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Currently there exists no clear-cut, commonly understood definition of what an event is 

in the context of Social Network Analysis (SNA). Events are commonly identified and 

measured with regards to repeated occurrences of related terms associated with a topic 

that gradually increase in frequency and then eventually decline. This ebb and flow of 

keyword frequencies occurs within a continuous stream of user messages in a social 

media platform such as Twitter.  One disadvantage to this approach is that it tends to 

marginalize the human perspective of communication and event detection in favor of 

lexical trends.  The goal of this study was to develop an alternate event detection 

technique and apply it to social media discussion venues such as Twitter. What was novel 

about our approach was that it incorporated the integration of two SNA metrics into a 

single metric called Newsworthiness. To test our method, we collected two 14-day 

datasets based on two different trending topics from current events. The first dataset was 

based on the keyword search “Tulsa+Rally.” The second dataset was based on the 

keywords “Atlanta+Protests.” Both datasets were graphed for their corresponding 

Newsworthiness and keyword frequency trajectories. The results of the two 

“Tulsa+Rally” graphs demonstrated that the Newsworthiness approach identified events 

that were undetectable to the keyword frequency approach. Results for the two 

“Atlanta+Protests” graphs were congruent in that they each identified the same three 

events. Our contribution to the body of research was threefold. First, we created a single 

metric called Newsworthiness by integrating Shannon Entropy and Diffusion Centrality. 

Second, we demonstrated the evaluative benefits of using quartiles to analyze 

Newsworthiness distributions for outliers and event peaks. Lastly, we demonstrated how 

to evaluate user activity by analyzing the Shannon Entropy and Diffusion Centrality of a 

discussion stream over the most efficient time period (p) metric. It has been empirically 

shown that the proposed metric, along with quartile-based analysis, provides a way to 

quantitatively identify events on social, political, and cybersecurity Twitter topics, and 

the performance is superior that of Keyword search. It was evident that the proposed 

metric has the potential to be applied to other topics and social platforms for event 

detection. 
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Chapter 1 

Introduction 

Background 

Social Network Analysis 

   An Online Social Network (OSN) is a web-based public platform that allows 

people to engage in remote social interactions.  A discussion stream is a flow of data or 

content consisting of semi-structured text messages, links, and multimedia (images and 

videos) that is contributed by users though activities conducted in an OSN (Alkhouli, et 

al., 2014). Social Network Analysis (SNA) is a discipline which incorporates a set of 

theories, techniques and tools for studying human behavior and how entities interact with 

each other. SNA is often used for research in areas such as organizational studies, 

economics, sociology, psychology, and politics (Serrat, 2017).  SNA is also frequently 

used in research of OSNs such as Twitter to study the dynamics of user influence in 

social networks (Neves-Silva, et al., 2016; Serrat, 2017). A mathematical graph of a 

Twitter OSN is depicted as a set of nodes which represents users and a set of connecting 

edges which represent interactions between the users. Formally, the graph of a Twitter 

OSN is represented as G = (V,E), where G is an unweighted, undirected graph, where 

𝑣𝑖 ∈ 𝑉 is an individual user in an OSN and 𝑒𝑖 ∈ 𝐸 represents interactions between 

users in a social network. In the case of a Twitter OSN, an interaction refers to the 

reposting of a message that was posted by another user. The graph is represented as 

subset of connected individual Twitter users. The connected edges between the users 

represent messaging relationships between the users.  
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In the context of our research a discussion stream is composed of three objects 

which are a set of tweets, a set of users, and a period of time. A dataset of tweets is a 

subset of a discussion stream, represented by the variable T. Dataset T is composed of a 

set of individual tweets, defined as {𝑡1, 𝑡2, … , 𝑡𝑖 , ... 𝑡𝑛}.  The second object in 

discussion stream T is a set of Twitter users U, defined as {𝑢1, 𝑢2, … , 𝑢𝑖 , ... 𝑢𝑘}.  The 

third object in discussion stream T is a time period p, defined as {𝑝1, 𝑝2, … , 𝑝𝑖  , ... 𝑝𝑚}. 

In SNA there is no general consensus among researchers as to the official definition of an 

event. In the abstract we define an event in the context of SNA as a function of user 

messaging activity and user diversity that occurs over a period of time p. A more detailed 

definition of event will be provided below.  Message spreading activity and diversity of 

participating users are metrics that can be used together to identify events in a Twitter 

discussion stream. These two metrics are evaluated by using Diffusion Centrality and 

Information Entropy which are discussed in the following sections. 

Entropy 

             In information theory, entropy is officially defined as the measure of the level of 

disorganization or uncertainty in a system (Laniado, D. & P. Mika, 2010). The 

mathematical definition of a tweet’s entropy is defined as 𝐻(𝑊) =  ∑ −log2𝑃(𝑤𝑖)
𝑛
𝑖=1 , 

where P is a probabilistic model, 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑛} is a corpus of tweets, and H is the 

entropy of the corpus. A corpus is a term which represents the body or sum of set of 

textual content that will be analyzed using text mining techniques. A corpus can be the 

contents of a single document. It can be multiple documents that are aggregated together. 

It can also represent a collection of several user messages to a social media platform such 

as Twitter. This formula for entropy will provide a quantitative assessment of the amount 
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of information within a corpus of tweets (Neubig & Duh, 2013). Entropy is used in 

several SNA studies in the literature as a metric to evaluate different aspects of social 

media communications discussion streams. In particular, it is frequently used to evaluate 

the amount of surprise or diversity in social media messages that are exchanged by users 

(Ghosh, et al., 2011; Vajapeyam, 2014). According to many studies, a higher entropy in a 

discussion stream sample suggests a larger diversity of participants contributing to a 

discussion. In the following sections, events are discussed in terms of how they spread 

through an OSN. This is done using a combination of entropy and Diffusion Centrality, 

which will be discussed in the following section. 

