
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Identity management: analysis of
secure authentication propositions

Rúben José da Silva Torres

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: José Manuel De Magalhães Cruz

Supervisor: Gonçalo Hermenegildo

September 20, 2020

Identity management: analysis of secure authentication
propositions

Rúben José da Silva Torres

Mestrado Integrado em Engenharia Informática e Computação

September 20, 2020

Abstract

Identity-related digital security solutions typically provide identification solutions such as authen-
tication, authorisation, and digital signature. As such, these solutions usually use a specific pro-
tocol; hence there is a considerable amount of identity protocols that developers need to take into
account when building their systems. In addition to this, many legacy systems use old protocols
that modern systems do not support. Continuous integration of new identity protocols is expensive
and requires exertion to make everything work seamlessly.

From this, a need arises to interconnect systems effortlessly. To find a solution, we first re-
viewed the possibility of a protocol converter. This, however, was determined as unfeasible, be-
cause converting very different mechanisms is, at best, challenging and may even be impossible in
some instances. We later reviewed open-source IAM solutions to continue with the Dissertation.
From our review, we found the WSO2 Identity Server as an excellent candidate, with support for
the initial requirements and comprehensive documentation.

Subsequently, we performed a security analysis of the WSO2 Identity Server. This security
analysis can be divided into two steps: threat analysis and security audit using static analysis tools.
The threat analysis allowed us to characterise the system, identify threats, assets and vulnerabili-
ties, and, in the end, to propose a mitigation plan. The security audit concluded that packages such
as org.wso2.carbon.identity and org.wso2.carbon.balana might need further reviews. We addition-
ally assumed that developers should always use static analysis tools as an aid in the developmental
process.

We further conclude that WSO2 IS is a well-thought solution; with everything in place to be
an extremely secure IAM solution, but this really depends on the deployment configuration.

Keywords: Protocol Converter, Identity protocols, Identity Management, Identity and Access
Management, Single Sign-On, Threat Analysis, Security Audit, Static Analysis

i

ii

Resumo

As soluções de segurança digital relacionadas com identidade geralmente fornecem soluções de
identificação, como autenticação, autorização e assinatura digital. Como tal, essas soluções geral-
mente usam um protocolo específico; havendo uma quantidade considerável de protocolos de
identidade que os developers precisam de ter em consideração ao construir seus sistemas. Além
disso, muitos sistemas legados usam protocolos antigos que os sistemas modernos não suportam.
A integração contínua de novos protocolos de identidade é cara e exige esforço para tudo funcionar
perfeitamente.

Surge então a necessidade de interconectar sistemas sem esforço. Para encontrar uma solução,
primeiro analisamos a possibilidade de um conversor de protocolos. Isso, no entanto, foi consider-
ado uma ideia inviável, porque converter mecanismos muito diferentes é, na melhor das hipóteses,
desafiante e pode até ser em alguns casos impossível. Posteriormente, revimos as soluções de IAM
de código aberto para continuar com a Dissertação. Na nossa análise, descobrimos que o WSO2
Identity Server é um excelente candidato, com suporte para os requisitos iniciais e documentação
abrangente.

Posteriormente, realizamos uma análise de segurança do WSO2 Identity Server. Essa análise
de segurança pode ser dividida em duas etapas: análise de ameaças e auditoria de segurança us-
ando ferramentas de análise estática. A análise de ameaças permitiu-nos caracterizar o sistema,
identificar ameaças, ativos, vulnerabilidades, e no final propor um plano de mitigação. A audi-
toria de segurança concluiu que pacotes como org.wso2.carbon.identity e org.wso2.carbon.balana
podem precisar de revisões adicionais. Além disso, assumimos que os desenvolvedores devem
sempre usar ferramentas de análise estática como um auxílio no processo de desenvolvimento.

Concluímos ainda que o WSO2 IS é uma solução bem pensada; com tudo pronto para ser uma
solução IAM extremamente segura, mas isso realmente depende da configuração de implemen-
tação.

Keywords: Protocol Converter, Identity protocols, Identity Management, Identity and Access
Management, Single Sign-On, Threat Analysis, Security Audit, Static Analysis

iii

iv

Acknowledgements

Two types of acknowledgements are due here.
The first, explicit, goes to my two supervisors, José Magalhães Cruz and Gonçalo Hermenegildo.

Thank you for all the assistance provided during this dissertation.
The second, to the professors of the University of Porto, for their teachings and for their

patience.
To AET Europe, for all the flexibility and for welcoming me like it was my home.
To BEST Porto, for teaching me everything that the University does not teach, and for giving

me skills and experiences that undoubtedly contributed, to not only being a better professional,
but also a better person.

To my friends and colleagues, your contributions made me who I am today.
To those who showed me the patience, wisdom, love, and support, I know I did not always

deserve.
Last but not least, to my family, for the encouragement and understanding I gained during this

time.

Rúben José da Silva Torres

v

vi

“It is better to go forward without a goal,
than to have a goal and stay in one place,

and it is certainly better than to stay in one place without a goal.”

Andrzej Sapkowski

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Definition . 1
1.3 Motivation . 2
1.4 Goals . 2
1.5 Structure . 3

2 Theoretical Fundamentals 5
2.1 Federated Identity Management . 5

2.1.1 Definition . 5
2.1.2 The 7 Laws of Identity . 6
2.1.3 Privacy protection . 7
2.1.4 Open source IAM . 7

2.2 Authentication, Authorisation and Accounting (AAA) 9
2.2.1 Authentication . 9
2.2.2 Authorisation . 10
2.2.3 Accounting . 10

2.3 Identity Protocols . 10
2.3.1 SAML 2.0 . 10
2.3.2 OAuth 2.0 . 13
2.3.3 OIDC 1.0 . 14
2.3.4 Comparative Analysis . 17

2.4 Summary . 17

3 State-of-the-Art 19
3.1 Identity protocol translation gateway . 19
3.2 Interconnecting domains with heterogeneous key distribution and authentication

protocols . 21
3.2.1 Mechanism 1: proxies. 21
3.2.2 Mechanism 2: hiding information in cryptographic expressions 21

3.3 IAM solutions . 22
3.3.1 Shibboleth . 23
3.3.2 SimpleSAMLPHP . 23
3.3.3 CAS . 23
3.3.4 Keycloak . 24
3.3.5 Gluu server . 24
3.3.6 Apache Syncope . 25
3.3.7 MidPoint . 25

ix

x CONTENTS

3.3.8 OpenAM and OpenIDM . 25
3.3.9 Unity IdM . 26
3.3.10 WSO2 . 28

3.4 Summary . 29

4 Problem Statement 31
4.1 Preliminary Study . 31
4.2 IAM solutions comparison . 31
4.3 Importance of a Security Analisys . 31
4.4 Research Methodology . 32

5 Threat Analysis 33
5.1 Context . 33
5.2 Methodology . 34
5.3 Step 1. Description of the system . 36
5.4 Step 2. Analysis of the technical background 48
5.5 Step 3. Identification of assets . 50
5.6 Step 4. Determination of threats . 50
5.7 Step 5. Determination of vulnerabilities . 52
5.8 Step 6. Assets Mapping . 52
5.9 Step 7. Risk Management . 55
5.10 Step 8. Mitigation plan . 55
5.11 Discussion . 56

6 Security Audit of WSO2 IS 57
6.1 Context . 57
6.2 Methodology . 57

6.2.1 Repositories . 58
6.2.2 Tools . 61

6.3 Implementation . 63
6.3.1 FindBugs . 63
6.3.2 PMD . 63
6.3.3 SonarQube . 64

6.4 Results . 65
6.4.1 FindBugs . 65
6.4.2 PMD . 67
6.4.3 Sonarqube . 68

6.5 Discussion . 68

7 Conclusions 71
7.1 Contributions . 72
7.2 Future Work . 72

A Appendix 73
A.1 WSO2 IS Extension repositories . 73

References 79

List of Figures

2.1 Relationship between SAML Components [35] 11
2.2 A simple SAML Use Case [40] . 12
2.3 A simple OAuth Use Case [40] . 14
2.4 A simple OIDC Use Case [40] . 16

3.1 Identity protocol translation gateway - translation method [42] 20
3.2 Mechanism 2 [41] . 22
3.3 Unity Features [22] . 27
3.4 Unity fundamentals [22] . 28

5.1 Steps of Threat analysis . 34
5.2 Use case diagram - User management boundary system 37
5.3 Use case diagram - Authentication boundary system 38
5.4 Use case diagram - Access delegation and policies 39
5.5 Use case diagram - Administration boundary system 39
5.6 WSO2 IS architecture overview and process flow [23] 49

6.1 FindBugs number of reports per priority . 66
6.2 FindBugs number of reports per Rank . 66
6.3 PMD number of reports per priority . 67
6.4 SonaQube results summarised . 68

xi

xii LIST OF FIGURES

List of Tables

2.1 Comparative Analysis between SAML, OAuth and OIDC 17

5.1 Use case table - Managing Users and Roles . 40
5.2 Use case table - Admin-Initiated User Registration 41
5.3 Use case table - Self-Registration . 42
5.4 Use case table - Password Patterns . 42
5.5 Use case table - Password Reset . 43
5.6 Use case table - User Name Recovery . 43
5.7 Use case table - Multi-tenancy . 44
5.8 Use case table - Account Locking . 44
5.9 Use case table - Single Sign-On . 45
5.10 Use case table - Multi-factor authentication . 46
5.11 Use case table - Federated Authentication . 47
5.12 Use case table - Access Delegation . 47
5.13 Use case table - Fine-Grained Access Control with XACML 48
5.14 WSO2 IS Assets . 50
5.15 Threats . 52
5.16 Vulnerabilities . 53
5.17 Assets Mapping . 54
5.18 Threats associated with risk . 55

6.1 Major WSO2 IS repositories . 58
6.2 Packages found to contain problems . 65
6.3 Findbugs results per package - part 1 . 65
6.4 Findbugs results per package - part 2 . 66
6.5 PMD top 10 packages with the most bugs . 67

xiii

xiv LIST OF TABLES

xv

xvi ABBREVIATIONS

Abbreviations

2FA Two-factor authentication
AAA Authentication, Authorisation, Accounting
AE Authorization Endpoint
API Application Programming Interface
AS Authorization Server
CAS Central Authentication Service
CSRF Cross-site request forgery
DNS Domain Name System
DoS Denial-of-Service
ECP Enhanced Client or Proxy
EU End User
FIdM Federated Identity Management
GDPR General Data Protection Regulation
HTTP Hypertext Transfer Protocol
IAM Identity and Access Management
IdM Identity Management
IdP Identity Provider
IWA Integrated Windows Authentication
JAAS Java Authentication and Authorization Service
JSON JavaScript Object Notation
JWT JSON Web Token
LDAP Lightweight Directory Access Protocol
MITM Man-In-The-Middle
OC OAuth Client
OECD Organization for Economic Cooperation and Development
OIDC OpenID Connect
OS Operating System
PAM Pluggable Authentication Modules
PAOS Reverse SOAP
RADIUS Remote Authentication Dial-In User Service
REST Representational State Transfer
RO Resource Owner
RP Relying Party
RS Resource Server
SAML Security Assertion Markup Language
SCIM System for Cross-domain Identity Management
SOAP Simple Object Access Protocol
SP Service Provider
SSO Single sign-on
TE Token Endpoint

ABBREVIATIONS xvii

U2F FIDO Universal 2nd Factor
UIE UserInfo Endpoint
UMA User Managed Access
UML Unified Modeling Language
UNICORE Uniform Interface to Computing Resources
URI Uniform Resource Identifier
WS-Federation Web Services Federation
WSO2 IS WSO2 Identity Server
XACML eXtensible Access Control Markup Language
XML Extensible Markup Language
XSS Cross-Site Scripting

Chapter 1

Introduction

1.1 Context

The enterprise AET Europe, an enterprise offering digital security solutions, proposed this disser-

tation to solve a common problem in organisations, being the development of this work made in a

business environment.

For two systems to be able to interact with each other, they need to understand each other

first. With this in mind, computer systems usually follow a protocol implementation to be able to

communicate and exchange information. Protocols can be associated with anything, and there is

a need for some protocols to provide the identity information of the entity that initiated the com-

munication. The instant that two or more systems use distinct protocols for communication, they

inherently process identity information differently, usually making them inoperable and unable to

communicate.

1.2 Problem Definition

The vast diversity of authentication protocols and multiple identity alternatives aggravates this

problem. Identity and Access Management (IAM) protocols are designed specifically for the

transfer of authentication information and consist of a series of messages in a preset sequence

intended to protect data as it traverses through networks. Several IAM protocols exist to support

strong IAM policies by securing data and ensuring its integrity during transfer. Generally known

as “Authentication, Authorisation, Accounting” or AAA, these identity management protocols

provide standards for security to simplify access management, assistance in compliance, and create

a uniform system for handling interactions between users and systems.

Different standard identity communication protocols were designed to solve this problem. We

will primarily discuss single-sign-on protocols. Single sign-on (SSO) is a property of access con-

trol of multiple related yet independent software systems. However, even though SSO protocols

alleviate this problem, the different SSO protocols differ from each other. For example, SAML and

1

2 Introduction

OIDC are two different SSO protocols that enable single sign-on across web applications; how-

ever, when the OIDC system attempts communication with a SAML system, they cannot exchange

information. This variance means that the protocols are not interoperable, and an organisation that

uses a specific protocol for SSO, often cannot provide this functionality to another organisation

with a different protocol. We can conclude from this example that a large number of computer

systems cannot communicate with each other because they are implemented with different SSO

protocols. Consequently, they are incapable of managing identity information from the users from

each other’s systems.

Furthermore, different protocols used in the industry often have different incompatible ver-

sions of themselves. For example, an organisation may implement OAuth version 2.0, but this

version will not be able to interoperate with OAuth version 1.0.

These discrepancies between protocols result in significant time and money investment for an

organisation to implement every single identity protocol in all of its technological infrastructures.

The increase of advances to user and session identity management has made it very difficult to

choose the technology in a way that facilitates collaboration among enterprises. In a situation

involving two or more organisations, this problem culminates in one of the organisations making

a meaningful investment to adjust their infrastructure to provide/consume the identity information

the way their partners expect.

This problem has been tackled in many IAM solutions [30],[41], [42], and [51].

1.3 Motivation

Techniques for efficiently handling multi-protocol authentication and authorisation in computer

network environments would be advantageous in order to reduce costs and time investment, as

would be techniques that take advantage of multi-protocol requests to provide new authentication

and authorisation paradigms.

As stated in [41] and [42], the need arises to interconnect heterogeneous security domains.

However, devising mechanisms to interconnect heterogeneous distributed systems is a challenging

assignment, and if the heterogeneity also influences the security of the system, the interconnection

problem is even harder.

1.4 Goals

The objective of this dissertation is to find the best way for organisations to overcome the inability

to collaborate due to identity protocol inoperability. The idea is to implement or find the best

solution possible so that various identity protocols can interact seamlessly without implementing

every single protocol themselves, saving a lot of time and money. After, and since this is a sen-

sitive topic in terms of security, this solution should be analysed in-depth for possible security

deficiencies. WSO2 Identity Server was the adopted open-source solution, and, to contribute to

1.5 Structure 3

their project from a security standpoint, we developed a threat analysis and a security audit using

static analysis tools.

Who does this interest? All service providers who wish to expand their support base to other

forms of identity protocols and increase compatibility with other services and new market solu-

tions that want to support multiple forms of authentication quickly.

