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Resumo

Dado um semigrupo S e um elemento fixo ¢ € S, podemos definir uma nova
operagao associativa -. em .S por

T ooy = xCy

para todo x,y € S, obtendo-se assim um novo semigrupo, o variante de S
(em ¢). Os elementos a,b € S dizem-se primariamente conjugados ou apenas
p-conjugados, se existirem x,y € S* tais que a = zy e b = yx. Em grupos, a
relacao ~,, coincide com a conjugacao usual, mas em semigrupos, em geral,
nao ¢ transitiva. Localizar classes de semigrupos nas quais a conjugacao
primaéria é transitiva é um problema em aberto.

Kudryavtseva (2006) provou que a transitividade é valida para semigru-
pos completamente regulares e, mais recentemente, Araijo et al. (2017)
provaram que a transitividade também se aplica aos variantes de semigru-
pos completamente regulares. Fizeram-no introduzindo uma variedade W de
epigrupos contendo todos os semigrupos completamente regulares e seus vari-
antes, e provaram que a conjugacao primaria é transitiva em . Colocaram o
seguinte problema: a conjugacao primaria ¢ transitiva nos variantes dos semi-
grupos em W7 Nesta tese, respondemos a isso afirmativamente como parte
de uma abordagem mais geral do estudo de variedades de epigrupos e seus
variantes, e mostramos que para semigrupos satisfazendo xy € {yx, (zy)"}
para algum n > 1, a conjugacao primaria também é transitiva.

Numa fase inicial da tese foi feita uma revisao da literatura referente a
problematica em estudo com uma breve discussao e declaracao dos princi-
pais resultados. No Capitulo 2, referimos que seguindo Petrich e Reilly (1999)
para semigrupos completamente regulares e Shevrin (1994, 2005) para epi-
grupos, é habitual ver um epigrupo (S, ) como um semigrupo unério (S, -,")
em que x — 2’ é a aplicacdo que a cada elemento faz corresponder o seu
pseudoinverso. Na tese usamos, com frequéncia, as seguintes igualdades, que
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sao vélidas em todos os epigrupos (Shevrin, 2005):

/

r'rx’ =, (1)
rx' =1’z (2)
" =a, (3)

zax'z = a”, (4)

(wy)'z = z(yz)', (5)

(%) = ()", (6)

para qualquer p primo.

Para cada n € N, seja &, a variedade (classe equacional) de todos os
semigrupos undrios (5, -,’) que satisfazem (2.2), (2.3) e "2’ = 2". Cada &,
¢ uma variedade de epigrupos, e as inclusoes &, C &, sao validas para todos
os n. Todo o semigrupo finito esta contido em algum &, e &; é a variedade de
semigrupos completamente regulares. Demonstramos um Lema, para usar
mais tarde, que nos diz que para cada n € N, a variedade &, é precisamente
a variedade de semigrupos unarios que satisfazem as identidades referidas.

Variantes de semigrupos completamente regulares nao sao, em geral, com-
pletamente regulares; por exemplo, se um semigrupo completamente regular
tiver um zero 0, o variante em 0 serd um semigrupo nulo, que nem é regu-
lar. Esta dificuldade foi contornada, em Aratjo et al. (2017), introduzindo
a seguinte classe VW de semigrupos:

S €W <= xy é completamente regular, para todo z,y € S.

Equivalentemente, W consiste em todos os semigrupos .S, de modo que o sub-
semigrupo S% = {ab | a,b € S} é completamente regular. A classe W inclui
todos os semigrupos completamente regulares e todos os semigrupos nulos
(semigrupos satisfazendo zy = uv para todos os x,y,u,v). Na Proposigao 2
resumimos os resultados relevantes, para esta tese, de Aratjo et al. (2017):
(Proposicao 4.14) W é a variedade de epigrupos em &, satisfazendo a igual-
dade adicional (zy)"” = zy; (Teorema 4.15) Se S é um epigrupo em W, entao
~, ¢ transitiva em S; (Teorema 4.17) Todo o variante de um semigrupo
completamente regular estd em W e (Corolario 4.18) Se S é um variante
de um semigrupo completamente regular, entao ~, é transitiva em S. O
Teorema 4.15 também comparava ~,, com outras nogoes de conjugacao. Na
forma simplificada aqui escrita, o resultado segue facilmente do teorema de
Kudryavtseva (2006): se a ~, b, b ~, ¢, e a # b # ¢ # a, entdo existe
r,y,u,v € S tal que a = zy, b = yr = uwv e ¢ = vu. Assim a,b,c € W sao
completamente regulares, logo a ~, c.
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Melhoramos um pouco a Proposicao 4.14 dizendo que a variedade WV é
precisamente a variedade de semigrupos unérios que satisfazem as identidades
(2.2), (2.3), (2.5), (2.7) (para p = 2) e (zy)” = xy. A variedade WV tem outra
caracterizacao que nao foi mencionada em Araujo et al. (2017). Sendo S
um semigrupo, as seguintes afirmacoes sao equivalentes: S é um epigrupo
em W, para cada ¢ € S, o ideal principal esquerdo Sc é um subsemigrupo
completamente regular e para cada ¢ € S, o ideal principal direito ¢S é um
subsemigrupo completamente regular.

Em vista do Lema 4, também devemos mencionar o estudo semelhante,
em Liu, Chen & Han (2016), dos epigrupos S, no qual todo o submonéide
local eSe é completamente regular.