Diffusion Centrality 

Diffusion Centrality (𝐷𝐶(𝑡𝑖)) is a SNA metric which evaluates the level of 

activity in an OSN with regards to tweeting and retweeting in a discussion stream (Kang, 

et al., 2016). The metric is a score that is assigned to individual users who are part of a 

discussion stream. The 𝐷𝐶(𝑡𝑖) score is evaluated based on the connectivity of the users. 

The more connected a user is to other users who have high connectivity, the higher the 

𝐷𝐶(𝑡𝑖) score will be. The score is calculated using the formula 𝐷𝐶(𝑡𝑖) = ∑ 𝑃𝑟𝑡𝑇
𝑡=1 ,  

where 𝑡𝑖 is an individual tweet from a discussion stream and 𝑃𝑟𝑡 is the probability that 

one user can reach an adjacent (neighboring) user in t iterations where T is the total 

number of iterations in the time period covered in the discussion stream and t is a single 

iteration (An & Liu, 2016). In the context of SNA there are two ways to view how the 

𝐷𝐶(𝑡𝑖) metric evaluates connected users. The first is that 𝐷𝐶(𝑡𝑖) measures how 

important an individual user is in spreading a message in a discussion stream. The second 

way to understand how 𝐷𝐶(𝑡𝑖) scores users is that it evaluates how many times a 
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particular user’s message will be seen by the other users in a common discussion stream. 

If a user has a very high 𝐷𝐶(𝑡𝑖), that user’s message will likely be retweeted by a much 

larger number of other users. 𝐷𝐶(𝑡𝑖) and entropy are used with a time-ordered set of 

tweets to detect events which are discussed in the following section.  

Events and Event Detection 

   Discussion streams play a role in the dynamics of SA as users interact among 

themselves through discussions, retweets, and other methods of social media 

communication (Pinto, et al., 2019).  There currently does not exist in the literature a 

commonly understood definition of what an event is (Cui, et al., 2016). To that end we 

define an event as a set of tweets on a related topic within a defined time-period that 

surpass a threshold defined by statistical measures of diffusion and entropy. Event 

detection is the identification of events that are present in a time-ordered stream of 

Twitter messages (Cui, et al., 2016; Thapen, et al., 2016).  

Problem Statement 

Currently in the literature, there is no clear-cut definition of event detection in 

OSN analysis (Zhou & Chen, 2014).  One common research thread that is found is the 

repeated occurrence of related terms associated with a particular topic that gradually 

increases in frequency and then eventually declines within a continuous stream of user 

messages (Cui, et al., 2016). Several examples from the literature focus on identifying 

events as time-ordered clusters of related keywords. (Wang & Goutte, 2017).  One 

drawback to such approaches is that they tend to marginalize the human perspective of 

communication and event detection and tend to focus on the frequency of topics and 

keywords (Matei, et al., 2015). OSNs are constantly changing and evolving 
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communication streams that are fed by human user contributions (Weiler, et al., 2015). 

There are few if any examples in the research literature which seek to identify events as a 

time-series smoothed linear trajectory based on the integration of user and message 

streaming patterns. (Pinto, et al., 2019). 

An event is defined as a set of tweets on a related topic within a certain period 

that surpass a threshold defined by statistical measures of diffusion and entropy.  Our 

approach to identify and measure events was explained using the following abstraction. 

There is a dataset of tweets and the users who submitted them from a discussion stream T 

which is defined as {𝑡1, 𝑡2, … , 𝑡𝑖 , ... 𝑡𝑛}. Each element t of set T represents an 

individual tweet. There is a set of Twitter users U defined as {𝑢1, 𝑢2, … , 𝑢𝑖 , ... 𝑢𝑘}. In 

the context of our research there is a one-to-many relationship between the users in U and 

the tweets in T. An individual user can tweet a single message, multiple messages, or 

retweet the messages of other users in the discussion stream within the same time period. 

When a subset of a discussion stream is created, every tweet has an individual user 

associated with it. The message associated with the user could be an original tweet or it 

could be a retweet of another user. (Boyd, et al., 2010).  

There are three metrics based on each element t that form the basis for event 

detection in an OSN. These metrics are period, diffusion centrality, and Shannon 

Entropy. The metrics are each discussed in the following sections. Each member of 

dataset T has a period p associated with it defined as {𝑝1, 𝑝2, … , 𝑝𝑖 , ... 𝑝𝑚}.  This 

paradigm in the context of our research was a discretization of time. The granularity of 

the discretization for this research is defined in days. The granularity can be further 

refined to minutes, or it can be expanded to be measured in weeks, months, or years.   
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Besides the period variable, another aspect of event detection is evaluated by a 

metric called diffusion centrality which infers the level of activity in an OSN with regards 

to tweeting and retweeting.  Each tweet from dataset T has a Diffusion Centrality (DC) 

score, 𝐷𝐶(𝑡𝑖) associated with it which is a property of tweet t.  The variable 𝐷𝐶(𝑡𝑖) 

measures how much influence a tweet has in a discussion stream when a user has tweeted 

or retweeted it (Kang, et al., 2012). The third metric that is used to identify and measure 

events is Shannon Entropy, represented in this research as 𝐸𝑠.  𝐸𝑠, also referred to as 

information entropy (Li, et al., 2015), a measure that was borrowed from Physics which 

originally measured the level of disorder in a system. Information Entropy was 

alternatively named after the scientist who converted the metric, Claude Shannon, so it 

was informally called Shannon Entropy (Li, et al., 2015).  In the context of event 

detection research 𝐸𝑠 is used to measure diversity in a discussion stream. The diversity 

that is measured refers to the number of messages being tweeted and retweeted in a 

discussion stream, which further suggests the level of diversity in the number of users 

who are tweeting. (Ghosh, et al., 2011).  

