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Abstract

The prediction of the crack propagation is an important engineering
problem. The application of the Natural Neighbour Radial Point Interpo-
lation Method (NNRPIM) to fracture mechanics is presented in this thesis.
The NNRPIM is a meshless method used to solve computational mechanics
problems. It has been extended to numerous others fields.

In this work, the crack propagation is numerically simulated using the
NNRPIM. The crack is iteratively extended in line segments. At each itera-
tion, the crack propagation direction is obtained from the calculated stress
field. The crack propagation direction is calculated using the maximum cir-
cumferential stress criterion. The discontinuities in the domain are modelled
taking advantage of the natural neighbour concept.

In order to numerically validate all the work developed in this thesis, the
NNRPIM is used to predict the crack path on several benchmark examples
previously solved with other methods.

Keywords: meshless methods; fracture; crack path.



Sumário

A previsão do caminho de propagação de fenda é um problema impor-
tante de engenharia. Nesta tese, é feita a aplicação, à mecânica da frac-
tura, do método sem malha “Natural Neighbour Radial Point Interpolation
Method” (NNRPIM). O NNRPIM é um método sem malha desenvolvido
para resolver problemas de mecânica computacional. Este método foi já
aplicado a vários campos da mecânica computacional e biomecânica.

Neste trabalho, a propagação de fenda é simulada usando o NNRPIM. A
fenda é iterativamente estendida em segmentos de recta. Em cada iteração,
a direcção de propagação de fenda é obtida através do campo de tensões
do problema em questão. A direcção de propagação de fenda é calculada
usando o critério da máxima tensão circunferencial. As descontinuidades no
domı́nio do problema são tidas em consideração tirando partido do conceito
de vizinho natural.

De forma a avaliar o todo o trabalho desenvolvido, o NNRPIM é usado
para fazer a previsão do caminho da fenda em vários exemplos numéricos,
previamente resolvidos usando outros métodos.

Palavras chave: métodos sem malha; fractura; caminho de fenda.
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2.4 Example of a Voronöı diagram. . . . . . . . . . . . . . . . . . 16
2.5 Construction of the integration mesh: (a) initial Voronöı dia-
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Chapter 1

Introduction

In this work, a meshless method, the Natural Neighbour Radial Point
Interpolation Method (NNRPIM) [1] is used to solve linear elastic fracture
mechanics problems.

Meshless methods [2, 3] are a class of numerical methods (used to solve
differential equations) that do not require the problem to be discretised in a
mesh of elements. This is a different concept from the one used in the more
widely adopted Finite Elements Method (FEM) [4], in which the domain
of the problem is divided into smaller parts, called elements, originating a
computational mesh, containing all the elements and the information about
all the pre-established element connectivity relations. In a truly meshless
method the typical concept of a mesh does not exist, instead, the problem is
discretised in a set of points or nodes, without pre-establishing any sort of
connectivity between them. The connectivity of those nodes is assured by
the concept of influence domain [5], which will be later explained in detail.

The FEM presents a significant limitation when applied to problems
with complex geometries. In this case it is common the generation of highly
distorted elements. Another FEM limitation is the extra computational
cost in remeshing problems with moving discontinuities, such as the predic-
tion of the crack path, which reduces significantly the FEM efficiency [3].
These problems do not occur in a meshless method because it does not use
elements.

1.1 Meshless methods

Meshless methods were created in order to eliminate part of the diffi-
culties associated with the reliance on a computational mesh to construct
the approximation [3]. One of the first meshless methods was the Smooth
Particle Hydrodynamics (SPH) [6], originally used to solve problems in as-
trophysics and later applied to computational mechanics, the SPH was based
on a strong form. In the 1990s other meshless methods were created that
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were based on a weak form. The Element-free Galerkin Method (EFGM)
[7] was one of the first meshless methods based on a global weak form. The
EFGM was based on the Diffuse Element Method (DEM) [8] which was one
of the first meshless methods to use the moving least squares approximation
to compute the test functions.

There are also meshless methods based on a local weak form, the most
popular being the Meshless Local Petrov-Galerkin (MLPG) [9]. The main
difference between the MLPG and methods that use a global weak form is
that the local weak forms are generated over local overlapping subdomains
rather than the whole domain of the problem [3].

Although the above mentioned methods were successfully applied to solid
mechanics, there are some unsolved issues, such as the computational diffi-
culty on imposing the essential and natural boundary conditions, due to the
lack of the delta Kronecker property on approximation functions. In order
to solve this problem, the Point Interpolation Method (PIM) [10] was cre-
ated. In the PIM, the test functions are interpolant and have the Kronecker
delta property making the imposition of the essential and natural boundary
conditions as easy as in FEM. The original PIM used only polynomials as
its basis functions and thus special techniques were required to guarantee a
successful computation of the interpolation functions for a arbitrarily chosen
set of points [5]. In order to simplify the computation of the interpolation
functions, and to eliminate some singularities that occurred in the PIM, the
Radial Point Interpolation Method (RPIM) [5] was proposed. This method
uses a Radial Basis Function (RBF) combined with a polynomial basis to
construct the interpolation functions used in the solution of partial differ-
ential equations.

Using the RPIM as a starting point, the NNRPIM was developed. The
NNRPIM has the important advantage of not relying on a background in-
tegration mesh, thus being a truly meshless method. A truly meshless
method performs both interpolation and integration without a mesh [11].
This method uses the mathematical concept of the Voronöı diagram [12]
and Delaunay tessellation [13] in order to obtain the natural neighbours on
an interest point. After the determination of the natural neighbours, the
influence domains and the set of integration points are created. Contrary
to the FEM, where geometrical restrictions are imposed to guarantee the
convergence of the method, in the NNRPIM there are no such restrictions,
which allows a totally random node distribution for the discretised problem
[1].

Some of the major advantages of the meshless methods are [14]:

• The methods can provide more accurate approximations for structures
with complex geometries when compared with the FEM.

• The test functions are constructed in terms of higher-order continuous
weight functions and possess compact support.
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• Possessing significant advantages in handling problems with large de-
formations, moving discontinuities such as crack propagation in dy-
namic fracture and phase transformation in the development of ad-
vanced materials.

• Nodes can be easily added (h-adaptivity) on portions where refinement
is needed for a higher solution accuracy.

• The coupling possibility with FEM or boundary element methods
(BEM) to avoid their inherent drawbacks.

More recently, other meshless methods were developed and applied to
computational mechanics, one of them being the Maximum-entropy Mesh-
free Method (MEMM) [15], this method attempts to solve some of the prob-
lems of the existing meshless methods, specifically problems related to vol-
umetric locking. Another one is the Generalised Meshfree (GMF) [16], it
uses convex approximation and poses e weak Kronecker delta property.

1.2 The natural neighbour radial point interpola-
tion method

The NNRPIM was developed at FEUP with the intent of being an im-
provement on radial point interpolation techniques. This meshless method
was first applied in obtaining and solving the equilibrium equation of elasto-
statics using a Galerkin displacement based formulation [1]. The NNRPIM
is the product of the combination of radial point interpolators with the nat-
ural neighbour geometric concept [17].

The RPIM uses the concept of “influence domain” to impose the nodal
connectivity, instead of using the global domain of the problem. In the
NNRPIM the concept of influence domain is replaced by the concept of “in-
fluence cell”. In order to obtain the influence cells the NNRPIM resorts to
geometrical and mathematical constructions such as the Voronöı diagrams
and the Delaunay tessellation. Departing from an unstructured set of nodes,
making use of the Voronöı cells, a set of influence cells is created. The De-
launay triangles are applied to create the background mesh, used in the
integration of the interpolation functions. This background mesh depends
on the nodal mesh, making the NNRPIM a truly meshless method. The
NNRPIM interpolation functions, used in the Galerkin weak form, are con-
structed in a similar process to the RPIM, with some differences that modify
the method’s performance [1].

The NNRPIM has been extended to many fields in computational me-
chanics, such as the static analysis of isotropic and orthotropic plates [18]
and the dynamic analysis of several solid mechanics problems [19]. The
NNRPIM was also tested in more demanding applications such as the ma-
terial nonlinearity [20] and the large deformation analysis [21].
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1.3 Fracture mechanics and numerical methods

Numerical methods have been applied to fracture mechanics for several
decades now [22]. One common problem in which numerical methods and
fracture mechanics are used in conjunction, is the prediction of the crack
path.

The FEM has been extensively used to predict the crack path since the
1980s [23] until very recently [24]. As was said above, the FEM is particu-
larly unsuited to problems with complex geometries in which is difficult to
align the element edges with the edges of the domain of the problem, which
can be cracks. Additionally, remeshing the domain as the crack progresses
is a very burdensome and costly task, using FEM. Apart from meshless
methods, another method that overcomes this difficulties is the Extended
Finite Element Method (XFEM) [25]. The XFEM enriches the standard fi-
nite element shape functions with additional continuous enrichment function
(Ramp function) or discontinuous enrichment function (Heaviside function
or Step function) to approximate the solution near an interface. The enrich-
ment function exists only at the element’s nodes that intersect the interface.
This allows XFEM to accommodate elements that do not conform to the
interface [26]. Several authors solved the prediction of the crack path with
accurate results using XFEM [27, 28, 29], with various degrees of complex-
ity. Another numerical method that has been recently applied to fracture
mechanics and, more specifically to crack path prediction is the Edge-based
Smoothed Finite Element Method (ES-FEM) [30]. The ES-FEM is a suc-
cessor of the Smoothed Finite Element Method (S-FEM), which can be seen
as a combination of FEMs and meshless methods [30].

Other meshless methods have also been successfully applied to crack
path prediction, like the EFGM [31] and others [32, 33, 34, 35].

In this work, a significant part of the fracture mechanics analysis will be
related to the prediction of the crack path for a given component or struc-
ture. The prediction of the crack path is an iterative process in which the
mesh or nodal mesh have to be, to some extent, updated in every iteration
[23]. In each step of the problem, the crack is extended in a straight line by
a certain length, that can be calculated or just a predefined value. In order
to define the crack propagation direction, in each iteration the displacement
and stress fields need to be obtained. There are several criterion that define
the crack propagation direction, this work uses one of the most important,
the maximum circumferential stress criterion [36].

1.4 Purpose of this work

The main purpose of this work is to apply the NNRPIM to the fracture
mechanics analysis of structures. More specifically, to create a numerical
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tool capable of automatically predicting the crack path in two-dimensional
solids. In order to accomplish that, it is necessary to extend the existing
NNRPIM code and formulation to fracture mechanics.

Meshless methods are inherently easier to apply to fracture mechanics
problems than conventional FEMs [10], since discontinuities can be easily
considered, due to the nonexistence of elements. The NNRPIM was the
chosen method, because of the way the influence domains are obtained.
The fact that it uses the natural neighbour concept makes it very easy
and organic to model discontinuities in a problem and, more important,
to automatically change the shape of the discontinuities (which model the
crack path) as the problem progresses. Thus making it simple to simulate
propagating cracks in solids. Additionally the NNRPIM is a very versatile
method, facilitating the analysis from the point of view of solid mechanics.

All the concepts developed in this thesis were ultimately applied in nu-
merical simulations. The developed algorithm was programmed in the com-
mercial software Matlab, using a provided NNRPIM Matlab package.

1.5 Thesis outline

This thesis is organised, by chapter number, as follows:

1. The thesis is introduced and a brief state of the art, concerning
meshless methods and fracture mechanics is given. Also, the purpose
of this work is defined.

2. The necessary solid mechanics fundamentals are presented and ex-
plained. This information is necessary to understand the inner work-
ings of the NNRPIM and also acts as the basis for the subsequent
fracture mechanics analysis.

3. All the fracture mechanics analysis elaborated during the course of
this work is demonstrated and explained. Before that, once again, the
essential fracture mechanics fundamentals are shown and explained.
One important point of this chapter is the explanation and demon-
stration of the algorithm necessary to numerically simulate the crack
path.

4. The concepts defined and explained in the previous chapters are put
to the practice. Various numerical examples are programmed and
simulated using Matlab, all the relevant results are displayed in this
chapter.

5. Finally all the important conclusions are discussed and a brief reflec-
tion of possible future work is made.
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Chapter 2

Meshless method

(a) (b)

Figure 2.1: Discretisation procedure: (a) continuous domain; (b) discre-
tised in a nodal mesh.

The majority of the work developed throughout the realisation of this
thesis was based on the NNRPIM. For that reason, to facilitate the adap-
tation of the NNRPIM to fracture mechanics, it is necessary to get a good
understanding of the method, and also to make sure that it is able to achieve
accurate results. Also, before studying the behaviour of structures from the
point of view of fracture mechanics it is necessary to understand the solid
mechanics fundamentals. In figure 2.1, the discretisation procedure in mesh-
less methods is displayed. It is possible to verify that only nodes are used
to discretise de domain of the problem.

