
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Cost Reduction Technique for Mutation
Testing

Francisco Bernardo Azevedo

Mestrado em Engenharia de Software

Supervisor: Ana Paiva

Second Supervisor: João Bispo

October 28, 2020

Cost Reduction Technique for Mutation Testing

Francisco Bernardo Azevedo

Mestrado em Engenharia de Software

October 28, 2020

Abstract

Software testing is a fundamental part of the software development process. This is the process
that tests if the software is properly developed and should always test for not only the functionality
but also test for common mistakes. This is the importance of Mutation testing.

Mutation testing is a type of testing that tests not only the developed software, but most im-
portantly, the developed software tests. This testing works by injecting common defects on the
software (Mutations) and expect the test to fail. Failed tests mean that the test takes into account
that common issue, and therefore the tests are prepared for it.

The problem with this approach however, is that it is very resource consuming, specially on
time. This happens as a new version of the software is needed for every new code injection. This
is where this new technique tries to improve the approach, by instead of creating a single version
for every mutation it creates only a single version for all the mutations. This without losing the
software functionality nor the capability of testing just one mutation at a time.

Keywords: Mutation Testing, Mutation Testing Process, Software Quality, Software Testing,
Code injection, Code Defects

i

ii

Resumo

Testar o Software é uma parte fundamental do processo de desenvolvimento do software. Este é o
processo que testa se o Software está desenvolvido da forma correta e deve testar sempre não só
a funcionalidade, mas também por erros comuns. E é nesta última parte que entram os Testes de
Mutação.

Testes de Mutação é um tipo de testes que testa não só o Software desenvolvido, mas mais
importante, os testes desse Software desenvolvido. Este método de testes funciona ao injetar erros
comuns no Software (Mutações) e esperar que os testes falhem. Testes falhados significa que esse
teste toma em consideração esse erro comum e, por isso, os testes estão preparados para esse erro.

O problema deste método, no entanto, é que consome muitos recursos, especialmente tempo.
Isto acontece porque por uma versão nova do software é precisa para cada injeção de código. É
aqui que esta nova técnica tenta trazer alguma contribuição nova, ao invés de criar uma versão e
código para cada mutação, criar apenas uma versão com todas as mutações. Isto tudo sem nunca
perder a funcionalidade original nem a possibilidade de executar apenas uma mutação de cada vez

Keywords: Testes de Mutação, Processo de Teste de Mutação, Qualidade de Software, Testes de
Software, Injeçao de código, Defeitos de código

iii

iv

Acknowledgements

This thesis could not have been completed without the help and incentives, and therefore the
acknowledgement, of the following:

The professors Ana Paiva and João Bispo, for their sharing of knowledge, their help, and
overall support.

The TVVS students who helped developing the initial version of the mutation operators.
My family, for all the things I got them trough and the support they gave, for me to be able to

deliver this thesis.
My friends, for the support they gave so I could achieve this goal.
For the persons at work, that sometimes without even knowing helped me during this phase.
And for everyone else, that in one way or another contributed for this thesis.

Francisco Azevedo

v

vi

“The best way to predict your future
is to create it..”

Abraham Lincoln

vii

viii

Contents

1 Introduction 1
1.1 Context and Problem . 1
1.2 Document structure . 2

2 State of the art 3
2.1 Existing Mutation Tools . 3

2.1.1 Mobile Application Specific . 4
2.1.2 Java Language Specific . 5

2.2 Comparison . 9
2.2.1 Documentation Quality . 9
2.2.2 Maintainability . 12
2.2.3 Performance . 12
2.2.4 Final Comparison . 13

2.3 Summary . 13

3 Framework 17
3.1 Background . 17

3.1.1 Mutation process . 17
3.1.2 Lara and the Kadabra tool . 19

3.2 The mutation interface . 19
3.3 Conclusion . 21

4 Proposed Process 23
4.1 Classic Process . 23
4.2 Proposed Process . 24

4.2.1 Mutant generation and identification . 24
4.2.2 Incompatible Mutants . 25

4.3 Conclusion . 27

5 The tool 29
5.1 Tool Design . 29
5.2 Mutation Operators . 31

5.2.1 General Operators . 31
5.2.2 Java Methods . 33
5.2.3 Android Specific . 44

5.3 Conclusion . 47

ix

x CONTENTS

6 Process Comparison 49
6.1 Used Method . 49
6.2 Results . 49
6.3 Conclusion . 51

7 Conclusions and Future Work 53
7.1 Results . 53
7.2 Further Work . 53

References 55

List of Figures

2.1 Taxonomy of Android Bugs [10] . 14

3.1 Example of an AST . 18
3.2 Interface Architecture . 20
3.3 Cumulative Mutator implementation example 21

4.1 Proposed Process Code Example . 25

5.1 GUI Configuration interface . 30

6.1 Time Difference . 51
6.2 Proposed process Speedup by number of mutants 52

xi

xii LIST OF FIGURES

List of Tables

2.1 Documentation comparison . 11
2.2 Maintainability comparison . 12
2.4 Final Comparison and Rating . 13
2.3 Performance Comparison . 15

5.1 Literal Mutation Operators . 34
5.2 Non Void Call Mutation Operator Mappings . 35

6.1 First test complete run-times . 50
6.2 Second test complete run-times . 50
6.3 Third test complete run-times . 50

xiii

xiv LIST OF TABLES

Abbreviations

AST Abstract Syntax Tree
GUI Graphical User Interface
CLI Command Line Interface
API Application Programming Interface
XML Extensible Markup Language
MUID Mutation Unique Identifier

xv

Chapter 1

Introduction

The Software industry is an ever-growing industry that can be found almost everywhere nowadays.

This software however, is still made by humans, and that means its still prone to mistakes. That’s

why on Software development there is a kind of code that its only purpose is to test the final

Software.

This testing process works by executing portions of the original code, and compare its results

with expected results, this is called unit testing. This results can range from expected values,

strings, database changes, exceptions or more, depending on the testing framework in use.

This tests can however, fail to cover common problems that a developer might make without

even noticing. For instance, its easy for a developer to instead of coding a ">" to code a "<" when

comparing two values as both are in the same keyboard key. If this issue occurs on a hard to notice

place in the code, and the tests do not verify it, it might stay undetected and cause issues when

deployed. This then, calls for a way to test the before mentioned unit tests for common issues, to

see if they are testing for said issues.

For this Mutation Testing was introduced. It works by changing a copy of the original code,

injecting common defects, commonly known as mutations, and then execute them against the

original tests. The tests are then expected to have at least one failed one. This failure will mean

that the failed test is taking that common mistake, on that particular place, into consideration.

Having several examples of already implemented tools for source code mutation testing, this

methodology can also be applied to models [2], execution traces [14], web testing [1], amongst

other processes. The scope still remains the same, checking whether the test suite of said processes

tests for common failures of the process, having the only change being that instead of mutating

the source code, the mutations will be on its equivalent for the process.

1.1 Context and Problem

Mutation testing however, has an intrinsic problem. On large programs, that have thousands of

lines of code, and equivalent number of tests for that same code, it might require long portions

of time and processing power to execute. This happens as a program this big will have most

1

2 Introduction

likely also have thousands of mutations, every one of which will require to have its own dedicated

version to test, so the place that is not properly tested can be pinpointed. Also most tools fail to

have a proper interface or documentation, making harder for the user to optimize its execution and

integration on the testing process.

This is where this research work comes in, the creation of a tool that tackles the before men-

tioned issues by having an higher degree of configurability, and, that uses, a new and more opti-

mized process for mutation testing, as defined on chapter 4.

This process will try to tackle the problem of the performance, therefore improving the process

in a way that is more feasible. This is possible by trying to reduce the two most time consuming

tasks, files generation and compilation times by only requiring to do both tasks only once in the

process, instead of a number of times equivalent to the number of mutants.

To tackle the configurability problems, that are further identified in chapter 2 with an in-depth

analysis of the existing tools, we designed an framework, that uses an existing tool as a base, and

that will be available for the usedt to use a set of pre-made mutation operators or make his own

operators, with little to no extra knowledge required. This is possible as we designed an interface

for our tool that requires the user to have knowledge of the widespread programming language

JavaScript, and an easy to learn API for our framework.

1.2 Document structure

This document will be structured in 7 chapters where we try to explain our process, they are as

follows.

The first chapter is this introductory one, where we expose the problem and we will try to

solve the said problem.

The second chapter, a State of the Art, where we identify another existing tools, analyze them

and identify their problems so we can better understand what is required to do.

The third chapter is where we mention an interface we developed achieve better configurabil-

ity, and a background on the existent processes and both how we implement the selected process

and how the tool is developed.

The Fourth chapter is how we try to achieve better performances, by initially identifying the

classic mutation process and how it works, and then our own process and how we perform it.

The fifth chapter where we describe the tool we developed and how it works, so we could test

both our proposed interface and our process.

The sixth chapter that, with the knowledge gained and the tool developed on the previous

chapters, we made a comparison on the mutations processes, to see how they perform.

And finally the seventh chapter, where we take our conclusions and mention future work.

Chapter 2

State of the art

The ever-growing Software world is constantly being flooded with new and more complex soft-

ware. Software which most of the times is not being properly tested. This failure on testing often

leads to undiscovered failures, that, when found, might cause significant damage. Often those fail-

ures have the same common mistakes, mistakes that can be tested and checked before deployment.

This verification is performed with tests that may or may not have been properly implemented.

The tests however might not be properly implemented still. That is where mutation testing

comes in. It is a way to check if the software testing phase tests for common issues, by injecting a

replication of those issues on the existing code and expect the tests to detect them . These changes

on the code are called mutations, and there are two ways to apply them, more specifically, on the

source code, or on some approaches, the compiled byte-code itself.

Afterwards the same application test suite is run on the mutated code and expected to fail, and

with this failure, detecting the injected failures. This way the tool can ensure that the test suite

developed for the application, does indeed, detect the common failures the tool injects. Although

not standardized, at the end, a report with relevant information is often generated with useful

information such as the number of mutations generated, and more importantly, which of them

passed on all the unit tests. With this report the developers know which common issue is not being

tested, and therefore, know which new unit tests or refactor of existing ones, should be performed.

2.1 Existing Mutation Tools

As mentioned on 2, there are indeed some mutation testing tools, but they all lack something, either

documentation, better user interfaces, few mutators and amongst other problems, most have who

just stopped being maintained. Also most are not made taking into account what is becoming the

biggest software market, the mobile applications, and as such, not prepared to tackle its common

mistakes. These issues are shown in Figure 2.1, found in "Enabling Mutation Testing for Android

Apps" [10], which mentions at least 151 types of bugs just specific for Android.

3

4 State of the art

So, given that the market is slowly changing, we are separating the following tools, which will

later be compared on 2.2, in Mobile Application and, due to the base language being common,

Java Language Specific. These tools were selected given their relevance and available literature.

2.1.1 Mobile Application Specific

2.1.1.1 Edroid

Edroid is a tool developed with the intention to mutate Android apps, more specifically its XML

layout and configuration files, having the goal to add the Java code mutators in the future. Future

which might not appear, considering the only information found is 2 year old conference paper [11]

and there is no place to obtain the tool and confirm its updates.

It works firstly by asking the user for the source files of the application to be tested, after

which it selects the mutation operators to use, between the 14 available. This selection process is

also uncertain if it is possible to be done manually, as it states that a subset of the mutants can be

used, but it also states that the mutants cannot be removed. It also does not verify the existence

of equivalent mutators (Mutators that have the same behaviour as the original code), which may

impact the overall performance. Having done this two steps and pressing the "Generate" button

the process begins.

The process begins by identifying the XML files to mutate and dividing them into Layout and

Configuration files. It preforms that by opening the files as text files and then perform a search

for keywords. After which 11 layout mutants of the 14 mutators on the tool might be applied.

