtained from Google Auto ML, and the subset we
took contained only species that occurred in all the models for a fair comparison. The third test
group, identified as Specialist, consists of a set images supplied by a domain specialist from
Parque Biológico de Gaia. The Specialist test group allows us to have a set of images that was
independent of FloraOn or iNaturalist. More subjectively, this provides us with a test group
that may be less biased in “style”, as FloraOn photos tend to have high-quality and be close-up,
iNaturalist photos have varying quality, and the Specialist photos tend to be close-up but have
lower quality than FloraOn.

The characteristics of all test groups are summarised in Table 6.2. The difference in numbers
for the FloraOn and iNaturalist test groups is in direct relation with the volume and variety we
highlighted earlier for the iNat and Flo models. The Specialist test group is much smaller than
the other two in terms of images, species or genus.

6.1.3 Evaluation metrics

We conducted the base evaluation of our models by submitting images from the test groups to
each model, and calculating the following metrics:

• Top-1 and Top-5: the percentage of images for which a model yields the correct species in
first place or in the first 5 places, respectively, providing measures of classification accuracy;

• Average confidence level: the average value of the confidence level that are reported by
the model for images in Top-1 and Top-5, providing a measure of classification confidence
by the model;

• Precision and recall: a model’s precision and recall, expressed as usual by the ratio
between the number of true positives (TP) and, in the case of precision, the sum of true
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and false positives (FP), or, in the case of recall, the ratio between the number of true
positives (TP) and the sum of true and false negatives (FN)

Precision = TP
TP + FP

Recall = TP
TP + FN

By definition, a high precision indicates a low fraction of False Positives (FPs) results, and
a high recall indicates a low fraction of False Negatives (FNs) results.

6.2 Model results

6.2.1 Top-1 and Top-5

Figure 6.1 depicts the Top-1 (6.1a) and Top-5 (6.1b) of all models across for every test group.
The iNatflo model has noticeably the best performance both in terms of Top-1 and Top-5, except
for the Specialist test group for which the iNat model performance is approximately the same.
For the iNatflo model, the results are very good for the the Flo and iNaturalist test group. For
other models, as expected, Flo is better than iNat for the FloraOn test group, and iNat is better
than Flo for the iNaturalist test group. The Top-1 and Top-5 numbers are only higher than 50 %
for the FloraOn test group.

6.2.2 Confidence levels

We also measured the average confidence level, as depicted in Figure 6.2, for the Top-1 (6.2a)
and Top-5 (6.2b) results returned by each model for each test group. The results are in line with
the base Top-1/Top-5 results, with the best results observed overall for iNatflo and the worst for
FloraOn. It is also noticeable that the Flo model has low confidence levels (< 50%) even for the
FloraOn test group. We believe this is explained by the fact that the Flo model is trained with
relatively few images per species, while at the same time covering a wide number of species.

6.2.3 Top-1 and sensitivity to train set

The correlation between the number of training images and Top-1 performance is put in perspective
in the scatter plots of Figure 6.3, where for each test group (FloraOn,6.3a; iNaturalist 6.3b;
Specialist, 6.3c). A point is depicted for each species and model (Flo in white, iNat in gray, and
iNatflo in black) in each of the test groups. The different sizes of the markers reflect the number
of tests for a species in the test group.

The expected the trend is that a model’s performance tends to correlate with the number
of training images, and the plots confirm it. Mainly in Figures 6.3b and 6.3c, we can see that
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Figure 6.1: Results for the Top-1 and Top-5 metrics.

the models identify more easily species that have more training images, though not always. In
particular, the number of test images can be low for some species, especially in the Flo and
Specialist test groups, hence the Top-1 performance can degrade easily in these cases. For
instance, in the FloraOn test group, many species have only one or two tests, so, a model may
get both tests correct, only one or neither, which explains the three lines in the plot for the
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Figure 6.2: Average confidence level for Top-1 and Top-5 results.

values 0, 50, and 100. In the iNaturalist test group, Figure 6.3b, the scenario is different from
the previous, since the number of tests for most species is considerably higher it gives a better
perspective of how each model performs. The Flo model produces results considerably worse
than the others. Both iNat and iNatflo models successfully identified most species in this test
group. Highlighted in this plot is the difference between the number of training images of the
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models. As we can see, all species from the Flo model appear in the left part of the plot, while
most species from the iNat and iNatflo models appear in the middle and right parts. The data
from the Specialist test group, illustrated in Figure 6.3c, is similar to the iNaturalist test group.
The Flo model performs poorly while iNat and iNatflo maintain their positive trend.

