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Resumo

Os conhecimentos nas áreas da robótica e da inteligência artificial têm aumentado substancial-
mente na última década. Uma das principais contribuições do lado não lucrativo de pesquisa e
desenvovimento é a iniciativa RoboCup, que desafia investigadores de todo o mundo a continuar
a desenvolver e melhorar as tecnologias através de vários desafios organizados, sendo um deles a
Liga 3D de Simulação de Futebol, visualizada através do monitor RoboViz.

O trabalho desenvolvido nesta tese foca-se no desenvolvimento de uma extensão do visu-
alizador RoboViz que suporta o cálculo e a detecção de eventos em tempo real da simulação,
fornecendo feedback relevante aos investigadores envolvidos, além de uma experiência de visual-
ização realista para os espectadores com base numa arquitetura orientada a eventos.

A solução desenvolvida é capaz de renderizar informações estruturadas na tela acerca da par-
tida atual e possui um novo modo de câmara que se assemelha a uma transmissão na vida real,
proporcionando uma sensação mais realista comparando com o sistema atual. A sua arquitetura
modular permite um fácil desenvolvimento sobre a versão lançada por este trabalho, permitindo
uma introdução simples de novos cálculos e novos lançadores de eventos.

Os resultados obtidos, através de questionários a população em geral, confirmam uma melhor
leitura do fluxo do jogo e do desempenho da equipa e também uma experiência de visualização
melhorada ao comparar com o visualizador original. Portanto, podemos concluir que a coleção
de dados em tempo real é crucial para entender o fluxo do jogo e obter uma melhor noção do
desempenho da equipa.

Palavras-Chave: Agentes, Sistemas Multi-agente, Futebol Robótico, RoboCup, Computação
Gráfica, Cinematografia, Câmara Virtual, Transmissão em Direto, Orientada a Eventos

Email: igorasilveira@gmail.com
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Abstract

The fields of Robotics and Artificial Intelligence have been soaring over the last decade. A main
contributor on the non-profitable R&D side is the RoboCup initiative which challenges researchers
from all over the world to keep developing and improving the technologies through several distinct
organized challenges, one of them being the RoboCup Soccer Simulation 3D League which is
visualized through the RoboViz 3D monitor.

This thesis work focus on the development of an extension of the RoboViz visualizer that
supports the calculation and detection of real-time events of the simulation providing valuable
feedback to the researchers involved as well as a realistic visualization experience for the specta-
tors based on an event-driven approach.

The developed solution is able to render structured information on screen about the current
match and has a new camera mode that resembles a real-life directed broadcast giving it a more
realistic feel over the current system. Its modular architecture allows for a facilitated further
development on top of the version released by this work enabling a simple introduction of new
calculations and event dispatchers.

The results obtained, through general population questionnaires, confirm a better reading of the
game flow and team’s performance and also an enhanced visualization experience when comparing
with the original visualizer. Therefore, we can conclude that real-time data collection is crucial
for understanding the game flow and better notion of team performance.

Keywords: Agents, Multi-Agent Systems, Robotic Soccer, RoboCup, Graphical Computation,
Cinematography, Virtual Camera, Live Broadcasting, Event-Driven
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Chapter 1

Introduction

The present document shows the development of the dissertation made in the scope of the con-

clusion of the master’s degree in Informatics and Computing Engineering. In this first chapter

the context of the problem is described, in order to fit the environment in which all the work was

developed, illustrating the main objectives proposed to be studied and also the entire structure of

the dissertation, for easier analysis of the same.

1.1 Context and Motivation

A survey taken by the FIFA (International Federation of Association Football), the main entity in

charge of creating and enforcing the rules of the sport around the world, in the summer of the turn

of the century in the year 2000, revealed that 240 million people regularly play football around

the world, along with almost five million referees, assistant referees and officials who are also

directly involved in the game [15]. Furthermore, the statistics showed that over 20 million female

footballers played the game. A number that has been rising and is now over 30 million worldwide

[16]. All these athletes are distributed in a span of more than 1.5 million team and 300,000 clubs

making it, by far, the most practiced sport in the world. Regarding the number of fans there is not

an official statement made by a fully credible entity that discloses those numbers, but there are

several websites which share around the same estimates for various sports, where soccer comes in

first place with an estimated number of supporters in the proximity of 3.5 billion individuals [50].

If we sum up these numbers, we rapidly conclude that a large percentage of the world’s population

is somehow involved in the sport, making it the King Sport.

Other evolving trends in the world are the fields of Artificial Intelligence and Robotics and

in order to stimulate advancements in these areas, several initiatives have been developed along

several distinct domains that gather researchers from around the globe in order to solve complex

problems and carry the technologies further. Following the main premise that soccer is one of

the most engaging domains worldwide, RoboCup presented itself as a good candidate to prompt

researchers to make progress on the fields. RoboCup is an international scientific initiative with

the goal to advance the state of the art of intelligent robots. It has several leagues, each which a

1



2 Introduction

distinct focus area on the field of Artificial Intelligence. One of its leagues is the RoboCup Soccer

Simulation 3D League, which runs on its official simulation server, SimSpark - a generic physical

multi-agent simulator system for agents in three-dimensional environments. Although providing

a proper visualization of the agents’ actions, it is unappealing and provides almost no information

on what is happening on the pitch in statistical terms.

The environment of RoboCup Soccer is one of the most difficult for artificial intelligence

researchers and presents several problems: an uncertain environment, multiple competitive agents,

full physics, and the need for high-level cooperative behaviors. One of the greatest challenges in

developing autonomous robotic agents is debugging and analyzing behaviors and algorithms. As

such, there is a significant need for tools that assist researchers in understanding and developing

their agents [46].

For the researchers - or coaches - it is important to have the possibility to analyze in real-time

what is occurring on the pitch to understand how the teams are performing and to be able to see

the most important movements and behaviors of their players, much like real-life soccer games.

1.2 Objectives and Approach

1.2.1 Thesis Question

The main question that originated the development of this thesis is

How can we improve the visualization experience in a robotic simulated soccer match
and provide valuable information about the match’s events?

More precisely, this thesis contributes to an open-source project which was developed by a

team of event participating researchers and that is used as the 3D visualization tool for the simu-

lated matches.

1.2.2 Approach

The approach for answering the thesis question is based on the creation of three modules that

will make the visualization experience of these simulated matches more realistic and appealing

to any spectator - researchers or bystanders. They are to be implemented in the official RoboCup

3D simulator, RoboViz, in order to possibly be used in the real-world competitions at some point

in time. For that, we first created a fork of the GitHub repository of the project hosted by the

magmaOffenburg team, with the intent to open a pull request with the new functionalities by the

end of the development, testing and validation of this work.

The first and main component is an intelligent statistics module parser that is able to calculate

several metrics usually applied to soccer - possession, shots on target, corners - and, to achieve

that, information is gathered in real-time off of the simulator - ie. player and ball positions and

speeds - and compiled into in-game events detection and valuable information that is then fed to

both of the visualization modules. The second module is a statistics overlay and evaluates and

displays the gathered information on screen at appropriate times given specific game events or
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on demand through informative tables, graphs, grids and more. And lastly, an intelligent camera

control module that allows for automatic selection and control of a set of cameras regarding agent’s

actions and the in-game events, granting a better vision of relevant occurrences in real-time, much

like real human soccer matches live broadcasts.

The final result is an improved smart visualizer for the RoboCup 3D Soccer Simulation League

making it more attractive and interesting to any spectator and allowing researchers to be able to

produce a more well supported analysis of game and team tactics to then further improve their

intelligent robots increasing their game performance and eventually outperforming their opponents

as a multi-agent team.

1.3 Structure of the Dissertation

This remainder of this document is divided in four parts, as follows:

1. Part I: Literature Review

(a) Chapter 2 provides an extensive survey of two main areas transversal to the subject

of this thesis, which are the fields of autonomous agents and multi-agent systems.

(b) Chapters 3 and 4 provide a survey about cinematography and graphical computa-

tion, respectively, which was crucial for the development of the visualization modules,

exceptionally for the intelligent camera module.

2. Part II: Human Soccer and Robotic Soccer Review

(a) Chapter 5 contextualizes the setting upon which this dissertation’s theme is developed

by reviewing the RoboCup competition initiative thoroughly and also by exploring the

evolution of soccer throughout the ages.

3. Part III: Modules Development

(a) Chapter 6 exposes the development of the modules set to be implemented in order of

importance. Starting with the statistics gathering system followed by the visualization

modules, namely the statistics screen overlay and the camera orchestration system.

4. Part IV: Work Validation

(a) Chapter 7 exposes the results of a questionnaire sent to individuals of multiple fields

and general population overall to evaluate the developed tool, as well as some data

analysis on them.

5. Part V: Closing Remarks

(a) Chapter 8 summarizes the contributions of this work to the field and discusses some

future applications and possibles developments on top of the project.
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Chapter 2

Autonomous Agents and Multi Agent
Systems

Multi Agent Systems form a sub-area of Distributed Artificial Intelligence with main focus on

the interaction between multiple intelligent computing elements denominated by agents which

communicate in order to solve problems that are beyond the individual capabilities or knowledge

of each individual. Despite there being no categorical definition of MAS, a largely consensual one

can be that "a loosely coupled network of problem-solving entities (agents) that work together

to find answers to problems that are beyond the individual capabilities or knowledge of each

entity (agent)" [47]. It has been studied as a field of its own since the 1980’s, gaining widespread

recognition through the 90’s and reaching enormous growth up until nowadays with the incredible

evolution of computational units and processing power leading to ground-breaking and innovative

technologies in the most diverse areas of society.

According to K. Sycara [48], multi agent systems must have present four underlying charac-

teristics:

• Each agent has incomplete information or capabilities for solving the problem and, thus, has

a limited viewpoint.

• There is no system’s global control.

• Data is decentralized.

• Computational is asynchronous and requires coordination.

Building upon the previous definition, it becomes clear that multi agent systems require a

great deal of communication, coordination and negotiation among its parts (the agents) in order to

achieve maximum efficiency when operating towards the system’s goals. Each agent can be more

effective in the context of others because it can focus on tasks it excels at, delegate other tasks and

negotiate actions in order to achieve its goals and, ultimately, the system’s goals.

In this chapter I will explain more in depth the concepts of agent and MAS to the level that

is required in order to understand the underlying system upon which this dissertation project will

5
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be developed. We will analyse the most agreed upon agent definitions, main attributes and most

current architectures and, in the MAS domain, we will explore real-world applications (like the

RoboCup project) and get a better overview of inter-agent communication and coordination pro-

tocols within such a system.

2.1 Intelligent Agents

2.1.1 Agent Definition

In a very broad manner, as stated by Russel and Norvig, "an agent is anything that can be con-

sidered able to perceive its environment through sensors and act on this environment through

actuators" [41]. In a more software oriented environment, an agent is understood as a single com-

putational system based on software that, in its bare minimum, has at least the following properties

according to a well accepted definition by Woolridge and Jennings [56]:

Autonomy - It operates without any human or other agent direct intervention and has control

of its own internal state and taken actions.

Reactivity - The agents are ware of their environment and are capable of reacting to changes

on it.

Pro-Activity - Not only they react to environment changes, they are capable of behaving

accordingly to achieve their desired goals.

Social Abilities - The agents are able to interact with other agents and exchange communi-

cations through well defined communication languages.

Figure 2.1: An agent in its environment (adapted from [41]). The agent takes sensory input from
the environment and produces, as output, actions that affect it. [55]

Autonomy is one of the most consensual properties in the field’s community but, for some, it

would never be fully achieved. It is clear that the agent has to be created and put into operation

by another party (human or agent). The assumption that the agent action will not have an end is
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also not entirely valid. The agent will have a limited lifetime and a final action. On the other hand,

although autonomy is essential to the agent, usually human-agent interaction is desirable or even

essential. It is usual to build agents that behave autonomously but are also able to take orders or

instructions from humans [29].

Reactive and proactive behaviours should balance one another since neither a purely reactive

agent nor an extremely proactive one would thrive and out-perform one with such capabilities of

adaptation and action taking. A suitable balance of these properties is crucial for the performance

of an individual agent within a given environment, which should be heavily taken into account

when tuning this behavioural responses - a dynamic environment would be best populated by more

reactive agents and a more static environment could be more focused on proactive responses.

The social abilities of an agent would, in many ways, relate directly to those of we humans in

a sense that, for its long-term success, it is essential that it is able to exchange high-level messages

and carry out processes of social interaction with others in its environment [29]. These processes

may include coordination, cooperation, competition and/or negotiation and play a substantial role

in a system where its agents often may have different goals and/or environment perceptions.

A side from their behaviour, one must talk broadly how they work on the inside. In general,

the agent’s architecture - some sort of computing device - makes the perceptions from the sensors

available to its program - the function that implements the agent’s mapping from perceptions to

actions. The relationship among agents, architectures and programs, according to Russel and

Norvig, can be summed up as [41]:

agent = architecture+ program

However, before starting to design an agent’s program, we must first have a solid idea of

its possible perceptions and desired actions, what goals or performance measure the agent is to

achieve, and what sort of environment it will operate in. The authors call this the PAGE description

(Percepts, Actions, Goals, Environment). Table 2.1 describes examples of a few real-world agent

types following the structure derived by Russel and Norvig [41].

2.1.2 Agent Programs

An agent program can be simply defined mathematically as a function f which maps every possible

perceptional input sequence of the agent at any instant to a possible action it can perform or to a

coefficient, function or constant that can affect other prospective actions.

f : P∗→ A (2.1)

In their work, Russel and Norvig defined a SKELETON-PROGRAM (Algorithm 1) which all

agents built throughout the book implemented. It was over-simplified, but it served to illustrate

the main idea of the flow that should be taken into consideration when building any kind of agent

and writing its program.
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Agent Type Percepts Actions Goals Environment
Medical diag-
nosis system

Symptoms,
findings, pa-
tient’s answers

Questions,
tests, treatments

Healthy patient,
minimize costs

Patient, hospital

Satellite im-
age analysis
systems

Pixels of vary-
ing intensity,
color

Print a cate-
gorization of
scene

Correct catego-
rization

Images from or-
biting satellite

Autonomous
driving systems

Color, dis-
tances, global
position, car
sensors

Control en-
gine speed,
steer, calculate
decisions

Move the vehi-
cle safely from
A to B

Public roads,
pedestrians,
other vehicles

Inventory con-
trol system

Sales forecast,
existing stock

Stockpile, liqui-
date, replenish

Minimize stor-
age cost

Inventory and
sales databases,
user

Table 2.1: PAGE Description of Agent Types

Algorithm 1: SKELETON-AGENT (adapted from [41])
Input: percept

Result: action

Data: memory, the agent’s memory of the world

1 memory← UPDATE−MEMORY(memory, percept);

2 action← CHOOSE−BEST−ACTION(memory);

3 memory← UPDATE−MEMORY(memory,action);

4 return action;

In the algorithm, the agent receives only one percept, although it has been defined that the

agent program receives percept sequences. It is up to the agent to build up the percept sequence in

memory. In some environments it is possible to be successful without storing the percept sequence,

and in complex domains, it is actually infeasible to store it in its entirety.

As a software program, an agent program, which maps percepts to actions, in the process of

decision, according to Khosla, Sethi and Damiani [38], commonly exhibits some characteristics,

as follows:

Autonomy - An agent should be able to exercise a degree of autonomy in its operations.

It should be able to take initiative and exercise a non-trivial degree of control over its own

actions.

Collaboration - An agent should have the ability to collaborate and exchange information

with other agents in the environment to assist other agents in improving their quality of

decision making as well as its own.

Flexibility and Versatility - An agent should be able to dynamically choose which actions

to invoke, and in what sequence, in response to the state of its methods from which it can
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formulate its actions and action sequences. This facility provides versatility as well as more

flexibility to respond to new situations and new contexts.

Temporal History - An agent should be able to keep a record of its beliefs and internal state

and other information about the state of its continuously changing environment. The record

of its internal state helps it to achieve its goals as well as revise its previous decisions in

light of new data from the environment.

Adaptation and Learning - An agent should have the capability to adapt to new situations

in its environment. This includes the capability to learn from new situations and not repeat

its mistakes.

Knowledge Representation - In order to support its actions and goals with an agent, it

should have the capabilities and constructs to properly model structural and relational infor-

mation of the problem domain and its environment.

Communication - An agent should be able to engage in complex communication with other

agents, including human agents, in order to obtain information or request for their help in

accomplishing its goals.

Distributed and Continuous Operation - An agent should be capable of distributed and

continuous operation (even without human intervention) in one machine as well as across

different machines for accomplishing its goals.

2.1.3 Agent Autonomy

As talked before in this section, autonomy is one of the most consensual agent attributes along

the literature. As Russel and Norvig put it, if an agent’s actions are based completely on built-

in knowledge (pre-programmed facts that the system designer included in its program), then one

would say that the agent lacks autonomy.

"An agent is autonomous to the extent that its behaviour is determined by its own experience"

[41]. However, to require an agent to be capable of full autonomy from the very beginning of

its deployment, is an unquestionably hard demand. So, just as evolution provides animals with

enough built-in reflexes so that they can survive long enough to learn for themselves, it would

be reasonable to provide an artificial intelligent agent with some initial knowledge as well as an

ability to learn [41].

Following on the same thought, Wooldridge and Jennings defend in their work that agent

autonomy also evolves with the increase in pro-activity behaviour of itself [56], since it will behave

differently according to its ever updating perception of the environment.

Hexmoore, Castelfranchi and Falcone, in their work entitled "A Prospectus on Agent Auton-

omy" [21], studied two types of interaction on the subject of agent autonomy. The first being the

human-machine interaction. In this type, autonomy concerns are predominantly for the agent to

acquire and to adapt to human preferences and guidance. The main reference point here is always
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the human and the definition of a fully autonomous agent is when it has access to the complete

set of choices and preferences of the distinguished entity that can judge or change the agent’s au-

tonomy - adjustable autonomy - so that, this way, the agent could behave as its authority would in

each individual situation.

The second type is agent-to-agent interactions, which that advantage of relative autonomy. In

these interactions an agent’s autonomy can be relative to another agent or environmental factor.

There is no user but any other agent may be the reference point [21]. This way, an agent can be

the entity of which choices and preferences would influence the actions and behaviours of other

agents that agreed to be controlled over them. In these scenarios, the autonomy of the agents that

agreed to be the subjected to control, is lower than the agent that is controlling. Control influences

autonomy, however, the inverse does not hold.

2.1.4 Agent Environment

An agent is normally, by definition, included on a surrounding environment, either a real physical

one or a simulated space. The environment of an agent has direct influence over most aspects of its

existence - actions, behaviours - and, as such, it impacts directly the development of its program

as the complexity of the action choice process can be affected by several characteristics of its

environment. The main recognized properties of an environment as those suggested by Russel and

Norvig in 1995 [41]:

Accessible vs Inaccessible - If an agent’s sensors give it access to the complete state of the

environment, then we say that the environment is accessible to that agent. An environment

is effectively accessible if the sensors detect all aspects that are relevant to the choice of

action. An accessible environment is convenient because the agent need not maintain any

internal state to keep track of the world.

Deterministic vs Non-deterministic - If the next state of the environment is completely

determined by the current state and the actions selected by the agents, then we say the

environment is deterministic.