For the configuration files the remaining operators will be applied. Having the mutators being

implemented its runs a test suite on the compiled APK (Android Package) for each mutation and

for the original code as well. A comparison of the obtained mutations results and the original

results is made, returning a mutation score. [11]

2.1.1.2 MDroid+

Mdroid+ is a mutation tool developed specifically to be only used on an Android platform. As

such this tool, according to its documentation, has a total of 38 mutators, all of them specific for

android, working either on the AST (Abstract Syntax Tree), for the Java language files, and on

text files, for the layout and properties XML files.

This tool, has relatively good mutator documentation, being only a few mutators that are not

completely explicit, for instance, the mutators where code is replaced by new one. We don’t know

how they chose the new code, just that on some, but not all, its randomly generated in a non

explicit way [10].

Also, it allows the user to select the mutators to be used, as this tool can only be run on a

CLI (Command Line Interface), one would assume that the configuration could be made through

execution flags, which is not the case. This tool, to be configured needs the user to manipulate the

2.1 Existing Mutation Tools 5

properties file, which might not be the most friendly way to be made, due to the learning curve

needed to know the syntax of said properties files [13].

Furthermore, even though it has future work described on its open-source repository, the last

update is more than a year old, leading us to believe that this tool is not being maintained any-

more [24].

2.1.1.3 MuDroid

MuDroid is a mutation tool developed in 2015 as a bachelors final project [32], to work on the

Dalvik virtual machine bytecode, the android specific Java Virtual Machine (JVM). This allows

MuDroid to have the BlackBox testing advantages, only needing the final Android Package(APK)

of the software being tested, But it also brings the disadvantages of harder to code mutators, even

though in their approach, a parse of the bytecode to more readable code is made using Smali, a

Dalvik bytecode assembler/disassembler.

Analyzing its mutants, when looking for android specific mutators, we came out unsuccessful

as the mutations are not android specific as claimed. The described mutants only mutate the

generic Java Operators (for instance replacing the ’==’ to ’!=’, or ’+’ to ’-’), perform constants

replacement and change the return output of the functions to 0 or null. All of which can be

language agnostic.

This tool also has very specific requirements to be ran, the test suite must be a device/emulator

with a 1920*1200 resolution. Also it is recommended to use just a certain device, the 2013 Asus

Google Nexus 7 tablet. Furthermore, at the time of writing, this tool is not being maintained any-

more, having its repository not being updated in more than 4 years [27].

2.1.2 Java Language Specific

2.1.2.1 JavaLanche

JavaLanche is a 2009 Java mutation tool that has, as its main purpose, to efficiently and auto-

matically allow mutation testing on Java applications. [15] It tries to perform mutation testing

efficiently by:

• Only using a small set of mutation operators, 4 to be exact, highly reducing the set mutants

to be tested after without actually removing a lot of potential fault detection by using more

embracing mutation operators [4]. This could still allow for a higher degree of coverage if

the mutants would still perform a higher order mutation, covering therefore smaller mutation

operators. However this is not the case, because as shown in its coverage score, described

in the Table 2.2.3 in the Comparison 2.2, it has an equal performance as most.

• By working on the Java bytecode, therefore avoiding compiling every mutation, which is

highly costly in terms of time and performance.

6 State of the art

• By only testing the mutations that are covered by the tests, which coupled with the previous

one can result in a significant reduction of time and processing power needs

• By the use of parallelism on the testing phase, which consists of every test being ran in a

separate system task, allowing to perform an undetermined number of tests simultaneously

being only limited by the number of processing threads on the system being used

JavaLanche is also an open source Java application, which could allow it to be platform inde-

pendent. But according to its execution manual on its repository [20] it was made to be ran only

on Unix based systems, as the procedure to perform its installation, per documentation, is running

a Unix Shell script. The open source repository has also not been updated since March 2012 and

has open issues from that epoch, making us believe it is not being maintained anymore.

2.1.2.2 Jumble

Jumble is a mutation tool developed by Reel Two, a New Zealand tech company. Firstly released in

2007 and updated until 2015 [21], it was developed with the intention to test the company projects

unit tests, which at the time of first development were greatly increasing due to a methodology

change. It works by following these steps:

1. Run the test cases on the original source code and record their time of execution, allowing

therefore to later detect infinite loops and also to order the test cases.

2. Perform bytecode mutation, to prevent the time and resource costly compilations

3. Order the tests by using 3 heuristics, giving precedence to test cases that it is known to kill

the mutants (Only works if it is not the first run), giving precedence to the test cases that

killed a mutant on the same method due to the probability to kill another mutant is greater,

and, finally by ordering all of them by the first execution time in an ascending order

4. Run the test cases on the mutated code and expect them to fail. These test cases are ran on

a child JVM (Java Virtual Machine), so when a infinite loop is detected by taking too long

to run or a heavy memory usage between tests is detected, the JVM can be safely killed and

started again on for the next test.

5. Generation of a report, where the mutation score and other information is displayed.

Jumble also provides 7 types of mutators, which can be excluded from being ran on a certain

method either using the parameter -x followed by the list of method to ignore or –exclude=METHOD

when running it on the CLI (Command Line Interface). In case of using the plugin or using the

tool as an external package, the addition of the annotation @JumbleIgnore to the methods, is the

way to achieve the same functionality.

2.1 Existing Mutation Tools 7

Also 5 of those 7 mutators are disabled by default, having the need to activate them using the

appropriate command line parameters for each disabled mutator. It is not explicit whether this

behavior replicates on the other possible interfaces or not [22].

This tool was also firstly developed to run from Java 1.3 to 1.6 with it now supporting till Java

8. Also it can be used in one of 3 ways being it, executing it on the command line, by executing it

as an Eclipse IDE plugin or adding it as a dependency to the the Java project.

The company where it has been developed also achieved their goal, by implementing it on a

Integration testing system. That system works, amongst other functionalities, by running the unit

tests of the newly committed code every 15 minutes, a process that was already implemented in

the integration system before. Overnight however things change, the remaining part of the tools

process is ran, allowing therefore to a more efficient use of the system resources. It Is also doc-

umented that by using this process, extra motivation was given to the developers to implement

better unit tests of their code due to having a mutation score [7].

2.1.2.3 Major

Major is Java specific mutation tool that was developed to be integrated inside the Java compiler,

trying to do do mutation testing with the following changes to the compiler:

• Non-invasive implementation

• Configurable through a DSL(Domain specific language), which allows to also extend its

functionality

• 3 mutation operator groups that can be selected through compiler options

• Efficient analysis due to its compiler embedded nature

During its development, due to its nature of changing another the compiler to run, some pre-

cautions were taken. The compiler must not change its original behaviour, changes must be exter-

nalized, and required changes to the application must be kept to a minimum to mitigate the before

mentioned behavioural changes.

It works by analysing the AST (Abstract Syntax Tree) and encapsulating the mutants on the

same basic block. It also collects additional information about the coverage of the test cases, so it

can avoid testing mutants that have no way of being detected.

This tool only provides a CLI(Command Line Interface) which is integrated into the java com-

piler, it is used by adding an additional parameter to the compiler, more specifically -XMutator. It

also allows to select which of the mutation operators are ran on the code, by adding their identi-

fier to the execution parameter, for instance, -XMutator:AOR,ROR. It also supports configuration

scripts, to configure existing mutants, written on its specific DSL [9].

8 State of the art

2.1.2.4 MuJava

MuJava is a mutation tool that initially appeared in 2005, developed with the objective to imple-

ment object oriented mutants. At the time of writing, it had its last repository update on August

2016 [24].

It has a GUI (Graphical User Interface) that provides three tabs as following:

• Mutants Generator: A tab that allows the user to select the files to be mutated, and also,

which operators to implement to be consequently ran. These operators are divided in be-

havioural and structural, reason being that they perform different kind of mutations, source

code in case of behavioural and bytecode in case of structural.

• Mutants Viewer: A tab that allows the user to visualize the mutants that the tool generated

on the Mutants Generator tab. As some of the mutants are generated on the bytecode some

might not be completely visible.

• Test Executor: A tab that allows the user to select the tests to be executed and consequently

do so. These tests must be functions that start with "test" and that return "void". Also these

test are not ran automatically, the user must do so by hand.

This tool mutation process changes depending on the kind of mutator being applied because,

as mentioned before, there are two types of mutation operators. For the behavioural mutants, as

they are performed on the source code the process begins by selecting mutating only the selected

files, after which they are compiled. For the structural mutants however, as they are bytecode

based, first the compilation is performed and only after the mutants are applied.

On the test phase, although they differentiate the executor names, the process is the same for

both. It begins by having the compiled mutant loaded on the executor, after which the classes

are instantiated and ran against the user selected tests. Tests that, as mentioned before, must be

purposely made for the tool as support testing frameworks such as JUnit is not mentioned [12].

2.1.2.5 Pit

Pit is a tool that started its open source development in 2010 [30], and is the only tool being

analysed that is still being maintained at the time of writing [31]. It has the aim to perform

mutation testing in a well integrated, fast and clear way.

The integration aim is being tackled by allowing the users to integrate the tool with their build

tools such as Maven, And and Gradle. Allowing to integrate the tool with the IDE’s with plugins,

such as InteliJ and Eclipse. And also allowing to integrate the tool with code analysis tools such

as SonarQube.

It tries to be fast by running on the bytecode to generate the mutants, reducing the compilation

times to being just the time to compile the project once, instead of the number of mutations. It

also tries to be faster by analysing which tests execute the mutants and only trying those, therefore

2.2 Comparison 9

reducing testing times by not executing the whole test suite. And lastly, it tries to run a subset of

mutants at a time, reducing even more the executions times. A thing that makes it slower however,

is running the tests on a separate JVM(Java Virtual Machine), but it is a must, so the tests are

all ran in the same state, making the testing environment more sterile. At the time of writing the

number of documented mutants is 29 [29].

And at last, the way that the tool tries to make it clear is by giving the user a clear web page

with the report that can be navigated through allowing the user to see which tests were ran, which

mutants were created and with a color code identifying which mutants were or not killed [3].

2.2 Comparison

To compare the tools a set of metrics should be defined. First and foremost there is a need to

evaluate the quality of the documentation, afterwards, how up-to-date are they (Are they being

maintained? Did they stop being maintained long ago or just recently?), and finally how do the

tools perform amongst each other.

2.2.1 Documentation Quality

The tools that were analysed almost all of them have some sort of problem on the documentation,

ranging from lack of documentation, making it harder to analyse, to not being available anymore,

passing through conflicting versions. So in this documentation analysis the quality of the said

documentation is going to be analysed. First a brief individual summary about the documentation

of each tool, after which a comparison is going to be made on Table 2.1 with 4 metrics and a

overall rating being the average of the 4 that range from 0 to 5, being 0 Non existent, 1 Very Bad,

2 Bad, 3 Acceptable, 4 Good and 5 Very Good. These 4 categories are:

• Availability: A metric to assess how easy to obtain the information is.

• Quantity: A metric to assess the quantity of different information about the tool is found,

not to confuse with the number of sources.

• Quality: A metric to assess the overall quality of the sources, discarding the information

itself as it is on another metric.

• Clarity: A metric to assess how easy it is to get the information is from the sources

So starting on the Mobile Application Specific 2.1.1 tools, and keeping the order of 2.1, the

initial documentation analysis is as follows:

1. Edroid: The only documentation found for Edroid is a paper [11] which by itself gives some

information, but sometimes confusing, such as the question is the tool configurable, it is not

clear either it is or not. In this case it starts by stating that a subset of the mutator operators

10 State of the art

can be used, but it also states that it is not manually configurable. Also their claims about

the tool, and inconsistencies like the one just mentioned, cannot be checked due to the lack

of access to the tool.