The fact that Flo possesses the widest scope of species and only a few training images, for
each, makes it more vulnerable to mistakes when classifying images. Besides these, other aspects
that can cause the model to be misleading is the kind of image submitted, photo style, and photo
quality (e.g., focus, light, noise). We considered three kinds of photo style: (M) macro/closeup
of plant detail; (N) normal view with full plant and not much else; and (W) wide angle view
with plant included in habitat. Even species with a considerable number of training images can
cause problems for the models when identifying them, depending on the mix of M, N, and W
style photos. For example, in the iNaturalist test group (Figure 6.3b) there can be spotted five
species that, although have a reasonable number of training images, the model iNat had difficulty
when identifying them. Table 6.3 provides the plot numbers of the mentioned species.

Table 6.3: iNat species with unexpected low test results in the iNaturalist test group.

Species Training Images Tests Top 1 (%)
Quercus faginea 53 14 14
Sonchus oleraceus 59 15 27

Capsella bursa-pastoris 65 16 38
Rubia peregrina 80 20 30
Myrtus communis 78 20 40

To better understand these results we analyzed the kind of images, i.e., photo style, used for
testing as well as in training. Table 6.4 describes the photo style of the images used when testing
these species, while Table 6.5 shows the photo style of the images used in training.

Table 6.4: Test images - photo style.

Species Tests M N W
Quercus faginea 14 9 2 3
Sonchus oleraceus 15 8 4 3

Capsella bursa-pastoris 16 7 5 4
Rubia peregrina 20 15 5 0
Myrtus communis 20 12 7 1

Table 6.5: Training images - photo style.

Species Training Images M N W
Quercus faginea 53 38 7 8
Sonchus oleraceus 59 39 18 2

Capsella bursa-pastoris 65 39 13 13
Rubia peregrina 80 35 30 15
Myrtus communis 78 52 24 2
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Figure 6.3: Correlation between Top-1 score and the number of training images per species across
the different test groups.

Considering the number of images used in training (Table 6.3) for each of these species we
expected the model iNat to have better results than the ones presented. Our best guess is that
one of the problems is the images with wide angle view of the plants (W), both in training and
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Table 6.6: Tested images - correctly identified according to photo style.

Species M N W
Quercus faginea 3/9 0/2 0/3
Sonchus oleraceus 4/8 0/4 0/3

Capsella bursa-pastoris 4/7 2/5 1/4
Rubia peregrina 5/15 1/5 0/0
Myrtus communis 6/12 2/7 0/1

testing. These images have very little to no detail, and the environment surrounding the plants
differs quite a bit. Although we firmly believe this to be true, it is just a hypothesis, and due to
limited time, we could not do a more in-depth investigation to prove it.

For the following species, we describe what caused the model trouble when identifying them.

With regards to Quercus faginea, there are lots of species within the Quercus genus. Not
only is the physiognomy very similar, but also, the species of this genus tend to interbreed freely,
giving way to specimens with a mix of features hard to identify even for specialists. So even with
close-up images (M), the model tends to be confused between different Quercus species.

The flower of Sonchus oleraceus is similar to a variety of species including Sonchus tenerrimus
and Sonchus asper. In images less detailed, the flower of this species can also be mistaken with
the flowers of several species of the family Asteraceae, a difficult subject even for specialists.
These similarities with other species caused some doubts in our model, leading to not very good
results.

Finally, Myrtus communis has very distinctive features, that being the flower and the leaf.
The model performed well when identifying good quality and detailed images. The low-quality
images and the surroundings of the plant were the main factors that led to not so good results.
Figures 6.4a and 6.4b are examples of some bad images used for testing this species.

6.2.4 Precision and Recall

The precision and recall values for our three models are shown in Table 6.7 for confidence level
thresholds of 10, 25, and 50 %. Per each confidence threshold, and for both precision and
recall, the best performance is identified in bold, and the worst in italic. To calculate precision
and recall per model, test group, and threshold, we considered true positives to be the correct
(first) classifications returned by the model with a confidence higher than the threshold. If the
confidence is higher than the threshold but the classification is incorrect, we considered an image
to be a false positive for the species returned as a result. For confidence levels lower than the
threshold, an image is considered a false negative in any case.

Looking at the overall numbers, Flo has good precision values but very average, and sometimes
poor values when it comes to recall. It means that most of the tests that it identifies as correct
are correct, but it does not recognize a large portion of tests that it should. iNat has excellent
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(a) Low quality image. (b) Plant surroundings.

Figure 6.4: Images with bad attributes.

precision values, most positives being true, while recall falls a bit short, identifying just around
fifty percent of tests that it should. iNatflo has, once again, better numbers overall.