1.5 Structure

This document is divided into six other chapters. Chapter 2 will provide sufficient theoretical

fundamentals for the rest of the dissertation. This includes the concept of Federated Identity Man-

agement (FIdM), Authentication, Authorisation and Accounting (AAA), and a brief explanation

of some identity protocols such as SAML 2.0, OAuth 2.0, and OIDC 1.0.

Chapter 3 presents a literature review of identity protocol converters and the current state-of-

the-art of IAM solutions.

Chapter 4 builds upon Chapter 3 and delineates the rest of the work dissertation moving for-

ward. In this chapter, we justify why the WSO2 IS was chosen as a solution to our problem, why

the idea of an identity protocol converter might be unfeasible and why we chose to make a security

analysis to WSO2 IS.

Chapter 5 corresponds to a threat analysis made to a WSO2 IS, and ends with a mitigation

plan that should be considered in any WSO2 IS deployment.

Chapter 6 corresponds to a security audit made to the WSO2 IS, using open-source static

analysis tools.

Finally, Chapter 7 focuses on summarising the work of this dissertation and providing a unifi-

cation of the main ideas presented and conclusions drawn.

4 Introduction

Chapter 2

Theoretical Fundamentals

2.1 Federated Identity Management

This section provides an introduction to Federated Identity Management, FIdM.

FIdM promotes the management of identity processes and policies among the collaborating

entities without centralised control.

FIdM has many issues to consider, some of them contradictory to each other, which causes

this not to be a wholly defined topic but one that will continue in active research for many years

to come. These issues include ease of use, user privacy, security, single sign-on, the total cost

of ownership, user profiling and retention of users by service providers, scalability, fine-grained

access control, personalisation of services, and anonymity.

In this section, we will review what Federated Identity Management is, what are the require-

ments for a proper Identity and Access Management (IAM) solution and will give an overview of

open-source software and it is advantages in IAM.

2.1.1 Definition

Identity Management is defined by [46] as a set of functions and capabilities used for:

• assurance of identity information (e.g., identifiers, credentials).

• assurance of the identity of an entity (e.g., users/subscribers, groups, user devices).

• enabling businesses to operate with secure applications.

Federation is defined by [45] as an association compromising any number of service providers

and identity providers. What is implicit in this definition is the mutual trust of the providers

included in this association and the willingness of them to inter-communicate. Usually, this type of

communication includes authentication and authorisation information of users so they can access

5

6 Theoretical Fundamentals

resources in a different service provider, that is the concept of Federated Identity Management

(FIdM).

FIdM promotes cooperation between enterprises where trust between the Service Provider

(SP), and Identity Provider (IdP) is essential for authentication or authorisation. An IdP is a third-

party service which manages identities for an SP providing a service.

Single Sign-On (SSO) is a protocol for authentication which allows user to log in with their

credentials once and enter a federated environment to access different services without the need

of having multiple credentials. An excellent example of SSO is Google, where logging in with a

Google Account allows a user to use different services like Gmail, Google Drive, Youtube.

When correctly placed FIdM provides [28]:

• SSO capabilities, meaning users can use various service without having to authenticate more

than once.

• reduced cost for service providers since they do not need to manage identity information.

• a more scalable solution considering the increase in the number of users does not impact the

management of identity

2.1.2 The 7 Laws of Identity

Seven essential laws that explain the successes and failures of digital identity systems are defined

in [27].

1. «User Control and Consent - Technical identity systems must only reveal information

identifying a user with the user’s consent.» [27]. The implied premise is that users will stop

to trust a system that reveals their identity information to others without explicit consent.

Users will only utilise a service if they have the confidence that their identity information is

protected and their wishes on how this information should be used are respected.

2. «Minimal Disclosure for a Constrained Use - The solution which discloses the least

amount of identifying information and best limits its use is the most stable long term so-

lution.» [27]. The implied premise is that all systems have security flaws, meaning they are

vulnerable to attacks and theft of information. Therefore, systems that capture less identity

information and delete it after completing the purpose of the capture are more trustworthy.

3. «Justifiable Parties - Digital identity systems must be designed, so the disclosure of iden-

tifying information is limited to parties having a necessary and justifiable place in a given

identity relationship.» [27]. The implied premise is that user information should only be

used in a transaction between systems when it is essential for its operation.

4. «Directed Identity - A universal identity system must support both omnidirectional iden-

tifiers for use by public entities and unidirectional identifiers for use by private entities,

2.1 Federated Identity Management 7

thus facilitating discovery while preventing unnecessary release of correlation random iden-

tifiers.» [27]. The implied premise is that users do not want their identifiers shared with

service providers. However, some service providers to be able to contact the users, need

their identifiers. In order to solve this, when users establish communication with service

providers, their identifier should be private or a one time use identifier. This type of identi-

fiers prevents service providers from joining information and creating a global user profile.

5. «Pluralism of Operators and Technologies - A universal identity system must channel

and enable the inter-working of multiple identity technologies run by multiple identity

providers.» [27]. The implied premise is that variety and trust relations between identity

providers are excellent, and users should have the ability to change between pseudonymous

identities whenever they need.

6. «Human Integration - The universal identity metasystem must define the human user to

be a component of the distributed system integrated through unambiguous human-machine

communication mechanisms offering protection against identity attacks.» [27]. The implied

premise is that the user is part of the system’s communication and should be considered as

the weakest link in it. Therefore, securing this link is essential for any identity management

system.

7. «Consistent Experience Across Contexts - The unifying identity metasystem must guar-

antee its users a simple, consistent experience while enabling separation of contexts through

multiple operators and technologies.» [27]. The implied premise is that the user needs to

have a consistent experience regardless of the technologies, scenarios involved in the data

exchange.

These seven laws should not be considered something to live by; nevertheless, they are laws

identity management systems should follow since users are likely to reject or reduce trust levels at

any system that does not implement them.

2.1.3 Privacy protection

Identifiable by seven laws of identity management, privacy protection is an issue that FIdM sys-

tems need to take into account. Many countries have their legal requirements, but these all derive

from the Organization for Economic Cooperation and Development (OECD) privacy guidelines

[11]. FIdM systems need to implement these principles. One approach to implement these princi-

ples is to separate the identity providers from the service providers and store identity information

only in Identity providers. As we will see in Chapter 3 Section 3.3, all modern IAM systems are

capable of this and designed with this in mind.

2.1.4 Open source IAM

In recent years, Identity and Access Management (IAM) solutions started to receive more atten-

tion. With the appearance of more open-source solutions, choosing an IAM solution just based on

8 Theoretical Fundamentals

the number of features is no longer a viable strategy, since most offers are similar in functionality

[2], [3], [6], [9], [10], [12], [13],[19], [20], [22], [23].

Enterprises should consider open-source IAM solutions since these offer an array of unique

proposition inherent to open-source software. Open-source software is more receptive to open

standards and has a more significant focus on extendability at a lower cost and freedom. Besides,

enterprises can evaluate open-source software or create a proof of concept without waiting for

bureaucracies. The freedom to use the software without locking to a solution is also a considerable

advantage. Open-source software architectures are designed to have extensibility in mind to allow

changing requirements and different customisations [21].

The advantages of open-source software match what the IAM experience should be, customis-

able to offer a unique digital experience among competitors with a lower cost. However, using

open-source software for an enterprise also has risks associated with the lifespan of the project.

When an enterprise chooses an open-source solution for its project, this project becomes reliant on

the community behind the open-source project. The contributors of the open-source have in-depth

knowledge of the software; however, they are not obligated to support it or to help users. This

poses a considerable risk to an enterprise who chooses open-source software but can be mitigated

by hiring some of the contributors or training the existent work-force. Furthermore, open-source

projects tend to stall when the lead contributor leaves the project or the community, in general,

loses interest [21]. We additionally have to consider that commercial solutions give a warranty

and legal paid support for the solutions, and that is part of their task to identify risks and act in

conformance.

There is also the misconception that open-source software is more prone to vulnerability at-

tacks because anyone can look at the source code. However, this should be considered as an

advantage; open-source usually have more contributors to the source code, which means more

people looking at it and finding problems. There are also many open-source security tools avail-

able which help in finding vulnerabilities in the development phase [31].

2.1.4.1 What to Look for When Choosing Open Source IAM?

As mentioned, the number of features is no longer a viable strategy for choosing an IAM solution,

but some requirements need to be met depending on the use-case [21]:

• The chosen IAM solution should have the best coverage of features required for the project’s

functional requirements.

• The selected software should be completely open-source and not just open-core.

• The IAM solution should be easily extendable or customisable, giving it a different user

experience from competitors.

• The IAM solution should be easily integrated into the current technology stack since it will

act as an entry point to all services

2.2 Authentication, Authorisation and Accounting (AAA) 9

• The IAM solution can easily incorporate new algorithms and security protocols when they

emerge. If the community behind the project is active, this leads to a fast product update

with the latest security standards.

• The IAM solution needs to comply with security standards and regulations.

• The chosen IAM solution needs to support open-standards to minimise vender-locking.

• The community behind the project should be large enough and active to prevent the project

from stalling and obtain better and faster support.

2.2 Authentication, Authorisation and Accounting (AAA)

Authentication, Authorisation and Accounting (AAA) principles provide a solution for issues re-

lated to user access to services or systems and how can they use them [24]. When a user is

accessing a service from a particular system, there are three issues to resolve between them:

• The user needs to input its credentials (Authentication).

• The system must decide whether a user can access the system and what are the resources

available (Authorisation).

• All activities must be logged (Accounting).

2.2.1 Authentication

Authentication is the process of identifying an individual. After authentication, the user can access

network resources based on the user’s authorisation. Each user needs a set of criteria to access his

allowed resources, in the process of authentication, the AAA system compares the user’s authen-

tication credentials to stored credentials in the system’s database. If the credentials match, the

network grants access to the user, if they do not match the authentication fails. The European

Central Bank defines strong customer authentication based on the use of two or more of the three

types of factors, categorised as knowledge (e.g., password, id), ownership (e.g., smart card, mo-

bile phone) and inherence (e.g., fingerprint) [32]. For strong authentication, these factors must be

mutually independent so that the breach of one of them does not compromise the others. Besides,

at least one of the used factors must be a non-reusable factor and not easily stolen. A user can

authenticate into a system using one or more of the following methods, sorted from a lower to a

higher level of security:

• Single-factor authentication - only uses one element out of the three-factor categories. One

single factor, in the case of IAM solutions, does not provide sufficient protection against

malicious intrusion and misuse.

• Two-factor authentication - also known as 2FA, the user’s identity is confirmed by using a

combination of two independent components from two different factor categories.

10 Theoretical Fundamentals

• Multi-factor authentication - is similar to 2FA, but it can combine more than two authenti-

cation factors for enhanced security.

• Strong authentication – similar to multi-factor authentication but requires the use of at least

one non-reusable and non-replicable factor.

2.2.2 Authorisation

Authorisation is a process of giving individuals access to system objects based on their identity.

After authentication succeeds, the authorisation process determines whether the user has the au-

thority to use some or all of the system’s activities, resources or services. Authorisation occurs

within the same context as of authentication. Once a system authenticates a user, they may be

authorised to different types of access or activity.

2.2.3 Accounting

Accounting, also known as auditing, is a process of logging user’s activity while accessing the

network resources, including the amount of time spent in the network, the services accessed while

there, and the amount of data transferred during the session. Accounting is essential for all systems

because it helps to keep the system secure by logging suspicious changes in user activity and

facilitating the analysis of these changes.

2.3 Identity Protocols

This section explains three of the most popular FIdM standards [29], SAML, OAuth, and OpenID

Connect (OIDC) since they cover practically the entire FIdM industry. We will review SAML 2.0,

OAuth 2.0, and OIDC 1.0.

2.3.1 SAML 2.0

The Security Assertion Markup Language (SAML) [35] defines a XML framework for exchanging

security assertions between entities. It permits the exchange of authentication and authorisation in-

formation. SAML shares identity information using SAML assertion/message payload expressed

in XML. SAML has three key-roles in any transaction:

• Identity Provider (IdP)

• Service Provider (SP)

• User

The IdP is the trusted organisations responsible for authentication and authorisation. The SP

is an organisation that provides services and relies on the IdP for authentication or authorisation.

2.3 Identity Protocols 11

The user is the entity that initiates the communication; this can be an application program that

requests the use of service available in the SP.

SAML 2.0 [35] defines the following components:

• Assertions - describe how the identities are represented.

• Protocols - is a sequence of XML messages.

• Bindings - describe how XML messages are transported (eg. HTTP, SOAP)

• Profiles - define how the SAML assertions, protocols, and bindings are combined for inter-

operability in particular usage scenarios.

For more information on these components, refer to [35]. The relationship of these compo-

nents can be seen in Figure 2.1.

Figure 2.1: Relationship between SAML Components [35]

A simple use case of SAML for identification can be seen in Figure 2.2. Each step of commu-

nication is described below:

1. user tries to access a service from the SP

12 Theoretical Fundamentals

Figure 2.2: A simple SAML Use Case [40]

2.3 Identity Protocols 13

2. SP creates a SAML request and sends it to the user

3. The SAML Request gets redirected to the IdP

4. The IdP authenticates the user and generates a SAML response sending it to the user

5. The SAML Response is sent to the SP

6. The SP validates the SAML response, making the user have access to service initially

wanted.

2.3.2 OAuth 2.0

OAuth [33] can be considered a delegation protocol; it allows the user to grant access to an appli-

cation to perform authorised tasks on behalf of the user. In other words, OAuth allows third-party

applications to gain access to a service on behalf of the User/Resource Owner. OAuth introduces

an authorisation layer and separates the role of the client from that of the resource owner. The

client requests access to the use of resources controlled by the resource owner and accessible on

the resource server. For this, the client never has access to the resource owner’s credentials but

obtains an access token issued by an authorisation server after the approval of the resource owner.

This token is sufficient for the client to get access to the protected resources on the resource server.

By this simple explanation, we can observe that OAuth defines four roles:

• Resource Owner(RO)

• OAuth Client (OC)

• Resource Server (RS)

• Authorisation Server (AS)

The OAuth Provider is just the provider that supplies the OAuth service and is not defined on

the OAuth Specification [33].

OAuth 2.0 is a highly extensible framework with a large number of optional components,

making this specification prone to produce many different implementations that may be non-

interoperable between themselves [33]. This makes OAuth 2.0 the perfect candidate for our prob-

lem and one of the most beneficiaries of any solution.

A simple use case of OAuth 2.0 can be seen in Figure 2.3, and each step of the communication

is described below:

1. RO using an application needs access to resources from a different organisation

2. OC makes a request to the AS for a Request token and Secret Key

3. AS issues the Request Token and Secret Key and sends it to the OC

4. OC sends an URL containing the Request Token for the user to authorise

14 Theoretical Fundamentals

5. RO clicks on the URL

6. AS asks the RO to authorise the OC

7. RO authorises the OC

8. After the RO authorisation, an access token is created by the AS, with the previously gener-

ated Secret key, and sent to the OC

9. The OC sends the access token to Resource Server and acquires the needed resources.

10. RS sends the resources to the OC

11. RO can now use the resources on the OC

Figure 2.3: A simple OAuth Use Case [40]

2.3.3 OIDC 1.0

OpenID Connect (OIDC) [44] is specification built as a profile of OAuth 2.0 rather than a distinct

utterly new protocol. This specification is a framework that allows sending digital identity via

2.3 Identity Protocols 15

RESTful APIs. Even though OIDC is based on OAuth, it is seen as an evolution to OpenID

2.0. The primary difference between OIDC and OAuth 2.0 is that it enables End-Users to be

Authenticated with an ID Token. The ID Token has additional information about the authenticated

user. This token is signed by the IdP and can be read and verified without communicating with the

IdP.

