
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2020

Detecting Rogue Manipulation of Smart Home Device Settings Detecting Rogue Manipulation of Smart Home Device Settings

David Zeichick

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item
This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1126&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Detecting Rogue Manipulation of Smart Home Device Settings

by

David Zeichick

Dissertation Proposal submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in
Information Assurance

College of Computing and Engineering
Nova Southeastern University

2020

8/20/2020

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Detecting Rogue Manipulation of Smart Home Device Settings

by

David Zeichick
August 2020

Smart home devices control a home’s environmental and security settings. This includes
devices that control home thermostats, sprinkler systems, light bulbs, and home
appliances. Malicious manipulation of the settings of these devices by an outside
adversary has caused emotional distress and could even cause physical harm. For
example, researchers have reported that there is a rise in domestic abuse perpetrated via
smart home devices; victims have reported their thermostat settings being unwittingly
manipulated and being locked out of their house due to their smart lock code being
changed. Rapid adoption of smart home devices by consumers has led to an urgent need
to research mitigation strategies to protect consumers from device takeover.

Currently there is not an easy way for home users to detect that a malicious actor is
making unwanted changes to their smart home devices. Change requests to smart home
devices travel across the network in the form of network packets. Most of time the
payloads of the packets are encrypted using strong encryption methods, so it is not
possible to simply read the contents of the packet to learn if the packet contains
instructions for the smart device to change states. Previous research has successfully
trained machine learning algorithms to identify unique network traffic patterns indicative
of state change requests sent to smart home devices. This research extends previous
research by identifying state change requests of smart home devices made by residents
via a smart home device app on their smart phones or tablets. This research identified 13
key attributes of 3,178 encrypted network traffic connections. The attributes were used as
features to train three machine learning algorithms to recognize state change requests.
Four smart home devices were used chosen from the following categories: 1) devices
with simple behaviors (turns on and off), 2) devices with complex behaviors (can be
turned on for a set amount of time), and 3) devices that send a large amount of data (i.e.
video camera).

The success of identifying state change requests over encrypted traffic from a mobile app,
combined with previous research that identified state changes sent to the smart home
device, allows for the development of a system that could block unwanted state changes
that originate from a malicious user located outside of the house. Therefore, this research
contributes to the body of knowledge of smart home device security and could be
extended to the identification of other networking patterns based on encrypted traffic.

Acknowledgments

The completion of my Ph.D. marks almost 12 years of higher education spread over 30

years. The one constant, spanning most of those 30 years, has been the love and support

of my wife. She encouraged me to pursue this path and has motivated me all along the

way. The encouragement to finish and have a normal life has been amplified in the last

few months and I appreciate that motivation. My daughters, Kaitlyn, Joy, and Audrey,

while not part of the entire 30 years of this journey, have accepted that I am a perpetual

student and may not recognize me without some school deadline hanging over my head.

They have listened attentively to my dissertation ramblings and have even engaged in the

conversation giving me that much needed encouragement. Thanks to my mother-in-law

who took over most of the household chores, freeing up my time. To my dad, who let me

know how proud he is of me. Plus, to my mom, who, when calling me in the last few

months would ask if I was working on my research, to which I would almost always

respond yes. She would then quickly say, “well then I am hanging up on you, bye”.

Thank you, family!

I would also like to recognize the unbounded patience of Dr. Li, my dissertation Chair.

He has been an invaluable leader and advisor this entire time. Thank you for all of the

time provided by my committee, Dr. Levy and Dr. Kredo.

 v

Table of Contents

Abstract iii
List of Tables vii
List of Figures ix

Chapters

1. Introduction 1

Background 1
Problem Statement 2
Dissertation Goal 4
Research Questions 7
Relevance and Significance 9
Barriers and Issues 12
Assumptions, Limitations and Delimitations 13
Definition of Terms 14
List of Acronyms 15
Summary 17

2. Review of the Literature 18

Introduction to Smart Home Device Security 18
Current Research of Smart Home Device Security 19
Domestic Abusers Use of Smart Home Devices 22
Smart Home Device Architecture 23
Blocking the Smart Home Device from Accessing the Cloud 24
Monitor Network Activity to Detect Suspicious Behavior 27
Access Control 25
Summary 32

3. Methodology 34

Resources 49
Summary 49

 4. Results 51
 Overview 51
 Phase 1 – Analysis of Publicly Available Datasets 51
 Phase 2 – Capturing and Identifying Network Traffic of Smart Home Devices 55

 vi

 Selecting the Smart Home Devices 55
 Capturing the Network Traffic 57
 Identifying State Changes 58
 iPhone versus Android app state change patterns 61
 Identifying State Changes of TP-Link State Changes 61
 Identifying State Changes of Chamberlain myQ Garage Opener 63
 Identifying State Changes of Ring 65
 Identifying State Changes of the Rachio Smart Sprinkler System 66
 Phase 3 – Train and Evaluate ML Algorithms to Identify State Changes 67
 Prepare the Data 68
 Identify Promising Models 69
 TP-Link RF Training 70
 myQ RF Training 72
 Ring RF Training 74
 Rachio RF Training 75
 Combination of all the Devices’ Traffic 77
 Random Forest on the Combination of all the Devices’ Traffic 78
 Naïve Bayes 80
 K-Nearest Neighbors 81
 Best Classifier and Features 83
 Summary 87

5. Conclusions, Implications, Recommendations, and Summary 89
 Conclusions 89
 Implications 90
 Recommendations 92
 Summary 93

Appendices 97

References 101

 vii

List of Tables

Tables

1. Network Data Flow Features 41

2. Possible Combinations of Feature Types 44

3. Correlation Matrix 48

4. Smart Home Devices with Specifications Used in this Research. 56

5. Example of fields and values produced by Zeek on network traffic sent between an

iPhone a smart device’s Cloud site. 60

6. Example of fields and values produced by Zeek on network traffic between a smart

device and its Cloud site. 61

7. iPhone to TP-Link WiFi Plug captured traffic of a state change, made on the iPhone

(192.168.8.248), to the TP-Link device (192.168.8.247) 62

8. Connections involving state changes sent from the iPhone to the myQ Cloud site 64

9. Sample state change traffic sent from the iPhone (192.168.8.248) to the myQ Cloud

site (13.83.240.23) and then from the myQ Cloud site (20.42.27.108) to the myQ

device (192.168.8.206) 65

10. Four instances of network traffic containing Ring Live mode requests sent between

the iPhone and the Ring Cloud site 66

11. Three instances of network traffic containing quick rung requests sent between the

iPhone and the Rachio Cloud site 67

12. Features selected by category with a description of each feature 68

 viii

13. RF feature importance scores for TP-Link traffic 71

14. RF feature importance scores for myQ 73

15. RF feature importance scores for Ring 74

16. RF feature importance scores for Rachio 76

17. RF feature importance scores for all of the devices combined 78

18. Features used for RF training and their resulting scores 79

19. Features used for Naïve Bayes training and their resulting scores 80

20. Features used for K-Nearest Neighbors training and their resulting scores 82

21. Scores comparisons of all three classifiers 84

22. Number of features by category required per classifier 85

23. Features by category required per classifier 86

 ix

List of Figures

Figures

1. Change initiated by a home user 10

2. Change initiated by a rogue actor 10

3. Network traffic send and receive rates corresponding to user activities 31

4. Wemo Insight Switch’s network traffic volume 31

5. Lab configuration with an iPhone running the smart home device’s app, the smart

home device connected to a Mini Travel Router, and the Mini Travel Router

connected to smart device’s Cloud site(s) 57

6. Feature importance scores for TP-Link traffic determined by the RF classifier 71

7. Feature importance scores for myQ traffic determined by the RF classifier 73

8. Feature importance scores for Ring traffic determined by the RF classifier 75

9. Feature importance scores for Rachio traffic determined by the RF classifier 76

10. The RF classifier trained on all device network traffic 80

11. The Naïve Bayes classifier trained on all device network traffic 81

12. The Naïve Bayes classifier trained on all device network traffic 83

13. Precision, recall, and F! scores for each of the three classifiers 84

14. Each classifier and their correspond precision, recall, and F! scores 84

15. The number of features used in each category for each of the optimally trained

classifiers 86

 x

16. The number of features used in each category for each of the optimally trained

classifiers 87

1

Chapter 1

Introduction

Background

 Domestic abuse hotlines have been receiving calls from women who have

reported various issues with their smart home devices; one woman reported that she

turned on her air-conditioner and a moment later it turned off all by itself, another said

that the codes to her front door smart lock kept changing, and one reported that her smart

doorbell would periodically ring with no one at the front door (Bowles, 2018). Bowles

(2018) found that the changes were not occurring because of some bug in the software,

but by men who were actively harassing their partners. This type of domestic abuse is on

the rise thanks to the explosive adoption of Internet of Things devices(He et al., 2018).

The term Internet of Things (IoT) first appeared in 1999 and is attributed to the

British technologist Ashton (Ashton, 1999). He described it as physical objects that

connect to the Internet via sensors. The term has grown to include the data that is

exchanged between devices, stored in the cloud, and analyzed (Weber, 2016). Smart

home devices are a subset of IoT, referring to IoT devices used in a residence. This paper

uses the term smart home devices instead of IoT since this research is focused on devices

found in a home. Examples of smart home devices include: smart light bulbs that can turn

on when we enter the room, smart refrigerators that remind us that we are almost out of

2

milk, smart doorbells that call our smart phone and allows us to talk to the person at the

front door, to the more bizarre example of a soil sensors for house plants that tweets

“water me please” when they are too dry (Hammill & Hendricks, 2013).

 Two of the top vulnerabilities of smart home devices, weak password policies and

a lack of account lockout by the device’s Cloud server, make account takeover trivial for

attackers (Alharbi & Aspinall, 2018). Once an attacker has commandeered a smart

device, the type of damage inflicted is only limited by the attacker’s imagination and the

functionality of the smart home device. Theoretical attacks include: locking a resident’s

television until a ransom has been paid, targeting specific individuals for harassment, and

even scaring someone out of their house so that the attacker can gain access for robbery

or other purposes (Freed et al., 2018a; Ronen & Shamir, 2016a).

Problem Statement

One of the most risk-inducing features of smart home devices is that they can be

accessed from anywhere in the world (Ali et al., 2017; Jia et al., 2017; Ronen & Shamir,

2016a). As a result, a malicious user can manipulate the devices with known user

credentials (Freed et al., 2018a). More advanced attacks, such as a malicious actor

gaining control of a Cloud server, is also possible (Alharbi & Aspinall, 2018).

Smart home devices, such as WiFi connected light bulbs and thermostats, are

becoming more prevalent in residential homes (He et al., 2018). Currently there is not an

easy way for home users to detect that a malicious actor is making unwanted changes to

their smart home devices (Geeng & Roesner, 2019a; Matthews et al., 2017; Zeng et al.,

2017). Change requests to smart home devices travel across the network in the form of

network packets. Most of time the payloads of the packets are encrypted by using strong

3

encryption methods, so it is not possible to simply read the contents of the packet to learn

if the packet contains instructions for the smart device to change states (Apthorpe,

Reisman, Sundaresan, et al., 2017; Copos et al., 2016a). Despite the payload being

encrypted, there are attributes of the packet that are not, such as the source Internet

Protocol (IP) and Media Access Control (MAC) address, the destination address, any

Domain Name System (DNS) queries, the protocol, and several other revealing pieces of

the packet are unencrypted (Apthorpe, Reisman, & Feamster, 2017b; Vijay Sivaraman et

al., 2015). These attributes, along with the size of the payload can be used to establish

patterns indicative of a smart device state change request, versus an update, versus a

status check (Meidan et al., 2017).

Researchers have successfully identified smart home devices and the state

changes applied to the devices by implementing machine learning algorithms to

categorize encrypted network traffic (Acar et al., 2018; Apthorpe, Reisman, Sundaresan,

et al., 2017; Copos et al., 2016b; Marchal et al., 2019; Meidan et al., 2017; Miettinen et

al., 2017a). Copos et al. (2016) and Acar et al. (2018) identified unique network traffic

patterns indicative of state change requests with the assistance of two supervised learning

algorithms, Random Forest (RF) and k-Nearest Neighbors (KNN). It was observed that

when the Nest Thermostat transitions from Home to Away packets are sent from the Nest

to a specific Nest Cloud server with payload sizes of 1375, 1391, and 2911 (Copos et al.,

2016b).

Other researchers found that the Wemo Insight Switch receives large spikes of

data when switched from off to on and vice versa (Acar et al., 2018). Several researchers

were able to identify the specific smart home device, for example a smart smoke alarm

4

was connected to the network, through network traffic patterns (Marchal et al., 2019;

Meidan et al., 2017; Miettinen et al., 2017a). Other researchers studied the flow of traffic,

which they defined as the sequence of packets sent by a device over a particular protocol,

such as Network Time Protocol (NTP), Address Resolution Protocol (ARP),

Transmission Control Protocol (TCP), and others (Marchal et al., 2019). The researchers

converted the flow into a binary time series which was segmented into one second

intervals with each segment containing a one if there was at least one packet during that

time and zero if there was not. They discovered that each device’s flow of network traffic

produced a distinct pattern. This research built upon the aforementioned research to

identify state change requests across a variety of different types of popular smart home

devices.

Dissertation Goal

This research extended previous research by identifying the best performing

features and machine learning algorithm combination capable of identifying state change

requests across a variety of different types of popular smart home devices. It was

important to focus on popular smart home devices so that the outcome of this research

was be applicable to the widest audience possible. The different types included smart

home devices that have simple behavior (i.e. turn a switch on and off), complex behavior

(i.e. turn water on for five minutes), and send large amounts of data (i.e. video cameras).

Similar methods, implemented by previous researchers, leveraging machine learning

algorithms were used to categorize encrypted network traffic patterns originating from

the user’s WiFi connected smart phone or tablet, indicative of state change requests of

smart home devices.

5

Identifying state change requests across a variety of different types of smart home

devices, must be done at the home network level, which is the common connection point

for most smart home device communication (Zeichick, 2018). To accomplish this, home

network traffic flow was sequenced into packet size over time intervals (Acar et al.,

2018). To link user action to traffic patterns several features of the traffic flow was

studied to identify patterns. Interesting features to study included the average packet size

per sequence, standard deviation of packet sizes, average time series, protocols used in

communication, and many other identifiable packet attributes.

To accurately train a machine learning algorithm it is important to identify the

most meaningful features. Testing features for worthiness was accomplished by

implementing a 4-fold cross validation was performed, which involved randomly

splitting the training set into five distinct subsets, training and evaluating the model 4

times, picking a different fold for evaluation each time, and then training on the other 4

folds. The potential set of features to be studied can be represented as follows.

𝐸"	 = {𝐹, 𝐷, 𝐿}

E, represents the extracted features and T represents the time interval. F are the features

of the traffic sent to the smart home device to initiate a state change, which were

mentioned earlier in the paper (e.g. the source IP and MAC address, the destination

address, any DNS queries, and the protocol). D is the set of smartphones and tablets, and

L is used to denote location of where a change request originated. L is a binary value

representing whether the smartphone or tablet is connected to the home network, which

means that it is home, or not connected to the home network, which identifies it as not

home. T can be represented as follows: 𝑇 = +𝑡!, 𝑡$, … , 𝑡%..

6

 In the above definition, 𝐹 = {𝑓!	, 𝑓$, … , 𝑓&}	in which 𝑓'(1 ≤ 𝑖 ≤ 𝑛) represents a

feature. The set F was e based on those commonly adopted by literature. One goal of this

research was to identify a subset of F that can be used to identify state changes

effectively and efficiently.

Based on the success of previous research in identifying state changes sent to the

smart home device, this research tested the effectiveness of both the Random Forest

classifier and KNN classifier to identify patterns of network originating from a smart

phone and tablet. Additionally, the effectiveness of Naïve Bayes algorithms was also

assessed.

The ability to detect a state change across multiple types of smart home devices is

the missing piece to identify if a malicious actor is actively manipulating a resident’s

smart home device or devices. It was the intention that this research will assist in

identifying where the state change request originated from; did the user request the

change from inside their house, using their home WiFi connected smart phone or tablet,

or did the change request originate from outside the home, from an individual

communicating directly to the smart device’s Cloud site? The key to differentiating

between internal and external state change requests is to correlate the outbound request

made by the user on their home WiFi connected smart phone/tablet to the inbound state

change request from the smart device’s Cloud site. If an outbound request exists and then

a corresponding inbound request exists, then the change was made from inside the house.

If there is only the inbound request, then the change request originated from outside of

the house. This will address situations when a malicious actor has surreptitiously gained

access to the smart device’s Cloud site via compromised credentials giving them control

7

over the resident’s smart home device. The specific scenario that was studied is when the

user is at home and changes are being initiated on the Cloud site from outside the user’s

home by a malicious actor.

Other scenarios are also applicable. This research could help identify when a

botnet has taken control of a smart home device and is actively controlling it.

Additionally, it could identify when a manufacturer’s Cloud server has been

compromised and the attackers are actively controlling the smart home device.

Ideally, the smart device manufacturer would provide a solution to prevent rogue

changes to smart home devices. One solution would be for manufacturers to alert users

when they notice logins from unknown devices or devices located in previously unseen

locations. Unfortunately, this feature does not appear to be provided by any manufacturer

(He et al., 2018). Another approach to prevent unwanted changes from outside the home

would be to prevent smart home devices from connecting to the Internet. This is not

viable since researchers have determined that blocking smart home devices from

connecting to the Internet causes many of the devices to stop working (Apthorpe,

Reisman, Sundaresan, et al., 2017)

 In summary, to identify change requests to smart home devices by smartphones or

tablets, identifying features of network traffic were extracted and used to train several

machine learning algorithms. The features extracted were tested to ensure that they did

not mislead the machine learning algorithm. Next, several machine learning algorithms

were trained and tested to identify which was suited to identify the state change requests.

Research Questions

8

The research questions focused on each aspect of the project, from choosing the

correct smart home devices to include in the study, to identify smart home device

changes that have been sent over an encrypted connection.

• What popular smart home devices receive their instructions from their Cloud

server?

• What popular smart home devices connect to a home WiFi network?

• What popular smart home devices send unencrypted network traffic?

• What popular smart home devices send encrypted network traffic?

• Will publicly available network traffic captures of smart home devices be useful?

o Will they contain traffic of change requests sent from a smart phone/tablet

to a smart home device?

§ Will the traffic be identifiable since it is encrypted?

• Is it possible to learn the general goal of encrypted traffic sent by smart phone

apps, by correlating the traffic to events on the smart home device?

o Is it possible to differentiate commands from background traffic?

§ Updates to the device, time updates, other communication of this

type?

• Which type of feature will be most useful in training a machine learning

algorithm to recognize state change requests in encrypted payloads?

o statistical features

o aggregated features

o synthesized

o protocol specific

9

• Which machine learning algorithm will perform the most efficiently to identify

patterns of encrypted network traffic indicative of state change requests of smart

home devices?

o RF

o KNN

o Naïve Bayes

Relevance and Significance

Initial research into the typical network architecture of smart home devices

revealed some unique characteristics that may be used to alert a user that a malicious

actor has made an unwanted change to their smart home device. The main concept is that

most smart home devices are directly controlled by a manufacturer’s Cloud server

(Apthorpe, Reisman, & Feamster, 2017a). When a user is at home and makes a change on

their smartphone via the smart device’s app, the change request traverses their home

WiFi network, is sent to the smart device’s Cloud server, the change is noted on the

Cloud server, sent to the home WiFi network, then, finally, applied to the smart home

device (see Figure 1). This means that at the home network level, when a user is at home,

changes originate from inside the home, travel outside the home, then back in again.