2. MDroid+: MDroid+ is a tool that actually has a relatively good documentation, but not

found right away, as if searching by the tool itself the documentation found is paper is an

minor overview of the tool [13] and its repository [24]. Repository which, at the time of

writing, has on the README.md file an indication that for citations of the tool an article

with a more extensive review of the same should be used that has the required informa-

tion [10].

3. MuDroid: MuDroid documentation is only a bachelors thesis [32] and the tools reposi-

tory [27], which by themselves provide enough and decent information, but as it has no

articles the documentation is not easy to come by, not only that but the said repository only

has information regarding on how to execute it and its last update date, for more information

on that source, a code analysis is required.

4. JavaLanche: JavaLanche is one of the cases where the only issue found is the lack of some

information being more explicit, for instance on the regard of the mutation operators, there’s

only a minor mention on "(Un-)Covering Equivalent Mutants" [4] and some of them is not

very explicit what they do, just that they do it. Excluding that, JavaLanche documentation is

good, it has its own website [28], a open source code repository [20] and two papers, where

one has an overview on how the tool works [15] and one where a more extensive overview

of the same. [4]

5. Jumble: Jumble is a case where most of the information came, not from a scientific arti-

cle [7], but from its own website [22] and repository [28]. This is due, to we believe, this

tool being enterprise made, and therefore most of the documentation is available through

themselves. However the documentation being provided by themselves does not guarantee

the best documentation, this due to the sometimes, lack of clarification, for instance, this

tool has 5 of its 7 mutators disabled by default, indicating configuration, but this was only

found by chance on the website as the tool interface is not properly documented.

6. Major: Major’s documentation is good, it has 2 papers [9] [8] and a website [23] where the

tool can be downloaded. However its documentation is sometimes confusing, for instance,

on one of the papers [9], where the configuration was mentioned, it explicitly states that

there were only 3 parameters, but on the command example the 3 parameters were shown

2.2 Comparison 11

followed by a "..." indicating that more configurations are allowed.

7. MuJava: MuJava, the oldest tool being analysed, when looking for its documentation on the

conventional search tools such as Scopus some documents are initially shown, but the orig-

inal host for said documents does not list them as available. This made us look for another

ways to obtain them. After a new search, this time more broad, the tool repository [26] is

found and with it a link to the original tool website [25]. Website which has the documents

that were missing on the source. These documents are also not that great, for instance, on

one of them [12] when referring to the only existing two tables, the same sentence refers

not to the tables but to a third nonexistent one. Also some non explicit parts exists, such

as stating that it provides an API to easily change the behaviour of a program during the

execution, but it doesn’t refer if its during the execution of the tool or the application being

tested.

8. Pit: Pit is a tool that provides an article but not in the sense of providing the full details of the

tool but more a demo of said tool [3], as most of the information is on the tools website [29]

or the tools repository [31]. Also there are some minor problems on the documentation

such as typos, for instance, ’asses’, instead of ’assess’ we believe, due to the context. And

some information that wasn’t properly explicit, such how does some operators work, for

instance at the time of writing, the mutant operator "Arithmetic Operator Deletion Mutator

(AOD)" is documented on the website that it replaces an arithmetic expression with one of

its members, and they give an example that shows with two variables. But what happens

with more than two variables still remains, will it delete just one? Or will it choose just one?

And if it just deletes one, will it generate a mutant for the remaining variables?

Table 2.1: Documentation comparison

Tool Availability Quantity Quality Clarity Overall Rating

Edroid 4 3 3 3 3.25

MDroid+ 3 4 4 4 3.75

MuDroid 3 4 4 4 3.75

JavaLanche 4 4 4 3 3.75

Jumble 4 4 3 3 3.5

Major 4 4 3 2 3.25

MuJava 2 5 2 3 3

Pit 5 4 3 4 4

So as seen in the individual description and in the Table 2.1, all of the tools stand between the

average and good documentation, with most having only an acceptable rating.

12 State of the art

2.2.2 Maintainability

As already seen when the tools were initially analyzed in 2.1 most of them are not being maintained

for more than one year, making their functionality more out of date as time passes. To compare

the tools Table 2.2 was made for a better comparison, with the initial year of known development,

and last year of known updates. For a final comparison a final rating depending on the last update

was also made, where 5 points represents if the tool is being maintained (considered if last update

was in 2019 or 2020), 4 points if it just isn’t maintained for more than 2 years (2018), 3 points

if for no more than 5 years (2015-2018), 2 points no more than 10 years (2010-2015), 1 point no

more than 15 years (2005-2010), and 0 points for more than 15 years (2004 or older).

Table 2.2: Maintainability comparison

Tool Initial Year Last Update Overall Rating

Edroid 2018 2018 4

MDroid+ 2017 2018 4

MuDroid 2015 2016 3

JavaLanche 2009 2012 2

Jumble 2007 2015 3

Major 2011 2018 4

MuJava 2005 2016 3

Pit 2010 2020 5

2.2.3 Performance

Performance amongst tools can be measured in several ways, but for our case study we are going

to restrain to measure their coverage of the mutation operators, their efficiency and at last their

configurability.

For the coverage we are going to guide ourselves with the mutation operators defined on the

Taxonomy of Android Bugs shown in Figure 2.1 of "Enabling mutation testing for android apps"

from M. Linares-Vásquez [10], the values will also be obtained by analysing the same paper, as,

at the time of writing, this is the most complete paper on the Android Mutation subject and one

that considered most of the tools being analysed.

For efficiency we considered the methods used for the generation of the mutants and how the

tests are executed are the the parameters taken into account as those two are the thing that impact

efficiency the most.

At last, for a comparison on how configurable a tool is is. This is also taken in account here,

because although it may not directly impact the performance, it may impact how the user learns to

operate the tool and therefore if the the user can operate it efficiently.

The Table 2.3 is where the performance comparison is being made. For the Overall Rating a

sum of the ratings was made, being Android Bugs Coverage attributed the value of the percentage

divided by 100, for the Byte-Code 1 and due to this method having a better performance impact

2.3 Summary 13

over the AST this latter on was attributed a value of 0.5, Selection Through Coverage has a value

of 1 in case of Yes, as does have Parallel Execution. For the Configurability a value of 1
3 is

attributed in case of no interface for the configuration, a value of 2
3 in case of a CLI (Command-

Line Interface) and a value of 1 in case of a GUI (Graphical User Interface). Overall a tool can

have a maximum overall rating of 5.

2.2.4 Final Comparison

For the final comparison an average of the results obtained in the analysis of the Documentation

2.2.1, Maintainability 2.2.2 and Performance 2.2.3 is made. The values represent as mentioned on

2.2.1 from 1 to 5 being 1 Very Bad, 2 Bad, 3 Acceptable, 4 Good and 5 Very Good.

As seen in Table 2.4 according to our metrics the existing tools are mostly on the Bad! Only

three tools have a score greater than 3, being only Pit that has a rating good enough to qualify to

be a Good tool. This is highly due to the Performance Rating given to the tools, because the tools

with a score lower than 3 all had a Performance Rating lower than 2, and vice versa.

Table 2.4: Final Comparison and Rating

Tool Documentation Rating Maintainability Rating Performance Rating Final Rating

Edroid 3.25 4 0 2.42

MDroid+ 3.75 4 1.21 2.99

MuDroid 3.75 3 1.75 2.83

JavaLanche 3.75 2 3.77 3.17

Jumble 3.5 3 1 2.5

Major 3.25 4 2.3 3.18

MuJava 3 3 1.09 2.36

Pit 4 5 4.13 4.38

2.3 Summary

Mobile mutation tools are in a need for a refresh, no Mobile Specific tool gets to the Acceptable

rating, being only MDroid+ close to achieving it, this may reflect on the quality of the tests of

the applications and the applications themselves as there’s no way to ensure that an application is

being properly tested.

One of the highest impact on the Final Rating on Table 2.4 is the Performance Rating, having

most of the tools with a very bad or bad results. As seen on Table 2.3, one of the most impacting

metrics for this result the Android Bugs Coverage, this is an aspect that requires a change for a

better future result.

When analyzing the Android Bugs Coverage, according to the source of the values [10], the

union of the tools that they analysed reached a overall coverage of 50%. This although only being

half of the identified bugs, is still significantly better than the 38% obtained by the highest ranking

14 State of the art

Figure 2.1: Taxonomy of Android Bugs [10]

2.3 Summary 15

Ta
bl

e
2.

3:
Pe

rf
or

m
an

ce
C

om
pa

ri
so

n

To
ol

A
nd

ro
id

B
ug

s
C

ov
er

ag
e

1
E

ffi
ci

en
cy

C
on

fig
ur

ab
ili

ty
O

ve
ra

ll
R

at
in

g
B

yt
e-

C
od

e
A

ST
C

ov
er

ag
e

Se
le

ct
io

n
Pa

ra
lle

lE
xe

cu
tio

n
E

dr
oi

d
U

nk
no

w
n

N
o

N
o

N
o

U
nk

no
w

n
U

nk
no

w
n

0
2

M
D

ro
id

+
38

%
N

o
Y

es
D

oe
s

no
tt

es
t

Y
es

-C
on

f.
Fi

le
1.

21
M

uD
ro

id
8%

Y
es

N
o

N
o

N
o

Y
es

-C
L

I
1.

75
Ja

va
L

an
ch

e
10

%
Y

es
N

o
Y

es
Y

es
Y

es
-C

L
I

3.
77

Ju
m

bl
e

U
nk

no
w

n
Y

es
N

o
N

o
N

o
N

o
1

M
aj

or
13

%
N

o
Y

es
Y

es
N

o
Y

es
-C

L
I

2.
3

M
uJ

av
a

9%
N

o
N

o
N

o
N

o
Y

es
-G

U
I

1.
09

Pi
t

13
%

Y
es

N
o

Y
es

Y
es

Y
es

-G
U

I
4.

13
1

T
he

va
lu

es
ob

ta
in

ed
in

"A
nd

ro
id

B
ug

C
ov

er
ag

e"
w

er
e

ob
ta

in
ed

fr
om

th
e

an
al

ys
is

on
"E

na
bl

in
g

m
ut

at
io

n
te

st
in

g
fo

ra
nd

ro
id

ap
ps

"
[1

0]
2

T
hi

s
re

su
lt

is
du

e
to

th
e

la
ck

of
do

cu
m

en
ta

tio
n

on
th

is
re

ga
rd

an
d

th
e

av
ai

la
bi

lit
y

of
th

e
to

ol
.

T
he

re
fo

re
a

la
ck

of
po

ss
ib

ili
ty

to
an

al
ys

e
its

pe
rf

or
m

an
ce

16 State of the art

tool, which does not perform the hole process. If there’s a need for a tool that ensures the hole

Mutation Testing process there’s a need to restrain to a tool that only has a coverage of 13%, being

this not achieved by any Mobile Specific tool.

Analysing the best scoring tool, PIT, if this tool had the Android Bugs Coverage that joins all

the tools, a 50% score, this tool would make its final 4.13, a Good performance analysis, rise to a

4.5, and Very Good analysis. This score would then also make the also already Good final score

of 4.38 rise to 4.5, making this a very good tool to analyse Mobile Applications. This also makes

us believe that a need to develop a tool similar to PIT, that also tackles its identified deficiencies,

is necessary to ensure that Mobile Applications are indeed being properly tested

Chapter 3

Framework

As identified on the performance comparison table 2.3 most tools lack on both the efficiency

and configurability metrics. For the configurability this is mostly due to the the interface of the

analysed tools being either poorly designed, hard to use, or simply non existent.

For this we tried to implement a way that not only could be easy to use, but would also allow

the end user to use their already existing knowledge on programming, and, with a very small

learning curve, learn how to use our interface.