Even though OIDC offers some flexibility in its implementation, it has a lot of more standard-

ised parameters that were left up to developers to decide in OAuth (such as for instance scopes,

endpoints discovery, and dynamic registration of clients).

The OIDC defines five key roles:

• Relying Party (RP)

• End User (EU)

• Authorization Endpoint (AE)

• Token Endpoint (TE)

• UserInfo Endpoint (UIE)

These roles will not be furthermore explained in this document since they are very similar to

the OAuth 2.0 roles [33]. Refer back to the OIDC specification [44] for more information on these

roles.

A simple use case of OIDC 1.0 can be seen in Figure 2.4, and each step of the communication

is described below:

1. EU sends their OpenID login details to the RP

2. RP forwards this login details to the AE

3. The AE authenticates the user after verifying the login details

4. EU is logged in

5. The EU sends the authorisation code to the RP

6. RP sends to the TE the authorisation code and some additional secret information

7. TE responds with the ID Token and Acess Token

8. RP validates the ID Token

9. RP sends the Access token to the UIE

10. UIE sends the information about the user to the RP

11. RP can now deliver services to the EU

16 Theoretical Fundamentals

Figure 2.4: A simple OIDC Use Case [40]

2.4 Summary 17

2.3.4 Comparative Analysis

The paper Securing digital identities in the cloud by selecting an apposite Federated Identity

Management from SAML, OAuth and OpenID Connect [40] shows the pros and cons of each

protocol.

The Table 2.1 is a summary from the information on [40].

Table 2.1: Comparative Analysis between SAML, OAuth and OIDC

Criteria SAML 2.0 OAuth 2.0 OIDC 1.0
Main Usages FIdM, SSO API authorization FIdM, SSO
Authentication / Au-
thorization

Y/Y N/Y Y/Y

Token format XML XML,JSON,JWT JSON,JWT
Token content User identity but no

credentials
User identity but no
credentials

User identity but no
credentials

Protocols used XML, HTTP, SOAP JSON, HTTP, REST JSON, HTTP, REST
User consent Not responsible Collects before shar-

ing attibutes
Collects before shar-
ing attributes

Client Discovery and
On-Boarding

No dynamic intro-
ductions

No dynamic intro-
ductions

Dynamic introduc-
tions

Data integrity XML signature -
X.509

Token contents can
be protected with DS
or a MAC

JWS - HMAC SHA-
256

Web and native mo-
bile app support

Web Both Both

2.4 Summary

In this chapter, we established needed background knowledge to understand the following chapters

better. This knowledge includes understanding what Identity and Access Management (IAM),

Federated Identity Management (FIdM) and what makes the right IAM solution. We established

the essential and somewhat confusing notion of Authentication, Authorisation and Accounting

(AAA), needed for a basic understanding of some identity protocols used in FIdM.

18 Theoretical Fundamentals

Chapter 3

State-of-the-Art

In this chapter, we will analyse available solutions for the proposed problem. Identity protocol

translation gateway patent [42], the Interconnecting domains with heterogeneous key distribution

and authentication protocols paper [41], and some Open Frameworks an toolkits will all be eval-

uated and considered for the possibility of using them on this dissertation. We will place a higher

focus on Unity IdM [22], and WSO2 IS [23].

3.1 Identity protocol translation gateway

Identity protocol translation gateway [42] is a patent for a product that promises one or more meth-

ods for translating identity protocols and a system implementing such methods. Figure 3.1 depicts

the method for translating identity protocols in this patent. To facilitate interactions between or-

ganisations and solve the problem mentioned in Chapter 1, this patent was created promising an

identity translation protocol gateway. The method mentioned can be divided into the following

steps:

1. A configured the gateway communicates with a first and second identity protocol. Being

these different from each other.

2. The first communication between a first computer system and the gateway using the first

identity protocol, with the first identity protocol having identity information about one or

more entities associated with that request.

3. This identity information is then translated into a canonical representation. This canonical

representation can have additional information obtained by the gateway.

4. From the canonical representation, the identity information is then translated to a second

identity protocol.

19

20 State-of-the-Art

Figure 3.1: Identity protocol translation gateway - translation method [42]

3.2 Interconnecting domains with heterogeneous key distribution and authentication protocols 21

5. The identity information of the first communication is sent to the second computer system,

using the second identity protocol created from the canonical representation.

This patent, however, does not describe any technical information, there is no product avail-

able, and could not correspond to a real developed technological product. There is no information

on how information is transformed into a canonical representation and vice-versa. The canonical

representation is not defined in the document. However, the idea as a whole can be harnessed.

3.2 Interconnecting domains with heterogeneous key distribution and
authentication protocols

The paper [41] describes two mechanisms for designing a protocol converter for authentication and

key distribution protocols; however, they only consider symmetric encryption and the meaning of

certificate in this paper does not include current digital certificates. The first mechanism is based

on proxies and a synchronisation protocol. The second mechanism addresses the problem of

the statefulness of the protocol converter. Both can be used in separate or in combination. As

said, in this paper, “When properly combined, they provide for a robust, transparent, and safe

protocol converter for authentication and key distribution protocols.” [41]. These interconnection

mechanisms do not interfere with the security of the systems involved, since it has no access to

these systems secrets, making it safer. However, designing this type of system is always a difficult

task, mainly if it affects the security architecture of the system. Using a protocol converter to

translate cryptographic tokens for security protocols safely, is in itself a contradiction because the

protocol converter needs to be involved in the conversion of secure end-to-end flows.

3.2.1 Mechanism 1: proxies.

The proxies task can be summarised as follows:

• They have to impersonate the principals they represent.

• They have to notify the other network with everything that happens in its network, using a

synchronisation protocol.

• They have to listen to messages from the other network to know the events that have taken

place there. They have to initiate the same events in their own network.

3.2.2 Mechanism 2: hiding information in cryptographic expressions

This mechanism is based on the following observation. The certificate for the server that the client

receives is encrypted under the server’s master key. Since the client does not have this key, the

encrypted part of the certificate is not understood by it. Taking this into account, it is possible to

add additional information to the certificate without the client noticing. This information can be

22 State-of-the-Art

Figure 3.2: Mechanism 2 [41]

extracted in the future when the client tries to initiate an authentication session. Being used to help

in the translation of the messages.

Put differently; the certificate is used as storage as is seen in Figure 3.2. Throughout the key

distribution phase, the gateway saves in the certificate the session key and any other relevant in-

formation. This certificate is then sent to the client who cannot differentiate it from an unaltered

one. During the authentication phase, the gateway extracts the information saved on the certificate

and sends it to the server, making the certificate the same as the original one.

For more information on these mechanisms, their limitations, implementation issues, and de-

sign choices refer to [41].

3.3 IAM solutions

There are many IAM solutions on the market; most of them are commercial ones such as Okta

Workforce [18], RSA SecurID Suite [8], Oracle Identity Governance [14], and IBM Security

Identity and Access Manager [7]. For reasons presented on Chapter 2 we will only explore open-

source IAM solutions and one interesting open-core solution.

3.3 IAM solutions 23

3.3.1 Shibboleth

Shibboleth [37] [19] is an open-source SAML implementation.

The purpose of Shibboleth started as a Single Sign-On (SSO) and identity federation solu-

tion for academic institutions. However, currently, it is developing into a general FIdM solution

that can be adapted to organisations needs. It supports authentication, authorisation, content per-

sonalisation, and enables single sign-on across a wide range of services from several providers.

Shibboleth consists of several individual components: IdP, SP, and discovery service (DS), which

may be deployed separately depending on the specific needs of the organisation.

To handle the SSO usage scenario, Shibboleth specifies two SSO profiles for Web browsers,

which are based on corresponding SAML profiles. Shibboleth also provides built-in support for

a pre-defined attribute schema called eduPerson based on the Lightweight Directory Application

Protocol (LDAP) standard which makes it possible to integrate Shibboleth into existing LDAP

directory services.

3.3.2 SimpleSAMLPHP

SimpleSAMLphp [20] is an open-source native PHP application with a focus primarily on dealing

with SAML 2.0 as a Service Provider (SP) and SAML 2.0 as an Identity Provider (IdP). How-

ever, it also supports some other identity protocols and frameworks, and the development of new

modules is simple since this framework is easily extendable.

3.3.3 CAS

Central Authentication Service project (CAS) [3] is a unique SSO solution for the web and at-

tempts to be a complete platform for authentication and authorisation. CAS also refers to an open

authentication protocol. CAS project has support for the CAS protocol and additional identity

protocols and features, with everything being an open-source solution.

The following items include a summary of the features and technologies offered by the CAS

project:

• pluggable authentication support such as LDAP, Database, X.509, SPNEGO, JAAS, JWT,

RADIUS, MongoDB.

• support for multiple identity protocols such as CAS, SAML, WS-Federation, OAuth2, OpenID,

OpenID Connect.

• support for multi-factor authentication via a variety of providers.

• support for delegated authentication to external providers such as ADFS, Facebook, Twitter,

SAML2 IdPs.

• built-in support for password management, notifications, terms of use and impersonation.

• support for attribute release, including user consent.

24 State-of-the-Art

• monitor and track application behaviour, statistics and logs in real-time.

• manage and register client applications and services with specific authentication policies.

• integration with InCommon, Box, Office365, ServiceNow, Salesforce, Workday, WebAdvi-

sor, Drupal, Blackboard, Moodle, Google Apps.

3.3.4 Keycloak

Keycloak [9] is also a complete open-source IAM solution for modern applications and services.

The following items include a summary of the features and technologies offered by the Key-

cloak:

• support for multiple identity protocols such as OpenID Connect, OAuth 2.0 and SAML 2.0.

• centralised management for admins and users

• connection to existing user directories with LDAP and Active Directory

• support for delegated authentication to external providers with OpenID Connect or SAML

2.0 IdPs

• extensible customisation through coding

• password Policies and their customisation

• support for fine-grained authorisation policies and combines different access control mech-

anisms

3.3.5 Gluu server

The Gluu Server [6] is a container distribution of open-source software for identity and access

management (IAM). Gluu Server can be used for user authentication, identity information, and

policy decisions.

The Gluu Server supports the use of the following open standards for authentication, autho-

rization, federated identity, and identity management:

• OAuth 2.0

• OpenID Connect

• User Managed Access 2.0 (UMA)

• SAML 2.0

• System for Cross-domain Identity Management (SCIM)

• FIDO Universal 2nd Factor (U2F)

3.3 IAM solutions 25

• FIDO 2.0 / WebAuthn

• Lightweight Directory Access Protocol (LDAP)

• Remote Authentication Dial-In User Service (RADIUS)

3.3.6 Apache Syncope

Apache Syncope [2] is an open-source solution for managing digital identities in enterprise envi-

ronments.

The following items include a summary of the features and technologies offered by the Apache

Syncope:

• connection to existing user directories such as LDAP and Active Directory, flat files (e.g.

XML, CSV) and relational databases.

• support for provisioning to keep identity data synchronised

• user self-service features

• support for various IAM protocols such as OAuth, XACML, SAML and OpenID Connect.

• Web-Based Administrative User Interface

• logging, auditing, and reporting

3.3.7 MidPoint

MidPoint [10] is an open-source identity, and organization management and governance platform.

MidPoint covers both technological and business requirements of the organisation. However, it

does not cover the access management and identity federation world. That means that midPoint

does not implement the “server side” of OAuth2, OpenID Connector or SAML protocols since this

solution is not supposed to be an identity provider, authentication server or SSO server. Nonethe-

less, midPoint can support those protocols indirectly integrating them with another solution creat-

ing an identity and access management (IAM) solution.

3.3.8 OpenAM and OpenIDM

OpenAM [12] and OpenIDM [13] are two separated open-core solutions for Identity and Acess

Management. Open-core meaning they are the core solution for a more prominent and commercial

solution, in this case, they are the open-core community editions for ForgeRock Access Manage-

ment and ForgeRock Identity Management respectively.

OpenAM is a solution used for managing users, roles, and access to resources. The following

items include a summary of the features and technologies offered by the OpenAM:

26 State-of-the-Art

• authentication with Java Authentication and Authorization Service (JAAS) and Integrated

Windows Authentication and authorisation policies

• adaptive risk authentication to assess risks during the authentication process

• Federation services using standard identity protocols SAML, WS-Federation, OpenID Con-

nect, Fedlet, OAuth2, and OpenIG Federation Gateway. Can act as a multi-protocol hub,

translating for providers who rely on other, older standards.

• system failover and session failover. These two key features further ensure that no single

point of failure exists

OpenIDM is a solution used to simplify the management of identity, as it can help synchronise

data across multiple resources. Each organisation can maintain control of accounts within their

respective domains.

The following items include a summary of the features and technologies offered by the OpenIDM:

• Web-Based Administrative User Interface

• user self-service features can streamline onboarding, account certification, new user regis-

tration, username recovery, and password reset.

• role-based provisioning

• password management

• logging, auditing, and reporting

3.3.9 Unity IdM

Unity IdM, or Unified identity management [22], is an extremely flexible authentication service.

However, it should not bee seen as a bundle of several coupled systems. It is a complete solution,

fully web and cloud-ready, for identity, federation, and inter-federation management. Supporting

multiple protocols with different configurations for many relying parties. The authentication pro-

cess in Unity can be processed locally, with the built-in database or externally using one of the

supported Identity Providers (IdPs). Unity also supports merging the information from upstream

IdPs with the local database. This functionality can be seen on Figure 3.3 (available in Unity IdM

website [22]):

Unity is built around three design principles:

• Simplicity - Unity should be as user friendly as possible.

• Extensibility - Seamlessly support for all the implemented protocols and possible exten-

sions/future development.

• Security - Unity doesn’t provide inherently insecure solutions.

3.3 IAM solutions 27

Figure 3.3: Unity Features [22]

Unity is composed of two parts, an orchestration platform and a rich set of extensions. The

latter provides support for the actual Unity Features. As said in the documentation of the latest

release of Unity, “the core platform provides persistence of the service state (i.e., managed entities,

attributes, groups, etc.), extensions management, orchestration, and several cross-cutting features.

Such core features are preferences management, notifications, registrations support, etc.” [22].

Unity is written only using Java, working as a set of services available via an embedded HTTP

server. Being the most of its functionality controlled via a Web Admin interface.

To understand unity we first need to understand what an endpoint and authenticators are. Fig-

ure 3.4 helps to visualise the following text. Endpoints are the entry points for Unity, being this

divided into Identity Providers and Services. Identity Providers provide the fundamental Unity fea-

tures to the clients/relying parties and Services are the remaining functionality. Each endpoint’s

authentication is configured by associating it with authenticator(s). As mentioned before, the au-

thenticators can be local or external. The local authenticator performs verification of credentials

against the data stored in the local Unity database. On the other hand, an external authenticator

uses a 3rd party service to validate the credentials.

At the time of writing this document, Unity supports the following Endpoints:

• SAML 2, Web SSO profile

• SAML 2, SOAP binding

• SAML 2, PAOS binding (for ECP)

• Web Console interface

• REST admin interface

• Web user profile management

• SAML 2, Web binding + UNICORE profile

28 State-of-the-Art

Figure 3.4: Unity fundamentals [22]

• SAML 2, SOAP binding + UNICORE profile

• OpenID Connect

• OAuth 2

Moreover, has support for the following upstream IdPs:

• LDAP

• SAML 2

• OAuth 2

• OpenID Connect

• Host OS PAM

3.3.10 WSO2

WSO2 Identity Server (WSO2 IS) [1] [23] is a product built on top of WSO2 Carbon. WSO2

Carbon redefines middleware by providing an integrated, and componentised middleware platform

that adapts to the specific needs of any enterprise IT project, and it enables easy customisation and

modularity through its architecture based on components.