A ferramenta chave na demonstracao da Proposigao 2 (3) foi a seguinte
operacao unaria:

*

" = (zvc)x(cx). (*)

De facto, se (S,-,’) é completamente regular, entao (5, -.,*) é um epigrupo
na variedade W. No entanto, (*) foi introduzida em Aratjo et al. (2017)
de forma “ad hoc”. Para mostrar que é bastante natural, observamos que o
ideal de um epigrupo é um subepigrupo (Shevrin1994). Em particular, para
cada ¢ num epigrupo S, Sc é um subepigrupo. Assim, para qualquer = € S,
o pseudoinverso (z¢)’ deve ter a forma yc para algum y € S. E exactamente
isso que (*) faz. Seja S um epigrupo e fixemos ¢ € S. Para todo z € S,

(zc) = x*c. (7)

Se (S,-,") é um epigrupo vamos referirmo-nos a (S, -, *) como o variante
undrio de (S,-,’) em ¢. A Proposi¢ao 2 (3) afirma que, se (S5,-,') € & §é
completamente regular, entao (S,:,*) € W. O nosso primeiro resultado
principal ird melhorar e estender isso. Primeiro temos que introduzir uma
familia de variedades de semigrupos unarios. Para cada n € N, a variedade
V,, ¢ definida pela associatividade e pelas seguintes identidades: (2.2), (2.3),

"o
vy gy =Yy (8)
\\_,1_/ -
// f— DEIY
"z lxy—x Y 9)

Definindo y = z em, digamos, (2.9), vemos pelo Lema 1 que V, é uma
variedade de epigrupos e, em particular,

E facil verificar que todo o variante de um epigrupo é um epigrupo, mas o
que nao ¢é tao 6bvio é o que acontece com a operacao pseudoinversa. O nosso



primeiro resultado principal esclarece isso e também o papel das variedades
Vi. Seja (S,-,") um epigrupo. Para cada ¢ € S, o variante unério (S, -, *)
é um epigrupo. Se (S,-,’) € V, para algum n > 0, entdo (5, *) € V,.
Portanto para n € N, a variedade V,, é fechada para variantes. Assim, seja
(S,-,”) um semigrupo completamente regular. Para cada ¢ € S, o variante
unéario (S, -, *) estd em V.

Observamos que para um elemento ¢ de um semigrupo S, a aplicacao
pe =S — Se;x — xe é um homomorfismo do variante (S, -.) em (Sc,-) pois
(x-cy)c = xc-ye. Se S também é um epigrupo, como ja observamos, o mesmo
acontece com Sc. Todo o homomorfismo de semigrupos entre epigrupos é um
homomorfismo de epigrupos, mas (2.8) mostra mais explicitamente como p,
preserva pseudoinversos.

Comparar a Proposicao 2(3) com o Corolério 7 levanta a questao de como
as variedades V; e W estao relacionadas, além do facto de que ambas contém
&1. O nosso segundo resultado principal aborda isso e o seu corolario liga esta
discussao a transitividade de ~,. Assim, V; C W e se (S,-,’) é um epigrupo
em W, entdo, para cada ¢ € S, o variante unério (S, ., *) esta em V.

Em particular, todo o variante de um epigrupo em W na verdade estda
numa subvariedade adequada de W, uma declaracao mais forte do que a
afirmacao de que W ¢ fechado para variantes.

Obtivémos assim, uma resposta definitiva ao Problema 6.18 em Aratjo
et al. (2017). Como ~,, ¢ transitiva em W, o teorema implica imediatamente
que a conjugacao primdria ~,, ¢ transitiva em todos os variantes de qualquer
epigrupo em W.

O objectivo do terceiro capitulo desta tese foi provar o Teorema 11. Seja
n > 1 um numero inteiro e S um semigrupo satisfazendo o seguinte: para
todo x,y € S,

zy € {yx, (zy)"}.

Entao a conjugacao priméria ~,, é transitiva em S.

Existem vérias motivagoes para estudar esta classe especifica de semigru-
pos. Primeiro, ela naturalmente generaliza duas classes de semigrupos em
que ~, ¢ transitiva: seja S um semigrupo. Se S é comutativo, entao ~,, ¢
transitiva e se S satisfaz xy = (xy)2 para todo z,y € S, entao ~,, ¢ transitiva.

A outra motivagao para estudar esta classe de semigrupos é que ela tem
sido de interesse recente em outros contextos. Em particular, J. P. Aratjo
e Kinyon (2015) mostraram que um semigrupo satisfazendo z° = z e xy €
{yz, (zy)*} para todo z,y é um semireticulado de bandas rectangulares e
grupos de expoente 2.

A demonstracao do Teorema 11 foi encontrada demonstrando primeiro os
casos especiais n = 2, 3, 4.

vi



Como ja referimos, no Capitulo 2, com as demonstragoes dos Teoremas 6
e 10, resolvemos o Problema 6.18 em Aradjo et al. (2017). Estes resultados
foram aceites para publicacao na revista Communications in Algebra. No
Capitulo 3 demonstramos, com o Teorema 16, que a conjugacao primaria é
transitiva no semigrupo S apresentado. Este resultado foi publicado em maio
de 2020, na revista Quasigroups and Related Systems.

Como trabalho futuro, apresentamos na tese seis problemas. Os quatro
primeiros, sugeridos pelo Professor Michael Kinyon, sao direcionados para o
estudo das variedades. Os dois ultimos sao problemas de Aratjo et al. (2017)
reformulados pelo Professor Joao Araijo, no contexto desta tese.