Precision and recall follow the expected behavior: as larger values for threshold are considered,
precision worsens (due to increasing FPs) whereas recall improves (due to decreasing of FNs).

6.3 Comparison with PlantNet

We performed a comparison of our work with the PlantNet mdoel using the publicly available
RESTful Web service [30], by submitting photos through this service and comparing the obtained
results with the ones we obtained. For the same purpose, we also considered the use of the
iNaturalist API [16], but the image classification functionality that happens to be used internally
by the iNaturalist mobile app but is not available for public use.

The PlantNet service usage is limited to 50 species classification a day, hence, for a timely
evaluation, we decided to perform a comparison only for the Specialist test group (219 photos of
28 species). We also perform a comparison with our iNatflo model only, given that it has the best
overall results and is the one that covers more species. Even if this is a limited comparison, it
provides us with an impression of how our work compares with a state-of-the-art mature system.

The results are shown in Table 6.8, in terms of the Top-1 and Top-5 values for both the
iNatflo model and the PlantNet classification. The global values for the entire test group are
listed in the first row, and subsequent rows provide individual results by species. We display
species names in bold in the cases where iNatflo outperforms Plantnet, in italic when the opposite
happens, and in the regular font when the performance is similar. From the results, we can
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Table 6.7: Results for precision and recall.

Test group Model Conf. Level (%) Precision (%) Recall (%)

FloraOn

Flo
50 98 38
25 92 49
10 83 56

iNat
50 78 28
25 63 35
10 46 40

iNatflo
50 98 89
25 96 90
10 93 91

iNaturalist

Flo
50 81 3
25 65 8
10 42 16

iNat
50 94 68
25 85 79
10 76 92

iNatflo
50 98 89
25 95 92
10 91 97

Specialist

Flo
50 84 7
25 73 16
10 59 25

iNat
50 90 57
25 80 76
10 71 91

iNatflo
50 85 63
25 82 73
10 72 98

observe that the iNatflo performs worst overall than PlantNet, with a lower Top-1 value, 67 % vs.
78 %, but only slightly lower Top-5 value, 87 % vs. 88 %. Regarding individual species, iNatflo
performs better than Plantnet in 6 cases, worse in 13 cases, and there is a tie in 10 cases. Even
if the results of our model are worse, we find them encouraging, considering that our model is
only a research prototype while PlantNet is an established system.
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Table 6.8: iNatFlo vs. PlantNet – Top-1 and Top-5

Top-1 (%) Top-5 (%)
Species iNatflo PlantNet iNatflo PlantNet Tests
All 67 78 87 88 219
Anthyllis vulneraria 71 83 79 96 24
Beta maritima 50 0 50 0 8
Borago officinalis 100 100 100 100 7
Cakile maritima 100 0 100 100 3
Centaurea sphaerocephala 90 90 100 100 10
Cistus salviifolius 100 100 100 100 4
Crataegus monogyna 100 100 100 100 4
Crucianella maritima 0 100 64 100 11
Cyperus capitatus 80 100 100 100 5
Davallia canarienses 0 0 0 30 10
Digitalis purpurea 100 100 100 100 3
Dryopteris affinis 67 33 100 33 3
Erica australis 100 100 100 100 1
Erica umbellata 75 100 100 100 4
Euphorbia paralias 75 83 83 100 12
Glaucium flavum 100 100 100 100 9
Malcolmia littorea 71 86 86 100 7
Medicago marina 100 100 100 100 5
Narcissus triandrus 80 70 90 100 10
Polygonatum odoratum 67 87 100 100 15
Polystichum setiferum 50 0 50 50 2
Saxifraga spathularis 0 0 75 50 4
Scilla monophyllos 89 89 89 100 9
Serapias cordigera 100 100 100 100 6
Seseli tortuosum 83 83 100 100 6
Silene littorea 38 53 69 67 15
Silene uniflora 27 100 73 100 11
Tulipa sylvestris 63 88 75 88 8
Ulex minor 33 67 67 100 3





Chapter 7

Conclusions

In this dissertation, we present a web application that uses deep learning techniques to identify
plants in photographs submitted by users, focusing on the Portuguese flora. Using data from
iNaturalist and Flora-On we developed three models using Google AutoML. The models were then
integrated into the Web application. First, we compared their performance with data from three
different test groups. Afterwards, the one with better performance was tested against a state-of-
the-art model from PlantNet. iNaturalist data is not very controlled and it is heterogeneous, and,
specifically, the photographs vary widely in quantity and quality. The resulting model misses the
identification unacceptably. Flora-On has more reliable data and excellent quality photographs
but few examples per species, resulting in a model that performs poorly when compared to
iNaturalist. The third model, with data from both sources, proved to be the most efficient.