In this chapter, firstly the basic NNRPIM formulation is presented, after-
wards, the theoretical and practical background concerning the application
of the NNRPIM to linear elastic analysis is explained. Finally, the solid
mechanics fundamentals used throughout this thesis are briefly presented.
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2.1 NNRPIM formulation

The NNRPIM is a meshless method based on a local weak form, in
which the weak form is supported only in subdomains of the problem. In
this meshless method, these subdomains define how the nodes are connected
i. e. the nodal connectivity. The nodal connectivity is, in turn, defined
by the natural neighbour concept. The natural neighbours are deter-
mined making use of the Voronöı diagram. The integration scheme is
also determined using the Voronöı diagram. All the above mentioned terms
are explained in this section.

2.1.1 Natural neighbours

(a) (b)

(c) (d)

Figure 2.2: Natural neighbours determination: (a) initial set of nodes; (b)
final cell containing only neighbour nodes; (c) Voronöı cell; (d)
Voronöı diagram.

The concept of natural neighbours was firstly introduced for data fitting
and smoothing [1]. The theory behind it, is applicable to a D-dimensional
space [1] however, in this work, only two-dimensional problems are con-
sidered, therefore a two-dimensional Euclidian space R2 example is shown.
Considering the set N of N distinct nodes,

N = {n1, n2, . . . , nN} ∈ R2. (2.1)
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The Voronöı diagram of N is the partition of the domain defined by N in
sub-regions VI , closed and convex [1]. VI is the geometric place where all
points are closer to nI than to any other node, the sub-regions Vk are the
“Voronöı cells” which form the Voronöı diagram, with k = 1, . . . , N [1]. In
mathematical terms, the Voronöı cell is defined by

VI =
{
x ∈ R2 : En(x,xI) < En(x,xJ), ∀J 6= I

}
(2.2)

where En(xJ ,xI) is the Euclidian metric norm i. e., the distance between
points with coordinates defined by xJ and xI [1]. In figure 2.2 the process
of the computation of the natural neighbours is described. In figure 2.2b
it is shown how the neighbour nodes are obtained. By definition, only the
nodes in the perimeter of the obtained final domain, V0∗ , are considered
neighbours nodes [1]. The Voronöı cell is obtained as figure 2.2c indicates.
The cell V0 is the homothetic form of V0∗ . The remaining Voronöı cells are
obtained in the same manner. In the NNRPIM, the Voronöı diagram is used
to create the “influence-cells”, which enforce the connectivity between the
nodes in N [1].

(a) (b)

Figure 2.3: Construction of the Delaunay triangles: (a) initial Voronöı di-
agram; (b) the respective Delaunay triangulation.

Besides being used to define the influence domains, the natural neigh-
bours are also utilised to construct a nodal dependent background mesh, ap-
plying the concept of Delaunay triangulation. This concept is the geometric
dual of the Voronöı diagram [1]. The Delaunay triangles, which are used
to create integration points, are obtained by connecting the nodes whose
Voronöı cells have common boundaries with [1]. In figure 2.3 is presented
an example of the construction of the Delaunay triangles.

2.1.2 Nodal connectivity

In meshless methods, the nodal connectivity is achieved by overlapping
the subdomains used to obtain the local weak forms [3]. Those subdomains
are called, in meshless method terminology, influence domains. Commonly,
the influence domains are obtained by searching a certain amount of nodes,

15



Figure 2.4: Example of a Voronöı diagram.

inside a fixed area (for 2D problems) or a fixed volume (in a 3D prob-
lem) [1]. This methodology has the following drawback: the size and shape
variation of these influence domains along the problem’s domain affect the
performance and solution of the meshless method [1]. In order to maximise
performance it is best that all the influence domains of the problem contain
approximately the same number of nodes [1].

In the NNRPIM the nodal connectivity is imposed by the overlapping of
the influence-cells [1]. The influence-cells are the equivalent of the influence
domain in other meshless methods. In this work the terms influence domain
and influence-cell are used interchangeably. Two types of influence-cells are
used:

• First degree influence-cell : composed by the first degree natural neigh-
bours of a given point of interest.

• Second degree influence-cell : composed by the first and second degree
natural neighbours of a given point of interest. The second degree nat-
ural neighbours are the natural neighbours of the natural neighbours
of a given point of interest.

In figure 2.4 a Voronöı diagram and an example of each type of influence-cell
is presented.

2.1.3 Numerical integration

In the NNRPIM, the integration scheme is based on the Voronöı tessel-
lation and Delaunay triangulation concepts [1]. The integration points are
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generated using the following procedure [1]:

1. Construct the Voronöı cells and identify the intersection points of the
neighbour edges, PIi.

2. Obtain the middle points, MIi, between node I and its neighbour
nodes.

3. Divide the Voronöı cells in n quadrilateral sub-cells, SIi.

4. Create the integration point(s) in each sub-cell.

In figure 2.5 there is a schematic representation of the process.
Its important to notice that in the case of regular nodal meshes, the

middle points MIi are coincident with PIi thus leading to triangular instead
of quadrilateral shaped Voronöı sub-cells [1]. This occurrence is shown in
figure 2.5 (d, e and f).

Any Voronöı cell, VI , with n natural neighbour nodes (of node I), has n
sub-cells, SIi, where

AVI =
n∑
i=1

ASIi
, ∀ASIi

≥ 0 (2.3)

with AVI being the Voronöı cell area and ASIi
, the area of the Voronöı sub-

cell [1]. If the Voronöı cells are a partition, without gaps, of the global
domain, then, the set of sub-cells are also a partition, without gaps, of
the global domain [1]. Starting from the geometrical shapes seen above,
numerous integration schemes can be constructed, in the NNRPIM, the
integration scheme is based on the Gauss-Legendre numerical integration
[1].

Integration scheme – order 0

In the NNRPIM, the integration scheme can go up to order k, which,
in practical terms, is an indication of the number of integration points gen-
erated. In the specific case of this work, only order 0 was used, so only
that occurrence is explained, the remaining cases are explained in [1]. The
coordinates of each integration point are calculated on each sub cell, as in-
dicated in figure 2.6 and expressions (2.6), where xi = {xi, yi}. The weight
of each integration point is the area of the respective sub-cell. Therefore,
considering figure 2.6b, the area of the triangle sub-cell is defined by

AI4 = abs

(
1

2

∣∣∣∣x2 − x1 y2 − y1

x3 − x1 y3 − y1

∣∣∣∣
)

(2.4)
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(a) (b) (c)

(d) (e) (f)

Figure 2.5: Construction of the integration mesh: (a) initial Voronöı dia-
gram; (b) the middle points MIi and the respective generated
quadrilaterals; (c) the quadrilateral MI3PI4MI4nI ; (d), (e)
and (f) same procedure for regular nodal meshes.

and for the quadrilateral shape, figure 2.6a, the area is

AI� = abs

(
1

2

∣∣∣∣x2 − x1 y2 − y1

x3 − x1 y3 − y1

∣∣∣∣+

∣∣∣∣x4 − x1 y4 − y1

x3 − x1 y3 − y1

∣∣∣∣
)
. (2.5)

The coordinates of the integration points are:

xI =
1

4

4∑
i=1

xi for the quadrilateral,

xI =
1

3

3∑
i=1

xi for the triangle.

(2.6)

2.1.4 Computation of the test functions

The NNRPIM test functions are obtained combining radial basis func-
tions with polynomial basis functions.

Considering an approximation function u(x), in an influence domain ΩI

discretised by set of arbitrarily distributed nodes Ni(xi) (i = 1, 2, ..., n).
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(a) (b)

Figure 2.6: Generation of integration points: (a) quadrilateral sub-cell;
(b) triangular.

n is the number of nodes in the influence domain of xI . Nodal function
value is assumed to be ui at the node xi. The NNRPIM constructs the
approximation function u(xI) to pass through all these nodes using a radial
basis function Bi(x) and polynomial basis function Pj(x)

u(xI) =
n∑
i=1

Bi(xI)ai +
m∑
j=1

Pj(xI)bj = BT (xI)a+ P T (xI)b (2.7)

where xI is a point of interest in the influence domain, ai is the non-constant
coefficient for Bi(x) and bj the non-constant coefficient for pi(x) (usually,
m < n) [5]. The vectors are defined [5] as

aT = [a1, a2, a3, . . . , an]

bT = [b1, b2, . . . , bm]

BT (x) = [B1(x), B2(x), B3(x), . . . , Bn(x)]

P T (x) = [P1(x), P2(x), . . . , Pm(x)].

(2.8)

The basis functions are function of co-ordinates xT = [x, y] for two-dimensional
problems. A radial basis function has the following general form

Bi(x) = Bi(ri) = Bi(x, y) (2.9)

where ri is a distance between interpolating point (x, y) and the node (xi, yi)
[5]. This distance, in the Euclidian two-dimensional space, is expressed as

ri = [(x− xi)2 + (y − yi)2]1/2. (2.10)

A polynomial basis function has the following monomial terms

P T (x) = [1, x, y, x2, xy, y2, . . . ], (2.11)

in this work, a constant basis is used

P T (x) = [1], m = 1. (2.12)
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The coefficients ai and bi in equation (2.7) are determined by enforcing
the interpolation to pass through all n nodes within the influence domain
[5]. The interpolation at the kth node is defined by,

uk = u(xk, yk) =
n∑
i=1

Bi(xk, yk)ai +
m∑
j=1

Pj(xk, yk)bj , k = 1, 2, . . . , n.

(2.13)
The inclusion of the following polynomial term is an extra-requirement that
guarantees unique approximation [5],

n∑
i=1

Pj(xi, yi)ai = 0, j = 1, 2, . . . ,m. (2.14)

The computation of the shape functions are written in matrix form as[
B0 P0

P T
0 0

]{
a
b

}
=

{
ue

0

}
or G

{
a
b

}
=

{
ue

0

}
(2.15)

where the vector for function values is defined as

ue = [u1, u2, u3, . . . , un]T , (2.16)

matrix B0 is represented as,

B0 =


B1(x1, y1) B2(x1, y1) · · · Bn(x1, y1)

B1(x2, y2) B2(x2, y2) · · · Bn(x2, y2)

...
...

. . .
...

B1(xn, yn) B2(xn, yn) · · · Bn(xn, yn)


n×n

(2.17)

and P0 is defined as,

P0 =


P1(x1, y1) P2(x1, y1) · · · Pm(x1, y1)

P1(x2, y2) P2(x2, y2) · · · Pm(x2, y2)

...
...

. . .
...

P1(xn, yn) P2(xn, yn) · · · Pm(xn, yn)


n×m

. (2.18)

Because the distance is directionless, Bk(xi, yi) = Bi(xk, yk) meaning,
matrix B0 is symmetric. Unique solution is obtained if the inverse of matrix
B0 exists, {

a
b

}
= G−1

{
ue

0

}
. (2.19)

The interpolation is finally expressed as

u(xI) = [BT (xI)P
T (xI)]G

−1

{
ue

0

}
= ϕ(xI)u

e (2.20)
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where the vector of interpolation functions ϕ(x) is defined by

ϕ(xI) = [ϕ1(xI), ϕ2(xI), . . . , ϕi(xI), . . . , ϕn(xI)] (2.21)

in which

ϕk(xI) =
n∑
i=1

Bi(xI)Ḡi,k +
m∑
j=1

Pj(xI)Ḡn+j,k (2.22)

where Ḡi,k is the (i, k) element of matrixG−1 [5]. Once the inverse of matrix
G is obtained, the derivatives of test functions are easily obtained as [5]

∂ϕk
∂x

=
n∑
i=1

∂Bi
∂x

Ḡi,k +
m∑
j=1

∂Pj
∂x

Ḡn+j,k

∂ϕk
∂y

=
n∑
i=1

∂Bi
∂y

Ḡi,k +
m∑
j=1

∂Pj
∂y

Ḡn+j,k

. (2.23)

Properties of the test functions

The test functions ϕi(x) depend uniquely on the distribution of scat-
tered nodes after all basis function are determined [5]. The radial point
interpolation functions have the following properties [5]:

1. Radial point interpolation functions are linearly independent in the
influence domain.

2. Radial point interpolation functions have the Kronecker delta prop-
erty,

ϕi(x = xj) =

{
1, i = j, j = 1, 2, . . . , n
0, i 6= j, i, j = 1, 2, . . . , n

(2.24)

3. ϕi(x) is of unity partition as

n∑
i=1

ϕi(x) = 1 (2.25)

4. ϕi(x) is of reproducing properties as

n∑
i=1

ϕi(x)xi = x (2.26)

5. ϕi(x) has simple derivatives.