Episodic vs Non-episodic - In an episodic environment, the agent’s experience is divided

into "episodes." Each episode consists of the agent perceiving and then acting. The quality

of its action depends just on the episode itself, because subsequent episodes do not depend

on what actions occur in previous episodes. Episodic environments are much simpler be-

cause the agent does not need to think ahead.

Static vs Dynamic - If the environment can change while an agent is deliberating, then we

say the environment is dynamic for that agent; otherwise it is static. Static environments are

easy to deal with because the agent need not keep looking at the world while it is deciding

on an action, nor need it worry about the passage of time. If the environment does not

change with the passage of time but the agent’s performance score does, then we say the

environment is semidynamic.
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Discrete vs Continuous - If there are a limited number of distinct, clearly defined percepts

and actions we say that the environment is discrete.

In general, the most complex environment is that which is comprised of the inaccessible,

non-episodic, dynamic and continuous properties. The non-deterministic property is normally

assumed on most real situations due to the fact that their complexity causes the possibility of it

being actually treated as deterministic to be very slim.

However, despite the type of environment and its combination of properties, the system that

would simulate its existence and organization would most definitely follow always the same

generic algorithm that would be responsible for delivering each agent its percepts, retrieving its

action and updating the state accordingly. As before, Russel and Norvig have illustrated this pro-

cedure for better understanding (Algorithm 2).

Algorithm 2: RUN-ENVIRONMENT (adapted from [41])
Input: state, the initial state of the environment

Input: UPDATE-FN, function to modify the environment

Input: agents, a set of agents

Input: termination, a predicate to test when we are done

1 repeat
2 foreach agent in agents do
3 PERCEPT[agent]← GET−PERCEPT(agent,state)

end
4 foreach agent in agents do
5 ACTION[agent]← PROGRAM[agent](PERCEPT[agent])

end
6 state← UPDATE−FN(actions,agents,state)

until termination(state);

2.1.5 Agent Architecture

A software architecture could be defined as a component configuration that is part of a system

and also the connection that coordinates the activities between the components [18]. Figure 2.2

illustrates how an agent’s base-architecture is constructed where it, at its simplest form, follows a

linear and unidirectional path from input (percepts) to output (action).

A good architecture should reflect the concepts of Simplicity, Features, Expansivity and

Portability as defined by Mowbray [49] and, although the basis for a strong architecture would

remain close to the aforementioned, for a specific agent with certain capabilities and distinct goals,

the architectures would take different shapes.
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Figure 2.2: Basic Architecture of an Autonomous Agent (adapted from [32])

In their work, Russel and Norvig [41] consider just four distinct types of agent programs -

Simple Reflex agents, Model-based Reflex agents, Goal-based agents, Utility-based agents -

where each has its own recognizable advantages for certain objectives.

2.1.5.1 Simple Reflex Agents

This types of programs are purely reactive, where the agent has an initial pre-populated set of

percept-to-action mappings that, given an environment perception, will execute the pre-established

mapped action. These type of agents are among the simplest to program (Algorithm 3) as they

work by finding a rule whose condition matches the current situation and then simply executing

it. However, they operate best in static and most-deterministic environments making them suitable

only for well specified settings.

Algorithm 3: SIMPLE-REFLEX-AGENT (adapted from [41])
Input: percept

Result: action

Data: rules, a set of condition-action rules

1 state← INTERPRET− INPUT(percept);

2 rule← RULE−MATCH(state,rules);

3 action← RULE−ACTION[rule];

4 return action;

2.1.5.2 Model-based Reflex Agents

A model-based reflex agents acts, in much similar way, the same as a simple-reflex agent. How-

ever, it is capable of taking a step further when the environment it is inserted into is subject to

evolution and time-based changes. This type of architecture considers some sort of internal state

has to be maintained - percept history and internal state memory - by the agent in order to be able

to choose the correct action to take. It is still a reactive agent but also takes into account how its

own actions affect the state of the world, as illustrated by algorithm 4.
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Algorithm 4: REFLEX-AGENT-WITH-STATE (adapted from [41])
Input: percept

Result: action

Data: rules, a set of condition-action rules

Data: state, a description of the current world state

1 state← UPDATE−STATE(state, percept);

2 rule← RULE−MATCH(state,rules);

3 action← RULE−ACTION[rule];

4 state← UPDATE−STATE(state,action);

5 return action;

2.1.5.3 Goal-based Agents

Being aware of the current state of the environment or of its immediate last state, may not be

sufficient to make a decision on the next action to take in order to be able to achieve a given goal.

The agent needs information about its goal and on how its actions can influence the world around

it (same as the mode-based reflex agent). The process can be of easy calculation or, depending on

the situation at hands, may require the agent to be able to consider long sequences of actions to

determine the best way to achieve its goal. As such, this type of agent has more complex decision-

taking processes since it has to evaluate both what would happen by taking a given action and if

the end result of that choice would eventually lead it towards it’s goal ("make it happy") 2.3.

Figure 2.3: A goal-based agent architecture where it has explicit goals (adapted from [41]).

2.1.5.4 Utility-based Agents

Following on the previous architecture, goal-based, one should note that simply taking into con-

sideration the end result (complete the goal) and acting accordingly is not adequate to achieve a

high-quality behaviour. By high-quality behaviour we can assume one of different metrics or a

combination of some, such as time, costs, safety, reliability or others. The previous approach only
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evaluates if the end result of taking the chosen set of actions leads the agent to its goal, a boolean

result, - yes or no - whereas an utility-based agent does also take into account some performance

measure that would be able to quantify exactly "how happy" the end result would make the agent

or, in a more scientifically accepted terminology, which final state would hold a higher utility for

the agent 2.4.

Utility is, therefore a function that maps a given state onto a real quantifiable number that

would represent would "happy" the agent would be in such a state. The agent could then choose

what set of actions it should take in order to achieve either the highest utility final state or a set

of intermediate states that would ultimately lead it to a more desirable end result, the decision

depends on the approach as well as the problem at hands in each individual situation.

Figure 2.4: An utility-based agent architecture where it maps a given state to an actionable mea-
surement (adapted from [41]).

On a more generic approach to agent architecture, there are three agreed upon base architec-

tural groups for building agents and multi-agent systems - Deliberative, Reactive and Hybrid -

that each developed agent architecture can be, in its essence, mapped to and that will be discussed

further according to their evolution throughout history.

2.1.5.5 Deliberative Architecture

The deliberative architecture, also known as logic-based or symbolic-based architecture, is one

of the earliest agent architectures that was the traditional approach to design all agents designed

within AI during the early stages of the domain.

Agents implementing this architecture use explicit reasoning in order to determine how to

act. Reasoning can be either theoretical (directed towards beliefs) or practical (directed towards

actions). In order to be able to do so, the architecture must be one that contains an explicitly

represented, symbolic model of the world and that is able to make decisions on what action to

take via symbolic reasoning. The syntactical manipulation of the symbolic representation is the

process of logical deduction or theorem proving. As an instance of theorem proving, the agent
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specifications outlines how the agent behaves, how the goals are generated and what action the

agent can take to satisfy these goals [36].

2.1.5.6 Reactive Architecture

As some researchers felt that there were many unsolved problem associated with symbolic AI,

they were led to develop different systems and ended up developing reactive architectures. Re-

active agent architectures consists on the direct mapping of a environment situation (sequence of

percepts) to an action. No symbolic world model and reasoning are used as the agent responses to

environment evolution are purely based on its direct perceptual input.

The best example of such an architecture is Brook’s subsumption architecture. The key idea

of subsumption architecture is that intelligent behaviour can be generated without explicit repre-

sentations and abstract reasoning with symbolic AI technique [7]. A subsumption architecture is a

hierarchy of task-accomplishing behaviours, where the lowest layer has the utmost priority, where

each of them has simple input-to-action mappings and complex behaviour can be achieve through

their combination (represented in 2.5).

Figure 2.5: Actions selection in a layered subsumption architecture (adapted from [36])

2.1.5.7 Hybrid Architecture

Often with almost everything in existence, neither extremity of an implementation spectrum achieves

the best performances and, as such, a balance between options is usually the optimal approach.

Has some may argue, the same applies to building agents which could probably perform best by

implementing subsystems of the previously discussed architectures.

The main problem with this approach is to determine how to implement the main system that

would control the interactions between the architecture’s layers. Two generic proposals are [55]:

Horizontal layering - In horizontally layered architectures (see part (a) of Figure 2.6), the

software layers are each directly connected to the sensory input and action output. In effect,

each layer itself acts like an agent, producing suggestions as to what action to perform.

Vertical layering - In vertically layered architectures (see parts (b) and (c) of Figure 2.6),

sensory input and action output are each dealt with by at most one layer.
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Figure 2.6: Information and control flows in three types of layered agent architecture (adapted
from [55])

2.1.5.8 Belief-Desire-Intention (BDI) Architecture

The BDI architecture is based on practical reasoning (introduced in 2.1.5.5) which is reasoning

directed towards actions, figuring out how to act. Being a reasoning-based architecture, it can be

classified as a subset of deliberative architectures.

Human practical reasoning involves two activities namely deliberation and means-end reason-

ing. Deliberation decides what state of affairs needs to be achieved while means-end reasoning

decides how to achieve these states of affairs [36]. The agent’s architecture consists of three logic

components internally connected (see figure 2.7):

Beliefs - Reflect the knowledge of the agent about the world, including itself and other

agents.

Desires - Represent the agent’s motivational state, its objectives and goals.

Intentions - The agent commitment towards its desires and beliefs, what it has chosen to

do. These are a key part of the practical reasoning implementation.

Figure 2.7: A BDI Agent Architecture (from [12])
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2.2 MAS - Multi-Agent Systems

Multi-agent systems are a sub-area of the Distributed Artificial Intelligence (DAI) domain where

computational systems are created based on the single entities - the agents - giving place to semi-

autonomous agent societies that interact through a common environment where they actuate on,

altering its internal state. These systems are normally distributed, therefore coordination became

a major area of interest for research. In the end, there are two major groups coordination method-

ologies: methodologies for competitive agent domains and for cooperative agent domains which

can be used in conjunction or disjunction within the same system in order to obtain the desired

results.

A MAS is constituted by multiple agents with different perceptions and action capabilities in

a specific environment. Each agent is capable to influence a distinct part of the world [30] so it

is crucial for the individuals to be able to communicate efficiently with one another to be able

to exchange information and proceed towards achieving their individual or community goals and

objectives and, as such, the architectural implementation of each of the existing agents can differ

in many ways from each other. An overview of a basic implementation of a multi-agent system

can be seen in Figure 2.8.

Figure 2.8: Basic Architecture of a Multi-agent system (from [55])
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2.2.1 Distributed Problem Solving vs Multi-agent systems

Both Distributed Problem Solving (DPS) and Multi-agent Systems (MAS) are systems composed

of multiple interacting agents, causing newcomers on to the field to often mistakenly refer to both

using the "multi-agent systems" nomenclature, as well as to many terms inside the field. However,

they are distinct branches of the parenting DAI field that have emerged at different points in time

and have then unknowingly started to overlap definition.

The main goal of both remains under the umbrella of their parent, DAI, which is essentially

focused on problem resolution through individual processing units. Bond and Gasser described

both DPS and MAS as the primary arenas within DAI due to the aforementioned falsely overlap

for some and describes their main differences [6] (see figure 2.9):

Distributed Problem Solving - The work of solving a particular problem can be divided

among a number of modules, or "nodes", that cooperate at the level of dividing and sharing

knowledge about the problem and the developing solution.

Multi-agent Systems - With MAS, the research is concerned with coordinating intelligent

behaviour among a collection of autonomous intelligent agents. The agents in this type of

system may be working toward a single global goal, or toward separate individual goals.

They, like DPS, must share knowledge about the problems and solutions, but must also

reason about the processes of coordination among themselves.

Figure 2.9: (a) Multi Agent System (b) Distributed Problem Solving (from [12])

2.2.2 Multi-agent Systems Motivation

The wide adoption of multi-agent systems in multiple application domains is due to the many

beneficial advantages its implementation offers, mainly in the dimension of performance like [48]:

Computational Efficiency - Concurrency and asynchronous capabilities allow for faster

and more efficient results.

Reliability - It allows for graceful recovery of component failures with the use of agents

with redundant capabilities and through appropriate coordination.
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Extensibility - The number and capabilities of agents working on a given problem can be

easily altered at any point in time.

Robustness - The system’s ability to tolerate uncertainty is higher because suitable infor-

mation is exchanged among agents.

Maintainability - The inherent modularity of a multi-agent system makes it easy to main-

tain.

Responsiveness - Because modularity can handle anomalies locally, they would not be

propagated to the whole system.

Flexibility - The existence of agents with different abilities can adaptively organize to solve

the current problem.

Reusability - Due to modularity, functionally specific agents can be reused in different agent

teams to solve different problems.

In the intrinsic nature of a distributed systems, even more reasons can be listed on why multi-

agent systems are highly in use for problem solving [12]:

1. The problem dimension is too high to be solved by an single agent;

2. Allow the interconnection and interoperability of multiple legacy systems;

3. Provide a natural solution for geographical and/or distributed problems;

4. Confer simplicity in the conceptual project;

5. Allow cooperative man-machine interface in which both act as agents in the system;

6. Supply problem resolutions in which the experts and the knowledge (to solve the problem)

are distributed;

2.2.3 Agent Communication

As discussed in several occasions along this chapter, communication between computational enti-

ties is an area of great focus within the DAI field and it has always been considered one of the most

important problems in computer science. However, in the area of Multi-Agent Systems, commu-

nication is treated at a much higher level than in other areas of computer science. Communication

has two main purposes: sharing knowledge, information, beliefs or plans with other agents; and

coordination of activities between agents [40].
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2.2.3.1 Software Architectures for Communication

Two very distinct approaches have been implemented through the years: direct communication

and assisted coordination.

Direct Communication - In direct communication architectures, agent handle their own

coordination. There are two main approaches for implementation: contract-net - where

agents in need of service distribute requests for proposals to other agents who then bid on

the requests for then the originator to decide on who to award the contract to - and specifi-

cation sharing - where agents supply other agents with information about their capabilities

and needs, and these agents can then use this information to coordinate their activities. A

disadvantage of direct communication is its cost when the number of cooperating agents in-

creases. With a large number of programs the cost of broadcasting the bids or specifications

and consequential processing of those messages is prohibitive. Another disadvantage is im-

plementation complexity. In the direct communication schemes, each agent is responsible

for negotiating with other agents and must contain all of the code necessary to support this

negotiation [19].

Assisted Coordination - A popular alternative to direct communication is to organize

agents into what is often called a federated system (see fig. 2.10). In this approach, agents

do not communicate directly but they communicate only with system programs called fa-

cilitators (or mediators). In this system, agents use agent communication language to doc-

ument their needs and abilities for their local facilitators. In addition to this they also send

application-level information and request to their facilitators and accept application-level in-

formation and requests in return. Facilitators then use the documentation provided by these

agents to transform these application-level messages and route them to the appropriate place

[19].

Figure 2.10: A federated system architecture (from [19])
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2.2.3.2 Dimensions of Meaning

Agents communicate in order to understand and be understood, so it is important to consider the

different dimensions of meaning that are associated with communication, them being [45]:

Syntax - How the communication’s symbols are structured, it contains the rule set related

to word combinations.

Semantics - What the symbols denote, what is the meaning of the given words and state-

ments.

Pragmatics - How the symbols are interpreted.

In the end, the meaning of the information is the combination of both the semantics and prag-

matics aspects and it follows some common characteristics [45].

Descriptive vs Prescriptive - Some messages describe phenomena, while others prescribe

behavior. Descriptions are important for human comprehension, but are difficult for agents

to mimic so most agent communication languages are designed for the exchange of infor-

mation about activities and behavior.

Personal vs Conventional Meaning - An agent might have its own meaning for a message,

but this might differ from the meaning conventionally accepted by the other agents. In MAS,

the system should opt for conventional meanings, in particular to deal with the entrance of

new agents.

Subjective vs Objective Meaning - Similar to conventional meaning, where meaning is

determined external to an agent, a message often has an explicit effect on the environment,

which can be perceived objectively. The effect might be different than that understood

internally, subjectively.

Speaker’s vs Society’s Perspective - Independent of the conventional or objective meaning

of a message, the message can be expressed according to the viewpoint of the speaker or

hearer or other observers.

Semantics vs Pragmatics - The pragmatics of a communication are concerned with how the

communicators use the communication. This includes considerations of the mental states of

the communicators and the environment in which they exist, considerations that are external

to the syntax and semantics of the communication.

Contextuality - Messages cannot be understood in isolation, but must be interpreted in

terms of the mental states of the agents, the present state of the environment, and the envi-

ronment’s history. Interpretations are directly affected by previous messages and actions of

the agents.
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Coverage - Smaller languages are more manageable, but they must be large enough so that

an agent can convey the meanings it intends.

Identity - When a communication occurs among agents, its meaning is dependent on the

identities and roles of the agents involved, and on how the involved agents are specified.

A message might be sent to a particular agent, or to just any agent satisfying a specified

criterion.

Cardinality - A message sent privately to one agent would be understood differently than

the same message broadcast publicly.

2.2.3.3 Message Types

Agents of different capabilities should be able to communicate therefore, according to Huhns and

Stephens, communication must be defined at several levels, with communication at the lowest

level used for communication with the least capable agent. In order to be of interest to each other,

the agents must be able to participate in a dialogue. Their role in this dialogue may be either active,

passive, or both, allowing them to function as a master, slave, or peer, respectively [26].

In its root form, there are two types of messages, assertions and queries, and according to the

capabilities of each agent there can be considered to exist four distinct groups where each would

fit (see table 2.2).

Basic Agent Passive Agent Active Agent Peer Agent
Receives assertions X X X X

Receives queries X X
Sends assertions X X X

Sends queries X X
Table 2.2: Agent Capabilities (adapted from [26])

2.2.3.4 Protocols and Communication Levels

Usually the protocol’s definition involves various levels [26]. The inferior level is related to the in-

terconnection agent level while the intermediate level defines the transmitted information (syntax).

Finally, the superior level defines the information specification (semantic). Generally, a protocol

follows a specific data structure constituted by a sender, one or more receivers, a used language

with its respective coding and decoding functions and also a set of actions that a receiver must

execute [26].
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2.2.3.5 Communication Languages

According to T. Finn et al., a suitable agent communication language should follow seven require-

ments where its overall value could be measured to the extent that it meets those requirements.

They are as follows [17]:

Form - A good agent communication language should be declarative, syntactically simple,

and readable by people. Finally, its syntax should be extensible.

Content - The language should commit to a well defined set of communicative acts (prim-

itives). The choice of the core set of primitives also relates to the decision of whether to

commit to a specific content language since committing allows for a more restricted set

of communicative acts because it is then possible to carry more information at the content

language level.

Semantics - Although the semantic description of communication languages and their prim-

itives is often limited to natural language descriptions, a more formal description is neces-

sary if the communication language is intended for interaction among a diverse range of

applications.

Implementation - The implementation should be efficient, both in speed and in bandwidth

utilization. It should provide a good fit with existing software technology and the interface

should be easy to use.

Networking - An agent communication language should fit well with modern networking

technology. The language should support all of the basic connections - point-to-point, mul-

ticast and broadcast - in both the form of synchronous and asynchronous connections.

Environment - The environment in which intelligent agents will be required to work will

be highly distributed, heterogeneous, and extremely dynamic. Therefore, a communication

language must provide tools for coping with heterogeneity and dynamism. It must support

interoperability with other languages and protocols.