This is in contrast to when someone outside the home makes a change; the change

is applied to the Cloud server, sent down to the home WiFi network, and applied to the

smart device (see Figure 2). What is missing in this scenario, is the change request

originating from inside the home. This missing piece can be used to establish if the

change originated from inside the home or from outside the home. This can be used if the

user is at home and wants to be alerted if someone outside the home has made a change.

10

Figure 1. Change initiated by a home user (notice both the change request by the smart
phone and the change pulled from the Cloud server traverse the home wireless router)

Figure 2. Change initiated by a rogue actor (notice that the change request made by the
rogue actor does not traverse the home wireless

The purpose of this research was to identify “rogue changes”, which is defined

here as changes made to a smart home device by an actor who is outside the home

network. This addresses the situation of when a user is at home and wants to be alerted

when unwanted changes are being made by an individual outside the home.

Unfortunately, this situation is becoming more common in domestic abuse situations

(Naughton, 2018). Naughton (2018) found that men are the ones that typically install a

11

smart home device, so they are the ones that also control the device. Naughton (2018)

found men are using smart home devices to harass their partners. There are times when a

home user will want to make changes to their smart home devices when they are away

from their home, and, therefore, not on their home network. This research did not intend

to create the full software solution to identify rogue changes. Instead, this research

intended to fill a gap that would allow for the creation of such software. Previous

research has been successful at using machine learning to identify state changes in

network traffic for specific smart home devices, however, there doesn’t appear to be

research that has identified a solution across disparate device types. This research enables

the identification of state change requests across several different device types. This

provides the missing link to create a tool that is able to identify if a state change request

originated from in the house or outside the house.

Another common scenario this addresses is compromised Cloud accounts. It has

been shown that two of the top vulnerabilities of smart home devices are weak password

policies and no account lockout by the smart device’s Cloud server interface (Alharbi &

Aspinall, 2018). This vulnerability introduces the risk of attacks being carried out against

a compromised account. A Milwaukee couple’s smart home devices were accessed by an

attacker due to a compromised username and password (Sears, 2019). The attacker turned

their thermostat up to 90 degrees, then started talking to them via their Nest Security

camera, and finally started playing vulgar music over the security camera.

This research did not intend to address all aspects of smart home device security.

Like computer security, it is a broad field covering topics such as data extraction, device

manipulation, forming a botnet of smart home devices, and many others (Kolias et al.,

12

2017; Sikder et al., 2018). This research, which was focused on unwanted changes to

smart device settings originating from outside of the house, is an area that does not

appear to be covered.

One of the biggest challenges of this research was that most network traffic

between a smart phone to the Cloud server and from the Cloud server to the smart device

is encrypted (Copos et al., 2016b). Therefore, it was difficult to match the network traffic

to the change being made. The action must be learned by correlating the action to type of

network traffic. This is a black box problem (the actual work done to solve the problem is

not known) which will rely on pattern recognition to solve. Acar et al. (2018) found a

small discrepancy in traffic size when the Wemo Insight Switch was turned from on to

off and from off to on. Other researchers analyzing network traffic have been able to

positively identify the motion sensor of a Nest device being tripped and the wake word

being spoken for Amazon’s Echo (Apthorpe, Reisman, Sundaresan, et al., 2017).

Barriers and Issues

 One of the main challenges for this research was to learn the purpose of encrypted

network traffic based upon patterns identified through training a machine learning

algorithm. Previous research has demonstrated that it is possible to determine, through

network traffic patterns, when a smart light switch is turned on and off (Apthorpe,

Reisman, & Feamster, 2017b). The same methodology implemented by Apthorpe et al.

(2017b) was followed during this research.

 Both datasets, one provided by Alrawi et al. (2019) and the other by Ren et al.

(2019), are raw network traffic captures. Neither of the research groups provided labeling

of the data. Therefore, another challenge faced by this research was interpreting the

13

encrypted payloads and then labeling the datasets. As mentioned, since the payloads are

encrypted it was impossible to see if they contain state change requests. Therefore, state

change requests were generated with the same smart home device in our lab environment

and then were compared with the traffic from the publicly available network traffic.

When the encrypted traffic that matched (e.g. payload size, response time, protocol, etc.)

then the publicly available network traffic packet was labeled as a state change.

Assumptions, Limitations and Delimitations

 The main goal was to identify state change requests sent over a network from an

app on a smart phone to the smart home device’s Cloud site. Therefore, this research only

focused on traffic sent from a smart phone or tablet to a smart device’s Cloud site.

Identifying these state changes filled the missing piece to create an application that could

identify smart home device state change requests that originate from outside of the home.

However, creating this application was outside the scope of this research.

This research includes smart home devices that have been designed to have

change requests first flow through the device’s Cloud site then to the smart home device.

It is assumed that having change requests first go to the device’s Cloud site and then to

the device itself is a very common architecture. Therefore, this research is applicable to

the most common smart home devices in use.

 This research did not plan to address the other numerous security vulnerabilities

of smart home devices; current security vulnerabilities include issues such as snooping on

personal webcams, analyzing web traffic generated by smart home devices to determine

if the homeowner is home or away, and maliciously gaining access to a smart home

14

device via a known vulnerability. These other issues have been well documented and

there are several research efforts currently underway.

Definition of Terms

• Smart home device

o An electronic device that connects to the Internet, can be controlled

remotely by the user, and was purchased for use in the home.

• Malicious actor

o A group or individual that wishes to cause harm, either physical or

emotional, to its target group or individual.

• Cloud service

o A server controlled and housed by the manufacturer of the smart home

device

• Botnet

o A collection of computers, which can include smart home devices, that

have been commandeered by an attacker to cause harm to their target.

The harm typically involves having all of the computers in the botnet

send network traffic to one site in attempt to overwhelm the target

preventing it from responding to legitimate traffic.

• Black box problem

o A problem is presented and the answer is given without any explanation of

how the answer was arrived at. The actual work done to solve the problem

is not known. This is typical of machine learning algorithms that are

trained with massive amounts of data, but not instructed on how to exactly

15

solve the given problem. The algorithm is fed the question and responds

with an answer void of explanation of how the answer was reached.

List of Acronyms

• ACK

o acknowledgement

• ANN

o Artificial Neural Network

• ARP

o Address Resolution Protocol

• CARA

o Clairvoyant access right assignment

• CSV

o Comma separated value

• DDOS

o Distributed denial of service

• DOS

o Denial of service

• DNS

o Domain Name Service

• ESO

o environmental situation oracles

• GPS

o Global positioning service

16

• IAT

o Inter-arrival time

• IDM

o Intrusion Detection Mitigation

• IDS

o Intrusion Detection System

• IoT

o Internet of Things

• IP

o Internet Protocol

• ISP

o Internet Service Provider

• KNN

o k-Nearest Neighbors

• LED

o Light-emitting diode

• MAC (address)

o Media access control (address)

• NIDS

o Network-based Intrusion Detection System

• NTP

o Network Time Protocol

• RF

17

o Random Forest

• SDN

o software defined networking

• SVM

o Support Vector Machine

• SSL

o Secure Sockets Layer

• SYN

o synchronize

• TCP

o Transmission Control Protocol

• TPR

o true positive rate

• WiFi

o Wireless networking technology

Summary

 This research extended previous research by identifying the best performing

features and machine learning algorithm combination capable of identifying state change

requests across a variety of different types of popular smart home devices. This was

accomplished by training a machine learning algorithm with home network traffic in

order for it to learn the network pattern analogous of smart home device change requests

from smart phones and tablets. Several categories of smart home devices were included

in the study along with their corresponding smart phone apps.

18

Chapter 2

Review of the Literature

Introduction to Smart Home Device Security

Companies are rushing to meet consumers’ growing need for smart home devices.

This rush to market by manufacturers has produced serious deficiencies in privacy and

security. This same mistake was made 20 years ago when consumers rushed to the

Internet to shop and bank online (Shackelford et al., 2017). The Internet was designed to

openly share data, which is the complete opposite of what is necessary for secure

transactions. Malicious actors took advantage of the lack of security by creating malware

and sniffing unencrypted data with the goal of stealing personal data (Shackelford et al.,

2017). The industry responded by adding security layers and products. Secure Sockets

Layer (SSL) was implemented to secure internet transactions, antivirus programs to rid

computers of nasty malware, and passwords to authenticate users. This solution is not

foolproof since it relies on consumers to implement many of the solutions. Unfortunately,

most home users are not technical; they do not understand how to properly configure

their systems or realize the importance of a strong password (Fu et al., 2017b). The same

is true with smart home devices. Most home users can’t perform basic security functions

which leads to the question: should they be adding smart devices to their homes (Walker,

2014)?

19

Current Research of Smart Home Device Security

Research has uncovered major vulnerabilities in smart home devices. Alrawi et al.

(2019) evaluated the security of 45 smart home devices by studying the security of the

smart devices’ services, its mobile applications, its Cloud endpoints, and its

communications. They found that several of the devices’ services had self-signed

certificates, supported weak ciphers, used short Transmission Layer Security (TLS)/

Secure Sockets Layer (SSL) keys, permitted the use of vulnerable version of SSL, and

had expired certificates (Alrawi et al., 2019a). For the mobile apps the researchers found

that one or more issues related to permissions, sensitive data, or incorrect use of

cryptography. They also found 24 over-privileged mobile applications that had

permissions on the mobile device that were not used. On the smart devices’ network, they

found 18 devices that used outdated services, leaked sensitive information, lacked

encryption for authentication, or ran a vulnerable service. They found that: 1) eight

devices used cloud endpoints that are vulnerable and have public exploits, 2) seven

devices authenticated with cloud endpoints in clear text, and 3) 26 devices used cloud

endpoints that have TLS/SSL configuration issues, like self-signed certificates, domain

name mismatch, and support for vulnerable versions of TLS/SSL protocol. One positive

finding is that the majority of the devices used encryption when communicating over the

Internet

Notra et al. (2014) experimented with several smart home devices, including the

Phillips Hue light-bulb, the Belkin WeMo power switch, and the Nest smoke-alarm, and

found that the devices lack encryption, appropriate authentication, and integrity checks.

These vulnerabilities make IoT devices susceptible to a variety of attacks including:

20

denial of service (DOS), replay, man-in-the-middle, device tampering, information

disclosure, side channel attack, and eavesdropping (Atamli & Martin, 2014; Kasinathan

et al., 2013).

A French company, Eurecom, analyzed 123 smart devices and discovered 38

vulnerabilities that included bad encryption and deliberately set backdoors (Costin et al.,

2014a). Out of the fifty smart home devices that Symantec studied none of them forced

strong passwords or implemented authentication between the device and the cloud

(Wueest, 2015). Hewlett Packard had similar findings and characterized the main smart

home device security issues as: not encrypting network traffic, poor authentication, and

vulnerable web interfaces (Enterprise, 2015). This problem is so bad that the FBI warned

home users of smart home devices’ vulnerabilities (FBI, 2015).

Attacks to smart home devices are external, the Mirai botnet, and internal,

harassing residents by altering the thermostat (He et al., 2019a). These attacks can be

categorized into five types of behavior: 1) ignoring the functionality, 2) reducing the

functionality, 3) extending the functionality, 4) discerning residents’ behavior based on

smart device generated network activity, and 5) misusing the functionality (Apthorpe,

Reisman, & Feamster, 2017b; Ronen & Shamir, 2016a). In the first type, the attacker

ignores the designed feature of the smart home device (if it was a smart camera, they

don’t use any of the functionality of a camera) and instead treat the device as an

embedded computer (Ronen & Shamir, 2016a). An example of this is installing malware

on the smart home device to make it part of a botnet. Botnets comprised of smart home

devices have been used to perform large scale distributed denial of service (DDOS)

21

attacks; an example is the Mirai attack which brought down major services such as

Twitter, Netflix, Reddit, and GitHub (Kolias et al., 2017)

The second type of attack is reducing the functionality of the smart home device

which involves disabling the device or features of the device. Examples include disabling

a smart television so that it won’t turn on and altering the functionality of a smart

refrigerator so that it won’t cool its contents (Ronen & Shamir, 2016a).

The third type of attack, extending the functionality, involves using the

functionality in a different way than designed in order to achieve an unexpected or

different physical effect. Ronen et al. (2016) demonstrated an attack in which they took

control of a smart light bulb and strobed the lights in such a way as to trigger seizures in

people suffering from photosensitive epilepsy. The same researchers also demonstrated

how they could manipulate an light-emitting diode’s (LED) light intensity to create a

covert channel (Ronen & Shamir, 2016a). This was accomplished by quickly switching

light intensities that mimic the sending of binary data. The light intensities used were so

close in brightness that they could not be discerned by the human eye.

 The fourth type of attack involves discerning residents’ behavior based upon the

network traffic generated by smart home devices (Apthorpe, Reisman, & Feamster,

2017b). Researchers studied the Sense Sleep Monitor, the Nest Cam Indoor security

camera, the WeMo switch, and the Amazon Echo and found that the encrypted network

traffic generated by these devices reveal sensitive information about the users (Apthorpe,

Reisman, & Feamster, 2017b). For the Sense sleep monitor the network traffic peaked

when the user interacted with it; in the smart home laboratory the researchers were able

to deduce that the user went to bed at 12:30, briefly got up at 6:30am and then got up at

22

9:15am. These times correlated to spikes in network traffic generated by the Sense sleep

monitor revealing the user’s sleep pattern. The same correlations were made between

device usage and traffic spikes for the Nest Cam Indoor security camera, the Wemo

switch and the Amazon Echo (Apthorpe, Reisman, & Feamster, 2017b). Copos et al.

(2016) was able to identify the network traffic patterns produced when the Nest smoke

detector detects smoke and when the smoke alarm is triggered.

The fifth type of attack, misusing the functionality, is the main focus of this

research project. This attack uses the functionality of the smart home device, but does so

in an incorrect or unauthorized way (Ronen & Shamir, 2016a). These attacks are

typically used to harass the resident. For example, an attacker my turn down the smart

thermostat in the winter so that house if very cold or turn the lights on in the middle of

the night to wake victim.

Domestic Abusers Use of Smart Home Devices

 Smart home devices are becoming the weapon of choice for perpetrators of

domestic abuse (Freed et al., 2018a). This is not surprising given their history of using

technology against their victims. Examples of this abuse includes online harassment,

cyberbullying, cyberstalking, and doxing (Douglas, 2016; Fraser et al., 2010; Vitak et al.,

2017a; Wisniewski et al., 2016a). Domestic abuse is surprisingly common, with research

indicating that one in three women and one in six men will experience intimate partner

violence in their life (Freed et al., 2018a).

 Examples of smart device domestic abuse include: switching the air-conditioner

off right after the victim turns it on, changing the code for the smart front door lock, and

triggering the doorbell to ring (Bowles, 2018). Abusers do this to either watch and listen,

23

or, more likely in domestic abuse cases, to show power (Bowles, 2018). These attacks are

accomplished in the very low-tech method of signing into the device’s Cloud account

with the username and password. In some cases the abuser already knows the username

and password because they were the one that setup the smart home device (Freed et al.,

2018a). In other cases, they gain the password either by intimidating the victim to

disclose it, guessing the password based upon intimate knowledge of the victim, or by

answering the password reset security questions (Freed et al., 2018a).

 Even though domestic abusers’ attack methods are not technically sophisticated

does not mean that they are easy to prevent. Freed et al (2018) analyzed current threat

models and countermeasures and determined that they do not adequately address attacks

in which the attacker possesses intimate knowledge of their victims. To solve this

problem the researchers suggest focusing on attack methods of average computer users,

like carrying out an attack with a compromised password. Freed et al. (2018)

recommended analyzing the difference in legitimate user behavior versus the attacker’s.

They suggest the Cloud service use the learned difference in behavior during

authentication to determine if it is the legitimate user logging in or the attacker.

Smart Home Device Architecture

 The network architecture of smart home devices is typically configured in one of

two ways: 1) Cloud-centric, which is mobile application to cloud or 2) direct access,

which is mobile application to device (Wang et al., 2018). With Cloud-centric, the user

issues changes via their smart phone which communicates directly with the smart home

device’s Cloud server, which relays the changes to the smart home device (Notra et al.,

24

2014). An example of a smart home device that uses this architecture is the Nest

thermostat.

Direct access cuts out the Cloud server as the middle-man. Instead the user

communicates directly to the smart home device via the app on their smart phone (Notra

et al., 2014). Examples include the Philips Hue light-bulb and the WeMo switch.

The Cloud-centric architecture is currently the most popular (Intellectsoft, 2015).

The focus of this research is primarily on the Cloud-centric architecture since it is

focused on malicious state changes to smart home devices originating from outside of the

home.

Blocking the Smart Home Device from Accessing the Cloud

 On initial examination of how to block external attackers from making changes to

smart devices located in the home it may seem like the best approach would be to block

the smart home device from connecting to its Cloud site. After all, if the smart home

device cannot connect to its Cloud site it will not get any of the changes requested by an

external attacker. However, as outlined in the previous section, Cloud-centric is the most

common configuration for smart home devices. Hence, if Cloud access is blocked, then

the user who is at home will not be able to make any changes to their smart home device

because all of their requests go through the smart device’s Cloud site.

Additionally, completely blocking a smart home device from connecting to its

Cloud server renders most smart home devices ineffective. Apthorpe et al. (2017) tested

removing internet access to seven smart home devices and found that four of the devices

lost most of their smart features while the remaining three devices completely lost

functionality. It is worth noting that researchers found that they were able to block select

25

network traffic of some smart devices without losing any functionality (Copos et al.,

2016b; Notra et al., 2014; Vijay Sivaraman et al., 2015). Sivaraman et al. (2014) and

Notra et al. (2014) both were able to block the Nest’s Smoke Alarm from sending logs to

its Cloud logging server while still allowing a home user to be alerted when the smoke

alarm detected smoke. Copos et al. (2016) blocked the Nest Smoke Alarm’s access to all

Cloud servers except for the Cloud servers responsible for authentication, notification,

and token renewal. They set off the smoke alarm and successfully received a fire

notification.

Access Control

 An Access Control List (ACL) could be used to block unwanted changes to smart

home devices. An ACL is used to specify if a subject or an object is approved or denied

for a specific action (Schuster et al., 2018a). Traditional ACLs have been used for smart

home devices; the problem is they are not specific enough to be effective with smart

home devices. Decisions need to be made based upon the situation in which a change is

being requested, the context of the change, or even the state of the environment (He et al.,

2018; Jia et al., 2017; Tian et al., 2017a). Additionally, several different users interact

with smart home devices, such as the family’s Alexa device or their smart lock connected

to their front door (He et al., 2018). This would be fine if all users in the house should

have the same type of access. He et al. (2018) points out that households often have very

complex social relationships; there may be parents who want to spy on their teenagers,

mischievous children, or even abusive partners (Matthews et al., 2017; Ur et al., 2014a).

It is extremely important to take these relationships into consideration when populating

an ACL.

26

He et al. (2018) found that it was important to their research participants that

users be physically present in the house whenever they change a smart device’s behavior;

68% of the participants felt that the user must be home to control the lights, unless it was

the owner or the spouse making the change. Other major factors in deciding access

control was the age of the person making the change, the time the change is requested,

the status of the induvial making the change, and the location of the smart device in the

home, all of which are not supported by current smart home devices (He et al., 2018;

Ravidas et al., 2019). Access controls based upon situational conditions in not a new

thing, smartphone frameworks have been using this for many years (Schuster et al.,

2018a). The main difference in ACLs between smartphones and smart home devices is

that smartphones typically have one user and smart home devices have several users.