In our abstract model for event detection, p is a date metric which measures the 

particular index of time that is being used for the study. In our case, the p value was 

measured in hours with an individual unit index being equal to a single hour on the x-

axis. The 𝐷𝐶(𝑡𝑖) value measures the diffusion centrality of an individual tweet in a 

discussion stream (Kang, et al., 2016).  The 𝐸𝑠 metric measures how diverse the 

messages are that are being tweeted and retweeted (Pinto, et al., 2019). This message 

diversity, in turn, infers the level of contribution made by the users in a discussion 

stream. (Ghosh, et al., 2011; Matei & Bruno, 2015).  
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To summarize our abstract model, 𝐸𝑠 provides us with inferred information on 

who is spreading the message by telling us how diverse the tweets (and users) are. The 

𝐷𝐶(𝑡𝑖) metric tells us how well the tweet is spreading through the discussion stream 

(Kang, et al., 2012), and p tells us when the message spread occurred. The model for 

event detection based on Diffusion Centrality and Shannon Entropy could be expressed 

by the following mathematical formula σ = f(
𝐷𝐶(𝑡𝑖)

 𝐸𝑆
, p), where event σ is the result of the 

function of the ratio of Diffusion Centrality DC and Shannon Entropy per each date index 

p. The use of the ratio 
𝐷𝐶(𝑡𝑖)

 𝐸𝑆
  is a technique consistent with a methodology that was used 

by Du Jardin, P. (2010) for variable selection used in neural network classification. In our 

case, it served as a dependent variable for event prediction (Du Jardin, P., 2010).  The 

result was a smoothed linear trajectory which ran longitudinally through the range of 

dates in the dataset of T that depicted peaks and valleys consistent with user activity in 

the discussion stream. There were examples in the literature which used linear time-series 

graphs to identify and evaluate events (Guille & Favre, 2015), however to the best of our 

knowledge there were no existing studies which used a smoothed linear trajectory based 

on the combination of 𝐸𝑠 and 𝐷𝐶(𝑡𝑖).  In the context of the formula discussed in the 

previous section, an event could be identified as σ.  

1. Calculate 𝐷𝐶(𝑡𝑖) score of each tweet based on the connectivity 

architecture of the tweet senders and receivers in the discussion stream. 

The 𝐷𝐶(𝑡𝑖) score calculation is represented by the equation  d(𝐷𝐶(𝑡𝑖)) 

where 1 ≤ 𝑖 ≤ 𝑛, where DC is a Diffusion Centrality function, t represents 

a single tweet from an OSN stream subset, and   𝑡𝑛 represents the nth 

tweet from the stream (Kang, et al., 2016). The 𝐷𝐶(𝑡𝑖) score is calculated 



8 
 

 

by leveraging a programming language such as R and providing the 

appropriate parameters.  

2. Next, the Shannon Entropy scores, which make up the denominator 

portion of the ratio in the σ couplet (
𝐷𝐶(𝑡𝑖)

 𝐸𝑆
, p), must be calculated.  To 

derive the values of 𝐸𝑠, the text fields for all tweets t will be grouped by 

the corresponding period variable p, which for our purposes will be the 

date.  The entropy values will then be calculated by evaluating 𝐸𝑠 (∑ 𝑡𝑖𝑝 ) 

(Ghosh, et al., 2011; Van der Walt, et al., 2018). 

3. Calculate σ by evaluating the ratio of 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 and pairing the ratio 

with a p variable as a couplet, (
𝐷𝐶(𝑡𝑖)

 𝐸𝑆
, p). The ratio results in a new 

numeric value we will refer to in this research as newsworthiness, 

represented by NW. Higher levels of newsworthiness suggest increased 

levels of tweet exchange activity and a greater diversity of users in a 

discussion stream consistent with the occurrence of an event. In the 

context of this research, the ratio 
𝐷𝐶(𝑡𝑖)

 𝐸𝑆
 was referred to as NW for the 

purpose of discussing the variable in its implementation as a predictor for 

events in a discussion stream. 

4. After researching the literature, we created a baseline based on an existing 

methodology from previous studies. The baseline consisted of datasets 

from two different currently trending topics.  The accuracy of the baseline 

methodology was evaluated by comparing its smoothed linear trajectory 
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graph with the trajectory graph of our approach. The methodologies for 

the baseline and our approach are discussed below.  

• Baseline Approach:  According to several studies, the basis for 

many approaches in event detection is called Latent Dirichlet 

Allocation (LDA) (Figueiredo, & Jorge, 2019; Guo, et al., 2017; 

Wang, et al., 2012). The model for our approach differed from the 

methodology used by many existing event detection models in the 

literature.  Unlike LDA, which was dependent on term frequency 

and word co-occurrence, our approach used an integration of 

messaging and user activity metrics. Our approach leveraged 𝐸𝑠  

and 𝐷𝐶(𝑡𝑖) to identify the human influence involved in spreading 

messages in addition to the diversity of the messages being 

discussed. LDA is a Bayesian probability-based model which 

extracts topics from a sample of text by using keywords, term 

frequency, and probability to group words into parent topics based 

on the likelihood that certain words will appear together 

(Figueiredo, & Jorge, 2019). LDA works on the premise that every 

sample of text can be broken down into a finite number of topics. 

Under each topic is a group of related terms which are subordinate 

to a parent topic (Figueiredo, & Jorge, 2019). LDA is used as the 

foundation for many approaches to identify, track, and classify 

events from sources such as online discussion streams (Guo, et al., 

2017; Wang, et al., 2012). The LDA model is created directly from 
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a text mining data structure called a Document Term Matrix 

(DTM), which is a two-dimensional data structure that keeps track 

of key terms and their frequencies from a dataset of text 

(Figueiredo, & Jorge, 2019).   

• Our Approach:  The model for our approach used 𝐸𝑠 and 𝐷𝐶(𝑡𝑖) 

as independent variables in order to evaluate the formula σ = 

(
𝐷𝐶(𝑡𝑖)

 𝐸𝑆
, p) (Kang, et al., 2012; Li, et al., 2015). 