Reliability - A communication language must support reliable and secure communication

among agents.

In the late 80’s the Knowledge Sharing Effort (KSE) was founded in the USA financed by

DARPA (Defence Advanced Research Projects Agency) which had the goal to develop protocols

for the exchange and information representation between autonomous information systems [12].

The KSE developed two products:

KQML (Knowledge and Query Manipulation Language) - KQML was conceived as

both a message format and a message-handling protocol to support run-time knowledge

sharing among agents. It can be thought of as consisting of three layers: the content layer,
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the message layer, and the communication layer. The content layer bears the actual content

of the message, in the programs own representation language. The message layer forms the

core of the KQML language, and determines the kinds of interactions one can have with a

KQML-speaking agent and also has the ability to identify the protocol to be used to deliver

the message and to supply a speech act or performative which the sender attaches to the

content - assertion, query, command, etc [17].

KIF (Knowledge Interchange Format) - KIF is the solution suggested by the KSE for

the syntactic aspects of representations for knowledge sharing. The language is intended

as a powerful vehicle to express knowledge and meta knowledge. It is a prefix version

of first order predicate calculus with extensions to support non-monotonic reasoning and

definitions. The language description includes both a specification for its syntax and one for

its semantics [17].

In addition to KQML and KIF, there are several languages defined in the context of commu-

nication in Multi-Agent Systems. Among the most used, the FIPA ACL (Agent Communication

Language) stands out. In 1995, FIPA - Foundation for Intelligent Physical Agents started devel-

oping standards for Multi-Agent Systems. The resulting ACL is similar to KQML, being primarily

an external communication language and does not require the use of any specific language for the

content.

2.2.3.6 The ’Social Agency’ Communication Model

In conventional multi-agent systems based on mental attitudes like belief, intention, and commit-

ment, agent communication suffers from the lack of a concise and universally accepted formal

semantics. As a result, agent communication is confined in the realm of restricted environments

and heterogeneous agents do not interact [35]. A proposed solution for this drawback was pre-

sented by M. Singh provides a foundation for the design of multi-agent systems where he presents

that the success of such a system relies on the underlying ACL and if whether or not it supports

the interaction among agents in a social setting. The elements said to contribute to the meaning of

communication between agents can be depicted on figure 2.11.

Perspective - It can be private, meaning that it stays within the individual agent perspective

(normally senders or receivers), or public (agent societies) and more according to MAS.

The message sent contains knowledge and attitudes about senders only, or some shared

knowledge of the multi-agent system.

Type of Meaning - Meaning is either individual or conventional, where a more personal

perspective is related to the interpretation of the communication act between the sender and

the receiver and a conventional is based on usage conventions.

Basis - Semantics are related to the language it self and its internal meaning as pragmatics

include external considerations to the proper language as well as to the environment.
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Figure 2.11: The design space of agent communication languages. The region in the left represents
existing ACLs, which follows a mental agency model. The region in the upper right represents the
desired goals, which dictate a social agency model (adapted from [35]).

Context - To understand a language it is also necessary to analyse the context it is inserted

on. Therefore it should be flexible to allow a more meaningful agent communication be-

tween outer entities.

Coverage - When information is exchanged, the meaning of the message is characterized

by communicative acts. The coverage of these acts should be wide in order to improve

interactions within a multi-agent system.

2.2.3.7 Multi-agent Systems Coordination

In an environment populated by many distinct, heterogeneous and individual agents, their coordi-

nation is a central concern. The lack of or a poor coordination between the parts will eventually

lead to a misuse of each individual’s efforts and resources in the quest to achieve the individual or

global goal. Essentially, co-ordination is a property of an intelligent agency that ensures that indi-

vidual agents act in a coherent manner [14]. Among several reasons that depict the importance of

coordination in multi-agent systems, some are the prevention of anarchy and chaos of the system,

meeting global constraints, sharing of results and efficiency, for example. Note that coordination

does not imply cooperation: an effective competitor will coordinate decisions to maximize its

advantage against an opponent.
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Regarding the implementation of such coordinating systems, Nwana, Lee and Jennings classi-

fied coordination techniques in four broad categories:

Organizational Structuring - This is the simplest co-ordination scenario which exploits

the a priori organisational structure. This is because the organization defines implicitly the

agent’s responsibilities, capabilities, connectivity and control flow. It provides a framework

for activity and interaction through the definition of roles, communication paths and author-

ity relationships [43].

Contracting - In this approach, which assumes a decentralized bidding market structure,

agents can assume two roles: a manager - who breaks a problem into sub-problems and

searches for contractors to do them, as well as to monitor the problem’s overall solution - or

a contractor [43].

Multi-agent planning - In order to avoid inconsistent or conflicting actions and interactions,

agents build a multi-agent plan that details all the future actions and interactions required

to achieve their goals, and interleave execution with more planning and re-planning [43]. It

can either be implemented in a decentralized manner or distributed.

Negotiation - Is an underlying part of almost all coordination techniques and can be defined

as a communication process between a group in order to reach an agreement on some matter.

2.3 Conclusions

The DAI field is in constant evolution and, with it, so is the robotics fields. A key component in all

of this are the autonomous agents that have to either work as a team (cooperative) or against each

other (competitive) in a shared dynamic environment of which they do not know the entirety of its

state in order to reach any individual or common goal. To achieve this they first must be able to

communicate, in a structured way, and to act accordingly to achieve their goals. A lot of literature,

researchers and entities are dedicated to this subject and all of its intricacies so we are to expect

further progressions within the field in the upcoming years.

The RoboCup initiative is a great way to improve both these fields - DAI and robotics - and

more specifically the research in agent coordination and strategy. In the next chapter the topic of

the RoboCup initiative as well as a domain analysis of the same will be exposed in order to better

understand the main focus point of this dissertation’s development.

This chapter did not intend to perform an in-depth literature review on the topics of au-

tonomous agents and multi-agent systems, but to present some key concepts of the two areas

for a better understanding of the main characteristics of the systems that will be further discussed

throughout this work.

In the next chapter, some major concepts of Graphical Computation are presented as well as

some of its history and modern tools.
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Graphical Computation

The term “computer graphics” refers to anything involved in the creation or manipulation of im-

ages on computer, including animated images. It is a very broad field, and one in which changes

and advances seem to come at a dizzying pace [13]. As such, this chapter aims to introduce the

most relevant terminology and concepts on the subject that will be used throughout this disserta-

tion’s development with a more substantial emphasis on three-dimensional environments.

3.1 Brief History

A generalized consensus tell us that the first computer to have graphical visualization resources

was the Whirlwind, developed by the MIT (Massachusetts Institute of Technology) in the early

50s. Its main capabilities were of visualizing numeric data on screen and not the way we today

have of computer graphics [33].

Ivan Sutherland, an American scientist and internet pioneer considered to be "the father of

computer graphics", was responsible for a huge leap in the computer graphics field with his cre-

ation of Sketchpad in 1963, during his doctorate’s program. Sketchpad’s capabilities were the first

to allow object oriented graphics in a sense that object could be created independently of each

other and also edited in the same manner, ie. moving a specific vertex of a polygon, both adjacent

sides will be moved . All of this was controlled with a "light pen" and a set of push buttons that

had several distinct functions such as erasing and moving objects. This was grounding breaking

for its time. Ivan can be seen using Sketchpad in 1962 in figure 3.1. His work, namely his concepts

of data structuring and interactive graphical computation, came to make General Motors invest in

the development of what became the first Computer Aided Design (CAD) program.

Over the years after this major breakthrough many developments were also made in the field

but the main progress was due to the arrival and consequent drop in prices of workstations in the

80s and, in the more recent years, as a result of the massive increase in computational power of

processing units and the creation of dedicated devices.

27
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Figure 3.1: Ivan Sutherland using Sketchpad in 1962 (from [24])

3.2 Pixel - graphics base unit

An image that is represented on a computer screen is made up of pixels, small and squared light

emitting parts that nowadays exist in the order of 30 million for the most advanced 8K displays

(7680 pixels wide by 4320 pixels tall). Each one is capable of emitting a given color and that

number as risen from 2 colors (monochrome) - where each pixel was either on, or off - to over 16

million - where each pixel is defined by 24-bit color. Regardless of the amount of pixels on any

given monitor or the color capabilities that each individual one possesses, the color values for all

the pixels on the screen are stored in a large block of memory known as a frame buffer. Changing

the image on the screen requires changing color values that are stored in the frame buffer. The

screen is redrawn many times per second, so that almost immediately after the color values are

changed in the frame buffer, the colors of the pixels on the screen will be changed to match, and

the displayed image will change. A computer screen used in this way is the basic model of raster
graphics [13].

For some kind of situations when rendering images on a screen, the best approach is not always

based on raster graphics as it flattens out the information not retaining much detail about the data

and often leading to large amounts processing power to manage and render every pixel on the

screen individually to its intended color and position. So another way to represent images is by

specifying the basic shapes that it contains, objects like lines, circles, rectangles and triangles.

This is the idea that defines vector graphics. A vector graphics display would store a display

list of lines that should appear on the screen. Since a point on the screen would glow only very

briefly after being illuminated by the electron beam, the graphics display would go through the

display list over and over, continually redrawing all the lines on the list. To change the image,

it would only be necessary to change the contents of the display list [13]. This approach works

best for images specified by a small number of geometric shapes, as it can keep the amount of

information needed to render it low by only storing information about the position of the pixels

that make up the shape. On the other hand, to render the same image through raster graphics each
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pixel information would have to be stored, generating large amount of processing efforts.

Raster Graphics Vector Graphics

Pixel-based Shapes based on mathematical
calculations

Raster programs best for editing
photos and creating continuous
tone images with soft color blends

Vector programs best for creating
logos, drawings and illustrations,
technical drawings. For images
that will be applied to physical
products

Do not scale up optimally - Image
must be created/scanned at the de-
sired usage size or larger

Can be scaled to any size without
losing quality

Large dimensions and detailed im-
ages equal large file size

A large dimension vector graphic
maintains a small file size

Depending on the complexity of
the image, conversion to vector
may be time consuming

Can be easily converted to raster

Common formats: jpg, gif, png,
tif, bmp, psd, eps and pdfs origi-
nating from raster programs

Common formats: ai, cdr, svg,
and eps and pdfs originating from
vector programs

Table 3.1: Raster vs Vector Graphics (adapted from [51])

Since this dissertation was exclusively developed within a 3D environment, which is the

RoboViz monitor, this work does not explore in depth the 2D aspects of computer graphics and

goes more in-depth in to the three-dimensional reality and its implementation through the OpenGL

API available to the Java language.

Although a 3D graphical environment shares most of the basic implementations and rules of a

2D one, for a more extensive work on the latter please refer to [13] and [11].

3.3 OpenGL - 3D Graphics API

The OpenGL is an open-source 3D graphics programming library consisting of a series of callable

methods (application programming interface or API) that can be invoked freely to obtain the

desired results. It was introduced in 1992 and has, since then, undergone several versions being

now at version 4.7 and in constant development by application developers that continue to innovate

and improve the framework. The goal of this section is to introduce basic 3D graphics concepts

such as defining and transforming objects and projecting 3D scenes into 2D images.
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3.3.1 Primitives

In 3D graphics the most common approaches of rendering rely more on vector graphics than

raster graphics. A scene is built by creating a list of geometric objects in a three-dimensional

space through specification of their vertices coordinates. A "world" object is defined by a set of

one or more basic geometric shapes such as points, lines and triangles that together form more

complex shapes. This technique is referred to as geometric modeling.

Those basic shapes that model an object in OpenGL are referred to as primitives and are

defined by their vertices, which is nothing more than a point in 3D space defined by its x, y

and z coordinates. To draw the most basic shape in 3D modeling, a triangle, we would do as

demonstrated in 3.1:

1 void triangle() {

2 glBegin(GL_TRIANGLES);

3 glVertex3f(0.0, 1.0, 0.0);

4 glVertex3f(-1.0, -1.0, 0.0);

5 glVertex3f(1.0, -1.0, 0.0);

6 glEnd();

7 }

Listing 3.1: Drawing a triangle in OpenGL

Each vertex of a primitive is specified by calling a method of the glVertex family. In this case

we used glVertex3f to specify a point in 3D space with float coordinates. In this example, since

all three vertices have the z paramenter set to zero, glVertex2f could be called instead to obtain the

same results.

All vertices must be specified within the glBegin and glEnd methods regardless of the primi-

tive and the number of desired vertices and/or shapes within a single call. The GL_TRIANGLES

parameter passed onto the glBegin method defines the type of primitives that are being defined by

the vertices introduced next. For example, to draw more triangles one would only have to continue

to define sets of three vertices one after the other and the software would know how to link those

together in order.

Among other primitives, the simplest is GL_POINTS, which simply render a point at each

defined vertex. Its size can be specified by first setting up the renderer to know its size in pix-

els by calling the glPointSize method with a parameter size in pixels. Functions like these are

referred to as state-changing functions which alter a state that includes all the settings that affect

rendering. Other state-changing examples are the glEnable and glDisable that called with specific

parameters turn on or off desired features of the renderer. Other primitives include GL_LINES,

GL_QUADS and GL_POLYGON and even more that are demonstrated in figures 3.2, 3.3 and 3.4

bellow gathered from [13].

3.3.2 3D Coordinates

A coordinate system is a way of assigning numbers to points. In two dimensions, you need a

pair of numbers to specify a point [13]. In three dimensions, as the name implies, you need three
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Figure 3.2: Example of line primitives behaviour in OpenGL (from [13])

Figure 3.3: Example of triangle primitives behaviour in OpenGL (from [13])

Figure 3.4: Example of quads primitives behaviour in OpenGL (from [13])

numbers to specify a point. Each of those numbers defines the position of the point along each of

the axes x, y or z, normally. These numbers, besides defining points and therefore shapes, make

the entire universe of the 3D modeling environment easy to be mathematically manipulated and

transformed.

The orientation, direction and name of the axes is arbitrary and, although there is usually some

consensus within the same industry, an example of disparity is depicted in figure 3.5 where two

different pieces of software organize their coordinate system in distinct manner. When this is the

case and resources are shared among the two applications, conversions may need to be applied

and the process of axis reorganization is through the use of transforms, the next topic that will be

discussed.

3.3.3 3D Transforms

Besides aiding in the transformation of one coordinate system to another of different configura-

tion, geometric transformations can also be used to place graphics objects into a coordinate system
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Figure 3.5: Differences in Axis orientations in both Blender and OpenGL (from [39])

[13]. The most basic application of this principle and that is present in each and every graphical

environment is the transformation of world coordinates to screen coordinates. This process is at

its core a coordinate transform that takes each object’s coordinates within the scene and maps them

to pixel coordinates in the viewer’s screen viewport. However, within the modeling environment

itself, when we want to place the object into a scene, we need to transform the object coordinates

that we used to define the object into the world coordinate system that we are using for the scene.

The transformation that we need to achieve the desired results is called a modeling transforma-
tion [13] and in 3D environments is achieve through matrices multiplications between 3D points

(x, y, z) and each respective transformation matrix, as we will see in the examples bellow.

3.3.3.1 Translation

The translation transform is the simplest and, as it name implies, it translates the scene object to

a new set of coordinates along the axes, each defined by a number that indicates the amount of

motion in the direction of each of the x, y and z axes that is then multiplied by the point itself to

get the final coordinates:

P′ = T.P

where P′ represents the resulting point, T is the transformation matrix and P is the original

point itself. 
P′x
P′y
P′z
1

=


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 .


Px

Py

Pz

1


In OpenGL, a translation would be applied by the command family glTranslate that allows the

specification of its parameters’ type as before through appending the type initial letter to the call,

ie. to translates a scene object the float amounts of (tx, ty, tz) along each axis:

glTranslate f (tx, ty, tz);
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3.3.3.2 Rotation

Regarding the rotation of object in a 3D environment, its application is not as simple as in a two-

dimensional world. In three dimensions there are three axis upon which an object can be rotate in

and, as such, it is necessary to specify the desired rotation axis or axes and each is applied by their

unique matrix multiplication. Therefore, the 3D point matrix representation is given by

P′ = Ra(θ).P

where Ra is the defining matrix of rotation for each axis x, y and z which are described bellow.

Rx =


1 0 0 0

0 cos(θ) −sin(θ) 0

0 sin(θ) cos(θ) 0

0 0 0 1

Ry =


cos(θ) 0 sin(θ) 0

0 1 0 0

−sin(θ) 0 cos(θ) 0

0 0 0 1

Rz =


cos(θ) −sin(θ) 0 0

sin(θ) cos(θ) 0 0

0 0 1 0

0 0 0 1


In OpenGL, the rotation logic for each independent axis is abstracted and to apply it to a

given object we call a member of the glRotate family that, as previously discussed allows for

the specification of its parameters’ type. These methods however have an extra parameter that

specifies, in degrees the angle, θ , of rotation. The remaining three parameters specify the axis of

rotation, which is the line from (0,0,0) to (ax,ay,az).

glRotate f (30,1.5,2,−3);

3.3.3.3 Scaling

The process of scaling an object simplifies again the multiplications. The goal of scaling an object

is to expand or compress its dimensions across any given axis. The final points are obtain by pure

multiplication:

P′ = S.P

However, there are two forms of scaling objects in a scene and each produces distinct results.

Scaling about origin changes the size of the object and re-positions it relative to the coordinate

system’s origin, therefore, the final center position of the object will not be the same after a scaling

about origin is applied. 
P′x
P′y
P′z
1

=


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 .


Px

Py

Pz

1





34 Graphical Computation

Scaling about a fixed point is a more complex process that consists of three steps:

1. Translate the object so that the fixed point coincides with the origin.

2. Scale the object with respect to the origin.

3. Use the inverse translation of the first step to return the object to its original position.

This procedure can be described into the following operation where T is the arbitrary fixed

point to translate about and S is the scaling amounts of each axis

T (x f ,y f ,z f ).S(sx,sy,sz).T (−x f ,−y f ,−z f )

then the resulting corresponding composite transformation matrix would be

S =


sx 0 0 (1− s)x f

0 sy 0 (1− s)y f

0 0 sz (1− s)z f

0 0 0 1


In OpenGL, the scaling transformations follow the same logic as before and the functions’

family is glScale. They each take three parameters that specify the scaling amount on each indi-

vidual axis and, by definition of matrix multiplication, to leave any axis unchanged, default the

value to 1.

glScale f (2,1,0.5);

The API does not expose a method for scaling over a fixed point so, in order to achieve those

type of results, the previously described three-step process has to be applied with use of the afore-

mentioned translation transformations.

3.3.4 Hierarchical Modeling

Modeling transformations are often used in hierarchical modeling, which allows complex objects

to be built up out of simpler objects. In hierarchical modeling, an object can be defined in its

own natural coordinate system, usually using (0,0,0) as a reference point [13]. After modeling the

desired object, it can be translated, scaled and rotated into any pose in order to stand by its own or

to be part of a more complex object. For this modular technique to be implemented it is necessary a

form of limiting the effects of any given modeling transformation and the most common approach

is by implementing a stack of transform matrices. Before beginning to model an object, we can

push a copy of the current transform matrix onto the stack. When finished, restore the previous

transform by popping it from the stack. This procedure can be repeated indefinitely to obtain the

most complex scenes although, at some point, the transform’s management can get complicated.
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In OpenGL, stack management is easily achieved through two basic method calls that, respec-

tively, push or pop the current transform matrix, which is a composition of all the transformations

applied up to that point, onto or out of the transform stack.

glPushMatrix();

glPopMatrix();

A great and simple example of hierarchical modeling and how it can be used to achieve more

complex objects through the transformation of existing, simpler objects, can be found in David J.