6. Local compact support.
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The radial basis function used in the NNRPIM is given by [1]

Bi(x, y) = (r2
i + c2)p. (2.27)

Its partial derivatives are obtained as follows

∂Bi
∂x

= 2p(r2
i + c2)p−1(x− xi)

∂Bi
∂y

= 2p(r2
i + c2)p−1(y − yi)

. (2.28)

where c and p are the RBF shape parameters [5]. The variation of these
parameters can affect the performance of the RBFs [1]. Dinis et al. [1]
showed the optimal values are

c� 1 and p ' 1, (2.29)

the values used in this work are c = 0.0001 and p = 0.9999.

2.2 Linear elastic analysis using the NNRPIM

Figure 2.7: Representation of a solid with domain Ω and boundary Γ.

In this work, the NNRPIM is used to numerically solve elasto-static
solid mechanics problems. Only small displacements are considered in this
thesis. In practical terms, what is expected from the numerical method is to,
starting from a domain discretisation and boundary conditions impositions,
obtain the displacement, stress and strain fields. The basic solid mechanics
problem consists in a body with domain Ω and boundary Γ that is subjected
to various loads and conditions. The loads (i. e. the natural boundary
conditions) are applied in the the natural boundary Γt. The prescribed
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displacements (i. e. the essential boundary conditions) are imposed in the
essential boundary Γu. The body can also be subjected to a body force b,
distributed along the entire domain of the problem. In figure 2.7 there is a
schematic representation of the general problem.

2.2.1 Galerkin weak form

In the NNRPIM, the discrete equation system is obtained using the
Galerkin weak form [17]. Considering the problem described above, the
Lagrangian functional is

L = T − U +Wf (2.30)

where T is the kinetic energy, U is the strain energy and Wf is the work
produced by external forces [17]. After substituting the corresponding ex-
plicit expressions and performing various mathematical operations in (2.30)
[17], the “Galerkin weak form” is obtained

L =

∫
Ω
δεTσ dΩ−

∫
Ω
δuTb dΩ−

∫
Γt

δuT t̄ dΓ = 0. (2.31)

2.2.2 Discrete system equations

In the NNRPIM, the weak form has local support, that means the dis-
crete system of equations is developed firstly for every influence domain.
Then, the local systems of equations are assembled to form the global sys-
tem of equations, that afterwards is solved.

The NNRPIM trial function is given by,

u(xI) =

n∑
i=1

ϕi(xI)ui (2.32)

where ϕi(xI) is the NNRPIM interpolation function, ui is the nodal dis-
placement of the n nodes that belong to the influence domain of interest
node xI .

Substituting the expression (2.32) in (2.31), yields

L =

n∑
I

n∑
J

δuI

∫
Ω
BT
I cBJ dΩ︸ ︷︷ ︸
KIJ

uJ −
n∑
I

δuTI

∫
Ω
ϕTI bdΩ︸ ︷︷ ︸
fI

−
n∑
I

δuTI

∫
Γt

ϕTI t̄ dΓ︸ ︷︷ ︸
f̄I

= 0

. (2.33)
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where the matrix BI is given by

BI =


∂ϕI
∂x

0 0
∂ϕI
∂y

0
∂ϕI
∂z

0
∂ϕI
∂y

0
∂ϕI
∂x

∂ϕI
∂z

0

0 0
∂ϕI
∂z

0
∂ϕI
∂y

∂ϕI
∂x



T

. (2.34)

Equation (2.33) can be represented as

L = δUT [KU − F ] = 0 (2.35)

where U = u and F = f + f̄ . The above equation results in the linear
system of equations, represented by

KU = F . (2.36)

The essential boundary conditions are directly imposed in the stiffness ma-
trix, K.

2.2.3 Linear-elastic algorithm

The NNRPIM numerical implementation is summarised in table 2.1. In
the case of this work, the algorithm was implemented in Matlab. All the
pre and post processing was also done in Matlab.

Table 2.1: Linear elastic algorithm [1].

1. Determine the natural neighbours of each node and construct the
correspondent Voronöı cells.

2. Construct the integration points based on the Voronöı cells.
3. Set the influence-cells (first or second degree).
4. Loop over the integration points in order to integrate the Galerkin

Weak form.
(a) Determine the nodes that directly influence the specified inte-

gration point, based on the previously defined integration-cells.
(b) Compute the shape functions and its derivatives for each inte-

gration point.
(c) Evaluate stiffness and load at each integration point.
(d) Assemble the contribution of the specified integration point in

order to form the system of equations.

5. Apply the boundary conditions.
6. Solve the algebraic system to obtain the nodal displacement.
7. Evaluate the strain and stress at each integration point.
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2.3 Solid mechanics fundamentals

When a load is applied to a solid or structure it creates, in the solid, a
stress field. That is, the solid is under the effect of stress. The stress field,
in turn, originates strains. Solid mechanics [37, 38] defines and quantifies
stresses and strains and provides a relation between them.

Throughout this work it is assumed that the solids only have linear-
elastic behaviour. By linear it is meant that the stresses relate linearly to
the strains. By elastic, it is meant that, when a solid is deformed (due to
the application of loads), it returns to the same undeformed shape when the
loads are removed.

The standard solid mechanics problem is described in 2.2.

2.3.1 The state of stress at a point

The stress is the fundamental quantity of solid mechanics. The state of
stress at a point is given by the stress tensor

σ =

σxx τxy τxz

τyx σyy τyz

τzx τzy σzz

 , (2.37)

the stresses can also be written in a vector form

σ =
{
σxx σyy σzz τxy τyz τzx

}T
. (2.38)

There are two types of stress, normal stress, denoted by the letter σ and
shear stress, represented by τ .

2.3.2 Equations of equilibrium

In a solid subjected to an arbitrary system of loads, that can be volume
and surface forces, the stress distribution must be compatible with the global
equilibrium of the body and, at the same time, must ensure the equilibrium
of every part of the system. Considering an infinitesimal element in a body,
calculating its equations of equilibrium originates the equilibrium equations
of elasticity, which are given by

∂σxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ Fx = 0

∂τyx
∂x

+
∂σyy
∂y

+
∂τzy
∂z

+ Fy = 0

∂τxz
∂x

+
∂τyz
∂y

+
∂σzz
∂z

+ Fz = 0

(2.39)
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or simply,
∇σ + F = 0 (2.40)

where σ is the stress tensor, ∇ is the gradient and F the body force vector
[38].

2.3.3 Definitions of displacement and strain

Strain is a geometric quantity which depends on the relative movement
of two or three points in a body [38]. In the preceding sections, two types
of stress were discussed: normal and shear stress. This same qualification is
used for strains, where ε and γ represent normal and shear strains respec-
tively.

In the small deformation theory, a normal strain, ε, is defined as the
change in length of a line segment between two points divided by the original
length of the line segment. A shearing strain, γ, is defined as the angular
change between two line segments which were originally perpendicular.

The strains are related to the displacements by the following equations
[38]

εxx =
∂u

∂x
γxy =

∂u

∂y
+
∂v

∂x

εyy =
∂v

∂y
γyz =

∂v

∂z
+
∂w

∂y

εzz =
∂w

∂z
γzx =

∂w

∂x
+
∂u

∂z

(2.41)

where u, v, and w are the displacements in the x, y, and z directions,
respectively. In the above equations

γxy = γyx, γyz = γzy and γzx = γxz. (2.42)

Equations (2.41) are known as the cartesian strain displacement relation-
ships of solid mechanics. The system of equations can be written in matrix
form as follows

ε = Lu (2.43)

where L and u are given by

L =


∂
∂x 0 0 ∂

∂y 0 ∂
∂z

0 ∂
∂y 0 ∂

∂x
∂
∂z 0

0 0 ∂
∂z 0 ∂

∂y
∂
∂x


T

and u =

uv
w

 . (2.44)

Just as the state of stress at a point is described by a tensor, the strain
is also defined by a tensor

ε =

εxx γxy γxz

γyx εyy γyz

γzx γzy εzz

 (2.45)
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and can be also written in a vector form

ε =
{
εxx εyy εzz γxy γyz γzx

}T
. (2.46)

2.3.4 Constitutive relations

Unless otherwise stated, throughout this thesis, the material of the body
is considered isotropic and homogenous, therefore its elastic properties are
completely identified by the mutually independent constants E and ν, denot-
ing Young’s modulus and Poisson’s ratio, respectively. The relation between
stress and strain is given by the generalised Hooke’s law

σ = cε (2.47)

where c is the material matrix, it is a symmetric non-singular matrix, one
can say that

ε = sσ (2.48)

where c = s−1, s is given by

s =
1

E



1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)


. (2.49)

2.3.5 Two dimensional problems

If a body consists of two parallel planes a constant thickness apart and
bounded by any closed surface, it is said to be a plane body. Associated
with this type of body there is a class of elasticity problems that are prone
to some simplifications in the analysis. For one, only two dimensions are
necessary to define its geometry, also, all the variables are independent from
the zz axis.

All the analysis in this work was made in regard to plane problems. From
now on, all the mathematical treatment is made in only two dimensions. For
the two-dimensional state of stress, the equilibrium equation of elasticity
becomes

∂σxx
∂x

+
∂τyx
∂y

+ Fx = 0

∂τyx
∂x

+
∂σyy
∂y

+ Fy = 0

. (2.50)

27



The relation between strain and displacement is given by equation 2.43,
in the two dimensional case, its matrices are

L =

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]T
and u =

[
u

v

]
. (2.51)

Plane stress problems

(a) (b)

Figure 2.8: Plane stress configuration.

A plane stress condition can be used to analyse elasticity problems in
which a body is subjected to in-plane forces and its thickness is much smaller
than the other dimensions. In figure 2.8 it is shown a schematic representa-
tion of such problem, in which

σzz = τxz = τyz = 0 (2.52)

thus, the stress and strain vectors are now

σ =
{
σxx σyy τxy

}T
and ε =

{
εxx εyy γxy

}T
. (2.53)

In the above representation, only the independent components of strain and
stress are written. The constitutive matrix c becomes

c =
E

1− ν2

1 ν 0

ν 1 0

0 0 (1− ν)/2

 . (2.54)

Plane strain problems

When a body has one of its dimensions much larger than the others,
and the body’s cross section does not vary throughout the direction of that
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(a) (b)

Figure 2.9: Plane strain configuration.

dimension. It can be said that the body is in plane strain. Assuming the
applied loads are in the xy-plane, the resulting state of strain at such a
section is two-dimensional, with

w = 0 and
∂

∂z
= 0 (2.55)

which results in
εzz = γxz = γyz = 0. (2.56)

The stresses and strains are now represented by equation (2.53). In this
case, the material matrix c is reduced to

c =

λ+ 2G λ 0

λ λ+ 2G 0

0 0 G

 (2.57)

where λ is the Lamé coefficient and G is the modulus of rigidity. Those
constants are related to E and ν by

G =
E

2(1 + ν)
and λ =

νE

(1 + ν)(1− 2ν)
. (2.58)
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Chapter 3

Fracture mechanics using the
NNRPIM

In this chapter the existing NNRPIM formulation is extended to fracture
mechanics. The provided NNRPIM linear-elastic code has to be adapted to
consider discontinuities in the domain. This requires the introduction of
new concepts, one of the most important being the visibility between nodes.

Firstly, some relevant fracture mechanics fundamentals are presented.
Along the state of art, the discontinuities main features in numerical meth-
ods are studied and the specific solutions encountered for the NNRPIM are
shown. Finally, all the specifics of the application of the NNRPIM to frac-
ture mechanics are demonstrated and explained.

3.1 Fracture mechanics fundamentals

Figure 3.1: Fundamentals modes of deformation.

Fracture mechanics [39, 40] is the field of applied mechanics that deals
with fractured bodies and structures, its main objective is to quantify and
predict the behaviour of cracked structures under service conditions. It uses
systematic mathematical rules to characterise cracks and their effects [22].
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Ultimately, fracture mechanics predicts, if and when a given structure may
become unsafe during its operational service life [22].

There are three basic modes of deformation of a cracked body. These
modes are characterised by the movements of the upper and lower crack
surfaces with respect to each other, they are shown if figure 3.1, each de-
formation mode has an associated stress intensity factor, KI , KII and KIII

respectively. From these modes any crack deformation can be presented by
an appropriate superposition [22]. In the specific case of this work, only
mode I and mode II will be present because only two-dimensional problems
are analysed.

3.1.1 The stress intensity factor

Figure 3.2: Stresses at a point ahead of a crack tip.

The fundamental postulate of linear elastic fracture mechanics (LEFM)
is that the behaviour of a crack (i. e whether it grows or not and how fast
it grows) is determined solely by the value of the stress intensity factor [22].
That implies, in order to be able to predict the behaviour of cracked solids,
it is necessary to evaluate the stress intensity factor.

