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Resumo

A aprendizagem de máquina, um subconjunto da inteligência artificial, tem sido aplicada

para automatizar tarefas usualmente feitas pelo Homem, assim como para desenvolver outras

novas, com o objetivo de melhorar a tecnologia existente ou construir mais. As vantagens

de automatizar máquinas ou processos são a redução de custos, a poupança de tempo, e o

acrescento de valor às comunidades.

Neste trabalho, a aprendizagem de máquina é aplicada em particular às redes sem fios. O

objetivo principal é contribuir para o aumento da automatização do WiBACK, uma tecnologia

que permite a criação de redes de comunicação sem fios com ligações de longa distância. As redes

sem fios apresentam algumas falhas durante o seu funcionamento, o que é esperado, tendo em

conta não só a capacidade limitada das ligações, mas também as condições f́ısicas que interferem

com a transmissão.

Perante isso, este trabalho foca-se na importância da relação entre erros (i.e., falhas) nas

ligações, bem como as respetivas causas e soluções, procurando entender tal relação e observando

se a classificação das causas pode ser feita de forma eficaz sem considerar as classes de erros,

mas também se a classificação das soluções pode ser feita de forma eficaz sem considerar as

classes de erros e causas. A classificação é feita apenas com variáveis numéricas como variáveis

independentes e considera árvores de decisão, os k -vizinhos mais próximos e máquinas vetor de

suporte.

O trabalho realizado mostra que as máquinas vetor de suporte são mais eficazes na classificação

quando comparadas às árvores de decisão e aos k -vizinhos mais próximos.

Palavras chave: classificação, ligações em redes sem fios, aprendizagem de máquina, erros

em ligações de redes sem fios, redes sem fios, análise de componentes principais
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Abstract

Machine learning, a subfield of artificial intelligence, has been widely applied to automatize

tasks usually performed by humans and to develop new tasks, to improve existent technology or

build more. Advantages of automatizing machines or processes are reducing costs, saving time,

and offer added value to communities.

In this work, machine learning is applied in particular to wireless networks. The main goal is

to contribute to further automate WiBACK, a technology which allows the creation of wireless

communication networks over high distance links. Wireless networks present faults during its

function, which is expected, regarding not only the limited capacity of links but also the physical

conditions that interfere with the transmission.

This work focuses on the importance of the relation between errors (i.e., fails) in links, and

respective causes and solutions. The aim is to understand this relation and if the classification of

causes can be accurate without considering classes of errors, but also if the classification of fixes

can be accurate without considering classes of errors and causes. The classification is performed

only with numerical variables as input, and considers decision trees, k -nearest neighbors, and

support vector machines.

The realized work shows that support vector machines are more effective in the classification

when compared to decision trees and k -nearest neighbors.

Key works: classification, wireless links, machine learning, links errors, wireless networks,

principal components analysis
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Chapter 1.

Introduction

Machine Learning (ML) is a subfield of artificial intelligence that has been applied to several

areas to reduce costs, save time, and add value to communities’ daily life. It consists of a set of

mathematical models and algorithms that learn patterns existent in data, and try to generalize

captured aspects to new data sets, classifying, predicting, or grouping the data. It automatizes

processes and has the potential to reduce human error and solve high complexity problems.

Today, these algorithms constitute an advantage to the processing, analysis, and usage of huge

amounts of data produced, which is possible by the increasing computational power available.

One of the areas ML has been applied to is networking [1].

However, the application of ML to networking is still relatively incipient, so it is yet possible

to explore different perspectives of data analysis and to implement new and more robust tools.

The application case of this dissertation is the Wireless Backhaul Technology (WiBACK1),

designed by the Fraunhofer Institute for Applied Information Technology (Fraunhofer FIT2).

WiBACK is a wireless software and hardware solution with directed radio technology that

provides a communication backhaul in challenged areas (i.e., rural, sparse population, without

expert readily available, digital illiteracy).

It is functioning in the Zambezia province of northern Mozambique (Mocuba and Alto

Molócué), Santiago Island in Cape Verde (Cidade Velha, Salineiro, and Calabaceiro), Maio

Island in Cape Verde (Porto Inglês city and Barreiro, Figueira da Horta, Morro, Calheta,

and Morrinho villages), Nordhorn in Germany, Brunneck in Italy, Uganda, near Branquilla in

Colombia, Manizales in Colombia, and Bunda in Tanzania.

It was designed to be self-configurable and self-managed, taking care of its setup and operation

1WiBACK. 2020. URL: https://www.wiback.org/

2Fraunhofer FIT. 2020. URL: https://www.fit.fraunhofer.de/

1
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of the network, to increase reliability and performance. However, as it is very often installed in

places where there are no people with needed abilities to perform technical interventions, the

goal is to further automate its management. As WiBACK is installed in places where there are

no experts to fix fails, it would be advantageous for the respective communities if the software

could identify problems, their causes and fixes, and fix them automatically.

1.1 Problem characterization and motivation

Several works in the literature are focused on predicting errors of wireless and wired networks,

but, in general, respective causes are not even identified, and the importance of the relationship

between errors, causes, and fixes is not presented. However, Alzamly’s [2, 3] work, developed

in Fraunhofer FIT, shows the importance of this relation. One of the goals of this thesis is to

understand such relation. Other is to conclude not only if the classification of causes is accurate

without considering classes of errors, but also if the classification of fixes is accurate without

considering classes of errors and causes. This idea of the classification using only numerical

variables, and the chosen ML algorithms, are the main differences between this thesis and the

work done in Fraunhofer FIT, regarding the same software and the same problem.

To contribute to the further automatization of WiBACK, the challenge of identifying each

occurrence of a link error, its cause, and a solution arises, such as to classify it with ML

algorithms. To this end, first, it was necessary to study the behavior of WiBACK’s networks,

understand it, and create a set of errors, causes, and solutions. Then, the labeled data set had

to be analyzed, and the ML algorithms created.

This dissertation is based on the WiBACK technology produced in Fraunhofer FIT, and

considers as a starting point Alzamly’s work (understanding of WiBACK networks links

performance and the sets of errors, causes, and fixes [2, 3]). The work was developed using the

open-source scikit-learn [4] library of Python for ML and data processing.
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1.2 Aims and objectives

The main goal of this dissertation is to evaluate the performance and viability of ML methods

to further automatize the WiBACK system. To achieve that, the following specific goals were

defined:

• To learn which are the factors that affect the performance of the operation of wireless

links, in particular for WiBACK networks;

• To understand numerical variables that constitute data sets, and its relation to wireless,

in particular with WiBACK network’s performance;

• To understand the behavior of ML algorithms with data sets provided, evaluating their

performance with different evaluation metrics (accuracy, balanced accuracy, and weighed

F1-score);

• To perform the classification of errors, causes, and solutions independently, regarding that

a part of each data set have an exact correspondence between errors, causes, and solutions,

and compare results;

• To update, improve, and compare the work already done in the automation of WiBACK,

identifying which are the best approaches;

• To understand the requirements needed to perform the classification of samples online

using WiBACK’s software, instead of relying on offline approaches.

1.3 Contributions

Scientific contributions of this dissertation are important for the study and improvement of

wireless networks, and for testing and evaluating known ML classification algorithms. Main

contributions are:

• Calculation of the Euclidean distance between points of each class in each principal
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component, to conclude which are the principal components that best separate the data

by its classes of errors, causes, and fixes.

• Training different ML classification algorithms with different sets of numerical variables.

This was done because it was not clear which was the best set of numerical variables to

consider as input, regarding not just the relation between them, but also the wireless

context, in which some of values are less accurate, because they are estimated.

• Analysis of the existent relation between errors, causes, and fixes. Most of the work

regarding classification found in the literature focuses on binary problems. Besides, it does

not present the relation between these three categorical variables. One of the objectives of

this analysis was to conclude whether by classifying errors, causes, and fixes separately,

the relation between them was maintained in misclassified instances. The classification of

errors, causes, and solutions was performed separately (in three independent procedures)

because of the existent relation between them. This relation could introduce redundancy

in the classification of causes (because they depend on errors) and fixes (because they

depend on errors and causes) if it was not done separately. This is the main difference

between this work and Alzamly’s [3].

This work also has originated two papers. The first one shows and analyzes results of the

classification with the first data set provided (Evaluation of Machine Learning Algorithms for

Automated Management of Wireless Links). The second one compares the classification of

errors, causes, and fixes done separately with Alzamly’s methodology [3], with the last data

set collected in Fraunhofer FIT (Applying Machine Learning Methods to Classify Wireless Link

Errors, their Causes and Solutions). The first one was accepted in the 21st International

Conference on Intelligent Data Engineering and Automated Learning - IDEAL 2020. The second

one was accepted in IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications.
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1.4 Fraunhofer Portugal AICOS

This thesis was developed at Fraunhofer Portugal AICOS3, which belongs to Associação

Fraunhofer Portugal Research (Fraunhofer Portugal), a non-profit private association founded by

Fraunhofer Gesellschaft, the largest organization for applied research in Europe. The thesis was

a collaboration between Fraunhofer AICOS and Fraunhofer FIT, within the scope of researching

artificial intelligence and, particularly, ML techniques to make a wireless network autonomous.

Fraunhofer Portugal aims on the creation of scientific knowledge capable of generating added

value to its clients and partners, exploring technology innovations oriented towards economic

growth, the social well-being, and the improvement of the quality of life of its end-users. It

promotes and coordinates the cooperation between its research centers, other research institutions

and Industry partners, with the objective of undertaking applied research of direct utility to

private and public enterprises, and of wide benefit to society. This constitutes a wide benefit to

society and it is currently materialized through the Research Center for Assistive Information

and Communication Solutions – AICOS (Fraunhofer AICOS). AICOS’ mission is to create

Remarkable Technology, Easy to Use. As a leading partner for industry, AICOS creates applied

research solutions capable of contributing to the market success of its clients’ products and

services by focusing on the value for their customers.

User analysis in different environments, computer vision, cognitive and decision support

systems, and the internet of things are fields of study in this research center. It steers its

activities towards applied research and its clients’ success, with whom it establishes close

cooperation for the development of innovative, intuitive, accessible and ubiquitous technological

solutions. The main innovation themes are cognitive connected solutions, digital farming,

accountable artificial intelligence, decentralized health technology, and living and ageing with

data.

Fraunhofer Portugal is motivated to pursuit a dynamic equilibrium between application-

oriented fundamental research, enabling to work ahead on solutions to problems that will not

become acutely relevant to industry and society until five or ten years from now. Simultaneously,

3Fraunhofer Portugal. 2020. URL: https://www.aicos.fraunhofer.pt/en/home.html
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Fraunhofer Portugal is developing innovative research and development projects, solving

industry’s pressing problems. In other words, the research work is oriented toward concrete

applications and results.

1.5 Document structure

Chapter 2 presents considerations about errors, causes, and fixes made in some works, a ML

overview, the application of ML classification algorithms to networks context and previous

work with ML and WiBACK. In chapter 3, various data sets that were used for classification

tasks, the selection and description of numerical variables, categorical variables (errors, causes,

and fixes), and the technique applied to balance classes of data sets are presented. Chapter

4 describes PCA, and ML classification algorithms used in this work, namely Decision Trees

(DTs), K -nearest Neighbors (KNN), and Support Vector Machines (SVM). Chapter 5 presents

and discusses the experimental results. The main conclusions are drawn in chapter 6, where

topics for future work are also proposed.



Chapter 2.

Machine learning for network assistance

The main goal of this chapter is to present ML techniques, mostly within the context of

network ML classification applications, highlighting differences of our work, in which such

techniques were applied in the scope of the WiBACK technology. The goal is also to describe

challenges of ML in the practical context of improving network functioning.

First, it is presented a section regarding errors, causes, and fixes. Then, a ML overview,

applications for networking, and the previous application of ML for WiBACK.

2.1 Networks: errors, causes, and fixes

The main causing factor of IEEE 802.11 wireless networks performance decreasing is detected

interference [5, 6]. It includes interference of the transmitter node with its receiver in a different

channel, external Wireless Local Area Network (WLAN) interference, radar, among others [2, 3,

5, 6, 7]. The solution set presented in this thesis to reduce the interference effects includes to

change the channel and to increase the channel power. In the case of radio interference, the

communication range information is not enough for the user to conclude if the link performance

is accurate, because the interference range information could be higher. Besides, the transmission

quality from a node A to a node B is not necessarily equal to the quality from B to A.

The effect of a jammer in the transmitter power level and the number of received packets [7]

has been studied. A possible solution to deal with the interference is to use non-overlapping

channels, which implies a minimal distance of 25MHz [7]. However, in multi-hop mesh networks,

which typically involve the transmitter and receptor at the same node in different channels, the

interference still affects the communication [8].

7
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WiBACK follows a centralized Software-Defined Networking (SDN)-like approach regarding

spectrum allocation and physical topology forming while minimizing internal and external

interference, but they still exist. So, consequences of detected interference had also been studied

in WiBACK networks, showing that there are packet losses even when the link is established

and calibrated [2]. The interference in WiBACK was classified as WLAN or non-WLAN. The

former could be due to another antenna, two WLAN devices interfering with each other, or

two different links using the same channel and overlapping in the Fresnel zone [9]. The latter,

detected on the transmitter or the receiver side, can be explained by obstacles causing signal

diffraction or reflection, weather conditions (such as rain, fog, or snow), a high electricity voltage

near the antenna, among others. As it is presented in this thesis, WLAN and non-WLAN

interference cause between 25% and 46.9% of WiBACK network studied errors.