Palavras-chave: semigrupos, conjugacao primaria, variantes, variedades,
epigrupos
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Abstract

On a semigroup S with a fixed element ¢, we can define a new binary op-
eration x - y := xcy for all x,y € S. Then (S, -.) is a semigroup called the
vartant of S at c. Elements a,b € S are said to be primarily conjugate or
just p-conjugate, if there exist =,y € S* such that a = xy,b = yx. In groups
this coincides with the usual conjugation, but in semigroups, it is not transi-
tive in general. Finding classes of semigroups in which primary conjugacy is
transitive is an interesting open problem. Kudryavtseva proved that transi-
tivity holds for completely regular semigroups, and more recently Aratdjo et
al. proved that transitivity also holds in the variants of completely regular
semigroups. They did this by introducing a variety W of epigroups contain-
ing all completely regular semigroups and their variants, and proved that
primary conjugacy is transitive in WW. They posed the following problem: is
primary conjugacy transitive in the variants of semigroups in W? In this the-
sis, we answer this affirmatively as part of a more general study of varieties
of epigroups and their variants, and we show that for semigroups satisfying
zy € {yz, (xy)"} for some n > 1, primary conjugacy is also transitive.

Keywords: semigroups, primary conjugacy, variants, varieties, epigroups
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Chapter 1

Introduction

By a notion of conjugacy for a class of semigroups we mean an equivalence
relation defined in the language of that class of semigroups and coinciding
with the group theory notion of conjugacy whenever the semigroup is a group.

According to [15], it is unreasonable to consider a generalization of groups
to semigroups that is suitable for all purposes. It is therefore necessary to
choose the notion of conjugation that best fits the class of semigroups under
study, and to understand how it interacts with other notions of conjugation
and other mathematical concepts.

Before introducing the notions of conjugacy that will occupy us, we recall
some standard definitions and notation (we generally follow [26]). Other
needed definitions will be given in context.

For a semigroup S, we denote by E(S) the set of idempotents of S; S! is
the semigroup S if S is a monoid, or otherwise denotes the monoid obtained
from S by adjoining an identity element 1. The relation < on E(S) defined
by e < fif ef = fe = e is a partial order on E(S) [26]. A commutative
semigroup of idempotents is said to be a semilattice.

An element a of a semigroup S is said to be regular if there exists b € S
such that aba = a. Setting ¢ = bab, we get aca = a and cac = ¢, so ¢ is an
inverse of a. Since a is also an inverse of ¢, we often say that a and c are
mutually inverse. A semigroup S is regular if all elements of S are regular,
and it is an inverse semigroup if every element of S has a unique inverse.

If S is a semigroup and a,b € S, we say that alb if S'a = S'b, aRb if
aSt = bSt, and aJbif S'aS! = S'bSt. We define H = LNR, and D = LVR,
that is, D is the smallest equivalence relation on S containing both £ and
R. These five equivalence relations are known as Green’s relations [26], and
are among the most important tools in studying semigroups.

We now introduce the four notions of conjugacy that we will consider. As
noted, we expect any reasonable notion of semigroup conjugacy to coincide in



groups with the usual notion. For elements a, b, g of a group G, if a = g~ 1bg,
then we say that a and b are conjugate and g (or g=') is a conjugator of a
and b. Conjugacy in groups has several equivalent formulations that avoid
inverses, and hence generalize syntactically to any semigroup. For example,
if G is a group, then a,b € G satisfy a = g~ 'bg (for some g € G) if and
only if @ = uv and b = vu for some u,v € G (namely u = g~'b and v = g).
This last formulation has been used to define the following relation on a free
semigroup S (see [34]):

an~pbe 3, ec51a=uv and b= vu. (1.1)

If S is a free semigroup, then ~, is an equivalence relation on S [34],
and so it can be considered as a notion of conjugacy in S. In a general
semigroup S, the relation ~,, is reflexive and symmetric, but not transitive.
If a ~, bin a semigroup, we say that a and b are primarily related [32] (hence
the subscript in ~,). The transitive closure ~7 of ~, has been defined as
a conjugacy relation in a general semigroup [25, 31, 32]. Lallement credited
the idea of the relation ~, to Lyndon and Schutzenberger [36].

Again looking to group conjugacy as a model, for a,b in a group G,
a = g~ 'bg for some g € G if and only if ga = bg for some g € G if and only
if bh = ha, for some h € G. A corresponding semigroup conjugacy is defined
as follows:

a~ybs 3, pes1ag = gb and bh = ha. (1.2)

This relation was defined by Otto for monoids presented by finite Thue
systems [40], and, unlike ~,, it is an equivalence relation in any semigroup.
However, ~, is the universal relation in any semigroup S with zero. Since
it is generally believed [19, 23, 43] that lim, 2> = 1, where s, [2,] is the
number of semigroups [with zero] of order n, it would follow that “almost
all” finite semigroups have a zero and hence this notion of conjugacy might
be of interest only in particular classes of semigroups.