From linear elastic theory, Irwin [41] showed that the stresses in the
vicinity of a crack tip take the form

σij =
K√
2πr

fij(θ) + . . . (3.1)

where r, θ are the polar coordinates of a point with respect to the crack
tip, see figure 3.2. K is a constant and is called the Stress Intensity Factor
(SIF). Dimensional analysis shows that K must be linearly related to stress
and directly related to the square root of e characteristic length [39]. The
general form of the stress intensity factor is given by

K = σ
√
πa · f

( a
W

)
(3.2)

where f
(
a
W

)
is a dimensionless parameter that depends on the geometries

of the specimen and crack [39].
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3.1.2 Crack propagation direction

The simplest approach to predict the crack propagation direction, relies
upon the premise that crack growth takes place in a direction perpendicular
to the maximum principal stress at or near the crack tip [22]. That premise
is called the maximum circumferential stress criterion [36].

The criterion for crack growth can be applied in several different ways,
in the case of this work, the criterion is applied by:

1. Determining the stresses near the crack tip.

2. Calculating the principal stresses and its direction.

3. Propagating the crack in the direction perpendicular to the direction
of the maximum principal stress.

There are other criterion for crack propagation direction, namely the
strain energy density criterion [42] and the maximum energy release rate
criterion [43]. Those can be implemented in the fracture mechanics algo-
rithm developed in this work, but the maximum tangential stress criterion
is the simplest and provides accurate results. For those reasons, it will be
the only criterion used in the analysis made in this work.

3.2 Discontinuities in the domain

Cracks are discontinuities in the volume of a given continuous domain.
In this work, cracks are modelled taking advantage of the natural neighbour
concept.

Before going into the specifics of crack modelling with the NNRPIM, it is
necessary to review the existing literature on the modelling of discontinuities
and cracks with meshless methods. For that reason, in this section, firstly,
a state of the art about cracks with meshless methods is made, then the
concept of cracks with the NNRPIM is explained.

3.2.1 Visibility criterion for discontinuous approximations

The visibility criterion [44] is a simple way to introduce discontinuities
in meshless approximations [2]. In this approach the boundaries of the body
and any discontinuities are considered opaque when constructing the weight
functions [2]. By opacity it is meant that, when the influence domain of a
weight function is constructed, if there is a discontinuity between two nodes
it is said that those do not see each other and therefore cannot be in the
same influence domain [2]. The visibility criterion is schematically explained
in figure 3.3.

As a consequence of the visibility criterion, a discontinuity is introduced
in the weight and test functions wherever the influence domain is cut by a
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Figure 3.3: Influence domains near a discontinuity. The shaded areas are
removed from the influence domain.

line of discontinuity. However, for a test function near the tip of the line of
discontinuity, a byproduct of the visibility criterion is a discontinuity in the
approximation within the influence domain [2]. As a consequence, the ap-
proximation will not be continuous within the domain, which is undesirable
in a Galerkin method [2]. Although this discontinuities are not favourable
they do not lead to failure in convergence [44].

3.2.2 Diffraction method for discontinuous functions

The diffraction method [45] is motivated by the way light diffracts around
a sharp corner. It applies only to polar-type weight functions, defined as

Figure 3.4: Influence domain of node I, considering the diffraction
method.

a function of a single parameter, s. Considering the line of discontinuity
shown in figure 3.3, the essence of the diffraction method is to treat the line
of discontinuity as opaque but to evaluate the length of the ray s by a path
that passes around the corner of the discontinuity. The weight parameter is
computed by

s(x) =

(
s1 + s2(x)

s0(x)

)λ
s0(x) (3.3)

where

s0(x) = ‖x− xI‖, s1(x) = ‖xc − xI‖, s2(x) = ‖x− xc‖. (3.4)
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The points xI and xc are represented in figure 3.5. As a result, the domain of
influence, given by the criterion contracts on the far side of the discontinuity,
as shown in figure 3.4. The diffraction method results in continuous weight
and test functions within the influence domain but discontinuous across the
line of discontinuity [45]. Using the diffraction method, the influence domain
is defined by the following condition

w(s) > 0, x ∈ ΩI (3.5)

where w is the weight function and ΩI is the influence domain of node I.

Figure 3.5: Scheme for the diffraction method for a node near the tip of
the discontinuity.

3.2.3 Transparency method for discontinuous functions

In the transparency method [45], the weight function is smoothed at the
tip of the discontinuity by varying the transparency as the tip is approached.
At the tip, the line of discontinuity is considered to be completely transpar-
ent. When a ray from the evaluation point x to the node xI intersects a line
of discontinuity, the parameter s is given by

s(x) = s0(x) + smax

(
sc(x)

s̄c

)λ
, λ ≥ 2 (3.6)

where s0(x) is defined in (3.5), smax is the radius of nodal support, and sc(x)
is the distance from the crack tip to the intersection point. The parameter
s̄c sets the intersection distance at which the crack segment is completely
opaque, and is given by

s̄c = kh (3.7)

where the parameter k is used to vary the opacity, and h is a measure of nodal
spacing. As in the diffraction method, the influence domain is determined
by the condition in (3.5).
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Figure 3.6: Natural neighbours and influence domains of a node near the
crack.

3.2.4 Discontinuities in the NNRPIM

The concept of the natural neighbours greatly simplifies the inclusion of
discontinuities in the domain of a given problem. Using the concept of the
natural neighbour, a discontinuity is modelled by not allowing the nodes
that represent each of the boundaries of the discontinuity to be natural
neighbours of each other. This means that nodes on opposite sides of the
discontinuity are never in the same influence domain and, therefore, there
is no connectivity between them, as the natural neighbours of a given node
represent the influence domain of the considered node.

The methods described above could be applied to the NNRPIM to model
discontinuities. But that would mean not to take advantage of the natural
neighbour concept, which provides a simpler way of dealing with cracks in
meshless methods.

As with the diffraction and transparency methods, the treatment of the
influence domains of the nodes in the middle of the line of discontinuity is
different from the one in the influence domains of the nodes near the crack
tip. The two situations are explained below.
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Influence domains in the middle of the crack

In figure 3.6 the natural neighbours of a node near the crack are repre-
sented. It can be seen that the nodes of one side are not natural neighbours
of nodes on the other side of the crack and therefore are not in the same
influence domain, meaning that there is no connectivity between then.

Influence domains near the crack tip

In figure 3.7 it is shown the natural neighbours of the node at the crack
tip. Analysing the figure it is possible to verify that nodes from different
sides of the crack are able to see each other. This is somewhat similar to the
transparency and diffraction methods where the line of discontinuity near
its tip is not completely opaque. Similarly to the afore mentioned methods,
smooth shape functions (inside the influence domain) are obtained, allowing
the NNRPIM to retain the advantages of these methodologies.

Figure 3.7: Natural neighbours and influence domains of a node at the
crack tip.

Using second degree natural neighbours would be equivalent to increase
the transparency of the crack tip. Analysing figure 3.7 it is possible to
conclude that, as the size of the influence domain increases, more nodes
from one side of the crack are able to see nodes on the other side. From
a physical point of view, this means that the “real” crack tip is not in the

36



same point as the crack tip node, but is somewhere behind in the middle
of the crack. It is also important to notice that the “real” crack length is
different when using first or second degree natural neighbours.

3.3 The crack propagation algorithm

Figure 3.8: Example of a fracture mechanics problem, solved with the
NNRPIM.

In order to prepare the NNRPIM code to solve fracture mechanics prob-
lems it is necessary to extend it to accommodate discontinuities in the prob-
lem’s domain. Apart from that, it is necessary to create an automatic way of
crack growth simulation. In figure 3.8 an illustration of a fracture mechan-
ics problem solved with the NNRPIM is shown. The developed NNRPIM
software solves fracture mechanics problems executing the sequence in table
3.1. Some of the steps are common to the provided NNRPIM code, the ones
developed specifically to fracture mechanics are: 2, 4, 5, 6, 10a and 10b.
These are explained in detail in this section.

In step 1 all the necessary input data is specified. In step 2 the prob-
lem is discretised in a nodal mesh and the nodes that are part of the crack,
which are another boundary of the problem, are identified. In step 3, the
integration mesh is generated, the influence cells and the natural neighbours
are calculated. In step 4, the natural neighbours of the nodes that are in
influence domains that are crossed by a line of discontinuity, are recalcu-
lated to accommodate it. Between the boundaries that represent the crack
there is not material, therefore, in step 5, the integration points inside
the boundaries of the crack are eliminated. In step 6, the second degree
neighbours are calculated. With all the necessary data, in step 7, a set of
standard NNRPIM operations is performed. In step 8 the boundary condi-
tions of the problem are applied. In step 9 the discrete system of equations
is solved. In step 10 the stresses and strains are calculated. If the crack has
reached its final length, the output data is presented in step 11. Else-wise,
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Table 3.1: Crack propagation algorithm. In bold are the steps developed
for fracture mechanics.

1. Read all the input variables.
2. Generate the nodal mesh.
3. Generate the integration mesh and the natural neighbours.
4. Recalculate the influence domains that are crossed by dis-

continuities.
5. Eliminate the integration points situated in the middle of

the crack.
6. Calculate the second degree natural neighbours.
7. Calculate:

(a) The influence domains.
(b) The interpolation functions.
(c) Stiffness matrix.

8. Apply the boundary conditions.
9. Calculate the displacement vector.
10. Calculate the stress and strain at every integration point.

• If the crack has not reached its final length:
(a) Calculate the crack propagation direction.
(b) Extend the crack, with a prescribed length.
(c) Return to step 3.

• If the crack has reached its final length: go to step 11.
11. Output variables: crack path, displacement field and stress and

strain fields.

the previously determined stresses are used to calculate the crack propaga-
tion direction, the nodal mesh is then updated to accommodate the crack’s
extension and the program returns to step 3.

3.3.1 Nodal mesh generation and update (Step 3 and 10b)

The nodal mesh is generated in the same manner as in the provided
NNRPIM code, with the exception of the generation of the nodes that rep-
resent the crack, which are identified as “crack nodes”. The nodal mesh is
generated in the following sequence:

1. Generate the nodes minus the nodes of the initial crack.

2. Generate the nodes of the initial crack. Identify the crack tip(s) and
the remaining crack nodes.

The nodal mesh generation process consists in creating a set of points in
specified coordinates. This process is much simpler than in FEM because
there is not any geometry related restriction, or any requirement concerning
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Figure 3.9: Example of a nodal mesh with crack. ∆a is the distance in
which the crack is extended at each iteration and da is the
distance between the two sides of the crack.

the nodal connectivity. The nodal mesh is the set of all nodes which is
represented by

N = {n1, n2, . . . , nN} ∈ R2. (3.8)

The nodes that define the crack are generated in groups of two, one for
each side of the crack. That procedure represents a standardised way of
generating the nodes and facilitates the process of defining which side the
nodes belong. This process is used in several meshless methods [33, 46, 47].
In figure 3.9 it is shown how a crack is modelled, it can be seen that the
nodes of the crack are in groups of two, in opposite sides in relation to the
crack. The set of nodes that belong to the crack is given by

Nk ⊂ N (3.9)

Nodal mesh update (Step 10b)

The nodal mesh is updated at each iteration of the program to take the
extension of the crack into account. This process takes the following steps:

1. Eliminate the nodes whose presence would degrade the quality of the
results, due to the fact of being too close to the crack tip. All the
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(a) (b)

Figure 3.10: Representation of a mesh update: (a) initial mesh; (b) up-
dated mesh.

nodes that verify the following condition are eliminated

dn ≤ delim (3.10)

where dn is the distance between the crack tip and the other nodes
and delim > ∆a ∧ delim < 1.5 ·∆a, figure 3.10a.

2. Create the new nodes of the crack. The new crack tip is created making

xT = xT ′ + ∆a · nT (3.11)

where T ′ is the old crack tip and nT is the crack propagation direction.
The old crack tip becomes two additional crack nodes

xSn = xT ′ + α · nS (3.12)

where nS is a unitary vector perpendicular to nT and α = (−1)n ·da/2.

3. Update all the matrices that contain information about the crack tip
and the crack’s nodes.

3.3.2 Calculation of the crack’s propagation direction (step
10a)

The crack’s propagation direction depends on the stress field at the crack
tip. As referred in the fracture mechanics fundamentals, the crack propa-
gates in a direction perpendicular to the first principal stress direction, it is
determined as follows:

1. Select the integration points to be used in the calculation, according
to the following condition

dn ≤ rs, (3.13)

40



Figure 3.11: Representation of the process used to select the integration
points.

where dn is the distance from the crack tip to the integration point n
and rs is the prescribed radius, figure 3.11.

2. Calculate the weighted average of the stresses in the integration points
selected in the previous step.

3. The result of the previous step is considered to be the stress tensor at
the crack tip. Using that value, calculate the principal stresses at the
crack tip.

4. The vector nT is obtained and is then employed in the nodal mesh
update.

In figure 3.11 there is a representation of how the integration points are
selected. The radius, rs, is a parameter that has to be carefully examined
and has a significant influence in the crack’s propagation direction. Its
influence in the results is studied in chapter 4.