Anomaly detection can be performed with a classifier for each node of the network, and

anomalies can be classified based on the percentage of the data that is abnormal [10]. So, it

is possible to have different orders of anomalies [10]: i) partial data measurements at a node

are anomalous; ii) all data measurements at a node are anomalous; and iii) data from a set

of nodes is anomalous. Classifying faults in data such as that is different from the data sets

labeling procedure that is presented in this thesis because labels correspond to problems such

as an occupied channel or a weak link, that are not based on the number of abnormal data

measurements. Besides, anomalies can be local or global, taking into account that they can be

detected in one or several nodes [11], but this was also not the vision that has originated labels

of data sets analyzed in this thesis.

There is a proposed approach with SVM to detect both types of anomalies without having

higher energy costs, contrarily to the usual, where it is too expensive to detect global anomalies

[11].

SVM were applied for fault detection, where one of the classes was named as a random fault,

which corresponded to an instant error, a data perturbation for an instant [12]. It is similar to

the unknown class in data sets provided for this dissertation, in the sense that it is not a specific

known error. On the other hand, faults can be classified based on two aspects: the period since

the fault begins until it is solved or the locality [13]. Authors [13] have classified faults into
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persistent, which occurred until a fault recovery, and transient, which were temporary faults

due to network congestion, weather conditions, among others. Some of the variables considered

for the classification performed in this thesis are related to the airtime, but there is not a label

based specifically on that neither in the locality.

Another problem with wireless networks is packet loss. One of the Transmission Control

Protocol (TCP) functions is congestion control [14]. TCP was initially used in wired networks,

so it identifies losses as being caused by the buffer overflow [1]. However, with the appearance

of wireless networks, the cause for packet loss is not unique anymore [1]. Also regarding TCP, it

could be useful to give insight about the system performance.

The performance of wireless networks is highly affected by external factors and interference,

which causes errors links, and, consequently, packet loss [1]. The fact that TCP does not

distinguish the cause of the error results in a reduction of links throughput [15]. Lost and

corrupt packets lead to packet retransmission, which can cause packet losses in the transmitter

interface [2], link throughput decreasing due to a transmission rate higher than the optimal [15],

and network delay [16]. To maximize the throughput of the link, one possible solution is to

dynamically adjust the transmission rate of each channel according to its conditions [15].

ML techniques were proposed to classify causes, and their implementation resulted in higher

throughput, and reduction of the energy consumption, the packet loss and the end-to-end delay

[14, 17]. This is an example that shows the importance of identifying not only problems of

networks and their solutions, but also their causes.

2.2 Machine learning overview

ML, a subfield of artificial intelligence, could be seen as a set of algorithms that learn from

examples of a training data set [18].

Learning methods can be divided into three groups: supervised, unsupervised, and semi-supervised

[19]. In the first case, the data is labeled, and the machine assigns one label to each instance.

In the second, the data is unlabeled and is grouped into clusters based on variables values

and samples correlation. In a semi-supervised approach, the input is a mix between labeled
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and unlabeled data, and the output will be grouped according to existing categories and

considering identified structures on unlabeled instances. Supervised tasks split into regression

and classification, if the target variable is numerical continuous or categorical, respectively [20].

The data sets used in this thesis were labeled. Labels correspond to errors of WiBACK, their

causes, and possible solutions. Therefore, supervised learning algorithms were considered for

data modeling purposes. However, the unsupervised and semi-supervised ML and regression

models have also been applied to networking.

One of the reasons that have been motivated the scientific community and companies to

apply ML instead of traditional methods is the need to analyze large amounts of complex data,

extracting relevant information, suggesting, and predicting [21].

Before the application of classification algorithms, there is a need to perform variable selection,

since some of them could introduce redundant information. The correlation between input

variables is one of the criteria to select variables considered in the classification algorithms [22],

particularly the Spearman’s correlation [23], which is distribution-free, meaning that there are

no assumptions related to variables distribution [24].

Overfitting is related to the use of more features than necessary (and models or parameters

more complex than necessary) [25]. While training the data, there is a risk of the classifier

collecting several details instead of finding the best general predictive rule, which might lead to

a wrong choice of the objective function to minimize the prediction error on training [25].

Grid Search (GS) [26] runs the algorithms with all possible combinations of hyperparameters

specified and gives the combination of optimal parameters that lead to the lowest error.

The importance of GS to chose hyperparameters of SVM was shown in [27] with 10-fold

Cross-Validation (CV).

With k -CV, the algorithm is trained and tested k times, by splitting the entire data set k times

in training and test sets. The hold-out technique is more computational costly [28]. However, it

is preferred when the goal is the comparison of algorithms, because the latter does not regard

the variance of the training set, and CV results in an unbiased estimate of the expected value of

the training set prediction error [28]. The importance of the CV when the goal is to compare

supervised classification algorithms is related to the statistical power of the cross-validated t
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test, and tests were performed with 10 cross-validated t test [29].

Combining hyperparameter tuning strategies (e.g., GS) with appropriate validation approaches

(e.g., CV) may be adequate to reduce bias and avoid overfitting [30].

Learning systems provide an approach for labeling the data set [31]. In these systems, actions

taken to solve the network’s problems are observed and saved [31]. Then, the data set for

training was labeled with the saved solutions [31]. This is thoroughly different from the labeling

procedure performed to create data sets provided for this thesis, done based in the numerical

variables and on the observation from network behavior [3].

Thinking of an online approach where the algorithm acts by itself, even if the error percentage

is too low, one error could cause high costs in the network (e.g, if the network changes the

channel without being needed [1]). Another concern is that fixes could not be worth it if they

take too long to be implemented (e.g, to change the channel). On the other hand, the algorithm

must be capable to adapt to different data distribution, avoiding overfitting. There is also the

need to retrain the model every time network characteristics change [32]. There is a concern of

collecting data in different periods, and different locals to train algorithms with more data [33,

34]. Data sets provided for this thesis were collected in different periods and different networks

were studied [2].

2.3 Applications for networking

There is a survey [1] that initially has motivated this thesis, where the application of ML to

several fields of networking, and the existent gap between these two scientific areas were shown.

Traffic classification, packet loss classification, queue management, predicting fault, detecting

fault, practicality, and applicability of ML, were topics explored related to this thesis. Regarding

the challenges of applying ML to networking [1], there is the unfamiliarity with the possible

actions to take in the software, the uncertainty of how much time fixes will take in practice,

the entire knowledge of the network that the user might have to apply algorithms in the most

contextualized way possible, and memory costs.

Networks and ML have other limitations that difficult the development of ML solutions [32],
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such as i) data and network conditions, that can change over time and space, which may imply

a non-efficient retraining of algorithms; ii) data collection, that can be costly; iii) learning

errors, that can imply high costs, as aforementioned; iv) when the networks are created, their

components are included by human fixed knowledge at that time, not an engineering model;

v) it is not easy to design a protocol or an architecture autonomously; vi) improvements in

the congestion control protocol are needed to create an algorithm that fit different network

states; vii) reliable, scalable, and fast simulators are needed, as feasible real-time ML techniques,

which is not always easy to develop because of possible delays; and viii) some ML algorithms

(like the case of reinforcement learning) might introduce complexity, some assume that the

data distribution does not change, which most of the times is not verified, and others are not

interpretable.

Another issue is the increase of dynamic traffic as a consequence of the Internet of things

devices, tactile Internet, virtual and augmented reality, among others [1]. Some operators fail to

afford Capital Expenditure (CAPEX) costs related to the growth of technology and data [1].

WiBACK was designed with features that reduce the CAPEX and Operational Expenditure

(OPEX) costs.

SDN, that facilitates the usability and programming of the software, and allows to overcome

difficulties of the traditional Internet Protocol (IP), also makes easier the application of ML in

this context [35]. For example, a SDN controller can probe the existence of an anomaly at a

faster rate [35].

Traffic classification includes several applications, such as security and intrusion detection,

service or application differentiation, performance monitoring, among others [1]. Classification

of data into non-Peer-2-Peer (P2P) or P2P (among several types of P2P) is an example of

traffic classification [36]. WiBACK networks form larger multi-hop topologies based on P2P

and Point-to-Multipoint technologies 1.

Traffic classification with SDN seems also to be promising [37]. SDN flexibility and programmability

allow the classification to be performed at the controller, making the classifier configuration

easy [37].

1The WiBACKTM Technology in a Nutshell. Fraunhofer FIT. 2019. URL: https://www.

wiback.org/content/dam/wiback/en/documents/WiBACK-in-a-nutshell.pdf
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However, there is still a need to make networks receptive to these new ML-based approaches,

not just by solving protocol incompatibilities, but also because networks have several devices and

they are closed to new approaches. Besides, hardware switch classifiers might have capability

limitations, and software switch classifiers might be slow. On the other hand, some statistical

models might have delays, affecting the performance of the ML network application. If there is

a lack of information when a packet is received, a delay will also occur.

The flow classification into applications could be based on the IP address and a TCP port [38],

statistical application signatures [39] (e.g, mean packet size or mean flow duration), or statistical

flow features [33, 40] (e.g, the number of actual packets in one direction). In the work developed

in this thesis, bidirectional numerical variables like the number of packets received or the link

capacity were considered (but the goal was not to perform classification into applications, it

was to classify according to errors, causes, and fixes).

According to a survey [41] performed in the scope of self-organizing cellular networks, ML

algorithms were evaluated based on several factors, such as the training time, the complexity,

the scalability, the accuracy, among others. Particularly, KNN have been classified as low

training time, complexity and scalability, and fair accuracy. SVM have been classified as fair

training time and scalability, and high complexity and accuracy. DTs have been classified as low

training time, complexity and accuracy, and high scalability. WiBACK has self-management, a

self-organized control plane, self-healing, self-configuration, and self-optimization 2.

Another possible approach is to apply adaptive ML, which dynamically finds the necessary

features to detect anomaly behavior, regarding known and unknown attacks [42]. A feature

selection was performed to reduce the amount of data, and attributes considered were related

to signal, channel, and packet information (as numerical variables considered in this thesis) [42].

After the clarification of which is the normal and abnormal behavior, the classifier based on

distance metrics achieved a false positive rate of 0.1209%, and more than 99% detection rate

[42].

As aforementioned, the network data might change over time and local, but it can also change

with the transmission direction or the chosen channel (as it was also verified in WiBACK [2]).

2WiBACK-System. Fraunhofer FIT. 2019. URL: https://www.wiback.org/content/dam/

wiback/en/documents/WiBACK-SystemenPB08 − 04 − 2019.pdf
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So, after traffic monitoring to clarify which was the normal behavior, a classifier for frame loss

can be trained in one channel, and tested at another one, achieving a false alarm rate smaller

than 0.1% and a detection rate higher than 99% [43].

Malicious and benign packet drops may be confused [44]. Besides, for example, interference

and signal loss, benign drops are induced by the network due to nodes mobility, traffic density or

type, channel, and fading conditions [44]. To distinguish malicious from benign drops, two ML

techniques were applied [44]. As SVM require high computational resources to be implemented

in real-time, the Fisher Discriminant Analysis was performed to decide if and when algorithms

need to be retrained [44]. A possible approach is to train the algorithm offline, and retrain it in

real-time with incremental SVM [44], including or deleting patterns instead of performing a

complete training process.

Incremental SVM were also applied in online learning for autonomous intrusion detection to

speed up the training phase [45]. DTs and KNN were applied to improve the congestion control

on wireless networks, with the area under the curve between 0.9424 and 0.9541 [46].

The cell outage issue, common in self-organized networks, is usually done in a non-automated

fashion during hours or days to solve, which has brought the necessity to apply ML techniques

[41]. KNN as a global detection approach achieved accuracy up to 94% when compared to a

local-outlier-factor based technique as a local approach [47]. SVM with GS and CV achieved an

area under the curve between 0.7 and 0.86 [48], and a DT was also capable of detecting most of

the outage events [49].

To have a system with an intellectual conscience, able to think, learn, and remember, the use

of cognitive networks with artificial intelligence has been studied [50, 51]. It would be a scenario

where the machine discovers automatically something wrong, and fixes it also automatically,

or perceives why it can not be fixed [50, 51]. The cognitive system would be compatible with

incomplete, inconsistent, or malicious information, and would work with new services that did

not exist in the moment of the network creation [50, 51]. The authors [50, 51] also mentioned

that, when the goal is to solve network faults, it is necessary to first understand what is the

problem and the respective cause. This is the base of data sets provided for this thesis.

The elements of the networks can not make intelligent adaptations, and this is one of the
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reasons to implement cognitive networks, particularly in wireless [52]. Cognitive networks base

their actions on observations of the network behavior with the cooperation of machine learning

techniques [52]. A cognitive network should know what is happening in the network, to improve

the end-to-end performance, and it should be self-configuring, self-optimizing, self-healing, and

self-protecting [53]. While these type of networks are used to improve the performance and

automate the software management, they are very complex [52] and they bring some challenges

(e.g., the spectrum allocation [54, 55]).

The ETSI ZSM (Zero-touch network and Service Management)3 group was formed with

the goal to accelerate the definition of the end-to-end architecture and solutions required for

end-to-end automation of network and service management. The ultimate automation target is

to enable largely autonomous networks which will be driven by high-level policies and rules; these

networks will be capable of self-configuration, self-monitoring, self-healing and self-optimization

without further human intervention.

This literature review has shown that while classification algorithms are known and applied

in the networking context for several endings, the study of the relationship between errors,

causes, and fixes seems not to be in-depth. Regarding the issue of which numerical features

are necessary to perform the classification, there are authors concerned about it. Respecting a

practical approach, where the network is capable of acting by itself (and, e.g, fix its fails) there

are several constraints to solve to join networking and ML efficiently. Cognitive networks seem

to be a valid and practical approach that has been applied.