Determining if the user is at home has been implemented by many smart home

devices including: SmartThings, Nest, Ecobee, Wink, Apple HomeKit, Sennse Mother,

Abode, Netatmo, and Honeywell (Schuster et al., 2018a). The two main ways to

determine if the user is at home is the global positioning system (GPS) coordinates of the

user’s smartphone and motion sensors on the smart home devices (Schuster et al., 2018a).

The upside to the GPS location is that it is possible to uniquely identify the user since the

user’s phone is directly linked to the user. The downside is it that it not only tracks if the

user is at home, but also everywhere they go outside of their home. This creates privacy

concerns, especially if the user’s location is shared with another smart home device that

is simply attempting to determine if the user is home or not (Schuster et al., 2018a). The

problem with the motion sensor is that it can only track if someone is home, not exactly

who is at home.

27

Schuster et al. (2018) proposed environmental situation oracles (ESOs) which

gather situational data from multiple smart home devices, such as the user’s GPS location

and if a particular motion sensor was tripped. The ESOs can be queried by an ACL to

determine if a particular situation exists or not. For example, there may be a rule that a

teenager must be home to control the lights. The ACL could query the ESO containing

the teenager’s GPS location. However, the ESO would not divulge the teenager’s GPS

coordinates, instead it would respond true if they are home or false if they are out. The

ESO solution is currently theoretical and has not seen much (if any) industry adoption.

One of the most important features of an ACL is that it must be easy to use by a

homeowner (Ravidas et al., 2019). Usability is particularly important since most home

users have very little knowledge about security (Kim et al., 2011). Mahalle et al. (2013)

developed a system modeled on a trust-based access control model designed to

automatically set rules based on the trustworthiness of the user. Another system called

Clairvoyant access right assignment (CARA), is designed to automatically give

suggestions about the access rights a visitor to the home should have (Kim et al., 2011).

One of the main constraints implemented by CARA is that the visitor must be in the

house to access the device. Restricting the use of a device to only those physically present

in the house is the main goal of this research project. Implementing an ACL is not a

viable solution to the problem presented in this case since the attacker is masquerading as

the home user; the attackers are using the victim’s username and password to gain access.

ACLs are not designed to block access to a system due to a compromised account.

Monitor Network Activity

28

 Network attacks against smart devices can be passive or active; malicious actors

can passively monitor network traffic to exfiltrate sensitive information or they can attack

the devices, which creates network traffic. Several researchers have trained machine

learning algorithms to passively learn network traffic patterns generated by smart home

devices, to piece together clues from the devices’ actions to infer the residents’ in home

behaviors (Acar et al., 2018; Apthorpe, Reisman, & Feamster, 2017a; Apthorpe,

Reisman, Sundaresan, et al., 2017; Barrera et al., 2017b; Copos et al., 2016b; Junges et

al., 2019; OConnor et al., 2019; Ren et al., 2019a; Subahi & Theodorakopoulos, 2019).

Other researchers have used an Intrusion Detection system to monitor for attacks on

smart home devices (Anthi et al., 2019; Hodo et al., 2016; Mehdi Nobakht et al., 2016;

Ramapatruni et al., 2019; Vijay Sivaraman et al., 2015; Wang et al., 2018). The types of

attacks to monitor for include: 1) Distributed Denial of Service (DDoS), 2) conventional

attack, 3) routing attack, and 4) man-in-the-middle (Zarpelão et al., 2017).

Hodo et al. (2016) used a Network-Based Intrusion Detection System (NIDS) to

identify and thwart DDoS attacks performed against smart home devices. The NIDS used

an Artificial Neural Network (ANN) which was trained via a supervised learning

procedure. This involved feeding the neural network with a labeled training set in order

for it to learn the difference between normal and anomalous traffic (Hodo et al., 2016).

Anthi et al. (2019) focused on detecting conventional attacks on smart home devices. The

research involved establishing the normal behavior of each smart home device,

identifying when an attack is occurring based on identified malicious packets, and

determining the type of attack that is taking place against which smart home device.

Ramapatruni et al. (2019) followed a similar approach leveraging machine learning

29

algorithms, such as Hidden Markov Models, to learn the normal traffic patterns of smart

home devices. Using the normal traffic patterns as a baseline, Ramapatruni et al. (2019)

identified any traffic outside the baseline as anomalous traffic. The researchers were

successful 97% of the time in identifying malicious traffic.

Sivaraman et al. (2015) extended this concept by dynamically quarantining smart

home devices that were producing traffic determined to be malicious. This solution

would be implemented though the use of Software Defined Networking (SDN). SDN

would allow for dynamic security rules, such as if someone is in the house or the time of

day of an event, such as tuning on music at 2 a.m. Instead of implementing this solution

in the house, Sivaraman et al. (2015) propose that a specialist, such as the Internet

Service Provider (ISP), offer this service. The ISP would receive a feed of network

traffic, learn the typical behavior of all of the smart devices and the residents’ interactions

with the devices, tweaking the rules as more data was fed into it (Vijay Sivaraman et al.,

2015).

 Routing attacks, the third type of attacks studied by researchers interested in

Intrusion Detection System (IDS) for smart home devices, are designed to disrupt

network traffic. One popular routing attack, the worm hole attack, disrupts network

traffic by creating a network tunnel between two devices and then sending all of the

network traffic through the tunnel (Pongle & Chavan, 2015). This attack is typically

found in smart devices outside the home. Pongle et al. (2015) created an IDS specifically

to detect wormhole attacks.

 In man-in-the-middle attacks, the attacker is able to intercept their adversary’s

traffic in order to monitor the traffic, modify it, or stop it completely (Tertytchny et al.,

30

2019a). Researchers were able to gain access to a LightwaveRF smart home device via a

man-in-the-middle attack in which they intercepted the device’s firmware update,

modified the update so that they could easily access the device, then sent the update to

the device (Barcena & Wueest, 2015). Tertytchny et al. (2019) created an IDS which was

successful in identifying these attacks about 90% of the time. Nobakht et al. (2016)

created a host-based intrusion detection system called IoT- Intrusion Detection Mitigation

(IDM) designed to differentiate between suspicious and normal network activity and

block identified suspicious activity. The researchers tested IoT-IDM with a Hue Smart

Light Bulb system in which they were able to sniff the secret key, known as a whitelist

token, which is used to authenticate a known user. The whitelist token was used by the

simulated attacker, who was connected to the home network, to log into the Hue Smart

Light Bulbs. IoT-IDM, using a learning model that leverages SVMs to classify the data,

was able to identify the attack with an accuracy of 100%.

Passive attacks involve capturing network traffic generated by smart home

devices. Once captured, researchers have demonstrated that patterns identified by

machine learning algorithms can show what the smart home device is doing, even if the

network traffic is encrypted (Junges et al., 2019; Subahi & Theodorakopoulos, 2019). To

train the machine learning algorithms researchers have used a variety of characteristics of

the network traffic including: the throughput, burstiness, direction, size of payload, the

proportion of synchronize (SYN) and acknowledgement (ACK) packets (which are

involved in establishing a TCP connection), plus various statistics calculated about the

network traffic (Acar et al., 2018; Apthorpe, Reisman, & Feamster, 2017a; Apthorpe,

Reisman, Sundaresan, et al., 2017; Barrera et al., 2017b; Copos et al., 2016b; Junges et

31

al., 2019; OConnor et al., 2019; Ren et al., 2019a; Subahi & Theodorakopoulos, 2019).

Apthorpe et al. (2017) were able to link device state changes to its network traffic for a

variety of devices including the Amazon Echo, Nest Security Camera, and the Belkin

WeMo Switch (see Figure 3 below). Acar et al. (2018) found a small discrepancy in

traffic size between the Wemo Insight Switch being turned from on to off and from off to

on (see Figure 4 below).

Figure 3. Network traffic send and receive rates corresponding to user activities

(Apthorpe, Reisman, Sundaresan, et al., 2017)

32

Figure 4. Wemo Insight Switch’s network traffic volume when switched from on to off

and then from off to on (Acar et al., 2018)

This type of attack is similar to the research in this paper, but differs in that the

attack in this research is accomplished through an account takeover by someone who is

not connected to the home network and is performing the attack from somewhere on the

Internet. Therefore, this research tested the worthiness of each of these characteristics. An

in-depth explanation of each characteristic listed above can be found in the

Methodologies section of this paper.

The attack outlined in this research is more in-line with typical account takeover

attacks. This involves the malicious actor leveraging a user’s credentials. In this attack

the malicious actor is not normally connected to the user’s home wireless network to

perform the attack. Extensive research of current journal and conference papers on

intrusion detection systems for smart home devices did not identify any research of how

to prevent remote attackers who have gained compromised credentials, to take over smart

home devices. This research intended to fill that gap.

Summary

 Smart home devices are rapidly being added to houses around the world.

Researchers have discovered many concerning vulnerabilities with smart home devices

and have demonstrated several successful attacks on the devices. Domestic abusers, who

have been using technology to harass their victims, have started to adopt smart home

devices as a new attack vector.

33

Domestic abusers have followed the low-tech approach of commandeering a

smart home device via a compromised username and password. This method is effective

due to the architecture of most smart home devices, which involves state change requests

of smart home devices going through the device’s Cloud server, then passed to the smart

home device. Blocking a smart home device’s connection to the Cloud service is

ineffective since researchers have determined that taking this approach renders most

smart home devices useless.

Intrusion detection systems have proved useful to most traditional types of active

attacks against smart home devices. Passive attacks can be successful in learning about a

households’ activities by learning the traffic patterns generated by smart home devices. A

compromised cannot be defended against with the methods researchers developed for

passive or active attacks. This is also true for access control lists. ACLs are effective at

restricting what type of access a user has to a device based on a number of factors. A

compromised account is outside the scope of an ACL.

34

Chapter 3

Methodology

Overview

This research was carried out following an experimental design through a lab

experiment. The main goal was to identify state change requests sent over a network from

an app on a smart phone to the smart home device’s Cloud site. Researchers have found

that the payload of this network traffic is typically encrypted (Acar et al., 2018; Alrawi et

al., 2019a; Apthorpe, Reisman, Sundaresan, et al., 2017; Bezawada et al., 2018; Junges et

al., 2019; Miettinen et al., 2017a; OConnor et al., 2019; Ren et al., 2019a; Sivanathan et

al., 2017; Subahi & Theodorakopoulos, 2019). Therefore, network traffic patterns were

studied to see if state change requests generate identifiable patterns.

This was accomplished by selecting specific attributes, also known as features,

which can be represented as follows.

𝐸"	 = {𝐹, 𝐷, 𝐿}

E, represents the extracted features and T represents the time interval. F are the

features of the traffic sent to the smart home device to initiate a state change, 𝐹 =

{𝑓!	, 𝑓$, … , 𝑓&}	in which 𝑓'(1 ≤ 𝑖 ≤ 𝑛) represents a feature. D is the set of smartphones

and tablets, and L is used to denote location of where a change request originated. The

end goal was to identify the combination of features, F, and machine learning classifiers

35

which are the most successful in identifying state changes hidden in the encrypted

payloads across several types of smart home devices.

The Scikit-Learn platform was used for machine learning (Scikit-Learn 0.22.2,

2020). This included the Juypter notebook to store and run the machine learning tasks,

Python as the primary programming language, and the numpy and pandas libraries

(NumPy — NumPy, 2020; Pandas 1.0.3, 2020).

Four popular smart home devices were included in this research. The criteria for

selecting these devices is that they must connect to the home WiFi network and must be

controlled by its corresponding Cloud server. Additionally, at least one device was

included from the following rough categories: 1) a device that has a simple behavior

(turns on and off), 2) a device with a complex behavior (can be turned on for a set

amount of time), and 3) sends a large amount of data (i.e. video camera). The selection of

these smart home devices depended on the availability of publicly available datasets from

previous research. The publicly available datasets did not prove adequate, meaning it did

not having enough network traffic captures of smartphone to smart device interactions, so

simulation data was created. This was accomplished by setting up our own lab with the

smart home devices on a home WiFi network and capturing the network traffic while

generating numerous state change behaviors of each smart home device.

This research followed the typical steps involved in training a machine learning

algorithm. An overview of the steps is listed below with a detailed explanation of each

step following this list.

1. Get the data

a. List the data needed and how much is needed

36

b. Capture or acquire the network traffic

c. Sample a test set

2. Explore the data

a. Create a copy of the data for exploration

b. Study each attribute and its characteristics

c. Identify the target attribute

d. Label the data

e. Convert the data for Scikit-Learn

f. Visualize the data

g. Study the correlations between attributes

h. Identify the promising transformations

3. Prepare the data

a. Data cleaning

b. Feature selection, feature engineering, and feature scaling

i. 𝐹 = {𝑓!	, 𝑓$, … , 𝑓&}	in which 𝑓'(1 ≤ 𝑖 ≤ 𝑛) represents a

feature

ii. One goal of this research is to identify subsets of F,

represented by R, that can be used to identify state changes

effectively and efficiently. 𝑅 = {𝑟!	, 𝑟$, … , 𝑟(}	in which

𝑟'(1 ≤ 𝑖 ≤ 𝑚) represents a subset of F

4. Identify promising models

a. Train many models using standard parameters, represented as the

set 𝐶 = {𝑐!	, 𝑐$, … , 𝑐)}	in which 𝑐(1 ≤ 𝑖 ≤ 𝑘) represents a

37

classifier. The goal is to identify which subset S (S	 ⊆ C), when

trained with R performs the best

b. Measure and compare their performance

c. Analyze the most significant variables for each algorithm

d. Analyze the types of errors the models make

e. Repeat the five previous steps for each smart home device’s

network traffic and then for all of the smart home devices’ network

traffic combined

f. Select the top three to five most promising models

5. Fine-Tune the System

a. Fine-tune the hyperparameters using cross-validation

b. Try Ensemble methods

c. Estimate the generalization error

(Géron, 2019)

Step 1: Get the data

There were two main datasets to evaluate. One dataset was provided by Alrawi et

al. (2019). The researchers evaluated 45 devices from several disparate categories

including appliances, cameras, home assistants, media and network devices. They

collected network traffic over a period of 13 days which resulted in 150 GB of data.

The second dataset came from the work of Ren et al. (2019). The full dataset

includes network traffic captured from 81 different smart home devices located in labs in

the United States and the United Kingdom. Over the period of a month they conducted

34,586 automated and manual experiments on the smart home devices.

38

As mentioned previously, the publicly available datasets did not provide enough

instances of encrypted network traffic between the smart home device’s app and the

smart home device’s Cloud site so the data was supplemented by generating and

capturing our own network traffic. The network traffic generated by the smart home

device apps were captured using tcpdump on the home router (in this case a router

running the OpenWRT operating system) (OpenWrt Project, 2020; Tcpdump, 2017). It

was necessary to generate our own supplemental network captures, so the same method

was used as Apthorpe et al (2017). Each device was isolated on its own network, and all

possible means of triggering the device were explored.

Once all the device’s states were triggered, the network traffic generated by the

device was analyzed for uniqueness. The same behavior was triggered and again

compared to the previous network traffic. A similar method was used by Copos et al.

(2016), in which they found that packets of a certain size were sent when the Nest motion

sensor was tripped which allowed them to determine with 88% accuracy that the sensor

was tripped.

Smart home devices can be roughly grouped into three, possibly overlapping,

categories: 1) those with simple behaviors (i.e. smart plugs which can be turned on or

off), 2) more complex behaviors (i.e. smart watering systems that be set to turn on for a

set amount of time), and 3) those that send large amount of data (i.e. Alexa sending a

voice recording and Ring sending a video clip). Experiments with smart home devices

from each of these categories were conducted. The list of devices includes: 1) TP-Link

smart plug (simple behavior), 2) the Belkin WeMo switch (simple behavior), 3) the

Chamberlain myQ Garage Door opener (simple behavior), 4) Nest camera (large amount

39

of data), 5) Rachio Smart Sprinkler Controller (complex behavior). These devices were

selected because they are popular smart home devices and several of them were used in

the publicly available dataset from Alrawi et al.(2019) and Ren et al.(2019). Some of the

devices listed proved to be less than ideal candidates.

Step 2: Explore the data

Researchers have used the tool Zeek (formerly known as Bro) to assist in

interpreting the network traffic (Copos et al., 2016b; Paxson, 1999). Zeek can be used to

read in a pcap file and then produce a list of all connections including information about

the source, destination, protocol used for the connection, duration, and number or bytes

sent. Therefore, Zeek was used in this research to examine connection patterns in the

publicly provided network capture files from Alrawi et al.(2019) and Ren et al.(2019).

This helped identify which packet captures, and specifically which parts of those packet

captures, involved an interaction between a smart device and the smart home device’s

Cloud server. Once these interactions were identified, Wireshark was be used to study

each attribute and its characteristics; the IP address of the Cloud site was identified, the

domain that the IP belonged to, the protocol used for communication, if the payload was

encrypted or not, the size of the payload, and how many transactions occurred during

each session (Wireshark, 2020).

Once all of the possible smart device state changes were correlated to specific

network traffic, the traffic was labeled to start training a machine learning algorithm. This

step was particularly challenging since the publicly available data is not currently labeled.

It was necessary to identify patterns in the encrypted network traffic indicative of a state

change request to a smart home device. This involved making state change requests on

40

smart home devices in our test environment and comparing the traffic generated for each

state change request to the traffic in the publicly available network traffic. The traffic

patterns in the publicly available network traffic that match the traffic patterns in our test

environment would have been labeled as state changes. Unfortunately, no state changes

made by a smartphone were identified in the publicly available dataset. Therefore, a lab

environment was set up and traffic was generated on the smart home devices listed

above.

The steps to identify the state changes included exporting the network capture out

of Wireshark as a comma separated value (CSV) file and then importing it into Microsoft

Excel (Microsoft Excel, 2019). In Excel, a filter was applied to the data allowing us to

separate network packets that include state change requests sent from the smart device to

the Cloud site and unrelated network packets. A column was created in Excel to for the

label. The value “1” was inserted into the label column for packets that involve a state

change and a “0” for the rest.

Once this task was completed, the CSV was ready to be loaded into the Jupyter

environment (Jupyter Notebook 6.0.3, 2020). This was done with a Pandas function

which reads the csv into a Pandas dataframe. The Pandas dataframe is a two dimensional

data structure that is comparable to the structure of a spreadsheet; the dataframe is

comprised of rows and columns. The Pandas dataframe is the main container type used

for all phases of machine learning (i.e. the cleaning, training, and analyzing steps) in the

Scikit-Learn platform (Géron, 2019).

Step 3: Prepare the data – Feature Selection

41

One of crucial steps with machine learning, and therefore this research, was

feature selection, formally represented as the set 𝐹 = {𝑓!	, 𝑓$, … , 𝑓&}	in which

𝑓'(1 ≤ 𝑖 ≤ 𝑛) represents a feature. Feature selection involved identifying all of the

relevant characteristics of the home network traffic that were indicative of a state change

request sent from a smart home device’s app running on a smart device to a smart home

device’s Cloud site. State changes could be found in the payload of the packet. Therefore,

network traffic attributes were selected as features to effectively train machine learning

algorithms to identify patterns indicative of smart device state change requests. Table 1,

below, summarizes the promising features, by category, including a reference to the

research that implemented said feature.