3.3.3 Computation of the crack’s nodes natural neighbours
(step 4)

The natural neighbours are calculated by the provided NNRPIM code.
Discontinuities in the middle of the domain are not taken into considera-
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tion. To take the cracks into account, it is necessary to eliminate certain
natural neighbours, from some nodes that are not supposed to be seen or
see the original natural neighbours. Analysing figure 3.12 it is possible to to
intuitively understand the process. On the right side are shown the natural
neighbours calculated by the provided code of the NNRPIM, on the left are
displayed the fracture mechanics ready natural neighbours.

(a) (b)

(c) (d)

Figure 3.12: Recalculation of the crack nodes natural neighbours: (a) and
(c) initial NNRPIM natural neighbours; (b) and (d) fracture
ready natural neighbours.

The following steps are used to recalculate the natural neighbours:

1. Separate the crack’s nodes in two different sets, one for each side of

42



the crack. The two sets are

Nks1 ⊂ Nk and Nks2 ⊂ Nk. (3.14)

There is no previous information as to each side a given node belongs,
it is necessary to distribute the nodes in the correct set. That is made
by passing a line, r, through a node for which the side is known and
through a node that is immediately next in the crack and for which the
side is unknown. Having the data of the line, the following condition
is tested

ySn > xSn ·mr + br (3.15)

where xSn and ySn are the coordinates of the nodes being tested, in
the case of the example in figure 3.13 those would be S3, S4, S5 and
S6. mr and br are the parameters of the line r. Depending of the
number of nodes that verify the condition, the nodes being tested are
assigned to one or other margin:

• If zero or two nodes verify the condition: the node through which
the line r passes is assigned to the same side as the node that is
the other point that defines r.

• If only one node verifies the condition: the node through which
the line r passes is assigned to the opposite side as the node that
is the other point that defines r.

It should be noted that expression (3.15) is only valid for non-vertical
lines, in case r is vertical the expression is different. Also, in the
initial iteration, that in the example of figure 3.13 would correspond
to the nodes S1 and S2, the two nodes are assigned to Nks1 or Nks2

arbitrarily, because only the relative position of the nodes is relevant.

2. The nodes that belong to Nks1 cannot be natural neighbours of the
nodes that belong to Nks2 and vice-versa. The sets of the natural
neighbours of the affected nodes are updated.

3. The natural neighbours of the nodes that belong to the crack are
correctly defined. However, there may be nodes that are not part
of the crack whose natural neighbours are not correctly defined. In
this step the natural neighbours of additional nodes are verified. In
figure 3.14 a general view of the procedure described in this step is
shown. This procedure is performed in each node of the crack with the
exception of the crack tip(s). In order to know if there are additional
natural neighbours that need to be eliminated, two auxiliary lines are
created, r1 and r2. These lines are used in the following inequality

yNI
n
< xNI

n
·mr1 + br1 ∪ yNI

n
> xNI

n
·mr2 + br2 (3.16)
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(a)

(b) (c) (d)

Figure 3.13: Method of assignment of the cracks’ nodes to their respective
sides: (a) general view in the middle of the process; (b) (c)
and (d) remaining cases for the position of the line r.

where xNI
n

and yNI
n

are the coordinates of the natural neighbours of
the node being verified. Analysing the example in figure 3.14, there
are two nodes that are not supposed to be natural neighbours of node
I, nodes N1 and N2. They verify the inequality (3.16) so they cease
to be natural neighbours of node I. Also, node I cannot be a natural
neighbour of the nodes N1 and N2, in this step this is also taken into
account.

It is important to notice that, at this point, only the first degree natural
neighbours are used. If, at this point in the program, the second degree
natural neighbours were used, the algorithm would have to be much more
complex because: nodes that would not be part of the crack and belong to
one side (in relation to the crack) would be natural neighbours of nodes that
also would not belong to the crack but are be on the other side of the domain
(in relation to the crack). Using only the first degree natural neighbours this
situation does not occur.

3.3.4 Elimination of the integration points in the interior of
the crack (step 5)

The space between the faces of the crack is not part of the volume of the
solid that is being analysed. Therefore, the area in the interior of the crack
cannot be considered part of the problem’s domain, hence the integration
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Figure 3.14: Natural neighbours of node I, after step 2. N1 and N2 are
not supposed to be natural neighbours of node S′1 but, before
step 3, still are. After that step they cease to be.

points that were generated by the NNRPIM in the interior of the crack must
be eliminated.

Figure 3.15: Example of a nodal mesh with crack.
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The integration points are eliminated in a sequential matter. At each
step, the following operations are performed, going from one end of the crack
to the other:

1. Select four consecutive nodes of the crack. In the example of figure
3.15 those would be S4, S3, S1 and S2.

2. Define the set of integration points to be eliminated, which is bounded
by lines r1, r2, r3 and r4. These lines are calculated in this step, the
points have to be selected in a manner such that the straights do not
intersect each other. In the case of the example in figure 3.15, the set
of integration points to be eliminated is given by

4⋂
j=1

yqI < xqI ·mrj + brj (3.17)

where xqI and yqI are the coordinates of the integration points and
mrj and brj are the parameters of the lines. The set of integration
points is given by

Q = {q1, q2, . . . , qI} ∈ R2. (3.18)

3. Eliminate the integration points that belong to the set defined by the
inequality 3.17.

It is important to notice that, near the crack tip, the set of integration points
to be eliminated has the shape of a triangle, contrary to what happens in
the other cases, where the set has a trapezoidal shape. In the first case, the
inequality 3.17 goes from four lines to just three. Also, if any of the lines of
inequality (3.17) are vertical, the expressions are different.

3.3.5 Calculation of the second degree natural neighbours
(step 6)

The second degree natural neighbours must be calculated after the dis-
continuities in the domain have been considered. The second degree natural
neighbours are obtained adding, to the group of the natural neighbours of
a given node, the groups of the natural neighbours of the nodes that are
natural neighbours of said node. That is given by

N2NN
= NNN

V⋃
j=1

NNj (3.19)

where N2NN
is the set of the second degree natural neighbours of node N ,

NNN
are the first degree natural neighbours of the same node, NNj are the

sets of the elements of NNN
, V is the number of natural neighbours of node

N . In figure 3.16 there is an example of first and second degree natural
neighbours.
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Figure 3.16: Example of second degree natural neighbours in the middle
of the domain.
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Chapter 4

Numerical examples and
discussion

In this chapter, all the formulations presented in this thesis are applied
in numerical examples. Firstly, the provided NNRPIM code is tested. It is
necessary to guarantee that the method generates accurate results.

To benchmark all the analysis made in the previous chapters, the fracture
mechanics algorithm is applied to practical examples. The obtained results
are compared with existing ones from the literature. All the mechanisms
presented in 3 are backed up with numerical results.

4.1 Solid mechanics using the NNRPIM

In this section, solid mechanics numerical examples are presented. The
following problems are studied:

1. Cantilever beam.

2. Infinite plate with a central crack.

3. Infinite plate with a central hole.

A convergence analysis is made for all examples. In this section a plane
stress condition is assumed.

4.1.1 Example 1

In this example, the vertical displacement at the extremity of a can-
tilever beam is calculated. The accuracy of the NNRPIM in calculating the
displacement and stress field is verified. The problem is represented in figure
4.1, and in table 4.1 all the relevant data is displayed.
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Figure 4.1: Representation of the problem of example 1.

The solution of obtained with the NNRPIM is compared with the ana-
lytical solution [37], given by

u = − Py

6EI

[
(2L− x)3x+ (2 + v)

(
y2 − D2

4

)]
,

v =
P

6EI

[
x2(3L− x) + 3v(L− x)y2 +

4 + 5v

4
D2x

] (4.1)

where I is the moment of inertia I = D3/12.

Table 4.1: Relevant data regarding example 1.

Relevant data (example 1)

P 1 [Pa]
E 1000 [kPa]
ν 0.3
Thickness 1 [m]
L 8 [m]
D 2 [m]

In figure 4.2 the relation between the number of nodes used in the analy-
sis, and the relative error of the vertical displacement of point A, is displayed.
It is possible to verify that the result converges to a low relative error. The
convergence of the results is verified for regular and irregular meshes.

In figure 4.3 the effective stress along the cantilever beam is displayed. It
is possible to conclude that the NNRPIM is capable of obtaining a smooth
stress field. That result was obtained using a 40× 20 nodal mesh.
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Figure 4.2: Relative error of the vertical displacement of point A.

Figure 4.3: Effective stress in the cantilever beam.
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4.1.2 Example 2

Figure 4.4: Schematic representation of the problem of example 2.

In this example, an infinite plate with a central crack is studied. Even
though this is a fracture mechanics problem, geometric simplifications allow
for the provided NNRPIM code to solve it, with only the solid mechanics
formulation. The problem is represented in figure 4.4. It is possible to model
it using only one quarter of the plate, in figure 4.5 there is a representation
of how the problem is modelled in this example. Additional relevant data
is shown in table 4.2. In order to verify the convergence of the results
obtained with the NNRPIM, the numerical solution for the mode I SIF, KI ,
is compared with the analytical solution [39], given by

KI = σ
√
πa. (4.2)

Figure 4.5: Representation of the problem of example 2.
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As it is impossible to model an infinite plate, the length of the domain of
the discretisation was chosen to be significantly larger than the crack length.

Table 4.2: Relevant data regarding example 2.

Relevant data (example 2)

σ 20 [Pa]
E 1000 [Pa]
ν 0.25
Thickness 1 [m]
L 2 [m]
D 1 [m]
a 0.25 [m]

Analysing figure 4.6 it is possible to verify that the solutions converges.
Using more than 2000 nodes, the result is similar to the analytical result.
The results were obtained using second degree influence domains.

Figure 4.6: Relation of KI with the number of nodes used in the analysis.
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4.1.3 Example 3

Figure 4.7: Representation of the problem of example 2.

In this example, an infinite plate with a central crack is studied. The
problem is represented in figure 4.7. Due to the symmetry only a quarter
of the plate was analysed. In this problem, the accuracy of the NNRPIM
in analysing a problem with circular holes is tested. In table 4.3 additional
data is displayed.

Table 4.3: Relevant data regarding example 3.

Relevant data (example 3)

E 1000 [Pa]
ν 0.3
Thickness 1 [m]
a 1 [m]

In section 4.2 some of the problems contain holes, so it is important
to verify the behaviour of the NNRPIM when holes are involved. In order
to benchmark the NNRPIM, the obtained results are compared with the
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analytical solution [3], given by

σx = 1− a2

r2

(
3

2
cos 2θ + cos 4θ

)
+

3a4

2r4
cos 4θ

σy = −a
2

r2

(
1

2
cos 2θ − cos 4θ

)
− 3a4

2r4
cos 4θ

τxy = −a
2

r2

(
1

2
sin 2θ + sin 4θ

)
+

3a4

2r4
sin 4θ.

(4.3)

The loads represented in figure 4.7 are also given by equations (4.3).
In figure 4.8 the stresses along the axis of the problem are displayed, those

results were obtained with a nodal mesh with 2225 nodes and second degree
influence domains. It is possible to verify that the results obtained with the
NNRPIM are similar to the analytical solution. The NNRPIM originates
smooth curves in all cases, only near the extremities of the domain the values
differ from the analytical result.

(a) (b)

(c) (d)

Figure 4.8: Stresses along the axis of the problem of example 3: (a) σx for
y = 0; (b) σy for y = 0; (c) σx for x = 0; (d) σy for x = 0.

In figure 4.9 the relation between the stresses in point A and B and the
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nodal discretisation is displayed. Analysing the figure is possible to verify
that the solution converges to the analytical solution.

(a) (b)

Figure 4.9: Evolution of stress in two critical points: (a) σx in point A;
(b) σy in point B.
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4.2 Fracture mechanics using the NNRPIM

In this section, fracture mechanics numerical examples are presented.
The influence of the following parameters, in the crack path prediction, is
studied in detail:

• The crack increment, ∆a.

• The radius of selection of integration points, from which the stress
vector is used to calculate the crack’s propagation direction, rs.

• The type of influence domain.

The variation of these parameters significantly influences the results. It is
expected to determine a range of optimal values that is commom for all
numerical examples. To facilitate the comparison between examples, ∆a
and rs are expressed as a function of a nodal spacing parameter, h, which
is given by

h =
L

divl
(4.4)

where L is a dimension of the problem and divl is the number in which
that dimension is divided, in the discretisation of that problem. The nodal
discretisations used in this work have similar nodal spacings vertically and
horizontally.