WSO2 Identity Server (IS) is used directly by multiple users. Each user can have roles associ-

ated with him, where each role can have privileges attributed to them. User’s roles can be changed

at any time by an administrator of the system. Apart from such registered users, Identity Server

can be used as an identity provider for third party applications, with their own set of users.

3.4 Summary 29

WSO2 Identity Server (IS) helps organisations to build agile, extensible IAM solutions to

bring in better and seamless user experiences for their customers.

WSO2 Identity Server follows open standards and open-source principles, permitting indepen-

dence from vendor lock-in. The product comes with seamless, easy-to-use integration capabilities

that help connect applications, user stores, directories, and identity management systems.

The following items include a summary of the features and technologies offered by the WSO2

IS:

• Enterprise and cloud Single Sign-On and Federation with protocols such as SAML 2.0,

OpenID Connect, WS-Federation.

• support for cross-protocol single logout

• support for multi-factor authentication and strong authentication

• administrator interface and self-service users portal

• support for LDAP, Microsoft Active Directory, or any JDBC database

• support for rule-based identity provisioning

• authorisations services and protocols such as role-based access control, XACML and OAuth2

• monitoring, reporting and auditing

• GDPR Compliance

3.4 Summary

In this chapter, we analysed available solutions for the proposed problem in Chapter 1. Identity

protocol translation gateway patent [42], the Interconnecting domains with heterogeneous key

distribution and authentication protocols paper [41], and some Open Frameworks an toolkits were

evaluated and considered for the possibility of using them on this dissertation. We can now justify

some affirmations made in Chapter 2, most of the solutions solve our problem in some form, this

is not only about the number of features of each one. We can also recognise that there is not much

research made on the topic of an identity protocol converter.

30 State-of-the-Art

Chapter 4

Problem Statement

4.1 Preliminary Study

Previous work to this dissertation essentially concluded that solutions like the two previously

mentioned in Section 3.1 and Section 3.2 are not the right way to tackle the problem at hands—the

idea of a protocol converter able to transform the identity information from one identity protocol

into another seems like a complicated task. As stated in [41], converting very different mechanisms

is, at best, hard and may even be impossible in some instances. The FIdM protocols are indeed

very different mechanisms having problems with interoperability within different implementations

of the same version. Using an open-source IAM solution as a work base seems more promising

and solves the problem introduced on Chapter 1.

4.2 IAM solutions comparison

Most of the previously mentioned IAM tools in Section 3.3 are very similar and complete IAM

solutions. They follow the seven laws of identity (Section 2.1.2), take into account privacy guide-

lines on its core (Section 2.1.3), and in general tick every box on why they should be the chosen

option for an open-source IAM solution (Section 2.1.4). However, even though they all are great

candidates, OpenAM plus OpenIDM are open-core solutions, something that can be seen as a

problem as we mentioned in Section 2.1.4 for an IAM solution. Furthermore, WSO2 IS has added

comprehensive documentation and in general, is a more mature solution with more functionality.

Since most support the required functionality, we will base this dissertation on WSO2 IS

following the preference of the company that proposed the problem.

4.3 Importance of a Security Analisys

Commercial solutions in principle force users to accept the level of security of the product; on the

other hand, open-source solutions allow users to increase security as high as they want.

31

32 Problem Statement

Software security is fundamentally in simple terms: run perfect software, and the system is

secure. However, perfect software is not in the realm of possibility. This infeasibility creates

the need for finding the means to prevent security flaws in software [31]. One way is to assure

that the software only does what is supposed to do. Methods for this can be divided into three

categories software auditing, vulnerability mitigation and behaviour management. The software

auditing method prevents vulnerabilities by searching for them ahead of time, with or without

automatic analysis. The vulnerability mitigation method is a compile-time technique that stops

bugs at runtime. Behaviour management is the features of the operating system that either limit

potential damage or block specific dangerous behaviours [31]. During this dissertation, we will

only cover software auditing as a method.

The process of auditing existing applications is encouraged to find and remove flaws before

attackers discover them. Open-source software is the ideal candidate for this since it enables

anyone to make a software security analysis and share the results to the world.

IAM solutions deal with information that represents digital identities in different contexts.

Protecting this information and its management is one of the most crucial security concerns [49].

4.4 Research Methodology

Taking into account what was mentioned in the previous sections, the main goal of this work is to

contribute to a state-of-the-art IAM solution, in this case, WSO2 IS, by making a security analysis.

The current public documentation for WSO2 does not mention any security analysis previously

done, and solutions dealing with identity must be as secure as possible.

In order to do so, we will apply current state-of-the-art threat analysis techniques and software

auditing tools in the following chapters describing and giving context to all of them. This analysis

will also give us a more detailed overview of the WSO2 IS product.

Chapter 5

Threat Analysis

5.1 Context

Security is about ensuring that assets do not undergo misapplication or malicious actions. The

term asset is explained in [47], as something of value. Assets are what the attacker wants, and

what people want to protect. An asset can be abstract or a concrete resource (eg.: passwords,

credit card information).

Security threats strengthen security requirements; the identification of these threats is called

threat modelling and is one of the essential steps in securing a system [39]. It involves identifying

flaws and challenges which need to be approached by implementing countermeasures and real-

istic security requirements [52]. Threat analysis is the process of identifying, documenting and

mitigating security threats of a system.

Threat modelling is one of the phases in threat analysis and has three components: system,

assets and attacker. The three most popular approaches to threat modelling are asset-centric,

attack-centric and software-centric [47]. These approaches are named based on the focus used

to implement threat modelling. Software-centric models focus on the development and deploy-

ment of a system [47]. Attacker-centric models focus on profiling the attacker’s characteristics,

skillset and motivations to identify vulnerabilities [47]. Asset-centric models focus on protecting

assets [47].

There are many threat analysis methodologies developed, [25], [38], [50] ; however, in this

dissertation, we will essentially follow the threat analysis methodology developed by [50]. This

methodology divides the analysis into three main phases:

• Threat modelling - Method for evaluating and documenting security risks of an application

with an attack-centric focus. This method allows to enumerate threats and discover security

flaws. The list of threats can and should be updated as needed.

• Asset mapping - Phase for documenting the concrete and abstract resources of the system.

In this phase, there is a need to prioritise assets since this value is used to calculate threat

risks and prioritise countermeasures.

33

34 Threat Analysis

• Building a mitigation plan - This phase is as simple as selecting the most effective com-

bination from a list of all the proposed countermeasures. There are two steps to choosing

the most effective combination. First, estimate the mitigation level of each countermeasure

as if it is the only one. Second estimate the total level of the mitigation provided by all

countermeasures.

The proposed methodology in [50] formalises this steps into a new approach. In Figure 5.1,

this threat analysis methodology is shown step by step.

Figure 5.1: Steps of Threat analysis

5.2 Methodology

As previously said, we will follow the threat analysis methodology developed by [50] to analyse

the WSO2 IS v5.10 IAM solution. The chosen threat analysis methodology was created for per-

sonal networks, not for an IAM solution; however, we will adapt the method to our problem at

5.2 Methodology 35

hands.

This methodology is divided into eight steps. Within this section, we will explain each step

and understand their purpose.

In step 1, we will make a description of the system. In order to describe the system, we will

define the scenarios and use cases to help understand every system component and its intercon-

nections. For this characterisation, we will make UML use case diagrams with a descriptive table.

This diagram allows the understanding of what the system is capable of doing by showing each

interaction between use cases and actors.

In step 2, we will analyse the technical background of the use cases. In this step, it is possible

to explain how the technologies are used and who is using them. The idea of this step is to identify

how the system components/modules interact with each other for the system use cases.

In step 3, we will identify the system’s assets. In other words, we will identify everything that

can be damaged or violated in the network. The protection of assets is one of the most critical

parts of software security. Organisations often focus on protecting the system from threats which

can leave a system vulnerable. The previous two steps allow to more easily identify the general

and specific assets of each use case. The assets will be enumerated in a table with ID, name and a

brief description of the asset.

In step 4, with the information from the previous steps, we will start to identify the system’s

threats and its sources. A threat-source can be considered as any circumstance or event with the

potential to cause harm to the system. Afterwards, threats should be matched to their associated

assets. This step results in a table, named threats profile, this table has an ID, a name, the source

of the threat, and the assets involved. Threats also will be analysed to define whether the system

is an easy target to them.

In step 5, we will list the system’s vulnerabilities that could be exploited by the potential

threat sources. This step results in a table with vulnerabilities and the corresponding threats that

are exploiting the previous specific use cases analysed in the previous steps. A vulnerability ID,

followed by its description, the name and the corresponding threat will compose the table.

In step 6, the list of assets from step 3 will be checked for inclusion of all assets. The objective

of this step is to assign a value to the assets that categorises its priority. To assign priority to assets,

we will use the method proposed by [50], dividing this prioritisation into three different values:

• High - Assets with this value are critical and need more emphasis on protecting them. This

assets usually have a significant financial value.

• Medium - Assets usually linked to common services; they are not critical but still important

to protect.

• Low - Assets of minor importance.

In step 7, we will make a risk management analysis to balance what is possible and what

is acceptable. From step 4 and 5, we can extract which threats pose the highest risk value. The

36 Threat Analysis

aspects, which we will take into account to categorise vulnerability risk are the impact, the damage

to the assets, the size of the vulnerability and the possibility of it happening.

In the final step, step 8, we will develop a mitigation plan that involves the selection of coun-

termeasures. The threats selected for mitigation are addressed as by one or more countermeasures.

This step results in a set of proposed countermeasures that mitigate the threats that were identi-

fied. However, the implementation of all proposed countermeasures usually is impractical due to

budget, time and resources constraints. The goal of this final step, and therefore the purpose of

this threat analysis is to propose the set of the most cost-effective countermeasures related to the

identified threats.

5.3 Step 1. Description of the system

In the first step, we made four UML use case diagrams used to describe what the system must

be able to do and to help in the description of the system. This chapter was made using the

information on WSO2 documentation [23], and our personal experience with the solution; there

are minimal UML diagrams made on WSO2 IS, this is standard in other open-source community-

driven products. As said by a member of the WSO2 IS team when contacted, "WSO2 IS ... is

designed by community programmers for programmers, thus additional complexity and overhead

for UML does not provide much advantage. It only adds cost of tools for design and collaboration".

Since WSO2 IS is an extensive and highly-featured solution, we divided the use case diagram

of the system by its boundary of systems. We can identify four boundary systems in WSO2 IS:

• The user management boundary system with its use cases represented in Figure 5.2

• The authentication boundary system with its use cases represented in Figure 5.3

• The access delegation and policies boundary system with its use cases represented in Fig-

ure 5.4

• The administration boundary system with its use cases represented in Figure 5.5

We also made use case tables to better represent the solution (Tables 5.1-5.11). Some use cases

were excluded from these tables because of their nature. WSO2 IS is a developer-oriented solution,

not something plug-in and play, and use cases such as adaptive authentication and provisioning are

developer-oriented features. For example, to make a use case table for inbound provisioning using

SCIM 2, it would be running a curl command to https://<Your WSO2IS URL>/scim2/Users.

5.3 Step 1. Description of the system 37

Figure 5.2: Use case diagram - User management boundary system

38 Threat Analysis

Figure 5.3: Use case diagram - Authentication boundary system

5.3 Step 1. Description of the system 39

Figure 5.4: Use case diagram - Access delegation and policies

Figure 5.5: Use case diagram - Administration boundary system

40 Threat Analysis

Table 5.1: Use case table - Managing Users and Roles

Use case name Managing Users and Roles
Goal in context Creation of roles and users
Preconditions Tenant or Admin account
Successful end New system user assigned to a new role
Primary actors Admin and User

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console

2. Admin clicks Users and Roles > Add > Add New Role.

3. Admin selects the user store in which he wants to create this role and
enters the role name.

4. Admin clicks Next and Selects the permissions that he wants the users
with this role to have.

5. Admin clicks Update.

6. Admin clicks Add under Users and Roles on the Main tab of the Man-
agement Console followed by clicking on add new user

7. Admin enters a unique username and password and clicks Next to
assign the User to a specific role.

8. Admin selects the role that they want the new User to have and clicks
Update.

5.3 Step 1. Description of the system 41

Table 5.2: Use case table - Admin-Initiated User Registration

Use case name Registering Users
Goal in context Admin-Initiated User Registration
Preconditions Admin account
Successful end A new User is registered
Primary actors Admin and User

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks click Identity > Identity Providers > Resident.

3. Admin clicks User Onboarding under the Account Management Poli-
cies section and selects the Enable User Email Verification check box.

4. Admin enters the password entry validity period (in minutes) in the
Ask password code expiry time text box.

5. Admin clicks Update.

6. Admin clicks Add under Users and Roles on the Main tab of the Man-
agement Console followed by clicking on add new user.

7. Admin enters the required data, activates the option ask password
from user and clicks finish.

8. The User receives an email; in this email, the User clicks Create Pass-
word.

9. A Reset Password screen appears and the User enters a preferred pass-
word and clicks Submit.

42 Threat Analysis

Table 5.3: Use case table - Self-Registration

Use case name Registering Users
Goal in context User self-Registration
Preconditions Admin account
Successful end A new User is registered
Primary actors Admin and User

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Identity > Identity Providers > Resident.

3. Admin clicks User Self Registration under the Account Management
Policies section.

4. Admin selects the Enable Self User Registration, Enable Account
Lock On Creation Enabled and Enable Notification Internally Man-
agement check boxes.

5. Admin enters the rest of the required information and clicks Update.

6. User Accesses WSO2 Identity Server User Portal at https://<WSO2
IS URL>/user-portal/ and clicks create account.

7. The User receives an email; in this email, the User clicks Create Ac-
count, then the User enters its desired username and clicks Proceed to
Self Register.

8. The User enters the required information and clicks Register.

Table 5.4: Use case table - Password Patterns

Use case name Configure Password Policies
Goal in context Configuration of a password pattern
Preconditions Admin account
Successful end Users can’t have passwords that don’t follow the password pattern
Primary actors Admin

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks click Identity > Identity Providers > Resident.

3. Admin clicks Password Patterns under the Password Policies section.

4. Admin enables the password policy feature and enters the required
information, including the Policy Pattern.

5. Admin clicks Update.

5.3 Step 1. Description of the system 43

Table 5.5: Use case table - Password Reset

Use case name Password Reset
Goal in context Password Reset with Email
Preconditions Admin account and User account
Successful end User receives an e-mail to reset its password
Primary actors Admin and User

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Identity > Identity Providers > Resident.

3. Admin clicks Account Recovery under the Account Management
Policies section.

4. Admin selects Enable Notification Based Password Recovery check
box and clicks Update.

5. The User enters the Access WSO2 Identity Server User Portal and
clicks Password.

6. The User inputs its user name, selects the Recover with Mail option
and clicks Submit.

Table 5.6: Use case table - User Name Recovery

Use case name User Name Recovery
Goal in context Recovery of forgotten username
Preconditions Admin account and User account
Successful end User receives an e-mail with its username
Primary actors Admin and User

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Identity > Identity Providers > Resident.