The primary contribution of this research was a novel approach to Twitter event 

detection that used 𝐷𝐶(𝑡𝑖)  and 𝐸𝑠 to identify events based on levels of user diversity and 

tweet exchange activity in a discussion stream (Kang, et al., 2012; Li, et al., 2015). Most 

current approaches to event detection used methodologies that exploited term frequency 

and topic extraction aggregated with a time-series (Patil, & Atique, 2013). The novelty of 

our approach was that events were identified using inferred levels of user contributions to 

an online discussion (Matei, & Bruno, 2015). Term and topic frequency distributions can 

be misleading in regard to the conclusions that the numbers suggest. Increased numbers 

may in fact be the result of smaller groups of users who are contributing larger amounts 

of messages within a subset of a discussion stream (Pinto, et al., 2019).   The novel 

integration of 𝐷𝐶(𝑡𝑖)  and 𝐸𝑠 allowed us to infer the amount of diversity in the users and 

the levels of messaging activity in an OSN subset.  As a result, it identified events more 

effectively than in studies previously demonstrated in the literature. 

The existing event detection methodology was driven by an LDA model, which 

was constructed using keyword frequency data derived directly from a DTM (Figueiredo 

& Jorge, 2019). Our approach did not use frequency distribution data (Patil & Atique, 
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2013). Instead it used a ratio of two metrics (𝐷𝐶(𝑡𝑖) and 𝐸𝑠) as input (Kang, et al., 2012; 

Pinto, et al., 2019). The most efficient method of evaluating the performances of the 

different approaches was to plot comparison linear trajectories in a time-series graph to 

assess which method better identified events (Lee & Sumiya, 2010; Pozdnoukhov & 

Kaiser, 2011). 

Dissertation Goal 

Event detection has been applied to several different areas to exploit the real-time 

format of social media platforms. For example, it has been used to assist in the 

administration of response planning by filtering Twitter’s discussion stream for posts that 

relate to specific emergencies (Klein, et al., 2013).  Event detection is also used to predict 

results in political elections. For example, events are identified in real-time from a 

discussion stream to provide trend analysis and public feedback so that news analysts and 

politicians can make well-informed decisions (Unankard, et al., 2014). In addition to 

public administration and political science, event detection has been implemented in the 

areas of cybersecurity and law enforcement. One such proposed application was the 

modeling of OSN behaviors to train intrusion detection system algorithms to detect 

malicious user behavior (Amato, et al., 2018). The principal goal of this research was to 

develop an alternate event detection technique applied to Twitter discussion data.  The 

novelty of our technique was an integration of information entropy and diffusion metrics 

to evaluate user activity and diversity levels throughout a given time-period.  
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Research Questions 

As we reviewed the research literature on the topics of SNA, Information 

Entropy, Diffusion Centrality, and event detection, we developed several questions that 

we wanted to answer at the end of our study. Our research questions are listed below. 

1. Is the combined use of Information Entropy and Diffusion Centrality a 

valid method for the identification of events in a discussion stream? 

2. Is the use of quartile analysis a feasible method for isolating average user 

messaging activity from events? 

3. When the two approaches are considered, i.e. word frequency occurrence 

or user messaging activity, which approach produces more event peaks 

overall in a smoothed linear trajectory on a graph? 

4. In a smoothed linear trajectory that has one or more event peaks, is there a 

sizable variance in the Information Entropy scores throughout the time 

period? Does this variance suggest noticeable changes in the diversity of 

participants in a discussion stream? 

Relevance and Significance 

Our literature review covered a broad range of topics in the domains of SNA, 

social network platforms, event detection techniques, machine learning algorithms, and 

evaluative metrics. Initially we intended to implement four different machine learning 

classifiers as part of our research. We researched four classifiers, i.e. Artificial Neural 

Network, Random Forest, Support Vector Machine, and XGBoost (Ren, et al., 2018; 

Zulfikar, 2019). After a thorough review and a considerable amount of empirical testing, 

we decided to include machine learning classifiers as part of future research. We found 
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that many event detection methods measured occurrences of term or phrase frequency 

over a time period (Patil & Atique, 2013). These methods used techniques which varied 

from wavelet analysis to measuring clusters (Cordeiro, 2012; Hasan, et al., 2016).  

Microblogging, a.k.a. Twitter posting, is a popular source for SNA data according 

to several studies (Zhou & Chen, 2014). The samples are (usually) subject specific and 

are limited to 248 characters which makes them ideal for collecting samples (Guille & 

Favre, 2015). Twitter has its own issues with regards to SNA and data preparation. Some 

of the problems cited in this area include excessive noise (emojis, profanity, slang terms) 

and off-topic posts (Boyd, D., et al., 2010; Figueiredo & Jorge, 2019). Information 

Entropy is a metric that is used in several studies involving Twitter. It is used in SNA 

studies to measure surprise and diversity (Ghosh, et al., 2011; Vajapeyam, 2014). When 

used to evaluate Twitter text samples, entropy can quantify the amount of group 

participation that individuals contribute toward a common task such as a discussion 

(Matei, et al., 2015). Entropy is however not sensitive enough as a metric to provide a 

nuanced evaluation of text (Bentz, et al., 2017). For example, it can’t distinguish between 

two different word orders using the same terms in a string. Diffusion Centrality is a 

metric that is used in SNA research intended to measure the semantic importance of 

individual users in a network. It takes into account a group of connected Twitter users 

and a context (Kang, et al., 2012; Kang, et al., 2016). The idea behind the Diffusion 