Eck’s book "Introduction to Computer Graphics" which was implemented in OpenGL version 1.1

but that still applies to more recent versions. First, we can define a function, see 3.2, that draws

a simple shape that can be reused. In this case, a square of a given color defined by its r, g and b

parameters.

1 void square( float r, float g, float b ) {

2 glColor3f(r,g,b);

3 glBegin(GL_TRIANGLE_FAN);

4 glVertex3f(-0.5, -0.5, 0.5);

5 glVertex3f(0.5, -0.5, 0.5);

6 glVertex3f(0.5, 0.5, 0.5);

7 glVertex3f(-0.5, 0.5, 0.5);

8 glEnd();

9 }

Listing 3.2: Drawing a square in OpenGL

To draw a cube, a total of six faces would be needed, therefore, the square() function would

be called six times, one for each of the faces. But since the function defines always the same

shape built by the same vertices coordinates, we need to alter the current transform so that we can

render the face at a different position. In order to not modify the previous transforms applied to

the current object or scene, we must manipulate the transform stack, as previously explained (see

3.3).

1 glPushMatrix();

2 glRotatef(90, 0, 1, 0);

3 square(0, 1, 0);

4 glPopMatrix();

Listing 3.3: Modifying the transform stack

The end result, after calling square(1,0,0), applying the stack modifications and finally re-

calling square(0,1,0) would render a two-faced cube centered at the origin of the coordinate

system (see figure 3.6).

In order to render the rest of the faces we would only need to apply the remaining stack

transformations necessary to modify the current transform matrix and call the square() function

at each point. In his book, Eck defines the function to do that procedure (see 3.4) and that takes in

a parameter size that takes advantage of the scaling transforms to define the final cube’s size.
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Figure 3.6: Example after rendering two faces (from [13])

1 void cube(float size) { // draws a cube with side length = size

2 glPushMatrix(); // Save a copy of the current matrix.

3 glScalef(size, size, size); // scale unit cube to desired size

4 square(1, 0, 0); // red front face

5 glPushMatrix();

6 glRotatef(90, 0, 1, 0);

7 square(0, 1, 0); // green right face

8 glPopMatrix(); glPushMatrix();

9 glRotatef(-90, 1, 0, 0);

10 square(0, 0, 1); // blue top face

11 glPopMatrix(); glPushMatrix();

12 glRotatef(180, 0, 1, 0);

13 square(0, 1, 1); // cyan back face

14 glPopMatrix(); glPushMatrix();

15 glRotatef(-90, 0, 1, 0);

16 square(1, 0, 1); // magenta left face

17 glPopMatrix(); glPushMatrix();

18 glRotatef(90, 1, 0, 0);

19 square(1, 1, 0); // yellow bottom face

20 glPopMatrix();

21 glPopMatrix(); // Restore matrix to its state before cube() was called.

22 }

Listing 3.4: Rendering a full cube in OpenGL

3.3.5 Projection and Viewing

Between the local transformations within a given object - modeling transform - to the final de-

vice coordinates where the rendered image is displayed - viewport transform - several other

transforms and calculations take place in order to normalize the myriad of transformations and

obtain a final render-ready result based on the position of the "viewer" - the camera. This is a

complex process (see figure 3.7) that is outside of the scope of work of this dissertation, please

refer to [44] and [13] for a more in-depth explanation.
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Figure 3.7: Viewing transformation process (from [13])

3.3.5.1 Virtual Camera

Projection and viewing are often discussed using the analogy of a camera. A real camera is used

to take a picture of a 3D world. For 3D graphics, it useful to imagine using a virtual camera to

do the same thing [13]. The virtual camera is an important concept in computer graphics, as it

represents the point of view on which objects belonging to the virtual world are projected on the

screen. By definition, the crucial part of any virtual environment, as it is vivid, depends largely

on the camera’s view, as it is one of the primary means by which information from the virtual

environment is transferred to the user via the screen [33].

In general, seven degrees of freedom by which a virtual camera is controlled are considered: 3

degrees to move in the Cartesian graphic plane (x, y, z), 3 degrees to rotate (pan, tilt and roll) and

1 degree to change the field of view (zoom).

Figure 3.8: Possible Virtual Camera Movements (from [33])

For positioning the camera in the virtual environment, it is always necessary to use the follow-

ing camera parameters [52]:

• Camera Positioning P(x,y,z): Point at which the virtual camera is placed in the three-

dimensional coordinate system.

• Direction Vector At(∂x,∂y,∂ z).

• Field of View: The horizontal and vertical field of the viewing angles, called the "lens an-

gle". In computer graphics, this angle is determined through two parameters, the horizontal

field of viewing angle (H) and the vertical field of viewing angle (θV).
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• Up Vector of orientation Up(∂x,∂y,∂ z): Vector that controls the angle of the camera’s tilt

or roll rotation over its direction vector.

Figure 3.9: Virtual 3D Camera Parameters (from [33])

3.3.6 3D Visualization Pipeline

The 3D visualization pipeline is the basic process of generating a two-dimensional projection

from a three-dimensional scene taking into account its lighting and viewer’s perspective so that it

can then be rendered to a screen. The process takes as inputs a set of polygon-based objects of a

three-dimensional scene, its light sources and visualization parameters and outputs the information

regarding the final visible pixels on a display device.

Its is, again, a complex process but that can be summarized in the following ordered steps that

describe the PBR (Polygon-Based-Rendering) procedure [54]:

Transformation to Global World Coordinates

– To compose a scene in 3D space consisting of different objects, all created 3D objects

must be transformed into the same coordinate system.

Transformation to 3D View Coordinate Systems

– A viewpoint in 3D space is cited as the "camera" location.

– The geometry from the 3D space is transformed into the camera view coordinate sys-

tem. The projection from 3D to 2D space if performed at this stage.

– The depth information of any object can be obtained from the z coordinate value.

– The effect of virtual "lights" that creates illumination properties in the 3D scene is

computed.

– The removal of polygonal surfaces not shown in the view due to occlusion is known

as "culling" and is performed at this stage as well.

Transformation to 3D Clip Coordinate System

– The geometry data in this stage are prepared for a post-processing step known as "clip-

ping".
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Transformation to Normalized Device Coordinates

– The geometry is normalized for a display in a 2D window on a physical display device.

– Further clipping is done to remove geometry outside of the user-defined window bound-

aries.

Transformation to Display Window Coordinates

– All vertices are converted to units of the display (pixels) window.

Transformation to 2D Screen Coordinate System

– The conversion to screen pixels (rasterization) is performed.

– The output of this stage is the final color of every pixel placed in the memory of the

display hardware (the frame buffer).

3.4 Conclusions

Computer graphics, whether two or three dimensional are a complex and extensive process that

requires heavy computational power to be able to crunch the numbers of the many underlying

necessary mathematical calculations that compose a final 2D rendered image or a real-time three

dimensional interactive environment. Much so in the current times of 4K and 8K displays with

millions of pixels and the never-ending requests for better and more realistic simulations. Fortu-

nately, modern tools provide a great level of abstraction from these procedures enabling applica-

tion developers to break through the boundaries of imagination and realism at a faster pace than

ever. Like many others, this is a major field that I look forward to seeing the new advancements

made into the future.
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Chapter 4

Cinematography: The Art of Visual
Storytelling

Cinematography is the art of making films. The filmmaker’s central problem is how to capture for

the shoot a set of events that take place in the world simultaneously so that the viewer can perceive

them with all clarity, giving the intended continuity [33]. This chapter is short and intended only to

give a baseline understanding of the concepts of camera manipulation and storytelling. For further

references, please refer to [25] and, for a more game-directed approach, [8].

4.1 The Principles of Cinematography

The mains principles of cinematography were not set at a single moment in time, they were created,

applied and developed through time and with the progresses of the industry. They first ones have,

however, for the most part, remained intact and a source of truth for modern techniques. The main

aspects to take into consideration when shooting a set of actions through a camera can be ruled by

the following basic concepts [27]:

Camera Angles - Choice of perspective and camera angle in shooting narrative film can

be motivated by many reasons. For example it can be following a subject, revealing or

withholding information, providing graphic variety or setting a specific mood.

Framings - Open and closed framings determine if the viewer is included or excluded from

the picture span. Open framing is when the object and situation within the picture space

is not set and positioned for best clarity before filming. Open framings can often be seen

in documentaries for example. Closed framing is when subjects are positioned with care

for best graphical balance. Open framings appears more realistic for the viewer as closed

framings seem more staged and controlled. item

Point of View - In different framings, the viewer’s different levels of involvement are de-

termined. Point of view on the other hand determines with whom the viewer’ involves and

41
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identifies with. The importance of point of view is that it decides the way a viewer inter-

prets a scene. Different narrations of point of view are used in film, but the most common

are first-person point of view, third-person restricted point of view, and omniscient point of

view.

Camera Movement - When a moving shot replaces a series of edited shots, it creates a

rhythmic variation and realistic simulation for the viewer. There are three main camera

movements: panning, craning and tracking. Panning is when a camera follows the object,

without ever moving out of position. Craning is when the camera is put on a crane and

therefore can perform a variety of different framings and difficult variations in one shot,

such as high shot, low shot, open and closed framings. Tracking is a shot following a

subject, with a moving camera.

The relationship between game cinematography and its traditional counterpart is extremely

tight as, in both cases, the aim of cinematography is to control the viewer’s perspective and affect

his or her perception of the events represented [8]. However, as Burelli explains in his work, game

cinematography differs from the traditional aspects of film-making in a sense that a big part of

game actions are not pre-scripted events that are expected to occur in a controlled environment

with all known variables, so camera control gains another dimension, that is reaction.

4.2 The Camera

The main dilemma of a director is to decide where to place the cameras and lights so that the

captured scenes are able to describe an uniform and coherent set of events. Undoubtedly, in

virtual environments camera placement and parameters settings are much easier to achieve due

to clear advantages to not having physical restrictions like space and uncontrollable environment

variables.

4.2.1 Virtual Camera vs Real Camera

The virtual camera is an important concept in computer graphics, as it represents the point of view

on which the objects of the world are projected on the screen. A virtual camera can be placed

anywhere in the graphic world, including inside solid objects. In the virtual world, cameras do

not have any limit of movement from one point to another or rotation around any axis, and this

movement can occur at an instantaneous speed [33].

A real camera, on the other hand, has a set of physical limitations. It cannot penetrate solid

objects and it cannot fly around an object just as easily. Despite the limitations of real cameras, it

is important to impose some restrictions on virtual cameras so that they resemble reality.
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4.2.2 Physical Restrictions of the Camera

Physical restrictions can also be applied to the virtual camera so that it becomes as similar as

possible with a real camera in its limitations. The limitations to be established in a virtual camera

are [33]:

Camera rotation speed limits the speed of the virtual camera rotation.

Camera movement speed limits the movement range of the virtual camera. For example,

in a scenario with multiple cameras, it should be ensured that moving to new positions is

possible with a real camera.

Zoom speed restrictions limit the speed of the camera to change the zoom level, while also

limiting the maximum and minimum zoom levels.

The inclusion of these three physical restrictions, thus covers the 7 degrees of freedom of a

virtual camera in your three-dimensional world.

4.2.3 Intelligent Camera Control

In this area, Sérgio Louro[33] does research on work related to the problem in planning the control

of film cameras. In it, he evaluates the following approaches:

1. Jim Blinn - Spacial System [5]

2. Gleicher - Assistant for automatic camera control [20]

3. CamDroid - Intelligent camera control system [42]

4. ConstraintCam - Camera control through restrictions [4]

In the end, the main agreed on restrictions for a successful and realistic camera control are the

following:

1. Look At Point: restricts the camera’s focus to a specific point (object);

2. Object in Field of View: restricts that an object is in the field of view;

3. Object Occlusion Minimize: restriction of objects with a certain value minimal occlusion.

Occlusion values range from [0.0 to 1.0];

4. Object View Angle: restriction of the camera’s orientation angle with respect to the object.

The orientation is expressed in spherical coordinates;

5. Object Distance: restriction of the distance from the camera to the center of the object;
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6. Object Projection Size: restricts the distance from the camera to the object and the angle

of the field of view determines the size at which the object is viewed, using for example for

a close-up;

7. Object Projection Absolute: Require the projection of a main object to be completely

within a certain rectangular region of the image in two dimensions.

8. Object Projection Relative: The projection of the main object stipulates a relationship for

the projection of the secondary object in the image.

9. Object Depth Order: restriction to specify that the camera is positioned so that the pivot

object appears as close or far to the camera as a secondary object.

10. Camera Position Region: restricts the region of action of the camera in three-dimensional

space;

11. Camera Field of View: restricts the angle of the camera’s field of view vertically and

horizontally to define the format of the image to be viewed.

4.3 Conclusions

The art of conveying a compelling story to a viewer through a lens is not as straightforward as

one may initially assume. However, there are two major distinct areas of story-telling, scripted - a

movie or TV series - and non-scripted - live events. The approaches to accurately portray each of

these are definitely farther from similar but, most certainly, much of it is reliant on good camera

positioning and manipulation with regards to the same solid principles of the craft. For this work,

this research will have a great impact on the development of the cameras orchestration module and

how to better depict the idea of a realistic soccer simulation broadcast.

In the next chapter, a brief overview of the history of soccer is made and RoboCup initiative is

introduced further with a larger emphasis on the RoboCup Soccer Simulation League.



Chapter 5

Domain Application Analysis: Human
and Robotic Soccer

Soccer (aka Football in most countries) is considered to be the King Sport all around the globe.

Although some countries have their own distinct most popular sport, the global presence of soccer

is much higher. In the graphic 5.1, represented by the green color, we can see which places soccer

dominates as the most cheered sport. In virtually all of Europe, South America, Africa, and the

Middle East, soccer is king, making up the majority of the worldwide sporting interests.

Figure 5.1: Soccer popularity around the world (from [1])

Apart from the large affluence of fans in sheer numbers, soccer also became one of the largest

businesses in the sporting industry with the European market alone generating over C28 billion of

revenue annually and with players being paid salaries of above C65 million.

As stated before at the introductory stage of this dissertation, soccer, being the major influ-

encing sport worldwide, also served as ground for many research initiatives that help to evolve

various technological fields and, in this chapter, we will briefly discuss the origins and evolution

of the sport through the years as well as one of the aforementioned initiatives that has been adopted

globally, the RoboCup international competition.
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5.1 Human Soccer

5.1.1 History

Soccer has a long history. In its current base form, two teams with same number of players have

a common objective to navigate a round object into the net of the opposing team. But the sport as

we know it today is simply the end result of a slow and steady evolution of different ball games

throughout history.

According to some authors [37] [58], several versions of the game of soccer have existed in

ancient times: pok-a-tok (Mesoamerica), tsu chu (Ancient China), Kemari (Japan), Epyskiros (An-

cient Greece), Haspartum (Ancient Rome), Gaelic football (Ireland), Soule or Choule (France),

Calcio (Italy) and others:

• Kemari (Japan) - Two teams played, each one consisting of eight players trying to keep the

ball in the air using only their feet. The ball was full of sawdust wrapped in deer leather.

The field of the game, named kikutsubo, was rectangular [58].

Figure 5.2: Kemari illustration by Akisato Ritoh 1799 (from [31])

• Pok-a-tok (Mesoamerica) - The only available information about pok-a-tok comes from

wall and religious paintings, as well as from preserved game fields, where this game was

played. The oldest game field of pok-a-tok dates back from 1600 B.C. This field has the

shape of the capital letter I. At the two opposite sides of the field, there were parallel walls

nine meters in height. On each of these walls, there were either three hanging saucers or an

engraving ring. The players had to kick an elastic ball no more than 15 cm in diameter on

the saucer or in the ring. The ball could be kicked either by knees, hips or elbow [58].

• Tsu chu (China) - According to historical records, aristocrats, soldiers and folks used to

play this special kind of kicking game from 2500 B.C. or even earlier. The game’s name
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comes from the word tsu that means “the ball which is full” and the word chu that means

“kicking the ball with a foot”. The aim of this game was to kick the ball so as to place it

in a hole of approximately 30–40 cm in diameter. The hole was formed by a net hanging

between two bamboo sticks that were nine meters above the ground. The players used

exclusively their feet and the “goal” was extremely difficult considering the small diameter

and the height of the target [58].

• Epyskiros (Greece) - The ancient Greek episkyros was played around 2000 B.C. In particu-

lar, there is a marble relief in the National Museum of Archeology in Athens, which shows

an athlete balancing a ball on his thigh. Some historians believe that the athlete demonstrates

the football technique of episkyros or ephebike or phaininda to a boy. In onomasticon there

was a vague description of episkyros. According to the dictionary, two teams of equal num-

ber played episkyros and the players of both teams inscribed a line on the ground, which

was called skirus. This line split the two teams. Players were throwing the ball in order to

pass the opponents’ “goalpost”.

Figure 5.3: Stone carving that shows a man balancing a ball (from [3])

• Haspartum (Rome) - There is no written evidence about the way harpastum was played.

As far as we know, two teams played on a rectangular field split by a centerline. Each team

had to keep the ball in its own area for as long as it could, while its opponent tried to steal

it and get it over to its own side. It seems that it was a difficult and rough game and for this

reason soldiers played it in order to maintain their physical fitness [58].

• Gaelic football (Ireland) - Gaelic football is similar to the contemporary soccer. Its history

begins in Ireland in the Middle Ages. Gaelic football or Irish peil gaelach or caid is one

of the four traditional Irish games, along with camogie, which is hurling played by women,

Gaelic handball or Irish lianhtroid which looks like contemporary handball and rounders or

Irish cluiche corr which looks like the contemporary softball [58].
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• Soule or Choule (France) - During the medieval times, a game named choule or la soule

was played by the European nobility, especially by the French, on Sundays or on feast days.

The aim of the game was to pass a ball to the opponents’ goalpost, which was a tree, a wall

or a rivulet. The ball symbolized the sun. It was a rough and violent game without definite

rules about the use of the hands and the legs [58].

• Calcio (Italy) - A game named calcio or giuoco del calcio forentino was played in Italy in

the 16th century A.D. . It was played exclusively by aristocrats, every night during the period

of the Epiphany and the Lent, in most of the towns north to the Rome. Using their hands and

legs two teams of twenty-seven players were trying to pass a ball to the opponents’ goalpost,

which was a target in the perimeter of a field [58]. Italian football still retains the original

name of the sport in the name of its 3rd division, Lega Italiana Calcio Professionistico, aka

Serie C.

• Foot-ball (England) - Said to be the source of the sport that we know and love today,

in England, at the beginning of the 19th century, the game began to spread immensely,

leading to the creation of the first set of rules of the game through the establishment of

the Football Association in 1863. Its main goals were to organize matches between several

teams country-wide and to normalize the rules of the sport across all of the countries’ regions

[12]. In 1888 the first soccer league was created, the England Soccer League and shortly

after, in 1904, FIFA (Fédération Internationale de Football Association) was constituted

with the main goal of normalizing the matches’ rules and organizations.