In [10] a new notion of conjugacy was introduced. This notion coincides
with Otto’s concept for semigroups without zero, but does not reduce to the
universal relation when S has a zero. The key idea was to restrict the set
from which conjugators can be chosen. For a semigroup S with zero and
a € S\{0}, let P(a) be the set of all elements g € S such that (ma)g # 0
for all ma € S'a\{0}. We also define P(0) = {0}. If S has no zero, we set
P(a) = S for every a € S. Let P!(a) = P(a) U {1} where 1 € S' . Define a
relation ~. on any semigroup S by

a ~c b Jgept(q)Fneprpyag = gb and bh = ha. (1.3)
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(See [10] for the motivation of using the sets P*(a)). Restricting the choice
of conjugators, as happens in the definition of ~., is not unprecedented for
semigroups. For example, if S is a monoid and G is the group of units of S,
we say that a and b in S are G-conjugated and write a ~¢ b if there exists
g € G such that b = g~'ag [31]. The restrictions proposed in the definition
of ~. are much less stringent. Their choice was motivated by considerations
in the context of semigroups of transformations. The translation of these
considerations into abstract semigroups resulted in the sets P!(a). Roughly
speaking, conjugators selected from P!(a) satisfy the minimal requirements
needed to avoid the pitfalls of ~,.

The relation ~. turns out to be an equivalence relation on an arbitrary
semigroup S. Moreover, if S is a semigroup without zero, then ~.=~,. If S
is a free semigroup, then ~,=~,=~, . In the case where S has a zero, the
conjugacy class of 0 with respect to ~, is {0}.

The last notion of conjugacy that we will consider has been inspired by
considerations in the representation theory of finite semigroups (for details
we refer the reader to Steinberg’s book [46]). Let M be a finite monoid
and let a,b € M. We say that a ~y,. b if there exist g,h € M such that
ghg = g, hgh = h,hg = a“, gh = b*, and ga**th = b**!, where, for a € M,
a® denotes the unique idempotent in the monogenic semigroup generated by
a (see [26]) and a“™! = aa®. The relation ~y, is an equivalence relation in
any finite monoid.

The same notion can be alternatively introduced (see, for example, Kudryavt-
seva and Mazorchuk [32]) via characters of finite-dimensional representations.
Given a finite-dimensional complex representation ¢ : S — Endc(V) of a
semigroup S, the character of ¢ is the function x, : S — C defined by
Xo(s) = trace(p(s)) for all s € S. In a finite monoid S, a ~y, b if and only
if xy(a) = x,(b) ([38] or [46]) This explains the subscript notation ~y, .

The relation ~y,., in its equational definition, can be naturally extended
from the class of finite monoids to the class of epigroups. We need some defi-
nitions first. Let S be a semigroup. An element a € S is an epigroup element
(or, more classically, a group-bound element) if there exists a positive integer
n such that a™ belongs to a subgroup of S, that is, the H-class Hy» of a™ is a
group. If this positive integer is 1, then a is said to be completely regular. If
we denote by e the identity element of H,», then ae is in H,» and we define the
pseudo-inverse o’ of a by o’ = (ae)”", where (ae)”" denotes the inverse of ae
in the group H,» [45]. An epigroup is a semigroup consisting entirely of epi-
group elements, and a completely reqular semigroup is a semigroup consisting
entirely of completely regular elements. Finite semigroups and completely
regular semigroups are examples of epigroups. Following Petrich and Reilly
[42] for completely regular semigroups and Shevrin [45] for epigroups, it is
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now customary to view an epigroup (S,-) as a unary semigroup (.S, -,") where
x — ' is the map sending each element to its pseudo-inverse. In addition,
the w notation introduced above for finite semigroups can be extended to an
epigroup S [45], where, for a € S,a“ denotes the idempotent of the group
to which some power of a belongs. (In the finite case, a* itself is a power
of a). We can therefore extend the definition of ~y,. from finite monoids to
epigroups: for all a,b in a epigroup S,

a ~y b 3y pesrghg = g, hgh = h, ga“ ™ h = 0" hg = a¥, and gh = b”.
(1.4)

In any epigroup, we have a* = aa’ ([45]), and therefore a“*! = aa’a = a”.
Thus in epigroups, as is sometimes convenient, we can express the conjugacy
relation ~, entirely in terms of pseudo-inverses: for all a,b € S,

a ~y b 3y pesighg = g, hgh = h, ga"h =", hg = ad’, and gh = bb'.
(1.5)

We will refer to ~, ~7, ~,, ~¢, and ~y, as p-conjugacy, p*-conjugacy,
o-conjugacy, c-conjugacy, and trace conjugacy, respectively. Of course, ~,
is a valid notion of conjugacy only in the class of semigroups in which it is
transitive, and trace conjugacy is only defined for epigroups.

Let S be a semigroup and a € S. A wvariant of S is a semigroup whose
universe equals that of S and the multiplication is defined by: for all z,y €
S, xx,y = xay. There are a number of open problems on the relation between
the notions of conjugation above in a semigroup S and in its variants. The
goal of this thesis is to solve some of those problems.



Chapter 2

Variants of Epigroups and
Primary Conjugacy

2.1 Introduction

Let S be a semigroup. Given ¢ € S we can define a new binary operation -,

on S by
a-.b=ach (2.1)

for all a,b € S. The operation -. is clearly associative, and the semigroup
(S, -c) is called the variant of S at ¢ (see [24] and also [21, 20, 28, 30, 27, 37,
41]).

Elements a, b of a semigroup S are said to be primarily conjugate, denoted
a ~y, b, if there exists z,y € S* such that a = xy and b = yx. Here as
usual, S! denotes S if S is a monoid; otherwise S' = S U {1} where 1 is
an adjoined identity element. Primary conjugacy is reflexive and symmetric,
but it is not transitive in general. The transitive closure ~7 of ~, can be
considered to be a conjugacy relation in general semigroups [25, 31, 32].
Primary conjugacy is transitive in groups (where it coincides with the usual
notion of conjugacy) and free semigroups [34]. To describe additional classes
where primary conjugacy is known to be transitive, we must first recall the
notion of epigroup.