Centrality metric is that depending on the topic being discussed, one user may be more 

influential than another. We found this metric in SNA studies that focused on message 

virality and user influence (Alp & Öğüdücü, 2018).  
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In addition to entropy and Diffusion Centrality, quartiles are an evaluative 

technique that are derived from statistical methods (Shih & Liu, 2016). This technique is 

a form of data exploration which allows researchers to examine distributions so that 

outliers stand out. The creation of quartiles calculates a series of values which serve as 

boundaries when viewing data (Domínguez, et al., 2017). Q1 is a lower boundary which 

separates average data from low value outliers. Q2 is the median of a dataset. Q3 is the 

upper boundary which separates the average values from high value outliers (Langford, 

2006; Shih & Liu, 2016). We found that using Q3 functioned adequately as a boundary 

between normal data and high-value data points. Outliers often suggest events since they 

represent tweets that fall outside and above the normal range (Lee & Sumiya, 2010; 

Pozdnoukhov & Kaiser, 2011).  Our method used a smoothed line trajectory to identify 

the occurrence of events. Peaks in the smoothed line trajectory that formed above Q3 

were interpreted as occurrences of events (Weng & Lee, 2011). This method was not 

quite ideal, but it allowed us to display time series data in a way that isolated average 

tweets from abnormal tweets. Preliminary empirical testing with the quartile method met 

with moderate success. Our research was significant for two fundamental reasons. First, 

the approach would allow entities such as governments, intelligence agencies, and 

corporations to identify and measure real-world events in an OSN using Twitter data as 

input (Atefeh & Khreich, 2015). Second, the approach would allow these entities to 

identify and follow emerging events as opposed to events that have run their course 

within the media (Cataldi, et al., 2010).  
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Barriers and Issues 

Success in gathering data for our study depended on access to the Twitter 

platform’s API. Enterprise memberships allow users to have privileged access to full 

archives of tweets along with platform metrics (Puschmann & Burgess, 2013). Rank and 

file users must abide by the policies put in place by the Twitter administrators. We did 

not possess privileged access to the platform’s API, therefore we were restricted to the 

amount of data that we could collect for a single request. Our request for tweets was 

restricted to 10,000 rows for a single instance. If our request in a single instance exceeded 

10,000, we received a message stating that our limit had been exceeded. We were forced 

to wait for a period of 15 minutes until our next available window opened. The issue that 

we had to consider for this study was that we had to assess the amount of usable tweets 

that we collected with our 10,000 tweet maximum per 15-minute window.  

Assumptions, Limitations and Delimitations 

The restrictions placed on rank and file Twitter users was discussed in the 

previous section with regards to the number of tweets available per 15-minute window. 

There was an additional limitation which applied to average non-paying users which 

affected the quality of the data. Whereas enterprise users could traverse the entire 

available Twitter timeline, non-paying users only had access to Tweets that dated back 

eight days during a general search. Those with access to the data “firehose” could gather 

all of the necessary data with one request within minutes. If a study was being conducted 

and the desired tweets were not available, a user was required to make several requests 

over a period of hours to collect the required number of tweets covering a desired time-
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period. We decided upon a coverage period of fourteen days. We set a goal of 1,000 

tweets for each of our two datasets per day over the fourteen-day period. 

Definition of Terms 

This section provides a list of definitions for specific terms that were used in 

discussion throughout the document.  

Application Programming Interface (API) –  A development interface that 

defines interactions between a user and a social media platform and defines the protocols 

that are used when requests are made for data. 

Diffusion Centrality – A SNA metric that evaluates how frequently a message 

sent by a particular user is seen by other users participating in a discussion stream.  

Discussion Stream –  A flow of data or content consisting of semi-structured text 

messages, links, and multimedia (images and videos) that is contributed by users though 

activities conducted in an online social network. 

Event – A set of tweets on a related topic within a defined time period that 

surpass a threshold defined by statistical measures of diffusion and entropy. 

Information Entropy – The discrete probability distribution of Twitter text to 

measure the uncertainty or randomness of the data by analyzing its complexity. 

Newsworthiness –  A SNA metric of user activity that quantifies the distribution 

of user message spreading actions over the user diversity in a discussion stream.   

Quartiles – An evaluative technique that is derived from statistical methods 

which allows researchers to examine distributions so that outliers stand out. 
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Social Network Analysis (SNA) – The analytical process of researching social 

structures through the use of networks and graph theory characterized by networked 

entities in terms of nodes (users in a network) and the edges, or links that connect them. 

Trajectory – The curve articulated in a graph by a line moving through a timeline. 
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Chapter 2 

Review of the Literature 

Overview of Topics in Review  

Currently in the literature there is no all-inclusive definition of an event in a social 

media discussion stream. A definition may involve geographic referencing, the 

occurrence of natural disasters, or possibly documented evidence of a crime. An event 

could be as simple as a discussion on some topic of popular culture, the Academy 

Awards for example. It may also be broader and be associated with a window of time. 

The definition of an event falls in line with the scope and nature of the research being 

performed. For our research, there were two principal areas of review from the literature. 

The areas that formed the basis for our methodology are listed below. 

1. Currently existing methods of event detection. 

2. SNA metrics for evaluating discussion activity. 

In the literature, the most common approach to Twitter event detection 

incorporates several aspects of text mining aggregated with a time-series variable (Zhou 

& Chen, 2014). The text mining techniques that we reviewed from several studies 

included the use of unigrams (single words which have meaning in a body of text), 

bigrams (combinations of two words from a body of text), and trigrams (combinations of 

three words from a body of text) (Di Eugenio, et al., 2013; Moghaddam & Ester, 2012). 

Another text mining technique that is frequently used for event detection from the 

literature is Latent Dirichlet Allocation (LDA). LDA, which was first discussed in 

Chapter 1, is a Bayesian-based algorithm which breaks down a body of text into its 

fundamental topics (Lee, et al., 2010). In section one of the literature review, we will 
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discuss several existing studies which make use of these text mining techniques that are 

leveraged to identify events in a discussion stream. 