3.1 Background

Before trying to design our interface however, we needed to better understand what is required to

perform the mutation namely which are processes currently being used and if any tools exist that

could help us achieve our goal.

3.1.1 Mutation process

To perform mutation testing a key part is generating the mutations, for this there are two main

processes that could be used, an AST (Abstract Syntax Tree) based process or Byte-Code based

process.

The AST process works by analysing the source code, and, with every entry of code creating

a node on a tree. This would in sum create what could be considered a kind of decision tree. An

example of this is the image 3.1 that shows an example of an AST for a specific piece of code.

17

18 Framework

Figure 3.1: Example of an AST

With a then created AST, we can then apply the mutants by changing the nodes on the AST,

which, when saving the mutated files based on said AST will create the mutated source code.

The other possible process is using the already compiled source code, or Byte-Code. This

process has one major advantage when compared with the previous process, not needing to com-

pile the mutated code, as it works directly on the compiled code. However this approach brings

to major setbacks. The possibility of, on a new version of the compiler, the bytecode structure

changes, requiring grater maintenance to support in those new versions. And, for us the worst

setback, that due to its nature of using the compiled code it is extremely harder to design mutants

for the compiled code, as it would add the necessity to learn how to interpret the compiled code.

With these setbacks posted by the ByteCode, the decision to use the AST process was made,

as mentioned, on a way to achieve the Configurability we wanted, without risking too much the of

the Efficiency due to our proposed process that is described on chapter 4

The way we achieve the proposed Configurability is using the Kadabra tool [17] and its

JavaScript based framework Lara [18]. The decision to adopt this tool was made in the early

stages of the design phase, when we were deciding on this subject and found out about it, and that

the tool was being developed on the same place, FEUP. This allowed us to have a better contact

with the developers, therefore not only allowing us to achieve our goal, but also to help them im-

prove their tool. This tool, as is going to be mentioned in more detail on 5, allows us not only to

have our own mutants on the tool GUI but also allows the users to implement an already developed

interface.

This interface is the base of the configuration of a new mutant, that contains the basic mutation

functions to complete the process, identifying the mutation points, performing the mutation and

restoring it to the previous state. This method allows us to abstract most of the Lara framework

additions to the JavaScript language, and, with this, the user only requirements are to have some

knowledge of JavaScript language and to learn how to use only one of the Kadabra libraries,

LaraActions, and have a common knowledge of how Abstract Sintax Trees work.

With this configurability, we achieve our goal of a more configurable tool. Allowing not only

to use it without own pre-made mutants, but allowing also the user to use their own mutants, that

3.2 The mutation interface 19

can be used both on GUI and CLI.

3.1.2 Lara and the Kadabra tool

As mentioned on the previous section 3.1.1, as a base for our AST process we used the Kadabra

tool [17] and its Lara framework [18]. This tool, maintained by Special-Purpose Computing Sys-

tems (SPeCS) from FEUP, was created as a Java-to-Java compilation tool for code instrumentation

and transformations controlled by the LARA Framework.

As such, not only it allowed us to tackle the issues we identified as mentioned, but it also

allowed us to have a close contact with the developers of the tool. This close contact allowed

us not only to have a closer integration of the tool, but, helped to provide improvements to the

Kadabra tool itself, regarding its mutation usage.

The Lara framework, the base of the Kadabra tool, is a language that, as previously mentioned,

is based on the JavaScript language. It was developed as a domain-specific, aspect-oriented lan-

guage with specially defined keywords for navigation on the AST.

The language also defines every element of the AST as a JoinPoint, where this JoinPoints try

to include all the possible types of elements of the AST. This JoinPoints are the elements to be

identified and where the mutation occurs by replacing, removing or inserting before and/or after.

As mentioned, all these operations are required for the mutations and most of the required

learning curve to operate this tools.

A trial for the tool and its languages can be found on http://specs.fe.up.pt/tools/

kadabra/ where an example for mutation of a binary operator "<" to ">" can be found as well

as links for.

The Kadabra tool as mentioned is a Java-to-Java compilation tool, but it also has another simi-

lar tools for another languages such as C/C++ (Clava), JavaScript(JackDaw) and MatLab(Matisse).

This family of tools gives another advantage for this approach, that all the language agnostic mu-

tation operators, such as binary operator mutators, can be re-used using these tools, therefore

allowing the development of a mutation tool with broader programming language targets.

3.2 The mutation interface

As mentioned, to achieve the desired configurability of the mutation process, an interface was

developed for the Lara framework, so that most of the mutation process could be abstracted from

the tool user. This abstraction on interface works by requiring the end user to develop the bare

minimum of tasks for a mutant to work, an way to identify the nodes in AST to mutate, and what

does the mutation changed the desired nodes to.

On figure 3.2 we can see the UML diagram of the public interface architecture. This architec-

ture allows to develop two kinds of mutation operators, both of which work similarly. We’ve got

the IterativeMutator that tries to abstract the classic mutation process, and then a CumulativeMuta-

tor, that tries to abstract the interface for our new proposed process. Both processes are described

in more detail on chapter 4

http://specs.fe.up.pt/tools/kadabra/
http://specs.fe.up.pt/tools/kadabra/

20 Framework

Figure 3.2: Interface Architecture

Mutation operators that use any of the interfaces then require to implement just two JavaScript

functions, isMutationPoint($joinpoint) and _mutatePrivate($joinpoint). The first function is re-

quired to identify if the AST node, or joinpoint as identified by LARA, is a possible mutation

point. These are then saved internally on the interface to be used when using the second function.

This second function is where the mutation takes in fact place, as its how the user tells the tool

how do they want to perform said mutation.

On image 3.3 we can see an example of both required functions developed for a Binary Mu-

tator, this mutator has as its main purpose to mutate binary operators with other operators on the

same class. For instance, replacing a "+" with other operators such as "−", "/", "∗" or "%".

To implement the mutation, knowladge of only two Lara Framework API’s are required to

implement a mutation. They are the LaraActions and KadabraNodes API’s. These two API’s are

developed to work as a JavaScript library, allowing therefore to have only a small learning curve

in case the end user desires to develop his own mutation operators.

3.3 Conclusion 21

Figure 3.3: Cumulative Mutator implementation example

3.3 Conclusion

After developing this interface we expect the end users, which will be mainly Developers and

Software Testers, to be able to develop their own mutation operators to be used in their pipelines

without a big learning curve, as it will mostly be similar to already known technologies. This will

then help us achieve the Configurability we wanted for our tool without compromises.

22 Framework

Chapter 4

Proposed Process

As mentioned in the previous chapter, we want to tackle not only the Configurability issues but also

its Efficiency. This has been tried several times, one example can be the testing process changing

from an AST based approach to the faster, but less configurable, ByteCode process.

Another example of this can be trying to reduce the number of mutation operators, that has

been the most recent focus. This can be seen by L. Sousa et al. [16], where, in 2019, a reduction of

the number of mutants is tried by reducing the number of semantically similar mutants, or by M.

Guimarães et. al. [6], where, in 2020, the reduction of mutations is tried by removing redundant

versions.

However, no example that we can find tried to tackle the part of the process that takes longer to

execute, the compilation. To tackle this a new process was required, an architecture that takes into

account the compilation and run times and tries to reduce them exponentially, which we propose

in this chapter.

4.1 Classic Process

Before explaining our proposed process we first need to explain the Classic Process, which is the

process that is commonly used in all mutation tools. It was created with the purpose to create a

new version of the code for each mutation, and for that, it follows the following steps:

1° Search the source code for the next mutation point (First if none were found yet)

2° Change the source code on the identified mutation point, creating the mutated code

3° Compile the mutated code

4° Execute the mutated code

5° Save the results

6° Repeat the process

23

24 Proposed Process

This process can take a lot of time, specially the compilation phase. This is due to a need of

compiling a new version of the code every time a new mutant is created, as every copy only has a

mutation.

Performance improvements however were already tried with on this process, either by running

every step as Phases, executing only the next one when all the mutants went the current one, or

running every mutant in parallel so it takes less time.

All of these improvements however, do not tackle the most time expensive part of the process,

the compilation time. This, for larger and more complex programs, can rise exponentially as more

mutants, and therefore more compilations, are required.

There is also a process that does not require the compilation phase altogether as it applies the

mutations directly on the compiled code. But for this, two issues rise. First, that a knowledge

of how the code is compiled is required and as the code is already compiled is harder to change.

But, the worst problem for this approach, is how the mutants are found and applied might require

a complete refactoring process, for every language version update, that may or may not occur

regularly.

4.2 Proposed Process

On our new proposed process we then try to tackle the lack of improvements on the compilation

times of the mutants without compromising on the rest by reducing the need to perform one com-

pilation per mutant to needing to compile only once in the whole process. With this change. we

propose a change of the process to follow the following steps:

1° Search the source code for all the mutation points

2° Apply the mutations to the identified mutation points, on a single copy of the source code.

3° Compile the mutated code

4° Execute the mutated code, once for every mutation

This new process allows us to not only reduce time in the compilation phase, by not having

the need to compile the program as many times as the number of generated mutants, but also

theoretically reduce the mutant generation times, as only one new version of the files needs to be

created

Also, depending on the testing framework, it can also have a positive impact on the testing

phase, as a new instantiation of the project dependencies is not required for another mutant execu-

tion.

4.2.1 Mutant generation and identification

As stated, all the mutants are on the same source code. To achieve this, we took the approach

of enclosing each of the mutations on an If Else statement, with an Mutation Unique Identifier

(MUID) for each mutant.

4.2 Proposed Process 25

This MUID will be used an execution parameter allowing us to execute the mutated version

only once for each mutation, and therefore, having the same advantages of running once for each

version without the impact of the costly multiple compilation for each mutant.

A proposed way to generate the MUID, and the way we generate one on our tool, is to use the

name fully qualified class name followed by the line number for where the mutant is located on

the file and the number of mutations till that point.

For instance, the MUID for the 7th mutation of the tool, on the 20th line of the file Main.java,

located on the package com.mutation.testcase would look like:

com.mutation.testcase.Main_20_7

This way we can guaranty the the MUID is unique, which is a requirement if we want to

execute only one mutant at a time. One code example of how this can be applied is shown on Figure

4.1, that represents an code example of this process with 4 mutants along with the original code.

Note the in the last if clause, that the it compares the MUID with null, this is the encapsulation of

the original mutation point, required so the application retains its original functionality, and, for

when testing, to only execute the mutants.

Figure 4.1: Proposed Process Code Example

4.2.2 Incompatible Mutants

At the time of writing, the only disadvantage found for this approach, is the impossibility of

certain mutants to work as intended. This is due to our approach, of using an If clause to allow the

enclosure of all the mutants on only one source code.

For example, it would not be capable of working with mutants that require to be inserted in

the exact beginning of a function, or mutants that change the signature of functions.

For this disadvantage however, we also have a solution, that instead of using the original class

and inject the mutant inside it, we would copy the entire object and do the required changes as in

the classic way. Repeating this process for each mutation point.

26 Proposed Process

This slight change on the approach, for the these mutants, would allow us to whenever the

original object was used, to do the same If enclosure and use the mutated object instead. One ex-

ample of this can be found on the following example of a mutator that changes function parameters

from boolean to int, in this case a constructor.

1 //************************************

2 //Original Code

3 //************************************

4

5 public class TestClass{

6 TestClass(boolean test){ //Mutation Point

7 //Do Something...

8 }

9 }

10

11 public class MainClass{}

12 public static void main(String[] args) {

13 TestClass testClass = new TestClass(true); //Where IfClause is

placed

14 //Do something...

15 }

16 }

17

18 //************************************

19 //Mutated Code Using Proposed Process

20 //************************************

21

22 public class MutatedClass extends TestClass{ //Extends main class so no

further changes are required

23 MutatedClass(int i){

24 //Do Something...