Table 1

Network Data Flow Features
Category Feature Reference

Statistical Average bytes per session from the client
and from the server

OConnor et al. (2019);
Ren et al. (2019)

Statistical Maximum bytes per session from the
client, and from the server

OConnor et al. (2019);
Ren et al. (2019)

Statistical Standard deviation of bytes between
server sequences

OConnor et al. (2019)

Statistical Standard deviation of bytes between IoT
device sequences

OConnor et al. (2019)

Statistical Median absolute deviation of packet size Acar et al. (2018)

Statistical Mean and standard deviation of the
amount of traffic (bytes) sent or received
by the device in consecutive s-second
samples

Apthorpe, Reisman, &
Feamster (2017)

Statistical Burstiness
the proximity of arrival instances within
each other plus the variance between each
arrival. It is measured by examining the
variance in terms of both payload size and
inter-arrival times

OConnor et al. (2019)

42

Aggregated Aggregate bytes per session from the
client and the server

OConnor et al. (2019)

Aggregated Kurtosis with respect to packet sizes and
inter-arrival times Ren et al. (2019)

Aggregated The distribution of inter-packet
intervals

Apthorpe, Reisman,
Sundaresan, et al. (2017)

Aggregated Skewness with respect to packet sizes
and inter-arrival times

Ren et al. (2019)

Synthesized deciles of the distribution with respect
to packet sizes and inter-arrival times

Ren et al. (2019)

Synthesized IAT bin (a representation of traffic
rate) bin index of packet inter-arrival
time (IAT) using three bins: < 0:001
ms, 0:001 ms to 0:05 ms, and > 0:05
ms

Nguyen et al. (2019);
Subahi &
Theodorakopoulos (2019)

Synthesized Mean inter-arrival time Acar et al. (2018)

Synthesized The total number of packets in a flow Apthorpe et al. (2017);
Bezawada et al. (2018)

Synthesized total time of connection OConnor et al. (2019)

Protocol
specific

The proportion of SYN and ACK
packets per flow
Flow is a set of packets associated
with a 5-tuple of sender_ip,
recipient_ip, sender_port,
recipient_port, and protocol within
some time window

Apthorpe et al. (2017)

Protocol
specific

Packet sequence information Subahi & Theodorakopoulos
(2019)

Protocol
specific

Synchronicity, the observed
measurements that describe how a
client and server take turns sending
data

OConnor et al. (2019)

Protocol
specific

Synchronicity within the context of a
session OConnor et al. (2019)

Protocol
specific

Synchronicity of server sequences per
session OConnor et al. (2019)

It is important to know if the same features, trained with the same machine

learning classifiers, provide the best results across all types of smart home devices. Or is

possible that the results will vary based upon the type of smart home device? The goal

43

was to identify which features, F, combined with which machine learning algorithm,

provide the most optimal identification of state changes, across all types of smart home

device. In other words, identify the subsets of F, denoted as R, that performs best with a

machine learning algorithm:

𝑅 = {𝑟!	, 𝑟$, … , 𝑟(}	in which 𝑟'(1 ≤ 𝑖 ≤ 𝑚) represents a subset of F

Statistical features have proven to work well with devices that have simple

behaviors. As mentioned above, Acar et al. (2018), found that traffic size could be used

to identify when a smart plug was turned on and off. Junges et al. (2019), were successful

in determining state change requests of smart plugs and smart lamps by using the

encrypted payload size as their main feature.

To the best of our knowledge, there is a lack of published research that has

focused primarily on identifying the behavior of smart home devices with complex

behaviors. Complex behavior of a smart home device is defined here as being able to

choose to switch the device between more than two states (i.e. more than turning a light

from on to off). An example is the Rachio smart sprinkler system which allows the user

to turn the sprinklers on for five minutes. The Rachio accepts the request, turns the water

on, then responds back when the five minutes of watering has completed. In order train a

machine learning algorithm to identify this pattern, more complex features must be used

than the statistical features described above. In this case, it was believed that synthesized

features, such as total number of packets in a flow, would be most useful. Therefore,

network traffic flow was a big focus. This helped identify time intervals between TLS

sessions, which is important when identifying when a smart device state change request

involves several interactions between the smart home device and the user.

44

Ren et al. (2019) found that aggregated features are effective in inferring

interactions from devices that that send a large amount of data such as cameras,

televisions, and audio devices. Although their goal was not to identify the optimal

classifier, but to simply understand if the devices’ activities are inferable.

Most fine-grained features did not help with identifying device state changes.

However, several assisted in identifying the smart device requesting the change and the

smart home device’s Cloud site that the change request is sent to. Therefore, some fine-

grained features were selected such as destination IP address and source MAC address.

Source and destination ports were also used as features to identify when an encrypted

payload is being sent.

The combinations of all the aforementioned features were tested in order to

identify the ideal combination that performs best across all types of smart home devices.

This involved testing several combinations of the feature sets as highlighted in Table 2

below.

Table 2

Possible Combinations of Feature Types
Feature type A Feature type B Feature type C

Statistical Synthesized Aggregated

Statistical Aggregated Protocol specific

Statistical Protocol specific Synthesized

Step 4: Identify promising models

The sets of features were used to train machine learning algorithms, also known

as classifiers. Tests were conducted to see which machine learning algorithm, combined

45

with statistical, aggregated, synthesized or protocol specific features, performed best with

traffic from smart home devices that have simple behavior, complex behavior, and send a

lot of data. The classifiers can be formally represented as the set 𝐶 = {𝑐!	, 𝑐$, … , 𝑐)}	in

which 𝑐(1 ≤ 𝑖 ≤ 𝑘) represents a classifier. The goal was to identify which c, when

trained with f performs the best:

S	 ⊆ C

S represents a subset of classifiers that produces the most accurate predictor out of

the tested classifiers combined with the R, the selected features used to train the

classifiers.

Acar et al. (2018) obtained an 88% accuracy of correctly detecting activities using

Random Forest (RF) and 91% using KNN. Ren et al. (2019) trained a RF machine

learning classifier. Junges et al. (2019) were able to train a KNN classifier to identify

actions with a high accuracy of up to 98.4%. Therefore, this research project used the

KNN algorithm to correlate smart device activity to network traffic, and explored other

supervised learning algorithms such as RF and naïve Bayes.

Step 5: Fine-Tune the System

Several evaluations were performed to test the accuracy of the predictor. A root

mean square error will be computed using numpy’s built in mean_squared_error function

(Géron, 2019). The function is:

𝑅𝑀𝑆𝐸(𝑋, ℎ) = +
1
𝑔
	/(ℎ(𝑥(")) − 𝑦("))$
%

"&'

46

g is the number of instances in the dataset that are measuring the RMSE on. 𝑥(") is

a vector of all of the feature values of the ith instance in the dataset, with 𝑦(") representing

its label. X is a matrix containing all of the feature values of all instances in the dataset. h,

also called the hypotheses, is the system’s prediction function.

This ran against all of the predictors; several predictors were created by

combining features and running them through various machine learning classifiers.

Also, Scikit-Learn’s K-fold cross validation feature was implemented. This

feature randomly splits the training set into a set number of folds, which are distinct

subsets of the training set. It then trains a classifier a set number of times, choosing a

different fold for evaluation and using the other folds for training. The output is an array

containing the evaluation score for all of the runs.

To identify correlations between features the standard correlation coefficient

between every pair of features was computed. When the results were close to one, there

was a strong positive correlation and when the result was close to negative one, there was

a strong negative correlation. Scikit-Learn’s corr() function was used to perform this

calculation.

One very quick and effective test for accuracy is called the precision of the

classifier. Precision is the accuracy of the positive predictors. It is represented by the

equation:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃		

TP is the number of true positives and FP is the number of false positives.

Precision is usually used in conjunction with recall, also known as sensitivity or the true

positive rate (TPR). It is calculated with the formula:

47

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁		

FN is the number of false negatives.

The harmonic mean of precision and recall, which is the 𝐹! score, was computed.

It is different than precision in that it gives much more weight to low values. This results

in only getting a high 𝐹! score if both recall and precision are high. The formula is:

𝐹! = 2	 ×	
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 	𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 	= 	

𝑇𝑃

𝑇𝑃 +	𝐹𝑁 + 𝐹𝑃2

Finally, a confusion matrix was used to count the number of incorrect

classifications. For example, it showed the number of times network traffic was

incorrectly identified as containing a state change request for a smart home device.

Scikit-Learn’s cross_val_predict function will be used for the confusion matrix.

Preliminary Experiment

 The dataset used for this preliminary experiment came from the work of Ren et al.

(2019). A test case focused on network traffic generated by a Wemo plug over two

separate dates. The researchers generated several GetBinaryState events in which the

Wemo plug responded with its current state which is either on or off. The traffic and the

payload were not encrypted, making it easy to identify the exact packets responsible for

the GetBinaryState events. This was used to create an accurate label for the data.

The basis of this research was to learn the state change hidden in an encrypted

payload. Since an encrypted payload cannot be read, it would not make sense to include

an unencrypted payload in this test data. Therefore, the field containing the payload

information was removed from the dataset prior to any training or testing.

48

The packet captures from April 24, 2019 was used to train the Random Forest

Regressor and the packet capture from April 25, 2019 was used to test the resulting

predictor. This was all performed in the Jupyter notebook environment using the Pandas

and Numpy Python libraries to load and prepare the dataset. Once trained, the accuracy of

the predictor will be tested using the mean square error formula. The result was zero,

which indicates a perfect prediction. To double check this, the predicted output was

compared to the test case and they were both identical.

The next step was to learn which features were the most important in training the

predictor. In other words, which features had the highest correlations. The results, listed

in Table 3 below, indicate that the Source and Destination ports are more correlated (.15)

to GetBinaryState than Length is (.08). This is surprising since previous research placed a

high emphasis on payload size to indicate a state change. This was be re-tested and

analyzed during the research portion of this project.

Table 3

Correlation Matrix

No. Time Length Src port Dest port GetBinary

State

No. 1.000000 0.999861 0.009366 0.019650 0.017530 0.001433

Time 0.999861 1.000000 0.009378 0.019745 0.017695 0.001206

Length 0.009366 0.009378 1.000000 -0.374397 -0.405949 0.086608

Src
port 0.019650 0.019745 -0.374397 1.000000 0.841381 0.158049

49

No. Time Length Src port Dest port GetBinary

State

Dest
port 0.017530 0.017695 -0.405949 0.841381 1.000000 0.157310

GetBin
aryStat
e

0.001433 0.001206 0.086608 0.158049 0.157310 1.000000

This preliminary experiment showed promise that the research methods listed

above were valid. It was important during the experiment portion of this research, to test

several different features, with several different machine learning classifiers, to discover

the optimal combination, to identify state changes hidden in the encrypted payload of

network traffic. This research successfully discovered this combination.

Resources

Two main datasets were evaluated; one dataset provided by Alrawi et al. (2019)

and the other by Ren et al. (2019). Evaluation of the datasets were done using Wireshark,

Zeek, and Microsoft Excel. Since more data was necessary, network traffic was captured

in a lab environment using tcpdump running on an OpenWRT router. The lab

environment includeed the following smart home devices: Belkin WeMo switch, TP-Link

WiFi Smart Plug, Rachio Smart WiFi Sprinkler Controller, the Chamberlain myQ garage

door opener, and Amazon’s Ring video camera.

Scikit-Learn was used to prepare the data, train the classifiers, and fine tune the

system. Scikit-Learn contains several Python libraries that enable us to do this.

Summary

50

 In summary, the research for the detection of rogue manipulation of smart home

devices, involved the following steps:

1. Identify potential network traffic features that will enable the identification of

smart home device state changes hidden in the encrypted payloads

2. Explore the publicly available network traffic datasets provided by Ren et al.

(2019) and Alrawi et al. (2019)

3. Generate our own network traffic in our lab environment with a set of smart home

devices

4. Train several machine learning algorithms with the identified feature sets

5. Evaluate the results of the trainings

6. Identify the machine learning algorithm, trained with one of the feature sets, that

performs the best across all of the selected smart home devices

51

Chapter 4

Results

Overview

The main goal of this research was to categorize encrypted network traffic

patterns originating from the user’s WiFi connected smart phone or tablet, indicative of

state change requests of smart home devices. To accomplish this goal, the research was

conducted in three major phases:

1) focused on analyzing the publicly available network data captures provided by

Alrawi et al. (2019), called YourThings, and the dataset published by Ren et al.

(2019) called MonIoTrPublic,

2) involved capturing the network traffic of several smart home devices’ apps and

identifying the traffic patterns indicative of a state change request,

3) included identifying network traffic features, using those features to train

machine learning algorithms, evaluating the results of the trainings, and

identifying the machine learning algorithm that performs the best across all of

the selected smart home devices. The results of each phase will be addressed in

this chapter.

Phase 1 – Analysis of Publicly Available Datasets

Publicly available network traffic captures of smart home devices were rigorously

searched for during the literature review portion of this project. This included contacting

52

researchers who had published papers related to smart home devices. This resulted in the

successful identification and obtainment of two datasets.

One dataset was provided by Alrawi et al. (2019) as part of their YourThings

initiative. The researchers evaluated 45 devices from several disparate categories

including appliances, cameras, home assistants, media and network devices. They

collected network traffic over a period of 13 days which resulted in over one thousand

separate pcap files totaling 150 GB of data. The second dataset came from the work of

Ren et al. (2019). The full dataset, referred to as MonIoTrPublic, includes network traffic

captured from 81 different smart home devices located in labs in the United States and

the United Kingdom. In-depth analysis of both datasets was performed.

The YourThings dataset presented some significant challenges due to both the

quantity of pcap files and total data collected. Therefore, it was determined that a

database should be used since this is the best method to store and query large quantities

of data. A fork of the MySQL database, called MariaDB was selected as the database. All

of the pcap files were loaded into MariaDB. This involved converting the pcap file to csv

format, which results in the loss of a significant amount of detail. However, all of the

relevant data to identify state changes was maintained; the csv file contained information

about the source and destination IP addresses, ports, protocol used, bytes sent, bytes

received, and the information field that includes a summary of data sent in the packet.

The main goal in evaluating the YourThings data in the MySQL database was to

identify state change requests made from a smartphone or tablet. The SmartThings

researchers included a mapping of device to IP address which helped with the initial

identification of network traffic from the researcher’s iPad and iPhone. Based on the

53

mapping, SQL queries were created to determine on which of the capture days’ both the

iPad and iPhone were used. Results showed that the iPad was used all four of the capture

days (3/20/18, 3/21/18, 3/28/18, and 4/15/18) and the iPhone was used two of the days

(3/21/18 and 3/28/18).

The next step was to identify network traffic from the iPhone and iPad to either

one of the smart home devices or the smart home devices’ Cloud sites. Once again, a

SQL query was used which, not surprisingly, showed that both the iPhone and iPad

generated a significant amount of outbound traffic to a multitude of various external IP

addresses. It was not immediately apparent who owned the external IP addresses. To

determine this, the Cloud sites for several of the smart home devices were identified, then

a whois search was performed on each to determine who the IP range belonged to. This

did not provide much useful information; most of the selected smart home devices host

their Cloud server with Amazon’s AWS service. Therefore, most of the whois queries

resulted in AWS as the owner of the IP address. This presented the challenge of

differentiating traffic bound for the disparate smart device Cloud sites. Fortunately, when

the smart device’s app on the iPad or iPhone is used, it generates a DNS query for the

smart device’s Cloud site. Using the database to track down DNS queries from the

iPhone and iPad and Wireshark to open the corresponding pcap file, the Cloud site for

each of the smart devices was identified.

Once the smart devices’ Cloud sites were identified, it was possible to tell each

time that the smart device’s app was used on the iPhone or iPad. This only showed that

the app sent traffic to the smart device’s Cloud site, not exactly what was sent (i.e. was

the app used to turn the smart switch on and off?). To determine if a state change was

54

requested, it was necessary to look for incoming traffic to the smart home devices and

then see if that correlated to outbound traffic from the iPhone and iPad to the smart

device’s Cloud site. Using the previously stated method of discovering each IP address

and which smart device it belonged to, it was possible to identify each time a smart

device talked to its Cloud server.

Unfortunately, for all of the smart home devices listed above, there was not one

instance when both the smart device’s app and the smart device were sending or

receiving network traffic within the same timeframe (i.e. with five minutes of each other).

In other words, it did not appear that a state change was requested on the app since there

was a lack of traffic during the same timeframe between the smart device and its Cloud

site. To reiterate, for the traffic that spanned the four capture days, there were hundreds of

instances of outbound traffic from several smart devices’ apps to the Cloud sites and

hundreds of instances of traffic to and from the smart devices to their Cloud sites. Yet,

none of traffic overlapped in common timeframes.

One possible reason for this lack of correlation could be that the smart hubs and

motion sensors used in the project generated state changes to the smart home devices,

instead of the state changes being requested by the app on the iPhone. The smart hubs

and motion sensors include: the Samsung SmartThings Hub, Phillips HUE Hub, Insteon

Hub, Belkin WeMo Motion Sensor, Wink Hub, Caseta Wireless Hub, Google Home, and

Apple HomePod. These hubs and sensors are designed to directly control the smart home

devices without the end user controlling the device via an app.

It is possible to view the smart hub setup as delegitimizing this research since the

intention of this project was to focus on state changes initiated from a smartphone.

55

However, it could also be argued that the setup used in the YourThings research project is

advanced and not typical of most smart home device users today. The hub and sensor

setup would require home users to purchase additional equipment, for several hundred

dollars, plus the home user would need to know how to program the hubs and sensors to

perform certain tasks for each corresponding event. This may be out of the technical

know-how of most home users, since Fu et al., (2017) found that most home users are not

tech savvy.

Despite the limited use of hubs, it is possible that the techniques used in this

research could be applied to identify state changes sent from a hub to a smart device’s

Cloud site. Just like smart phones, hubs send state change requests over the home WiFi

network to the device’s Cloud site. Therefore, machine learning algorithms could be

trained to recognize state change patterns sent via encrypted network traffic from hubs

similarly to the success this research had with state changes sent from smart phones.

Additionally, there is a growing number of smart assistants which allow users to

control their smart home devices via voice commands. For example, Amazon Alexa can

be configured to allow a user to turn a smart switch on simply by speaking the command

to the Alexa. The Alexa, just like a smart phone and a hub, then sends the state change

request to the smart home device’s Cloud site over encrypted WiFi network traffic. Once

again, it is possible that this research is applicable to discovering state changes sent from

a smart assistant.

The evaluation of the MonIoTrPublic dataset was accomplished in just a few

steps. The MonIoTrPublic dataset contained network traffic for over twenty smart home

devices, but it did not include any network traffic from a smartphone or tablet.

56

Phase 2 – Capturing and Identifying Network Traffic of Smart Home Devices

Since the two publicly available datasets did not contain any identifiable state

changes made from a smartphone or tablet to a smart home device, it was necessary to set

up a lab to capture this traffic. The focus of this research was to identify state changes

across three types of categories of smart home devices: 1) has a simple behavior (turns on

and off), 2) has a complex behavior (can be turned on for a set amount of time), and 3)

sends a large amount of data (i.e. video camera). Therefore, smart home devices were

selected across those three categories.

Selecting the Smart Home Devices

For the simple behavior, the TP-Link WiFi Plug and the Chamberlain myQ

Garage Opener were selected. The TP-Link WiFi Plug is only capable of turning a switch

on and off, while the Chamberlain myQ Garage Opener’s sole purpose is to open and

close a garage door. The Rachio Smart Sprinkler system is capable of turning the

sprinklers on and off for varying amounts of time, which is a more complex behavior

than simply turning something on and off or opening and closing something, so it was

placed in the complex behavior category. Finally, Amazon’s Ring video camera

constitutes a device that sends a large amount of data which fits the final category.