Social Network Analysis (SNA) is a wide umbrella of techniques and metrics 

used by researchers to collect and evaluate information from social networks 

(Himelboim, et al., 2017). The term network can refer to a unit as small as a dozen people 

in a company E-mail chain. It can also refer to the members of a large Facebook friends 

list, where the complement may theoretically number in the hundreds or even thousands 

(Kim & Hastak, 2018). SNA metrics allow researchers to determine who in a network is 

the most influential and who is the best connected with the group overall (Garcia, 2017). 

The diffusion of information through a network is another frequently sought metric from 

social networks (Kang, et al., 2012). Shannon Entropy is another metric that is used in 

SNA to measure the diversity of users in a discussion stream (Pinto, et al., 2019). Section 

two of the literature review will discuss a number of the studies from the literature that 

used the Entropy and Diffusion Centrality metrics in their approach (Kang, et al., 2016; 

Van der Walt, et al., 2018). The last section of the literature review summarizes the three 

areas of review and provide insight as to how they led us to our methodology which will 

be discussed in detail in Chapter 3.  

Gaps in the Literature for Event Detection  

A thorough perusal of the literature on the topic of Twitter event detection yielded 

two common threads that existed in the majority of the available research. The first was a 

clear lack of an all-inclusive underlying definition of event. The definition can differ from 

domain to domain. The term event is ubiquitous in disciplines such as criminal justice, 

psychology, philosophy, computer science, and medicine (Choudhury & Alani, 2014). 
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The two common denominators of these many definitions are the inclusion of a time-

period and an accompanying object that is measured throughout the time period. The 

second common thread throughout the many studies was the reliance on text-mining 

techniques to extract and produce features derived from tweet text (Di Eugenio, et al., 

2013). The rest of this section will cover the various definitions of events that were found 

in the literature and the techniques that were chosen to identify them within Twitter 

discussion streams.  

Definitions of Events 

As it was mentioned previously, there is no uniform definition of an event 

(Choudhury & Alani, 2014). Based on the empirical review of several studies on this 

topic, the definition of event influenced the scope and depth of the study being 

performed. Depending on the study, an event could be broad and vague such as political 

issues and matters of public health (Wang & Goutte, 2017). An event could also be more 

specific and narrow in definition, such as a criminal incident or a personal occasion such 

as a wedding (Di Eugenio, et al., 2013; Wang, et al., 2012).  There were some studies 

which did not specifically refer to temporal objects as events. The techniques used by the 

researchers were very similar to other event detection studies, however, alternate 

nomenclature was used when referring to events. In one such study, a temporal object 

that had been extracted from a social media discussion stream was referred to as a theme. 

Event detection in this study was referred to as temporal text mining (Mei & Zhai, 2005).  

Two of the more unique identifications of events involved the aggregation of 

statistical change points and term frequency into their definitions. One study focused on 

events as consisting of clusters of subevents that could be visualized in a discussion 
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stream. Changes in the discussion stream were identified using change points. The study 

did not so much identify events as it sought to measure how recurring themes in Twitter 

changed through time (Wang & Goutte, 2017). The second more unusual definition for 

an event was one which used the term “bursty topic”. According to the study, a topic was 

defined as bursty if it demonstrated a high frequency of mentions in a discussion stream. 

If the topic was bursty, it was deemed to possess the qualities of an event (Cui, L., et al., 

2016; Guille & Favre, 2015).  

Event Detection Techniques 

The techniques used for event detection in the literature incorporated two 

fundamental approaches. Both of the approaches involved a form of “dissection” and 

analysis of Twitter text. The first approach focused on a type of study described in the 

literature as n-gram analysis (Lee, et al., 2010).  The expression n-gram referred to the 

isolation of words and word groupings found in a body of text. The most commonly used 

types of n-grams were unigrams (single words), bigrams (two-word combinations), and 

trigrams (three-word combinations) (Nayak, et al., 2016).  The second approach began 

with a Bayesian topic model based on the probability of certain words appearing together 

in Twitter text. The most popular of the topic model algorithms used in the literature was 

Latent Dirichlet Allocation (LDA) (Moghaddam & Ester, 2012).  Both n-grams and topic 

models incorporated the use of term frequency and time as variables to determine 

whether a topic was surging or waning (Di Eugenio, et al., 2013; Zhou & L. Chen, 2014). 

Both of the aforementioned approaches were popular and are still frequently found in the 

literature in text mining and SNA research. 
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The first technique which was popular in the literature decomposes a body of text 

into its fundamental terms. This model of filtering out the most significant contributing 

words was referred to in the literature in many studies as “bag-of-words” (Moghaddam & 

Ester, 2012). The term “bag-of-words” was a research colloquialism that was used to 

describe the finished product of preparing a dataset of Twitter text and filtering out 

useless words, also known as “stop words” (Nayak, et al., 2016). The goal of creating a 

bag-of-words was to have a repository consisting only of terms that contributed the most 

meaning to the summary of an input of text. Once the bag-of-words was created, a 

frequency matrix was compiled, sorting the most frequently occurring terms in 

descending order (Moghaddam & Ester, 2012). In several studies, the bag-of-words was 

organized using all three variations of n-grams (unigrams, bigrams, trigrams) as separate 

steps (Choudhury & Alani, 2014; Nayak, et al., 2016). In the first technique of event 

detection, the frequency values and n-grams were used as features for classification tasks 

(Di Eugenio, et al., 2013; Moghaddam & Ester, 2012). The accuracy scores using the 

approach were average to above average based on the available studies from the 

literature. One study employing this method achieved accuracy scores of 86.2% using a 

unigram model for classification (Di Eugenio, et al., 2013). 