25 }

26 }

27

28 public class TestClass{

29 TestClass(boolean test){

30 //Do Something...

31 }

32 }

33

34 public class TestClass{ //Original class remains untouched

35 TestClass(boolean test){ //Mutation Point

36 //Do Something...

37 }

38 }

39

40 public class MainClass{}

41 public static void main(String[] args) {

4.3 Conclusion 27

42 TestClass testClass; //In case the If Clause is placed in variable

declaration, the variable must be declaration must be separated

43

44 if(System.getPropery("MUID").equals("<Mutant identifier>")){

45 testClass = new MutatedClass(true); //Won’t fail as

MutatedClass extends TestClass

46 }

47 if(System.getPropery("MUID").equals(null)){ //Compares to null to

access original funtionality

48 testClass = new TestClass(test);

49 }

50 //Do something...

51 }

52 }

In the previous example we can find several of the things that we when developing this process

had to take into consideration so the process wouldn’t fail. First, and a thing that we also need to

take into consideration with compatible mutants, when the point where the If Clause is inserted is

a point where a new variable is declared, the variable declaration needs to be extracted from said

If Clause. This is due to, if the variable remains enclosed in the If Clause, it won’t be accessible

from outside said enclosure, having the potential to change the original functionality of the source

code being tested.

Another thing to take into account, and the main of the solution for incompatible mutants, is

that the mutated class needs to extend the original class. This is so there is no necessity for further

changes, such as functions that use the original class as a type for one of its parameters. Extending

the original class will also allow the mutated class to be used in such cases.

This solution however has a specific case that will not work as well. The case is further de-

picted on one of the implemented mutation operators defined on Mutation Operators 5.2, with the

mutation operator in question being Super Call Deletion 5.2.2.9. This mutation operator depicts

a mutation that deletes the calls to the parent class, namely the super() calls. These calls need

to be the first line in the constructor of the target class, and, when deleted, they are added by the

constructor it self. In this case, if a mutation class is created, it will still call the original construc-

tor, which includes a call for the parent class which we want to delete. Further description of the

mutation operator in question, and a case specific solution, can be found on Super Call Deletion

5.2.2.9

4.3 Conclusion

With this new process we then expect to achieve our proposed objectives to achieve better per-

formance without compromising on the configurability. This process however needs to take in

account a lot of variables so the compilation is successful, as noticed on the Incompatible Muta-

tors example.

28 Proposed Process

This process, with a few changes to the MUID could also allow for a new way of performing

mutation testing, since having all the mutants on one single version of the code, might allow for

multiple mutant execution and how they interact with each other.

Chapter 5

The tool

As defined in the previous chapters, we defined our strategy and process to improve both the

Configurability and Efficiency, to test the strategy a tool is still needed to experiment our proposed

theories.

For that we created a Java based tool that uses as a base for the Kadabra tool and its GUI

API, this allowed us not only to do a quick user interface to abstract the Kadabra tool, but also

implement in a native way both the designed interface on chapter 3 and our proposed process on

4.

5.1 Tool Design

The tool design is more focused on the functionality rather than its looks. Also, it was developed

to take into consideration our before mentioned concerns about the Configurability and Efficiency.

It is designed to have two pages that works as follows.

The first, and initial page, is the screen that allows selecting an existing configuration file, as

defined on the second screen, as well as displaying the results on a white box. It is also where it

allows the user to start the mutation testing execution, with the proper configurations, as well as to

stop it.

The main screen also allows on the top left corner to select the current page. The default is

the main screen, that shows as "Program". There is also another page, "Options", that is shown

on Figure 5.1, where not only allows to change the configurations but allows the creation of a new

configuration file.

The configurations allow to change a number of things, that are as follows:

• Selecting the project to be mutated, by inserting its complete or relative path to the tool on

the "Project Path" option.

• Where the user wants to store the mutated code, inside an "Output" folder. This option,

"Output Path", by default has the tool location as its directory. This functionality is of

importance, to give the possibility to the user to analyze the mutants, either the tests detected

them or not.

29

30 The tool

• Custom mutation operator. As mentioned on chapter 3, one of our contributions is that we

want to allow the user to develop his own mutations. After developing said mutations this

configuration, "Lara file path", is where the the user indicates his custom mutation operator.

Note that currently it only allows for one new Lara file, but with use of the Lara imports

functionality that file can contain more than one mutation operator.

• How many simultaneous executions we want. This functionality exists to improve the exe-

cution time of both the creation and execution phases of the mutation testing process. Cur-

rently it only supports the mutation creation phase, as the tool works by executing Kadabra

once for every file. The inserted number will represent how many simultaneous executions

of Kadabra will exist. If left empty the number of executions is the number of files the tool

detected that are targeted for mutation.

• Selecting the mutation operators. The list of Mutation Operators is defined on the next

section, 5.2, but as we can see on Figure 5.1, the first two of the allowed mutations are

mutations that are allowed to either be executed or not. Some other mutations allow for

extra configurability, such as the BinaryOperators, that allow the user to select with which

operator they want the original to be replaced with.

• Save or create a copy of the configurations. This is where the file loaded by the first page is

saved. It allows for both a quick save to the current file being edited as well as saving to a

new file. This is a required step before changing to the initial page, having the risk of losing

the configurations in case this step is skipped.

All these configurations, when saved, are all stored on an Extensible Markup Language (XML)

file, which is required to run the tool successfully. This file is also required to run the tool on CLI

mode, as it is where the configuration is stored.

Figure 5.1: GUI Configuration interface

5.2 Mutation Operators 31

5.2 Mutation Operators

On our tool we have a set of 19 mutation operators that can be used, having some of which that

allow further configuration. The selection of these operators was made by analysing other tools

and replicating their mutation operators, and for the two Android specific operators by further

analysing the Figure 2.1. The selection criteria for this operators was based on the information

that we had that allowed us to replicate said mutants and the feasibility of implementing them

given the available time.

These operators were implemented using a primitive design of the interface mentioned on

3.1.2 and work with the Classic Architecture. For the new proposed Architecture, some of the

mutants are incompatible with the it, requiring to be adapted with the method mentioned on 4.2.2.

To present the operators a division will be made into three different categories, General Oper-

ators, Java Methods, and Android Specific.

5.2.1 General Operators

Under General Operators fall all the mutation operators that operate over a set of general set of

language operators, mostly language agnostic.

5.2.1.1 Arithmetic Operators

The Arithmetic Operators are binary operators that perform arithmetic operation, under these op-

erators fall the +, −, /, ∗ and the % operator.

The mutation operation, in this case, is performed each time one of these arithmetic operators

is found, and it works by replacing said arithmetic operator with one other arithmetic operator.

Which arithmetic are searched for, and with which its replaced with, can be defined on the GUI

and/or configuration file.

5.2.1.2 Arithmetic Operator Deletion

This operator, defined on the PIT tool [19], operates on the before mentioned Arithmetic Opera-

tors, but instead of performing an replace function, it deletes the arithmetic operator, creating two

mutations. For example, on an operation of var3 = var1+ var2, deleting the arithmetic operator

+ will result in two mutators, var3 = var1 and var3 = var2

5.2.1.3 Bitwise Operators

Bitwise operators are the operators that operate on the bit value (1’s and 0’s representation) of

the variable. There are 3 types of Bitwise operators, the ones that perform bitwise shifts, the

ones that perform boolean operations on the variable bits and one single operator that performs a

complement of the bits.

32 The tool

The bitwise shift operators are, << that shifts a bit pattern to the left and the operator >>

shifts a bit pattern to the right. The operator >>> however shifts a zero into the leftmost position,

while the leftmost position after >> depends on sign extension.

There are also Bitwise operators that perform boolean operations AND(&), OR(|) and XOR(∧)

on the variable bits.

A last Bitwise operator, is the complement operator(∼), this operator replaces all the binary

elements with their complement. In other words replaces the 0’s with 1’s and vice-versa.

All these operators can be interchanged between them on our tool except the complement

operator that can only be removed. Also, with the correct verification to use our purposed process,

can be interchanged with the Arithmetic Operators.

5.2.1.4 Conditional Operators

There are two types of Conditional operators, there are the binary ones, that compare two variables,

and there is a unary one, that negates the boolean value of either a boolean value or boolean

expression. On this Mutation Operator only the binary operators are taken into account, and

they are the Conditional-AND(&&) and the Conditional-OR(||), which are used when creating a

boolean condition. On our tool these operators can only be interchanged between them.

5.2.1.5 Conditional Operators Deletion

As mentioned on the previous Mutation Operator, the Conditional Operators, there are two types

of Conditional mutators, the binary and unary operators. On this mutation operator the only Unary

Conditional Operator(!) is used.

This operator negates every boolean variable or expression and in this Mutation Operator, as

the name suggests, detects every Unary Conditional Operator and removes every occurrence of it.

5.2.1.6 Conditional Operators Insertion

Like on the previous Mutations Operator, the Conditional Operators Deletion, this operator uses

the only the Unary Conditional Operator(!). However, unlike ON the previous mutation operator,

it inserts this operator in every boolean variable or expression.

This change will cause similar results to the previous mutation operator in cases where the

Unary Conditional Operator is already present, as per boolean logic, however, on places where

the Unary Conditional Operator is not present, it will create different results.

Given this, on our tool we allow both the Conditional Operators Deletion and Conditional

Operators Insertion, but in case this last one is present it will be the only one used

5.2.1.7 Constant Operations

The constant operations mutation operator is an slightly changed version of the operator that is

defined on the Pit Tool [19] that searched for inline constants and tries to change them on one

5.2 Mutation Operators 33

of 6 different ways. Our version of the mutator tries to apply the same 6 types of mutations,

however, searches not only for inline variables but also searches for constant variables or variable

assignments.

The 6 types of mutations are as follows:

• Replacing the constant with a 1

• Replacing the constant with a 0

• Replacing the constant with a -1

• Reverse the sign of constant

• Adding 1 to the constant

• Subtracting 1 to the constant

All of this types of the mutations are independent and can be configured in our tool, either on

the GUI or the XML configuration file.

5.2.1.8 Unary Operators

Unary operators are the language operators that operate on one single variable at a time, for in-

stance, the right/left hand increments or decrements (++_, _++, –_, _–), which can be important

to test, as, the order on which the increments/decrements happen can influence behaviour.

Also other unary operators can be the + or - unary operators that evaluate an expression, or the

operator that inverts the value of a boolean expression.

Our mutation operator works by replacing an occurrence of either of the unary operators with

a different one, which are selected by the user when configuring on the GUI/XML configuration

file. The only unary operator that cannot be interchanged is the operator that is only able to be

removed.

5.2.2 Java Methods

The mutation operators under this category are operators that are specific for the Java language,

and, although some can still be reused by similar languages, are all limited by similarities.

5.2.2.1 Constructor Call

This mutation operator, as the name indicates, operates on a constructor call, and works by deleting

said constructor call and replacing it with a null value. For example, the following line of code:

1 TestObject o = new TestObject();

Will get the constructor deleted replaced like so:

34 The tool

1 TestObject o = null;

This Java Method operation can also be considered an operator for Object Oriented languages,

as it it is not just Java specific.

5.2.2.2 Fail on Null

The Fail on Null mutation, as defined on Mutation operators for testing Android apps from Deng

L. et. al. [5], is a mutator that inserts a verification to all variables if they are null before their

usage. Verification which will cause a failure in case the variable is indeed null.