2.4 Machine learning for WiBACK

As aforementioned, the behavior of WiBACK networks, in Germany, has been studied [2],

and ML algorithms have been applied to the collected data [3].

Before applying ML techniques to processed and organized data sets, there was a need to

create new tools in WiBACK, originating a new software version (WiBACK 4.3.4). Numerical

values were related to failures happening with wireless links, creating a set of errors, their causes,

3ETSI ZSM. https://www.etsi.org/technologies/zero-touch-network-service-management
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and possible solutions.

The first thing to know was that if a failure happens, WiBACK generates an indicator that is

saved in a log file. So, logs contain the information needed. However, there were issues to solve,

because the information was not properly identified neither preselected regarding the context of

identifying and fixing wireless links errors.

One of the troubles was that WiBACK reports much more information than needed for

Alzamly [2] to create data sets. Regarding the set of indicators generated by WiBACK, the ones

considered for logs analysis were i) link-status, when the Packet Error Indicator (PEI) was higher

than 10% or if there were no packets received; ii) link modified, when the configuration link

(such as modulation, capacity, channel, or transmitter power) changed; iii) detected interference,

the main packet loss cause; iv) radar with a certain degree of certainty if three or more radar

events were detected; and v) transmitter and receiver queue overrun if packets in the output or

input queue started do being dropped.

Regarding link-status, there are three stages. First, the link is unassigned, then it is established,

and finally, the calibration step, where the link configuration (range, modulation, coding,

transmitter power, capacity, and latency) is determined and originates an uncalibrated or an

assigned link.

The PEI is computed by WiBACK every one second and it is an important metric because

it gives an idea of the end-to-end system performance, including the transmitter, the receiver,

and the path between them. Queue overrun indicators are essential, because they indicate if

some buffer exceeded its capacity. A receiver queue overrun happens when the transmitter

interface is faster than the receiver, and it respects to the input queue. A transmitter queue

overrun happens when there is an attempt of sending too many packets simultaneously, or if the

network is already congested, and it respects to the output queue. In other words, a transmitter

overrun means that packets are being routed by the processor faster than the interface can send

them. Alzamly [2] has considered the receiver as the peer interface and focused on transmitter

overruns.

As aforementioned, the link-status indicator was reported only if the PEI was higher than 10%

or if there were no packets received, but it was always needed because it contains information
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like the signal quality, airtime, or transmitter power, which was useful in the network study.

Now, the software reports a message before and another after the transmitted queue overrun

indicator. So, the user can determine if the link-status and the queue overrun are correlated, to

understand the cause of links faults.

There was another case where information was missing, because the transmission rate was

reported only instantaneously. It would be useful to have a rate over time. Still related to the

fact that WiBACK reports events per second, the same error had several events related to it,

but they were reported separately with no identification. So, one of the tools implemented in

the software was to include number tags in logs, where logs with the same tag belong to the

same event.

One of the main issues that Alzamly [2] fixed was the data synchronization. The reporting

period, as well as the interval of messages from different nodes, was 1000 milliseconds, but they

were pushed towards the controller with a constant interval shift, as monitoring clocks were not

synchronized. Additionally, delay variations could occur when the message was pushed towards

the controller. For example, if there was a time shift of 500 milliseconds, 50% of the sender data

would overlap with the current time interval of the receiver, while the remaining 50% would be

beyond this interval (they would fall within the next time interval). Hence, processing must

be deferred until the next message is received so that the complete data set for the reported

transmitter queue overrun can be prepared.

Having most of the issues solved, and the software updated with new respective tools, Alzamly

[2] performed six case studies before applying ML techniques, to study the network behavior,

which consisted of 16 links (or 8 bidirectional links) and 16 nodes. Studies were performed with

data from different periods.

The first case study has focused on the analysis of the PEI, the signal quality, the detected

interference, and the relation between them, to understand the cause for the high verified values

of PEI.

In general, the PER was high, but the signal quality was very good, so the reason for errors

could not be the poor quality of the received signal. Analyzing the detected interference, Alzamly

[2] concluded that several radios were interfering with the transmission channel, causing the
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high PEI. The proposed fix in this case was to recalibrate the link. It was also verified an abrupt

signal quality decrease in one link, suggesting that its configuration has changed, but there was

no sufficient information to understand why. Note that when the number of packets increased,

it was expected that the PEI also increased, so this value could not be analyzed isolated.

The second case study regarded radar events, queue overrun indicators, links going down, and

log analysis of the signal quality. These four issues were analyzed separately.

A lot of radar events in different nodes and times were captured. To be sure that reported

events in different nodes corresponded to the same source, it was needed to check the hardware

timestamp and verify if the events corresponded to the same nanosecond. Regarding the

proposed solution, it was to change the channel.

Several transmitted overrun events were collected, and sometimes the interface tried to send

100 or 1000 packets at a time, but it was not enough to conclude if the buffer capacity (320

packets) was exceeded. As aforementioned, the WiBACK does not provide information about a

periodic transmission rate. So, to try to explain overrun events, the existence of interference

was investigated. Interference was detected, which could have caused these events.

Concerning links that went down, Alzamly [2] stated that there was a need to check the

source and the destination interfaces. Note that, at the time that Alzamly [2] started his work,

in some cases, information that was added after software updates was missing in WiBACK logs.

Concerning links quality, it was verified that sometimes the signal quality decreased significantly,

which has resulted in a low PEI and, consequently, reduced the packet received rate.

The signal strength mainly depends on the transmitter power, but the registered value for

the power was zero, which was unlikely to be real because the link was active (even if it was

uncalibrated). There was a bug with transmitter power values, that was then fixed. The most

likely cause for the link quality decrease was the decrease of the transmitter power, but it

could have also resulted from WLAN interference. Interfering sources were detected and it was

verified that the quality of their signals was also decreasing. A possible reason was antenna

connectors and cables being wet because of the rain. It can happen, because i) due to aging,

the plastic cover of an antenna might leak; ii) due to damage, the plastic cover of an antenna

might leak; iii) the connector is not fully water-proof, especially if not mounted correctly; and
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iv) a cold connector (from an air-conditioned room) mounted at tropical humidity might collect

condensing water. Figure 2.1 shows an example of a WiBACK node wrongly placed.

Figure 2.1: Example of a WiBACK node wrongly placed (connectors are facing
upward and the water will leak over time).

The third case constitutes an open problem. It was verified that the signal quality of the

WiBACK channel and interfering sources decreased, but there was no problem with the hardware.

The cause was unlikely to be radar events because the problem remained for eighteen hours and

the radar pulses are not constant. Probably there was a third external source causing packet

losses and a possible solution was to change the channel, but it was not certain since the cause

was unknown.

In the fourth case study, several indicators of radar frequency were reported. In some cases,

the WiBACK certainty of these events, which was supposed to increase with the increase in

the number of events detected, has reached 100%, but it was not enough to conclude about

the radar presence. As it was not possible to check all timestamps (in nanoseconds), it was

investigated if there were matches between radar pulses in different interfaces, but none were

found, which was inconclusive. The solution proposed was to change the channel, avoiding these

radar pulses.

The fifth case study focused on the transmitted queue overruns indicators reported. For

eleven hours, packets sent were being all dropped, but the PEI was equal to zero because as no

packets were being received, there were no corrupt packets. Now, if the packet received rate is

zero, an overrun indicator will be also reported. Proceeding with the overrun analysis, the goal

was to find the cause for these events.
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The interface did not send too many packets when overruns occurred, and there was no

information about the packet rate in a period. The Random Early Drop (RED) represents the

number of dropped packets when the average queue size is higher than a threshold, but RED

respects to the unmanaged traffic, not to the managed traffic by WiBACK. So, RED is not

always useful. Regarding the link capacity, it was computed with 100% uncertainty, deciding

if the cause for overruns was a reduced link capacity was not possible. Interference and radar

events were not found.

A decrease of the transmitted power could have caused the overrun, but this value remained

zero for nineteen hours (which was unlikely to be correct, as aforementioned in the second case

study). The hardware may be deteriorated but, in this case, the error cause was unknown.

The study proceeded, but this time, there was a decrease in the transmitted power and link

capacity. The decrease in the link capacity could have caused congestion, but the packet received

rate was low compared with the capacity. Besides, overruns have stopped after the capacity has

decreased, and the decrease in the transmitted power was not also a consequence of the capacity

change. Wireless interference was detected just after overruns have occurred. One more time,

the cause for these events was unknown.

Proceeding with the last analysis, with a high RED caused by a high average queue size,

which has resulted in dropped packets. The link capacity seemed to be normal, so the problem

was in the interface, and the suggestion was to reduce the transmission rate to decrease or annul

the number of dropped packets. Besides, wireless interference was detected once more.

The last case study has also focused on the transmitted queue overrun problem. The wireless

interference was probably the cause for packet loss, which has resulted in many retransmissions.

The suggestion was newly to do a link calibration.

Note that the number of errors and logs, in the studied periods, changed with the channel

and interface. Besides, the same link could have different behavior in two directions.

After these detailed studies, Alzamly [2] has created the first data set. There were cases where

the information provided was inconsistent (for example, having a transmission rate higher than

the link capacity). To delete these instances before classification processes, the data set was

carefully and manually verified (in fact, it was needed in all data sets collected).
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Gaps detected in the state of the art were the analysis and classification of logs in near

real-time, and the study of the correlation between events collected from different sources in

real-time. So, a framework to read Syslog files, analyze the data, correlate events, and perform

the classification with the relevant data for the classification was created.

Table 2.1 shows a first version of sets of errors, causes, and fixes. Some of the more recent

data sets include an unknown error and an unknown fix.

Table 2.1: First sets of errors, causes, and fixes [3].

Table 2.2 shows a description of causes, relating each one of them with numerical variables

that characterize them, based on presented case studies.
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Table 2.2: Relation between causes and numerical variables [3].

The majority of the numerical data needed for data sets was collected from txQueueOverrun,

linkStatus, and alienTraffic messages and the remaining numerical variables were computed

based on mathematical formulas with the values extracted from messages. The data set created

for Alzamly’s work [3] had fifty-four numerical variables that have passed through a selection

process.

Initially, fewer variables were being considered, particularly there was no discrimination related

to the direction of the data transmission. The last updates include new formulas, and more

variables, considering links bidirectionality. Ten of the fifty-four variables were selected.

Having sets of errors, causes and fixes, and numerical variables selected, the data set was

labeled based on decision rules (and manual labeling). Some variables have been added over

time, and decision rules have changed many times.

Algorithms were trained with GS 10-CV, considering 75% of the data for training and 25%

to test. ML algorithms chosen were a DT and two neural networks with a hidden layer, five

neurons, and a logistic activation function.
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The classification procedure differs from the one that is presented in this thesis. In Alzamly’s

work [3], errors were classified first with a neural network considering numerical variables as

input. Then, causes were classified also with a neural network, considering as input, not just

numerical variables, but also classes of errors that constitute the output of the first network.

Finally, considering the same classes of errors, and classes of causes in the output layer of the

second network, fixes were classified with a DT. The accuracy obtained was 99% with neural

networks and 100% with the DT.

This procedure was performed in an offline mode, but it was created a framework for the

classification in near real-time. The concept of near real-time, referred several times, was justified

with messages with a delay of two seconds. This framework includes an option for the user

to chose between retrain the algorithms or perform the classification with the trained ones. If

there is missing data, which may occur rarely, and if the interface is highly busy with overrun

events, the classification is not performed.

There are also frameworks for non-artificial intelligence-based tasks to i) detect radar events

in near real-time; ii) offline analysis of link recalibration, radar events, and WLAN interference

events; iii) check the correlation between transmitted queue overrun errors and radar events

offline; and iv) evaluation of the radar indicator.

To evaluate the first framework, two tests were performed. The first one was in a controlled

environment regarding an indoor WiBACK network of four nodes and the controller. Traffic

was generated to create link overload because of self-cell overload and occupied channel because

of foreign WLAN interference. The second one was performed in an uncontrolled environment

with a link of an outdoor network, which was suffering from transmitted queue overrun events.

Traffic was generated in different periods, and instances were classified into occupied channel

because of non-WLAN interference (mostly on the sender interface) and weak link because of a

bad received signal.

Alzamly [3] has considered test results promising and acceptable, respectively. Alzamly [3]

concluded that one of the advantages of applying ML algorithms instead of traditional techniques

was to update the training set (and also include new classes) without the need to reprogram the

software. However, it is needed to understand if suggested fixes will not cause more failures or
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downtimes in the network.

This thesis considers Alzamly’s work [2, 3] as a starting point, as aforementioned. However,

there are differences.

Starting with numerical variables, the criteria used to select them were different, hence sets of

variables considered for training were also different. In this thesis, not just original unbalanced

data sets, but also balanced ones were considered to test if it improved classification results.

A PCA transformation of the data was also considered, not just to reduce the space

dimensionality and test algorithms with the principal components as input, but also an

exploratory study. A discussion is made on which components better represented the data

visually regarding the classes of errors, causes, and fixes.

ML algorithms considered were also different. In [3], neural networks and a DT were applied

and, in this thesis, DTs, KNN, and SVM were considered.

However, the most significant difference is the fact that, in [3], causes classification considered

error classes, and fixes classification considered errors and causes classes, while in this thesis

classification procedures were performed separately. The goal of the separated classification was

to conclude if categorical variables were needed as input since there is a high correspondence

between their classes and there is also a redundancy between numerical and categorical variables.