The presented numerical examples are:

1. Infinite plate with central crack.

2. Rectangular plate with an edge crack.

3. Three point bending beam.

4. Four point bending of a beam with a circular hole.

5. Three point bending of a beam with three circular holes – case I.

6. Three point bending of a beam with three circular holes – case II.

7. Plate with a central inclined crack.

The aforementioned examples are classical fracture mechanics problems and
are typically used when benchmarking numerical methods. All of them
present different challenges to the crack propagation algorithm.

In all the numerical examples a plane strain condition is assumed.

56



4.2.1 Example 1

The first example is the infinite plate with a central crack. The accuracy
of the NNRPIM is evaluated in calculating the stresses near the crack tip
(in the form of the SIF) and in predicting the crack path, for regular and
irregular nodal meshes. In figure 4.4 there is a representation of the problem
and on table 4.4 all the relevant data is shown.

(a) (b)

Figure 4.10: Discretisation of the problem: (a) uniformly spaced nodes;
(b) irregularly distributed nodes.

This problem was modelled by discretising only half the plate and im-
posing u = 0 in y = 0, which would be the left edge in figure 4.10. It is
not possible to simulate an infinite plate, for that reason, the length and
height of the plate were chosen to be significantly larger than the length of
the crack. That way it is possible to consider the plate, infinite.

Table 4.4: Relevant data regarding example 1.

Relevant data (example 1)

σ 20 [Pa]
E 1000 [Pa]
ν 0.25
Thickness 1 [m]
L 2 [m]
D 2 [m]
a 0.25 [m]
rs 0.2 [m]
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Stress analysis

The results obtained numerically were compared with the available an-
alytical solution [39]. The stresses near the crack tip are

σx =
KI√
2πr

cos
θ

2
(1− sin

θ

2
sin

3θ

2
)

σy =
KI√
2πr

cos
θ

2
(1 + sin

θ

2
sin

3θ

2
)

τxy =
KI√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

, (4.5)

where r � a and the stress intensity factor, KI , is given by equation (4.2).
Analysing figure 4.11, it is possible to see that the results converge to

the analytical solution when the number of nodes is increased. In relation to
the type of the influence domain, there is not a significant difference in the
SIFs when using first or second degree natural neighbours. It is interesting
to compare the results of figure 4.11 with the results obtained with the
provided NNRPIM code, in figure 4.6. It is possible to verify that, in both
cases, the results are close to the analytical solution using approximately
2000 nodes.

Figure 4.11: Evolution of the mode I SIF with the increase of the number
of nodes.

In figure 4.12, σy along the xx axis is shown. Those results were obtained
using second degree influence domains. σy increases substantially near the
crack tip, which is expected, given equations (4.5). The curve is smooth and
continuos up to that point. The discrete values marked in the graph are the
values of the stress at the node in the corresponding position.

58



Figure 4.12: σy along the xx axis (y = 0).

Crack path prediction

In this problem, it is known that the crack propagates in a straight
line, given the fact that along the xx axis the shear stress is zero. As this
is an introductory example, it is important to check if the crack grows in
the predicted direction, and also, inspect the behaviour of the method for
irregular meshes. In figure 4.13 there is a detailed comparison between the
crack path for regular and irregular nodal meshes. For a regular mesh the
crack grows in a straight line, in the case of an irregular mesh there is a
slight variation due to the irregular nodal distribution.

Figure 4.13: Crack path prediction for the central crack in an infinite
plate.
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4.2.2 Example 2

Figure 4.14: Schematic representation of the problem of the example 2.

In this example the accuracy of the NNRPIM in predicting the crack
path is tested. The problem is a rectangular plate that contains an edge
crack in the middle of its height, the lower edge is fixed and a shear load is
applied in the upper edge. The crack is subjected to mixed mode loading,
therefore will not propagate in a straight line, making the prediction of the
crack path an interesting fracture mechanics problem.

Table 4.5: Relevant data regarding example 2.

Relevant data (example 2)

Load 0.1 [Pa]
E 1000 [Pa]
ν 0.3
e 0.5 [m]
L 7 [m]
D 16 [m]
a 3.5 [m]
divl 60
divd 120

All the data relevant to this problem is displayed in the table 4.5, and
in figure 4.14 there is a schematic representation of the plate. Two types
of nodal meshes were used, one refined in the crack area and another one
completely uniform, both are shown if figure 4.15. The mesh is refined in
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crack area in order to improve the quality of the results. In this example,
first degree influence domains are used, except when mentioned otherwise.
All the results in this example are compared to the solution obtained using
FEM by Rao et al. in [32].

Nodal mesh variation

(a) (b) (c) (d)

Figure 4.15: Nodal meshes used in example 2: (a) 16 × 31; (b) 16 × 31
(refined); (c) 31 × 61; (d) 31 × 61 (refined).

In order to verify if the results converge and define a nodal discretisation,
the number of nodes used in the analysis was sequentially increased. The
nodal meshes used in this example are displayed in figure 4.15, and the
obtained results are shown in figure 4.16, those where generated using a
crack increment equal to the nodal distance in the crack area.

Observing figure 4.16 it is possible to verify that the solution converges
and that the NNRPIM gives acceptable and smooth results for 16 × 31
(refined) nodal meshes and superior. Analysing the figure, its possible to
see that the results, using a 31 × 61 (refined) and a 61 × 121 meshes, are
very similar. For that reason, for the subsequent analysis in this example,
a 31× 61 (refined) nodal mesh was used, since compared with the 61× 121
nodal mesh, it allows for accurate results with less processing power.

Crack increment variation

To study the influence of the crack increment in the prediction of the
crack path, several simulations were performed with different values of that
parameter. The results are displayed in figure 4.17.
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Figure 4.16: Prediction of the crack path for example 2, for different
nodal meshes. rs = 6h.

Taking the obtained results into consideration, all the studied values
yield an acceptable crack path, with the exception of the result that cor-
responds to the crack increment equal to 2h. This result is less accurate
because there is a big difference, in nodal distance, between the nodes in the
crack and the nodes in the rest of the domain. That causes the appearance
of inaccurate oscillations in the interpolation functions, which worsens the
quality of the results. Taking all the results into consideration, the optimal
crack increment is 0.5h, because the predicted crack path is almost equal to
the crack path used as reference.

Figure 4.17: Prediction of the crack path for example 2, for different
values of crack increment. rs = 3h.
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Variation of rs

In figure 4.18 are represented the crack path predictions for different
values of rs. The variation of this parameter has a very significant influence
on the crack path prediction. The crack paths for rs = 3h and rs = 1.5h are
similar between themselves and to the reference path. Those values yield
the most accurate results and are considered as optimal in the remaining
analysis of this example.

Figure 4.18: Prediction of the crack path for example 2, for different
values of rs. Crack increment equal to h

Influence domain variation

In all of the results above, only first degree influence domains were used.
It has been proven that, in the NNRPIM, second degree influence domains
provide more accurate results [1]. In this study that affirmation is tested
in fracture mechanics problems. The influence of each of the studied pa-
rameters, in the results, can not be completely isolated. This is verified,
specially when studying the effect of the influence domain in the crack path
prediction. In this analysis, various values for other parameters are studied
in conjunction with the variation of the influence domain. This methodology
may open the possibility of finding a set of optimal parameters and provide
a way to generalise the work developed so far.

Examining the effect of the influence domain variation, in conjunction
with the variation of rs, figure 4.19 shows that the results are similar,
therefore, it is not possible to define which one is more accurate.

Studying now the effect of the influence domain in conjunction with
the crack increment, with the relevant results being in figures 4.19 and
4.20. For the conditions in figure 4.20a it is verified that the second degree
influence domain results are more accurate. Comparing figures 4.20b and
4.19b, where the only parameter variation is the crack increment, it is possi-
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(a)

(b)

Figure 4.19: Influence domain variation, for different values of rs; (a)
rs = 1.5h; (b) rs = 3h. The crack increment is h

ble to verify that, when the crack increment is shorter, the influence domain
causes more variation in the results for the crack path.

The crack path using a second degree influence domain, from figure 4.20a
is considered to be the most accurate result, in table 4.6 the optimal param-
eters for this example are shown.

Table 4.6: Optimal parameters for example 2.

Optimal parameters (example 2)

Crack increment 0.5h [m]
rs 1.5h [m]
Influence domain Second degree
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(a)

(b)

Figure 4.20: Influence domain variation, for a crack increment equal
to 0.5h: (a) rs = 1.5h; (b) rs = 3h.
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4.2.3 Example 3

In example 3 the crack propagation on a beam bent in three points is
studied. The problem is represented in figure 4.21 and all relevant data is
displayed in table 4.7. In this problem, a beam is loaded with a point force
in the middle of its length, it is supported in two points at the same distance
from the middle and has an initial vertical crack 50 mm to the left. The
results obtained with the NNRPIM are compared with the solution obtained
by Geniaut et al. in [48].

Figure 4.21: Schematic representation of the problem of the example 3.
Measurements in [mm].

Two types of nodal mesh were used, one with the nodes uniformly dis-
tributed throughout the domain of the problem and another with more nodes
in the area of the crack (refined). It is known that the stress field around the
crack is complex, therefore it is advantageous to have more nodes in that
area. Some of the nodal meshes used in this problem are displayed in figure
4.22.

Table 4.7: Relevant data regarding example 3.

Relevant data (example 3)

F 0.01 [N]
E 1000 [Pa]
ν 0.3
Thickness 0.01 [m]
L 0.230 [m]
divl 120
divd 40
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(a)

(b)

(c)

(d)

Figure 4.22: Some of the nodal meshes used in example 3: (a) 31 × 11;
(b) 31 × 11 (refined); (c) 61 × 21; (d) 61 × 21 (refined).
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(a) (b)

Figure 4.23: Crack path prediction for example 3, for various nodal
meshes: (a) xx axis is elongated in relation to yy; (b) the
scale of both axes is the same. rs = 3h.

Nodal mesh variation

The first study performed in this example consists in the gradual refine-
ment of the nodal mesh. The results for this analysis are shown in figure
4.23. The crack increment is equal to the inter-nodal distance in the crack
area, in all the simulations performed in this analysis.

Analysing figure 4.23 it is clear that the result converges with the increase
of the number of nodes. Observing all the curves, it is possible to conclude
that the results with a 61× 21 (refined) mesh and the ones with a 121× 41
meshes are similar hence, in this example, all the subsequent results were
obtained using the 61×21 (refined) nodal mesh, unless otherwise mentioned.

Crack increment variation

The various crack paths for different crack increment values are displayed
in figure 4.24. All values provide very similar results, which indicates that, in
this case, the crack increment variation does not alter the results. Any result
could be an optimal value, the other tests in this example are performed with
the crack increment equal to h, except when otherwise mentioned.
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(a) (b)

Figure 4.24: Crack path prediction for example 3, for various values of
crack increment: (a) xx axis is elongated in relation to yy;
(b) the scale of both axis is the same. rs = 3h.

rs variation

In figure 4.25 the results for the crack path prediction for different values
of rs are shown. The variation of this parameter has a significant influence in
the crack path and, as its value lowers, the NNRPIM’s result approximates
the reference solution, as was the case in the previous example.

Considering the information provided so far, the optimal result is either
0.75h or 1.5h, the former provides the most proximity to the reference path,
but shows some unwanted oscillations. Using rs = 1.5h, the obtained result
is not as close to the reference, however it is not affected by oscillations. In
the remaining of this example both values for rs are studied.

Influence domain variation

In this study, the effect of the influence domain is analysed. In order
to define a set of optimal parameters for this problem, the variation of the
influence domain is made in conjunction with other parameters.

Varying the influence domain in conjunction with rs the results in
figure 4.26 are obtained. For the both values of rs, there are significant
differences in the crack path. Making rs = 0.75h and using second degree
influence domains, the result is completely inaccurate. There is a very sig-
nificant difference in the results caused by the variation of the influence
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(a) (b)

Figure 4.25: Crack path prediction for example 3, for various values of
rs: (a) xx axis is elongated in relation to yy; (b) the scale of
both axis is the same. The crack increment is equal to h.

domain. The inaccuracy of the result using second degree influence do-
mains may indicate that to few integration points are being selected. With
rs = 0.75h using first degree influence domains, the result is similar to the
reference. For rs = 1.5h, only in the final part of the crack path significant
differences are verified, with the crack path using second degree influence
domains approaching the reference data.

The results of the variation of the influence domain in conjunction
with the crack increment are displayed in figures 4.26 and 4.27. Using
a smaller crack increment, causes the variation of the influence domain to
have a greater effect on the crack path. In this example, it is clear that the
crack increment of 0.5h results in less accurate crack path predictions than
when using ∆a = h. Comparing the two types of influence domains, for
the situation in figure 4.27 the second degree influence domains provide a
more smooth crack path, contrary to what happened when using the shorter
increment.