The second event detection technique that was popular in the literature used a 

topic modeling approach as the basis for identifying events in a discussion stream (Zhou 

& Chen, 2014). The most popular method of topic modeling was an algorithm called 

LDA, which is discussed above (Weiler, et al., 2015). Instead of using frequently 

occurring n-grams like the previously discussed method, LDA sought to cluster words 

that appeared together in a text with greater frequency. The clusters of related words were 
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named topics. In some studies, topics were used interchangeably with events (Cui, et al., 

2016), asserting that the topics (a.k.a. events) were constructs that were aggregated with 

time and frequency variables.  One study used LDA to cluster topics pertaining to crime 

using Twitter posts as input. The study used topics generated from existing tweets within 

a generalized linear model to predict the probability of crimes occurring in the future. 

The study successfully predicted future hit-and-run incidents, but the study admitted that 

its confidence interval was rather wide (Wang, et al., 2012). The two previously 

discussed approaches to event detection are still found in SNA research in the literature. 

Based on the synthesis gleaned from several studies in this domain, the apparent benefit 

of techniques such as LDA and bag-of-words is that they provide a bountiful source of 

features for prediction and classification tasks (Choudhury & Alani, 2014; Cui, et al., 

2016). When text mining features are combined with other SNA metrics such as diffusion 

centrality and Shannon Entropy (Ghosh, et al., 2011), machine learning classification 

models can be more diverse and nuanced. SNA metrics will be covered in the following 

section. 

Analysis of SNA Metrics Used in Similar Studies  

In the context of our research, Social Network Analysis (SNA) is a discipline that 

articulates relationships between social media users that is based on methods derived 

from graph theory (Alarcão & Neto, 2016). One of the fundamental goals of SNA is to 

identify influential and important user nodes in a network (Bonchi, et al., 2016). The task 

of isolating and documenting these influential nodes eventually led to a construct known 

as centrality, which is a measure of different aspects of network importance. We could 

find no all-inclusive definition of centrality in the literature, so depending on the context 
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of the study, a centrality metric could evaluate concepts such as influence, authority, and 

power. In the SNA research literature there were many existing measures of centrality, 

including betweenness, closeness, and eigenvector. These metrics evaluated user nodes 

based on efficiency, independence, and how well connected they were when the 

structural properties of a user network were taken into account (Grando, et al., 2016).  

In addition to centrality, another area of research interest in SNA was that of 

information diffusion. This area of research asked the question: what are the variables 

that cause information to spread through a network? (Yoo, et al., 2016). A thorough 

perusal of the literature uncovered studies in this area which focused on a metric with 

combined aspects of centrality and information diffusion. The metric was called 

Diffusion Centrality (𝐷𝐶(𝑡𝑖)) and it evaluated a user’s influence in the spread of 

information through an OSN.  The 𝐷𝐶(𝑡𝑖) metric differed from other forms of centrality 

such as betweenness and closeness in that a node’s level of influence could change based 

on the semantics of a topic being spread (Kang, et al., 2012; Kang, et al., 2016). For 

example, one user in an OSN might be an authority on politics, but that same user might 

not be an authority on popular culture.  

Another SNA metric that was found in the literature was Shannon Entropy (𝐸𝑠), 

also known as Information Entropy. The 𝐸𝑠 metric was not a measurement of centrality. 

It evaluated the amount of information that was present in a dataset of user text (Li, et al., 

2015). This in turn could be used to evaluate and infer the amount of diversity that 

existed in a dataset of user tweets. Diversity in the context of our research could refer to 

topics or users in a discussion stream (Pinto, et al., 2019). After synthesizing the literature 

on these topics, two variables stood out as viable candidates for further analysis, which 



25 
 

 

were user message spreading influence and user diversity, represented by the two 

aforementioned SNA metrics (Kang, et al., 2012;Li, et al., 2015). What distinguished 

these two variables from other SNA metrics was that the end values were not purely 

dependent on a static network architecture. The outcome could change based on the topic 

being spread in an OSN. The remainder of this literature review will be divided into two 

parts. The first part will discuss the 𝐷𝐶(𝑡𝑖) metric and its importance to SNA and 

information diffusion (Kang, et al., 2016). The second part will discuss the 𝐸𝑠 metric and 

how it relates to measuring user diversity (Pinto, et al., 2019). The section will conclude 

with a summary discussing the advantages and disadvantages of using the two metrics in 

the context of our research.   

Diffusion Centrality (𝐷𝐶(𝑡𝑖)) 

The 𝐷𝐶(𝑡𝑖) metric evaluates how much influence a user node has with regards to 

the spread of information. The foundation of the metric is that a user’s influence can 

change based on the topic being discussed in a discussion stream (Kang, et al., 2012). 

Many other measures are static and depend purely on the connectivity of the overall 

network (Grando, et al., 2016). According to the paradigm of many static centrality 

measures, an influential user will always be an influential user because he or she is well-

connected (Fredericks & Durland, 2005). With the introduction of the 𝐷𝐶(𝑡𝑖) metric, a 

user who carried a high score in one topic could score much lower with another topic. 

The agent of change for such a difference in scores was the introduction of a different 

diffusion model (Kang, et al., 2012). According to the literature, a diffusion model was a 

hypothetical mathematical model which recreated the progressive spread of an object 

(Yoo, et al., 2016) such as a message from person to person through a discussion stream.  
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The 𝐷𝐶(𝑡𝑖) metric was not based on any particular diffusion model, but it took the model 

as input to evaluate the amount of influence that a user node had (Kang, et al., 2012). We 

surmised that the benefit of this metric on SNA research was that it provided researchers 

with the mechanism to study the changing and evolving nature of a discussion stream 

(Java, et al., 2007; Kwak, et al., 2010). After additional research, we found that there 

were development libraries in the R programming language which supported the 

implementation of the 𝐷𝐶(𝑡𝑖) metric. The diffusion model aspect of the 𝐷𝐶(𝑡𝑖) formula 

was built-in to the library as a parameter (An & Liu, 2016).  

Shannon Entropy (𝐸𝑠) 

The 𝐸𝑠 metric is also referred to as Information Entropy and was introduced in the 

late 1940’s by Claude Shannon (Shannon, 1948). It was adapted from Physics and 

applied to information theory with the purpose of evaluating the complexity of systems. 