An element a of a semigroup S is an epigroup element (also known as a
group-bound element) if there exists a positive integer n such that a” belongs
to a subgroup of 9, that is, the H-class H,» of a™ is a group. The smallest
such n is the index of a. If H, itself is a group, that is, if a has index 1, then
a is said to be completely reqular. If we let e denote the identity element
of Hyn, then ae is in H,» and we define the pseudo-inverse a’ of a by a’ =
(ae)™!, where (ae)™! denotes the inverse of ae in the group H,. [44]. If every
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element of a semigroup is an epigroup element, then the semigroup itself is
said to be an epigroup, and if every element is completely regular, then the
semigroup is said to be completely regular. Every finite semigroup, and in
fact every periodic semigroup, is an epigroup. Following Petrich and Reilly
[42] for completely regular semigroups and Shevrin [44, 45] for epigroups, it
is now customary to view an epigroup (S,-) as a unary semigroup (S,-,")
where x — 2/ is the map sending each element to its pseudoinverse. We will
make considerable use of the following identities which hold in all epigroups

[45]:

rrr’ =, (2.2)
xr' =2z, (2.3)
" =, (2.4)

xa'y = 2", (2.5)

(zy)'z = 2(yz)’, (2.6)

(a?) = ()", (2.7)

for any prime p.

For each n € N, let &, denote the variety (equational class) of all unary
semigroups (S,-,’) satisfying (2.2), (2.3) and z"*'a’ = z™. Each &, is a
variety of epigroups, and the inclusions &, C &,11 hold for all n. Every finite
semigroup is contained in some &,. & is the variety of completely regular
semigroups.

The following observation will be useful later.

Lemma 1 For each n € N, the variety &, is precisely the variety of unary
n—1,./

semigroups satisfying (2.2), (2.3) and " 2" = z".

Proof. If S is an epigroup in &,, then 2™ = "2’ = 2" lza’y = 2" 12" us-

ing (2.3) and (2.5). Conversely, suppose S satisfies (2.2), (2.3) and 2" '2" =
™. Then x" o’ = a"a"z’ = 2" 1a"2"2s’ = 2" 1a"2'2" = 2" 12" = 2", using
(2.3) in the third equality and (2.2) in the fourth equality. m

Kudryavtseva [33] proved that the restriction of ~,, to the set of all com-
pletely regular elements of a semigroup is transitive. More recently, it was
shown in [15] that ~,, is transitive in all variants of completely regular semi-
groups. Variants of completely regular semigroups are not, in general, com-
pletely regular themselves; for example, if a completely regular semigroup
has a zero 0, then the variant at 0 is a null semigroup, which is not even
regular. This difficulty was circumvented in [15] by introducing the following

class W of semigroups:

S e W <= uzy is completely regular for all z,y € S'.



Equivalently W consists of all semigroups S such that the subsemigroup S? =
{ab | a,b € S} is completely regular. The class VW includes all completely
regular semigroups and all null semigroups (semigroups satisfying ry = uv
for all z,y,u,v). The following summarizes the relevant results of [15].

Proposition 2 1. ([15], Prp. 4.14) W is the variety of epigroups in &
satisfying the additional identity (zy)”" = xy.

2. ([15], Thm. 4.15) If S is a epigroup in W, then ~, is transitive in S;

3. ([15], Thm. 4.17) Every variant of a completely regular semigroup is
mn W,

4. ([15], Cor. 4.18) If S is a variant of a completely regular semigroup,
then ~y, is transitive in S.

Part (2) of this proposition had more to it, comparing ~, with other
notions of conjugation. In the simplified form stated here, the result follows
easily from Kudryavtseva’s theorem [33]: if a ~,, b, b ~,, ¢, and a # b # ¢ # q,
then there exist z,y,u,v € S such that a = 2y, b = yr = wv and ¢ = vu.
Thus a, b, c € W are completely regular, so a ~, c.

We can slightly improve Proposition 2(1) as follows.

Lemma 3 The variety W is precisely the variety of unary semigroups sat-
isfying the identities (2.2), (2.3), (2.5), (2.7) (for p=2) and (xy)" = zy.

Proof. One implication follows from Proposition 2(1), so suppose (S5, -,’) is
a unary semigroup satisfying the identities listed in the lemma. Then for all
x €S,

3 ,(22) 3 r 23) 4 4y

x°x " rrxr = xrrx
~~
@) 2 2 (a2 (23) 22(22) 22
N——
(2i5) (1‘2)” — ZL‘2

Therefore (S, -,”) lies in &, hence in W. =
The variety VW has another characterization that was not mentioned in
[15].

Lemma 4 Let S be a semigroup. The following are equivalent:

1. S 1s an epigroup in W.



2. For each ¢ € S, the principal left ideal Sc is a completely regular
subsemigroup.

3. For each c € S, the principal right ideal ¢S is a completely regular
subsemigroup.

Proof. An element of a semigroup is completely regular if and only if it lies
in some subgroup, so the desired equivalences follow from the definition of
W. m

In view of Lemma 4, we should also mention the kindred study in [35] of
epigroups S in which every local submonoid eSe is completely regular.