Two other devices were initially selected but later excluded due to not being able

to reliably identify their state change requests. The Belkin WeMo Switch, which was

used in the preliminary tests for this research, previously sent state changes in

unencrypted traffic but has since improved their security and now encrypts their traffic.

All of the other smart home devices in this research encrypt their traffic as well, but

identifiable patterns enabled the identification of state changes in their traffic. The Belkin

57

WeMo Switch did not exhibit identifiable patterns that would allow for the labeling of

state changes necessary to a train machine learning algorithm. This is also true for the

Fujitsu Mini-Split heating and air conditioner. This device was initially included since it

allows the user to change several different settings of the system, putting it in the

complex behavior category. To include these two devices in future research it would be

necessary to either decrypt the network traffic or work with the manufacturer to

understand how their systems function.

Table 4

Smart Home Devices with Specifications Used in this Research
Device Firmware

version
Functionality App

version
Utilized in
research

TP-Link WiFi
Plug

1.5.6 Turn a plug on and
off

2.23 Yes, state
change traffic
identified

Chamgerlain
myQ Garage
Opener

A.0.4.12 Open and close a
garage door

5.158.19859 Yes, state
change traffic
identified

Rachio Smart
Sprinkler
system

5-115 Turn on a sprinkler
system to various
amount of time

4.1.12 Yes, state
change traffic
identified

Amazon Ring
video camera

Cam-
1.4.1.5200

Switch to live mode
to stream a live
feed

5.28.0 Yes, state
change traffic
identified

Belkin WeMo
Switch

2.00.11420

Turn a plug on and
off

1.25.1 No, unable to
reliably identify
the state
changes

Fujitsu Mini-
Split system

2.4.5.1 Control a heating
and air system by
setting the
temperature, fan
speed, and more

3.1.0 No, unable to
reliably identify
the state
changes

Capturing the Network Traffic

58

 The environment and method used to collect network traffic were based on the

same methods used by Ren et al. (2019) and Alrawi et al. (2019). The environment, based

on the lab setup of Alrawi et al. (2019), consisted of a GL.iNet Mini Travel Router

running OpenWRT, an iPhone, and smart home device. During testing, the iPhone and

the smart home device were configured to connect to the mini travel router (see Figure 5

below).

Figure 5. Lab configuration with an iPhone running the smart home device’s app, the
smart home device connected to a Mini Travel Router, and the Mini Travel Router
connected to smart device’s Cloud site(s)

 The method used to capture the traffic followed what Ren et al. (2019) termed

interaction experiments. This involved interacting with the IoT device via the app on the

iPhone. For each interaction, the device would be turned on, and then two minutes later

the network capture would be initiated. The capture would continue during the entire time

the state change, or changes, took to complete, then after an additional 5-15 seconds, the

capture would be stopped (Ren et al., 2019b).

The following are the exact steps taken for each network capture:

1. Change the iPhone’s WiFi settings to connect to the mini router

59

2. Configure the smart home device to connect to the mini router

3. SSH into the mini router from a MacBook Pro

4. Launch the tcpdump utility on the mini router

5. Disconnect the MacBook Pro from the mini router

6. Launch the smart device’s app on the iPhone

7. In the app, make a state change to the smart home device (i.e. turn the smart

switch off)

a. In some cases, repeatedly perform this action

b. In some cases, don’t perform any state changes in the app which will be

used to differentiate between state change traffic and all other traffic

c. Record the time the state change was made

8. SSH back into the mini router from the MacBook Pro and copy the pcap file to

the MacBook Pro for analysis

Identifying State Changes

 The next step was to analyze the network traffic in order to identify the state

changes that were made. To accomplish this, the network analysis tools Zeek and

Wireshark were leveraged. Zeek was used to summarize each connection. The utility

creates several files detailing information about the network traffic such as the source and

destination of each connection, how much data was sent, the protocol that was used, and

several other informative fields (see Appendix A).

 All of the outbound connections from the iPhone were analyzed using Zeek,

which includes a feature to parse pcap files creating several log files (Copos et al., 2016a;

Dai et al., 2019; Flosbach et al., 2019; Paxson, 1999). This research followed the example

60

of Flosbach et al. (2019), who successfully parsed pcap files using Zeek. One of the log

files that was created, the conn.log files, records connection information of the network

and transport layer including information such as when a connection occurred, for how

long, the protocol used, and several other details (see example data in Table 5 below).

This information was used to identify traffic patterns for each device. A detailed account

of how each pattern was identified for each device is detailed in the sections below. Once

the state change patterns were identified, they would be validated by matching the state

change patterns in the network traffic with the recorded times a state change was made on

the app on the iPhone. If the times matched up, then it was more likely that the identified

state change was a true positive and not a false positive.

Table 5

Example of fields and values produced by Zeek on network traffic sent between an iPhone
a smart device’s Cloud site
Field Value
time stamp 2020-06-26T14:23:21-0700
source IP 192.168.8.248
source port 55451
destination IP 13.83.97.206
destination port 443
protocol tcp
service ssl
duration 0.372338
orig_bytes 1152
resp_bytes 7246
conn_state S1 (Connection established, not terminated)
orig_pkts 24
orig_ip_bytes 3552
resp_pkts 26
resp_ip_bytes 15836
server name api.myqdevice.com

61

To add further evidence that the traffic pattern was indicative of a state change,

network traffic sent between the smart home device and its Cloud site was analyzed.

Since the mini router captured all of the network traffic, not just the traffic between the

smartphone and the Cloud site, the traffic between the smart home device and the Cloud

site was contained in the same conn.log file as was used in the previous step. The

timestamp of the identified state change event was correlated with the timestamp of a

connection, or connections, made from the smart home device to its Cloud site (see Table

6 below). If the identified state change traffic was sent to the Cloud site within a given

timeframe of traffic being sent between the smart home device and the Cloud site, then

this further legitimizes that it is indeed a state change. Junges et al. found that sessions

are usually within 2.5 seconds of each other (Junges et al., 2019). Therefore, if the state

change request sent from the smartphone and the state change sent from the Cloud to the

smart home device are within 2.5 seconds of each other, then they will be considered

linked.

Table 6

Example of fields and values produced by Zeek on network traffic between a smart device
and its Cloud site
Field Value
time stamp 2020-06-26T14:23:21-0700
source IP 20.42.27.108
source port 8883
destination IP 192.168.8.206
destination port 50854
protocol tcp
service (application protocol) -
duration 24.947513
orig_bytes 85
resp_bytes 425
conn_state OTH (No SYN seen, just midstream

traffic)

62

orig_pkts 14
orig_ip_bytes 730
resp_pkts 14
resp_ip_bytes 1410
server name Microsoft Corporation (MSFT)

 Once all of the state changes were confirmed a label was added to mark the state

changes. For each device a separate number was used to represent a state change; a one

was used for TP-Link, a two was used for the Ring, a three for the Rachio, and a four was

used for the myQ device. Next, all of the labeled data per device was combined into one

csv file. These files contained the network traffic captures for each device combined with

the captures that did not have state changes.

iPhone versus Android app state change patterns

This research chose to run the smart device’s app on an iPhone and not an

Android device. While it is possible that the Android app is programmed differently, it is

highly unlikely that an entirely separate Cloud infrastructure is implemented since smart

home device manufacturers often leverage software development kits (SDKs) provided

by smart home platform providers, such as Amazon’s AWS IoT service (Zhou et al.,

2019). This would indicate that the Cloud infrastructure remains the same between

smartphone apps, which lends credence to the notion that the mobile app would behave

similarly across platforms.

Identifying State Changes of TP-Link State Changes

 The state change requests for the TP-Link WiFi Plug were the easiest out of all

the smart home devices to identify. To establish a pattern, the plug was turned on or off

24 times, spread relatively evenly, over a period of three days (6/20/20, 6/22/20, and

6/26/20). The first pattern that emerged was that whenever the plug was turned from on

63

to off or from off to on, a new connection was created between the iPhone and the TP-

Link WiFi Plug directly. The traffic sent was encrypted, however the values of the

attributes id.resp_p, orig_bytes, and resp_bytes were identical every time the plug was

switched from off to on and from on to off (see Table 7 below). It is worth noting that

there is no guarantee that these values will always remain the same. If the vendor changes

the encryption algorithm that they use or makes alterations to their code controlling the

state changes, it is very likely that different values will be used. However, it is possible

that if the aforementioned changes are made, new patterns will emerge which could then

be used to identify state changes.

Table 7

iPhone to TP-Link WiFi Plug captured traffic of a state change, made on the iPhone
(192.168.8.248), to the TP-Link device(192.168.8.247)

Second, the app would communicate with the following TP-Link Cloud sites: n-

use1-wap.tplinkcloud.com, n-wap.tplinkcloud.com, and api.tplinkra.com. If the app was

simply opened and no state change was made, there would be no connection made to the

TP-Link plug. However, the app would connect to the same three TP-Link Cloud sites

listed above.

Identifying State Changes of Chamberlain myQ Garage Opener

Orig host IP Orig
port

Resp host IP Resp
port

Proto Dura
tion

Orig
bytes

Resp
bytes

Conn
state

192.168.8.248 52791 192.168.8.247 9999 tcp 0.188 106 49 SF

192.168.8.248 52792 192.168.8.247 9999 tcp 0.250 106 49 SF

192.168.8.248 52794 192.168.8.247 9999 tcp 0.190 106 49 SF

192.168.8.248 52796 192.168.8.247 9999 tcp 0.208 106 49 SF

64

The Chamberlin myQ Garage Opener app behaved more similarly to a typical

smart home device app since it did not communicate directly with the myQ device

directly, instead it communicated state changes to the myQ Cloud site. Notra et al. (2014)

made this observation several years ago, and based on our experiments, this is still true

today. In this experiment ten separate state changes, in the form of opening or closing the

garage door, were captured over four days (6/12/20, 6/13/20, 6/23/20, and 7/20/20). A

pattern emerged in which the app on the iPhone communicated with the account-devices-

gdo.myq-cloud.com Cloud site whenever the door was either opened or closed. The

Cloud site consistently had the IP address 13.83.240.23 in our experiments (see Table 8

below). This is unusual behavior since in the network captures for the other smart home

devices, the IP address associated with a Cloud site would change for each capture and

sometimes several different IP addresses were used during the same capture.

Table 8.

Connections involving state changes sent from the iPhone to the myQ Cloud site (this table
is abbreviated, the full table can be found in Appendix A)

Resp host IP Duration Orig
bytes

Resp port Conn state History Orig
packets

Orig IP
bytes

Resp
packets

Resp
bytes

13.83.240.23 0.3476 1121 5746 S1 ShADTad
t

24 3490 24 12732

13.83.240.23 0.3241 1248 5746 S1 ShADTad
t

24 3744 24 12732

13.83.240.23 0.4003 1248 5746 S1 ShADTad
t

22 3640 24 12732

13.83.240.23 1.0862 1174 434 S1 ShADTad
t

20 4422 20 1900

13.83.240.23 0.4760 1249 5746 S1 ShADTad
t

24 3746 24 12732

13.83.240.23 0.3590 1249 5746 S1 ShADTad
t

24 3746 24 12732

Another pattern can be observed in the state changes listed in Table 8. Most of

state changes have very similar values across all of the fields, with the outlier being the

65

fourth row: the duration, origination bytes sent, response bytes, connection state, history,

origination packets, origination IP bytes, response bytes, and response IP bytes are all in

the same range.

To validate that the pattern was indicative of a state change request, the recorded

time that the state change was made on the iPhone matched up with the time listed in

Table 8 above. Additionally, the time the change request was seen in the traffic from the

iPhone to the Cloud site correlates with traffic identified between the myQ device and the

myQ device’s Cloud site (see Table 9 below). Looking at the actual beginning and ending

times of each connection, Wireshark shows that the app on the iPhone started its

connection at 10:38:06.189218000 PDT and ended it at 10:38:06.430220000 PDT. This

was almost immediately followed by the connection between the myQ device and the

myQ Cloud site which lasted from 10:38:06.4895 PDT until 10:38:31.4370 PDT.

Table 9.

Sample state change traffic sent from the iPhone (192.168.8.248) to the myQ Cloud site
(13.83.240.23) and then from the myQ Cloud site (20.42.27.108) to the myQ device
(192.168.8.206)

Timestamp Orig host IP Orig
port

Resp host IP Resp
port

Proto Duration Orig
bytes

Resp
bytes

Conn
state

Orig
pkts

2020-06-
23T10:38:06
-0700

192.168.8.248 55447 13.83.240.23 443 tcp 0.359 1249 5746 S1 24

2020-06-
23T10:38:06
-0700

20.42.27.108 8883 192.168.8.206 50854 tcp 24.947 85 425 OTH 14

Identifying State Changes of Ring

The state change for the Ring video camera is the act of putting the Ring into Live

mode allowing the end user to view the live feed from the camera. Analysis of the

network traffic led to the discovery that Ring uses the Real-time Transport Protocol

(RTP) to stream live video. The precursor to RTP traffic is Session Initiation Protocol

66

(SIP) traffic, since it is responsible for setting up the connection between the Ring Cloud

site and the iPhone. Table 10, below, shows the SIP traffic which is indicative of putting

the Ring camera into Live mode captured over four different days (6/24/20, 7/5/20,

7/12/20, and 7/13/20). This traffic was labeled as state changes and used to train the

classifiers which is discussed later in this chapter.

Table 10

Four instances of network traffic containing Ring Live mode requests sent between the
iPhone and the Ring Cloud site

Resp host
IP

34.223.30.139 44.226.215.196 34.223.30.114

Resp port 15064 15064 15064
Proto tcp tcp tcp
Duration 4.544156 14.338902 5.820299
Orig bytes 4392 4437 4088
Resp bytes 7451 7471 6753
Conn state S1 S1 S1
History ShADTadttT ShADTadttT ShADTadtTt
Orig pkts 48 60 48
Orig ip
bytes

11304 11922 10648

Resp pkts 40 48 36
Resp ip
bytes

16998 17454 15394

Identifying State Changes of the Rachio Smart Sprinkler System

The Rachio app was capable of performing a more complex behavior than simply

turning a device on and off or opening or closing a door; the Rachio app allows a user to

choose a sprinkler system zone to run and for how long it is to run. To start a “quick run”

of the sprinklers, the mobile app first communicates with a server that resolves to api-

service-prod.us-west-2.elasticbeanstalk.com. Over SSL it sends out about 1,000 bytes and

then 407 bytes. Next the mobile app sends the request to start the “quick run” by

67

connecting to a second Cloud site identified as rach.io and sends 10,000 bytes of data and

receives several tens of thousands of bytes from the Cloud server. One unique finding is

that in some cases both the mobile app and the Rachio device both connected to the same

Cloud site.

This exact behavior was seen for 10 other “quick runs” performed over several

different days (6/12/20, 6/23/20, 6/24/20, 7/5/20, and 7/13/20). To further validate this

state change, a network traffic capture was performed in which the Rachio app on the

mobile app was used to view the watering schedule, but not make any changes (like a

“quick run”). This time the Cloud site identified as rach.io was not accessed, confirming

that the Rachio app performs this identifiable pattern only when performing a quick run.

To summarize, the only time the Cloud site identified as rach.io was accessed was when a

quick run was requested. Therefore, network traffic connections between the mobile app

and rach.io were labeled as state changes for the Rachio (see Table 11 below).

Table 11

Three instances of network traffic containing quick change requests sent between the
iPhone and the Rachio Cloud site

Resp host IP 34.213.56.42 34.213.56.42 52.32.41.198
Resp port 443 443 443
Proto tcp tcp tcp
Duration 23.285352 28.606642 15.913739
Orig bytes 9217 9239 9230
Resp bytes 65852 66284 66837
Conn state S1 S1 S1
History ShADTadttT ShADTadttT ShADTadttT
Orig pkts 208 202 190
Orig IP bytes 29178 28934 28316
Resp pkts 212 200 190
Resp IP bytes 142978 144060 144646

68

Phase 3 – Train and Evaluate Machine Learning Algorithms to Identify State

Changes

 The main goal of this phase was to identify the combination of features, F, and

machine learning classifiers, C, which are the most successful in identifying state changes

hidden in the encrypted payloads across several types of smart home devices. This

involved identifying the features where 𝐹 = {𝑓!	, 𝑓$, … , 𝑓&}	in which 𝑓'(1 ≤ 𝑖 ≤ 𝑛) F is

comprised of the connection summaries produced by the Zeek utility when run on the

network traffic captures of the interaction experiments. The next step was to identify a

subset of F. This was represented by R, where R = {r!	, r$, … , r*}	in which

r+(1 ≤ i ≤ m), includes the most promising features that were identified to train the

classifier, C. This culminated in identifying which subset S (S	 ⊆ C) when trained with R

performs the best.

 The following steps were used to train the machine learning algorithms: 1) get the

data, 2) explore the data, 3) prepare the data, 4) identify promising models, and 5) fine

tune the system. Step 1 and 2 were covered above in Phase 2 – Capturing and Identifying

Network Traffic of Smart Home Devices. The rest of the steps will be covered here.

Prepare the Data

One of crucial steps of this research is feature selection, F. The goal of this step

was to identify 𝐹 = {𝑓!	, 𝑓$, … , 𝑓&}	in which 𝑓'(1 ≤ 𝑖 ≤ 𝑛). To ensure a robust feature set,

features were selected from one of the three categories: 1) aggregated, 2) synthesized,

and 3) protocol specific. This resulted in several features being selected from each

category. The list of features selected by category can be found in Table 12 below.

Table 12

69

Features selected by category with a description of each feature

Identify Promising Models

The outcome of this step was to identify which c, when trained with f, produces

the most accurate predictor out of the tested classifiers, S	 ⊆ C. Acar et al. (2018)

obtained an 88% accuracy of correctly detecting activities using Random Forest (RF).

Therefore, the RF algorithm was selected as a starting point. To evaluate the

effectiveness of RF, a 4-fold cross validation was performed. This involved randomly

Category Abbreviation Description

Aggregated orig_pkts Number of packets that the originator sent
Aggregated orig_ip_bytes Number of IP level bytes that the originator sent

(as seen on the wire, taken from the IP total_length
header field).

Aggregated resp_pkts Number of packets that the responder sent.
Aggregated resp_ip_bytes Number of IP level bytes that the responder sent

(as seen on the wire, taken from the IP total_length
header field).

Synthesized history Records the state history of connections as a string
of letters (such as SO, Connection attempt seen, no
reply, and SF, normal establishment and
termination).

Synthesized conn_state The state of the TCP connection which involves a
combination of one, several, or none of the
following packet types: SYN, ACK, FIN and RST

Synthesized duration How long the connection lasted. For 3-way or 4-
way connection tear-downs, this will not include
the final ACK.

Protocol
specific

id.orig_p The originator's 4-tuple of endpoint port.

Protocol
specific

id.resp_h The responder's 4-tuple of endpoint address.

Protocol
specific

id.resp_p The responder's 4-tuple of endpoint port.

Protocol
specific

proto The transport layer protocol of the connection.

Protocol
specific

orig_bytes The number of payload bytes the originator sent.

Protocol
specific

resp_bytes The number of payload bytes the responder sent.
See orig_bytes.

70

splitting the training set into five distinct subsets, training and evaluating the model 4

times, picking a different fold for evaluation each time, and then training on the other 4

folds.