The optimal results found for example 3 are displayed in figure 4.26b. It
is clear that first degree influence domains are optimal for this problem. In
table 4.8 the optimal values for the studied parameters are shown.
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(a)

(b)

Figure 4.26: Crack path prediction for example 3, for various influence
domains: (a) rs = 0.75h; (b) rs = 1.5h. The crack incre-
ment is h.
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(a)

(b)

Figure 4.27: Influence domain variation for example 3, for a crack
increment of 0.5h: (a) rs = 0.75h; (b) rs = 1.5h.
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Table 4.8: Optimal parameters for example 3.

Optimal parameters (example 3)

Crack increment h [m]
rs 1.5h [m]
Influence domain First degree
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4.2.4 Example 4

In the present example the crack propagation in a beam bent in 4 points
with a circular hole is studied. The beam contains an initial vertical crack
in the middle of its length. The circular hole is not in the centre of the
beam, thus the crack is subjected to mixed mode loading. The problem is
presented in figure 4.28, in table 4.9 additional relevant data is displayed.

Figure 4.28: Schematic representation of the problem of the example 4.
Measurements in [mm].

The problem was discretised in two types of nodal meshes, one with a
uniform nodal distribution and another one with more nodes in the area
of the crack and hole. Some of the nodal meshes used in this problem are
displayed in figure 4.29. The crack path prediction for this problem, by
Nguyen-Xuan et al. [30] is used as reference.

Table 4.9: Relevant data regarding example 4.

Relevant data (example 4)

F 0.0005 [N]
E 1000 [Pa]
ν 0.29
Thickness 0.01 [m]
L 0.125 [m]
divl 160
divd 40

Nodal mesh variation

The results in figure 4.30 show that the solution converges when the
number of nodes discretising the problem domain, is increased. The results
were obtained using a crack increment equal to the nodal distance near the
crack.
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(a)

(b)

(c)

(d)

Figure 4.29: Some of the nodal meshes used in example 4: (a) 41 × 11;
(b) 41 × 11 (refined); (c) 81 × 21; (d) 81 × 21 (refined).
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All the nodal meshes, besides the 40 × 10, yield acceptable results. All
the results obtained when using a refined nodal mesh of 80× 20 or superior,
are similar. The subsequent tests of this example are performed with a
80× 20 refined nodal mesh.

Figure 4.30: Crack path prediction for example 4, for various nodal
meshes. rs = 4h.

Crack increment variation

The results for the crack increment variation are displayed in figure 4.31.
Using a crack increment equal to 2h, yields a less accurate result. This is
caused by the fact that the spacing of the nodes that belong to the crack,
is significantly larger than the nodes near it. That results in poor quality
interpolation functions. Shortening the crack increment originates more
accurate and acceptable results. The optimal value for the crack increment
is either 0.5h or h. The crack path for ∆a = 0.5h shows some oscillations
in the final part of the crack but is similar to the reference solution in the
remaining of the path.

rs variation

In figure 4.32 the crack paths for different values of rs are shown. rs has a
significant influence in the crack path. The crack path curves in the direction
of the hole at an inferior height for larger values of rs. That effect is caused
by the fact that, when using a larger radius, the stress field near the hole
has more influence in the calculation of the crack’s propagation direction.
When rs = 0.5h the opposite is verified, the crack starts approaching the
hole on a final stage. That happens because the stress field near the hole has
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(a) (b)

Figure 4.31: Crack path prediction for example 4 for various crack in-
crements: (a) general view of the crack path; (b) close up
near the crack tip. rs = h.

less effect in the calculation of the crack’s propagation direction. In the case
represented in figure 4.32, the optimal value for the crack path is rs = h.

Influence domain variation

The effect of the influence domain in the crack path is studied in con-
junction with the variation of ∆a and rs.

Analysing the effect of the influence domain variation, in conjunction
with rs, figure 4.33 shows that the influence domain has a significant ef-
fect on the results. The use of second degree influence domains causes less
smooth and less accurate results. The pejorative effect of the use of second
degree influence domains, is caused by the proximity of the crack tip to a
boundary of the domain. The influence domains near the boundaries of the
problem are smaller than in the rest of the domain. This size difference
is more significant when using second degree influence domains thus, the
results when using this type are less accurate. rs causes less variations in
the results when using second degree influence-cells, that is visible in figures
4.33 and 4.34.

Analysing the effect of the influence domain variation, in conjunction
the crack increment, the results in figures 4.33 and 4.34 are compared.
For a shorter crack increment, the use of second degree influence domains
provides a more smooth crack path. As was the case when using ∆a = h, the
use of second degree influence domains causes the crack path to move closer
to the hole. The use of the shorter crack increment when the influence-cells
are of first degree causes the crack path to be less smooth, for all values of
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(a) (b)

Figure 4.32: Crack path prediction for example 4, for various rs: (a)
general view of the crack path; (b) close up near the crack
tip. The crack increment is equal to h.

rs. Making rs = 0.75h and ∆a = 0.5h increases the accuracy of the result,
when comparing with the crack path using a longer increment.

The optimal crack path is represented in figure 4.34b, with first degree
influence domains. The optimal values are presented in table 4.10.

Table 4.10: Optimal parameters for example 4.

Optimal parameters (example 4)

Crack increment 0.5h [m]
rs 0.75h [m]
Influence domain First degree
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(a)

(b)

(c)

Figure 4.33: Crack path prediction for example 4, for various values
of rs: (a) rs = 0.5h; (b) rs = 0.75h; (c) rs = h. Crack
increment equal to h.
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(a)

(b)

(c)

Figure 4.34: Crack path prediction for example 4, for a crack incre-
ment of 0.5h: (a) rs = 0.5h; (b) rs = 0.75h; (c) rs = h.
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4.2.5 Example 5

In example 5, the crack path prediction in a beam, that contains three
circular holes, bent in three points is made. The problem is presented in
figure 4.35. The beam is loaded by the force F and supported in two points
positioned at the same distance from the middle of the beam and in the xx
axis. The beam contains an initial vertical crack in its lower edge. As the
crack is not in the centre of the beam, it is subjected to mixed mode loading.
The presence of the circular holes has a significant effect on the stress field
along the beam, which will affect the crack path. Additional data relevant
to this example is displayed in table 4.11.

Figure 4.35: Schematic representation of the problem of the example 5
and 6. Measurements in [m].

Some of the nodal meshes used in this example are shown in figure 4.36.
Two types can be seen, one with uniformly distributed nodes along the
domain and another one with more nodes near the crack (refined). In this
example, first degree influence domains are used, except when otherwise
mentioned. The results obtained in this work are compared with the results
obtained by Bittencourt et al. in [49].

Nodal mesh variation

In order to verify if the solution converges, and to chose the most suitable
discretisation for the remaining of the example, the number of nodes used
in the analysis was sequentially increased. The obtained crack paths are
displayed in figure 4.37. In this study, a crack increment equal to the nodal
spacing near the crack, was used.

The resulting path is curved to the middle of the beam and intersects
the middle hole. The crack is subjected to mixed mode loading, therefore
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(a)

(b)

(c)

(d)

Figure 4.36: Nodal meshes used in example 5: (a) 41 × 17; (b) 41 × 17
(refined); (c) 81 × 33; (d) 81 × 33 (refined).
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Table 4.11: Relevant data regarding example 5.

Relevant data (example 5)

F 10 [N]
E 1000 [Pa]
ν 0.29
Thickness 0.5 [m]
a 1 [m]
b 4 [m]
L 20 [m]
divl 160
divd 64

Figure 4.37: Crack path prediction for example 5, for various nodal
meshes. rs = 8h.

the crack path was expected to be curved. The presence of the holes has
a significant effect on the stress distribution along the beam, the fact that
the crack path intersects the hole does not refute that claim. Analysing
the figure, it can be seen that, for this conditions, the crack paths are not
significantly different for the various modal meshes. That may be due to the
fact that a relatively large rs was used in this analysis. In this problem it is
necessary to use a dense nodal mesh in order to model the holes properly, a
81× 33 refined nodal mesh is used.

Crack increment variation

In order to study the influence of the crack increment in the crack path,
several simulations were performed with different values of that parameter.
The results are displayed in figure 4.38.

Analysing the figure, it is possible to conclude that the values 0.5h and 1h
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yield an accurate crack path prediction. It is clear that the crack increment
equal to 2h is an excessive value, for this problem. The remaining analysis
of this problem is made with a crack increment equal to h, except when
otherwise mentioned.

Figure 4.38: Crack path prediction for example 5, for various crack
increments. rs = 2h.

rs variation

Figure 4.39: Crack path prediction for example 5, for various values of
rs. The crack increment is equal to h.

In figure 4.39 the results for the crack path for different values of rs
are shown. The variation of this parameter has a significant effect in the
results. The most accurate crack path is obtained with rs = 2h however (the
reference result is under the crack path generated using that value). Making

84



rs = 2h and higher, the the path is more inclined to the right side. This is
caused by the fact that the stress field near the holes has a more significant
effect in the crack’s propagation direction. The subsequent analysis of this
example will be made with rs = h and rs = 2h.

Influence domain variation

The effect of influence domain in the crack path is studied in combination
with rs and ∆a. The objectives of that approach are, to verify how the
various parameters interact and to find a set of optimal values.

(a) (b)

Figure 4.40: Influence domain variation: (a) rs = h; (b) rs = 2h. The
crack increment is equal to h.

The results that represent the variation of the type of influence domain
in conjunction with rs, are shown in figure 4.40. In figure 4.40a the use
of second degree influence domains causes the crack path to approximate
the reference solution. Also, some oscillations appear in the result, which
may indicate that an excessively small number of integration points is being
selected. Making rs = 2h, in figure 4.40b, it is possible to verify that there
is not a significant difference in the solution whether first or second degree
influence domains are used. Both solutions are on top of the reference crack
path.

To study the variation of the influence domain in combination with
the crack increment the results in figures 4.40 and 4.41 are taken into
consideration. It is possible to verify in figure 4.41a that, the use of shorter
increments in conjunction with first degree influence domains, results in os-
cillations in the crack path. Comparing figures 4.40a and 4.41a, it is possible
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(a) (b)

Figure 4.41: Influence domain variation, the crack increment is equal
to 0.5h: (a) rs = h; (b) rs = 2h.

to verify that the oscillations when using ∆a = h and second degree influ-
ence domains, disappear when using a shorter increment. As is displayed in
figure 4.41b, the use of a shorter increment and rs = 2h leads to similar and
accurate crack path predictions.

The optimal crack path is obtained using first degree influence domains
and is represented in figure 4.40b. The first degree influence domains were
chosen due to the lower computational cost when using then. The optimal
values for the studied parameters are displayed in table 4.12.

Table 4.12: Optimal parameters for example 5.

Optimal parameters (example 5)

Crack increment h [m]
rs 2h [m]
Influence domain First degree
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4.2.6 Example 6

This example is similar to the previous example, figure 4.35, the differ-
ence being the crack’s length and position (identified as a and b in table
4.13). The variation of those dimensions has a significant impact in the
crack path prediction.

In this problem, the crack path is more complex than in previous exam-
ples. Special care was taken in refining the areas through which the crack
propagates. The nodal meshes used in this problem are shown in figure 4.47.
First degree influence domains are used, except when otherwise mentioned.
The results obtained by the NNRPIM are compared with numerical results
obtained by Geniaut et al. [48] and with experimental results obtained by
Ingraffea et al. [50]. The experimental results were obtained with crack
mouth opening displacement control in a brittle material.

Table 4.13: Relevant data regarding example 6.

Relevant data (example 6)

F 10 [N]
E 1000 [Pa]
ν 0.29
Thickness 0.5 [m]
a 1.5 [m]
b 5 [m]
divl 240
divd 96

Nodal mesh variation

In order to verify if the results of this example converge, the number of
nodes used in the analysis was gradually increased. The relevant results are
shown in figure 4.42. It is possible to verify that there is convergence in the
results. Using the 81 × 33 (refined 1) and 61 × 25 (refined 2) the results
are similar. The remaining of the numerical simulations in this example are
performed with a 61 × 25 (refined 2) nodal mesh. The complexity of the
crack path requires a fine mesh in the crack area.

Crack increment variation

In order to study the influence of the crack increment in the crack path,
several simulations were performed with different values of that parameter.
The results are displayed in figure 4.43.