The relation between categorical variables resulted from the fact that, in most cases, for a

certain error, the cause and the fix are always the same (e.g., when the error is a link overload,

that is always because of self cell overload, and the solution is always to adjust the shaping).

The relation between categorical and numerical variables resulted directly from the problem

context (e.g, when there is non-WLAN interference on the receiver, there are many packets

retransmissions, high PEI, and the transmission bit rate of S is much lower than the estimated

link capacity), and errors, causes, and fixes are labeled based on numerical variables.

In this chapter, several works about ML for network assistance were presented. The goal was

to present the importance of the relation between errors, causes, and fixes of the networks, and

a ML overview regarding networking applications. The work done with the application of ML

techniques with WiBACK was summarized.



Chapter 3.

Data sets and algorithms considered

This chapter starts by providing a brief presentation of the WiBACK system, which is the

source for the considered data sets. Then, data sets collection, the description and selection of

numerical variables, and categorical variables are presented. Synthetic Minority Oversampling

Technique (SMOTE), PCA, and ML algorithms considered for the classification (DTs, KNN,

and SVM) are also presented with examples of the literature.

3.1 WiBACK system

WiBACK is a wireless software and hardware solution with directed radio technology that

provides a communication backhaul in challenged areas (i.e., rural, sparse population, without

expert readily available, digital illiteracy). It is designed to be self-configurable and self-managed,

taking care of its setup and operation of the network, increasing reliability and performance.

WiBACK is a cost-efficient multi-hop self-organizing wireless backhauling technology 1 for

rural or suburban areas. To reduce the CAPEX, and especially the OPEX of such deployments,

prosumer WiFi radios are utilized in the license-exempt spectrum with the optimization goal to

form multi-hop networks based on minimum-interference long-distance Point-to-Point links. The

WiBACK design builds upon SDN principles, and a Unified Technology Interface to program

and monitor heterogeneous radios. Hence, spectrum allocations per link, as well as End-2-End

data path across the network, can dynamically be adapted to changing network conditions, such

as spectrum availability or traffic load.

1Introducing Fraunhofer’s Wireless Backhaul Technology. Fraunhofer FOKUS. 2014. URL:

https://www.wiback.org/content/dam/wiback/en/documents/WhitepaperIntroducingW iBACK.pdf

25
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The main hardware components are the controller and nodes. The controller is usually

indoor, and it is the gateway between a WiBACK backhaul and a fixed network infrastructure

(backbone). Most of the functionalities, such as the overall network management, are included

in the controller.

3.2 Data sets collection

Different data sets (DS1 to DS5) were collected from three different networks in Fraunhofer

FIT and provided for this work. Training and tests were performed with different data sets. It

happened because new numerical variables were added, some formulas suffered changes, and

decision rules to label errors, causes, and fixes also suffered changes resultant from the network

study. On the other hand, data sets do not have always the same classes because failures that

occur are not always the same, and inclusive there is a class for unknown error and another for

unknown fix. Data sets have instances from different time periods, which can represent more

heterogeneity.

DS1 was collected in July 23rd 2019, while DS2, DS3, and DS4 have data collected from

different periods. This suggests that DS1 could be more homogeneous, while DS2, DS3, and DS4

more heterogeneous, with different user behavior regarding different days. DS3 was obtained

from the DS2 excluding the instances with the cause foreign WLAN interference. The goal

of considering tests with DS3 was to compare performance results in the algorithms when a

class that was not in the training set is introduced. The test with DS3 was performed also

in order to analyze in which classes instances corresponding to the new class (foreign WLAN

interference) were classified. DS5 is the data set more valid in the context because it considers

the final formulas of numerical variables, the last software updates, and the last assumptions

about WiBACK networks.

Numerical variables regard link characteristics, such as i) time spent sending the packets and

used by external sources to the interfaces; ii) signal quality, important to inspect links faults; iii)

PEI, which does not tell what the problem is, but how the network behavior is from a global

perspective, so it is an appropriate measure to evaluate continuously; iv) transmission and
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reception rates, which allows concluding if there is issue with links in a prior analysis; v) link

capacity estimated by WiBACK; vi) randomly and forced dropped packets (due to several reasons,

such as the large distance between interfaces, packets queue exceeding the buffer capacity, or

weak signal link); vii) transmission power, which helps understand whether the number of

dropped packets is due to low transmission power or other interference; and viii) retransmission

rate, useful to compare with the number of packets sent that could be misleading if individually

analyzed. Most of the variables are duplicated because it is considered the bidirectionality of

the links, which means that both interfaces of the network send and receive packets. Categorical

variables are errors, causes, and fixes, and represent classification targets.

Data was also collected from the WiBACK software in Porto to analyze the behavior of

respective networks (one indoor and one outdoor), and test algorithms already trained. The goal

of this additional data collection procedure was to compare test results with those collected by

Fraunhofer FIT, with different equipment, and to understand the capability of each algorithm to

generalize classification results. However, this data did not present enough numerical information,

which could be explained by the fact that there was no significant number of users in the areas

covered by networks and the software version that was not the most recent one.

3.3 Description and selection of numerical variables

Considering links bidirectionality is relevant because the behavior is not necessarily similar in

different directions of the link, which means that having errors in one direction does not imply

errors in the other. S was the interface that suffers from transmitted queue overrun, and that is

why some values were monitored just in this direction, while R was the peer interface. Down

(or outcoming) is when S is transmitting packets and R is receiving, and up (or incoming) is

when R is transmitting packets and S is receiving them.

Constant variables, variables related to the identification of interfaces, timestamp, and

auxiliary variables for the data synchronization were excluded because they did not give relevant

information for the classification. Constant ones included the number of packets that the buffer

interface could hold at once (queue length), and the number of radar events detected in both
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directions. Radar events were always equal to 0 in data sets considered, as the certainty of

those events. Some variables depend mathematically on others. Table 3.1 briefly describes each

numerical variable, but some of them do not belong to all data sets, as the set of collected

variables have changed over time.

Table 3.1: Numerical variables description.

Variable name Unit Description

AT out - Fraction of time that packets sent by S and received by R stayed

in the air. It was computed by WiBACK based on the number of

packets sent by S, their size and the time they stayed in the air.

Link distance is crucial for this calculus.

AT in - Fraction of time that packets sent by R and received by S stayed

in the air. It was computed by WiBACK based on the number of

packets sent by R, their size and the time they stayed in the air.

Link distance is crucial for this calculus.

Alien out - Fraction of time used by other sources on S.

Alien in - Fraction of time used by other sources on R.

AT Alien - Total time used by other sources, given by the sum of Alien out and

Alien in.

Total Airtime - Total airtime used by transmissions, given by the percentage of the

sum of AT Alien, Alien out and Alien in.

SQ down dB Quality of the received signal by R, or the strength of S’s signal.

SQ up dB Quality of the received signal by S, or the strength of R’s signal.

PEI down % Packet Error Indicator of S’s transmission to R. It is calculated by

16(4(Lo+D)+La)
G+Lo , being Lo, D, La, and G, respectively, the number of

lost, duplicated, good, and late packets. It is calculated regarding

the transmission from S to R. Note: this is the updated formula,

but it suffered changes over time.

PEI up % Packet Error Indicator of R’s transmission to S. It is calculated by

16(4(Lo+D)+La)
G+Lo , being Lo, D, La, and G, respectively, the number of

lost, duplicated, good, and late packets. It is calculated regarding

the transmission from R to S. Note: this is the updated formula,

but it suffered changes over time.

MCS down Kbps Average of the transmission bit rate on S during the period of link

establishing, measured on R.
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MCS up Kbps Average of the transmission bit rate on R during the period of link

establishing, measured on S.

Cap down Kbps Link capacity estimated by WiBACK for the direction from S to

R. Ideally, it would be between 75% and 80% of the MCS down.

When WiBACk estimated this value, it had in account the distance

between antennas (or interfaces), the signal quality, MCS, and the

transmission power in this direction. This is the major difference

between Cap down and Rx br down.

Cap up Kbps Link capacity estimated by WiBACK for the direction from R

to S. Ideally, it would be between 75% and 80% of the MCS up.

When WiBACK estimated this value, it had in account the distance

between antennas (or interfaces), the signal quality, MCS, and the

transmission power in this direction. This is the major difference

between Cap up and Rx br up.

Variable name Unit Description

Cap of MCS down % Ratio between Cap down and MCS down.

Cap of MCS up % Ratio between Cap up and MCS up.

Tx br down Kbps Transmission bit rate of S.

Tx br of Cap down % is the percentage ratio between Tx br down and Cap down.

Rx br down Kbps Received bit rate of S.

Rx br of Cap down % Ratio between Rx br down and Cap down.

Rx br up Kbps Received bit rate of R.

Rx br of Cap up % Ratio between Rx br up and Cap up.

Cap utilized % Sum of Rx br of Cap down and Rx br of Cap up.

Tx pr down Pps Transmission packet rate of S.

RED Pps Number of Random Early Drop packets per second on S.

Overrun Pps Number of forced dropped packets per second on S.

Drop Ratio % Ratio between the number of dropped packets on S and the number

of transmitted packets by S.

Rx pr down Pps Received packet rate of R.

Rx pr up Pps Received packet rate of S.

TxPower down dBm Transmission power of S.

TxPower up dBm Transmission power of R.

rTx Pps Number of retransmitted packets from S to R calculated by the

TCP.

Units legend:

dB: decibel: Kbps: kilobits per second; Pps: packets per second; dBm: decibel milliwatt.
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As it is usual in wireless communications, Cap up and Cap down were estimated by the

software, which means that these values are not 100% accurate. Some of the instances

exhibited values Cap of MCS down and Cap of MCS up higher than 100%, and consequently,

Tx br of Cap down, Rx br of Cap down and Rx br of Cap up higher than 100% too, which was

not an expected output. These instances were, therefore, removed from data sets.

Instances with RED equal to 1 and overrun equal to 0 were also excluded because that dropped

packet was probably just a consequence of TCP trying to reach the maximum transmission rate

and not a problem that needed a fix.

Considering more variables than needed as input to the classification could lead to overfitting,

more computational effort, and higher training times. Consequently, a selection was performed

in which variables with high correlations (absolute value of Spearman’s correlation higher than

0.8) were excluded. Recommendations regarding their importance in the problem context were

also taken into account, as the fact that some were more accurate than others regarding the

way they were obtained.

Table 3.2 shows numerical variables of each set after this selection. DS5 - 1, DS5 - 2, and

DS5 - 3 correspond to the instances of DS5 with different sets of numerical variables selected

with different criteria to train algorithms. For DS5 - 1, variables were selected based on

the Spearman’s correlation (variables with absolute value of correlation higher than 0.8 were

excluded). For DS5 - 2, variables were selected based on the Spearman’s correlation (variables

with absolute value of correlation higher than 0.8 were excluded), but less important or less

accurate variables regarding the problem context had been also taken into account to the

exclusion. For DS5 - 3, variables were the same used in one of the methodologies presented in

the paper Applying Machine Learning Methods to Classify Wireless Link Errors, their Causes

and Solutions mentioned in Section 1.3.

The data was scaled (has mean equal to zero and unit variance).
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Table 3.2: Numerical variables considered in each set.

Variable name DS1, DS2, DS3, DS4 DS5 - 1 DS5 - 2 DS5 - 3

AT out x x x

AT in x x x x

Alien out x x

Alien in x

AT Alien x x x x

Total Airtime x x x

SQ down x x x

SQ up x x

PEI down x x x x

PEI up x x x x

MCS down x

Cap down x

Cap up x

Cap of MCS down x x x

Cap of MCS up x x

Rx br down x x

Rx br up x x

Rx br of Cap up x

Tx br down x

Tx br of Cap down x

Cap utilized x x

Tx pr down x x

RED x x x x

Overrun x x x x

Drop Ratio x x x

TxPower down x x x

TxPower up x x x

rTx x x x
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3.4 Categorical variables

As aforementioned, classes of errors, causes, and fixes are not necessarily the same in different

data sets, which leads to heterogeneity between them. Table 3.3 shows the relative frequency of

classes in each training (T) and test set. It is organized with blocks that correspond to tests

performed with each training set, in order to enable a comparison between the relative frequency

of each class between the training and each test set.

Different categorical variables (errors, causes, and fixes) have some equal occurrence frequencies.

For example, when there is a link overload, that is because of self cell overload, and the solution

is to adjust the shaping. In fact, these instances are always the same. One of the goals of

classifying errors, causes, and solutions separately was to analyze if the correspondence between

misclassified instances of errors, causes, and solutions maintained, since these correspondences

between categories represent a great part of data sets.

As Table 3.3 shows, classes are unbalanced. To understand the influence of that in the

classification performance, the classification was performed not just with algorithms trained by

the original unbalanced data sets, but also with data sets balanced by the SMOTE.
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Table 3.3: Relative frequency of each class of errors, causes, and solutions in each
training (T) and test set.