This step involved two phases: 1) training each smart home device individually

with the selected features and RF, and 2) training with the combined set of smart home

devices with all state changes labeled the same. The results all both phases by device are

presented in the following sections.

TP-Link RF Training

 The first training of the RF classifier on the TP-Link device involved all 13 of

selected features listed above. RF aggregates and then produces a mean of several

Decision Trees all trained from different random subsets of the network traffic (James et

al., 2013). The training data, the collection of which was described in phase 2 above,

resulted in 430 instances of no state change requests and 24 instances of state change

requests. It is important to reiterate that the training data, collected from the network

traffic of all the smart home devices, contained instances of state changes, smart device

app use but no state changes, and traffic from non-smart device apps. The TP-Link data

was collected over a period of three days (6/20/20, 6/22/20, and 6/26/20). It is believed

that the traffic patterns identified as state changes will stay the same until a major

software change is applied. Therefore, three days of traffic was deemed sufficient.

A 4-fold cross validation was performed resulting in cross validation scores of

100% across all folds. The root mean square score was also 0 across all folds, with a

mean of zero and a standard deviation of zero. The recall, precision, and F! scores were

calculated. These also resulted in perfect scores of 100%.

71

 The next step was to reduce the number of features by identifying the most

important features used to train the RF classifier. The Jupyter notebook environment

using the Pandas and Numpy Python libraries was used during the entire machine

learning process to identify the most important RF features. The most popular method

used in this environment is an RF grid search (Géron, 2019). An RF grid search asks the

RF classifier to rank each feature by order of importance. The code to perform this task is

contained in the sklearn library GridSearchCV. The parameters for GridSearchCV were

leaf_size set to 30, n_jobs of none, n_neighbors equal to two and p = 2. The results are

listed in Table 13 and Figure 6 below.

Table 13

RF feature importance scores for TP-Link traffic
Feature Value
Resp bytes 0.28819812
Orig bytes 0.11335768
Orig IP bytes 0.09588693
Resp IP bytes 0.08113802
Resp port 0.06382875
Resp pkts 0.03410074
Orig pkts 0.02077022
Orig port 0.01948455
Duration 0.01168756

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

res
p_

by
tes

ori
g_

by
tes

ori
g_

ip_
by

tes

res
p_

ip_
by

tes

id.
res

p_
p

res
p_

pk
ts

ori
g_

pk
ts

id.
ori

g_
p

du
rat

ion

RF Feature
Importance Scores for

TP-Link Traffic

72

Figure 6. Feature importance scores for TP-Link traffic determined by the Random Forest
classifier

 The lead field, with over a quarter of the overall importance is resp_bytes,

represents the number of payload bytes the responder sent. This is followed by the

number of payload bytes the originator sent (orig_bytes) and the number of IP level bytes

that the responder sent (orig_ip_bytes). With the feature set reduced down to three

features, F = {resp_bytes, original_bytes, orig_ip_bytes} a 4-fold cross validation with

the RF classifier was run. Once again, this resulted in perfect scores for the cross

validation across all folds, the root mean square score across all folds, and for the

precision, recall, and F! scores. With perfect scores, it was obvious that the three

identified features combined with the RF classifier could not be beat.

myQ RF Training

 Once again, the RF classifier was used with all 13 features. Also, the training data

which included 1,216 connections without a state change and eight with a state change,

was collected as outlined in phase 2 above. The identical 4-fold cross validation, used

with the TP-Link device was used and resulted in cross validation scores of 100%,

99.673%, 100%, and 99.346%. The root mean squared errors were 0, .228, 0, and .323.

The mean was .138 with a standard deviation of .142. The precision, recall, and F!

scores were also all 100%. An RF grid search produced the results in Table 14 and Figure

7 below. This indicated that the most important feature is the responding server’s IP

address (id.resp_h), with over a quarter of the overall importance. The next two most

important features are orig_bytes and duration.

73

Table 14

RF feature importance scores for myQ
Feature Value
Resp host IP 0.273051817
Orig bytes 0.178656021
Duration 0.12654089
Orig IP bytes 0.066071173
Resp bytes 0.041034603
Orig pkts 0.035720589
Orig port 0.034761846
Resp IP bytes 0.026948269

Figure 7. Feature importance scores for myQ traffic determined by the Random Forest
classifier

 The RF classifier was run again with the three most important features F =

{id. resp_h, orig_ip_bytes, duration}. This resulted in cross value scores of 99.673%,

100%, 100%, and 99.673%. Root mean square errors of 0, 0.228, 0, and 0.228, a mean of

0.0571, and a standard deviation of 0.099. The precision, recall, and F! scores were also

all 100%. This validated the most important features and resulted in a strong RF

predictor. Attempting to reduce the number of features to less than the three listed above,

resulted in lower precision, recall, and F! scores.

0
0.1
0.2
0.3

id.
res

p…

ori
g_

b…

du
rat

ion
ori

g_
ip…

res
p_

b…

ori
g_

pk
ts

id.
ori

g_
p

res
p_

i…

RF Feature
Importance Scores

for myQ

74

Ring RF Training

Data collected from phase 2 was used to train the RF classifier. This included all

13 features, with training data that included 463 connections without a state change and

eight with a state change. The same 4-fold cross validation was repeated, resulting in

cross validation scores of 100%, 99.152%, 100%, and 100 %. The root mean squared

errors were 0, .184, 0, and .184. The mean was .054 with a standard deviation of .092.

The precision, recall, and F! scores were also all 100%. An RF grid search produced the

results in Table 15 and Figure 8 below. This indicated that the most important feature is

the responding server’s IP address (id.resp_p), followed by orig_ip_bytes and

resp_ip_bytes.

Table 15

RF feature importance scores for Ring
Feature Value
Resp port 0.203392693
Orig IP bytes 0.10158929
Resp IP bytes 0.09997153
Duration 0.042720683
Orig bytes 0.035100149
Resp bytes 0.034483921
Orig port 0.033622461

75

Figure 8. Feature importance scores for Ring traffic determined by the Random Forest
classifier

The three most important features F = {id. resp_p, orig_ip_bytes, resp_ip_bytes}

were used to train the RF classifier resulting in cross value scores of 100%, 100%,

99.236% and 100 %. Root mean square errors of 0, 0. 0.174, 0, and 0, a mean of 0.043,

and a standard deviation of 0.075. The precision, recall, and F! scores were also all

100%. This once again validated the most important features and resulted in a strong RF

predictor. Attempting to reduce the number of features to less than the three listed above,

resulted in lower precision, recall, and F! scores.

Rachio RF Training

 The final device was trained in the exact same way as the previous devices; the

RF classifier was used with all 13 features, with training data that included 1,019

connections without a state change and eleven with a state change from the data collected

during phase 2. The 4-fold cross validation resulted in cross validation scores of

98.449%, 99.224%, 99.221%, and 99.221%. The root mean squared errors were all .264.

The mean was 0.264 with a standard deviation of .0003. The precision, recall, and F!

scores were also all 100%. An RF grid search produced the results in Table 16 and Figure

0
0.05
0.1

0.15
0.2

0.25

id.
res

p_
p

ori
g_

ip_
by

tes

res
p_

ip_
by

tes

du
rat

ion

ori
g_

by
tes

res
p_

by
tes

id.
ori

g_
p

RF Feature Importance
Scores for Ring

76

9 below. This indicated that the most important feature is orig_pkts, followed by

resp_ip_bytes and orig_ip_bytes.

Table 16

RF feature importance scores for Rachio
Feature Value
Orig pkts 0.15045
Resp IP bytes 0.12303946
Orig IP bytes 0.11599227
Resp pkts 0.09410367
Orig bytes 0.06746237

Figure 9. Feature importance scores for Rachio traffic determined by the Random Forest
classifier

The three most important features F = {orig_pkts, resp_ip_bytes, orig_ip_bytes}

were used to train the RF classifier resulting in cross value scores of 98.44961%,

99.225%, 99.222% and 99.222%. Root mean square errors of .374, .323, .265, and .265, a

mean of 0.307, and a standard deviation of 0.046. The precision, recall, and F! scores

were also all 100%. This validated the most important features and resulted in a strong

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

ori
g_

pk
ts

res
p_

ip_
by

tes

ori
g_

ip_
by

tes

res
p_

pk
ts

ori
g_

by
tes

RF feature
importance scores

for Rachio

77

RF predictor. Once again, attempting to reduce the number of features to less than the

three listed above, resulted in lower precision, recall, and F! scores.

Combination of all the Devices’ Traffic

 The culminating effort is to identify any state change, regardless of what device it

was produced for, across all three types of smart home devices. All of the files from all of

the device trainings listed above were combined. All of the state changes were labeled

with a one. This resulted in a test set consisting of 3,128 connections without a state

change and 51 with a state change. Once again, the same process was followed for

training the classifiers on the state changes for each smart home device; the 4-fold cross

validation was run to calculate the cross-validation scores, root mean squared errors and

mean. Again, a confusion matrix was calculated, plus the precision, recall and F! score.

This time three different classifiers, Random Forest, Naïve Bayes, and K-Nearest

Neighbors, were used across multiple combinations of features to identify which subset S

(S	 ⊆ C) when trained with R performs the best.

Random Forest on the Combination of all the Devices’ Traffic

The 4-fold cross validation using RF resulted in cross validation scores of

98.365%, 98.365%, 99.119%, and 99.244%. The root mean squared errors were .128,

.1279, .094, and .094. The mean was .11087019 with a standard deviation of .0170055.

The confusion matrix was also about the same `3128 0
20 31d, resulting in a precision score

of 99.682%, recall score of 80.392%, and F! score of 87.645%. The next goal was to

drastically improve these scores. To do so, the RF feature importance scores were used to

choose which features to include in the next training round (see Table 17 below). The

78

features all had about the same importance rating, with the majority of features’

importance ranging between 7-9%.

Table 17

RF feature importance scores for all of the devices combined
Feature Value
Resp bytes 0.09419
Orig IP bytes 0.0800405
Resp IP bytes 0.07896994
Orig bytes 0.0725435
Orig port 0.07226243
13.83.240.23 0.07168504
Resp pkts 0.04634177
Orig pkts 0.04617784

 The top three features were chosen to rerun through the system (resp_bytes,

orig_ip_bytes, and resp_ip_bytes). This resulted in cross value scores were 98.36478%,

98.365%, 99.748%, and 99.496%. Root mean square errors of .128, .128, .050, and .071,

a mean of .094, and a standard deviation of 0.034. The precision score was 99.651%,

recall was 78.431%, and F! score of 86.07%. This was not much of an improvement.

 In an attempt to improve the training of the system, a fourth feature was added,

orig_bytes. This slightly improved most of the scores, but more importantly, had big

effects on recall and on the F! score. The recall score improved from 78.431% to

87.254% and the F! score went from 86.07% to 92.59%. Both of these are very

encouraging improvements.

To see if these scores could be improved any further, the fifth feature, id.orig_p,

was added. This resulted in almost perfect cross value scores of 99.057%, 99.214%,

99.843%, and 99.213%. Root mean square errors of .089, 0.089, 0.039, and 0.069, a

mean of .071, and a standard deviation of 0.020. The most encouraging results were the

79

precision, recall and F! score. The precision was 99.900%, which is hard to improve. The

recall was 93.902 % and the F! score was 96.703%. A summary of the features used and

their scores can be found below in Table 18 and Figure 10. These results indicate that it is

possible to identify state changes from disparate types of devices in the encrypted traffic

sent from an iPhone to the smart devices’ Cloud sites. One interesting finding in the

Table 18 below, is that the F! score is lower when all of the features were used to train

the RF algorithm as opposed to when it is trained with a select subset of features. The

reason for this could be that some of the features are misleading in terms of identifying

state change patterns. When those misleading features were removed, then the F! score

improved.

Table 18

Features used for RF training and their resulting scores
Features Precision Recall 𝐅𝟏

id.orig_p, id.resp_h, orig_bytes,
resp_bytes, orig_ip_bytes,
resp_ip_bytes

0.99524941 0.70731707 0.7907168
1

resp_bytes, orig_ip_bytes, resp_ip 0.99650794 0.78431373 0.8607478
5

All features 0.99698125 0.81372549 0.8840282
2

All features except duration,
conn_state, history, resp_pkts

0.9139747 0.92993393 0.9217977
4

orig_bytes, resp_bytes,
orig_ip_bytes, resp_ip_bytes

0.9979306 0.87254902 0.9259294
4

id.orig_p, orig_bytes, resp_bytes,
orig_ip_bytes, resp_ip_bytes

0.99840663 0.90196078 0.9448542
2

80

Figure 10. The Random Forest classifier trained on all device network traffic

Naïve Bayes

 The same exact training as discussed above was repeated, but this time with the

Naïve Bayes classifier (NB), which uses conditional probability to assign the most likely

class to an observation (James et al., 2013). To start the training, all of the features were

used. This resulted in a very high F! score of .942. To see if it was possible to improve

the scores and to reduce the number of features, several iterations of removing different

features was performed (see Table 19 and Figure 11 below). The end result was that the

F! score of .942 could not be beat. However, it was possible to achieve the same scores

by removing three of the features leaving the following ten features: id.orig_p, id.resp_h,

id.resp_p, proto, orig_bytes, resp_bytes, conn_state, history, orig_pkts, ip_bytes.

Table 19

Features used for Naïve Bayes training and their resulting scores

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

id.orig_p, id.resp_h, orig_bytes, resp_bytes,
orig_ip_bytes, resp_ip_bytes

resp_bytes, orig_ip_bytes, resp_ip

All features

All features except duration, conn_state, history,
resp_pkts

orig_bytes, resp_bytes, orig_ip_bytes,
resp_ip_bytes

id.orig_p, orig_bytes, resp_bytes, orig_ip_bytes,
resp_ip_bytes

Random Forest On Combined Device
Traffic

f1_score recall_score precision_score

81

Set Features Precision Recall 𝐅𝟏

 1 All 0.8984375 0.99792199 0.94243709

 2 All except duration, conn_state,
history, resp_pkts

0.84459459 0.99632353 0.90615498

 3 All except duration, conn_state,
history

0.84459459 0.99632353 0.90615498

 4 All except resp_pkts 0.8984375 0.99792199 0.94243709

 5 All except duration, resp_pkts 0.8984375 0.99792199 0.94243709

 6 All except duration, resp_pkts,
resp_ip_bytes

0.8984375 0.99792199 0.94243709

 7 All except duration, resp_conn_state,
history, resp_pkts, resp_ip_bytes

0.84459459 0.99632353 0.90615498

 8 id.orig_p, orig_bytes, resp_bytes,
orig_ip_bytes, resp_ip_bytes

0.50890693 0.60411338 0.2182256

Figure 11. The Naïve Bayes classifier trained on all device network traffic

K-Nearest Neighbors

 The final classifier to train with was k-nearest neighbors (KNN). KNN uses the

majority class of the K nearest observations to classify new observations (James et al.,

2013). To optimize performance, we set the leaf size to 30 and the number of neighbors

0

0.2

0.4

0.6

0.8

1

1.2

 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Naïve Bayes On Combined Device
Traffic

Precision recall f1_score

82

to five. A small leaf size slows query times, while a larger leaf size turns the algorithm

into a brute force attempt. For this research several leaf sizes and neighbor combinations

were tested, with 30 providing the optimal result. Once again, to begin the training, all

features were used in the exact same manner as outlined in the Random Forest and Naïve

Bayes training sections. The results of all the features was a promising F! score of .903.

In an attempt to improve this score and reduce the number of features used, features were

added and removed over several training iterations (see Table 20 and Figure 12 below).

The winning combination was the use of nine features: id.orig_p, id.resp_h, id.resp_p,

proto, orig_bytes, resp_bytes, orig_pkts, orig_ip_bytes, resp_ip_bytes (all except

duration, conn_state, history, resp_pkts). This produced a much improved F! score of

.944.

Table 20

Features used for K-Nearest Neighbors training and their resulting scores

Set Features Precision Recall 𝐅𝟏
1 All except duration, conn_state,

history, resp_pkts
0.95721548 0.93073316 0.94356571

2 All except resp_pkts, duration 0.91900245 0.95934569 0.9382125
3 All except duration, history,

resp_pkts
0.91900245 0.95934569 0.9382125

4 All except resp_pkts, duration,
resp_ip_bytes

0.89887964 0.92961424 0.9136548

5 All except resp_pkts 0.9167699 0.90068201 0.90856184
6 All 0.91491004 0.89087809 0.90252259
7 orig_bytes, resp_bytes,

orig_ip_bytes, resp_ip_bytes
0.90217997 0.8711104 0.88599791

8 id.orig_p, orig_bytes 0.87112676 0.89972293 0.88487307
9 id.orig_p, orig_bytes,

resp_bytes, orig_ip_bytes,
resp_ip_bytes

0.87112676 0.89972293 0.88487307

10 id.orig_p, orig_ip_byes,
resp_ip_bytes

0.89375732 0.87095055 0.88200103

83

11 id.orig_p, orig_pkts, resp_pkts,
resp_ip_bytes

0.82861226 0.81968728 0.81961994

Figure 12. The Naïve Bayes classifier trained on all device network traffic

Best Classifier and Features

 Overall, all three classifiers, K-Nearest Neighbors, Naïve Bayes, and Random

Forest performed almost equally well with F! scores of .944, .942, and .945 respectively

(see Table 21, Figure 13, and Figure 14 below). The main difference was the precision

versus recall scores, plus the number of classifiers required to train the classifiers. The

most balanced scores were achieved by K-Nearest Neighbors with a precision score of

.957 and a recall score of .931. If it is important to have very few false positives then the

Random Forest classifier, with a precision of .998, would be the best choice. However,

this would result in failing to identify about 10% of the state changes since the recall for

Random Forest is .902. Alternatively, if the goal is to identify almost all of the state

changes, then Naïve Bayes is the best classifier to choose since it had a recall score of

.998. This again comes with a downside: Naïve Bayes had a precision score of .898,

meaning that about 10% of its predictions would be false positives.

Table 21

0.7
0.75
0.8

0.85
0.9

0.95
1

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9 Set 10 Set 11

K-Nearest Neighbors On Combined Device
Traffic

Precision Recall F1

84

Scores comparisons of all three classifiers
Classifier Precision Recall 𝐅𝟏
KNN 0.95721548 0.93073316 0.94356571
Naïve Bayes 0.8984375 0.99792199 0.94243709
Random Forest 0.99840663 0.90196078 0.94485422

Figure 13. Precision, recall, and F! scores for each of the three classifiers

Figure 14. Each classifier and their correspond precision, recall, and F! scores

 Random Forest was by far the best classifier in terms of requiring the fewest

number of features to optimally train the classifier, requiring just five features (see Table

0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1
1.02

Precision Recall F1 Score

Performance Scores by Metric Per
Classifier

kNN Naïve Bayes Random Forest

0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1
1.02

kNN Naïve Bayes Random Forest

Performance Scores By Classifier Per
Metric

Precision Recall F1 Score

85

22 below). Both K-Nearest Neighbors and Naïve Bayes required almost twice as many,

needing nine and ten features respectively. Requiring fewer features lowers the overhead

in future training and can simplify the implementation of the classifier.

Table 22

Number of features by category required per classifier
Classifier Synthesized Protocol

specific
Aggregated Total # of

Features
Random Forest 0 3 2 5
K-Nearest
Neighbor

0 6 3 9

Naïve Bayes 2 6 2 10

All three categories of features, synthesized, protocol specific, and aggregated,

were used to optimally train the classifiers (see Table 22, above). However, synthesized

features were only used by Naïve Bayes. The most heavily relied upon category of

features for training was protocol specific, accounting for 15 out of the total of 24

features used.