5.1.2 Characteristics

Castelo [10] defends that "The game possesses a specific dynamic, a context that defines its

essence. This essence, included in the game rules, gives rise to a series of attitudes and technical/-

tactical behaviour patterns. More specifically, the requirements that are imposed on the players

are determined by the game profile". In consequence of that, in 1982, Kacani divided players into

three categories:

• Universal Players - Players are capable of fulfilling with the same performance many tasks,

both in the offensive and defensive field.

• Semi-universal Players - Players are capable only to perform optimally in one of the game

key moments (offensive or defensive).

• Specialists - Players with a defined expertise, able to perform effectively in a particular

sector of the field (.ie the goalkeeper).

The sport in it self, since its initial creation, has gone under several evolutions, the transforma-

tion from a more individual aspect to a more collective one, the game’s systems evolution and the

emergence of players with more excellent technical skills and, finally, the third evolution consists

in using the better soccer concept between tactical-physical and tactical-technical dimensions [12].
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5.1.3 Tactical Evolution

In the beginning there was chaos, and football was without form. Then came the Victorians, who

codified it, and after them the theorists, who analysed it [53]. As of now, it is common sense that

the arrangement of the players on the pitch is directly related to the team’s performance and result.

In the beginning of the practice of the sport today known as soccer however, there was not much

sophistication around this matter and the game played out without much organization or structure.

It wasn’t until the late 1920s that player’s positioning on the pitch began to approximate what

we see today in the professional leagues around the world. In the years prior, a lot of experimen-

tation and adjustments were made to allow for the teams to go from a "chase the ball" mentality to

one of "united action" where passing and positioning became more relevant.

In beginning, formation was reliant primarily on offense, the main tactic was to chase the ball

and put it in the back of the net as many times as possibles, taking advantage of any advantages

available like body weight or faster pace. As such, the formations at the start of the era of organized

matches was something on the line of what is depicted on figure 5.4 a). Scotland was the clear

underdog at this match-up, but, through a more mid-field balanced tactical choice, they were able

to counter-balance England’s team and finish the game with a goalless scoreboard.

In the years that came, the strategies had evolved what would later be described in the 1880s

as: the Pyramid. As seen in figure 5.4 b), the teams took different approaches and the pyramid took

home the victory. The Wrexhams balanced out the offense and reinforced their midfield ultimately

creating a stronger core that led them triumph.

As the successes of a balanced distribution of players through the entire pitch were increasing,

more and more teams began implementing their own versions of the scheme. Besides the team’s

formation it was notorious that the individual skill began to gain relevance in order for the team

as a whole to be able to out-perform its equally well-organized opponent. Figure 5.4 c) depicts

two strongly-organized teams with much individual talent on what came to be a greatly disputed

match.

The previous examples were extracted from Jonathan Wilson’s book "Inverting the Pyramid -

The History of Football Tactics", where he explains in depth the evolution of tactics and formations

since the 1880s. Please refer to his work, [53], for more information.

5.2 Robotic Soccer - RoboCup

The RoboCup initiative [22] [23] is an international research and education project which main ob-

jective is to promote investigation in (Distributed) Artificial Intelligence and Intelligent Robotics.

The base research problem of this project is Robotic Soccer, where a large number of technologies

and methodologies is necessary to be able to create and manage a real or virtual team robotic team

that has the ability of playing a soccer game while abiding to a set of distinct rules.

The initiative was first born in Tokyo, where a group of researchers promoted a workshop

related to the use of soccer for the research community, specially in AI areas. Some robotic soccer
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Figure 5.4: a) First International: Scotland 0 England 0; b) Wrexham 1 Druids 0; c) Uruguay 4
Argentina 2 (from [53])

prototypes and a simulator project were defined and the result was the creation of a Robotic League

called Robotic J-League. After its huge success, this project became international with the name

of Robotic World Cup Initiative - RoboCup [12].

In order to promote research in this field and stimulate development, a long-term goal was set:

"by the year 2050 a humanoid Robotic team will be capable of defeating the world champion

Human team in a soccer match according to FIFA rules"[23]

The first RoboCup competition was held in Nagoya in 1997 with over 40 teams. The organi-

zation estimates that over 5 million spectators assisted the games, which turned the RoboCup into

one of the biggest events ever [12]. Now, the RoboCup events gather upwards of 3500 researchers

with their 3000 robots to compete in its various leagues of specific areas of research. Apart from

the main floor where the competitions take place, at each RoboCup event there is also the occa-

sion for an International Symposium, a high place for presentation and discussion of scientific

contributions. This meeting of researchers allows to highlight the latest advances in robotics and

artificial intelligence with the best researchers in the subject [2].

5.2.1 RoboCup Leagues

The challenge proposed by the RoboCup organization for the AI and Robotic researchers spans

across 5 different categories: Soccer, Rescue, @Home, Industry and the Junior category. Within

each category there are multiple sub-categories that branch out the research focus to even more

areas, see figure 5.5.
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Figure 5.5: RoboCup Initiatives Structure

5.2.1.1 RoboCup Soccer

The main event of the RoboCup initiative and the focus of this work is the robotic soccer, where

two teams of autonomous and collaborative robots develop dynamic strategies to challenge each

other and win the game [2]. This competition is divided into five leagues, including 2 simulation

leagues and four main robotic leagues with distinct rules:

5.2.1.1.1 Simulation Leagues

The Simulation League is one of the oldest leagues of the RoboCup initiative and, in it, only

virtual robots are allowed. Using the SimSpark soccer simulation servers, SoccerServer, two

virtual teams of 11 players simulate a soccer game. These players are simulated agents that use

autonomous AI systems capable of interacting with their virtual environment through multiple

virtualized sensors that allow them to play strategically as a team in a multi-agent system. Its

main focus is on artificial intelligence, team strategy and multi-agent coordination and it is then

subdivided into two sub-leagues: 2D and 3D. Its first iteration, the 2D Simulation 5.6, was first

simulated in 1997 in the Nagoya, Japan tournament and the first 3D server was released in late

2003.

Currently, its official simulation monitor for the 3D sub-league is the RoboViz tool (see figure

5.7), an interactive 3D visualizer that will be the main focus of this dissertation due to its three-

dimensional aspect, allowing for a realistic representation of a soccer simulation.
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Figure 5.6: 2D Simulation League (from the official website)

Figure 5.7: 3D Simulation League (from the official website)

The 3D Simulation league is a simulation of the NAO robots used in the Standard Platform

League and also makes use of color-coded markers to detect distinct flags during the game. With

the introduction of the extra dimensional aspect and the use of fully articulated humanoid agents,

the main focus of the Simulation League had widen from a simple aspect of team coordination and

strategy implementation only, to the low level control of a complex machine that had to be able to

walk, kick and stand up after a tackle.

Figure 5.8: The humanoid NAO robot that was modeled for the 3D Leagues
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Apart from the increase in complexity compared to the 2D sub-league, this 3D Simulation

League also allowed researchers to test out control programs and strategies on the simulated hu-

manoids instead of on a real pitch with expensive resources in place. A normal game has the

duration of 10 minutes, split into two 5 minute long halves.

5.2.1.1.2 Small-Size League

On a small pitch, two teams of 8 small sized robots compete using a golf ball. In this league,

the robots do not possess individual visual sensors nor are able to make decisions individually. As

such, they rely on a central control unit (a computer nearby) and a vision system assembled above

the pitch. The control unit receives, analyses and processes information sent by the vision system

and computes all necessary parameters - orientation and velocities - to send to each individual unit

on their team to, hopefully, win the match. The computing done by the central control unit is the

focus point of the researchers who play on this league. Each player unit cannot exceed 18cm in

diameter and 15cm in height in order to be allowed at the small-size league. The games have a 10

minute duration and no humans are allowed to interfere.

Figure 5.9: Small-size League game (from the official website [2])

5.2.1.1.3 Middle-Size League

Teams composed of 5 to 6 larger autonomous robots compete in a larger, 18 meters by 12

meters field. The players are aware of their local surroundings using their sensors and are allowed

to communicate with each other and share their positions on the pitch to structure the team’s

organization. At this league, a normal indoor-soccer human-sized ball is used and the robots are

much more powerful than their smaller counterparts. Each half of the game is 10 minute long,

totaling a 20 minute match with the possibility for substitutions.

5.2.1.1.4 Standard Platform League
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Figure 5.10: Middle-size League game (from the official website [2])

Teams composed of 5 humanoid Softbank Robotics’ Aldeberan NAO robots compete in a 6x9

meters pitch. Like the league before, each half has a 10 minute duration and there are several

color-coded markers around the pitch so that the robots are able to recognize several flags globally

to determine, through their vision sensors, the locations of the pitch lines, the goals, their team-

mates, their opponents and, of course, the ball. The robots communicate freely with each other

and make their own decisions.

Figure 5.11: Standard Platform League game (from the official website [2])

5.2.1.1.5 Humanoid League

Autonomous robots, freely constructed by participating teams, with a human-like body and

senses play soccer against each other. The league is divided further based on robot size creating

sub-sub-leagues of soccer, being them kidsize, teensize and adultsize. The number of players

varies between 2 and 3 and, with it, the sizes of the pitch, ball and goals. These robots do not

rely on color-coded markers spread across the field. Instead, this league aims to push further

the development of vision recognition based technologies and dynamic balancing of loads. The

match’s rules are similar to real-life and the duration is, as before, two 10 minute halves.
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Figure 5.12: Humanoid League game (from the official website [2])

5.2.1.2 RoboCup Rescue

The Rescue initiative of RoboCup puts robots through series of high-difficulty challenges with

the main goal of researching developments in the domain of search and rescue in large disasters.

The Rescue competition trials are representative of the main challenges encountered in search and

rescue scenarios in urban or natural environments, such as navigating in rough terrain, overcoming

obstacles, moving objects, mapping, and team coordination [2]. The competition was created in

2001, 6 years after the earthquake disaster in Kobe city - Japan that victimized 6500 people. It is

split into 2 categories: simulation and robotic.

5.2.1.2.1 Robot League

In the Robot League, highly equipped robots search for and rescue victims in disaster-like

scenarios. The robots have multiple sensors, ranging from temperature, CO2 and vision that al-

low them to autonomously advance through the most difficult scenarios. The machines’ results are

based on the total number of obstacles overcame, people found and number of operators. This par-

ticular league leads to big advancements in robot technology and to the construction of incredibly

capable machines (see example 5.13).

Figure 5.13: Rescue Robot League game (from the official website [2])
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5.2.1.2.2 Simulation League

The Simulation League of the RoboCup Rescue initiative maintains all the main goals of the

Robot League but instead of an extreme course built to be overcome, it simulates the occurrence

of a large disaster on a major urban area. The researchers’ teams goal is to deploy rescue, fire-

fighting and patrol units in the area to search and rescue civilians in need of help. The problems

are not solvable by a single agent and, therefore, the major objectives of this league is to improve

cooperation techniques among agents to better work in a dynamic and difficult environment.

Figure 5.14: Rescue Simulation League simulation (from the official website [2])

5.2.1.3 RoboCup @Home

The @Home initiative aims to develop service and assistive robot technology with high relevance

for future personal domestic applications. Mobile, autonomous robots interact with humans to

carry out everyday tasks around common living environments like one’s home or public spaces

like shops. The robots are interactive through gestures, voice commands or any other form that can

be developed. It is currently subdivided into three categories: Open Platform, Domestic Standard

Platform and Social Standard Platform. Besides the type of robots used to develop solutions in

each division, the common goal is to aid is the achievement of mundane tasks interactively.

5.2.1.4 RoboCup Industry

Research application in industrial environments and logistics operations are the main focus. The

plan is to help build the factory environments of the future, enabling people to be freed from their

boring repetitive tasks at factory floors and at the same time to improve and organize production

with robot organization, cooperation and task pooling. These two branches of research serve as a

common grounds for the two areas of this initiative: @Work and Logistics.

5.2.1.4.1 @Work
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This division’s challenges are based around assistive robots for the industry where their main

role is to cooperate with human workers on their daily complex tasks assignments resulting in a

safer and more productive working environment.

Figure 5.15: RoboCup Industry @Work (from the official website [2])

5.2.1.4.2 Logistics

The logistics category focuses on enabling today’s industry to adapt faster to changing product

needs and to be more flexible on their production line. The main challenges of this league are to

develop cooperating robots that are able to achieve efficient production planning and scheduling.

As of now the sole objective is to create three cooperative robots that work together to transport

material over to production machines.

5.2.1.5 RoboCup Junior

This league is an education environment, targeted specifically to youngsters up to the age of 19.

Its goal is to provide an environment where learners can expand their knowledge, interest and

curiosity about technology at the same time that it stimulates their young and creative minds.

Figure 5.16: RoboCup Industry Logistics (from the official website [2])
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Figure 5.17: Junior Soccer League (from the official website [2])

Using a simple infrastructure, people can create teams of robots to play soccer and rescue victims,

much like the normal leagues but with some changes to the rules to make it more compelling

and less complicated for the younger future researchers. A challenge that is unique to the Junior

Leagues is the OnStage, where it invites teams to develop a creative stage performance using

autonomous robots that they have designed, built and programmed.

Figure 5.18: Junior OnStage League (from the official website [2])

5.3 The RoboCup Soccer Simulator

5.3.1 SimSpark

SimSpark is a multi-agent simulator based on the generic components of the Spark 5.3.2 physical

multi-agent simulation system and has been used in the RoboCup Soccer Simulation League since

2004. It has an established code base with development increasing year-over-year. As the result,

RoboCup soccer simulations have changed significantly over the years, going from rather abstract

agent representations to more and more realistic humanoid robot games. Thanks to the flexibility

of the Spark system, these transitions were achieved with little changes to the simulator’s core

architecture[57]. Until 2008, the soccer simulator and SimSpark simulator were developed and
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released as a single project called rcssserver3d. It was then broken into two main projects -

Spark 5.3.2 simulation platform and RCSSServer3D 5.3.3 soccer simulation server to clarify that

SimSpark is a generic simulation environment, rather than only a robot soccer simulator [57].

Figure 5.19: SimSpark - a multiagent generic simulator

5.3.2 Spark

Spark is a physical simulation system. The primary purpose of this system is to provide a generic

and flexible simulator for different kinds of simulations. In these simulations, agents can partici-

pate in-process or out-of-process.

It has three main components, including the simulation engine, the object and memory man-

agement system, and the physics engine.

Figure 5.20: Spark Architecture (from [9])

In order to allow soccer games of 11 humanoids players in each team, some changes were

implemented, however no modification to the simulator’s core was ever specialized for the soccer

simulation in order to keep the generalist aspect of the technology.

The changes were [57]:

Sensor Plugins - Sensors of a robot allow awareness of the robot’s state and the environ-

ment.

Multi-threads supporting - The physics computation and SimControlNodes can run in

parallel.
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5.3.3 SoccerServer

SoccerServer is a simulator of the game of soccer designed as a benchmark for evaluating multia-

gent systems and cooperative algorithms [28]. Its architecture is based on client-server, meaning

that there are no restrictions to how the teams are built only that they are able to support commu-

nications via UDP/IP. It allows the execution of a virtual soccer game played by two teams of 11

virtual autonomous agents (clients), and the possibility of a coach, who are individual processes

that connect to a specified port on the server through where all communications are made.

Figure 5.21: SoccerServer Architecture (from [12])

The players send requests to the server regarding the actions they want to perform (e.g. kick

the ball, turn, run, etc.). The server receives those messages, handles the requests, and updates

the environment accordingly. In addition, the server provides all players with sensory information

(e.g. visual data regarding the position of objects on the field, or data about the player’s resources

like stamina or speed). It is important to mention that the server is a real- time system working

with discrete time intervals (or cycles). Each cycle has a specified duration, and actions that need

to be executed in a given cycle, must arrive at the server during the right interval [34].

5.3.3.1 Agent Actions on the Server

The agent is limited to a set of actions that are sent by message to the server to execute them [34].

Possible actions are:

• (turn Moment) The Moment is in degrees from -180 to 180. This command will turn the

player’s body direction Moment degrees relative to the current direction.

• (dash Power) This command accelerates the player in the direction of its body (not direction

of the current speed).
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• (kick Power Direction) Accelerates the ball with the given Power in the given Direction.

The direction is relative to the the Direction of the body of the player and the power is again

between minpower and maxparam.

• (catch Direction) Goalie special command: Tries to catch the ball in the given Direction

relative to its body direction. If the catch is successful the ball will be in the goalie’s hand

until kicked away.

• (move X Y) This command can be executed only before kick off and after a goal. It moves

the player to the exact position of X (between -54 and 54) and Y (between -32 and 32) in

one simulation cycle. This is useful for before kick off arrangements.

• (turn neck Angle) This command can be sent (and will be executed) each cycle indepen-

dently, along with other action commands. The neck will rotate with the given Angle relative

to previous Angle

• (say Message) This command broadcasts the Message through the field, and any player near

enough, with enough hearing capacity will hear the Message.

5.3.4 RoboViz

RoboViz is an open-source interactive monitor released on February 2011 that renders both agent

and world state information in a three-dimensional scene. The main objective of the tool is to

facilitate debugging and the analysis of behaviours and algorithms in a sea of data generated on

these simulations.

J. Stoecker and U. Visser felt that the existing SimSpark monitor had a number of limitations.

In particular, they felt the following issues should be resolved or improved upon [46]:

• Usability: the Simspark monitor had a rudimentary interface and the user experience was

less polished. For example, the monitor may only be active while the server is online,

must be manually restarted with the server, and the window cannot be resized for a higher

resolution.

• Interactivity: the Simspark network protocol exposes functionality for modifying the game

state and moving the players or ball; however, the monitor does not yet make use of these

features.

• Portability: the monitor is deeply integrated with the Simspark framework making it more

difficult to configure, compile, and use.

• Graphics Quality and Performance: the Simspark monitor ex- hibited suboptimal re-

source usage and performance. While less pressing as other issues, the graphics effects also

had significant room for improvement.
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The earliest prototype for RoboViz was a program detached entirely from the Simspark frame-

work, but there were serious drawbacks to this design approach that appeared during early pro-

totyping. Unless the agent architecture has access to the world model of the simulation, there is

no way to visualize both believed and actual world models simultaneously. Viewing the separate

models side-by-side is ineffective in situations where there are discrepancies between what an

agent believes and the truth. Furthermore, such a design requires much more effort on the part of

a team hoping to utilize the visualization features with this interface [46].

Figure 5.22: Architecture for RoboViz, SimSpark server (rcssserver3d), agent, and user interaction
(from [46])

It was concluded that RoboViz would still need to communicate with agents to access their

internal states, but it must also use the simulation server’s scene graph to render the actual world

model. This approach 5.22 provided an opportunity to address many of the SimSpark monitor’s

deficiencies.

Figure 5.23: RoboCup Soccer Simulation 3D Match in RoboViz
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5.3.5 Log Player

The Log Player is a feature that has been implemented in most of RoboCup’s monitors servers

over the years. As the name indicates, its main purpose is to be able to play from a log file. A

log file is created during a match and is written to whenever pertinent information is exchanged

between the agents and the server that is necessary to recreate a replay of the match in its full-

extent. This allows for the teams to have a way of analyzing a past game played, either by mining

the file’s contents or by replaying it in a supporting monitor that then reads and mimics the players’

movements and actions recreating a game of the past.