The Web application was built so that we could have a better evaluation of the models
developed. Part of the future work is to improve the interface. We also intend to develop models
with different CNN architectures to test response time and results, when classifying images. We
used the photographs as taken from iNaturalist and Flora-On, without any further treatment.
Experience tells us that selecting adequate parts of a photograph, e.g., isolating as much as
possible the target from the background can have a significant impact on the accuracy of the
final model. A revision of the datasets can, therefore, we believe, improve our current results.

51





Bibliography

[1] Flora de Portugal Interactiva. (2014). Sociedade Portuguesa de Botânica. www.flora-on.pt.
Accessed September 2020.

[2] A. Affouard, H. Goëau, P. Bonnet, J.-C. Lombardo, and A. Joly. Plantnet app in the era of
deep learning. In International Conference on Learning Representation, 2017.

[3] The Cornell Lab of Ornithology. https://www.birds.cornell.edu/home. Accessed September
2020.

[4] D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov. Scalable object detection using deep
neural networks. In IEEE conference on Computer Vision and Pattern Recognition, pages
2147–2154, 2014.

[5] D. Fagella. The rise of neural networks and deep learning in our everyday lives – a conversation
with yoshua bengio. https://emerj.com/ai-podcast-interviews/the-rise-of-neural-networks-
and-deep-learning-in-our-everyday-lives-a-conversation-with-yoshua-bengio/, 2016.

[6] Flask. https://flask.palletsprojects.com/en/1.1.x/. Accessed August 2020.

[7] K. J. Gaston and J. I. Spicer. Biodiversity: an introduction. John Wiley & Sons, 2013.

[8] Global Biodiversity Information Facility. https://www.gbif.org/. Accessed September 2020.

[9] Google Cloud Storage. https://cloud.google.com/storage. Accessed July 2020.

[10] Google Auto ML – Cloud Vision. https://cloud.google.com/vision/overview/docs#automl-
vision. Accessed July 2020.

[11] A. Graves and N. Jaitly. Towards end-to-end speech recognition with recurrent neural
networks. In International conference on Machine Learning, pages 1764–1772, 2014.

[12] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation networks. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 7132–7141, 2018.

[13] K. ichi Ueda. inaturalist research-grade observations. GBIF.org - https://doi.org/10.15468/
ab3s5x, 2020.

[14] Imagenet. http://www.image-net.org/. Accessed September 2020.

53

www.flora-on.pt
https://www.birds.cornell.edu/home
https://emerj.com/ai-podcast-interviews/the-rise-of-neural-networks-and-deep-learning-in-our-everyday-lives-a-conversation-with-yoshua-bengio/
https://emerj.com/ai-podcast-interviews/the-rise-of-neural-networks-and-deep-learning-in-our-everyday-lives-a-conversation-with-yoshua-bengio/
https://flask.palletsprojects.com/en/1.1.x/
https://www.gbif.org/
https://cloud.google.com/storage
https://cloud.google.com/vision/overview/docs#automl-vision
https://cloud.google.com/vision/overview/docs#automl-vision
https://doi.org/10.15468/ab3s5x
https://doi.org/10.15468/ab3s5x
http://www.image-net.org/


54 Bibliography

[15] iNaturalist. https://www.inaturalist.org/. Accessed September 2020.

[16] iNaturalist API. https://api.inaturalist.org/. Accessed July 2020.

[17] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis. Machine
learning applications in cancer prognosis and prediction. Computational and Structural
Biotechnology Journal, 13:8–17, 2015.

[18] W. F. Laurance. Habitat destruction: death by a thousand cuts. Conservation biology for
all, 1(9):73–88, 2010.

[19] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436, 2015.

[20] Leps. https://leps.it/. Accessed September 2020.

[21] M. W. Libbrecht and W. S. Noble. Machine learning applications in genetics and genomics.
Nature Reviews Genetics, 16(6):321–332, 2015.

[22] C. Linnaeus. Systema naturae. Stockholm Laurentii Salvii, 1758.

[23] E. Mayr. The growth of biological thought: Diversity, evolution, and inheritance. Harvard
University Press, 1982.

[24] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. A machine learning approach to
building domain-specific search engines. In IJCAI, volume 99, pages 662–667. Citeseer, 1999.

[25] B. McKelvey. Organizational systematics–taxonomy, evolution, classification. University of
California Press, 1982.