Four features were required to optimally train all three of the classifiers: id.orig_p,

orig_bytes, resp_bytes, and orig_ip_bytes (see Table 23, Figure 15, and Figure 16

below). All of these features, except for id.orig_p, deal with the number of bytes sent in

the connection. This indicates that the number of bytes sent is vital information for all

three classifiers when identifying state changes.

Table 23

Features by category required per classifier
Feature Category Random Forest K-Nearest Neighbor Naïve Bayes
Protocol specific id.orig_p id.orig_p id.orig_p
Protocol specific

id.resp_h id.resp_h

Protocol specific

id.resp_p id.resp_p
Protocol specific

proto proto

86

Protocol specific orig_bytes orig_bytes orig_bytes
Protocol specific resp_bytes resp_bytes resp_bytes
Synthesized

conn_state

Synthesized

history
Aggregated

orig_pkts orig_pkts

Aggregated orig_ip_bytes orig_ip_bytes orig_ip_bytes
Aggregated resp_ip_bytes resp_ip_bytes

Figure 15. The number of features used in each category for each of the optimally trained
classifiers

0

3
2

0

6

3
2

6

2

0

1

2

3

4

5

6

7

Synthesized Protocol specific Aggregated

Number Of Features Used By Feature Category
Per Classifier

Random Forest K-Nearest Neighbor Naïve Bayes

0 0
2

3

6 6

2
3

2

0

1

2

3

4

5

6

7

Random Forest K-Nearest Neighbor Naïve Bayes

Number of Features Used Per Classifier
Classifier By Feature Category

Synthesized Protocol specific Aggregated

87

Figure 16. The number of features used by each of the optimally trained classifiers per
feature category

 One important aspect to note is overhead issues. When training all three of the

different machine learning algorithms, all three completed their runs within just a few

seconds. Given that the dataset only contained hundreds of lines of data, as opposed to

thousands of lines, a quick run was not surprising. Therefore, it was not possible to judge

which algorithm could require more overhead due to a longer runtime.

Summary

 It is possible to identify state changes in encrypted traffic sent from an iPhone to a

smart device’s Cloud site. Training a classifier to spot these change requests is highly

successful when done per device. In other words, near perfect identification of turning a

light switch from on to off from a mobile app can be achieved by identifying patterns in

the encrypted traffic.

It is also possible to train a classifier to identify all state changes hidden in

encrypted network traffic across several types of smart home devices. Three different

classifiers were tested: Random Forest, Naïve Bayes, and K-Nearest Neighbors. All three

had similar success varying only in their recall and precision scores. In this research

experiment, there was success in identifying state changes sent from three different

categories of smart home devices: those that have simple state changes, those that have

more complex state changes, and those that send a lot of data when a state change is

made. The simple devices included the TP-Link WiFi plug and the Chamberlain myQ

88

Garage Opener. The more complex device was the Rachio Smart Sprinkler system. The

device that sent a lot of traffic was Amazon’s Ring camera.

89

Chapter 5

Conclusions, Implications, Recommendations, and Summary

Conclusions

Smart home device account takeover is trivial due to two of the top vulnerabilities

of smart home devices: weak password policies and a lack of account lockout by the

device’s Cloud server (Alharbi & Aspinall, 2018). Once an attacker has commandeered

access to a smart home device, they could harass the resident, lock the user out of their

device, scare the user out of their house (to gain access to rob it), and several other

malicious attacks (Freed et al., 2018a; Ronen & Shamir, 2016a). Currently, there is not an

easy way for home users to detect that a malicious actor is making unwanted changes to

their smart home devices (Geeng & Roesner, 2019a; Matthews et al., 2017; Zeng et al.,

2017). Previous research has leveraged patterns discovered in encrypted network traffic

to identify a smart home device and if it has received a state change request (Acar et al.,

2018; Apthorpe, Reisman, & Feamster, 2017a; Copos et al., 2016a; Marchal et al., 2019;

Meidan et al., 2017; Miettinen et al., 2017a; V. Sivaraman et al., 2015). The research

detailed in this paper successfully extended previous research by identifying state

changes sent via network traffic between a smart device’s app running on a smartphone

and the smart device’s Cloud site.

This research also succeeded in identifying state change requests sent from a

smartphone to smart home devices’ Cloud sites, across a variety of different types of

90

popular smart home devices: 1) devices with simple behaviors, 2) devices with complex

behaviors, and 3) devices that send a lot of data. This included four smart home devices:

the TP-Link smart plug and the myQ garage door opener representing device’s with

simple behaviors, the Rachio smart sprinkler system, which is a device capable of more

complex behaviors, and Amazon’s Ring video camera which sends a large amount of

data. The network traffic patterns indicative of a state change were identified for each of

the smart home devices and then used to label the captured network traffic. The Random

Forest algorithm was successfully trained using this labeled network traffic data for all

four of the devices individually.

The main goal of this research was also achieved. This entailed identifying the

best combination of network traffic features and machine learning algorithms capable of

identifying state changes in encrypted traffic across all four of the devices. The most

balanced results was achieved with the k-Nearest Neighbors algorithm, the Random

Forest algorithm had the highest precision score, and Naïve Bayes had the best recall

score. The most efficient algorithm was determined to be Random Forest and the most

important features were id.orig_p, orig_bytes, resp_bytes, and orig_ip_bytes since they

were used to optimally train each of the three algorithms.

Implications

The purpose of this research was to identify rogue changes made to a smart home

device by an actor who is outside the home network. This addresses the situation when a

user is at home and does not want state changes to be made to their same home devices

by an individual outside the home. Identifying these rogue changes is possible due to the

commonly designed infrastructure of smart home devices; most smart home devices are

91

directly controlled by the smart home device’s Cloud server (Apthorpe, Reisman, &

Feamster, 2017a). Therefore, the Cloud server is usually the middleman between the

smart device’s app running on a smartphone and the smart home device. When a user

requests a change on their smartphone via the smart device’s app, the change request is

sent to the smart device’s Cloud server, the change is noted on the Cloud server, and then

sent to the smart home device.

When a user initiates a state change request at home, the change request originates

from inside the home across the home WiFi network, travels outside the home to the

Cloud server, then back in again. This is in contrast to when someone outside the home

makes a change; the change is applied to the Cloud server, sent down to the home WiFi

network, and applied to the smart device. What is missing when the change request

originates from outside the home is the traversal of the state change request across the

home WiFi network. This missing piece can be used to establish if the change originated

from inside the home or from outside the home; if the state change is seen in the home

WiFi traffic, then it originated from inside the home, if it is not seen, then the change

originated from outside the home.

This research, using machine learning algorithms, successfully identified state

change requests sent from a smartphone, across the home WiFi network, to the smart

device’s Cloud site. This was accomplished for three main types of smart home devices:

those are capable of simple behaviors, those with more complex behaviors, and those that

send a lot of data.

A limitation of this research was that the Zeek was the main tool used to analyze

network traffic. There are several other means to explore network traffic which should be

92

explored in future research. Additionally, most of the identification tasks included in this

research are binary. The implication is that if multiple categories are added, then the

performance will more than likely degrade.

Recommendations

 This research extends previous work which explored the use of machine learning

to identify state changes applied to smart home devices. This research can also be

extended. Network traffic generated from other smart home device apps can be added to

the traffic generated and labeled from this research. This would create a list of devices

that could or could not have their state changes identified in encrypted traffic by machine

learning algorithms. Further testing could be done by adding more smart home devices to

each category of smart home devices and then testing the effectiveness of machine

learning within each category or combinations between categories.

Additionally, smart hubs and smart assistants could also be studied. As stated

previously, both devices act similarly to smart phones in that they send state changes via

encrypted traffic over a home WiFi network. Therefore, it is possible that using a similar

approach taken in this research, state changes sent by smart hubs and smart assistants

could be identified.

 This research project used 13 different network traffic features, in various

combinations to train machine learning algorithms. This omitted eight features that were

identified by this research as potential candidates. These could be tested along with others

that this research did not identify. It is possible that the features that were not tested prove

easier to derive or may even improve the training.

93

This research did not cover an exhaustive combination of features tested with

machine learning algorithms. Many more could be tested. Additionally, new features

could be combined with new machine learning algorithms that were not identified in this

research. Combinations of these could also be included in future research.

 Once again, the purpose of this research was to identify and possibly prevent

unwanted external state changes. Therefore, future research could build such a system

that would be capable of doing just that: either alerting the home user of a rogue change

or blocking the change from being applied to the smart home device. This would involve

tying together this research with previous research that demonstrated the feasibility of

identifying state changes sent from the Cloud site to the smart home device. The missing

piece of the proposed system would need to be capable of linking state changes sent out

to the Cloud site via a smartphone on the home WiFi network to those that were coming

in from the Cloud site to the smart home device. Preventing the state change from taking

place has previously been studied in the form of intrusion prevention systems that are

capable of dropping unwanted packets.

Summary

 Smart home devices are becoming more popular with consumers with the number

of devices in peoples’ homes increasing (He et al., 2018). Malicious users have taken

notice of this trend and have begun to manipulate these devices through known

vulnerabilities such as poor authentication practices (Freed et al., 2018a). One way to

monitor these malicious changes is by monitoring home network traffic.

Change requests to smart home devices travel across the network in the form of

encrypted network packets. Since the traffic is typically encrypted, it is not possible to

94

simply read the contents of the packet to learn if the packet contains instructions for the

smart device to change states (Apthorpe, Reisman, Sundaresan, et al., 2017; Copos et al.,

2016a). However, there are attributes of the packet that are not that are not encrypted,

which, along with the size of the payload can be used to establish patterns indicative of a

smart device state change request, versus an update, versus a status check (Meidan et al.,

2017). This research has extended previous research by identifying the best combination

of features and machine learning algorithms combination capable of identifying state

change requests across a variety of different types of popular smart home devices. This

was accomplished in three major phases: phase 1) focused on analyzing the publicly

available network data captures, phase 2) involved capturing the network traffic and

identifying the traffic patterns indicative of a state change request of several smart home

devices, and phase 3) included identifying network traffic features, using those features to

train machine learning algorithms, and identify the machine learning algorithm that

performed the best across all of the selected smart home devices.

Phase one involved the datasets provided by Alrawi et al. (2019) and Ren et al.

(2019). Alrawi et al. (2019) collected network traffic over a period of 13 days resulting in

over 150 GB of data. The analysis of this dataset found that there was not one instance

when both the smart device’s app and the smart device were sending or receiving

network traffic within the same timeframe (i.e. within five minutes of each other). The

second dataset from Ren et al. (2019), included network traffic captured from 81 different

smart home devices located in labs located in the United States and the United Kingdom.

In-depth analysis of both datasets was performed. Unfortunately, it was discovered that

the network traffic did not contain any network traffic from a smartphone or tablet.

95

 Phase two involved capturing network traffic in a lab environment and then

identifying the state changes of four smart home devices from three different categories

of devices: 1) simple behavior, where the TP-Link WiFi Plug and the Chamberlain myQ

Garage Opener were selected, 2) complex behavior, which included the Rachio Smart

Sprinkler, and 3) sending large amounts of data, in which the Amazon’s Ring video

camera was selected. The TP-Link’s state change was identified by a new connection that

would be created between the iPhone and the TP-Link WiFi Plug directly whenever the

switch was turned on or off. Additionally, identical values for three network attributes

were seen every time the plug’s state was changed. For the myQ device, a pattern

emerged in which the app on the iPhone would communicate with the account-devices-

gdo.myq-cloud.com Cloud site whenever the door was either opened or closed. Next, the

Ring device’s state change was identified by SIP traffic that was seen every time the

camera was put into Live mode. Finally, the Rachio “quick run” state change was

identified by the connection to the Cloud site rach.io.

 The training of the machine learning algorithms involved selected features from

three categories: 1) aggregated, 2) synthesized, and 3) protocol specific. This included 13

features across the three categories. The first step involved using the Random Forest

algorithm to identify state changes of each of the devices. The TP-Link plug was

successfully trained with the just three features: resp_bytes, original_bytes, and

orig_ip_bytes. Perfect scores for cross validation across all folds was achieved, with

perfect scores for the root mean square score across all folds, and for the precision, recall,

and F! scores. Only three features was necessary to optimally train the myQ device:

id.resp_h,orig_ip_bytes, and duration. The precision, recall, and F! scores were all 100%.

96

Again, only three features were needed to successfully train the Ring device: id.resp_p,

orig_ip_bytes, and resp_ip_bytes. The precision, recall, and F! scores were all 100%.

Finally, the Rachio device also required three features to optimally train it: orig_pkts,

resp_ip_bytes, and orig_ip_bytes. The precision, recall, and F! scores were, once again,

all 100%.

 The culminating task was to combine all of the network traffic from all four of the

devices and then train three different machine learning algorithms with different

combinations of features. The three different algorithms were Random Forest, Naïve

Bayes, and K-Nearest Neighbors. Starting with the Random Forest algorithm, the best

results were obtained with five features: resp_bytes, orig_ip_bytes, resp_ip_bytes,

orig_bytes, and id.orig_p. This produced a precision score of 99.9002%, recall of 93.902

%, and an F! score of 96.7033%. The Naïve Bayes algorithm performed similarity, with a

precision score of 99.9002%, recall of 93.902 % and an F! score of 96.7033%. Finally

the K-Nearest Neighbors algorithm produced the best results when trained with ten

features: id.orig_p, id.resp_h, id.resp_p, proto, orig_bytes, resp_bytes, orig_pkts,

ip_bytes, resp_ip_bytes (all except duration, conn_state, history, resp_pkts). This

produced an impressive F! score of .9435.

Overall, all three classifiers, K-Nearest Neighbors, Naïve Bayes, and Random

Forest performed almost equally well with F! scores of .94356, .9423, and .9449

respectively. They varied in their precision and recall scores, plus the number of

classifiers required for training. K-Nearest Neighbors achieved the most balanced results

with a precision score of .9572 and a recall score of .9307. The Random Forest algorithm

had the highest precision score of .9984 and Naïve Bayes had the best recall score of

97

.9979. In terms of number of features required to train an algorithm, Random Forest was

by far the best requiring just five features. Finally, it was evident that the most important

features, which were used for all three classifiers, came down to just four features:

id.orig_p, orig_bytes, resp_bytes, and orig_ip_bytes.

In summary, our research goal – the identification of state changes by using

encrypted IoT network traffic – was achieved empirically. The success of identifying

state change requests sent from a mobile app, combined with previous research that

identified state changes sent to the smart home device, allows for the development of a

system that could block unwanted state changes that originate from a malicious user

located outside of the house. Therefore, this research adds to the body of knowledge to

IoT security and could be extended to the identification of other networking patterns

based on encrypted traffic.

98

Appendix A

Zeek Information

Zeek’s conn.log fields

Zeek’s possible conn_state values

Value Description
S0 Connection attempt seen, no reply.

Field Description
ts This is the time of the first packet.
uid A unique identifier of the connection.
id.orig_h The originator's 4-tuple of endpoint address.
id.orig_p The originator's 4-tuple of endpoint port.
id.resp_h The responder's 4-tuple of endpoint address.
id.resp_p The responder's 4-tuple of endpoint port.
proto The transport layer protocol of the connection.
service An identification of an application protocol being sent over the connection.

duration
How long the connection lasted. For 3-way or 4-way connection tear-downs, this will
not include the final ACK.

orig_bytes The number of payload bytes the originator sent.
resp_bytes The number of payload bytes the responder sent. See orig_bytes.
conn_state There are several possible conn_state values (see table below).

local_orig
If the connection is originated locally, this value will be T. If it was originated
remotely it will be F.

local_resp
If the connection is responded to locally, this value will be T. If it was responded to
remotely it will be F.

missed_bytes
Indicates the number of bytes missed in content gaps, which is representative of packet
loss.

history Records the state history of connections as a string of letters (see table below).
orig_pkts Number of packets that the originator sent

orig_ip_bytes
Number of IP level bytes that the originator sent (as seen on the wire, taken from the IP
total_length header field).

resp_pkts Number of packets that the responder sent.

resp_ip_bytes
Number of IP level bytes that the responder sent (as seen on the wire, taken from the IP
total_length header field).

conn_state
value conn_state value descriptions

99

S1 Connection established, not terminated.
SF Normal establishment and termination.
REJ Connection attempt rejected.
S2 Connection established and close attempt by originator seen (but no reply from responder).
S3 Connection established and close attempt by responder seen (but no reply from originator).
RSTO Connection established, originator aborted (sent a RST).
RSTR Responder sent a RST.
RSTOS0 Originator sent a SYN followed by a RST, we never saw a SYN-ACK from the responder.

RSTRH
 Responder sent a SYN ACK followed by a RST, we never saw a SYN from the (purported)
originator.

SH
 Originator sent a SYN followed by a FIN, we never saw a SYN ACK from the responder
(hence the connection was “half” open).

SHR Responder sent a SYN ACK followed by a FIN, we never saw a SYN from the originator.
OTH No SYN seen, just midstream traffic (a “partial connection” that was not later closed).

Zeek’s conn.log history field

Letter Meaning

s a SYN w/o the ACK bit set

h a SYN+ACK (“handshake”)

a a pure ACK

d packet with payload (“data”)

f packet with FIN bit set

r packet with RST bit set

c packet with a bad checksum (applies to UDP too)

g a content gap

t packet with retransmitted payload

w packet with a zero window advertisement

i inconsistent packet (e.g. FIN+RST bits set)

q multi-flag packet (SYN+FIN or SYN+RST bits set)

100

Letter Meaning

^ connection direction was flipped by Zeek’s heuristic

Note: If the event comes from the originator, the letter is in upper-case

Connections involving state changes sent from the iPhone to the myQ Cloud site
id.ori
g_h

id.o
rig
_p

id.re
sp_h

id.r
esp
_p

p
ro
to

se
rv
ice

du
rat
ion

orig
_by
tes

resp
_by
tes

con
n_st
ate

hist
ory

ori
g_p
kts

orig_
ip_b
ytes

res
p_p
kts

resp_
ip_by
tes

192.1
68.8.
248

554
17

13.8
3.24
0.23

443 tc
p

ssl 0.3
476
65

112
1

574
6

S1 ShA
DTa
dt

24 3490 24 1273
2

192.1
68.8.
248

554
34

13.8
3.24
0.23

443 tc
p

ssl 0.3
241
97

124
8

574
6

S1 ShA
DTa
dt

24 3744 24 1273
2

192.1
68.8.
248

554
46

13.8
3.24
0.23

443 tc
p

ssl 0.4
003
31

124
8

574
6

S1 ShA
DTa
dt

22 3640 24 1273
2

192.1
68.8.
248

554
23

13.8
3.24
0.23

443 tc
p

ssl 1.0
862
21

117
4

434 S1 ShA
DTa
dt

20 4422 20 1900

192.1
68.8.
248

554
35

13.8
3.24
0.23

443 tc
p

ssl 0.4
760
44

124
9

574
6

S1 ShA
DTa
dt

24 3746 24 1273
2

192.1
68.8.
248

554
47

13.8
3.24
0.23

443 tc
p

ssl 0.3
590
15

124
9

574
6

S1 ShA
DTa
dt

24 3746 24 1273
2

101

References

Acar, A., Fereidooni, H., Abera, T., Sikder, A. K., Miettinen, M., Aksu, H., Conti, M.,
Sadeghi, A.-R., & Uluagac, A. S. (2018). Peek-a-Boo: I see your smart home
activities, even encrypted! ArXiv Preprint, arXiv:1808.02741.
https://doi.org/10.1145/3395351.3399421

Alharbi, R., & Aspinall, D. (2018). An IoT analysis framework: An investigation of IoT
smart cameras’ vulnerabilities. Living in the Internet of Things: Cybersecurity of
the IoT - 2018, 47–57. https://doi.org/10.1049/cp.2018.0047

Ali, W., Dustgeer, G., Awais, M., & Shah, M. A. (2017). IoT based smart home: Security
challenges, security requirements and solutions. 2017 23rd International
Conference on Automation and Computing (ICAC), 1–6.
https://doi.org/10.23919/IConAC.2017.8082057

Alrawi, O., Lever, C., Antonakakis, M., & Monrose, F. (2019b). Sok: Security evaluation
of home-based IoT deployments. 2019 IEEE Symposium on Security and Privacy
(SP), 1362–1380. https://doi.org/10.1109/SP.2019.00013

Anthi, E., Williams, L., Słowińska, M., Theodorakopoulos, G., & Burnap, P. (2019). A
supervised intrusion detection system for smart home IoT devices. IEEE Internet
of Things Journal, 6(5), 9042–9053. https://doi.org/10.1109/JIOT.2019.2926365

Apthorpe, N., Reisman, D., & Feamster, N. (2017a). Closing the blinds: Four strategies for
protecting smart home privacy from network observers. ArXiv Preprint
ArXiv:1705.06809.