5.4 Conclusions

The AI field is in constant evolution and, with it, so is the robotics fields. A key component in all

of this are the autonomous agents that have to either work as a team (cooperative) or against each

other (competitive). In order to achieve this they first must be able to communicate, in a structured

way, and to act accordingly to achieve their goals. The RoboCup initiative is a great way to

improve both these fields and more specifically the research in agent coordination and strategy. In

the next chapter, a more in depth approach on the used technologies in soccer simulation are made,

along with an overview of relevant literature to the development of this dissertation’s project.

Next, a brief introduction to the field of cinematography is made where we go over some of

the basic concepts and approaches that will aid in the development of this work.



64 Domain Application Analysis: Human and Robotic Soccer



Chapter 6

Project - LiveDirector for RoboViz

The LiveDirector system is a project developed on top of the existing RoboViz with the intent

for later approval by means of a pull request to the forked repository, becoming a part of the

main visualizer used in the 3D Simulation competitions of RoboCup. The RoboCup international

tournament has a large attendance annually with main focus on the Soccer Leagues, of which

the 3D Soccer Simulation is part, and for the last couple of years it has been using the RoboViz

visualizer to simulate the game played to its spectators, but it lacked the ability to showcase a more

real-life soccer viewing experience with a live broadcast feel.

The main objective of the project is to both be able to gather real-time data from the simulation

to generate data and parse relevant statistics, similar to those shown in real-life games, and also

to provide a live broadcast feel through automatic control and manipulation of cameras positions

and angles based on real-time game events.

6.1 Architecture

Since the main objective was to implement a real-time live broadcast feel to the visualizer, all

development was built on top of the RoboViz application, forked from GitHub. Since both the

processes of statistics generation and camera choice rely on the same real-time game events (with

exceptions or discarded events in each module), the approach taken was that of developing a single

module that would be able to both collect and parse the data information abstracting that process

to all the modules that need to obtain that knowledge. Those interested, can subscribe to the

module to be notified of when relevant events occur. This is a straightforward example of the

Observer design pattern well known in software engineering, where a subject maintains a list of

its observers which it notifies whenever there is a state change. A visual representation of the

implementation can be found in figure 6.1.

In the diagram we can see all the components of the developed solutions, which we will see in

more detail in the remaining sections of this chapter:

1. StatisticsParser Class - Responsible for collecting and parsing the real-time data extracter

from the match.

65
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Figure 6.1: Observer pattern implementation

2. StatisticsParserListener Interface - The interface that connects the subject to its ob-

servers’ methods.

3. StatisticsOverlay Class - Organizes screen overlays renderization based on the visualizer’

configurations and events received.

4. LiveDirectorCamera Class - Manipulates the game camera according to the current game

state.

Apart from this architecture, there are two other components implemented that play a more

passive, but important role, and that are not my own work, the Configuration File System and the

BallEstimator Class that will be presented further in the following sections.

This implementation allowed for a decoupled development on top of the existing RoboViz ap-

plication without significant changes to the core software making it suitable for an easy integration

into the current main tool. Also, with the implementation through the Observer design pattern,

new additions to observable events are easy to achieve by simply implementing the event detection

algorithm in the StatisticsParser class and its respective implementation in the observer classes,

through the available interface.

In order to share the data between the components in an efficient and organized way, an object-
oriented approach was used. This simplifies the access to information in a structured and well

defined way between all the classes that directly benefit from the direct access to statistics’ infor-

mation. With that in mind, a Statistic class was created as shown in figure 6.2. A StatisticType

enum was also defined in order to keep the statistics’ type organized and easily accessible to be

compared, if needed, and added to the Statistic class as a property.

6.1.1 Configuration File System

A configuration file system was already presented in the main version of the RoboViz project and

it was directly implemented in this project to take full advantage of its capabilities. An existing

Configuration class is initialized with a default path and it reads a text file named "config.txt".
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Figure 6.2: Statistic class and StatisticType enumerable definition

The file is read line by line and the found configuration variables are used to replace the default

values initialized by each configuration structure. The configuration structure for the addition of

this project was called Live Directing Variables and it is where all configurable variables refer-

enced in the following sections can be set. An excerpt of the configuration file can be seen in

listing 6.1.

1 ...

2 Overlay Default Visibility:

3 Server Speed : true

4 ...

5 Statistics Overlay : true

6 Player IDs : true

7 Live Directing Variables:

8 Possession Interval : 5

9 Positions Interval : 5

10 ...

11 Heat Map : true

12 Panel Screen Time : 6

13 Networking Settings:

14 Auto-Connect : true

15 ...

Listing 6.1: Configuration File Example

6.1.2 BallEstimator Class

The BallEstimator class found in this project is a migration of an existing tool from the code

repository of the FCPortugal3D team, which was firstly introduced to me by Prof. Nuno Lau and
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then implemented in Java within RoboViz, from its original C++ source and with all the necessary

adjustments.

The goal of the BallEstimator is, as the name indicates, to estimate certain aspects about the

ball behaviour into future time like its final position, taking into consideration the present visible

information about the object, like its consecutive positions and, therefore, its speed. The forces

that the ball is subject to are demonstrated in figure 6.3.

Figure 6.3: Diagram of the forces acting on the moving ball

From here, the functions for its speed [6.1] and positions [6.3] in time, t, are defined in relation

to a constant K that will aid in the validation of the model.

vt = v0 · eK·(t−t0) (6.1)

xt = x0 +
v0

K

(K·(t−t0))
− v0

K
(6.2)

The process of model validation concluded the following value for K:

K =−1.05719 (6.3)

And the results of the validation (6.4) show an almost perfect overlap between the real ball

positions in future time and the estimated positions by the model.

To go further with the ball estimator, it was made possible to also estimate velocities of the

ball in time by fitting observed positions and times on the generated model (see 6.4).

estv2 =
−K

(e−K(t2−t1)−1)
· (x2− x1) (6.4)

Internally, the estimator uses pair of queues of up to 6 values that represent the most recent

information regarding the ball whereabouts in order, its positions and time of each. To keep

the information updated, the migrated version calls an update() method, whenever server time is

updated, where these queues are updated. A representation of this class structure can be seen in
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Figure 6.4: Validation of the model results for position estimation

figure 6.5. All its methods are public and called when necessary to estimate either the ball velocity

or position at any point in time in the future. You can note that there are also methods that take in

no parameters, the estimatedFinalPos() functions that estimate the final position of the ball once

fully stopped and, therefore, need no reference time input into the future.

Figure 6.5: Representation of the migrated BallEstimator Class

6.1.3 StatisticsParserListener Interface

The StatisticsParserListener interface declares the methods that interested listeners must imple-

ment in order to act accordingly for each event triggered (see figure 6.6). Different events have
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different types of needs and stages so, for a given type, there may actually be more than one trigger

associated with it. For example, a dribble event has two triggers related to it, one dispatched at the

start of a dribble detection and one after the dribble has been given as completed or cancelled.

Figure 6.6: Representation of the StatisticsParserListener Interface

This interface is a major part of the whole architectural approach, filling a role of an interme-

diate of events between the subject and its observers without enforcing any own logic.

6.1.4 StatisticsParser Class

As stated in its brief description, the StatisticsParser class is responsible for parsing the live game

raw data and transform it to specific characterized events that its registered observers can listen

to and act upon. In order to achieve this we must first analyze how a worthy event can be detected

and to what type of statistic it relates to.

6.1.4.1 Statistics Definition

The majority of soccer events, with the exception of those related to game breaks, have similarities.

At the origin of this kind of events is always an increase in of the ball velocity or a change in the

direction of the ball’s motions (named a kick), which can represent various events, like a pass, a

shot or a dribble. Equation 6.5 shows this concept, where t1 and t0 and instants of time and Vball ,

Dball are ball velocity and direction, respectively.

kick(t0)← (|| ~Vball(t0)||< || ~Vball(t1)||∨Dball(t0) 6= Dball(t1))∧ t1 = t0 +1 (6.5)

The detection of this event serves as an entry point to the detection of all kick-related events

such as dribbles, shots and passes which, when detected are converted to game statistics and added

to the run-time memory of the parser.
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Regarding what will be referred to as game breaks, these relate to static events such as free

kicks, off-sides, corners and other play modes present in the simulator. Those events are directly

managed by the rcssserver3d simulation which are then communicated to RoboViz in a structured

form and used directly, without much conversion of the data.

6.1.4.2 Statistics Collection

This section dives deeper into the process of data collection and data processing by the Statistic-

sParser class for each of the event types defined above, direct or calculated, respectively. How-

ever, to collect information, it is first necessary to have somewhere to store it and, since it will be

accessed by many other parties, to easily retrieve it by type.

The most efficient implementation of such a behaviour is normally achieved through a Map

(or HashMap) data structure. In the implementation, the defining pair of the Map was < String,

List<Statistic> >, where the key of each of the Map’s entries is a string that reflects the fixed name

of the StatisticType class for the respective type and the value is the list of the statistics collected so

far of that given type. By following this approach, we can take advantage of several characteristics

that make it a perfect fit for this task, such as:

1. Fast Lookups - Lookups on a Map take on average O(1) time, making it one of the fastest,

enabling an optimal performance for statistic’s lookup even with large amounts of data for

a specific type.

2. Unique Keys - Since a Map does not allow for duplicate keys, we can maintain an orga-

nized list of all game occurrences for a given statistic type without the problem of possibly

duplicating information or accessing and updating an outdated entry for that type.

3. Flexible Keys - Most data types can be used for keys, as long as they’re hashable, such as a

string, in this case.

The Map starts empty without any entries and, as the game progresses, new entries are created

for statistics of a type which has no key yet, or existing entries are replaced with their respective

updated lists. An example of a Map representation at an arbitrary point in time during a match can

be seen in figure 6.7.

Figure 6.7: Representation of the statistics Map during a match
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6.1.4.2.1 Direct Statistics - Game Breaks

As mentioned before, game breaks are detected by direct messages sent from the simulation

server in a structured way. The structure is in the the form of atoms, where each atom that com-

prises it contains a different piece of information about a given message and they can be of variable

number between message types, see figure 6.8.

Figure 6.8: Message atomic structure representation

The StatisticsParser class is aware of the reception of such messages since itself is an im-

plementer of the GameState.ServerMessageReceivedListener interface, exposed by the RoboViz

communication’s layer, see figure 6.9, which notifies its subscribers at every message received

from the server. Those messages exhibit the same structured content that is then parsed in order to

extract the relevant information before being inserted into a new instance of a Statistic and saved

on the run-time Map.

Figure 6.9: UML representing the StatisticsParser class hierarchy

The information of the messages’ atoms are divided as follows:
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1. Type - This is the first atom on any message and defines the type of message that is being

communicated to the application. It has over 24 possible values but, for the purpose of the

StatisticsParser class, the relevant values are: "time", "play_mode" and "foul".

2. Values - Each message type can have zero or more value atoms, depending on the amount

of information that a message type requires to be fully defined. Each value atom is much

like a function parameter, where each ordered value corresponds to an expected information

about an event. For each of the relevant message types listed on the aforementioned item,

the expected atom values are as follows:

6.1.4.2.2 "time" Message Type

The time message receives only a single atom, containing the string value of the actual time

of the match in seconds. For example, "254" gets translated to 4:14 minutes of game time.

The raw time value is stored on the class at every update to be used during the parsing and

calculation of statistics in order to have a real-time setting at each point in the computation.

6.1.4.2.3 "play_mode" Message Type

For the play_mode message, a single value atom is used (atom of index 1 of the message)

to identify the current play mode on the server. Among many values, the relevant one are

"KickIn", "corner_kick", "goal_kick", "offside", "free_kick" and "direct_free_kick". To each,

the strings "_left" or "_right" are appended in order to identify to which team the mentioned

game event concerns to so.

For example, if a player of the left team is caught offside, the StatisticsParser class will

receive the structured message depicted in figure 6.10, where the first atom identifies the

correct type, "play_mode" and the second atom (the first value atom) describes the new play

mode on the server.

Figure 6.10: Representation of the structured message for an offside for the left team

From here, the StatisticsParser will instantiate a new Statistic object with the proper con-

verted values of the received message, namely the type - "offside" - and the team - 1 (refers

to the left team, 2 is the right team).
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At this point, the run-time class’s Map would be updated and have a modified entry at the

"offside" key, with the newly created statistic appended to its current list of values (see figure

6.11).

Figure 6.11: Representation of the class’s Map after addition of the offside message

Then, the respective StatisticParserListener Interface’s method, if existent, is called in order

to notify the parser’s listeners that a relevant play_mode change as occurred. In this case,

an offside, it would trigger the offsideReceived(statistic) method call with the newly created

Statistic object as a parameter.

6.1.4.2.4 "foul" Message

Of the three, the "foul" message type is the most complete in terms of number of values

passed through the value atoms, for a total of 5. A foul message does not follow the same

implementation of a play mode message in the sense of describing the culprit’s team. There

are no appended team identifier strings and instead, the team information is passed through

one of the atoms. Along with that data, more follow in the remainder of the value atoms,

such as the foul type and agent id. A clear representation of this structure can be found on

figure 6.12. The message type identifies the foul message followed by the ordered value

atoms that describe the message index, the foul type, the offending team and the specific

player, respectively.

Figure 6.12: Representation of the structured message for a crowding foul by left team’s player 9

The conversion of this message type will generate more initialized fields on the new instance

of a Statistic, namely the agentId property, which is not initialized at a play mode message

since that information is not transmitted. As an example, the message depicted in figure 6.12

would translate to a Statistic object with a type of "foul", index of "1234" (unique identifier),

team of value 2 (which is directly converted from the original message), and agentId of 9.
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As before, the run-time’s statistics Map is updated and the "foul" entry get modified to

reflect the newly parsed statistical information (see figure 6.13).

Figure 6.13: Representation of the class’s Map after addition of the foul message

Same as a message of type "play_mode", the respective subject interface’s method is called,

foulReceived(statistic), to notify the observers that a foul has taken place so that they can

act accordingly.

6.1.4.2.5 Calculated Statistics

Calculated statistics are those that cannot be inferred directly from received messages of the

controlling server and, instead, must be detected through run-time algorithms that constantly parse

real-time data being received regarding the game’s state. There were implemented different types

of statistics generation tools that each generate its relevant data, identified as:

1. Direct Parsing - As the name implies, direct parsing tools calculate statistics based on

directly manipulating data about the game’s current state.

2. Event Driven - These tools rely on series of occurring events in order to detect the existence

of relevant moments in player behaviour.

We will now see which statistics where generated, which type of tool of the aforementioned

was used and how the data was collected and stored.

6.1.4.2.6 Possession

Possession is collected through means of Direct Parsing. At set intervals (configurable), the

parser will run the Possession Detection algorithm see( 5) where it loops through all the players on

each team and calculates their weighted possession score according to the following expression:

P = αd +β t (6.6)

The formula calculates each individual player’s possession score based on a weight (α) of

their current distance (d) to the ball and a weight (β ) of the interval of time their team last had

possession (t). The possession is awarded to the team of the player with the lowest calculated

score, at which point the interval of team possession is updated for each of the teams.
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Algorithm 5: Possession Detection

1 lowestScore←MAX_SCORE

2 winnerPlayer←null

3 winnerTeam←null

4 foreach team in teams do
5 players←team.getPlayers()

6 foreach player in players do
7 score←calculateScore(player, team)

8 if score < lowestScore then
9 lowestScore← score

10 winnerPlayer← player

11 winnerTeam← team

end
end

end
12 updateTeamPossessionIntervals(winnerPlayer, team)

After several tests, the best results were achieved with the following factor values:

α = 1,β = 0.4 (6.7)

In the end, the distance to the ball was given full accountability to the final score and the time

interval was given less weight due to its high impact on larger values. This approach was taken in

order to account for situations where, for example, a player was dribbling and between the time

where he moves the ball forward and reaches it again, an opponent may have been at a closer

distance to the ball, but that does not mean his team had possession of it.

Table shown in figure 6.14 presents the results for some given examples of team possession

interval time (t) and distance of the closest player to the ball (d). If a touch by the opposing team

is detected, both team’s time intervals are reset. This is done due to cases like deflections during

a pass, for example. In a deflection we can neither assume that the deflecting team as won the

possession back or that it still belongs to their opponent, therefore we reset the time factor of the

model and let the teams "battle" for possession once again.

Once the algorithm has run and detected the correct possession, a new Statistic object is created

with the collected information - agentId, team, time - generating a new statistic of type POSSES-

SION which is then added to the statistics Map of the class.

6.1.4.2.7 Heat Map

The generated center-of-action heat map also relies on Direct Parsing techniques, reading

directly from the game’s state. Again at configurable set intervals, the ball position is collected
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Figure 6.14: Possession scores for given values example

and its 3D representation is then converted into a coordinate pair that will represent its position

within a matrix, where each cell corresponds to a specific area of the field.

In RoboCup, positions are given relative to the center point of the pitch, where the position

along the field’s plane corresponds to (0, 0). Due to this implementation, each corner would then

have negative and positive position coordinates depending only on the field’s width (W ) and length

(L). An illustrative representation of this can be seen in figure 6.15.

Figure 6.15: Representation of the field’s coordinate system

To represent the positions on the field in a structured way, the most intuitive approach is to

implement a matrix where each of its cells represents a specific area of the pitch. To represent a

matrix within most programming languages, the approach is to declare a bi-dimensional array. In

this specific case, the array created would have a first dimension of W (rows in the matrix) and a

second dimension of L (columns of the matrix), see figure 6.16 for a visual representation. At its

initial state, all cells have a value of 0, the ball has been in each represented pitch position 0% of

the game’s duration.

After defining the storage structure for the data, it needs to be updated. The first step in this
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Figure 6.16: Representation of the initially empty position matrix

process, after getting the ball position in 3D space, is to convert those values into usable indexes

for the matrix, in other words, the intervals of [−L/2, L/2] and [−W/2, W/2] need to be converted

to [0, L] and [0, W ], respectively. This is achieved fairly simply through the following equations:

Mi = (W/2+Pz) (6.8)

M j = (L/2+Px) (6.9)

With this conversion, we now have the matrix’s row (Mi) and column (M j) to be updated.

For example, for a field with L = 30 and W = 20, if the 3D position collected from the server

was to be (−7,3), the row and column to be updated would be, respectively, 10+(3) = 13 and

15+(−7) = 8.

So, in the representative bi-dimensional array, the value at row 13 and column 8 would be in-

cremented by 1, meaning that at this storing cycle the ball was within the square meter represented

by that cell. Besides this increment, an auxiliary variable, called positionsCount in increased by

1 unit. This variable represents the total number of positions stored, enabling calculation of per-

centages of occupation for each cell in regards to the whole data structure and, when necessary, is

publicly available to be accessed by interested parties.

6.1.4.2.8 Shot Detection

Shot detection is, naturally, observed through Event Driven processes. The initial entry point

for the algorithm is the detection of a kick. As mentioned in the opening section of this chapter, a

kick is distinct from a shot. A kick is the act of touching the ball causing it to move (.ie walking

with the ball in front), and a shot is the intentional act of kicking the ball with strength through

the movement of the leg. So, as the aforementioned, the entry point for a shot is detected through

the event explained in equation 6.5 above. After this initial detection, we start the process to

detected if this kick is intended to be a shot or not. One of the first conditions to classify it has
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a shot is the magnitude of the ball’s velocity change, which can be set on the configuration file.

Once this is confirmed, the final step is to determine whether the ball’s final position is within the

goal attacking area of the attacker’s team or if its trajectory as crossed it. This attacking area was

separated into two distinct zones, the zone considered to be a shot on target and the zone for when

that is not true (see figure 6.17).