Classes of errors DS1 (T) DS2 DS3 DS4 DS5 (T)

E1 - Link overload 0.625 0.569 0.593 0.532 0.454

E2 - Occupied channel 0.250 0.431 0.407 0.468 0.329

E3 - Weak link 0.122 0 0 0 0.211

E4 - Unknown 0.003 0 0 0 0

E5 - Corrupt frames 0 0 0 0 0.005

Classes of causes DS1 (T) DS2 DS3 DS4 DS5 (T)

C1 - Self cell overload 0.625 0.569 0.593 0.532 0.454

C2 - Non-WLAN interference on the sender 0.240 0.273 0.284 0.291 0.221

C3 - Bad signal 0.125 0 0 0 0.150

C4 - Foreign WLAN interference 0 0.041 0 0.036 0.037

C5 - Non-WLAN interference on the receiver 0.010 0.118 0.123 0.142 0.072

C6 - Path loss/self interference 0 0 0 0 0.067

Classes of fixes DS1 (T) DS2 DS3 DS4 DS5 (T)

F1 - Adjust the shapping 0.625 0.569 0.593 0.532 0.454

F2 - Change the channel 0.240 0.314 0.284 0.327 0.304

F3 - Recalibrate the link 0.122 0 0 0 0.150

F4 - Increase the transmitted power 0.010 0.118 0.123 0.142 0.026

F5 - Unknown 0.003 0 0 0 0

F6 - Check the Fresnel zone clearance and the

antenna height

0 0 0 0 0.067

Number of instances 3250 953 914 1093 975

3.5 Synthetic Minority Oversampling Technique

Unbalanced data sets can lead to suboptimal performance of classifiers [56], particularly

DTs [57, 58, 59]. Minority classes of unbalanced data sets might be identified by classification

algorithms as noise. However, in some contexts, it is particularly important to classify the

minority or abnormal class, because it can represent the interesting behavior that users are

trying to identify (for example, in fault detection). The misclassification of these instances

represent, in some contexts, high costs (identifying a fault as normal behavior or, in the case of
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this thesis, classifying a fault as another, leading to a wrong fix). It is possible to undersample

the majority class, oversample the minority classes, or choose a hybrid approach. In the case of

undersampling (or the hybrid approach), part of the information is excluded from the problem,

which could mean to exclude valuable information.

The SMOTE technique was proposed to substitute the oversampling of data by replication,

which caused overfitting and did not give additional information to classifiers. In SMOTE, new

instances are generated by interpolation. By default, 5 neighbors of one instance are considered,

one of the neighbors is chosen, and the difference between the feature vector of the two samples

is considered. Then, the difference is multiplied by a random number between 0 and 1, and this

is the feature vector of the new instance that is added to the data set.

In a noisy data set, undersampling the data can decrease the performance, because it removes

samples with valuable information, and oversampling can increase it, but it also depends on the

percentage of instances removed or generated [60].

The SMOTE technique was applied to balance classes of data sets provided for this thesis,

and classification results were compared with balanced and unbalanced sets.

3.6 Principal components analysis

PCA [61, 62, 63] can be applied before ML classification algorithms. It is usually applied

to reduce the complexity of interpreting data sets in multidimensional contexts. Principal

components correspond to new variables as linear combinations of initial variables of the data

set, created with eigenvectors of the covariance or correlation matrix of the original data. The

information contained initially is statistically preserved by the variance of components. The

variance threshold to select the number of components to work with is not defined, and authors

suggest, for example, more than 70%, or values between 90% and 99% [64, 65]. In this thesis,

the threshold was equal to 90%, as in [66]. PCA can also provide a simpler visualization of the

data. Usually, the first two (which, by definition, are the pair that best preserve the variance)

or three principal components are explored to the visualization. Although in this thesis it is

presented the projection of the data in two first components, the other components were also
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analyzed to understand which is the pair of components that represents better the groups of

data in terms of each class. For this purpose, biplots of each pair of components were observed,

and the Euclidean distance was applied. It is described in Section 4.1.

A centered PCA was applied with numerical variables normalized since units and the order of

magnitude are the same for all numerical variables.

3.7 Machine learning algorithms

DTs, KNN, and SVM were the algorithms chosen to perform the classification. Below, a brief

description of each one and respective parameters are presented, as a justification for the choice

of the algorithms.

DTs [67, 68, 69] (as KNN and SVM) are non-parametric algorithms, where any distribution

about the data is assumed. There are different tree algorithms, being that the one performed for

this thesis is Classification And Regression Trees (CART). One of the DTs’ advantages is that

they are built-in white box models, meaning that decisions are easily explained by the decision

Boolean rules. So, DTs are somehow more interpretable. This type of construction is interesting

to compare variables that are considered in nodes (variables considered relevant by the tree),

and the ones that might be considered more important regarding the application context (as it

will be presented, DTs have left some variables out). These are the reasons that have motivated

the choice of DTs, besides their application on the networking context, as shown in Chapter 2.

DTs are constituted by root, internal, and leaf nodes. A leaf is where the decision rule ends,

and a class is attributed. An internal node splits into another based on a threshold relative

to one of the numerical input variables. CART constructs binary trees based on numerical

variables and thresholds that originate the largest information gain at each node. Information

gain represents the quantity of information achieved in a variable from the observation of another

one. One pertinent question could be which are the more relevant variables for the tree to

consider in nodes, and the information gain is the decisive metric, where variables with higher

information gain are preferred.

One crucial aspect is the size (and, consequently, the complexity) of the tree, regarding its
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depth and the number of leaves per node. It is controlled by the pruning step, performed

after the growing step. The problem of having a big and very complex tree is that it might

overfit, because it probably has captured too many details of the training data, and will achieve

a lower performance in the test. Pruning the tree could even avoid noisy information to be

captured. Scikit-learn algorithm [69] performs the minimal cost-complexity pruning, which finds

the subtree that minimizes a complexity measure (that depends on the criterion selected to

measure the quality of the splits). Then, it is defined as an effective criterion. The non-terminal

node with the lower effective criterion is the weakest link, so it is pruned. The pruning ends

when the minimal effective criterion of the pruned tree is greater than the α parameter, which

represents the complexity parameter of the pruning algorithm.

The classification was performed with GS 10-CV (for DTs, KNN, and SVM). GS finds the

optimal parameters of each algorithm. Optimized parameters for DTs [70] were:

• The criterion to measure the quality of a split: Gini and entropy ;

• The strategy to chose the split at each node: best and random;

• Maximum depth of the tree: range between 2 and 14 ;

• Maximum leaf nodes: range between 2 and 9 ;

• The complexity parameter for the pruning step: range between 0 and 0.035, with steps of

0.005. This range was chosen based on the scikit-learn example [71].

Parameters left by default were the minimum number of instances required to split an internal

node, the minimum number of instances required to be at a leaf node, the minimum weighted

fraction of total of weights required to be at a leaf node, the number of features to consider when

looking for the best split, the minimum impurity decrease to split a node, and class weights.

The choice of KNN is justified by being a non-parametric algorithm, being interpretable in

the sense that its functioning is understandable, and by works presented in Chapter 2.

To classify each instance of the data set, KNN [72, 73, 74, 75] computes the distance between

each instance and its k nearest neighbors. The classification decision is taken based on the

majority class among the k neighbors.

Parameters optimized for KNN [76] were:
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• The number of neighbors: range between 2 and 9. Note that the class that is less

represented in DS1 has 9 instances, so choosing a higher value for k did not seem to make

sense;

• The function to weight data points according to its distance to the prediction instance:

consider higher weights for closer points of the instance to classify or equal weights for all

points ;

• The distance metric: Euclidean, Chebyshev, Manhattan, Mahalanobis, or Minkowiski with

p in the range 3 to 5.

Parameters left by default were the algorithm to compute nearest neighbors and leaf size.

The algorithm, by default, is auto, which means that it finds the best one regarding the training

data. Leaf size is one parameter of some algorithms.

The choice of k is very sensitive, and it could be affected by noisy points. A high value could

introduce noise in calculations because the boundary between classes gets less well defined. A

low value is less inclusive and could make the algorithm overfits.

SVM were chosen because they constitute a non-parametric algorithm, they have the advantage

of being powerful in the sense that they adapt to different types of data, and regarding its

importance in the networking context as shown in Chapter 2.

In SVM [77, 78, 79, 80, 81, 82], the goal is to find the hyper-plane that maximize the distance

between points of different classes. The point of each class closest to the hyper-plane is called

support vector. The task of the search for this unique hyper-plane is done with the kernel

function (first layer), and a linear function (second layer).

The parameter being optimized for SVM was the kernel function: linear, radial basis function,

sigmoid or polynomial with degree equal to 2 or 3.

The shrinking option was set as true because it can reduce the training time. The regularization

parameter, the kernel coefficient for radial basis function, polynomial, and sigmoid kernels

(gamma), the independent term in polynomial and sigmoid kernel functions, the tolerance for

stopping criterion, the cache size of the kernel, the parameter to weight the classes, verbose, the

limit of iterations, the classification approach applied, and break ties were parameters left as

default [83].
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The classification approach is one-versus-rest, meaning that the number of trained classifiers

for each training set is equal to the number of classes. Each classifier is trained to distinguish

between one class and the others [84, 85]. It happens because, originally, SVM were designed to

binary classification problems, not multiclass problems. The one-versus-one approach is slower

because it considers all pairs of classes [86].

This chapter started with a brief presentation of the WiBACK system, to provide the reader

with some knowledge about the use case of this dissertation. The data sets collection process

was described, as the data sets, and the criteria for the numerical variable selection. SMOTE,

PCA, and ML algorithms applied were introduced.



Chapter 4.

Results and discussion

In this chapter, all results and discussion are presented. First, an explanation of the Euclidean

distance calculations made with the PCA data is presented, as graphical representations of

principal components. Classification results are presented, regarding weighted F1-score, balanced

accuracy, and accuracy. Confusion matrices are also analyzed to discuss classes with more

misclassifications between errors, causes, and fixes. As algorithms were trained with different

data sets, the chapter is divided considering the training set.

4.1 Train with DS1

Before the application of ML algorithms, a PCA was applied to the training data DS1. PCA

was considered, not just to reduce the space dimensionality and test algorithms with principal

components as input, but also as an exploratory study. The goal was to conclude which were

the principal components that best separate the data by its classes of errors, causes, and fixes.

The first 10 principal components were chosen to represent the data because they explained

more than 90% of the data variance. Overrun and TxPower down were the variables with

greater influence, in absolute value, in principal components. They had a great influence on

components 7 and 5, respectively.

In Figure 4.1 to Figure 4.6, one can see that, as components increase, data points get

more scattered, and consequently, class groups get less defined. To understand it beyond the

visual perception, the Euclidean distance was calculated between data points. This study was

performed to conclude which pairs of components represent better the data in terms of its

grouping into each class, and separation between different classes. The Euclidean distance was

39
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calculated:

• Between all points of each class, in each component;

• Between all points of each class, in all pairs of components;

• Between different classes, in each component;

• Between different classes, in all pairs of components;

• Between all points of the data set, in each component;

• Between all points of the data set, in all pairs of components.

Figure 4.1: Data projection into first five principal components with classes of
errors colored.
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Figure 4.2: Data projection into last five principal components with classes of errors
colored.

Figure 4.3: Data projection into first five principal components with classes of
causes colored.
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Figure 4.4: Data projection into last five principal components with classes of
causes colored.

Figure 4.5: Data projection into first five principal components with classes of fixes
colored.
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Figure 4.6: Data projection into last five principal components with classes of fixes
colored.

Figure 4.7 to Figure 4.9 show the distance evolution as we move in pairs of components,

regarding classes of errors, causes, and fixes, respectively. As components increase, the distance

between points increases, which seems to be compatible with the visual notion that points

distributions get somehow confusing in the last pairs of components. Note that the distance was

computed in all pairs of components, but Figure 4.1 to Figure 4.6 show only pairs of consecutive

components. The unknown class of errors and fixes, that correspond only to 9 instances of

the data set, achieved the highest distances, and it represents curves (both in errors and fixes)

with more variations. Besides, Figure 4.7 and Figure 4.9 show that from the twenty-eighth

pair of components, this distance started increasing more. It seems that the representation of

the class unknown, from the twenty-eighth pair of components, got more dispersed than the

representation of other classes.

These distances were computed in the pairs of components to be coherent with the visual

data projections. However, the distance between points of each class was also computed for each

component separately. It was verified that the distance between points of each class increases as

we move in the components.
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Concluding, besides the first two components represent (by definition) better the data, and

represent more variance than any other pair of components, it seems that they also better

represent the data visually in the classes. The Euclidean distance was used to support this

graphical suggestion.

Figure 4.7: Euclidean distance between the points of each class of errors in the pairs
of principal components. For i in {1,2,3,4,5,6,7,8,9,10}, the distance was computed
between components Ci and Cj , for j > i and j in {1,2,3,4,5,6,7,8,9,10}.

Figure 4.8: Euclidean distance between the points of each class of causes in the pairs
of principal components. For i in {1,2,3,4,5,6,7,8,9,10}, the distance was computed
between components Ci and Cj , for j > i and j in {1,2,3,4,5,6,7,8,9,10}.
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Figure 4.9: Euclidean distance between the points of each class of fixes in the pairs
of principal components. For i in {1,2,3,4,5,6,7,8,9,10}, the distance was computed
between components Ci and Cj , for j > i and j in {1,2,3,4,5,6,7,8,9,10}.

Euclidean distance was also computed between different classes, in each component. It was

done by considering the mean of each class, in each component, and the difference between

classes. The same was done in all pairs of components, by considering the mean of each class

in each pair of components, and then the difference between classes. These calculations were

made to confirm if as components increase, the separation between different classes would be

also verified, or if the data representation would just get more dispersed. However, these values

were inconclusive since there was not a pattern.

Also to conclude if, in general, independently of classes, the data representation got more

dispersed, the Euclidean distance was computed between all points, in each component and in

all pairs of components. Results showed that points were more distant as components increase.

After this analysis, DTs, KNN, and SVM were trained with DS1 and tested with DS2, DS3,

and DS4. DS3 is the DS2 without the cause foreign WLAN interference, which is not in the

training set.