This mutant has the purpose to alert the users (developers) of variables that are not properly

being checked if they are null, as when defining a variable with data retrieved form somewhere the

user has no control (being files, web, API’s, etc), this variable is prone to cause a NullPointerEx-

ception

5.2.2.3 Literal Operations

Literal Operations, or as defined on the Pit Mutations list, Inline Constants [19], its a set of sub-

mutants that perform certain replacements of literals with certain values, depending on the type,

as demonstrated on table 5.1.

boolean integer byte short long float double

Original false true 1 -1 5 literal 1 long 1.00 2.00 Any 1 Any

Mutated true false 0 1 -1 literal+1 0 long+1 0.00 0.00 1.00 0 1
Table 5.1: Literal Mutation Operators

Also, with this mutator, we have a sub-mutator to change every literal String to an empty literal

String.

All this mutations can be activated or deactivated on our tool GUI and/or XML configuration

file.

5.2.2.4 Non Void Call

This Mutation Operator, defined in the Pit tool [19], is a mutation operator that replaces the call

for of a function depending on its return type as defined on the Table 5.2.

5.2 Mutation Operators 35

Type Default value

boolean false

int byte short long 0

float double 0.0

char ’\u0000’

Object null
Table 5.2: Non Void Call Mutation Operator Mappings

One example is the following code:

1 //************************************

2 //Original Code

3 //************************************

4 public boolean exampleFunction() {

5 return true;

6 }

7

8 public void testFunction() {

9 boolean i = exampleFunction();

10 if(i){

11 // Do something

12 }

13 }

14

15 //************************************

16 //Mutated Code Using Classic Process

17 //************************************

18 public boolean exampleFunction() {

19 return true;

20 }

21

22 public void testFunction() {

23 boolean i = false;

24 if(i){

25 // Do something

26 }

27 }

28

29 //************************************

30 //Mutated Code Using Proposed Process

31 //************************************

32 public boolean exampleFunction() {

33 return true;

34 }

35

36 public void testFunction() {

36 The tool

37 boolean i; //Needs to be extracted from the declaration so it can be

used outside the If clause

38 if(System.getPropery("MUID").equals("<Mutant identifier>")){

39 i = false;

40 }

41 if(System.getPropery("MUID").equals(null)){

42 i = exampleFunction();

43 }

44 if(i){

45 // Do something

46 }

47 }

In this example the mutation point is located on Line 9, where a call for the exampleFunciton

is made. As this function of return type boolean, and checking on Table 5.2, the mutation opertaor

replaces it with false.

This can be found on Line 23 on the Classic Process, and on Line 39 for our proposed process.

Note that on the proposed process, not only the original behaviour can be found on Line 42 and

executed when no MUID is set, but we also had to separate the variable declaration from the

assignment. This is so that the variable can be used outside the If Clause and does not impact the

original behaviour.

5.2.2.5 Nullify Input Variable

This mutation operator, as the name suggests, has as its main purpose test if the user methods are

verifying if its inputs are null, and this is done by replacing the parameters of a function with a

null value. An example is provided in the following code:

1 //************************************

2 //Original Code

3 //************************************

4 public boolean exampleFunction(String test1, String test2) {

5 return test1.equals(test2);

6 }

7

8 public void testFunction() {

9 boolean i = exampleFunction("Test1", "Test2");

10 if(i){

11 // Do something

12 }

13 }

14

15 //************************************

16 //Mutated Code Using Classic Process

17 //************************************

18 public boolean exampleFunction(String test1, String test2) {

5.2 Mutation Operators 37

19 return test1.equals(test2);

20 }

21

22 public void testFunction() {

23 boolean i = exampleFunction(null,"Test2");

24 if(i){

25 // Do something

26 }

27 }

28 //New version required for second operator

29

30 //************************************

31 //Mutated Code Using Proposed Process

32 //************************************

33 public boolean exampleFunction(String test1, String test2) {

34 return test1.equals(test2);

35 }

36

37 public void testFunction() {

38 boolean i;//Needs to be extracted from the declaration so it can be

used outside the If clause

39 if(System.getPropery("MUID").equals("<Mutant1 identifier>")){

40 i = exampleFunction(null,"Test2");

41 }

42 if(System.getPropery("MUID").equals("<Mutant1 identifier>")){

43 i = exampleFunction("Test1", null);

44 }

45 if(System.getPropery("MUID").equals(null)){

46 i = exampleFunction("Test1", "Test2");

47 }

48 if(i){

49 // Do something

50 }

51 }

Like on the previous mutation operator, one mutation point is found on Line 9, however on the

same line there is a second mutation point, as the function being mutated has two parameters that

can be nullified.

The difference of both processes can be analyzed here, as on Line 23 we can see a mutation for

the proposed process, for the second mutation point a new version is required. For our proposed

process however, we can see both mutations on the same version, on both lines 40 and 43, all while

continuing to allow the original functionality to be used by line 46. Note that both mutations

have different MUID’s, as well as the original is set to null so both mutations and the original

functionality can all be executed separately.

38 The tool

5.2.2.6 Nullify Return Value

Similar to the previous Mutation Operator, Nullify Input Variable, this mutation operator has as its

main purpose to replace a variable/constant with null, this time however, instead of being in a call

for a method it will be on the method return value. An example can be as follows:

1 //************************************

2 //Original Code

3 //************************************

4 public boolean exampleFunction(String test) {

5 return test == null;

6 }

7

8 public void testFunction() {

9 boolean i = exampleFunction("Test");

10 if(i){

11 // Do something

12 }

13 }

14

15 //************************************

16 //Mutated Code Using Classic Process

17 //************************************

18 public boolean exampleFunction(String test) {

19 return null;

20 }

21

22 public void testFunction() {

23 boolean i = exampleFunction("Test");

24 if(i){ //Will throw NullPointerException here

25 // Do something

26 }

27 }

28

29 //************************************

30 //Mutated Code Using Proposed Process

31 //************************************

32 public boolean exampleFunction(String test) {

33 if(System.getPropery("MUID").equals("<Mutant identifier>")){

34 return null;

35 }

36 if(System.getPropery("MUID").equals(null)){

37 return test == null;

38 }

39 }

40

41 public void testFunction() {

42 boolean i = exampleFunction("Test");

5.2 Mutation Operators 39

43 if(i){//If testing the mutation it will throw NullPointerException here

44 // Do something

45 }

46 }

On this example the mutation point can be found on Line 5, where the exampleFunction has

a return. This return is then mutated to return a null instead of a boolean value as expected. This

is a good way to check that when the function being used (Line 9) is also being checked for null

returns, to prevent a NullPointerException that may occur in this case on Line 10.

The difference here on both processes can be seen on the mutation point, that on our proposed

process the capability of testing the original functionality still exists, and as supposed, it will work

as the classic process, also triggering a NullPointerExcecption on Line 43, in case the mutant is

used (Line 24 on the Classic Process).

5.2.2.7 Remove Conditional Operation

Defined on the Pit tool [19], this mutation operator functionality is to replace a conditional expres-

sion with the boolean value true. Future versions might also allow to change to the boolean value.

An example of the implemented version is as follows:

1 //************************************

2 //Original Code

3 //************************************

4 public boolean exampleFunction(String test) {

5 return test == null;

6 }

7

8 public void testFunction() {

9 boolean i = exampleFunction("Test");

10 if(i){

11 // Do something

12 }

13 }

14

15 //************************************

16 //Mutated Code Using Classic Process

17 //************************************

18 public boolean exampleFunction(String test) {

19 return test == null;

20 }

21

22 public void testFunction() {

23 boolean i = exampleFunction("Test");

24 if(true){

25 // Do something

26 }

40 The tool

27 }

28

29 //************************************

30 //Mutated Code Using Proposed Process

31 //************************************

32 public boolean exampleFunction(String test) {

33 return test == null;

34 }

35

36 public void testFunction() {

37 boolean i = exampleFunction("Test");

38

39 if(System.getPropery("MUID").equals("<Mutant identifier>")){

40 if(true){ //As the mutation point is the if it encapsulates the

whole If statement

41 // Do something

42 }

43 }

44 if(System.getPropery("MUID").equals(null)){

45 if(i){

46 // Do something

47 }

48 }

49 }

This example has the mutation point on Line 10, where an already existing If statement exists.

As per the mutation operator the conditional statement, in this case just checking if the variable i is

true, is replaced with the key word true, forcing to always enter the If clause. This can be seen on

the Classic Process on Line 24. On our proposed the mutated point is located on line 40. however

we also to take something into account here. As the mutation occurs on the conditional statement

of the If clause, the entire statement needs to be inside our proposed process own If Clause, as

noticed on line 39 for the mutated point and Line 44 for the original code.

5.2.2.8 Return Value

Similar to the mutation operator Nullify Return Value 5.2.2.6, this mutant functionality is to replace

the return value of methods that return int, short, long, char, float or double with 0 and functions

that return a boolean with true. An example is as follows:

1 //************************************

2 //Original Code

3 //************************************

4 public boolean exampleFunction(String test) {

5 return test == null;

6 }

7

5.2 Mutation Operators 41

8 public void testFunction() {

9 boolean i = exampleFunction("Test");

10 if(i){

11 // Do something

12 }

13 }

14

15 //************************************

16 //Mutated Code Using Classic Process

17 //************************************

18 public boolean exampleFunction(String test) {

19 return true;

20 }

21

22 public void testFunction() {

23 boolean i = exampleFunction("Test");

24 if(i){

25 // Do something

26 }

27 }

28

29 //************************************

30 //Mutated Code Using Proposed Process

31 //************************************

32 public boolean exampleFunction(String test) {

33 if(System.getPropery("MUID").equals("<Mutant identifier>")){

34 return true;

35 }

36 if(System.getPropery("MUID").equals(null)){

37 return test == null;

38 }

39 }

40

41 public void testFunction() {

42 boolean i = exampleFunction("Test");

43 if(i){

44 // Do something

45 }

46 }

As mentioned, this mutation operator is similar to the Nullify Return Value 5.2.2.6, and as such,

the example is similar. In this case however the return function will not return a null but a standard

value depending on its return type, therefore not triggering the NullPointerException as the Nullify

Return Value 5.2.2.6, making the purpose of this mutation operator check if the functionality of

the functions is being tested.

42 The tool

5.2.2.9 Super Call Deletion

This mutation operator will try to replicate one possible mistake that might be common when

developing a Java application, when developing a constructor for an object that extends another to

add extra functionality, a keyword method must be used to call the parent object functionalities,

super(), also a this() method might be used.

These methods might be easily forgotten to add, and therefore, lose functionality. For that

this mutant will delete any super() or this() detected calls to check if those errors are being tested.

This mutation operator will only yield results if used when the super call includes parameters, as

a super() call is added by the compiler to the constructor.

This mutation operation, is an operation that cannot be directly implemented on our proposed

process, as both the super() calls require to be the first items on the constructor. Therefore, this

mutation operator, requires a solution similar to the one proposed on Incompatible Mutants 4.2.2,

but slightly changed, as the proposed solution extends the original class, method that this mutator,

by the reason above mentioned is not possible.

The required difference is that, so we don’t require to add an if to all the usages of the original

class usages, is to create a copy of the constructor with the super() call with one extra parameter

of an object created by our tool and without the super() call. An example for this can be found on

the following code:

1 //************************************

2 //Original Code

3 //************************************

4 public class ExampleClass extends AbstractExampleClass{

5 private boolean example;

6 ExampleClass(boolean example){

7 super(example);

8 this.example = example

9 }

10 public getExample(){

11 return example;

12 }

13 }

14

15 public class TestClass{

16 public void testFunction() {

17 ExampleClass exampleClass = new ExampleClass(true);

18 boolean i = exampleClass.getExample;

19 if(i){

20 // Do something

21 }

22 }

23 }

24

25 //************************************

5.2 Mutation Operators 43

26 //Mutated Code Using Classic Process

27 //************************************

28 public class ExampleClass extends AbstractExampleClass{

29 private boolean example;

30 ExampleClass(boolean example){

31 //Deleted super call

32 this.example = example

33 }

34 public getExample(){

35 return example;

36 }

37 }

38

39 public class TestClass{

40 public void testFunction() {

41 boolean i = exampleFunction("Test");

42 if(i){ //Will throw NullPointerException here!