Apthorpe, N., Reisman, D., & Feamster, N. (2017b). A smart home is no castle: Privacy
vulnerabilities of encrypted IoT traffic. ArXiv:1705.06805 [Cs].
http://arxiv.org/abs/1705.06805

Apthorpe, N., Reisman, D., Sundaresan, S., Narayanan, A., & Feamster, N. (2017). Spying
on the smart home: Privacy attacks and defenses on encrypted IoT traffic. ArXiv
Preprint ArXiv:1708.05044. https://arxiv.org/abs/1708.05044

Ashton, K. (1999). That ‘internet of things’ thing. RFID Journal, 22(7), 97–114.

Atamli, A. W., & Martin, A. (2014). Threat-based security analysis for the internet of
things. Secure Internet of Things (SIoT), 2014 International Workshop On, 35–43.
http://ieeexplore.ieee.org/abstract/document/7058906/

Barcena, M. B., & Wueest, C. (2015). Insecurity in the internet of things. Security
Response, Symantec.
https://pdfs.semanticscholar.org/6d7f/60b16adead96aafa9e975207980eb32671b5.
pdf

102

Barrera, D., Molloy, I., & Huang, H. (2017a). IDIoT: Securing the internet of things like
it’s 1994. ArXiv Preprint ArXiv:1712.03623.

Bastos, D., Shackleton, M., & El-Moussa, F. (2018). Internet of things: A survey of
technologies and security risks in smart home and city environments. Living in the
Internet of Things: Cybersecurity of the IoT - 2018, 1–7.

Bezawada, B., Bachani, M., Peterson, J., Shirazi, H., Ray, I., & Ray, I. (2018). IoTSense:
Behavioral fingerprinting of IoT devices. ArXiv Preprint ArXiv:1804.03852.

Bowles, N. (2018, June 23). Thermostats, locks and lights: Digital tools of domestic abuse.
The New York Times. https://www.nytimes.com/2018/06/23/technology/smart-
home-devices-domestic-abuse.html

Copos, B., Levitt, K., Bishop, M., & Rowe, J. (2016a). Is anybody home? Inferring activity
from smart home network traffic. 2016 IEEE Security and Privacy Workshops
(SPW), 245–251. https://doi.org/10.1109/SPW.2016.48

Costin, A., Zaddach, J., Francillon, A., & Balzarotti, D. (2014b). A large-scale analysis of
the security of embedded firmwares. 23rd USENIX Security Symposium (USENIX
Security 14), 95–110.
https://www.usenix.org/conference/usenixsecurity14/technical-
sessions/presentation/costin

Dai, R., Gao, C., Lang, B., Yang, L., Liu, H., & Chen, S. (2019). SSL malicious traffic
detection based on multi-view features. Proceedings of the 2019 the 9th
International Conference on Communication and Network Security, 40–46.
https://doi.org/10.1145/3371676.3371697

Douglas, D. M. (2016). Doxing: A conceptual analysis. Ethics and Information
Technology, 18(3), 199–210. https://doi.org/10.1007/s10676-016-9406-0

Flosbach, R., Chromik, J. J., & Remke, A. (2019). Architecture and Prototype
Implementation for Process-Aware Intrusion Detection in Electrical Grids. 2019
38th Symposium on Reliable Distributed Systems (SRDS), 42–4209.
https://doi.org/10.1109/SRDS47363.2019.00015

Fraser, C., Olsen, E., Lee, K., Southworth, C., & Tucker, S. (2010). The new age of
stalking: Technological implications for stalking. Juvenile and Family Court
Journal, 61(4), 39–55. https://doi.org/10.1111/j.1755-6988.2010.01051.x

Freed, D., Palmer, J., Minchala, D., Levy, K., Ristenpart, T., & Dell, N. (2018b). “A
stalker’s paradise”: How intimate partner abusers exploit technology. Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems, 1–13.
https://doi.org/10.1145/3173574.3174241

Fu, K., Kohno, T., Lopresti, D., Mynatt, E. D., Nahrstedt, K., Patel, S. N., Richardson, D.,
& Zorn, B. (2017a). Safety, security, and privacy threats posed by accelerating

103

trends in the internet of things. Computing Community Consortium (CCC)
Technical Report, 29(3).

Geeng, C., & Roesner, F. (2019b). Who’s in control? Interactions in multi-user smart
homes. Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems, 1–13. https://doi.org/10.1145/3290605.3300498

Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and Tensorflow:
Concepts, tools, and techniques to build intelligent systems (2nd ed.). O’Reilly
Media.

Hammill, R., & Hendricks, M. (2013, April 24). Gadgets to help tend a garden. The New
York Times.
https://www.nytimes.com/2013/04/25/technology/personaltech/calling-on-
gadgetry-to-keep-the-garden-growing.html

He, W., Golla, M., Padhi, R., Ofek, J., Dürmuth, M., Fernandes, E., & Ur, B. (2018).
Rethinking access control and authentication for the home internet of things (IoT).
In 27th USENIX Security Symposium (Security 18) (pp. 255–272). USENIX
Association.

He, W., Martinez, J., Padhi, R., Zhang, L., & Ur, B. (2019b). When smart devices are
stupid: Negative experiences using home smart devices. 2019 IEEE Security and
Privacy Workshops (SPW), 150–155. https://doi.org/10.1109/SPW.2019.00036

Hodo, E., Bellekens, X., Hamilton, A., Dubouilh, P. L., Iorkyase, E., Tachtatzis, C., &
Atkinson, R. (2016). Threat analysis of IoT networks using artificial neural network
intrusion detection system. 2016 International Symposium on Networks, Computers
and Communications (ISNCC), 1–6. https://doi.org/10.1109/ISNCC.2016.7746067

Intellectsoft. (2015, September 1). 3 Types of software architecture for internet of things
devices. Intellectsoft. https://www.intellectsoft.net/blog/3-types-of-software-
architecture-for-connected-devices/

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). Tree-Based Methods. In G.
James, D. Witten, T. Hastie, & R. Tibshirani (Eds.), An Introduction to Statistical
Learning: With Applications in R (Vol. 103, p. 319). Springer.
https://doi.org/10.1007/978-1-4614-7138-7_8

Jia, Y. J., Chen, Q. A., Wang, S., Rahmati, A., Fernandes, E., Mao, Z. M., Prakash, A., &
Unviersity, S. J. (2017, February). ContexloT: Towards providing contextual
integrity to appified IoT platforms. NDSS.

Junges, P.-M., François, J., & Festor, O. (2019). Passive inference of user actions through
IoT gateway encrypted traffic analysis. 2019 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), 7–12.

Jupyter Notebook 6.0.3. (2020). https://jupyter-notebook.readthedocs.io/en/stable/

104

Kasinathan, P., Pastrone, C., Spirito, M. A., & Vinkovits, M. (2013). Denial-of-service
detection in 6LoWPAN based internet of things. 2013 IEEE 9th International
Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), 600–607. https://doi.org/10.1109/WiMOB.2013.6673419

Kim, T. H., Bauer, L., Newsome, J., Perrig, A., & Walker, J. (2011). Access right
assignment mechanisms for secure home networks. Journal of Communications
and Networks, 13(2), 175–186. https://doi.org/10.1109/JCN.2011.6157417

Kolias, C., Kambourakis, G., Stavrou, A., & Voas, J. (2017). DDoS in the IoT: Mirai and
other botnets. Computer, 50(7), 80–84. https://doi.org/10.1109/MC.2017.201

Marchal, S., Miettinen, M., Nguyen, T. D., Sadeghi, A.-R., & Asokan, N. (2019). AuDI:
Toward autonomous IoT device-type identification using periodic communication.
IEEE Journal on Selected Areas in Communications, 37(6), 1402–1412.
https://doi.org/10.1109/JSAC.2019.2904364

Matthews, T., O’Leary, K., Turner, A., Sleeper, M., Woelfer, J. P., Shelton, M., Manthorne,
C., Churchill, E. F., & Consolvo, S. (2017). Stories from survivors: Privacy &
security practices when coping with intimate partner abuse. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (pp. 2189–2201).
ACM.

Meidan, Y., Bohadana, M., Shabtai, A., Ochoa, M., Tippenhauer, N. O., Guarnizo, J. D.,
& Elovici, Y. (2017). Detection of unauthorized IoT devices using machine
learning techniques. ArXiv Preprint ArXiv:1709.04647.

Microsoft Excel (16.16.19). (2019). [Computer software]. Microsoft.
https://products.office.com/en-us/excel

Miettinen, M., Marchal, S., Hafeez, I., Asokan, N., Sadeghi, A., & Tarkoma, S. (2017b).
IoT SENTINEL: Automated sevice-type identification for security enforcement in
IoT. 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), 2177–2184. https://doi.org/10.1109/ICDCS.2017.283

Naughton, J. (2018, July 1). The internet of things has opened up a new frontier of domestic
abuse. The Guardian.
https://www.theguardian.com/commentisfree/2018/jul/01/smart-home-devices-
internet-of-things-domestic-abuse

Nobakht, M., Sivaraman, V., & Boreli, R. (2016). A host-based intrusion detection and
mitigation framework for smart home IoT using OpenFlow. 2016 11th
International Conference on Availability, Reliability and Security (ARES), 147–
156. https://doi.org/10.1109/ARES.2016.64

Notra, S., Siddiqi, M., Gharakheili, H. H., Sivaraman, V., & Boreli, R. (2014). An
experimental study of security and privacy risks with emerging household

105

appliances. In 2014 IEEE Conference on Communications and Network Security
(pp. 79–84). IEEE.

NumPy—NumPy. (2020). https://numpy.org/

OConnor, T., Mohamed, R., Miettinen, M., Enck, W., Reaves, B., & Sadeghi, A.-R. (2019).
HomeSnitch: Behavior transparency and control for smart home IoT devices. In
Proceedings of the 12th Conference on Security and Privacy in Wireless and
Mobile Networks (pp. 128–138). Association for Computing Machinery.

OpenWrt Project (18.06.8). (2020). [Linux]. https://openwrt.org/

Pandas 1.0.3. (2020). https://pandas.pydata.org/docs/whatsnew/v1.0.0.html

Paxson, V. (1999). Bro: A system for detecting network intruders in real-time. Computer
Networks, 31(23), 2435–2463. https://doi.org/10.1016/S1389-1286(99)00112-7

Pongle, P., & Chavan, G. (2015). Real time intrusion and wormhole attack detection in
internet of things. International Journal of Computer Applications, 121(9), 1–9.

Ramapatruni, S., Narayanan, S. N., Mittal, S., Joshi, A., & Joshi, K. P. (2019). Anomaly
detection models for smart home security. In 2019 IEEE 5th Intl Conference on Big
Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High
Performance and Smart Computing, (HPSC) and IEEE Intl Conference on
Intelligent Data and Security (IDS) (pp. 19–24). IEEE.

Ravidas, S., Lekidis, A., Paci, F., & Zannone, N. (2019). Access control in internet-of-
things: A survey. Journal of Network and Computer Applications, 144, 79–101.

Ren, J., Dubois, D. J., Choffnes, D., Mandalari, A. M., Kolcun, R., & Haddadi, H. (2019b).
Information exposure from consumer IoT devices: A multidimensional, network-
informed measurement approach. Proceedings of the Internet Measurement
Conference, 267–279. https://doi.org/10.1145/3355369.3355577

RND_Musings. (2015, May 24). r/ringdoorbell—Well, I captured some traffic from my
Ring Pro. Reddit.
https://www.reddit.com/r/ringdoorbell/comments/7as4a9/well_i_captured_some_t
raffic_from_my_ring_pro/

Ronen, E., & Shamir, A. (2016b). Extended functionality attacks on IoT devices: The case
of smart lights. 2016 IEEE European Symposium on Security and Privacy (EuroS
P), 3–12. https://doi.org/10.1109/EuroSP.2016.13

Schuster, R., Shmatikov, V., & Tromer, E. (2018b). Situational access control in the
internet of things. Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 1056–1073.
https://doi.org/10.1145/3243734.3243817

106

Scikit-learn 0.22.2. (2020). https://scikit-learn.org/stable/

Sears, A. (2019, September 23). ‘Felt so violated:’ Milwaukee couple warns hackers are
outsmarting smart homes. FOX6Now.Com. https://fox6now.com/2019/09/22/felt-
so-violated-milwaukee-couple-warns-hackers-are-outsmarting-smart-homes/

Shackelford, S., Raymond, A., Balakrishnan, R., Dixit, P., Gjonaj, J., & Kavi, R. (2017).
When toasters attack: A polycentric approach to enhancing the ‘security of things.’
University of Illinois Law Review, 16(6), 415–469.

Sikder, A. K., Petracca, G., Aksu, H., Jaeger, T., & Uluagac, A. S. (2018). A survey on
sensor-based threats to internet-of-things (IoT) devices and applications. ArXiv
Preprint ArXiv:1802.02041.

Sivanathan, A., Sherratt, D., Gharakheili, H. H., Radford, A., Wijenayake, C., Vishwanath,
A., & Sivaraman, V. (2017). Characterizing and classifying IoT traffic in smart
cities and campuses. Proc. IEEE INFOCOM Workshop SmartCity, Smart Cities
Urban Comput., 1–6.

Sivaraman, V., Gharakheili, H. H., Vishwanath, A., Boreli, R., & Mehani, O. (2015).
Network-level security and privacy control for smart-home IoT devices. 2015 IEEE
11th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), 163–167.
https://doi.org/10.1109/WiMOB.2015.7347956

Sivaraman, Vijay, Gharakheili, H. H., Vishwanath, A., Boreli, R., & Mehani, O. (2015).
Network-level security and privacy control for smart-home IoT devices. In
Wireless and Mobile Computing, Networking and Communications (WiMob), 2015
IEEE 11th International Conference on (pp. 163–167). IEEE.

Subahi, A., & Theodorakopoulos, G. (2019). Detecting IoT user behavior and sensitive
information in encrypted IoT-app traffic. Sensors, 19(21), 4777–4805.
https://doi.org/10.3390/s19214777

Tcpdump (4.9.2). (2017). [Linux]. http://www.tcpdump.org

Tertytchny, G., Nicolaou, N., & Michael, M. K. (2019b). Differentiating attacks and faults
in energy aware smart home system using supervised machine learning.
Proceedings of the International Conference on Omni-Layer Intelligent Systems,
122–127. https://doi.org/10.1145/3312614.3312642

Tian, Y., Zhang, N., Lin, Y.-H., Wang, X., Ur, B., Guo, X., & Tague, P. (2017b).
SmartAuth: User-centered authorization for the internet of things. 26th USENIX
Security Symposium (USENIX Security 17), 361–378.
https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/tian

107

Ur, B., Jung, J., & Schechter, S. (2014b). Intruders versus intrusiveness: Teens’ and
parents’ perspectives on home-entryway surveillance. Proceedings of the 2014
ACM International Joint Conference on Pervasive and Ubiquitous Computing,
129–139. https://doi.org/10.1145/2632048.2632107

Vitak, J., Chadha, K., Steiner, L., & Ashktorab, Z. (2017b). Identifying women’s
experiences with and strategies for mitigating negative effects of online
harassment. Proceedings of the 2017 ACM Conference on Computer Supported
Cooperative Work and Social Computing, 1231–1245.
https://doi.org/10.1145/2998181.2998337

Walker, K. (2014, July). The legal considerations of the internet of things.
ComputerWeekly.Com. https://www.computerweekly.com/opinion/The-legal-
considerations-of-the-internet-of-things

Wang, Q., Hassan, W. U., Bates, A., & Gunter, C. (2018, February). Fear and logging in
the internet of things. Network and Distributed Systems Symposium. Network and
Distributed Systems Security (NDSS) Symposium 2018, San Diego, CA, USA.
http://dx.doi.org/10.14722/ndss.2018.23282

Weber, R. H. (2016). Governance of the internet of things—From infancy to first attempts
of implementation? Laws, 5(3), 28. https://doi.org/10.3390/laws5030028

Wireshark (3.2.2). (2020). [MacOS]. https://www.wireshark.org

Wisniewski, P., Xu, H., Rosson, M. B., Perkins, D. F., & Carroll, J. M. (2016b). Dear diary:
Teens reflect on their weekly online risk experiences. Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, 3919–3930.
https://doi.org/10.1145/2858036.2858317

Wueest, C. (2015, March 12). Is IoT in the smart home giving away the keys to your
kingdom? Symantec Security Response.
http://www.symantec.com/connect/blogs/iot-smart-home-giving-away-keys-your-
kingdom

Zarpelão, B. B., Miani, R. S., Kawakani, C. T., & de Alvarenga, S. C. (2017). A survey of
intrusion detection in internet of things. Journal of Network and Computer
Applications, 84, 25–37. https://doi.org/10.1016/j.jnca.2017.02.009

Zeichick, D. (2018). Have my smart lightbulbs been weaponized: Introducing computer
security issues related to IoT devices. Journal of Computing Sciences in Colleges,
33(4), 123–129.

Zeng, E., Mare, S., & Roesner, F. (2017). End user security & privacy concerns with smart
homes. In Thirteenth Symposium on Usable Privacy and Security (pp. 65–80).
USENIX Association.

108

Zhou, W., Jia, Y., Yao, Y., Zhu, L., Guan, L., Mao, Y., Liu, P., & Zhang, Y. (2019).
Discovering and understanding the security hazards in the interactions between IoT
devices, mobile apps, and clouds on smart home platforms. Proceedings of the 28th
USENIX Conference on Security Symposium, 1133–1150.

 Zhou, W., Jia, Y., Yao, Y., Zhu, L., Guan, L., Mao, Y., Liu, P., & Zhang, Y. (2019).
Discovering and understanding the security hazards in the interactions between IoT
devices, mobile apps, and clouds on smart home platforms. Proceedings of the 28th
USENIX Conference on Security Symposium, 1133–1150.

	Detecting Rogue Manipulation of Smart Home Device Settings
	Share Feedback About This Item

	Sgnature Page
	Dissertation_8_18_20.pdf