DTs, KNN, and SVM were trained with unbalanced, balanced, and PCA data sets to classify

errors, causes, and solutions.

The metric chosen to optimize the GS was a weighted F1-score. In the case of balanced data
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sets, the original data was balanced and given as input to GS, but tests were performed with

unbalanced (original) data [87]. This means that, in these cases, the data distribution from

training with DS1 to tests with DS2, DS3, and DS4 changed considerably.

F1-score is a weighted average of the precision and recall. Weighted F1-score by scikit-learn, in

a multiclass problem, is the average of the F1-score of each class with weighting [88]. Accuracy

[89] gives the number of correct predictions. Balanced accuracy [90] is the average recall of each

class. The three metrics can present values between 0 and 1, being 1 the best value and 0 the

worse [91, 92].

Two criteria were used to evaluate algorithms performance. The first one was the direct

evaluation of weighted F1-score, accuracy, and balanced accuracy values. The second one was

the difference between weighted F1-score from GS and weighted F1-score from each test set

(DS2, DS3, and DS4). With the second criterion, the objective was to understand if algorithms

were able to generalize their learning to new data sets since GS uses one data set that is split

into train and test (several times). This means that the weighted F1-score from GS may not

reflect the generalization capability of algorithms (depending on the heterogeneity of the data

set provided for GS).

Figure 4.10 to Figure 4.12 show the weighted F1-score from GS, as the weighted F1-score,

accuracy, and balanced accuracy of DTs regarding different test sets (DS2, DS3, and DS4) for

errors classification. Figure 4.10 shows that the weighted F1-score from GS was higher with the

balanced data, but the difference between unbalanced and PCA data was acceptable. It is more

relevant to analyze the differences between weighted F1-score from GS and the remaining test

sets. Differences were acceptable with the unbalanced data, contrarily to balanced and PCA

data. Regarding accuracy and balanced accuracy, both were higher with unbalanced data, with

two exceptions. The first one was DS4, where the three metrics were equal for balanced and

unbalanced data. The second exception was DS3, where the balanced accuracy was higher with

the PCA data.

Figure 4.13 to Figure 4.15 show the weighted F1-score from GS, as the weighted F1-score,

accuracy, and balanced accuracy of DTs regarding different test sets (DS2, DS3, and DS4) for

causes classification. Figure 4.13 shows that the weighted F1-score from GS did not present
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unacceptable differences between unbalanced, balanced, and PCA data. The weighted F1-scores

of unbalanced DS2, DS3, and DS4 were similar to the value from GS, contrarily to what has

happened with balanced and PCA data. Regarding accuracy and balanced accuracy, values

were higher with unbalanced data from DS2 and DS4. With DS3, the balanced accuracy was

higher for PCA data.

Figure 4.16 to Figure 4.18 show the weighted F1-score from GS, as the weighted F1-score,

accuracy, and balanced accuracy of DTs regarding different test sets (DS2, DS3, and DS4)

for fixes classification. Figure 4.16 shows that the weighted F1-score from GS did not present

unacceptable differences between unbalanced, balanced, and PCA data. One more time, weighted

F1-score, accuracy, and balanced accuracy were higher with unbalanced data. There was one

exception because balanced accuracy from DS3 was higher with PCA data.

Regarding a comparison between classification performance for errors, causes, and solutions,

algorithms did not present unacceptable differences.

Figure 4.10: Weighted F1-score of DTs trained
to classify errors.

Figure 4.11: Accuracy of DTs trained to
classify errors.
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Figure 4.12: Balanced accuracy of DTs trained
to classify errors.

Figure 4.13: Weighted F1-score of DTs trained
to classify causes.

Figure 4.14: Accuracy of DTs trained to
classify causes.

Figure 4.15: Balanced accuracy of DTs trained
to classify causes.

Figure 4.16: Weighted F1-score of DTs trained
to classify fixes.

Figure 4.17: Accuracy of DTs trained to
classify fixes.
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Figure 4.18: Balanced accuracy of DTs trained to classify fixes.

Figure 4.19 to Figure 4.21 show the weighted F1-score from GS, as the weighted F1-score,

accuracy, and balanced accuracy of KNN regarding different test sets (DS2, DS3, and DS4) for

errors classification. Figure 4.19 shows that the weighted F1-score from GS did not present

unacceptable differences between unbalanced, balanced, and PCA data. However, the weighted

F1-score presented inappropriate differences between GS and the remaining test sets. Weighted

F1-score and accuracy were very similar for all data from DS2, DS3, and DS4, contrarily to

balanced accuracy, which showed some variations between data sets. However, the three metrics

presented very low values (between 0.21 and 0.6) for the classification of DS2, DS3, and DS4.

Figure 4.22 to Figure 4.24 show the weighted F1-score from GS, as the weighted F1-score,

accuracy, and balanced accuracy of KNN regarding different test sets (DS2, DS3, and DS4) for

causes classification. Conclusions of KNN classifiers for causes are the same that were presented

for KNN classifiers of errors.

Figure 4.25 to Figure 4.27 show the weighted F1-score from GS and the weighted F1-score,

accuracy, and balanced accuracy of KNN regarding different test sets (DS2, DS3, and DS4)

for fixes classification. The conclusions of KNN classifiers for fixes are the same that were

presented for KNN classifiers of errors and causes. There were no unacceptable differences in

the classification performance of errors, causes, and fixes with KNN.
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Figure 4.19: Weighted F1-score of KNN trained
to classify errors.

Figure 4.20: Accuracy of KNN trained to
classify errors.

Figure 4.21: Balanced accuracy of KNN
trained to classify errors.

Figure 4.22: Weighted F1-score of KNN trained
to classify causes.

Figure 4.23: Accuracy of KNN trained to
classify causes.

Figure 4.24: Balanced accuracy of KNN
trained to classify causes.
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Figure 4.25: Weighted F1-score of KNN trained
to classify fixes.

Figure 4.26: Accuracy of KNN trained to
classify fixes.

Figure 4.27: Balanced accuracy of KNN trained to classify fixes.

Figure 4.28 to Figure 4.30 show the weighted F1-score from GS and the weighted F1-score,

accuracy, and balanced accuracy of SVM regarding different test sets (DS2, DS3, and DS4) for

errors classification. Figure 4.28 shows that the weighted F1-score from GS and the weighted

F1-score of unbalanced data sets were equal to 0.96, excepting with the unbalanced DS4, where

it was equal to 0.93 (but this difference is acceptable). Figure 4.29 shows that the accuracy of

unbalanced data sets was between 0.94 and 0.96. This appears to be an appropriate performance,

but Figure 4.30 shows lower values of the balanced accuracy. Results with balanced and PCA

data were not as promising.

Figure 4.31 to Figure 4.33 show the weighted F1-score from GS, as the weighted F1-score,

accuracy, and balanced accuracy of SVM regarding different test sets (DS2, DS3, and DS4) for

causes classification. Figure 4.31 shows that the weighted F1-score from GS was high (0.95 and

0.98) and very similar with weighted F1-score from balanced and unbalanced data sets. Figure
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4.32 shows adequate values of accuracy (between 0.77 and 0.85) for balanced and unbalanced

data sets, but Figure 4.33 shows low values of balanced accuracy for these two data sets (between

0.42 and 0.5). Results for PCA data were lower.

Figure 4.34 to Figure 4.36 show the weighted F1-score from GS, as the weighted F1-score,

accuracy, and balanced accuracy of SVM regarding different test sets (DS2, DS3, and DS4)

for fixes classification. Figure 4.34 shows that the weighted F1-score with unbalanced data set

was high with all data sets (between 0.87 and 0.95), but with balanced and PCA data, the

differences from GS were inappropriate. One more time, Figure 4.35 shows that accuracy values

were appropriate for the unbalanced data (between 0.81 and 0.84), but Figure 4.36 shows lower

values of balanced accuracy.

Regarding a comparison between errors, causes, and fixes classification with SVM, results

varied a little bit more than with DTs and KNN, but, in general, the differences were acceptable.

Figure 4.28: Weighted F1-score of SVM trained
to classify errors.

Figure 4.29: Accuracy of SVM trained to
classify errors.

Figure 4.30: Balanced accuracy of SVM trained
to classify errors.

Figure 4.31: Weighted F1-score of SVM trained
to classify causes.
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Figure 4.32: Accuracy of SVM trained to
classify causes.

Figure 4.33: Balanced accuracy of SVM trained
to classify causes.

Figure 4.34: Weighted F1-score of SVM trained
to classify fixes.

Figure 4.35: Accuracy of SVM trained to
classify fixes.

Figure 4.36: Balanced accuracy of SVM trained to classify fixes.

From a general perspective, with DTs, unbalanced data sets presented the best results, and

balanced ones to worst. With KNN, there were no unacceptable differences between weighted

F1-score and accuracy from unbalanced, balanced, and PCA, with the exception of balanced

accuracy results, where the performance changed more with the test set evaluated. With SVM,
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results were better with the unbalanced data and worse with PCA.

Considering DS2 and DS3, it could be somehow expected that the results with DS2 (at least

for causes classifiers) were worse than DS3 because the former has a class that is not in the

training set. Weighted F1-score and accuracy, in causes classification, were always higher in

DS3. However, results were very similar, probably because the amount of instances of the new

class represents only 4.1% of DS2. Regarding errors and fixes classifiers, weighted F1-score and

accuracy were very similar between DS2 and DS3, which was somehow expected because the

class frequencies of errors and fixes are almost equal.

Regarding balanced accuracy in causes classification with PCA, conclusions were the same,

excepting that differences were higher with this metric.

Regarding DS4, which also includes the cause foreign WLAN interference, like DS2, the

weighted F1-score and accuracy were very similar with DS2 and DS4, excepting the classification

of errors with DTs, in which the balanced data for DS4 stood out.

Balanced accuracy results were a little bit more heterogeneous between DS2 and DS4.

Nonetheless, the performance of SVM was better and without unacceptable differences

regarding GS weighted F1-score and the unbalanced data. Hence, regarding the data presented,

SVM was an algorithm with better capacity to generalize the classification.

KNN has a very sensitive parameter, k. It is fixed from the training data, hence if the

distribution in test sets is different, the classification will probably have wrong predictions.

This is probably what happened with DS2, DS2, and DS4 regarding the train with DS1. KNN

presented a higher weighted F1-score from GS than DTs, but results decreased in tests, probably

because k was not the best for the test data.

The data could have noise, provenience from classes, or numerical variables [93], which may

affect results. This also probably affected k. Noise instances were excluded from data sets, but it

is possible that it still exists since some variables are not 100% accurate in the wireless context.

Attempting to improve results, algorithms were trained with new parameters. In DTs, the

range of the complexity parameter for the pruning step became between 0 and 0.075 with steps

of 0.005. In KNN, the range for the number of neighbors became from 2 to 19, and the range

for parameter p of the Minkowski distance became between 3 to 9. In SVM, the range for the
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polynomial kernel became from 2 to 9.

Previously, it was said that having k values higher than 9 did not seem to make sense since the

smallest class of DS1 had only 9 instances. However, this class is unknown, hence it is preferable

to have more right predictions in other classes even if the number of wrong predictions rises in

this one. However, the results with old and new parameters were the same for all algorithms.

One of the difficulties of this work was to chose numerical variables, regarding the importance

of each one in the application context, and that some of them are not 100% accurate. Looking

for all the DTs built, AT out, AT in, Rx br down and Rx br up were considered in all DTs

trained with the unbalanced and the balanced data.

One of the particularities of this work is the correspondence between errors, causes, and

fixes, so confusion matrices [94] of classifiers were analyzed. The goal was to understand if that

correspondence held or not.

Each cell of the diagonal of each matrix presented in Appendix A represents the number of

right predictions for each class. Each one of the remaining cells represents the number of wrong

predictions, being that columns represent predicted classes and rows represent labeled classes.

For simplicity of analysis, abbreviations of Table 3.3 were used.

Table A.1 to Table A.3 show confusion matrices of errors classification, regarding all data

sets and algorithms. From a general perspective, DTs and KNN misclassified E1 as E2 with all

data sets. With SVM, E2 was classified as E1, E2 as E4, and E1 as E2, with the unbalanced,

balanced, and PCA data sets, respectively.

Table A.4 to Table A.6 show confusion matrices (which also contain the class that is only in

DS2 and DS4) of causes classification, regarding all data sets and algorithms. From a general

perspective, KNN misclassified C1, C4, and C5 as C2, such as SVM with the PCA data set.

C4 as C5, C5 as C1, and C5 as C2 were the misclassifications made by SVM with unbalanced

and balanced data sets. Also C2 as C5, with the first unbalanced data. With DTs, it got more

disperse, and the dispersion was around all classes.

Table A.7 to Table A.9 show confusion matrices of fixes classification, regarding all data sets

and algorithms. From a general perspective, F1 was misclassified as F2, excepting with SVM

trained with unbalanced and balanced data sets. F4 was also misclassified as F2, excepting with



FCUP 56
Automated monitoring of WiBACK’s traffic behavior

DT and SVM trained with the balanced data. F4 and F2 were misclassified as F5, and F4 as

F1. F2 and F4 were misclassified as F3 with KNN trained with PCA and DT trained with the

unbalanced data, respectively.

With DS2, DS3, and DS4, misclassifications, in general, happened in the same classes

(excepting C4, that does not exist in DS3).

In general, the correspondence between errors, causes, and fixes was verified in the wrong

predictions, but it did not happen always. The correspondence was mostly verified between

causes and fixes.