The key tool in the proof of Proposition 2(3) was the following unary
operation:

" = (zc)x(cx)". (*)

Indeed, if (S,-,”) is completely regular, then (S,-.,*) is an epigroup in the
variety W. However, (*) was introduced in [15] in an ad hoc fashion. To show
that it is quite natural, we note that an ideal of an epigroup is a subepigroup
[44]. In particular, for each ¢ in an epigroup S, Sc is a subepigroup. Thus
for any = € S, the pseudoinverse (zc)’ must have the form yc for some y € S.
This is exactly what (*) does for us.

Lemma 5 Let S be an epigroup and fix c € S. For all x € S,
(xe) = z'c. (2.8)

Proof. We compute

(zc) = (zc)'ze(xe) = (xc) (xe)'xe = (xe)z(cx) e = x*c,

using (2.2), (2.3) and (2.6). =

If (S,-,”) is an epigroup, we will refer to (S, -, *) as the unary variant of
(S,-,’) at c¢. Proposition 2(3) states that if (S,-,”) € &; is completely regular,
then (S,+c,™) € W. Our first main result will both improve and extend this.
First we must introduce a family of varieties of unary semigroups. For each
n € N, the variety V), is defined by associativity and the following identities:
(2.2), (2.3),

wy -y =Yy (2.9)
\,1_/ —

/, p— DY

"z 1:Ey =g---2y (2.10)



Setting y = x in, say, (2.9), we see from Lemma 1 that V, is a variety of
epigroups and in particular,

En CV0 CEnir (2.11)

That every variant of an epigroup is an epigroup is easy to see, but what
is not so obvious is what happens to the pseudoinverse operation. Our first
main result clarifies this and also the role of the varieties V,.

Theorem 6 Let (S,-,") be an epigroup. For each ¢ € S, the unary variant
(S, e, ") is an epigroup. If (S,-,") € V,, for some n > 0, then (S, -, *) € V,.
Therefore for n € N, the variety V,, is closed under taking variants.

Corollary 7 Let (S,-,") be a completely reqular semigroup. For each ¢ € S,
the unary variant (S, -c,*) lies in V.

Example 8 Not every unary semigroup in Vy s a variant of a completely
reqular semigroup. Using MACE4, we found that the smallest examples have
order 4, and there are three of them up to isomorphism:

101 2 3 101 2 3 101 2 3
0[1 1 11 0[{1 1 2 2 012 211
111 1 1 1 1/1 1 2 2 112 2 11
2111 2 1 212 2 2 2 2111 2 2
3{1 1 1 3 312 2 2 3 3111 2 3

The corresponding pseudoinverse operation is the same for all three epi-
groups: 0 =1 and 2’ =z forx =1,2,3.

Remark 9 For an element ¢ of a semigroup S, the mapping p. : S —
Sc;x w— xc is a homomorphism from the variant (S,-.) to (Sec,-) since
(x-cy)ec=xc-yc. If S is also an epigroup, then as already noted, so is Sc.
Every semigroup homomorphism between epigroups is an epigroup homomor-
phism, but (2.8) shows more explicitly how p. preserves pseudoinverses.

Comparing Proposition 2(3) with Corollary 7 raises the question of how
the varieties V; and W are related other than just the fact that both contain
&1. Our second main result addresses this and its corollary connects this
discussion to the transitivity of ~,,.

Theorem 10 1. Vi C W,



2. If (S,-,') is an epigroup in W, then for each ¢ € S, the unary
variant (S, ., *) lies in V.

In particular, every variant of an epigroup in W actually lies in a proper
subvariety of W, a stronger statement than the assertion that W is closed
under taking variants.

We can now give an affirmative answer to Problem 6.18 in [15]. Since ~,
is transitive in W, the previous theorem immediately implies the following.

Corollary 11 Primary conjugacy ~, s transitive in every variant of any
epigroup in WW.

The proofs of Theorems 6 and 10 will be given in §2.2.

Most of the proofs were obtained with the assistance of the automated
theorem prover PROVER9 developed by McCune [39].

2.2 Proofs

Let (S,-,) be an epigroup and fix ¢ € S. To verify Theorem 6, we start with
a couple of lemmas.

Lemma 12 (S,-.,*) satisfies (2.2) and (2.3).

Proof. First we compute

" x . = (wve) z(cx) cxe(xe) z(cx) (20 (zc) (ze) xexe(xe) (xc)
—— —— e N —
22 (xe) xe(ze) - (xe) xe(xe) - x 22 (ze) (xc)x
——
29 (xe) z(cx) =z,
which establishes (2.2).
Next we have
T 2" = ze(xe) x(cx) 2 (zc) zcx(cr)
—— ——
(20 (xe)x c(xe) (26) (xe) x(cx) cx
——
=z . T,

which establishes (2.3). =
We will denote powers of elements in (.5, -.) with parentheses in the ex-
ponent, that is, z(Y) = z and 2™ =z -, 2V for n > 1.

10



Lemma 13 If ca has index n in (S,-,’), then a is an epigroup element of
index n orn+11in (S, -,").

k+1) k1, % k

Proof. For any k& > 0, we have a! -« a* = (ac)*a* = a(ca)® ca”, =
a(ca)*(ca) using (2.8), and a® = a(ca)®. Thus if ca has index n, then

a2 . a* = a1 and so a is an epigroup element of index at most n + 1
in (S, -, *). If a has index k < n+ 1 in (S, -, *), then a(ca)*(ca)’ = a (ca)*
and so (ca)*(ca) = (ca)’ and so k> n. m

Lemma 14 For allx € S,
cx™ = (cx)". (2.12)
Proof. Using (*), we compute

cx™ = c(z*)* = c(z*c) x*(ca™)

[
Proof of Theorem 6. Assume (S,-,’) is an epigroup. Then by Lemmas
12 and 13, (S, -, *) is also an epigroup.