43 // Do something

44 }

45 }

46 }

47

48 //************************************

49 //Mutated Code Using Proposed Process

50 //************************************

51 public class ExampleClass extends AbstractExampleClass{

52 private boolean example;

53 ExampleClass(boolean example){

54 super(example);

55 this.example = example

56 }

57 //New Constructor new Parameter and same functionality except the super

() call

58 ExampleClass(boolean example, MutationTest mutTest){

59 //super() Removed

60 this.example = example;

61 }

62 public getExample(){

63 return example;

64 }

65 }

66

67 //Creation of a Mutation class, so mutated constructor can be called

68 public class MutationTest{

69 MutationTest(){}

70 }

71

72 public class TestClass{

73 public void testFunction() {

44 The tool

74 ExampleClass exampleClass;

75 if(System.getPropery("MUID").equals("<Mutant identifier>")){

76 //Added the MutationTest as a parameter to call the mutated

constructor

77 exampleClass = new ExampleClass(true, new MutationTest());

78 }

79 if(System.getPropery("MUID").equals(null)){

80 exampleClass = new ExampleClass(true);

81 }

82 boolean i = exampleClass.getExample;

83 if(i){

84 // Do something

85 }

86 }

87 }

As mentioned on Incompatible Mutants 4.2.2, this mutation operator requires some extra steps

to perform a mutation operation using our proposed process due to its nature. In contrast the

Classic Process deletes the mutation point on Line 31.

As the mutation point requires to be the first line of the constructor, and due to the compiler

adding it in case its missing (without the parameters), the Incompatible Mutants process cannot

work. For this mutation operator however, as seen in the example above, it is needed to add a new

constructor, similar to the original one (Line 36). This new extra constructor will have however a

new parameter, so it is able to be distinguished. This parameter will be of a type defined by the

tool (Line 68), to ensure that it is used only by the mutants.

After this process, our proposed process will insert the If clauses on every constructor call, in

this case Line 17 of the original code.

5.2.3 Android Specific

Under Android Specific mutators fall all the mutators that we developed that are specific for the

Android Framework. The two implemented mutators work on the interface between the Java

source code for the application and its XML Layout files. These layouts files are where the GUI is

designed, and, where all its elements are defined. For each element there is an identifier, which, at

the compilation phase, all the identifiers are compiled on several Java classes filled with constants,

having each represent an element identifier, so an interface between the Java code and the layout

files can be achieved.

5.2.3.1 FindViewById Deletion

To retrieve a layout element the findViewById() function is used, this function receives a resource

identifier present on the Views class, where the layout elements identifiers are present.

5.2 Mutation Operators 45

For proper GUI behaviour on the mobile application this is crucial to get right, and can be

easily forgot, so this mutation operator finds every occurrence of the findViewById() method and

replaces it with a null keyword, simulating a failure retrieving the layout element.

1 //************************************

2 //Original Code

3 //************************************

4 public View exampleFunction() {

5 View view = findViewById(R.id.exampleView);

6 return view;

7 }

8

9 //************************************

10 //Mutated Code Using Classic Process

11 //************************************

12 public View exampleFunction() {

13 View view = null; //Mutated here

14 return view;

15 }

16

17 //************************************

18 //Mutated Code Using Proposed Process

19 //************************************

20 public View exampleFunction() {

21 //Variable declarations are separated from the If Clause or else won’t

be able to be used. If it is not possible to separate it, it is

required to use the solution proposed for incompatible mutation

operators

22 View view;

23 if(System.getPropery("MUID").equals("<Mutant identifier>")){

24 //Although in this example won’t make a difference inserting this

line here, might make a difference in other cases

25 view = null;

26 }

27 if(System.getPropery("MUID").equals(null)){

28 view = findViewById(R.id.exampleView);

29 }

30 return view;

31 }

This example is a simple example of a function to get a View element from the XML resources.

This view has the id exampleView, and, the mutation point works by simulating that the ID is not

found. The mutation point is located on Line 5, and the mutated points can be seen on Lines 13 for

the classic process and 25 for our proposed process. As usual, in cases where the mutation point

is set on a declaration statement, the declaration and assignments are separated in our proposed

process so that the variable remains accessible outside the If clause.

46 The tool

5.2.3.2 Resource Identifier Replacer

Resource Identifiers however can be found not only for elements of layout files but also for every

kind of resource defined on an XML file, such as images, colors, GUI text string (Used mostly for

multi language applications), etc.

These identifiers are crucial to get right, having the possibility to change the wrong resource

in case of an poorly tested method makes any change using a resource. For this we have imple-

mented this mutation operator that searches for every resource identifier, and, replaces them with

a similarly typed resource identifier. An example for the view typed identifier can be as follows:

1 //************************************

2 //Original Code

3 //************************************

4 public View exampleFunction() {

5 View view1 = findViewById(R.id.exampleView1);

6 View view2 = findViewById(R.id.exampleView2);

7 View view3 = findViewById(R.id.exampleView3);

8 //Do something...

9 }

10

11 //************************************

12 //Mutated Code Using Classic Process

13 //************************************

14 //It will create a number of version square of the number identified id’s (

Including original). This case 6, will provide an example for the 1st

15 public View exampleFunction() {

16 View view1 = findViewById(R.id.exampleView2); //Mutated here, next will

be R.id.exampleView3

17 View view2 = findViewById(R.id.exampleView2); //Same as this one

18 View view3 = findViewById(R.id.exampleView3);

19 //Do something...

20 }

21

22 //************************************

23 //Mutated Code Using Proposed Process

24 //************************************

25 public View exampleFunction() {

26 //Variable declarations are separated from the If Clause or else won’t

be able to be used. If its not possible to separate it, it is

required to use the solution proposed for incompatible mutation

operators

27 View view1; //First Mutation point

28 if(System.getPropery("MUID").equals("<Mutant1 identifier>")){

29 view1 = findViewById(R.id.exampleView2);

30 }

31 if(System.getPropery("MUID").equals("<Mutant2 identifier>")){

32 view1 = findViewById(R.id.exampleView3);

5.3 Conclusion 47

33 }

34 if(System.getPropery("MUID").equals(null)){

35 view1 = findViewById(R.id.exampleView1);

36 }

37 //... Similar If Clause process for the two other View objects

38 return view;

39 }

This example is a good example to compare both classic and proposed processes, as for this

mutant to work, it is required for more than one mutation point to exist, as the Resource Identifiers

are swapped between them. As such this example has 3 mutation points, creating 6 mutations as

calculated using the formula:

Number of Mutation Points * (Number of Mutation Points - 1 = Number of Mutations

The 3 mutation points in this example are located on Lines, 5, 6 and 7, on the parameters of

the findViewById functions. Of the 6 mutated versions however, only part of them are present on

the example, this is to reduce the size of the example, but the remaining mutations are similar to

the presented ones. For the classic version only the first mutation is present, on line 16, and it

replaces the first mutation point with the second, where the remaining mutations produce a similar

mutation on a new version of the code.

For the proposes process however, only one mutated version is needed to be created, and

as such, there is the possibility to execute any of the 6 mutants or the original version. In the

example however there are only present two mutations, the ones referring the first mutation point,

and therefore, the first set of If Clauses. The number of If clauses per mutation point, using this

mutation operator, is always equal to the number of mutation points. For every mutation point a

similar set of If Clauses is produced, exchanging only the order of the Resource Identifiers

5.3 Conclusion

Having developed this tool, with this set of mutants, was a great way to test our new process and

it limitations. To note for instance the Java Method mutation operators, and more specifically the

Super Call Deletion, that required us to further enhance how we tackled the incompatible mutation

operators.

It was also a great way to better understand the Kadabra tool [17] and its Lara framework [18],

as developing the tool and the mutation operators required for a deeper understanding of both tools,

which later helped creating our interface.

This tool also allowed us to generate the source code for both processes, which is a fundamen-

tal step for the next chapter, Comparison 6, as we needed said source codes to test the compilation

times for both processes and compare.

48 The tool

Chapter 6

Process Comparison

Having proposed a new process, that theoretically improves significantly the existing classic pro-

cess, a comparison is required so the improvement claim can be confirmed.

6.1 Used Method

To perform the comparison, and achieve acceptable results, we tried to isolate the most variables

possible. This was done so we could have the most precise and accurate results of only the process

performance

First thing we did was to isolate the mutation operators, using the same operations on both

processes. This is possible as our tool architecture and interface allows a distinction on how the

mutation operators are identified and applied.

Second thing we isolated, was the method used to compile and test the testing project. This

was made by using the test project build tool Maven, which allowed us to have control for what

we execute and how, using different Maven goals. In our case, to execute the tests the goal "test"

was used, that if no compiled versions were found it would also compile the project (Required for

the classic process).

Third, and to isolate our tool away from the process, and therefore obtain more precise times,

we compiled and executed the tests using PowerShell console commands and its system integrated

stopwatch functionality.

6.2 Results

To obtain our results we tested both processes on a personal project were 14 source files were

mutated with three increasing number of mutations. Also the project has 66 unit tests that are ran

against every mutation and the original project.

As mentioned on the previous section 6.1, we tested the compile and testing times as one for

both the classic process and our proposed process, using the test project build tool and a system

stopwatch, three times for each mutant count. The results were as follows;

49

50 Process Comparison

For the first test, with 142 mutations to test, we’ve found out, as shown on table 6.1, that

our proposed process had a speedup ratio of approximately 2.08x in comparison with the classic

process, completing the test 13m40s faster.

1st Run 2nd Run 3rd Run Average

Classic 26m31s 26m20s 26m11s 26m21s

Proposed 12m49s 12m32s 12m40s 12m40s
Table 6.1: First test complete run-times

On the second test, with 258 mutations to test, both process execution times increased as

expected as shown on 6.2 but that increment was different on both, as the Classic process took

10m27s longer comparing with the last test in contrast with the 2m05s from the proposed process.

This difference also had an increased speedup ratio of 2.49x with the classic process taking 22m02s

extra time to complete

1st Run 2nd Run 3rd Run Average

Classic 37m41s 36m31s 36m47s 36m47s

Proposed 14m45s 14m55s 14m41s 14m45s
Table 6.2: Second test complete run-times

At last, on the third test, with 440 mutants to test, we’ve found out similar gains as on the

previous run, as can be seen on the results on the table 6.3. Comparing with the previous results

from the second test, the classic process took about 29m14s longer to complete, while the proposed

process took only 10m13s longer to complete. In total on this run, the proposed classic process

took 41m04s longer than the proposed process to complete testing the 440 total mutants, this then

represents a total speedup of approximately 2.64x

1st Run 2nd Run 3rd Run Average

Classic 1h05m02s 1h06m02s 1h08m24s 1h06m02s

Proposed 24m58s 25m14s 24m45s 24m58s
Table 6.3: Third test complete run-times

As noticed on the tests, there was an increase in time difference that it took to execute the

classic process over our proposed process, this, can be further visualized on Figure 6.1 that has a

graphic representation of the increase of the execution times and the difference between them.

6.3 Conclusion 51

Figure 6.1: Time Difference

6.3 Conclusion

As expected, our proposed process, although it brings an extra layer of complexity to the process,

as it might require to check if every mutation can be compiled successfully, it brings a substantial

speedup to the compilation and testing phases of the process, as can be seen on figure 6.2. This

speedup increases as the number of mutants increase, being that on our tests, that started with

142 mutants, the achieved speedup was of approximately 2.08. This speedup rose to 2.5 with 258

mutants and to 2.64 with 440 mutants.