[26] D. Michie, D. J. Spiegelhalter, C. Taylor, et al. Machine learning. Neural and Statistical
Classification, 13, 1994.

[27] Parque Biológico de Gaia. https://www.parquebiologico.pt/. Accessed September 2020.

[28] S. L. Pimm and P. Raven. Biodiversity: extinction by numbers. Nature, 403(6772):843,
2000.

[29] PlantNet. https://plantnet.org/. Accessed September 2020.

[30] PlantNet Plant Identification API. https://my.plantnet.org/. Accessed September 2020.

[31] PlantSnap. https://www.plantsnap.com/. Accessed September 2020.

[32] C. D. Preston. Methodus plantarum nova: John ray (1682), 2016.

[33] W. Ride et al. International code of zoological nomenclature. International Trust for
Zoological Nomenclature, 1999.

[34] L. Roeder. Netron - Visualizer for neural network, deep learning, and machine learning
models. https://github.com/lutzroeder/netron. Accessed September 2020.

https://www.inaturalist.org/
https://api.inaturalist.org/
https://leps.it/
https://www.parquebiologico.pt/
https://plantnet.org/
https://my.plantnet.org/
https://www.plantsnap.com/
https://github.com/lutzroeder/netron


Bibliography 55

[35] Y. Roskov, T. Kunze, L. Paglinawan, T. Orrell, D. Nicolson, A. Culham, N. Bailly, P. Kirk,
T. Bourgoin, G. Baillargeon, et al. Species 2000 & itis catalogue of life, 2013 annual checklist.
Species 2000/ITIS, 2013.

[36] E. Rosten and T. Drummond. Machine learning for high-speed corner detection. In European
Conference on Computer Vision, pages 430–443. Springer, 2006.

[37] R. Santos. Plataforma de Monitorização da Biodiversidade no Concelho de Gaia, 2019.
Faculdade de Ciências da Universidade do Porto.

[38] J. Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:85–117,
2015.

[39] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In IEEE Conference on Computer
Vision and Pattern recognition, pages 1–9, 2015.

[40] Tensorflow lite. https://www.tensorflow.org/lite/. Accessed September 2020.

[41] Tensorflow lite – image classification demo. https://github.com/tensorflow/examples/tree/
master/lite/examples/image_classification/android. Accessed September 2020.

[42] J. d. Tournefort. Institutiones rei herbariae. 1700.

[43] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard, H. Adam, P. Perona,
and S. Belongie. The iNaturalist species classification and detection dataset. In IEEE
conference on Computer Vision and Pattern Recognition, pages 8769–8778, 2018.

[44] T. Watson. percent of earth’s species still unknown. National Geographic News, 86.

[45] Wikipedia. Convolutional Neural Network. en.wikipedia.org/wiki/Convolutional_neural_
network. Accessed September 2020.

[46] C. Zhang and Y. Ma. Ensemble machine learning: methods and applications. Springer, 2012.

https://www.tensorflow.org/lite/
https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android
https://github.com/tensorflow/examples/tree/master/lite/examples/image_classification/android
en.wikipedia.org/wiki/Convolutional_neural_network
en.wikipedia.org/wiki/Convolutional_neural_network

	Abstract
	Resumo
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Listings
	Acronyms
	1 Introduction
	1.1 Problem Statement
	1.2 Dissertation structure

	2 Background
	2.1 Taxonomy
	2.2 Biodiversity data repositories
	2.2.1 Global Biodiversity Information Facility
	2.2.2 Flora-On

	2.3 Machine Learning
	2.3.1 Neural Networks
	2.3.2 Deep Learning
	2.3.3 Convolutional Neural Networks
	2.3.4 Transfer Learning


	3 State of the Art
	3.1 Comparable Solutions
	3.1.1 PlantNet
	3.1.2 iNaturalist and Seek
	3.1.3 Merlin Bird ID
	3.1.4 PlantSnap

	3.2 Run-through

	4 Case Study
	4.1 Galeria da Biodiversidade da Universidade do Porto
	4.2 Model derivation
	4.3 Model deployment

	5 Development
	5.1 Model development
	5.1.1 CNN structure

	5.2 Web application
	5.2.1 User interface
	5.2.2 Implementation
	5.2.3 Backend


	6 Evaluation
	6.1 Methodology
	6.1.1 Models
	6.1.2 Test groups
	6.1.3 Evaluation metrics

	6.2 Model results
	6.2.1 Top-1 and Top-5
	6.2.2 Confidence levels
	6.2.3 Top-1 and sensitivity to train set
	6.2.4 Precision and Recall

	6.3 Comparison with PlantNet

	7 Conclusions
	Bibliography