Suppose now that for some n € N, (S,-,") € V,,. Then for all z,y € S,

ooy ey = w(ey) ey U= w(ey)" (ey)”
= x(cy)n =T ¢ y(n) )
using (S,-,") € V, in the third equality. Thus (S, -.,*) € V,,. This completes

the proof. m
Now we turn to Theorem 10.

Lemma 15 V; C W.

Proof. Fix (S5,-,’) € V5. We already know that S is an epigroup in &
by (2.11) and so by Proposition 2(1), we just need to verify the identity
(xy)” = zy. We compute

n (2.5)

(2.10)

x = vy (xy)x =" 2" yley)zy = 22 2"y (xy)x
(zy) y (vy) 'y 2 y(xy)zy y (vy) zy
(2;0) 2 a:y(a;y)'xy (2:5) 2" x/(acy)” (2:9) 2 Ty

210 @5) , (2.10)
=" zr'zy =" 2"y = zy.



To see that the inclusion is proper, consider the unary semigroup given
by the multiplication table

W N = O

W N~ NO
W N = W
W N = NN
W N = DN W

and the unary operation 0/ = 2, 1"/ = 1, 2/ = 2, 3’ = 3. This is easily
checked to be an epigroup in W with ’ as the pseudoinverse operation, but
07-1=2-1=2%#3=0-1, so (2.10) does not hold. =

Proof of Theorem 10. Lemma 15 takes care of (1), so we need to prove

2).

Let (S,-,") be an epigroup in W and fix ¢ € S. Since W C & C V, (by
Proposition 2(1) and (2.11)), we know that the unary variant (5, -.,*) is an

epigroup in V5 (Theorem 6). What remains is to prove that (5, -, *) satisfies
(2.9) and (2.10) with n = 1. We compute

kK kK (212) [/ _
zoeyt =aey™ T ="w(ey) =wcy =y

This establishes (2.9) in (S, -, *) and the proof of (2.10) is similar. m
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Chapter 3

The Transitivity of Primary
Conjugacy in a Class of
Semigroups

By a notion of conjugacy for a class of semigroups, we mean an equivalence
relation defined in the language of that class of semigroups such that when
restricted to groups, it coincides with the usual notion of conjugacy.

Before introducing the notion of conjugacy that will occupy us, we recall
some standard definitions and notation (we generally follow [26]). For a
semigroup S, we denote by S! the semigroup S if S is a monoid; otherwise
S1 denotes the monoid obtained from S by adjoining an identity element 1.

Any reasonable notion of semigroup conjugacy should coincide in groups
with the usual notion. Elements a, b of a group G are conjugate if there exists
g € G such that a = ¢ 'bg. Conjugacy in groups has several equivalent
formulations that avoid inverses, and hence generalize syntactically to any
semigroup. For many of these notions including the one we focus on here,
we refer the reader to [15, 29, 32].

For example, if G is a group, then a,b € G are conjugate if and only if
a = wv and b = vu for some u,v € G. Indeed, if a = g~ 'bg, then setting
uw = ¢ 'band v = ¢ gives uv = a and vu = b; conversely, if a = uv and
b = vu for some u, v € G, then setting g = v gives ¢~ 'bg = v"lvuv = uv = a.

This last formulation was used to define the following relation on a free
semigroup S (see [34]):

an~pb < d,,e51a =uv and b = vu.

If S is a free semigroup, then ~, is an equivalence relation on S, and so it
can be considered as a notion of conjugacy in S. In a general semigroup S,
the relation ~,, is reflexive and symmetric, but not transitive. If a ~, b in a
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semigroup, we say that a and b are primarily conjugate or just p-conjugate for
short (hence the subscript in ~,); a and b were said to be “primarily related”
in [32]. Lallement [34] credited the idea of the relation ~, to Lyndon and
Schiitzenberger [36].

In spite of its name, ~, is a valid notion of conjugacy only in the class
of semigroups in which it is transitive. Otherwise, the transitive closure
~y of ~, has been defined as a conjugacy relation in a general semigroup
25, 31, 32]. Finding classes of semigroups in which ~, itself is transitive,
that is, ~,=~7, is an open problem. The aim of this note is to prove the

following theorem.

Theorem 16 Let n > 1 be an integer and let S be a semigroup satisfying
the following: for all x,y € S,

vy € {yx, (xy)"} .
Then primary conjugation ~, is transitive in S.

There are various motivations for studying this particular class of semi-
groups. First, it naturally generalizes two classes of semigroups in which ~,
is transitive.

Proposition 17 Let S be a semigroup.

1. If S is commutative, then ~, is transitive.

2. If S satisfies vy = (xy)” for all z,y € S, then ~, is transitive.

Proof. 1. In a commutative semigroup, ~,, is the identity relation and hence
it is trivially transitive.

2. If a ~, b, then @ = wv and b = vu for some u,v € S'. Thus
a’ = (uwv)?* = uwv = a and b? = (vu)? = vu = b so that a, b are idempotents.
In particular, a,b are completely regular elements of S. The restriction of
~, to the set of completely regular elements is a transitive relation [33]. =

The other motivation for studying this class of semigroups is that it has
been of recent interest in other contexts. In particular, J. P. Araujo and
Kinyon [16] showed that a semigroup satisfying 3 = z and zy € {yz, (zy)*}
for all x,y is a semilattice of rectangular bands and groups of exponent 2.