3. Admin clicks Account Recovery under the Account Management
Policies section.

4. Admin selects the Enable Username Recovery and Enable Internal
Notification Management checkboxes, and clicks Update.

5. The User enters the Access WSO2 Identity Server User Portal and
clicks Username.

6. The User inputs his information clicks Submit.

44 Threat Analysis

Table 5.7: Use case table - Multi-tenancy

Use case name Multi-tenancy
Goal in context Create a new Tenant
Preconditions Admin account
Successful end A new Tenant can manage users and service providers of his associated

domain
Primary actors Admin and Tenant

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Add New Tenant on the Configure tab.

3. Admin inserts the domain of the new Tenant and his details (e.g. user
credentials).

4. The Tenant navigates to WSO2 Identity Server User Portal and au-
thenticates using his credentials.

Table 5.8: Use case table - Account Locking

Use case name Account locking
Goal in context Account locking for Failed Login Attempts
Preconditions Admin account and User account
Successful end An email that informs that informs the user about the account locking is sent

to him.
Primary actors Admin and User

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Identity > Identity Providers > Resident.

3. Admin clicks Account Locking under the Login Policies section.

4. Admin inputs the desired Maximum Failed Login Attempts and Ac-
count Unlock Time.

5. The User enters the Access WSO2 Identity Server User Portal and
tries to login with the wrong password multiple times.

5.3 Step 1. Description of the system 45

Table 5.9: Use case table - Single Sign-On

Use case name Single Sign-On
Goal in context Single Sign-On Using SAML2
Preconditions Admin account and 2 sample web apps with support for SAML and already

integrated with WSO2 IS
Successful end Admin is authenticated in both sample applications
Primary actors Admin

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Main>Identity>Service Providers and then clicks Add.

3. Admin enters <your first SAML 2 web app> in the Service Provider
Name text box, and clicks Register.

4. In the Inbound Authentication Configuration section, the Admin
clicks Configure under the SAML2 Web SSO Configuration section.

5. Admin sets the Issuer and the Assertion Consumer URL for the first
SAML web app, clicks Yes in the message that appears and finally
clicks the following checkboxes: Enable Response Signing, Enable
Single Logout, Enable Attribute Profile, Include Attributes in the Re-
sponse Always, and Enable Signature Validation in Authentication
Requests and Logout Requests.

6. Admin clicks Register to save changes and repeats steps 1 to 5 for the
second SAML 2 web app.

7. Admin navigates to the Assertion Consumer URL of the first SAML
web app and authenticates himself using the SAML 2 feature.

8. Admin navigates to the Assertion Consumer URL of the second
SAML web app and is automatically authenticated.

46 Threat Analysis

Table 5.10: Use case table - Multi-factor authentication

Use case name Multi-factor authentication
Goal in context Multi-factor authentication with SMSOTP
Preconditions Admin account, User account, SMS provider already integrated with WSO2

IS, and a SP that uses WSO2 IS as its IdP (e.g. SP from Table 5.12)
Successful end Admin authenticates successfully
Primary actors Admin

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Identity Providers > Add on the Main tab.

3. Admin expands the SMS OTP Configuration tab under Federated Au-
thenticators and selects both checkboxes to Enable SMSOTP Authen-
ticator and to make it the Default.

4. Admin enters the SMS URL and POST as the HTTP Method and
clicks Register.

5. Admin clicks Service Providers > List and Edits the desired service
provider.

6. Admin expands Claim configuration and selects
http://wso2.org/claims/mobile as the Subject Claim URI.

7. Admin clicks Add Authentication Step, selects basic under Local Au-
thenticators and click Add Authenticator to add the basic authentica-
tion as the first step.

8. Admin clicks Add Authentication Step and selects smsotp under Fed-
erated Authenticators and click Add Authenticator to add SMSOTP
authentication as the second step.

9. Admin clicks Update.

10. The User navigates to the Service Provider URL and attempts to log
in.

11. The User inputs his credentials after being redirected to the login page
of the WSO2 Identity Server.

12. A SMSOTP code will be sent to the User’s mobile number. The User
enters the code and clicks Authenticate.

5.3 Step 1. Description of the system 47

Table 5.11: Use case table - Federated Authentication

Use case name Federated Authentication
Goal in context Federated Authentication with SAML 2.0 WEB SSO
Preconditions Admin account
Successful end Federated authentication is enabled
Primary actors Admin

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Identity Providers > Add on the Main tab.

3. Admin enters in the details in the Basic Information section.

4. Admin clicks SAML2 Web SSO Configuration under the Federated
Authenticators section

5. Admin clicks the Enable SAML2 Web SSO and Default checkboxes.

6. Admin clicks Register.

Table 5.12: Use case table - Access Delegation

Use case name Access Delegation
Goal in context Access Delegation with OAuth 2.0
Preconditions Admin account and 1 sample web app with support for OAuth 2.0 and al-

ready integrated with WSO2 IS
Successful end Admin shares his info with the service provider
Primary actors Admin

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console

2. Admin clicks Main>Identity>Service Providers and then clicks Add.

3. Admin enters <your OAuth 2.0 app name> in the Service Provider
Name text box, and clicks Register.

4. Admin inputs the Callback URL, clicks Add, and saves the OAuth
Client Key and Client Secret that is displayed.

5. In the sample web app replace, in its designated place, the consumer
key and secret consumer values with the OAuth client key and OAuth
client secret values saved in the previous step.

6. Admin navigates to Callback URL of the OAuth 2.0 app and notices
that its possible to make authorisation requests to the WSO2 IS de-
ployment.

48 Threat Analysis

Table 5.13: Use case table - Fine-Grained Access Control with XACML

Use case name Fine-Grained Access Control
Goal in context Fine-Grained Access Control with XACML
Preconditions Admin account
Successful end Creation of an Fine-Grained Access Control policy
Primary actors Admin

Main flow

1. Admin Accesses the WSO2 Identity Server Management Console.

2. Admin clicks Entitlement > PAP > Policy Adminisration.

3. Admin clicks Add New Entitlement Policy > Simple Policy Editor.

4. Admin configures the desired policy and clicks Add.

5.4 Step 2. Analysis of the technical background

In this section, we will make an architecture overview of the WSO2 IS to understand the system

flow. Figure 5.6 helps to visualise the following text.

When an authentication request is sent to the WSO2 IS the Inbound Authenticators compo-

nent processes it. The Inbound Authenticator component sends this request to an in-channel of

the Authentication Framework. The Authentication Framework handles claims; WSO2 IS [23]

defines a claim as data that defines the User, anything that the User is, and is associated with. The

Authentication Framework maps claims in the service provider to claims in the identity server, af-

terwards it can be used to map claims in the identity server to claims in an external application that

acts as the identity provider. The Authentication Framework sends a request to the Local Authen-

ticators component if the authentication is to be done by the identity server itself or for integrated

windows authentication. If the authentication needs to be done by an external application or an

identity provider, the request is sent to the Federated Authenticators component. The Federated

Authenticators component will send the request to an external application where authentication is

done.

When the authentication is completed, the response is sent to the out-channel of the Authenti-

cation Framework. This is where claim mapping happens again. The Authentication Framework

has a connector named JIT provisioning for federated authentication. This sends user informa-

tion from the identity provider to the Provisioning Framework. The Provisioning Framework

ensures that users from the identity provider are provisioned into the WSO2 User Store Manager.

Afterwards, the out-channel of the authentication framework sends the response to the response

generator to process it. The authentication process ends when the authentication response is sent

back to the service provider.

Identity provisioning is in simplistic terms the process of creating, deleting, and maintaining

user accounts and their related identity in one or more systems.

5.4 Step 2. Analysis of the technical background 49

Figure 5.6: WSO2 IS architecture overview and process flow [23]

The Provisioning Framework can be used to provision users in the WSO2 IS, or the third-

parties identity providers via the WSO2 IS, in response to business processes. In-bound provi-

sioning requests are met in the In-bound Provisioning component. Then it connects to the user

store manager, which has a component called the provisioning listener. The User is added to the

user store in the WSO2 IS. The provisioning listener communicates with the Provisioning Frame-

work and passes on the request. If the user provisioning needs to be done in an external application,

the Provisioning Framework sends a request to the out-bound provisioning connectors component.

The out-bound provisioning component is responsible for ensuring that the users are also added to

external applications.

50 Threat Analysis

5.5 Step 3. Identification of assets

Analysing the results of steps 1 and 2, and the database resultant of the WSO2 IS database creation

scripts, it is possible to identify the assets of the system. This step results in the Table 5.14.

Table 5.14: WSO2 IS Assets

ID Name Description
A1 IDs E.g. User ID
A2 Personal Data General Information about the user (eg.

last connect IP)
A3 Availability/access of the services The rights to access some services
A4 Access control Rules to access data and services.
A5 User’s credentials e.g. Username, password hash.
A6 Contact Information e.g. E-mail, Phone number.
A7 Server Characteristics Hardware and Software of the server.
A8 Registry activities Registry is a content store and a metadata

repository for various artefacts such as
services, WSDLs and configuration files.
All configurations about modules, log-
ging, security, data sources and other ser-
vice groups are stored in the registry by de-
fault.

A9 Domain WSO2 supports the use of different user
stores. Domain data includes which rules
are related to which users, that are related
to which user stores.

A10 Identity providers data Information and configurations about reg-
istered Identity providers.

A11 Service providers data Information and configurations about reg-
istered Identity providers.

A12 Identity protocols related data This contains all the data generated by
identity protocols data, in its creation and
its use. (e.g. OAuth2.0 request tokens).

A13 Certificates All the certificates used to operate WSO2
IS.

A14 Logs The server should be continuously logging
the solution.

5.6 Step 4. Determination of threats

In the fourth step, the possible threats and the assets compromised by them will be shown in

Table 5.15. WSO2 IS is as insecure as it features. Because of this, we decided to investigate

which threats could be exploited by using all the protocols in WSO2 IS. The shown results are

resultant of personal analysis of previous steps, the work in [48] and tentative of extension of this

work.

5.6 Step 4. Determination of threats 51

In [48], was conducted a systematic survey of security analysis in Federated Identity Manage-

ment (FIdM). The goals of this survey were to understand the Security Landscape in FIdM, find

the common Attack Classes (threats) and check if the people who reported the problems proposed

solutions or mitigations to those problems. With this goal in mind, the authors used the following

query in Scopus:

1 TITLE-ABS-KEY ((Analysis OR Evaluation OR Examine OR Proof OR Attack OR Intrusion

OR Vulnerability OR Risk) AND Security AND Identity AND (OAuth OR OpenID OR "

Liberty Alliance" OR WS-Federation OR SAML OR "Security Assertion Markup

Language" OR "Microsoft Passport" OR (Passport AND Protocol) OR Cardspace OR

"Facebook Connect" OR "Google Accounts" OR Shibboleth)) AND (L I M I T TO (

SUBJAREA, "COMP"))

And the following query in Google Scholar:

1 Protocol Security Identity Analysis OR Evaluation OR Examine OR Proof OR Attack OR

Intrusion OR Vulnerability OR Risk

In a tentative to extend their work to other protocols and functionality used in WSO2 IS we

created the following query to be used in Scopus:

1 TITLE-ABS-KEY (Analysis OR Evaluation OR Examine OR Proof OR Attack OR Intrusion

OR Vulnerability OR Risk) AND Security AND Identity AND (UMA OR "User Managed

Access", OR SCIM OR XACML OR "Integrated Windows Authentication" OR WS-Trust

OR IWA)) AND (LIMIT-TO (SUBJAREA," COMP"))

After using the same filtering process as in [48], this process resulted in no further threats or

vulnerabilities to be considered in this threat analysis.

52 Threat Analysis

Table 5.15: Threats

ID Name (classification) Source Assets
T1 Spoofing to accede private

information
Human A1, A3

T2 Eavesdropping on federation
members

Human A2, A12, A10, A11

T3 Identity theft Human A1 - A6
T4 Denial of Service Human A1 - A6
T5 Information disclosure Human A1 - A6
T6 Replay Attack Human A1 - A6
T7 Malicious Providers Human A2, A6, A10 - A12
T8 MITM Human A2, A6, A12
T9 Message Modification Human A2, A6

T10 Brute Force Human A1-A6
T11 XSS Human A2, A6
T12 Session Swapping Human A2, A6
T13 DNS Poisoning Human A2, A6
T14 CSRF Human A2, A6, A11
T15 UI Redressing Human A2, A6, A12
T16 Malware Human All
T17 Bogus Merchant Human A2, A6

5.7 Step 5. Determination of vulnerabilities

In step 5, we collected the vulnerabilities of WSO2 IS by analysing the enumerated threats. This

results in Table 5.16 filled in with the main vulnerabilities that are exploiting the specific use cases

analysed in previous steps, with each vulnerability will be matched with the corresponding threats.

The same process used to gather the information for step 4 is used to gather the needed information

for step 5.

5.8 Step 6. Assets Mapping

The output of this step is a final table (Table 5.17) with all the assets and the corresponding value

assigned taking in to account the scenarios and the particular use cases.

5.8 Step 6. Assets Mapping 53

Table 5.16: Vulnerabilities

ID Vulnerability Corresponding
threats

Description

V1 An adversary gain access to a
User or Admin account

T1, T2, T3, T5, T6,
T10, T16

This could happen on a situa-
tion where a User/Admin the
device without logout and an
adversary steals it.

V2 Unencrypted Communications T2, T6, T9 An adversary intercepts com-
munication between members.

V3 User blind trust T5 The User can give personal in-
formation without checking if
the recipient is trusted.

V4 Centralised Infrastructure T4, T7 A centralised infrastructure can
lead to confidentiality prob-
lems with some authentication
protocols and its an easy target
for Denial of Service attacks.

V5 Lack of Binding T6, T8, T9, T12 A sent message is not suffi-
ciently tied to the sender.

V6 No Trust Infrastructure T17 Situation where there is no safe
infrastructure list, meaning a
user does not know who to
trust.

V7 Weak DNS T13 It is often the case that certain
vulnerabilities lead to specific
threats. In this case, a Weak
DNS leads to an easy DNS poi-
soning target.

V8 Vulnerable SP T11, T14 Happens when an SP is not
properly secured.

V9 Vulnerable IdP T15 Happens when a IdP is not
properly secured.

V10 Automatic Authorisation T11 Happens if a User has granted
a privilege it is automatically
granted again.

V11 Message Formatting T9 Happens when a parameter or
part of the message is not
signed properly.

V12 Weak User Credentials T10 Same case as V7, weak creden-
tials makes an easy target for
brute force attacks.

54 Threat Analysis

Table 5.17: Assets Mapping

ID Name Description Priority
A1 IDs e.g. User ID, IdP ID, SP ID LOW
A2 Personal Data General Information about the user

(eg. last connect IP).
HIGH

A3 Availability/access of the services The rights to access some services. MEDIUM
A4 Access control Rules to access data and services. MEDIUM
A5 User’s credentials e.g. Username, password hash. HIGH
A6 Contact Information e.g. E-mail, Phone number. HIGH
A7 Server Characteristics Hardware and Software of the

server.
LOW

A8 Registry activities Registry is a content store and
a metadata repository for various
artefacts such as services, WSDLs
and configuration files. All configu-
rations about modules, logging, se-
curity, data sources and other ser-
vice groups are stored in the registry
by default.

HIGH

A9 Domain WSO2 supports the use of different
user stores. Domain data includes
which rules are related to which
users, that are related to which user
stores.

MEDIUM

A10 Identity providers data Information and configurations
about registered Identity providers.

HIGH

A11 Service providers data Information and configurations
about registered Identity providers.

HIGH

A12 Identity protocols related data This contains all the data generated
by identity protocols data, in their
set up and their use. (e.g. OAuth2.0
request tokens).