Figure 6.17: Representation of the attacking zones of the right team

The zone that triggers a shot on target is delimited by a gap variable configurable through the

file as well, shotDistanceTrigger, that sets a goal side distance gap and a goal forward distance

gap. Any final position of the ball that is to either side of the maximum goal side distance gap and

within the forward distance, is considered a shot off-target.

Now, for clear reasons, we cannot simply see if the ball’s final position is within each of the

zones and attribute the shot type directly, because the ball could end up behind the goal line outside

of the on-target y-delimited area but still have been a shot on-target (see figure 6.18).

So we conclude that is necessary to analyse the ball trajectory instead of its final position. A

general approach to determine if the ball has passed through the on-target zone is to check if its

trajectory vector intersects any of its delimiting lines on the x-axis. A few examples of trajectory

vectors are described in figure 6.19 to better illustrate all possible shooting scenarios and that this

approach is suitable to all.

In all cases, even if the ball trajectory itself does not, the ball’s trajectory vector will always

cross at least one of the x-axis lines that delimit the area. So the calculations are always done with

the trajectory vector and not the ball trajectory it self.

In the end, all that is needed for the calculations are the ball’s trajectory vector and zone’s

delimiting imaginary lines. The former is obtained (with the help of the BallEstimator class)

through the simple subtraction of the ball’s final position to the shot origin (shooter’s position):

~Tball = FinalPball−Pplayer (6.10)
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Figure 6.18: Representation of the case of an shot on-target that ends outside in the off-target
y-coordinate space

The FinalPball is calculated by the BallEstimator class and retrieved through the estimatedFi-

nalPos function family described previously, that returns an estimated position for the ball in the

future. The latter are obtained through the configuration file variables and their addition to the

field’s real dimensions.

Once we have this information, we check if the ball’s trajectory vector, ~T , has a point that

intersects any of the x-axis lines that delimit the zone. The y-coordinate of that point, I, at a given

LINE_X is calculated by:

Iy = Playery +(~Ty · (LINE_X−Playerx) ·~Tx) (6.11)

If the intersection’s point y coordinate, Iy, is within the [−y,y] of the zone, then it is inside the

on-target zone. If not, we repeat the same process for the goal line’s x (L/2 or −L/2 depending

on the attacking team’s side) and do the same interval check.

At the end, a shot is considered either a SHOT or a SHOT_TARGET and a new Statistic is cre-

ated and assigned the resulting type, involved player and respective team. It is then added to the

statistics Map under the corresponding key, and a notification is sent to all observers with the cre-

ated object in a call to the StatisticsParserListener interface’s method shotStartReceived(player).

If at any point during a shot, the ball’s trajectory was to suffer a major deviation from the

originally calculated one (hit another player), the shot would be declared as over and the shotSto-

pReceived() method would be called.

6.1.4.2.9 Dribble Detection

Same as the Shot Detection discussed above, a dribble detection has the entry point of a kick

however, the rest of the process is quite simpler. On each kick detection that has not been classified
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Figure 6.19: Representation of the possible shooting scenarios

as a shot the following validation is made:

Dribble(t+1)← kick(t)∧Player(t).id = Player(t+1).id∧Player(t).team= Player(t+1).team

(6.12)

If the above is true, then an internal variable that keeps track of the number of touches is

incremented and the dribbleStartReceived(player) method is triggered to notify the event start. If

it is false, the counter is reset, the reverse method is called, dribbleStopReceived() and a dribble is

attributed to the previously detected player if the following logic holds truth:

DribblePlayer← ballTouches≥MIN_DRIBBLE_TOUCHES ∧

dribbleDistance≥MIN_DRIBBLE_DISTANCE
(6.13)

Both MIN_DRIBBLE_TOUCHES and MIN_DRIBBLE_DISTANCE are configurable con-

stants and correspond to the minimum number of touches a player must have on the ball without

losing possession and the minimum distance between the starting and finishing points to be con-

sidered a dribble, respectively.

Finally, to record this event, a new Statistic object is created with type DRIBBLE and the

player and team attributes are set. It is then added to the current Parser’s Map under the "dribble"

key, ready to be accessed.

6.1.5 StatisticsOverlay Class

The StatisticsOverlay class’s job is to coordinate the rendering of its own overlay on the RoboViz’s

UI, when enabled. The default setting is loaded from the configuration where it can be set as true
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or false to be either enabled or disabled, respectively. Additionally, a menu item was added to be

controlled via the UI itself with its unique shortcut keybind as well (see figure 6.20).

Figure 6.20: Menu item for toggling the Statistics overlay

6.1.5.1 StatisticsPanel

In order to facilitate and organize the structure of commonly displayed information type a Statis-

ticsPanel class was created in order to take an object-oriented approach on information manipula-

tion. The class is very basic and its purpose is to only keep an list of titles and values, that will be

rendered on screen (see figure 6.21).

Figure 6.21: Representation of the StatisticsPanel class

Instances of this class are dynamically built at run-time whenever panel-type information is to

be displayed on the screen. Each title added to the list corresponds to a line in the final render of

the panel. Respectively, for each title entry on list, there is an entry on the values list. This entry

is a tuple, where the first value corresponds to the left team and the second value to the right team.

A visual representation of the final rendered panel structured content can be seen in figure 6.22.

6.1.5.2 State Management

Since all statistic collection and notification and handled by the StatisticsParser class, the Statis-

ticsOverlay class is only responsible for managing which graphics to display and for how long.
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Figure 6.22: Representation of the StatisticsPanel class

All panels start off disabled, except for the heat map that is always on or off depending on

the initial configuration read from the file. For the remaining available panels, all are controlled

by the reception of the respective notifications. The exception to this rule are the possession panel

and graph that is controlled internally, being triggered every 60 seconds (configurable).

To keep track of whether the panels should be displayed or ignored when the trigger is re-

ceived, a Map is kept storing the last display time of each panel. This panel is initialized with keys

relating to all possible receivable events and a value of 0 (see figure 6.23).

Figure 6.23: Representation of the StatisticsPanel class’s Map of panel times

As the game progresses, events are received through the StatisticsParserListener interface’s

methods and, if no current panel is being displayed at the time, the correct panel type is updated

according to the event type description - "foul", "dribble", etc - and its Map time renewed (see al-

gorithm 6) only if the last render of that panel type happened at least PANEL_TIME_OFF seconds

ago (also configurable). The only exception to this behaviour is, as stated above, the possession

statistics that are not triggered by the StatisticsParser itself but by the overlay class (since it is not

an event but a constant collection).
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Algorithm 6: Panel update logic
Input: panelType

1 if panelVisible then
2 return;

end
3 panelLastTime←getMapKey(panelType.name)

4 if CURRENT_TIME - panelLastTime > PANEL_TIME_OFF then
5 setMapKey(panelType.name,CURRENT _T IME)

6 currentPanel ←panelType

end

After a few minutes of gameplay, the timings Map will have a few more entries with updated

times (see figure 6.24).

Figure 6.24: Representation of the StatisticsPanel class’s Map of panel times after a few seconds
of gameplay

6.1.5.3 Panel Rendering

Once the entirety of the panel state management is processed, the class has all the necessary

information to rendered the correct arrangement of panels, always-on or not. Bellow is briefly

explained how each statistical gadget is put together and rendered on screen.

6.1.5.3.1 Timeline

The Timeline gadget is a type of always on or off gadget, that is defined through the configura-

tion file at startup. This gadget is the simplest of the collection and at its core it is a simple polygon

of ever-increasing width that also renders events at specific points in time (see figure 6.25).

Figure 6.25: Timeline gadget on a running game with goals

With the aid of the drawBox method, a fixed background is drawn at a given point (x,y) with

a specific width calculated as a factor of the total width of the view-port. On top of this, another
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rectangle is rendered width a different height and at the middle of its background. It makes use of

the same drawBox function but, this time, the width parameter passed into is calculated by:

Linewidth =
time

TOTAL_GAME_T IME
·Timelinewidth (6.14)

The same applies to the events that are rendered within the timeline. At this version of this

gadget, only goal events are considered and rendered. Being an always-on gadget, it continu-

ously collects the goal statistics from the StatisticsParser (usually not very numerous) and, cy-

cling through them, renders each one at the top or bottom of the timeline (depending on the team

associated with that statistic) and at the x calculated with the same equation 6.14.

The symbol used to identify the goal event is a simple GL_POINT of the same color of the

team that has scored and a fixed size with a larger point behind it to give the idea of a border.

6.1.5.3.2 Heat Map

The Heat Map gadget is also a type of always on or off gadget, that is defined through the

configuration file at startup. It makes use of the ball’s position matrix that the StatisticsParser

is constantly updating and manipulates a copy of that information to achieve its individual re-

quirements. The first manipulation is the calculation of the occupation percentage values on each

of the matrix’s cells by dividing each cell’s position count value by the total value of positions

recorded (all accessible on the StatisticsParser class publicly). The end result is a matrix of the

same dimensions with decimal ratios on each cell (see figure 6.26).

Figure 6.26: Representation of a calculated occupation percentage matrix

After generation the ratio’s matrix, each cell is rendered on screen in the same order they

appear in the matrix, from top to bottom and left to right. This is abstracted through a looped

called to a drawBox3f method that receives 4 parameters and sets the four vertices of a box defined

by them, similar to the examples in section 3 (see 6.2). Those parameters define the bottom left

vertex of each cell and its width and height, which are given by diving the real field dimensions
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by the number of cells along each of those axis (the rendering happens within a projection view of

the same dimensions of the field that is then placed on the screen resized).

1 static void drawBox3f(GL2 gl, float x, float z, float w, float h)

2 {

3 gl.glVertex3f(x, 1, z);

4 gl.glVertex3f(x + w, 1, z);

5 gl.glVertex3f(x + w, 1, z + h);

6 gl.glVertex3f(x, 1, z + h);

7 }

Listing 6.2: Draw box method

Finally, in order to output a consistent coloring to simulate a normal heat map behaviour (a

stronger color indicates more usage and a fainter one indicates low usage), a normalization of each

ratio was done in relation to the highest ratio recorded (see 6.15). This way, the highest calculated

ratio in the matrix will have the strongest color (full opacity, α = 1) and consequent values will

have a non-linear opacity variation based on the highest up to the lowest value that will be always

capped at a certain visible opacity level, DESIRED_MIN.

α = (1−DESIRED_MIN)/(MAX_RAT IO−MIN_RAT IO) · ratio +

1− ((1−DESIRED_MIN)/(MAX_RAT IO−MIN_RAT IO))∗MAX_RAT IO
(6.15)

The final result can be seen in figure 6.27. In this example, we can conclude that the right team

had a more offensive game with larger presence of the ball in their opponent’s side. Also, the peak

of the game’s dispute was around the mid-field circle.

Figure 6.27: Heat Map output at the final stages of a match

6.1.5.3.3 Statistical Panel
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Every time a panel type is defined on the class (not null) a StatisticsPanel object is updated

with the respective information. In order to keep this approach extensible, each panel type can

show any collection of statistics gathered from the StatisticsParser collection. For example, in the

event of a corner, the "Corner" title is added to the panel object, as well as the corner count for

each team (see 7).

Algorithm 7: Panel build for a corner event reception

1 panel ←createPanel()

2 switch panelType do
3 ...

4 case CORNER do
5 cornerStatistics←StatisticsParser.get(”corner”)

6 panel.titles[0]←"corner"

7 panel.values[0]

←[getLe f tTeamCount(cornerStatistics),getRightTeamCount(cornerStatistics)]
end

8 ...

end

If in the future someone was to added new calculated or direct statistics that directly related

to corners and wanted to show them at a corner event, the specific panel build could be changed

to reflect their needs. An hypothetical example can be seen in figure 8 where besides the corner

counts for each team we also added the foul count. The same is true for any type of received event

and for any statistical information that can be retrieved from the StatisticsParser instance.
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Algorithm 8: Panel build for an hypothetical new corner event reception

1 panel ←createPanel()

2 switch panelType do
3 ...

4 case CORNER do
5 cornerStatistics←StatisticsParser.get(”corner”)

6 panel.titles[0]←"corner"

7 panel.values[0]

←[getLe f tTeamCount(cornerStatistics),getRightTeamCount(cornerStatistics)]

8 f oulStatistics←StatisticsParser.get(” f oul”)

9 panel.titles[1]←"foul"

10 panel.values[1]

←[getLe f tTeamCount( f oulStatistics),getRightTeamCount( f oulStatistics)]
end

11 ...

end

With the panel object correctly instantiated with all necessary information, its rendering is

quite simple. Firstly, the team names are rendered on top, to be able to tell which values correspond

to which team. This is done by modifying an existing method called drawTeamNames that was

used to display the team names bar along with other information like goal count and game time.

All the unnecessary information was removed and only the team’s names remained.

To render the statistical information, the first step is to obtain the number of lines to be ren-

dered, which corresponds to the length of the titles property of the panel object. This allows us to

dynamically render a box of enough height to hold all the values inside enabling for any custom

case of event statistics’ count. This box is rendered from a fixed point, (x, y) that sets the top left

corner of it. From there, three more vertices are set with the set width of the box and the calculated

eight (see 6.3).

1 int numberOfLines = panel.getTitles().size();

2

3 gl.glBegin(GL2.GL_QUADS);

4 gl.glColor4fv(panelColor, 0);

5 gl.glVertex2fv(new float[] {x, y}, 0);

6 gl.glVertex2fv(new float[] {x + w, y}, 0);

7 gl.glVertex2fv(new float[] {x + w, y - (numberOfLines + 0.5f) * LINE_HEIGHT},

0);

8 gl.glVertex2fv(new float[] {x, y - (numberOfLines + 0.5f) * LINE_HEIGHT}, 0);

Listing 6.3: Draw dynamic panel box

Then, on top of the rendered background box, the text is written in each line by decreasing

the y coordinate of the text renderer by the same LINE_HEIGHT used to generate the background

dimensions. To keep the text centered within each title cell and not aligned left, the calculation
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for each cell’s center point is done and then the text renderer pointer is set back exactly half the

width of the text so that, when it is finally rendered, it will be perfectly centered. This is a common

approach to center text and the implementation can be see in 6.4.

1 for (int i = 0; i < panel.getTitles().size(); i++) {

2 tr2.draw(panel.getTitles().get(i), x + w / 2 - (int) tr2.getBounds(panel.

getTitles().get(i)).getWidth() / 2,

3 LINE_Y);

4 tr2.draw(panel.getValues().get(i).get(0), x + Y_PAD, LINE_Y);

5 tr2.draw(panel.getValues().get(i).get(1),

6 x + w - Y_PAD - (int) tr2.getBounds(panel.getValues().get(i).get(1)).

getWidth(), LINE_Y);

7 LINE_Y -= (LINE_HEIGHT);

8 }

Listing 6.4: Render the statistical information text centered

At the end of the process, the generated panel can be seen has in figure 6.28.

Figure 6.28: Foul panel at a late stage of a match

6.1.5.3.4 Possession Graph

The possession graph, contrary to the heat map, is not an always-on gadget but, as the heat

map, it is configurable to be displayed or not in the configuration file. It is displayed only when the

possession panel is also shown on screen and it is enabled by configuration. The goal of this graph

is to depict the possession variation of each team through the match. The approach taken was of

a disjunctive area chart, since the possession values of each team are ways the complementary

of the other. In figure 6.29 we can see the concept in action. As the game starts, the team that

handled the kick-off (blue team, in this case) has a possession of 100% at the start then, as the

game progresses we can visually understand how the possession evolved over time for each of

the teams. The white line at the middle of the graph indicates exactly that, the middle point of

possession, the 50% mark.

The idea behind this gadget was fairly simple but its implementation was trickier. In the end,

since it is a disjunctive graph, we only need information about one of the sides, since the other

since in the complementary value of the former so it was arbitrarily chosen to always construct the

graph based on the left team.

This gadget has in itself two backgrounds, the main background in which the title and the

graph are inserted into, and the actual graph background. As before, the backgrounds are rendered
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Figure 6.29: Possession graph at a late stage of a match

with the aid of the drawBox method that sets a rectangle’s vertices based on the starting point

and a given width and height. After the outer box is rendered, an inner box follows. In this case,

this inner box is rendered with the color of the right team and filled in its entirety so, the graph

background itself is a rectangle of the right team’s color. At this stage, if we were to render the

gadget on screen, it would be nothing more than two colored rectangles (see figure 6.30).

Figure 6.30: Possession graph at render stage 1

At this stage, what is left now is the rendering of the left team possession stats over time. This

is done by looping in pairs the possession statistics that are stored in the StatisticsParser class. For

each record in this collected list, a colored quad is rendered. Its vertices are a connection between

itself and the previously rendered quad.

Both bottom vertices of the quad always have a set height (y) of 0 relative to the graph window,

being flush with its base. Regarding their x, it is the result of the addition of the graph’s base left

x coordinate with the statistic time converted to a scale of the graph’s width (see 6.16).

Quadx = Graphx +
statistictime

TOTAL_GAME_T IME
·Graphwidth (6.16)
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The calculation of its height follows exactly the same approach but this time it is a factor of

the possession value on the graph’s height scale (see 6.17).

Quady = Graphy + statisticpossession ·Graphheight (6.17)

With this, four vertices are set with the left pair being the right pair of the previous quad

rendered, and the right pair being the results of the above calculations (see figure 6.31). The result

is a list of polygons that together form a complete area chart.

Figure 6.31: Possession graph polygon calculation illustration

6.1.6 LiveDirectorCamera Class

The LiveDirectorCamera class’s goal is to manage the Roboviz’s camera manipulation, when

enabled. The default setting of the RoboViz application is a fixed camera that points to the center

of the pitch and can be controlled by a user with the mouse and arrows keys. There is also another

type of camera that can be toggle through the Spacebar or an item on the View menu and that

follows the ball at a fixed angled around the pitch. To activate the new camera director developed

through this work, a menu item was added to be controlled via the UI itself with its unique shortcut

keybind as well (see figure 6.32).

6.1.6.1 State Management

As with the other camera controllers available at RoboViz, the first step to activate a given con-

troller is to set it to enabled (and disable the current active one). Once activated, all state is con-

trolled by itself and the reception of the triggered events sent through the StatisticsParserListener

interface.

At initialization, a list of camera positions is set and, as of this initial version, their virtual

position is layed out as seen in figure 6.33. As you can see, there are only two named camera types

- CAM_1 and CAM_2 - but three overall cameras on the pitch. That is why they were referred

to as virtual cameras since, internally, there is a list of configurations that define dynamic camera

positions based on team side, not duplicating the configuration but simply altering its values. In the
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Figure 6.32: Menu item for toggling the LiveDirector

end, most of the work is done by the CAM_1 and the remaining, secondary, cameras are triggered

at set pieces, in this case at the goal kick play mode.

Figure 6.33: Virtual positions of the set cameras

At the reception of an event, the respective method is called on the LiveDirectorCamera’s side

and specific actions are taken. As the StatisticsParser class, there are essentially two types of

state updates that alter the behaviour of the LiveDirectorCamera class, the direct and the calcu-

lated events. Direct events in this camera module are responsible only for updating the current

camera configuration, meaning that they change the current camera view between the previously

set configuration values. These are used to switch into the set pieces cameras like the goal kick

mentioned before, and to revert back to the main camera feed once the play mode as been reset.