The proof of Theorem 16 was found by first proving the special cases n =
2, 3,4 using the automated theorem prover Prover9 developed by McCune
[39]. After studying these proofs, the pattern became apparent, leading to the
proof of the general case. Note that Prover9 and other automated theorem
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provers usually cannot handle statements like our theorem directly because
there is not a way to specify that n is a fixed positive integer. Thus the
approach of examining a few special cases and then extracting a human proof
of the general case is the most efficient way to use an automated theorem
prover in these circumstances.

Proof of Theorem 16. Suppose a,b,c € S satisfy a ~, b and b ~,, c. Since
a ~yp b, there exist a;,ay € S! such that @ = ajas and b = asa,. Similarly,
since b ~,, ¢, there exist by, by € S' such that b = byby and ¢ = byb;. We want
to prove there exist z,y € S* such that a = 2y and ¢ = yx. If a = b or if
b = ¢, then there is nothing to prove. Thus we may assume without loss of
generality that ajas # asa; and baby # bybs.

Assume first that n = 2. Then

a = ayas = (a1az)(araz) = ay(azaq)as = arbay = (a1by)(beas) ,

and
Cc = b2b1 = (b2b1>(b2b1) = bg(blbg)bl = bgbbl = (b2a2)(a1b1) .

Thus setting x = a,b; and y = beag, we have a ~, c in this case.
Now assume n > 2. We have

a = ayas = (a1a2)" = (araz) - - - (a1az)

. /
g
n

= ay(agay) - - - (agay)as

. o
Vv
n—1
. n—I1
= Cle (05}
= a;bb" %ay

= ay (b1b2>bn_2(l2
= (albl)(bzbn72ag)

and

C = b2b1 = (bzbl)n = (bgbl) cee (bgbl)

. J
-~
n

= bo(b1ba) - - - (b1b2)by
n—1

= bob" 'y

= bob™ b,

= byb" " ?(agay )by

= (beb™ 2ay)(arby) .

Thus setting z = a1b; and y = byb" 2ay, we have that a ~pc. W
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Chapter 4

Conclusion

With this thesis we tried to solve some open problems about the relation
between notions of conjugation in a semigroup S and in its variants.

In Chapter 2, with the proofs of Theorem 6 and Theorem 10, we solved
Problem 6.18 in [15]. The results of Chapter 2 have been submitted for
publication [17].

In Chapter 3 we prove, with Theorem 16, that primary conjugation is
transitive in the semigroup S presented. The result of Chapter 3 has been
accepted for publication [18].

In the following Section we suggest some problems for future work.

4.1 Future Work

Completely regular semigroups can be defined conceptually (unions of groups)
or as unary semigroups satisfying certain identities. The same is true of the
variety W, the conceptual definition given in [15] is that S lies in W if S?
is completely regular or W can be defined as a variety of unary semigroups
(Lemma 3).

On the other hand, the epigroup varieties V,, only have a definition as
unary semigroups. Since they are close under taking variants (Theorem 6),
they are clearly interesting varieties interlacing the varieties &, (see (2.11)).
In this context, the following four problems were suggested by Professor
Michael Kinyon.

Problem 1 Is there a conceptual characterization of the varieties V,, or
even just Vi, analogous to the characterizations of & and VW ?¢

From (2.11) and Theorem 10, we have the following chain of varieties:

ECVICWCECTY, CE---.
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Problem 2 Is there a natural family of varieties W, interlacing the varieties
in the chain above and such that Wy = W? In addition, does the appropriate
generalization of Theorem 10(2) hold?

An interesting direction for the study of the varieties V,, or W is to con-
sider the subvarieties in which idempotents commute, that is, so-called F-
semigroups (see [1] and the references therein). These are subvarieties be-
cause every idempotent in an epigroup has the form z’z, and so E-epigroups
are characterized by the identity z’zy'y = y'ya'z.

Problem 3 Study the varieties of E-epigroups in V,, or W.

Many classes of algebras can be characterized by forbidden subalgebras
or forbidden divisors (quotients). For example, distributive lattices can be
characterized by two forbidden sublattices; similarly, stable semigroups can
be characterized by forbidding the bicyclic monoid as a subsemigroup [34];
see also [9] for another example. The considerations in the paper prompt the
following natural problems.

Problem 4 Can any of the inclusions of varieties considered here, especially
E1 TV and Vi C W, be characterized by forbidden subepigroups or forbidden
epidivisors?

Finally, returning to primary conjugacy, we rephrase two problems from
[15] to the context of this paper, suggested by Professor Joao Araijo.

Problem 5 Characterise and enumerate primary conjugacy classes in var-
tous types of transformation semigroups and their variants such as, for ex-
ample, those appearing in the problem list of [8] or those appearing in the list
of transformation semigroups included in [22]. Especially interesting would
be a characterization of primary conjugacy classes in variants of centralizers
of idempotents [2, 4, 5], or in variants of semigroups in which the group of
units has a rich structure [3, 13, 14, 12, 7, 6].

In [11], a problem on independence algebras was solved using their clas-
sification; the same technique might perhaps be used to extend the results
in [21] and to solve the following.

Problem 6 Characterize ~, in the variants of the endomorphism monoid
of a finite dimensional independence algebra.
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