HIGH

A13 Certificates All the certificates used to operate
WSO2 IS.

HIGH

A14 Logs The server should be continuously
logging the solution.

MEDIUM

5.9 Step 7. Risk Management 55

5.9 Step 7. Risk Management

From the list of assets and their priority, the list of threat and the list of vulnerabilities it is possible

to extract the information about which threats pose the highest risk, this results in Table 5.18.

Table 5.18: Threats associated with risk

ID Name (classification) Vulnerabilities Risk
T1 Spoofing to accede private

information
V1 HIGH

T2 Eavesdropping on
federation members

V1, V2 MEDIUM

T3 Identity theft V1 HIGH
T4 Denial of Service V4 LOW
T5 Information disclosure V1, V3 MEDIUM
T6 Replay Attack V5 HIGH
T7 Malicious Providers V4 MEDIUM
T8 MITM V5 HIGH
T9 Message Modification V2, V5, V12 HIGH
T10 Brute Force V1, V12 HIGH
T11 XSS V8, V10 HIGH
T12 Session Swapping V5 HIGH
T13 DNS Poisoning V7 LOW
T14 CSRF V8 HIGH
T15 UI Redressing V9 MEDIUM
T16 Malware V1 LOW
T17 Bogus Merchant V6 LOW

5.10 Step 8. Mitigation plan

The last step of the threats analysis is the construction of a mitigation plan that involves the selec-

tion of the countermeasures. The threats with higher risk are of the most worthwhile to be secured.

The developed mitigation plan includes all high-risk threats and some medium to low risk.

Starting with malicious providers, this is a threat challenging to stop; to mitigate this threat,

we propose an individual analysis of each provider that would be included in the system.

Unencrypted communications and replay attacks can be mitigated by forcing the use of SS-

L/TLS in all communications; this includes the enforcing of HTTPS.

The bogus merchant, an attack in which an imposter sets up an imitation web site, and prob-

lems derivated by the use of weak user credentials can be mitigated by introducing a higher level

of authentication (preferable a strong authentication as defined by [32]).

Binding requests to the session can mitigate the CSRF threat; this can be achieved by hashing

a secret together with a session id and appending that token into a hidden field in the login form.

This token should be unique across requests.

56 Threat Analysis

In order to mitigate MITM attacks, access tokens should always be bound and explicit to a

single SP.

Session Swapping could be mitigated by adding a state value binding the message. This can be

achieved by binding the session ID to other user or client properties, such as the client IP address,

User-Agent, or client-based digital certificate.

Proper sanitisation of inputs prevents the effectiveness of XSS attacks.

5.11 Discussion

In this chapter, we established a threat analysis for the WSO2 IS IAM solution. By characterising

the system, identifying threats, assets, and vulnerabilities, and defining the threats and their effects,

we gained a deep understanding of the WSO2 IS for purposing a mitigation plan, in order to

prepare for those threats mentioned above.

The WSO2 IS already mentions in its documentation ways to mitigate some of the mentioned

threats. Furthermore, WSO2 IS has all the tools necessary for the implementation of a secure

deployment with the propose mitigation plan in mind.

The WSO2 IS team proposes the use of OWASPCSRFGuard project [15] to mitigate CSRF

attacks, the use of the recovery system or reCaptcha after a certain number of failed attempts to

authenticate, in order to mitigate brute force attacks. Moreover, the use of timestamps in WS-

Security is proposed by the WSO2 IS team to mitigate replay attacks [23].

Can we conclude the WSO2 IS is a safe solution? The security of WSO2 IS is very dependent

on its deployment configuration. A straightforward example of this is multi-factor authentication,

its the Admin option to activate this functionality, but he has the choice not to.

This threat analysis cannot replace a threats analysis made to specific WSO2 IS deployments,

only supporting on its development. However, we can confidently assure that WSO2 IS has all the

tools necessary to be a secure solution for Identity and Access Management.

Chapter 6

Security Audit of WSO2 IS

6.1 Context

Today many open-source software tools are available to aid on the development of secure soft-

ware. Modelling, architectural, code analysis, box testing and penetration testing tools are used

to support the development of software on its entire lifecycle, integrating security along the way

[26], [31], [36].

These tools are used for security code review practices. They can be divided into static analysis

tools and dynamic analysis tools. Static analysis tools can analyse software without executing it;

they examine the source code and report any suspicious code sequence that can be vulnerable.

However, these analysers may report suspicious code that is, in fact, safe; this translates into a

high false-positive rate [26], [31], [36].

There are many types of static analysis tools such as source code security analysers, bytecode

scanners and binary code scanners as tools. Source code security analysers evaluate source code

to detect weaknesses that can lead to a security vulnerability. Bytecode scanners examine the

generated bytecode from the compiler to identify vulnerabilities and can be used in situations

where the source code isn’t public. Binary code scanners detect vulnerabilities through software

disassembly and pattern recognition. In contrast, dynamic analysis tools examine the application

during runtime looking for potential security flaws. Essentially, this means running the program

under test loads and seeing what it does. These tools are used to supplement static analysis tools

since static analysis tools, usually, report a high number of false-positives. [31].

6.2 Methodology

The WSO2 IS product maintains the source code under two GitHub organisations: wso2 and

wso2-extensions. These two GitHub organisations contain code related to all WSO2 products,

within hundreds of repositories. It is hard to find which jar file comes from where, so we used the

Repo Explorer (rEx) [17] tool to address this problem.

57

58 Security Audit of WSO2 IS

We used rEx to download the master branch of all of the repositories related to WSO2 IS on

15 of June of 2020. There were no updates to the local source code after this date.

All the software auditing tools were used on a Windows 10 OS build 19041.450.

We will use static code scanning tools to find code vulnerabilities and discrepancies in pro-

gramming code automatically. All scanners generally highlight potential security flaws. Each tool

tested serves a particular function that is unique to itself.

For our study, we selected three well-known, publicly available bug-finding tools on PMD

[16], FindBugs [5] [34], and Sonarqube Community [4]. We use three different static analysis

tools because analysing the papers [26], [36], [43] results show that there is no correlation of

warning counts between pairs of tools, this means that their results are unique compared to other

tools and one package with a high number of warnings in one tool does not correlate to a high

number of warnings in a different tool.

Another potential threat to validate is that we did not exactly categorise every false positive

and false negative from the tools. Doing so would be extremely difficult, given a large number

of warnings from the tools. Instead, in Section 6.4, we will look at raw numbers and analyse the

system that way.

6.2.1 Repositories

WSO2 IS being a modular software solution, allows its source code to be divided into git reposi-

tories as individual modules. These Git repositories are currently all being hosted on Github and

can be divided into three types:

• product-is is the main repository, and the only one needed to build the solution from the

source code.

• identity and security repositories, this can be considered the major repositories containing

the modules with the main features. They can be stand-alone feature repositories, integration

tests for WSO2 IS, or product builds with build-scripts. The product-is repository could also

be considered in this type of repositories instead of its individual type.

• extension repositories are mostly feature repositories used by WSO2 products.

The following Table 6.1 shows the major repositories for WSO2 IS and explains their purpose.

Table 6.1: Major WSO2 IS repositories

Repository URL Description
https://github.com/wso2/product-is.git This repository is the only one needed to

build the product from the source code. It has

a maven configuration that builds the product

based on its dependencies.

Continued on next page

6.2 Methodology 59

Table 6.1 – continued from previous page

Repository URL Description
https://github.com/wso2/carbon-kernel.git WSO2 Carbon kernel can be viewed as a

framework for server development. All the

WSO2 products are created as a collection of

reusable components operating on this kernel.

These components inherit all the core

services provided by Carbon kernel such as

Registry/repository, User management,

Transports, Caching, Clustering, Logging,

Deployment related features.

https://github.com/wso2/carbon-commons.git Carbon Commons repo includes the standard

components and features shared by many

WSO2 products.

https://github.com/wso2/balana.git Balana is WSO2’s open-source

implementation of the XACML specification.

Balana has an entitlement engine that allows

externalising authorisation from the

application. With its modular architecture, it

is possible to achieve the fast development of

a complete entitlement solution.

https://github.com/wso2/carbon-

multitenancy.git

This repository contains the multitenancy

feature. The goal of multitenancy is to

maximise resource sharing by enabling

multiple users to log in and use a single server

at the same time, in an isolated environment.

https://github.com/wso2/charon.git WSO2 Charon is an open-source

implementation of SCIM protocol which is

an open standard for Identity Provisioning.

https://github.com/wso2/security-tools.git This repository contains security-related tools

developed by the WSO2 team or adapted for

them.

https://github.com/wso2/carbon-identity-

framework.git

This repository contains the main

components and features required by the

WSO2 Identity Server.

Continued on next page

60 Security Audit of WSO2 IS

Table 6.1 – continued from previous page

Repository URL Description
https://github.com/wso2/carbon-security.git The Carbon Security project provides an

authentication and authorisation

implementation for the carbon products based

on JAAS.

https://github.com/wso2/identity-feature-

category.git

This repository contains the maven

configuration needed to build some of the

identity-related features

https://github.com/wso2/carbon-identity-

providers.git

This repository manages the Identity

Provider(IDP) and Service Provider(SP)

implementations and related resources.

https://github.com/wso2/carbon-identity-

commons.git

Carbon Identity Commons combines the

common components for all Carbon Identity

components.

https://github.com/wso2/carbon-secvault.git WSO2 Secure Vault enables the storage of

encrypted passwords mapped to aliases, i.e.,

meaning that it is possible to use the aliases

instead of the actual passwords in

configuration files for better security.

https://github.com/wso2/carbon-identity-

gateway.git

A Proof of Concept implementation of the

Identity Framework

https://github.com/wso2/carbon-auth.git Carbon Auth is a standard authentication

platform for Carbon-based products.

https://github.com/wso2/identity-test-

integration.git

This repository contains all the tests needed

to verify a working WSO2 IS integration.

https://github.com/wso2/samples-is.git This repository contains applications and

guides that demonstrate the features of

WSO2 Identity Server.

https://github.com/wso2/carbon-consent-

management.git

This repository contains the consent

management feature.

https://github.com/wso2/identity-

anonymization-tool.git

A Tool for removing/Replacing all identifiers

matching given criteria

https://github.com/wso2/identity-tools.git This contains some tools to help in WSO2 IS

tasks.

Continued on next page

6.2 Methodology 61

Table 6.1 – continued from previous page

Repository URL Description
https://github.com/wso2/identity-rest-

dispatcher.git

Aggregates the API implementations from

identity-api-user and identity-api-server and

creates a single web app in order to expose

the various API endpoints in WSO2 Identity

Server.

https://github.com/wso2/identity-api-user.git Implementation of a user-related API

https://github.com/wso2/identity-api-

server.git

Implementation of a server related API

https://github.com/wso2/identity-apps.git End-user apps in WSO2 IS

https://github.com/wso2/identity-media.git This is the identity content provider service.

This service can be used to upload, download

and delete the images of a service

provider(application), identity provider and

user.

We will not go in-depth on extension repositories since their name is auto-explanatory and is

representative of its features, however, for reference, a list of all the extension repositories can be

found in Section A.1.

6.2.2 Tools

FindBugs [5] is a bug pattern detector for Java. FindBugs uses a series of ad-hoc techniques

designed to balance precision, efficiency, and usability. One of the main techniques FindBugs

uses is to match source code to known suspicious programming practices syntactically.

Findbugs divides the type of reports (bugs) it finds in 9 different categories:

• Bad practice

• Correctness

• Experimental

• Internationalization

• Malicious code vulnerability

• Multithreaded correctness

• Performance

• Security

• Dodgy code

62 Security Audit of WSO2 IS

FindBugs ranks reports from 1 to 20, 1 being the highest and 20 the lowest. This rank measures

the severity of the problem. Findbugs also gives us the likelihood that a bug was flagged as a real

bug; this is called priority. Priority can also be called confidence level and can have five levels:

High, Medium, Low, Experimental, Ignore.

PMD [16] performs syntactic checks on program source code, but it does not have a dataflow

component. In addition to some detection of clearly erroneous code, many of the “bugs” PMD

looks for are stylistic conventions whose violation might be suspicious under some circumstances.

PMD divides the type of bugs it finds in 8 different categories:

• Best Practices

• Code Style

• Design

• Documentation

• Error Prone

• Multithreading

• Performance

• Security

PMD ranks reports from 1 to 5, one being the highest and five the lowest. This rank is called

priority. We can use the following guidelines to assert the priority of the bug:

• 1 - Change absolutely required. Behaviour is critically broken/buggy.

• 2 - Change highly recommended. Behaviour is quite likely to be broken/buggy.

• 3 - Change recommended. Behaviour is confusing, perhaps buggy, and against best prac-

tices.

• 4 - Change optional. Behaviour is not likely to be buggy.

• 5 - Change highly optional. Nices to have, such as a consistent naming policy.

SonarQube [4], is an automatic code review tool to detect bugs, vulnerabilities, and code

smells in code. It can integrate with existing workflows to enable continuous code inspection

across branches and pull requests. SonarQube scanner is called SonarScanner and is the only

feature of SonarQube we will be using. SonarScanner divides its reports into three types: bugs,

vulnerabilities, and code smells. Like the other tools, SonarScanner also has five levels of severity

associated (Blocker, Critical, Major, Minor and Info).

6.3 Implementation 63

6.3 Implementation

6.3.1 FindBugs

In this implementation, we used FindBugs version 3.0.1. To filter all the test cases and sample

code from our results, we developed the following FindBugs filter:

1 <FindBugsFilter>

2

3 <Match>

4 <Class name="~.*\.*Test.*" />

5 <Class name="~.*\.*scenario.*" />

6 <Class name="~.*\.*sample.*" />

7 </Match>

8

9 </FindBugsFilter>

Listing 6.1: FindBugs filter

In order to run FindBugs we just need to run the following command:

1 java -jar .\findbugs.jar -effort:max -xml -sortByClass -exclude .\

filter.xml -project .\project.xml -progress -medium -output

output.xml

Listing 6.2: Command used to Run FindBugs

The project.xml file can be generated by the FindBugs UI when configuring the project.

6.3.2 PMD

In this implementation, we used PMD version 6.26. Because the number of reports from PMD is

so high as we will see in Section 6.4, we decided to filter the results to only reports from security,

error prone and multithreading categories. Additionally, we filtered all the test cases and sample

code. This process resulted in the following PMD ruleset:

1 <?xml version="1.0"?>

2 <ruleset name="myruleset"

3 xmlns="http://pmd.sourceforge.net/ruleset/2.0.0"

4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

5 xsi:schemaLocation="http://pmd.sourceforge.net/ruleset/2.0.0 https://pmd.

sourceforge.io/ruleset_2_0_0.xsd">

6 <description>My ruleset</description>

7

8 <exclude-pattern>.*Test.*</exclude-pattern>

64 Security Audit of WSO2 IS

9 <exclude-pattern>.*sample.*</exclude-pattern>

10 <exclude-pattern>.*scenario.*</exclude-pattern>

11

12 <rule ref="category/java/errorprone.xml" />

13 <rule ref="category/java/multithreading.xml" />

14 <rule ref="category/java/security.xml" />

15

16 </ruleset>

Listing 6.3: PMD ruleset

In order to run PMD we just need to run the following command:

1 .\pmd.bat -d <path to Repositories> -f csv -R .\ruleset.xml -l java

-no-cache -r output.csv

Listing 6.4: Command used to Run FindBugs

6.3.3 SonarQube

In this implementation, we used SonarQube version 8.4.1. As previously said, SonarQube is not

just a scanner like the other tools, so we have to follow a simple project setup in order to scan the

project. An example for this can be found in SonarQube’s documentation [4].