Analysing the figure, it is possible to conclude that making rs = 2h does
not generate an acceptable result. The crack path ends in the lower hole
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(a) (b)

Figure 4.42: Crack path prediction for example 6, for various nodal
meshes: (a) general view of the crack path; (b) close up
near the bottom hole. rs = 2h.

instead of the middle one. It was verified in previous examples that the use
of this value generates inaccurate results. In this example making ∆a =
0.5h also results in an inaccurate crack path, with the crack intercepting
the bottom hole instead of the middle one. The remaining analysis of this
problem is made with a crack increment equal to h, except when otherwise
mentioned.

rs variation

In figure 4.44 the results relevant to the analysis of the effect of rs are
shown. It can be verified that the rs variation has a significant influence
in the crack path prediction. In this example, the most demanding zone
for the algorithm, is near the bottom hole. The crack propagates close
to it thus, in that area, a smaller number of integration points may be
selected. A high accuracy from the method is therefore required. Analysing
the figures, it is possible to verify that, in the areas near the holes, the
crack path prediction is less accurate, in general. Even though significant
inaccuracies are present, all the results end in the middle hole, as was studied
experimentally. It should be noted that, using the values in figure 4.44b, the
crack path near the holes is not correctly calculated, because the program
tries to find integration points in the holes (due to the high values of rs).
Hence, the calculation of the crack’s propagation direction is inaccurate. In
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(a) (b)

Figure 4.43: Crack path prediction for example 6, for various crack
increments: (a) general view of the crack path; (b) close
up near the bottom hole. rs = 2h.

almost all the results, the curve near the middle hole is excessively inclined
to the right side. When rs = 0.5h, an excessively low number of integration
points is selected, resulting in an inaccurate crack path. Making rs = 0.75h
and rs = h generates the most accurate crack predictions. These two values
are studied in the remaining of this example.

Influence domain variation

The effect of influence domain in the crack path is studied in combination
with rs and ∆a. The objectives of that approach are, to verify how the
various parameters interact and to find a set of optimal values.

The results that represent the variation of the type of influence domain in
conjunction with rs, are shown in figure 4.45. For both values of rs, using
second degree influence domains, yields significantly less accurate results.
When the crack approximates the middle hole, the influence domains in
that area are smaller. Using second degree influence domains causes that
difference to be bigger, resulting in the inaccuracies seen in the figure.

To study the variation of the influence domain in combination with
the crack increment the results in figures 4.45 and 4.46 are taken into
consideration. The use of shorter crack increment does not result in a more
accurate crack path prediction. As was the case using ∆a = h, with ∆a =
0.5h, the use of second degree influence domains degrades the quality of the
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(a)

(b)

Figure 4.44: Crack path prediction for example 6, for various rs: (a)
three lower values; (b) three higher values. ∆a = h.
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results. In this case, the crack ends in the lower hole and not in the middle
one.

Analysing the results of this example in general, it is possible to verify
that the proximity of the lower hole to the crack, creates a difficulty to
the developed algorithm. Two possible causes are identified. Firstly, the
proximity of the crack to the hole requires for a low value of rs to be used.
As a low number of integration points are used, the method is required to
be more accurate than in the other studied numerical examples. Another
cause is related to the fact that the crack is “almost tangent” in relation to
the hole. This creates an area where the influence domains have to be much
smaller than in the rest of the domain. As was referred in section 2.1.2,
the variation of the size of the influence domains affects the performance
of the method. The optimal crack path is obtained using first influence
domains and is represented in figure 4.45b. The optimal values for the
studied parameters are displayed in table 4.14.

Table 4.14: Optimal parameters for example 6.

Optimal parameters (example 6)

Crack increment h [m]
rs h [m]
Influence domain First degree
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(a)

(b)

Figure 4.45: Influence domain variation: (a) rs = 0.75h; (b) rs = h.
∆a = h.
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(a)

(b)

Figure 4.46: Influence domain variation: (a) rs = 0.75h; (b) rs = h.
∆a = 0.5h.
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(a)

(b)

(c)

(d)

Figure 4.47: Nodal meshes used in example 6: (a) 61 × 25; (b) 61 × 25
(refined 1); (c) 61 × 25 (refined 2); (d) 81 × 33 (refined 1).
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4.2.7 Example 7

In example 7 the crack propagation in a plate with a central inclined
crack is studied. The plate is subjected to tension in the upper and lower
edges. The crack is inclined in relation to the load therefore, it is subjected to
mixed mode loading. In this example the crack propagates in two directions
simultaneously. The problem is represented in figure 4.48 and in table 4.15
the additional relevant data is shown.

Figure 4.48: Schematic representation of the problem of the example 7.

The nodal meshes used in this example are shown in figure 4.54. This
is a complex problem and the nodal discretisation in the area of the crack
is crucial to the accuracy of the results. In this problem, the nodal mesh in
figure 4.54c has four times the nodal density near the crack than in the rest
of the domain. In this example, second degree influence domains are used,
except when otherwise mentioned. The results obtained in this work are
compared with the results obtained experimentally by Pustejovsky in [51].
The results were obtained with fatigue loading in Titanium. The crack path
predicted using static loading and LEFM is comparable to the experimental
results, Rao et al. [32] made the same simplifications in solving this problem.
The crack path predicted by Rao et al. is similar to the experimentally
determined one hence, is not shown in the figures.
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Table 4.15: Relevant data regarding example 7.

Relevant data (example 7)

σ 5 [Pa]
E 1000 [Pa]
ν 0.29
L 0.3048 [m]
D 0.0762 [m]
Thickness 0.05 [m]
γ 60 [◦]
a 0.0142 [m]
divl 96
divd 320

Nodal mesh variation

In order to verify the convergence of the results the number of nodes
used in the analysis was sequentially increased. The various crack path
predictions are displayed in figure 4.49. The results were obtained with a
crack increment equal to the nodal distance near the crack.

Figure 4.49: Crack path prediction for example 7, for various nodal
meshes. rs = 2h.

As expected, the less refined mesh yielded the less accurate results. Using
the 81×21 (refined 1) and the 81×21 (refined 2) nodal meshes, similar results
are obtained. In the remaining of this example the 81 × 21 (refined 2) is
used. As this is a complex problem, the most refined mesh possible is used.
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Crack increment variation

In order to study the influence of the crack increment in the crack path,
several simulations were performed with different values of that parameter.
The results are displayed in figure 4.50. Analysing the figure, it is possible
to conclude that all values yield an accurate crack path prediction. In the
case of the conditions in figure 4.50, the crack path is not sensitive to the
value of the crack increment. That may be explained by the fact that the
nodal mesh is quite fine near the crack, and rs is relatively large in this case.

Figure 4.50: Crack path prediction for example 7, for various crack
increments. rs = 2h.

rs variation

In figure 4.51 the crack paths for different values of rs are shown. rs has
a significant influence in the crack path prediction. It can be verified that
the obtained crack path approximates the reference crack path as rs lowers.
When rs = 0.375h, that tendency is no longer verified. That may be caused
by the fact that not enough integration points are selected. The optimal
value for this example is rs = 0.5h.

Influence domain variation

The effect of the influence domain in the crack path is studied in con-
junction with the variation of ∆a and rs.

Analysing the effect of the influence domain variation, in conjunction
with rs, figure 4.53 shows that the influence domain has a significant effect
on the results. The variation of the type of influence domain has a more
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Figure 4.51: Crack path prediction for example 7, for various values of
rs. The crack increment is h.

significant effect in the results when rs is shorter. This was verified in
previous examples. For rs = 0.5h, using first degree influence domains
significantly degrades the accuracy of the results.

Analysing the effect of the influence domain variation, in conjunction
the crack increment, the results in figures 4.53a and 4.52 are compared.
For a shorter crack increment, the variation of the type of influence domain
is less significant. Analysing those figures it is also possible to conclude that
the optimal value for the crack increment is h.

The optimal crack path is represented in figure 4.53a (using second de-
gree influence domains). The optimal values are summarised in table 4.16.

Table 4.16: Optimal parameters for example 7.

Optimal parameters (example 7)

Crack increment h [m]
rs 0.5h [m]
Influence domain Second degree
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Figure 4.52: Influence domain variation, the crack increment is equal
to 0.5h and rs = 0.5h.
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(a)

(b)

Figure 4.53: Influence domain variation, the crack increment is equal
to h: (a) rs = 0.5h; (b) rs = h.
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(a) (b) (c)

Figure 4.54: Nodal meshes used in example 6: (a) 81 × 21 (1702 nodes);
(b) 81 × 21 (refined 1) (2357 nodes); (c) 81 × 21 (refined 2)
(2935 nodes).
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Chapter 5

Conclusion and future work

In this work, an automatic way of simulating crack growth using a
meshless method was developed. The developed program uses the stress
field to calculate the direction of crack propagation, which is perpendicular
to the principal stress direction. The program sequentially increases the
crack length to obtain the final crack path. At each iteration of the code,
the crack’s propagation direction is calculated and the crack is extended in
straight line segments.

The most relevant conclusions are:

1. The concept of the natural neighbour indeed provides an organic and
simple form of implementing discontinuities in a continuous domain.

2. The NNRPIM is a solid platform that can be used to solve fracture me-
chanics problems. The existence to the Kronecker delta property, the
integration mesh being completely nodal dependent and the fact that
the NNRPIM provides a standardised nodal dependent way of creating
the influence domains are some of the most important characteristics
relevant to the development of the fracture mechanics algorithm.

3. The fact that meshless methods only use nodes to discretise the prob-
lem’s domain, makes the remeshing to accommodate the crack’s ex-
tension a simple and computationally economic task.

4. In the crack path prediction problem, three parameters have a signif-
icant influence in the results, the crack increment ∆a, the radius of
selection of integration points, rs and the type of influence domain.
The effect of these parameters in the crack path was analysed exten-
sively in this thesis, the main conclusions, regarding each one, are:

• The crack increment affects the crack path because it determines
the number of nodes that discretise the crack. Nodal discretisa-
tion has a significant effect in the computation of the test func-
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tions. If the crack increment is overly short or long, the exag-
gerated nodal distance variations are responsible for low quality
test functions, resulting in inaccurate results. In this work it was
found that the value of crack increment should be between a cer-
tain range. It was also found that, as long as the crack increment
does not cause inaccurate test functions, its value should be min-
imised in order to improve the accuracy of the results (improving
the discretisation of the crack).

• rs is a parameter that ultimately defines the number of integra-
tion points used to calculate the crack’s propagation direction. If
this value is too large, the obtained values for the stresses at the
crack tip are not an accurate representation of the actual stress
state in that area. If rs is too small, inaccurate oscillations ap-
pear in the crack path. This is caused by the fact that not enough
integration points are selected to correctly compute the stresses
near the crack tip. In general, a value close to the nodal spacing
provided the most accurate results.

• Dinis et al. [1] stated that using second, rather than first, de-
gree influence domains in the NNRPIM provided more accurate
results. In fracture mechanics problems the use of second degree
influence domains did not always provide the most accurate re-
sult. It was verified that, when the crack propagates near the
boundaries of the problem, the use of second degree influence do-
mains leads to less accurate results. It was the case of example
4 and 6 where the crack path is near a hole in the solid. That
occurrence is caused by a the variation of the size of the influence
domains. Near the boundaries of the problem, the influence do-
mains are smaller. When using second degree influence domains,
that difference is more significant, causing less accurate results.
When the crack path is not near any other boundary, the use
of second degree influence domains resulted in a more accurate
crack path prediction.

5. The influence of the above mentioned parameters in the results cannot
be considered to be independent, i. e. the variation of a given param-
eter, originates different variations of the results, for different values
of other parameters.

One of the aims of this work was to find a set of optimal parameters that
would allow for an uniform fracture mechanics analysis of a given component
or structure. The optimal values for each example are displayed in table
5.1. Considering the obtained results and all de corresponding analysis, it
is possible to conclude that the optimal value for the crack increment is in
the range of 0.5h to h, rs is in the range of 0.5h to 1.5h, it is not possible
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to choose one type of influence domain.

Table 5.1: Optimal values for the studied parameters.

Example ∆a rs Influence domain

2 0.5h 1.5h Second degree
3 h 1.5h First degree
4 0.5h 0.75h First degree
5 h 2h First degree
6 h h First degree
7 h 0.5h Second degree

The present work is an introductory application of the NNRPIM to frac-
ture mechanics. One major development of this work would be to eliminate
completely the influence of the crack increment and rs in the crack path pre-
diction. The following areas of application represent possible and interesting
developments for the work done in this thesis:

• Consider material non-linearity (plasticity): a significant part of the
materials used in engineering exhibit plastic behaviour. To extend the
developed algorithm beyond Linear-elastic fracture mechanics, would
create the possibility of studying such materials.

• Analyse three-dimensional problems: The extension of the code devel-
oped in this thesis to three dimensions would create the possibility of
studying the crack path on any structure or component.

• Include new fracture criterions: besides the maximum tangential stress
criterion, there are others, more complex, that provide a more general
analysis. It would be interesting to verify if the increase in complexity
is justified by an increase in the accuracy of the results.

• Consider dynamics and fatigue loading: considering the effects of dy-
namics and variable loads would create the possibility of predicting
the life cycle of a given solid. It would also be interesting to verify
what is the effect of dynamic loads in the crack path.

Ultimately, a numerical tool capable of accurately predicting the life cycle
of a given component with a wide range of possible loading conditions and
engineering materials, could be developed from this work.
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