4.1.1 Retrain with DS1

To make the algorithms learn with the new class of causes, foreign WLAN interference, and

more instances from more periods, the algorithms were retrained joining the different instances

of DS2, DS3, and DS4.

Table 4.1 to Table 4.3 show the weighted F1-score from GS provenience from this retraining

moment.

Table 4.1: F1-weighted score of DTs when algorithms were retrained with DS1 to
classify errors (E), causes (C), and fixes (F) with unbalanced, balanced, and PCA
data sets.

Data set E C F

Unbalanced 0.86 0.84 0.85

Balanced 0.91 0.9 0.89

PCA 0.84 0.79 0.78

Table 4.2: F1-weighted score of KNN when algorithms were retrained with DS1 to
classify errors (E), causes (C), and fixes (F) with unbalanced, balanced, and PCA
data sets.

Data set E C F

Unbalanced 0.89 0.89 0.88

Balanced 0.97 0.98 0.98

PCA 0.88 0.87 0.86
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Table 4.3: F1-weighted score of SVM when algorithms were retrained with DS1 to
classify errors (E), causes (C), and fixes (F) with unbalanced, balanced, and PCA
data sets.

Data set E C F

Unbalanced 0.95 0.93 0.93

Balanced 0.98 0.97 0.97

PCA 0.89 0.88 0.87

These values were much higher when compared not just with tests with DS2, DS3, and DS4,

but also with the weighted F1-score from GS of the first train. Coincidentally with results from

the first train with GS, SVM showed the highest values, then KNN, and finally DTs. Regarding

only these tests with GS, it is not possible to conclude if the algorithms will not overfit, but

they should be more prepared to deal with different data.

Regarding numerical variables in nodes of DTs, they were the same that in the first train,

excepting AT out, that, in this case, was not considered to classify errors with the balanced

data. In PCA, variables with more influence in some components were AT down, Overrun, and

MCS down.

4.2 Train with DS5

After retraining algorithms with DS1, algorithms were retrained with the last data set provided.

As aforementioned, data sets suffered changes over time. So, the results of testing algorithms

trained with DS5 are more significant in the problem context, because this data set is the one

with final updates and considerations. It would be more conclusive if there was a new data set

to perform tests.

As presented in Table 3.2, different sets of numerical variables were considered (DS5 - 1, DS5

- 2, DS5 - 3).

Table 4.4 to Table 4.6 show the weighted F1-score from GS provenience from training with

DS5 - 1.
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Table 4.4: F1-weighted score of DTs trained with DS5 - 1 to classify errors (E),
causes (C), and fixes (F) with unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.99 0.99 0.99

Balanced 1 1 1

PCA 0.91 0.79 0.89

Table 4.5: F1-weighted score of KNN trained with DS5 - 1 to classify errors (E),
causes (C), and fixes (F) with unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.92 0.9 0.91

Balanced 0.98 0.9 0.99

PCA 0.91 0.87 0.91

Table 4.6: F1-weighted score of SVM trained with DS5 - 1 to classify the errors (E),
causes (C), and fixes (F) with unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.93 0.92 0.92

Balanced 0.97 0.99 0.98

PCA 0.90 0.90 0.91

Table 4.7 to Table 4.9 show the weighted F1-score from GS provenience from training with

DS5 - 2.
Table 4.7: F1-weighted score of DTs trained with DS5 - 2 to classify errors (E),
causes (C), and fixes (F) with unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.91 0.92 0.91

Balanced 0.99 1 1

PCA 0.88 0.89 0.88

Table 4.8: F1-weighted score of KNN trained with DS5 - 2 to classify errors (E),
causes (C), and fixes (F) with unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.92 0.89 0.9

Balanced 0.98 0.99 0.99

PCA 0.91 0.92 0.93



FCUP 59
Automated monitoring of WiBACK’s traffic behavior

Table 4.9: F1-weighted score of SVM trained with DS5 - 2 to classify errors (E),
causes (C), and fixes (F) with unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.93 0.9 0.92

Balanced 0.98 0.99 0.98

PCA 0.92 0.93 0.94

Table 4.10 to Table 4.12 show the weighted F1-score from GS provenience from training with

DS5 - 3.
Table 4.10: F1-weighted score of DTs trained with DS5 - 3 to classify errors (E),
causes (C), and fixes (F) with unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.97 0.99 0.91

Balanced 0.98 0.99 0.99

PCA 0.91 0.86 0.88

Table 4.11: F1-weighted score of KNN trained with DS5 - 3 to classify the errors
(E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.92 0.92 0.92

Balanced 0.98 0.99 0.99

PCA 0.91 0.89 0.9

Table 4.12: F1-weighted score of SVM trained with DS5 - 3 to classify errors (E),
causes (C), and fixes (F) with unbalanced, balanced, and PCA data sets.

Data set E C F

Unbalanced 0.93 0.9 0.92

Balanced 0.97 0.93 0.94

PCA 0.9 0.89 0.91

Contrarily to what had been concluded previously, with these three new data sets, balanced

data showed better results than the unbalanced. PCA continued showing the lowest weighted

F1-score.

With DS5 - 1, DTs presented the highest values of weighted F1-score, then SVM, and finally

KNN. With DS5 - 2, results were quite similar with the three algorithms. With DS5 - 3, DTs
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were better than SVM and KNN with unbalanced data, and SVM were worse than DTs and

KNN with balanced data. However, the differences were acceptable.

As mentioned when algorithms were retrained with DS1, more data is needed, to perform

more tests and conclude if one of the algorithms stands out.

Regarding DTs trained with DS5 - 1, Cap utilized and PEI down were always considered with

the unbalanced an the balanced data. With DS5 - 2, AT out, SQ down and BER down. With

DS5 - 3, Cap utilized and BER down.

In PCA, variables of DS5 - 1 with more influence in some components were Total Airtime,

Overrun, and Rx br up. Variables of DS5 - 2 with more influence were AT in and Rx br up.

Variables of DS5 - 3 with more influence were RED and Cap utilized.

Looking to DTs and PCA, it is clear that some variables stood out. Besides, DTs left out

much variables, which could mean that there is no need to train them with so many variables.

This conclusion stands for all training sets (DS1, DS5 - 1, DS5 - 2, and DS5 - 3). Regarding

results presented in this section, as differences with these three data sets were not inappropriate,

the data set chosen would be DS5 - 3. Reasons to chose this set are that it is smaller, reducing

computational costs and eventually chances of overfitting.

4.3 Final Remarks

Regarding PCA, the two first principal components represented data classes more clearly.

However, PCA did not bring better classification results in terms of algorithms performance

(and it is not the main goal with the use of PCA).

Regarding the correspondence between classes of errors, causes, and fixes, in general, this

correspondence maintained in the wrong predictions. However, it was maintained mainly

between classes of causes and fixes.

Concerning the unbalanced and balanced data sets, it was not conclusive if balancing the

data is a procedure to apply with eventually new training sets. With DS1, in general, results

were better with unbalanced data, but with DS5, differences were acceptable between balanced

and unbalanced data.
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DTs left out several numerical variables considered as input. It could mean that some of them

are not needed to train the algorithms. Regarding the different sets of variables considered and

the most updated data set (DS5), a numerical set of variables was chosen.

In general, it seems that KNN and DTs were overfitting. However, it is necessary to have

into account that, as aforementioned, the problem of errors, causes, and fixes was not settled

over time. The study about the WiBACK networks was evolving, meaning that the data and

assumptions had suffered changes. The data set provided for the last training moment (DS5)

contains the last updates in data, making this training the most reliable one regarding the

WiBACK conditions and the study of its networks. Besides, Table 3.3 shows that there are

classes in the training that are not in DS2, DS3, neither DS4, which also shows these differences.

Regarding both training sets (DS1 and DS5), SVM presented better capability of generalization.
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Chapter 5.

Conclusions and Future Work

The goal of this work was to contribute for the further automatization of WiBACK. It was

done with the application of different ML algorithms to classify errors, causes, and solutions,

and the analysis of the relation between them. All the objectives of the work were accomplished.

A theoretical study about errors in a wireless system and respective causes and fixes was

performed. Errors, causes, and fixes of the application case WiBACK were classified with DTs,

KNN, and SVM after a selection of numerical variables to consider as input. Classification of

errors, causes, and fixes was performed separately (three independent classification procedures).

A PCA transformation was applied to data not just to reduce the dimensionality of the problem,

but also to carry an exploratory study to conclude which principal components better explained

visually the data according to classes of errors, causes, and fixes.

Regarding the tests and results presented, it was concluded that SVM are valid, which means

that it is possible to detect and classify errors, causes, and solutions of the WiBACK link’s

faults accurately. Particularly, the classification of causes can be accurate without considering

errors classes, and the classification of fixes can be accurate without considering errors and

causes classes. It means that the automated monitoring of WiBACK traffic behavior is possible

and can be accurate with a ML approach.

5.1 Future Work

The areas identified for improvement respect the collection of more data, running algorithms

online, the relation between errors, causes, and solutions, and an autonomous implementation

of fixes by the software.
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The first step of the future work is to collect and treat more data, to test algorithms with more

data, collected with the latest version of WiBACK software, to further study unforeseen behavior

using new data. This data will have the last updates considered. To test algorithms in different

locations, the WiBACK software in Porto should be updated. Afterwards, all the procedures

could be applied in regions without technicians that WiBACK is installed. Additionally, as it is

expected these ML algorithms to run online for fixing faults, it is also needed to understand

the computational burden that may be imputed to the WiBACK controller. It is also needed

to understand whether this can influence the system’s reactions to such faults as well as the

software’s overall performance.

Regarding the relation between errors, causes, and fixes, to develop a methodology to identify

the misclassified instances and use that relation to correct them is needed. If the performance

is satisfactory online, the last stage of the work would be an implementation phase where the

machine is capable of deciding whether the proposed solution to a specific problem is the best

solution for the network as a whole.

For this purpose, the network behavior has to be taken into account, as a list of parameters

that interfere with the network operation. Then, the labeled solutions might have weights

defined according to not just the problem itself, but also these parameters, and changes with

negative impact in the network that each solution may originate. This would be a possibility

for how the network shall decide which solution is the best for each error.

Future work also includes a process of re-fixing errors, even if with weighted solutions, the

network does not respond satisfactorily.
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Chapter A.

Confusion matrices

Table A.1: Confusion matrices for errors classification with DS2 as the test set.

DS DTs KNN SVM

U

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 369 173 0 0 E1 0 542 0 0 E1 539 3 0 0

E2 1 403 7 0 E2 0 411 0 0 E2 29 377 0 5

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0

B

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 0 526 1 15 E1 0 542 0 0 E1 539 0 0 3

E2 0 317 1 93 E2 0 411 0 0 E2 36 139 0 236

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0

PCA

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 84 458 0 0 E1 0 542 0 0 E1 0 542 0 0

E2 32 355 24 0 E2 0 378 33 0 E2 0 411 0 0

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0
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Table A.2: Confusion matrices for errors classification with DS3 as the test set.

DS DTs KNN SVM

U

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 369 173 0 0 E1 0 542 0 0 E1 539 3 0 0

E2 1 364 7 0 E2 0 372 0 0 E2 29 338 0 5

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0

B

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 0 526 1 15 E1 0 542 0 0 E1 539 0 0 3

E2 0 278 1 93 E2 0 372 0 0 E2 36 100 0 236

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0

PCA

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 84 458 0 0 E1 0 542 0 0 E1 0 542 0 0

E2 24 348 0 0 E2 0 372 0 0 E2 0 372 0 0

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0
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Table A.3: Confusion matrices for errors classification with DS4 as the test set.

Data set DTs KNN SVM

Unbalanced

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 369 212 0 0 E1 20 561 0 0 E1 557 4 0 0

E2 1 498 13 0 E2 38 473 1 0 E2 45 446 13 8

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0

Balanced

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 369 212 0 0 E1 20 561 0 0 E1 557 1 0 3

E2 1 498 13 0 E2 63 448 1 0 E2 56 173 15 262

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0

PCA

E1 E2 E3 E4 E1 E2 E3 E4 E1 E2 E3 E4

E1 105 476 0 0 E1 20 562 0 0 E1 2 579 0 0

E2 61 427 24 0 E2 28 450 34 0 E2 0 512 0 0

E3 0 0 0 0 E3 0 0 0 0 E3 0 0 0 0

E4 0 0 0 0 E4 0 0 0 0 E4 0 0 0 0
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Table A.4: Confusion matrices for causes classification with DS2 as the test set.

DS DTs KNN SVM

U

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 447 92 3 0 0 C1 0 542 0 0 0 C1 539 3 0 0 0

C2 3 247 10 0 0 C2 0 260 0 0 0 C2 4 219 7 0 30

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 0 39 0 0 0 C4 0 39 0 0 0 C4 0 0 0 0 39

C5 48 15 49 0 0 C5 0 112 0 0 0 C5 26 72 1 0 13

B

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 362 97 83 0 0 C1 0 542 0 0 0 C1 540 2 0 0 0

C2 23 1 13 0 223 C2 0 233 0 0 0 C2 4 235 8 0 13

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 0 0 0 0 39 C4 0 39 0 0 0 C4 0 1 0 0 38

C5 2 1 101 0 0 C5 0 112 0 0 0 C5 31 80 1 0 0

PCA

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 81 461 0 0 0 C1 0 542 0 0 0 C1 0 542 0 0 0

C2 2 258 0 0 0 C2 0 260 0 0 0 C2 0 260 0 0 0

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 8 10 21 0 0 C4 0 2 37 0 0 C4 0 39 0 0 0

C5 22 90 0 0 0 C5 0 112 0 0 0 C5 0 112 0 0 0
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Table A.5: Confusion matrices for causes classification with DS3 as the test set.