In order to scan, and because this is a large project, we used the following commands, in order,

inside the product-is repository:

1 mvn clean install

2 mvn sonar:sonar

Listing 6.5: Commands used to scan the project with SonarQube

6.4 Results 65

6.4 Results

6.4.1 FindBugs

FindBugs resulted in 736 reports, all found in the 8 packages shown in Table 6.2. We can see type

for report per package in Table 6.3 and Table 6.4. FindBugs reported 0 security type of reports.

Besides, in these two tables, we can evaluate that the package org.wso2.carbon.identity has the

most reports and that most reports are Performance type. The org.wso2.carbon.identity package

has a significant number of lines of code and is used in many features of the WSO2 IS.

In Figure 6.1 we can see the number of reports per priority, evaluating this table we can con-

clude that reports are most in the Normal to Low Priority, meaning that reports, in general, have a

medium to low confidence level that is not a false positive.

In Figure 6.2 we can see the number of reports per rank, evaluating this table we can conclude

that reports are mostly in the 16 to 20 Rank, meaning that reports, in general, are not critical

problems, and correspond to small corrections that should be made.

Table 6.2: Packages found to contain problems

ID Package
P1 org.wso2.balana
P2 org.wso2.carbon.identity
P3 org.wso2.carbon.sp.mgt.workflow
P4 org.wso2.identity.integration.common.clients
P5 org.wso2.identity.integration.common.ui
P6 org.wso2.identity.integration.common.utils
P7 org.wso2.identity.integration.common.extension.server
P8 org.wso2.identity.integration.ui

Table 6.3: Findbugs results per package - part 1

Package/Type Dodgy code Multithreaded Internationalization Bad Practice
P1 47 12 11 4
P2 62 0 0 7
P3 0 0 0 0
P4 2 0 1 2
P5 0 0 0 1
P6 0 0 0 0
P7 0 0 0 0
P8 0 0 0 1

Total 111 12 12 15

66 Security Audit of WSO2 IS

Table 6.4: Findbugs results per package - part 2

Package/Type Malicious code Performance Experimental Correctness
P1 15 8 0 3
P2 0 399 0 12
P3 0 2 0 0
P4 1 120 0 0
P5 1 10 1 0
P6 0 4 0 0
P7 0 2 0 0
P8 1 6 1 0

Total 18 551 2 15

Figure 6.1: FindBugs number of reports per priority

Figure 6.2: FindBugs number of reports per Rank

6.4 Results 67

6.4.2 PMD

PMD resulted in 45456 reports, the top 10 packages with the most reports are shown in Table 6.5.

As we previously said, we would only look at Error Prone, Multithreading and Security reports.

PMD reported 0 Security issues, most of the reports being an Error Prone report. In Table 6.5,

as we did in FindBugs results, we can see that the package org.wso2.carbon.identity has the most

reports by far.

In Figure 6.3 we can see the number of reports per priority, evaluating this table we can con-

clude that reports are most in the 3 to 5 Priority, meaning that reports, in general, are not critical.

However, 184 reports with Priority 1 is still a considerable amount.

Table 6.5: PMD top 10 packages with the most bugs

Package Error Prone Multithreading
org.wso2.carbon.identity 21725 1375
org.wso2.carbon.user 2434 147
org.wso2.carbon.registry 2161 147
org.wso2.balana 1340 56
org.wso2.charon3 1113 36
org.wso2.carbon.core 1074 115
org.wso2.security.tools and org.wso2.security.tool 908 59
org.wso2.identity 833 29
org.wso2.carbon.auth 636 50
org.wso2.carbon.is 615 36

Figure 6.3: PMD number of reports per priority

68 Security Audit of WSO2 IS

6.4.3 Sonarqube

We can see SonarQube results summarised in Figure 6.4. However, after exporting this informa-

tion with a SonarQube API, and filtering the results from tests, samples, and scenarios, we got 0

reports in WSO2 IS with SonarQube.

Figure 6.4: SonaQube results summarised

6.5 Discussion

We can see all the tools found 0 reports in a Security category in all three tools. These results

are satisfactory; however, the 15 reports in FindBugs of Malicious code in org.wso2.balana, the

package that implements XACML access policies, are concerning and should be reviewed. The

6.5 Discussion 69

org.wso2.carbon.identity package also has somewhat worrying results, the sheer amount of reports

in FindBugs and PMD, even if the types of reports do not imply the existence of bugs, should result

in a review of this package.

Findbugs priorities are mostly between medium to low, so we can assume that there space for a

lot of false positives. Findbugs has most of the reports ranks in 16 to 20; this indicates that most of

the reports are not that concerning or alarming. PMD results further indicate this because almost

half of the reports are of the priority 5 (Ignore priority), and the other half are of priority 3 (not that

concerning). However, 184 Priority 1 reports is still a concerning number, and these reports should

be at least reviewed. SonarQube, having the scanner incorporated with the maven build, reported

0 problems after filtering for tests and samples. This further validates one of the conclusions of

Chapter 5, WSO2 IS has all the tools to be a secure solution, and its security concerns are on the

deployment and configuration of the overall product.

With these results, can we conclude that the WSO2 IS is a secure solution? No, even if all re-

ports were accurate, it does not mean that a failure will occur or that a security breach is possible.

However, a developer needs to be aware of common programming mistakes and how these flaws

may compromise security. There will often be false positives for "flaws" that are not actually harm-

ful, and false negatives where flaws go undetected. Static analysis tools serve as a helpful hand to

remind and detect common vulnerabilities that may accidentally go unnoticed. However, source

code analysers will not always point out and correct these issues. Developers should use these

tools as an aid in the developmental process, but not depend on them. Creating a safe and func-

tional code is the developer’s task and cannot be replaced by static code analysis tools. Adopting

secure coding techniques and regularly using various methods of security vulnerability detection

will indeed reduce software security risks and improve efficiency for software developers.

70 Security Audit of WSO2 IS

Chapter 7

Conclusions

This dissertation discusses a plenitude of topics and approaches; In this section, we will revisit

each one of these. We will revisit our problem, the obtained solutions to this problem, and the

WSO2 IS Threat analysis and Security Audit. Additionally, we will present our conclusions,

enumerate our contributions and future work ideas.

We first identified a common authentication problem in enterprises (Chapter 1). Systems using

different protocols for communication means they process information differently, thus making

these systems unable to communicate, IAM protocols being an excellent example of this problem.

Different standard identity communication protocols were designed to solve this problem, SSO

protocols being an excellent example of this. However, even though SSO protocols alleviate this

problem, the different SSO protocols differ from each other, making the systems, again, unable to

communicate.

Following the contextualisation of our problem, we reviewed what the state-of-the-art ap-

proaches are to solving this problem are (Chapter 3). We identified two types of solutions: A

gateway able to translate protocols used as a middle-man in communication between two systems,

and standard IAM solutions. We then understood that an Identity Protocol Translator is not a fea-

sible solution and that solutions, like the WSO2 IS, solve our problem by unifying all these IAM

features in a single place (Chapter 4).

WSO2 IS was the chosen IAM solution to proceed with our dissertation, now going forward

with a Threat Analysis and a Security Audit with Static analysis tools (Chapters 5 and 6). This

Threat Analysis revealed that WSO2 IS has all the tools in place to be a secure solution, but could

be a target for attacks with a flawed system configuration. The Security Audit revealed that there

are some problems to be reviewed, especially in org.wso2.carbon.identity and org.wso2.balana

packages. A developer needs to be aware of common programming mistakes and how these flaws

may compromise security.

In general, WSO2 IS is a well-thought solution, with all the state-of-the-art tools and proto-

cols in place to be an extremely secure IAM solution, but this really depends on the deployment

71

72 Conclusions

configuration.

7.1 Contributions

All in all, we can highlight the following contributions:

• Literature review
We reviewed some open-source IAM solutions to understand the current state-of-art on IAM

and FIdM.

• WSO2 IS Threat analysis
We conducted a Threat Analysis to the WSO2 IS solution, this can be used for further

research on Threat Analysis methodologies and, as we recommend, future Threat Analysis

made to specific WSO2 IS environments and deployments.

• Securiy Audit using Static Analysis tools
We gave one more example of how different Static analysis tools can produce different

reports. We established that developers should use more than one of these tools as an aid

in the developmental process. Furthermore, we found some concerning reports that should

result in a code review.

7.2 Future Work

Our results are interesting, but only a first step into conceding the WSO2 IS as secure IAM solu-

tion. We believe many things can be considered for future work, namely:

• Dynamic Analysis
Dynamic analysis for the WSO2 IS to examine the application for potential security flaws

during its runtime. This is expected to complement the static analysis tools.

• Architecture review
An architectural evaluation of security, evaluating the security of the WSO2 IS through its

architectural design to expose the underlying security needs.

• Penetration Testing
A simulated cyber attack against a sample deployment of the WSO2 IS system to check

for exploitable vulnerabilities. Information provided by the penetration test can be used to

fine-tune security policies and patch detected vulnerabilities.

Appendix A

Appendix

A.1 WSO2 IS Extension repositories

• https://github.com/wso2-extensions/identity-outbound-auth-amazon.git

• https://github.com/wso2-extensions/identity-outbound-auth-basecamp.git

• https://github.com/wso2-extensions/identity-outbound-auth-dropbox.git

• https://github.com/wso2-extensions/identity-outbound-auth-foursquare.git

• https://github.com/wso2-extensions/identity-outbound-auth-github.git

• https://github.com/wso2-extensions/identity-outbound-auth-instagram.git

• https://github.com/wso2-extensions/identity-outbound-auth-inwebo.git

• https://github.com/wso2-extensions/identity-outbound-auth-mailchimp.git

• https://github.com/wso2-extensions/identity-outbound-auth-mepin.git

• https://github.com/wso2-extensions/identity-outbound-auth-sms-otp.git

• https://github.com/wso2-extensions/identity-outbound-auth-tiqr.git

• https://github.com/wso2-extensions/identity-outbound-auth-wordpress.git

• https://github.com/wso2-extensions/identity-outbound-auth-totp.git

• https://github.com/wso2-extensions/identity-outbound-auth-x509.git

• https://github.com/wso2-extensions/identity-outbound-auth-email-otp.git

• https://github.com/wso2-extensions/identity-outbound-auth-yammer.git

• https://github.com/wso2-extensions/identity-outbound-provisioning-inwebo.git

73

74 Appendix

• https://github.com/wso2-extensions/identity-outbound-auth-passwordPolicy.git

• https://github.com/wso2-extensions/identity-extension-parent.git

• https://github.com/wso2-extensions/identity-agent-entitlement-proxy.git

• https://github.com/wso2-extensions/identity-agent-mobile-proxy-idp.git

• https://github.com/wso2-extensions/identity-agent-sso.git

• https://github.com/wso2-extensions/identity-local-auth-basicauth.git

• https://github.com/wso2-extensions/identity-local-auth-fido.git

• https://github.com/wso2-extensions/identity-local-auth-iwa-kerberos.git

• https://github.com/wso2-extensions/identity-outbound-auth-oidc.git

• https://github.com/wso2-extensions/identity-outbound-auth-openid.git

• https://github.com/wso2-extensions/identity-outbound-auth-passive-sts.git

• https://github.com/wso2-extensions/identity-outbound-auth-requestpath-basicauth.git

• https://github.com/wso2-extensions/identity-outbound-auth-requestpath-oauth.git

• https://github.com/wso2-extensions/identity-outbound-auth-samlsso.git

• https://github.com/wso2-extensions/identity-carbon-auth-iwa.git

• https://github.com/wso2-extensions/identity-carbon-auth-mutual-ssl.git

• https://github.com/wso2-extensions/identity-carbon-auth-saml2.git

• https://github.com/wso2-extensions/identity-carbon-auth-signedjwt.git

• https://github.com/wso2-extensions/identity-carbon-auth-thrift.git

• https://github.com/wso2-extensions/identity-inbound-auth-oauth.git

• https://github.com/wso2-extensions/identity-inbound-auth-openid.git

• https://github.com/wso2-extensions/identity-inbound-auth-saml.git

• https://github.com/wso2-extensions/identity-inbound-auth-sts.git

• https://github.com/wso2-extensions/identity-inbound-provisioning-scim.git

• https://github.com/wso2-extensions/identity-notification-email.git

• https://github.com/wso2-extensions/identity-notification-json.git

A.1 WSO2 IS Extension repositories 75

• https://github.com/wso2-extensions/identity-outbound-provisioning-google.git

• https://github.com/wso2-extensions/identity-outbound-provisioning-salesforce.git

• https://github.com/wso2-extensions/identity-outbound-provisioning-scim.git

• https://github.com/wso2-extensions/identity-outbound-provisioning-spml.git

• https://github.com/wso2-extensions/identity-tool-samlsso-validator.git

• https://github.com/wso2-extensions/identity-user-account-association.git

• https://github.com/wso2-extensions/identity-user-workflow.git

• https://github.com/wso2-extensions/identity-user-ws.git

• https://github.com/wso2-extensions/identity-userstore-cassandra.git

• https://github.com/wso2-extensions/identity-userstore-ldap.git

• https://github.com/wso2-extensions/identity-userstore-remote.git

• https://github.com/wso2-extensions/identity-workflow-impl-bps.git

• https://github.com/wso2-extensions/identity-workflow-template-multisteps.git

• https://github.com/wso2-extensions/identity-outbound-auth-linkedIn.git

• https://github.com/wso2-extensions/identity-outbound-auth-twitter.git

• https://github.com/wso2-extensions/identity-oauth2-grant-jwt.git

• https://github.com/wso2-extensions/identity-data-publisher-oauth.git

• https://github.com/wso2-extensions/identity-outbound-auth-facebook.git

• https://github.com/wso2-extensions/identity-outbound-auth-google.git

• https://github.com/wso2-extensions/identity-outbound-auth-windows-live.git

• https://github.com/wso2-extensions/identity-outbound-auth-yahoo.git

• https://github.com/wso2-extensions/identity-outbound-auth-symantecvip.git

• https://github.com/wso2-extensions/identity-outbound-auth-mydigipass.git

• https://github.com/wso2-extensions/identity-outbound-auth-reddit.git

• https://github.com/wso2-extensions/identity-outbound-auth-office365.git

• https://github.com/wso2-extensions/identity-outbound-auth-bitly.git

76 Appendix

• https://github.com/wso2-extensions/identity-event-handler-notification.git

• https://github.com/wso2-extensions/identity-governance.git

• https://github.com/wso2-extensions/identity-event-handler-account-lock.git

• https://github.com/wso2-extensions/carbon-security-user-store-ldap.git

• https://github.com/wso2-extensions/carbon-security-login-module-jwt.git

• https://github.com/wso2-extensions/identity-endpoint-account-mgt.git

• https://github.com/wso2-extensions/identity-data-publisher-authentication.git

• https://github.com/wso2-extensions/identity-outbound-auth-duo.git

• https://github.com/wso2-extensions/identity-outbound-provisioning-duo.git

• https://github.com/wso2-extensions/identity-carbon-auth-rest.git

• https://github.com/wso2-extensions/identity-cloud.git

• https://github.com/wso2-extensions/identity-inbound-auth-saml-cloud.git

• https://github.com/wso2-extensions/identity-outbound-auth-token2.git

• https://github.com/wso2-extensions/identity-outbound-auth-rsa.git

• https://github.com/wso2-extensions/identity-outbound-auth-oidc-mobileconnect.git