Although not being scientifically checked, as it was not the main focus of the investigation, the

times taken to generate the source files to test were noticed to take significantly longer to generate

on the classic process. This was also expected, as, in the proposed process only requires to save

the files one single time, heavily reducing this time. In contrast, for the classic process, a creation

of a complete copy of the project files is required for every mutant, process which can also be time

consuming depending on the project size and drive speed. This was verified on the third test, as

for the proposed process it took around 10 to 15 minutes to complete this stage of the mutation

testing process, for the classic process, due to its drive usage intensive nature, took around 1h to

complete creating the 440 mutated versions o the original source code.

52 Process Comparison

Figure 6.2: Proposed process Speedup by number of mutants

One thing to note is that on our testing method is that due to variables that we could not control,

such as background processes on the machine used, we ran all the tests on the same machine,

one right after the other for the same, and tried to achieve at least 3 similar results to achieve

some consistency and therefore validation. This method was further deemed to be necessary as

on our initial testing some results had time differences between tests being greater than expected,

indicating something on the background might have been executing and therefore those times were

invalidated.

Chapter 7

Conclusions and Future Work

This thesis, with its original purpose of developing an new Mutation Tool for Mobile apps, had its

focus refactored to focus more on the new process rather than the tool. This was an important step,

as the main goal was to provide a more efficient way to perform mutation testing, and, with this

new process, it now can have an even broader application than just the initially considered mobile

apps universe.

Its always hard to change focus mid way through any kind of work. This usually means

that the thing you were working on stops being the focus, and can even result on what might be

considered lost time with the previous work. In this case fortunately, that did not occur, as we

started developing our tool the change of the process actually helped on the motivation as that

would mean a better contribution.

Not only that, but having already a basis with the old process allowed us to perform the tests

with both the classic approach and our new approach, that ultimately helped us to obtain our

results, as we wouldn’t need to use other tools that might have different approaches which might

impact performance.

7.1 Results

As mentioned, the main goal of this thesis was to develop a new process for mutation testing. This

goal was achieved, obtaining result of over 2x better performance on our testing, and, with the

potential to have even higher gains the larger the application under testing.

Our second goal was also achieved, by developing a tool that not only allows to apply our

proposed process, but also tackles one of the identified problems, the configurability, by use of our

own framework.

7.2 Further Work

For future work it would be interesting to even extend the tool further, with more parameters to

take into account, as for our process it requires to exclude all the mutants that generate compilation

53

54 Conclusions and Future Work

errors but are still not identified.

At the time of writing we are also in a phase of re-implementing the Java Method and An-

droid Specific mutators, as it requires to take into account the extra verification’s for the proposed

architecture, which take longer to implement.

Also it would be nice to add more mutation operators native to it, as well as a report generation,

as it would improve its capabilities.

Finally, and most important, would be interesting to perform more testing on the process, on

larger applications, to prove the theoretical exponential improvement of performance with our

process.

References

[1] Sérgio Almeida, Ana C. R. Paiva, and André Restivo. Mutation-based web test case genera-
tion. In Mario Piattini, Paulo Rupino da Cunha, Ignacio García Rodríguez de Guzmán, and
Ricardo Pérez-Castillo, editors, Quality of Information and Communications Technology -
12th International Conference, QUATIC 2019, Ciudad Real, Spain, September 11-13, 2019,
Proceedings, volume 1010 of Communications in Computer and Information Science, pages
339–346. Springer, 2019.

[2] Ana Barbosa, Ana C. R. Paiva, and José Creissac Campos. Test case generation from mutated
task models. In Fabio Paternò, Kris Luyten, and Frank Maurer, editors, Proceedings of the
3rd ACM SIGCHI Symposium on Engineering Interactive Computing System, EICS 2011,
Pisa, Italy, June 13-16, 2011, pages 175–184. ACM, 2011.

[3] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony Ven-
tresque. PIT: A practical mutation testing tool for Java (Demo). In ISSTA 2016 - Proceed-
ings of the 25th International Symposium on Software Testing and Analysis, pages 449–452.
Association for Computing Machinery, Inc, jul 2016.

[4] David Schuler and Andreas Zeller. (Un-)Covering Equivalent Mutants. In ICST ’10: Pro-
ceedings of the 3rd International Conference on Software Testing, Verification and Valida-
tion, pages 45–54. IEEE Computer Society, April 2010.

[5] Lin Deng, Jeff Offutt, Paul Ammann, and Nariman Mirzaei. Mutation operators for testing
Android apps. Information and Software Technology, 2017.

[6] Marcio Augusto Guimaraes, Leo Fernandes, Marcio Ribeiro, Marcelo D’Amorim, and Rohit
Gheyi. Optimizing Mutation Testing by Discovering Dynamic Mutant Subsumption Rela-
tions. In Proceedings - 2020 IEEE 13th International Conference on Software Testing, Ver-
ification and Validation, ICST 2020, pages 198–208. Institute of Electrical and Electronics
Engineers Inc., oct 2020.

[7] Sean A. Irvine, Tin Pavlinic, Leonard Trigg, John G. Cleary, Stuart Inglis, and Mark Ut-
ting. Jumble java byte code to measure the effectiveness of unit tests. In Proceedings
- Testing: Academic and Industrial Conference Practice and Research Techniques, TAIC
PART-Mutation 2007, pages 169–175, 2007.

[8] René Just. The Major mutation framework: Efficient and scalable mutation analysis for Java.
In Proceedings of the International Symposium on Software Testing and Analysis (ISSTA),
pages 433–436, San Jose, CA, USA, July 23–25 2014.

55

56 REFERENCES

[9] Rene Just, Franz Schweiggert, and Gregory M. Kapfhammer. MAJOR: An efficient and
extensible tool for mutation analysis in a Java compiler. In 2011 26th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE 2011), pages 612–615. IEEE,
nov 2011.

[10] Mario Linares-Vásquez, Gabriele Bavota, Michele Tufano, Kevin Moran, Massimiliano Di
Penta, Christopher Vendome, Carlos Bernal-Cárdenas, and Denys Poshyvanyk. Enabling
mutation testing for android apps. In Proceedings of the ACM SIGSOFT Symposium on the
Foundations of Software Engineering, volume Part F130154, pages 233–244. Association
for Computing Machinery, aug 2017.

[11] Eduardo Luna and Omar El Ariss. Edroid: A mutation tool for android apps. In Proceed-
ings - 2018 6th International Conference in Software Engineering Research and Innovation,
CONISOFT 2018, pages 99–108. Institute of Electrical and Electronics Engineers Inc., feb
2018.

[12] Yu-Seung Seung Ma, Jeff Offutt, Yong Rae Kwon, and Yong Rae Kwon. MuJava: An
automated class mutation system. Software Testing Verification and Reliability, 15(2):97–
133, jun 2005.

[13] Kevin Moran, Michele Tufano, Carlos Bernal-Cárdenas, Mario Linares-Vásquez, Gabriele
Bavota, Christopher Vendome, Massimiliano Di Penta, and Denys Poshyvanyk. MDroid+:
A mutation testing framework for android. In Proceedings - International Conference on
Software Engineering, pages 33–36. IEEE Computer Society, may 2018.

[14] Ana C. R. Paiva, André Restivo, and Sérgio Almeida. Test case generation based on muta-
tions over user execution traces. Softw. Qual. J., 28(3):1173–1186, 2020.

[15] David Schuler and Andreas Zeller. Javalanche: Efficient Mutation Testing for Java. In
ESEC-FSE’09 - Proceedings of the Joint 12th European Software Engineering Conference
and 17th ACM SIGSOFT Symposium on the Foundations of Software Engineering, pages
297–298, 2009.

[16] Leonardo Da S. Sousa, Auri M.R. Vincenzi, Marcio Eduardo Delamaro, Igor R. Vieira, Vini-
cius R.L. Mendonca, and Cassio Leonardo Rodrigues. Reducing the Cost of Mutation Test-
ing Using the Semantic Size of Mutant. In Proceedings - 2018 IEEE International Confer-
ence on Systems, Man, and Cybernetics, SMC 2018, pages 2675–2680. Institute of Electrical
and Electronics Engineers Inc., jan 2019.

[17] Kadabra tool. Available at http://specs.fe.up.pt/tools/kadabra/.

[18] Pit mutation testing - mutators. Available at https://web.fe.up.pt/~specs/
projects/lara/doku.php?id=start.

[19] Pit mutation testing - mutators. Available at http://pitest.org/quickstart/
mutators/.

[20] Efficient mutation testing for java. Available at https://github.com/
david-schuler/javalanche, January 2020.

[21] Jumble coverage tool for junit tests. Available at https://sourceforge.net/
projects/jumble/, January 2020.

http://specs.fe.up.pt/tools/kadabra/
https://web.fe.up.pt/~specs/projects/lara/doku.php?id=start
https://web.fe.up.pt/~specs/projects/lara/doku.php?id=start
http://pitest.org/quickstart/mutators/
http://pitest.org/quickstart/mutators/
https://github.com/david-schuler/javalanche
https://github.com/david-schuler/javalanche
https://sourceforge.net/projects/jumble/
https://sourceforge.net/projects/jumble/

REFERENCES 57

[22] Jumble coverage tool for junit tests. Available at http://jumble.sourceforge.net/,
January 2020.

[23] The major mutation framework. Available at http://mutation-testing.org/, Jan-
uary 2020.

[24] Mdroidplus. Available at https://bit.ly/2QFAkZT, January 2020.

[25] Mujava home page. Available at https://cs.gmu.edu/~offutt/mujava/, January
2020.

[26] Mutation system for java programs, including oo mutation operators. Available at https:
//github.com/jeffoffutt/muJava, January 2020.

[27] Mutation testing tool for android integration testing. Available at https://github.com/
Yuan-W/muDroid, January 2020.

[28] Mutation testing with javalanche. Available at http://javalanche.org/, January
2020.

[29] Pit mutation testing. Available at http://pitest.org/, January 2020.

[30] Pit repository commit list. Available at https://bit.ly/2ZPxkOW, January 2020.

[31] State of the art mutation testing system for the jvm. Available at https://github.com/
hcoles/pitest, January 2020.

[32] Yuan Wei. MuDroid: Mutation Testing for Android Apps. Bachelor’s final project, Univ.
College London, London, U.K., 2015.

http://jumble.sourceforge.net/
http://mutation-testing.org/
https://bit.ly/2QFAkZT
https://cs.gmu.edu/~offutt/mujava/
https://github.com/jeffoffutt/muJava
https://github.com/jeffoffutt/muJava
https://github.com/Yuan-W/muDroid
https://github.com/Yuan-W/muDroid
http://javalanche.org/
http://pitest.org/
https://bit.ly/2ZPxkOW
https://github.com/hcoles/pitest
https://github.com/hcoles/pitest

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Problem
	1.2 Document structure

	2 State of the art
	2.1 Existing Mutation Tools
	2.1.1 Mobile Application Specific
	2.1.2 Java Language Specific

	2.2 Comparison
	2.2.1 Documentation Quality
	2.2.2 Maintainability
	2.2.3 Performance
	2.2.4 Final Comparison

	2.3 Summary

	3 Framework
	3.1 Background
	3.1.1 Mutation process
	3.1.2 Lara and the Kadabra tool

	3.2 The mutation interface
	3.3 Conclusion

	4 Proposed Process
	4.1 Classic Process
	4.2 Proposed Process
	4.2.1 Mutant generation and identification
	4.2.2 Incompatible Mutants

	4.3 Conclusion

	5 The tool
	5.1 Tool Design
	5.2 Mutation Operators
	5.2.1 General Operators
	5.2.2 Java Methods
	5.2.3 Android Specific

	5.3 Conclusion

	6 Process Comparison
	6.1 Used Method
	6.2 Results
	6.3 Conclusion

	7 Conclusions and Future Work
	7.1 Results
	7.2 Further Work

	References