DS DTs KNN SVM

U

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 447 92 3 0 0 C1 0 542 0 0 0 C1 539 3 0 0 0

C2 3 247 10 0 0 C2 0 260 0 0 0 C2 4 219 7 0 30

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 0 0 0 0 0 C4 0 0 0 0 0 C4 0 0 0 0 0

C5 48 15 49 0 0 C5 0 112 0 0 0 C5 26 72 1 0 13

B

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 362 97 83 0 0 C1 0 542 0 0 0 C1 540 2 0 0 0

C2 23 1 13 0 223 C2 0 260 0 0 0 C2 4 235 8 0 13

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 0 0 0 0 0 C4 0 0 0 0 0 C4 0 0 0 0 0

C5 2 1 101 0 98 C5 0 112 0 0 0 C5 31 80 1 0 0

PCA

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 81 461 0 0 0 C1 0 542 0 0 0 C1 0 542 0 0 0

C2 2 258 0 0 0 C2 0 260 0 0 0 C2 0 260 0 0 0

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 0 0 0 0 0 C4 0 0 0 0 0 C4 0 0 0 0 0

C5 22 90 0 0 0 C5 0 112 0 0 0 C5 0 112 0 0 0
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Table A.6: Confusion matrices for causes classification with DS4 as the test set.

DS DTs KNN SVM

U

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 477 101 3 0 14 C1 20 561 0 0 0 C1 577 3 0 0 1

C2 3 288 16 0 11 C2 15 302 1 0 0 C2 4 244 37 0 33

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 0 39 0 0 0 C4 0 39 0 0 0 C4 0 0 0 0 39

C5 48 15 49 0 43 C5 20 135 0 0 0 C5 57 74 1 0 23

B

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 371 97 91 0 22 C1 20 561 0 0 0 C1 578 2 0 0 1

C2 23 1 23 0 271 C2 40 177 1 0 0 C2 4 157 41 0 16

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 0 0 0 0 39 C4 0 39 0 0 0 C4 0 1 0 0 38

C5 2 1 0 0 152 C5 20 135 0 0 0 C5 53 83 1 0 18

PCA

C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

C1 102 479 0 0 0 C1 19 562 0 0 0 C1 2 579 0 0 0

C2 8 310 0 0 0 C2 8 309 1 0 0 C2 0 317 1 0 0

C3 0 0 0 0 0 C3 0 0 0 0 0 C3 0 0 0 0 0

C4 8 10 21 0 0 C4 0 2 37 0 0 C4 0 39 0 0 0

C5 45 110 0 0 0 C5 20 135 0 0 0 C5 0 154 1 0 0
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Table A.7: Confusion matrices for fixes classification with DS2 as the test set.

DS DTs KNN SVM

U

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 447 92 3 0 0 F1 0 542 0 0 0 F1 539 3 0 0 0

F2 3 286 10 0 0 F2 0 299 0 0 0 F2 35 260 0 0 4

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 48 15 49 0 0 F4 0 112 0 0 0 F4 28 83 0 0 1

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0

B

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 0 525 2 0 15 F1 0 542 0 0 0 F1 539 0 0 0 3

F2 0 286 0 0 13 F2 21 266 0 0 155 F2 21 123 0 0 155

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 0 29 3 0 80 F4 0 112 0 0 0 F4 29 2 0 0 81

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0

PCA

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 81 461 0 0 0 F1 0 542 0 0 0 F1 0 542 0 0 0

F2 10 268 21 0 0 F2 0 266 33 0 0 F2 0 299 0 0 0

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 22 90 0 0 0 F4 0 112 0 0 0 F4 0 112 0 0 0

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0
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Table A.8: Confusion matrices for causes classification with DS3 as the test set.

DS DTs KNN SVM

U

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 447 92 3 0 0 F1 0 542 0 0 0 F1 539 3 0 0 0

F2 3 247 10 0 0 F2 0 260 0 0 0 F2 30 226 0 0 4

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 48 15 49 0 0 F4 0 112 0 0 0 F4 28 83 0 0 1

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0

B

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 0 525 2 0 15 F1 0 542 0 0 0 F1 539 0 0 0 3

F2 0 247 0 0 13 F2 0 247 0 0 13 F2 16 89 0 0 155

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 0 29 3 0 80 F4 0 112 0 0 0 F4 29 2 0 0 81

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0

PCA

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 81 461 0 0 0 F1 0 542 0 0 0 F1 0 542 0 0 0

F2 2 258 0 0 0 F2 0 260 0 0 0 F2 0 260 0 0 0

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 22 90 0 0 0 F4 0 112 0 0 0 F4 0 112 0 0 0

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0
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Table A.9: Confusion matrices for fixes classification with DS4 as the test set.

DS DTs KNN SVM

U

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 463 101 3 14 0 F1 20 561 0 0 0 F1 578 3 0 0 0

F2 3 327 16 11 0 F2 21 335 1 0 0 F2 35 308 7 1 6

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 48 15 49 0 43 F4 20 135 0 0 0 F4 60 94 0 0 1

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0

B

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 0 545 2 19 15 F1 20 561 0 0 0 F1 578 0 0 0 3

F2 0 287 9 1 60 F2 40 316 1 0 0 F2 21 174 4 0 158

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 0 29 26 20 80 F4 20 135 0 0 0 F4 45 6 0 0 104

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0

PCA

F1 F2 F3 F4 F5 F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

F1 92 479 0 0 0 F1 19 562 0 0 0 F1 2 579 0 0 0

F2 16 320 21 0 0 F2 8 315 34 0 0 F2 0 357 0 0 0

F3 0 0 0 0 0 F3 0 0 0 0 0 F3 0 0 0 0 0

F4 45 110 0 0 0 F4 20 135 0 0 0 F4 1 154 0 0 0

F5 0 0 0 0 0 F5 0 0 0 0 0 F5 0 0 0 0 0
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Chapter B.

Hyperparameters of the trained algorithms

Table B.1: Optimized hyperparameters of DTs trained with DS1 to classify the
errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA data
sets.

Data set Maximum

depth

Split

metric

Maximum

leaf nodes

Node

split

Complexity

parameter

E

Unbalanced 4 Entropy 9 Best 0

Balanced 5 Gini 9 Best 0

PCA 4 Entropy 9 Best 0

C

Unbalanced 5 Gini 9 Best 0

Balanced 5 Gini 9 Best 0

PCA 4 Gini 7 Best 0

F

Unbalanced 5 Gini 9 Best 0

Balanced 4 Gini 9 Best 0

PCA 4 Gini 7 Best 0
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Table B.2: Optimized hyperparameters of KNN trained with DS1 to classify the
errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA data
sets.

Data set K More important points

to the query point

Distance

E

Unbalanced 5 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 6 The closer ones Euclidean

C

Unbalanced 6 All equal Manhattan

Balanced 2 The closer ones Manhattan

PCA 4 All equal Euclidean

F

Unbalanced 8 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 6 The closer ones Euclidean

Table B.3: Optimized hyperparameters of SVM trained with DS1 to classify the
errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA data
sets.

Data set Kernel

E

Unbalanced Linear

Balanced Linear

PCA Radial basis function

C

Unbalanced Linear

Balanced Linear

PCA Radial basis function

F

Unbalanced Linear

Balanced Linear

PCA Radial basis function
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Table B.4: Optimized hyperparameters of DTs when the algorithms were retrained
with DS1 to classify the errors (E), causes (C), and fixes (F) with the unbalanced,
balanced, and PCA data sets.

Data set Maximum

depth

Split

metric

Maximum

leaf nodes

Node

split

Complexity

parameter

E

Unbalanced 4 Gini 8 Best 0.015

Balanced 3 Gini 8 Best 0

PCA 5 Gini 9 Best 0

C

Unbalanced 3 Gini 8 Best 0

Balanced 5 Entropy 9 Best 0

PCA 4 Gini 9 Best 0

F

Unbalanced 3 Gini 8 Best 0

Balanced 5 Gini 9 Best 0

PCA 3 Entropy 6 Best 0

Table B.5: Optimized hyperparameters of KNN when the algorithms were retrained
with DS1 to classify the errors (E), causes (C), and fixes (F) with the unbalanced,
balanced, and PCA data sets.

Data set K More important points

to the query point

Distance

E

Unbalanced 5 All equal Euclidean

Balanced 2 The closer ones Euclidean

PCA 5 The closer ones Euclidean

C

Unbalanced 8 The closer ones Chebyshev

Balanced 2 The closer ones Euclidean

PCA 9 The closer ones Manhattan

F

Unbalanced 4 The closer ones Euclidean

Balanced 2 The closer ones Euclidean

PCA 9 The closer ones Manhattan
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Table B.6: Optimized hyperparameters of SVM when the algorithms were retrained
with DS1 to classify the errors (E), causes (C), and fixes (F) with the unbalanced,
balanced, and PCA data sets.

Data set Kernel

E

Unbalanced Linear

Balanced Linear

PCA Linear

C

Unbalanced Linear

Balanced Linear

PCA Linear

F

Unbalanced Linear

Balanced Linear

PCA Linear

Table B.7: Optimized hyperparameters of DTs trained with DS5 - 1 to classify the
errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA data
sets.

Data set Maximum

depth

Split

metric

Maximum

leaf nodes

Node

split

Complexity

parameter

E

Unbalanced 4 Entropy 9 Best 0

Balanced 5 Entropy 8 Best 0

PCA 4 Entropy 9 Best 0

C

Unbalanced 4 Gini 9 Best 0

Balanced 5 Gini 7 Best 0

PCA 4 Gini 9 Best 0

F

Unbalanced 4 Entropy 7 Best 0

Balanced 5 Entropy 9 Best 0

PCA 5 Entropy 9 Best 0.025



FCUP 91
Automated monitoring of WiBACK’s traffic behavior

Table B.8: Optimized hyperparameters of KNN trained with DS5 - 1 to classify
the errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA
data sets.

Data set K More important points

to the query point

Distance

E

Unbalanced 4 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 3 The closer ones Chebyshev

C

Unbalanced 9 The closer ones Manhattan

Balanced 9 The closer ones Euclidean

PCA 9 The closer ones Manhattan

F

Unbalanced 6 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 8 The closer ones Euclidean

Table B.9: Optimized hyperparameters of DTs by GS to classify the errors (E),
causes (C), and fixes (F) with the unbalanced, balanced, and PCA data sets.

Data set Kernel

E

Unbalanced Linear

Balanced Linear

PCA Linear

C

Unbalanced Linear

Balanced Linear

PCA Radial basis function

F

Unbalanced Linear

Balanced Linear

PCA Linear
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Table B.10: Optimized hyperparameters of DTs trained with DS5 - 2 to classify
the errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA
data sets.

Data set Maximum

depth

Split

metric

Maximum

leaf nodes

Node

split

Complexity

parameter

E

Unbalanced 4 Entropy 9 Best 0

Balanced 4 Entropy 9 Best 0

PCA 4 Entropy 8 Best 0

C

Unbalanced 4 Gini 9 Best 0

Balanced 7 Entropy 9 Best 0

PCA 5 Entropy 9 Best 0

F

Unbalanced 5 Gini 9 Best 0

Balanced 5 Gini 8 Best 0

PCA 4 Gini 9 Best 0

Table B.11: Optimized hyperparameters of KNN trained with DS5 - 2 to classify
the errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA
data sets.

Data set K More important points

to the query point

Distance

E

Unbalanced 4 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 3 All equal Chebyshev

C

Unbalanced 7 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 4 The closer ones Chebyshev

F

Unbalanced 4 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 2 The closer ones EUclidean
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Table B.12: Optimized hyperparameters of SVM trained by DS5 - 2 to classify the
errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA data
sets.

Data set Kernel

E

Unbalanced Linear

Balanced Polynomial with degree

PCA Linear

C

Unbalanced Linear

Balanced Linear

PCA Linear

F

Unbalanced Linear

Balanced Linear

PCA Linear

Table B.13: Optimized hyperparameters of DTs trained with DS5 - 3 to classify
the errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA
data sets.

Data set Maximum

depth

Split

metric

Maximum

leaf nodes

Node

split

Complexity

parameter

E

Unbalanced 5 Entropy 8 Best 0

Balanced 4 Entropy 7 Best 0

PCA 3 Entropy 5 Best 0

C

Unbalanced 5 Entropy 9 Best 0

Balanced 4 Entropy 9 Best 0

PCA 5 Entropy 8 Best 0

F

Unbalanced 5 Entropy 7 Best 0

Balanced 4 Entropy 8 Best 0

PCA 6 Gini 8 Best 0
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Table B.14: Optimized hyperparameters of KNN trained with KNN to classify the
errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA data
sets.

Data set K More important

points to the query

point

Distance

E

Unbalanced 3 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 4 The closer ones Euclidean

C

Unbalanced 8 The closer ones Euclidean

Balanced 9 The closer ones Manhattan

PCA 9 The closer ones Chebyshev

F

Unbalanced 7 The closer ones Manhattan

Balanced 2 The closer ones Manhattan

PCA 4 The closer ones Manhattan

Table B.15: Optimized hyperparameters of SVM trained with DS5 - 3 to classify
the errors (E), causes (C), and fixes (F) with the unbalanced, balanced, and PCA
data sets.

Data set Kernel

E

Unbalanced Linear

Balanced Linear

PCA Linear

C

Unbalanced Linear

Balanced Linear

PCA Radial basis function

F

Unbalanced Linear

Balanced Linear

PCA Linear
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