Calculated events influence the live behaviour of the main camera by altering its intended filming

target causing several other adjustments.

Once the correct camera type has been set for the current situation, the class’s update() func-

tion, called constantly by its parent, RoboViz’s Viewer class, will handle the respective update

behaviour expected for said type.
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As for this version of the work, bellow will only be explained the control of the LIVE feed cam-

era (CAM_1) since the set pieces are static cameras that, once set, do not possess much dynamic

control.

6.1.6.2 Camera Control

The LIVE camera feed works in its essence, as a target tracker meaning that, given a target, it

controls it self to keep that target on sight, according to some possible preferences. The levels of

control manipulated in order to achieve the desired results are the camera’s pan, tilt and zoom. A

combination of these three aspects gives a real life feel to the resulting broadcast.

6.1.6.2.1 Target Tracking

The LiveDirectorCamera maintains an internal variable where it stores it target, which is ini-

tially set to be the ball object. Once the target is set, the update cycle for the LIVE starts.

The camera’s pan is a direct interpretation of the target’s position. Given that the camera is

fixed at the center line, the pan angle, θ , is the angle between the center line across the field and

the imaginary line at the field’s plane that connects the camera to its target (see figure 6.34).

Figure 6.34: Diagram of the pan angle calculation

Since we can directly calculate all the necessary distances between the objects, the angle is

obtain through the simplest trigonometric principles (6.18), with the distance between camera and

target, d, being the direct length of the difference of their positional vectors.

θpan = 180+asin(
targetx− camerax

d
) (6.18)

The same is true for the camera’s tilt. The tilt angle can also be achieve through the application

of the same trigonometric principles as for the pan (see figure 6.35). However, a fraction of the

resulting angle is applied to dampen the tilt change.
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Figure 6.35: Diagram of the tilt angle calculation

θtilt =−30+acos(
targety− cameray

d
) ·0.01 (6.19)

The last step in order to successfully track a target is to keep it at a distance where it is easily

discernible and to achieve that we need to zoom into the target. To achieve this is a fluid man-

ner an interesting approach was taken. Keeping the same rotation calculations mentioned above,

new position calculations are also made. The camera "flies" towards the target up to the set max-

imum distance (configurable) away from it, the same while moving backwards. The movement

is achieved through moving the camera along a ray cast from the target to the camera’s initial

position. An unitary vector is created along that cast vector and multiplied by the desired distance

giving us at the end a vector that originates at the target, points at the original camera position and

has a specific length. The final desired position for the camera is obtained by adding the resulting

vector to the target’s original position (see figure 6.36) and moving the camera to that point.

Figure 6.36: Diagram of the camera’s position calculation

Once all the necessary transformations have been calculated, they must be applied to the cam-

era. If they would to be applied directly, the movement would be abrupt not contributing for a

smooth visualization experience nor resembling a real life broadcast feed. To smooth the transi-

tion between calculated transformations, the current positions of the camera are "morphed" into

the new ones using a lerp function (see 6.20). Since the update() function runs continuously, this

works for a smooth transition between consecutive transforms.

~Pt+1 = ~Pf inal +((~Pt − ~Pf inal)× scale) (6.20)

At any point in time, t+1, the vector for position or rotation is given by the sum of the desired

final vector, Pf inal with the difference between itself and the current vector in place, Pt , times a
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factor, scale, that determines how fast the transition should occur.

Whenever the target is the ball, this scale factor is calculated based on its speed to give a

more fluid transition given the changes in acceleration that a ball experiences during any type of

movement. This way the camera is able to closely mimic a real camera operator that follows with

the camera behind the ball at the start of a shot (slow reaction time) and then adjusts towards the

end of the movement. This is achieved by applying a factor, V EL_SCALE_FACTOR, to the real

velocity of the ball on screen, screenVelball and using its difference from the unitary value (see

6.21).

scale = 1− screenVelball×V EL_SCALE_FACTOR (6.21)

If at the update cycle, the target’s instance is of a Player, the behaviour changes slightly. The

scale factor becomes fixed to provide a more snappy camera movement to follow the player actions

without delay, and the maximum distance kept by the camera is decreased to give a close up shot

of the player that was marked to be targeted (meaning that he is performing an important action).

6.1.6.2.2 Event Handling

By also implementing the StatisticsParserListener interface and having registered itself as a

observer to the StatisticsParser events, the LiveDirectorCamera will be aware of relevant actions

on the pitch.

For each of the implemented camera configurations for set pieces, when a set piece event, such

as a goal kick, is received, the camera type is set to its respective type directly influencing which

method is run on the update() function. These are the Direct or Discrete events type.

When it comes to the Calculated or Continuous events type a different approach is taken.

Continuous events do not have a single point in time when they occur, instead, as the name indi-

cates, they have a start and an end point, giving us a time frame of its occurrence. This is true for

the event driven statistics calculated by the StatisticsParser, such as the dribble detection and the

shot detection. For cases like this, the are start and stop triggers that indicate each respective start

and end points in time and, for each, the LiveCameraDirector class implements the updates it sees

fit in order to manipulate the camera feed accordingly.

At the reception of a dribble start event, the class’s target is set to be the player that was

identified as the dribbler and the maximum distance of the camera from its target is decreased.

At this point, the camera focus on the player and gets closer to provide a better coverage of its

actions. The camera resumes its normal broadcast if one of two events are detected, either the

dribble has finished (the player has lost the ball) or a shot was detected and the emphasis must be

placed on the ball. These events are translated through the implemented interface by the methods

dribbleStopReceived and shotStartReceived(), respectively. Both resume the target has being the

ball, the main difference is on the maximum distance that is set, since a dribble stop means a

normal resume of the game (wider field of view of the pitch) and a shot start requires a close up

on the ball to follow its trajectory into the back of the net (hopefully).
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6.2 Conclusions

In this chapter, the development of this project’s work was described by explaining thoroughly

the implemented architectural decisions and each of its moving parts. The StatisticsParser class

was presented, where all the heavy-lifting of the data processing is accomplished, enabling the

abstraction of the statistics collection process and its access to any party interested either in the

collected data or the detection of events. Afterwards, an explanation of how the relevant data was

rendered in a structured manner on the UI was made and then how the camera control was devel-

oped in order to provide a more realist soccer broadcast feel by being aware of the match’s events.

It was a solution that in the end involved several fields of study such as: graphical computation,

cinematography, programming design patterns, camera control and data structures.

The next chapter illustrates the results obtained by external evaluations of the developed soft-

ware described in this chapter.



Chapter 7

Result Validation Analysis

In order to validate the possible contributions of this work to the RoboCup community and to

the RoboViz application overall, an anonymous online questionnaire was created and distributed

to individuals of very distinct fields and to general population. The questionnaire had an initial

personal characterization question (see 7.1.1) in order to identify the level of familiarity of the

participant regarding the concepts around this work and was then divided into two main sections

with several questions each, a section dedicated to validation of the StatisticsOverlay class and

another on the LiveDirectorCamera class (see 7.1.2). Within each question there was either an

image or a video where a specific feature was presented by ways of demonstrating the RoboViz

application before and after the development of this work, and then the participant was asked to

rate several statements from 1 to 5, where 1 would indicate that the participant strongly preferred

the original version of the visualizer, reveal a neutral position and 5 expresses a strong preference

for the newly developed version.

7.1 Survey

This section breaks down the survey developed to evaluate the developed modules. The survey

can be found here: https://forms.gle/hZjideWB7FFTP6Zm9.

7.1.1 Participant Characterization Questions

Participant characterization questions are identified through this work by Cn, they evaluate the

participant’s knowledge with a given concept from 1 to 5 (see 7.1).

7.1.2 Classification Questions

The survey questions, identified by Qn, were single questions accompanied by a video or image

and several statements which the participant evaluated from 1 to 5.
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Table 7.1: Participant Characterization Questions

ID Question
C1 Soccer Concepts
C2 Video Games Concepts
C3 Multi-agent Systems
C4 Robotics
C5 The RoboCup initiative
C6 RoboCup Soccer Simulation League 3D

7.1.3 Q1 - Timeline

7.1.3.1 Question

"A timeline overlay was created on the bottom right corner of the visualizer to display the current

game completion through an animated bar and goal occurrences."

7.1.3.2 Statements

- Readability of the current game completion

- Readability of the game event’s time

- Realistic broadcast

7.1.4 Q2 - Heatmap

7.1.4.1 Question

"A heatmap overlay was created on top of the existing positions overlay of the visualizer to display

the frequency of the ball position over time, giving a sense for the most played zones."

7.1.4.2 Statements

- Readability of the game flow

- Readability of the game events in time

- Realistic broadcast

- Info on team performance

7.1.5 Q3 - Statistics Panel

7.1.5.1 Question

"Similarly to live soccer, a statistics panel was created to be displayed on the top right corner with

the stats on a given event that was triggered, like dribbles for example."
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7.1.5.2 Statements

- Readability of the game flow

- Readability of the game events in time

- Realistic broadcast

- Info on team behaviour

7.1.6 Q4 - Possession Graph

7.1.6.1 Question

"Periodically, an overview of the teams’ ball possession and possession history is shown through

a common percentage number side-by-side and a history graph."

7.1.6.2 Statements

- Readability of the game flow

- Readability of the team’s performance over time

- Realistic broadcast

7.1.7 Q5 - New Cameras

7.1.7.1 Question

"The new cameras have a smoother animation and the realistic feel of an anchored camera at the

midfield line, has in real-life soccer."

7.1.7.2 Statements

- Readability of the game flow

- Realistic broadcast

- Smooth visualization experience

7.1.8 Q6 - Set Cameras

7.1.8.1 Question

"The new set of cameras have specific positions for distinct stopped ball events."
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7.1.8.2 Statements

- Readability of the game flow

- Realistic broadcast

- Smooth visualization experience

7.1.9 Q7 - Timely Possession

7.1.9.1 Question

"Periodically, the possession stats are shown with access to history. Also, the camera follows to

the side of the pitch like the real spider-cameras hang from the top."

7.1.9.2 Statements

- Readability of the game flow

- Realistic broadcast

- Smooth visualization experience

- Info on team behaviour

7.1.10 Q8 - Player Follow

7.1.10.1 Question

"Events like dribbles and shot preparations trigger emphasis on the player. At the trigger of an

event (like fouls) the respective overlay is triggered to give access to a count of events. A shot is

more visible on camera."

7.1.10.2 Statements

- Readability of the game flow

- Realistic broadcast

- Smooth visualization experience

- Info on team behaviour

- Oversight of close-enconters between players

- Better viewing angle for shots
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7.1.11 Q9 - Dangerous Plays

7.1.11.1 Question

"Dangerous plays around the goal with opponent’s possession get extra attention from the camera’s

director, zooming in on 1-on-1 and out on inwards movements."

7.1.11.2 Statements

- Readability of the game flow

- Realistic broadcast

- Smooth visualization experience

- Better viewing angle for plays

- More exciting experience

7.2 Analysis

As of now, the questionnaire as a total of 49 validated answers collected through a span of 15 days.

We will first analyze the level of knowledge within each specific topic related to this thesis work,

to better understand our participants.

Figure 7.1: Topic classification analysis

Figure 7.1 represents the results of the characterization of the participants. The overall re-

spondent has a good level of knowledge on the fields of robotics and multi-agent systems and the

vast majority has a strong degree of familiarity with either soccer or video-games concepts. How-

ever, a small part of the participants had a sufficient level of awareness of the RoboCup initiative

and more specifically of its Soccer Simulation League 3D. This was somewhat expected due to

the sheer difference in the amount of emails gathered between general population and RoboCup

participants to send the form.

Since all questions had the same numerical scale ordered from 1 to 5 in the direction of a strong

preference for the original version to a strong preference to the new version, the overall success of
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the work developed, measured by the validation questionnaire, is given by a larger total count of

the levels 4 and 5 of the responses, which directly state a preference for this work’s improvements.

The pie-chart represented in figure 7.2 shows a clear preference for the newly improved RoboViz

visualization experience by these two levels (4 and 5) collectively accounting for 74.6% of the

total questionnaire responses.

Figure 7.2: Overall classification of the developed solution

The same can be done to individually evaluate the StatisticsOverlay and LiveDirectorCamera

independent of each other. This gives a better sense for the distribution of the results enabling

to detect which module contributed more for the positive overall classification of the developed

solution.

Figure 7.3: Individual classification of the a) StatisticsOverlay and the b) LiveCameraDirector

Figure 7.3 shows the individual results for the StatisticsOverlay class and the LiveDirector-

Camera, respectively. From the analysis we can see some interesting results, such as a confirma-

tion that both of the developed modules have nearly the same classification percentages for the

rates of 1, 2 and 3, meaning that neither of the modules had a substantial impact on the negative

ratings received however, the contrary is not true. The camera improvements received a far better

evaluation compared directly to the overlay module on the same rating level of 5, the highest.

Having almost exactly the same percentage values in the sum of the classifications of rating levels
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4 and 5 (around 70% combined), the difference relies only on their distribution among the levels,

leaving the camera module to take the win with the most level 5 classifications.

7.3 Spearman’s Rank-Order Correlation

In order to better understand the relationship between the participant’s characterization and its in-

fluence on each question’s classification, a Spearman’s rank-order correlation analysis was made

on the data. This allows the measurement of statistical dependence between the classification of

the two ordinal variables, participant’s characterization question classification and module evalu-

ation’s question classification.

Our goal is to analyse whether there is some degree of correlation between a given character-

istic of the participant and the given answers per topic, either negative or positive, meaning that

our research question is 2-tailed. In this case, our null and alternative hypotheses, H0 and Ha,

respectively, can be defined, in terms of the population correlation, ρs, as:

H0 : ρs = 0 (7.1)

Ha : ρs 6= 0 (7.2)

To compute the test statistic, t− value, we calculated the Spearman’s correlation coefficient,

rs, using the defined equation for non-distinct integer ranks, with (see 7.3):

rs =
cov(rgX ,rgy)

σrgX σrgY

(7.3)

where cov(rgX ,rgy) is the covariance of the rank variables, and σrgX and σrgY are their standard

deviations. After the computation of the correlation coefficient we calculate t − value with the

resulting rs and the number of ranks, n (see 7.4):

t =

√
n−2
1− r2

s
(7.4)

It is then calculated the proof value, p− value, by constructing a t distribution with n− 2

degrees of freedom. The p− value will be the area under the resulting T distribution that is more

extreme than the t− value observed previously, in the direction of the alternative hypotheses, Ha.

Finally, the resulting p− value is considered against the alpha level, α , considered to be 0.05.

If p < α , we reject the null hypothesis and can state that there is evidence of a relationship be-

tween that specific participant’s characteristic classification and the question classification, the

correlation is significant.

Since each individual question has two or more statements that can be classified from 1 to

5, the analysis was made with the overall classification of the question, which is the sum of all
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statement’s given grade. Then, the aforementioned process was executed for each characterization

question global score.

Table 7.2 show the results of the correlation analysis made on the survey anwers. Marked by

yellow are the p− values bellow the alpha level and in green are the correlation coefficient con-

sidered relevant by the consequent rejection of the null hypothesis by p−value. The results show

that there are some significant positive correlations for four of the five characterization questions,

signifying that the higher the familiarity of that given concept, the better the developed modules

are classified. They also show no evidence of significant negative correlations which indicates that

survey participants more experienced in this project’s main concepts does not result in a lower

classification of the improvements.

Table 7.2: Spearman’s Rank Order Correlation Results

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
C1 rs 0.030 0.205 0.200 0.298 0.204 -0.099 0.283 0.267 0.086

p− value 0.840 0.157 0.169 0.038 0.159 0.499 0.049 0.064 0.557
C2 rs 0.205 0.075 0.318 0.238 0.469 -0.066 0.345 0.275 0.061

p− value 0.157 0.609 0.026 0.100 0.001 0.653 0.015 0.056 0.677
C3 rs 0.138 0.361 0.066 0.218 0.108 -0.109 0.218 0.053 -0.061

p− value 0.346 0.011 0.650 0.133 0.461 0.455 0.132 0.717 0.680
C4 rs 0.140 0.228 -0.121 0.075 -0.076 -0.159 0.114 -0.145 -0.074

p− value 0.338 0.115 0.408 0.609 0.602 0.275 0.434 0.320 0.614
C5 rs 0.301 0.420 0.020 0.176 0.075 0.077 0.295 0.093 0.201

p− value 0.035 0.003 0.892 0.227 0.606 0.600 0.039 0.527 0.166
C6 rs 0.364 0.446 0.052 0.186 0.095 0.033 0.275 0.080 0.171

p− value 0.010 0.001 0.724 0.201 0.517 0.822 0.056 0.584 0.239



Chapter 8

Conclusions and Future Work

Besides all the conclusions presented at the end of each chapter, we can say much more on the basis

of this work. The RoboCup initiative has taken a huge role in the pursuing of the development

of Artificial Intelligence and has gained such a level of following that each organized event has

attendances of several thousands of people yearly. It promotes the creation of a plethora of projects

where each individually stimulates the work in many other areas, creating a sort of a beneficial

vicious cycle. The RoboViz project, where this work was built upon, is a great example of that

large array of fields that are interconnected by the simulation of robotic soccer. It encompasses

the fields of Multi-agent Systems, Distributed Artificial Intelligence, Graphical Computation and

Cinematography that work together towards the goal of simulating a realistic broadcast of a top-

level robotic soccer match.

The development of this work was done with the objective to contribute to that main goal also

and tried to improve the broadcast level of the current simulation system by enabling it to react

to unique events resulting from the behaviour of the agents individually. Many concepts from

the fields of Graphical Computation, Cinematography and Event-Driven Systems were applied

to work together in enhancing that visualization experience. On top of that, the development was

also done with modern software development theory practices in mind, resulting in an extension of

code that can easily be implemented onto the original project and further extended without much

integration effort.

Overall, it is felt that the main objectives and requisites for this work were generally achieved

with success with the final result being an improved visualizer for the RoboCup Soccer Simulation

3D League which provides a more realistic real-time broadcast with relevant on-screen displays

that provide information served just-in-time, serving as a base for future work to continuously take

the visualization to the next level.

8.1 Future Work

The main goal after the conclusion of this work, is to make it available for all of the RoboCup

community to use. To make that happen, the source code of this project would need to be integrated

105



106 Conclusions and Future Work

into the official version of RoboViz which is achieved by cleaning up the code and submitting a

pull request to the repository after completing the development. After the implementation of the

version described in this work and given the accessible modularity of the final developed solution,

there is still room for improvement of current features as well as for the development of new

ones. As time goes by, new ideas and relevant features will come to mind that would improve

even further the visualization experience. As of now, there are a few that can be listed for future

development:

1. Implementation of a configuration overlay that would enable to configure certain aspects at

run-time.

2. Implementation of a report generation at the end of a match with the collected statistics.

3. Improvement over the current live feed camera orientation regarding which is the attacking

team.

4. Further development of the responsive behaviour between screen size regarding the over-

lays.

5. Implementation of the detection of an attack attempt to be listed as a statistic.

6. Implementation of the detection of successfull and failed passes.

7. Further development of the heat map to optionally show an individual player’s field occu-

pation.

8. Implementation of a overlay that shows team formation over time.

Taking these future development ideas into account and many more that are yet to come,

this extension of the current RoboViz application could become much more powerful in terms

of providing the researches with insightful information at the same time as it produces a more

realistic viewing experience to the spectators.
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