• https://github.com/wso2-extensions/identity-userstore-onprem-agent.git

• https://github.com/wso2-extensions/identity-agent-onprem-userstore.git

• https://github.com/wso2-extensions/tomcat-extension-samlsso.git

• https://github.com/wso2-extensions/identity-data-publisher-audit.git

• https://github.com/wso2-extensions/identity-inbound-auth-cas.git

• https://github.com/wso2-extensions/identity-application-authz-xacml.git

• https://github.com/wso2-extensions/identity-extension-utils.git

• https://github.com/wso2-extensions/identity-metadata-saml2.git

• https://github.com/wso2-extensions/identity-inbound-provisioning-scim2.git

• https://github.com/wso2-extensions/identity-local-auth-iwa-ntlm.git

• https://github.com/wso2-extensions/identity-outbound-auth-pinterest.git

A.1 WSO2 IS Extension repositories 77

• https://github.com/wso2-extensions/devicemgt-nfc-provisioning-android.git

• https://github.com/wso2-extensions/identity-oauth2-grant-kerberos.git

• https://github.com/wso2-extensions/identity-outbound-provisioning-scim2.git

• https://github.com/wso2-extensions/identity-client-scim2.git

• https://github.com/wso2-extensions/identity-oauth-addons.git

• https://github.com/wso2-extensions/identity-oauth-uma.git

• https://github.com/wso2-extensions/identity-x509-commons.git

• https://github.com/wso2-extensions/identity-api-appmgt.git

• https://github.com/wso2-extensions/identity-local-auth-limited-sessions.git

• https://github.com/wso2-extensions/identity-conditional-auth-functions.git

• https://github.com/wso2-extensions/identity-outbound-auth-nuxeo.git

• https://github.com/wso2-extensions/identity-local-auth-api.git

• https://github.com/wso2-extensions/identity-fetch-remote.git

• https://github.com/wso2-extensions/identity-userstore-aws.git

• https://github.com/wso2-extensions/identity-client-lib-appauth.git

• https://github.com/wso2-extensions/identity-office365.git

• https://github.com/wso2-extensions/identity-outbound-auth-casque-snr.git

• https://github.com/wso2-extensions/identity-migration-resources.git

• https://github.com/wso2-extensions/identity-outbound-auth-cognito.git

• https://github.com/wso2-extensions/carbon-identity-saml-common.git

• https://github.com/wso2-extensions/identity-sdks-dotnet.git

• https://github.com/wso2-extensions/identity-samples-dotnet.git

• https://github.com/wso2-extensions/identity-application-authz-opa.git

• https://github.com/wso2-extensions/identity-tools-cli.git

• https://github.com/wso2-extensions/identity-tools-plugin-vscode.git

• https://github.com/wso2-extensions/identity-tools-debugger.git

78 Appendix

• https://github.com/wso2-extensions/identity-sdks-android.git

• https://github.com/wso2-extensions/identity-samples-android.git

• https://github.com/wso2-extensions/identity-inbound-auth-jwtsso.git

• https://github.com/wso2-extensions/identity-samples-js.git

• https://github.com/wso2-extensions/identity-sdks-js.git

• https://github.com/wso2-extensions/identity-verification-evident.git

• https://github.com/wso2-extensions/identity-samples-spring-boot.git

• https://github.com/wso2-extensions/identity-outbound-auth-naver.git

• https://github.com/wso2-extensions/identity-outbound-auth-oauth2.git

• https://github.com/wso2-extensions/identity-outbound-auth-kakao.git

References

[1] A Guide to WSO2 Identity Server. URL: https://wso2.com/whitepapers/
a-guide-to-wso2-identity-server/. (Accessed on 06/08/2020).

[2] Apache Syncope. URL: https://syncope.apache.org/. (Accessed on 08/24/2020).

[3] CAS. URL: https://apereo.github.io/cas/6.2.x/index.html. (Accessed on
08/22/2020).

[4] Code Quality and Security | SonarQube. URL: https://www.sonarqube.org/. (Ac-
cessed on 09/02/2020).

[5] FindbugsTM - find bugs in java programs. URL: http://findbugs.sourceforge.
net/. (Accessed on 09/02/2020).

[6] Gluu Server 4.2 Docs. URL: https://gluu.org/docs/gluu-server/4.2/. (Ac-
cessed on 08/22/2020).

[7] Identity and access management (iam) solutions | ibm. URL: https://www.ibm.com/
security/identity-access-management. (Accessed on 08/24/2020).

[8] Identity and access management – rsa securid suite. URL: https://www.rsa.com/
en-us/products/rsa-securid-suite. (Accessed on 08/24/2020).

[9] Keycloak. URL: https://www.keycloak.org/. (Accessed on 08/22/2020).

[10] midpoint: Open source identity management software. URL: https://evolveum.com/
midpoint/. (Accessed on 08/22/2020).

[11] OECD Privacy Guidelines - OECD. URL: http://www.oecd.org/internet/
ieconomy/privacy-guidelines.htm. (Accessed on 06/07/2020).

[12] OpenAM 13.5. URL: https://backstage.forgerock.com/docs/openam/13.5.
(Accessed on 08/22/2020).

[13] OpenIDM 4. URL: https://backstage.forgerock.com/docs/openidm/4/.
(Accessed on 08/22/2020).

[14] Oracle identity governance home page. URL: https://www.oracle.com/
middleware/technologies/identity-management/governance.html. (Ac-
cessed on 08/24/2020).

[15] OWASP CSRFGuard. URL: https://owasp.org/www-project-csrfguard/. (Ac-
cessed on 09/16/2020).

79

https://wso2.com/whitepapers/a-guide-to-wso2-identity-server/
https://wso2.com/whitepapers/a-guide-to-wso2-identity-server/
https://syncope.apache.org/
https://apereo.github.io/cas/6.2.x/index.html
https://www.sonarqube.org/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://gluu.org/docs/gluu-server/4.2/
https://www.ibm.com/security/identity-access-management
https://www.ibm.com/security/identity-access-management
https://www.rsa.com/en-us/products/rsa-securid-suite
https://www.rsa.com/en-us/products/rsa-securid-suite
https://www.keycloak.org/
https://evolveum.com/midpoint/
https://evolveum.com/midpoint/
http://www.oecd.org/internet/ieconomy/privacy-guidelines.htm
http://www.oecd.org/internet/ieconomy/privacy-guidelines.htm
https://backstage.forgerock.com/docs/openam/13.5
https://backstage.forgerock.com/docs/openidm/4/
https://www.oracle.com/middleware/technologies/identity-management/governance.html
https://www.oracle.com/middleware/technologies/identity-management/governance.html
https://owasp.org/www-project-csrfguard/

80 REFERENCES

[16] PMD. URL: https://pmd.github.io/. (Accessed on 09/02/2020).

[17] prabath/wso2is-repo-explorer: Repo explorer (rex) for wso2 identity server (is).
URL: https://github.com/prabath/wso2is-repo-explorer. (Accessed on
09/02/2020).

[18] Secure workforce identity with iam tools | okta. URL: https://www.okta.com/
workforce-identity/. (Accessed on 08/24/2020).

[19] Shibboleth. URL: https://wiki.shibboleth.net. (Accessed on 06/07/2020).

[20] SimpleSAMLphp. URL: https://simplesamlphp.org/. (Accessed on 06/07/2020).

[21] The Case for Open Source IAM. URL: https://wso2.com/whitepapers/
the-case-for-open-source-iam/. (Accessed on 06/08/2020).

[22] Unity IdM - Identity management and authentication (IAM) platform Unity IdM. URL:
https://www.unity-idm.eu/ (Accessed on 2020-02-02).

[23] WSO2 Identity Server Documentation. URL: https://is.docs.wso2.com/en/
latest/. (Accessed on 06/07/2020).

[24] Understanding authentication, authorization, and accounting, chapter 2, pages 33–109. John
Wiley Sons, Ltd, 2019.

[25] Nadia Jemil Abdu and Ulrike Lechner. A threat analysis model for identity and access
management. In ICISSP, 2016.

[26] Hamda Hasan AlBreiki and Qusay H Mahmoud. Evaluation of static analysis tools for soft-
ware security. In 2014 10th International Conference on Innovations in Information Tech-
nology (IIT), pages 93–98. IEEE, 2014.

[27] Kim Cameron. The laws of identity. 2005. URL: https://www.identityblog.
com/stories/2005/05/13/TheLawsOfIdentity.pdf. (Accessed on 06/10/2020).

[28] David W Chadwick. Federated identity management. In Foundations of security analysis
and design V, pages 96–120. Springer, 2009.

[29] David W Chadwick. Federated identity management. In Foundations of security analysis
and design V, pages 96–120. Springer, 2009.

[30] Qingwen Cheng, Ping Luo, Andrew Patterson, and Rajeev Angal. Method and system for
multi-protocol single logout, January 17 2012. US Patent 8,099,768.

[31] C. Cowan. Software security for open-source systems. IEEE Security Privacy, 1(1):38–45,
2003.

[32] ECB ECB. Recommendations for the security of internet payments. Technical report, Tech.
Rep. January, 2013.

[33] Dick Hardt et al. The OAuth 2.0 authorization framework. Technical report, RFC 6749,
October, 2012.

[34] David Hovemeyer and W. Pugh. Finding bugs is easy. ACM SIGPLAN Notices, 39:92–106,
2004.

https://pmd.github.io/
https://github.com/prabath/wso2is-repo-explorer
https://www.okta.com/workforce-identity/
https://www.okta.com/workforce-identity/
https://wiki.shibboleth.net
https://simplesamlphp.org/
https://wso2.com/whitepapers/the-case-for-open-source-iam/
https://wso2.com/whitepapers/the-case-for-open-source-iam/
https://www.unity-idm.eu/
https://is.docs.wso2.com/en/latest/
https://is.docs.wso2.com/en/latest/
https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf

REFERENCES 81

[35] John Hughes and Eve Maler. Security assertion markup language (saml) v2. 0 technical
overview. OASIS SSTC Working Draft sstc-saml-tech-overview-2.0-draft-08, pages 29–38,
2005.

[36] Rahma Mahmood and Qusay Mahmoud. Evaluation of static analysis tools for finding vu-
lunerbailities in java and c/c++ source code. 05 2018.

[37] R. Morgan, Scott Cantor, Steven Carmody, Walter Hoehn, and Ken Klingenstein. Federated
security: The shibboleth approach. EDUCAUSE Quarterly, 27, 01 2004.

[38] Michael Muckin. A threat-driven approach to cyber security methodologies , practices and
tools to enable a functionally integrated cyber security organization. 2015.

[39] Suvda Myagmar, Adam J. Lee, and William Yurcik. Threat modeling as a basis for security
requirements. 2005.

[40] N. Naik and P. Jenkins. Securing digital identities in the cloud by selecting an apposite feder-
ated identity management from saml, oauth and openid connect. In 2017 11th International
Conference on Research Challenges in Information Science (RCIS), pages 163–174, May
2017.

[41] Frank Piessens, Bart De Decker, and Phil Janson. Interconnecting domains with heteroge-
neous key distribution and authentication protocols. In Proceedings 1993 IEEE Computer
Society Symposium on Research in Security and Privacy, pages 66–79. IEEE, 1993.

[42] Darren C Platt and Michael Scott Gile. Identity protocol translation gateway, May 2 2017.
US Patent 9,641,512.

[43] Nick Rutar, Christian B. Almazan, and J. Foster. A comparison of bug finding tools for java.
15th International Symposium on Software Reliability Engineering, pages 245–256, 2004.

[44] Nat Sakimura, John Bradley, Mike Jones, Breno De Medeiros, and Chuck Mortimore.
OpenID Connect Core 1.0 incorporating errata set 1. The OpenID Foundation, specifica-
tion, 335, 2014.

[45] STANDARDIZATION SECTOR and OF ITU. ITU-T. Baseline capabilities for enhanced
global identity management trust and interoperability. Draft New Recommendation ITU-T
X.1250.

[46] STANDARDIZATION SECTOR and OF ITU. ITU-T. NGN identity management frame-
work. Recommendation Y.2720.

[47] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons, 2014.

[48] Sean Simpson and Thomas Groß. A survey of security analysis in federated identity man-
agement. In Privacy and Identity Management, 2016.

[49] Christopher Staite and Rami Bahsoon. Evaluating identity management architectures. In
Proceedings of the 3rd International ACM SIGSOFT Symposium on Architecting Critical
Systems, ISARCS ’12, page 11–20, New York, NY, USA, 2012. Association for Computing
Machinery.

[50] Antonietta Stango, Neeli Prasad, and Dimitris Kyriazanos. A threat analysis methodology
for security evaluation and enhancement planning. pages 262–267, 01 2009.

82 REFERENCES

[51] Dror Yaffe and Michael Gilfix. Multi-protocol authentication and authorization in computer
network environments, April 13 2010. US Patent 7,698,443.

[52] Dimitrios Zissis and Dimitrios Lekkas. Addressing cloud computing security issues. Future
Generation Computer Systems, 28(3):583 – 592, 2012.

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Definition
	1.3 Motivation
	1.4 Goals
	1.5 Structure

	2 Theoretical Fundamentals
	2.1 Federated Identity Management
	2.1.1 Definition
	2.1.2 The 7 Laws of Identity
	2.1.3 Privacy protection
	2.1.4 Open source IAM

	2.2 Authentication, Authorisation and Accounting (AAA)
	2.2.1 Authentication
	2.2.2 Authorisation
	2.2.3 Accounting

	2.3 Identity Protocols
	2.3.1 SAML 2.0
	2.3.2 OAuth 2.0
	2.3.3 OIDC 1.0
	2.3.4 Comparative Analysis

	2.4 Summary

	3 State-of-the-Art
	3.1 Identity protocol translation gateway
	3.2 Interconnecting domains with heterogeneous key distribution and authentication protocols
	3.2.1 Mechanism 1: proxies.
	3.2.2 Mechanism 2: hiding information in cryptographic expressions

	3.3 IAM solutions
	3.3.1 Shibboleth
	3.3.2 SimpleSAMLPHP
	3.3.3 CAS
	3.3.4 Keycloak
	3.3.5 Gluu server
	3.3.6 Apache Syncope
	3.3.7 MidPoint
	3.3.8 OpenAM and OpenIDM
	3.3.9 Unity IdM
	3.3.10 WSO2

	3.4 Summary

	4 Problem Statement
	4.1 Preliminary Study
	4.2 IAM solutions comparison
	4.3 Importance of a Security Analisys
	4.4 Research Methodology

	5 Threat Analysis
	5.1 Context
	5.2 Methodology
	5.3 Step 1. Description of the system
	5.4 Step 2. Analysis of the technical background
	5.5 Step 3. Identification of assets
	5.6 Step 4. Determination of threats
	5.7 Step 5. Determination of vulnerabilities
	5.8 Step 6. Assets Mapping
	5.9 Step 7. Risk Management
	5.10 Step 8. Mitigation plan
	5.11 Discussion

	6 Security Audit of WSO2 IS
	6.1 Context
	6.2 Methodology
	6.2.1 Repositories
	6.2.2 Tools

	6.3 Implementation
	6.3.1 FindBugs
	6.3.2 PMD
	6.3.3 SonarQube

	6.4 Results
	6.4.1 FindBugs
	6.4.2 PMD
	6.4.3 Sonarqube

	6.5 Discussion

	7 Conclusions
	7.1 Contributions
	7.2 Future Work

	A Appendix
	A.1 WSO2 IS Extension repositories

	References