With regards to communications, the 𝐸𝑠 metric was used to measure the structural 

information content of text (Dehmer & Mowshowitz, 2011). The 𝐸𝑠 metric was used in 

several SNA studies to measure topic diversity in a discussion stream as well as user 

distribution (Ghosh, et al., 2011; Pinto, et al., 2019). The latter adaptation was of interest 

to our research. By evaluating the amount of user diversity in a discussion stream, a small 

𝐸𝑠 could suggest spam activity (fewer users with more activity), while a larger 𝐸𝑠 score 

(more users in the discussion stream) might suggest increased interest in a topic (Ghosh, 

et al., 2011). Hasan, et al. (2016) published a study in which the 𝐸𝑠 metric was used to 

evaluate both topics as well as user diversity. The approach clustered tweets by topic 

similarity and then evaluated the clusters using the 𝐸𝑠 metric. Clusters with a 𝐸𝑠 topic 

score greater than 2.5 and a user diversity score greater than 0.0 were considered to be 
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events (Hasan, et al., 2016). This approach used a combination of text mining and user 

diversity data to identify events. This was an interesting approach, but it did not include a 

variable that sought to more succinctly quantify the amount of user-generated activity 

that was taking place in the discussion stream. 

Summary of  𝐷𝐶(𝑡𝑖) and 𝐸𝑠 

The 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 metrics were both used in studies dealing with SNA. While 𝐸𝑠 

has been used to measure different aspects of diversity in Twitter datasets in multiple 

studies, we found that the 𝐷𝐶(𝑡𝑖) metric was used mostly to study the identification of 

opinion leaders and key spreaders of information for specific topics in discussion streams 

(Gunasekara, et al., 2015; Kang, et al., 2016).  Although 𝐷𝐶(𝑡𝑖) was used to study the 

spread of topics on Twitter (Bingol, et al., 2016), it has not been used specifically for 

event detection. It is a measure of influence that was intended to be used to reflect 

changes in key influential user nodes over different or progressive datasets (Kang, et al., 

2012). 𝐸𝑠 was a metric that was adapted from its original domain in Thermal Physics to 

measure the amount of information that was inherent in a system (Li, et al., 2015). The 

metric was further adapted to evaluate the level of diversity that existed in a SNA dataset 

(Pinto, et al., 2019). We found that a key benefit of using 𝐸𝑠 with regards to SNA and 

Twitter was that it could suggest whether a small number of users were responsible for a 

larger amount of tweets, or if the Twitter content was the result of several different users 

(Ghosh, et al., 2011). The implication of this difference was that the former outcome 

could be the result of possible automated activity such as a bot, while the latter outcome 

suggested increased interest in a topic (Chu, et al., 2012).  The integration of 𝐸𝑠 and 

𝐷𝐶(𝑡𝑖) was an area of research that was not found in a thorough review of the literature. 
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In terms of event detection in Twitter the ensemble of 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 was an interest to us 

as an avenue of research because the approach did not depend on word frequencies to 

identify events. 

Summary of Research 

The two principal areas that were covered in this review were existing methods of 

event detection and SNA metrics. There is also a third area, machine learning, which we 

intend on pursuing in later research. This topic will briefly be discussed at the end of this 

summary. After a thorough perusal of the literature, it became apparent that there were 

three items of interest that needed to be highlighted.  The first was that there was no 

existing all-inclusive definition of an event (Ghosh, et al., 2011). The definition depended 

on the scope, time-period, and domain of the research that was involved. The second item 

was that there was an abundance of SNA metrics available with which to analyze 

different aspects of social networks (Grando, et al., 2016). Centrality is a broad and 

generic term for a system of metrics that evaluate different aspects of networked users in 

a discussion stream. Some of the metrics have existed nearly as long as the field of SNA 

itself. Closeness, betweenness, and degree centralities are foundational measurements 

that were found in many studies in the literature (Alarcão & Neto, 2016; Peng, et al., 

2018). These three metrics quantified different aspects of information transfer efficiency 

and influence (Grando, et al., 2016; Peng, et al., 2018). One criticism of these metrics 

was that they were static in nature and did not capture gradual change in a network over 

time.  Another commonly used metric in SNA research was 𝐸𝑠, which was adapted from 

the field of Physics to information theory (Li, et al., 2015). Scientist Claude Shannon 

published his paper on this adapted metric in the late 1940s. In its new interpretation, 𝐸𝑠 
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measured the amount of diversity in topics and users in a discussion stream (Pinto, et al., 

2019). The principal difference between 𝐸𝑠 and centrality in SNA research was that 𝐸𝑠 

was evaluated based on the connective architecture of nodes and edges in a social 

network (Alarcão & Neto, 2016). The 𝐸𝑠 metric was used frequently to evaluate user text 

from sources such as Twitter posts (Ghosh, et al., 2011).  

There were examples in the literature of researchers creating new SNA centrality 

metrics designed to capture aspects of change in a discussion stream. One such metric 

was 𝐷𝐶(𝑡𝑖), which sought to measure influential users in a network for different topics. 

The authors of the study emphasized that a user in one discussion stream might not hold 

the same level of influence for a different topic (Kang, et al., 2012). 𝐷𝐶(𝑡𝑖) was a 

centrality metric, however it differed from its predecessors in that it was not static like the 

betweenness, closeness, and degree centrality metrics. It required a diffusion model along 

with the nodes and edges to explain how information such as tweets was spread from user 

to user in the discussion stream.  

An additional issue that needs to be highlighted is the use of machine learning 

algorithms to predict the occurrence of events in a discussion stream. Based on a study 

that was found in the literature, 22% of research conducted into the domain of social 

media used Support Vector Machine (SVM) models to evaluate data. Approximately 6% 

of that same pool of research used Artificial Neural Network (ANN) models (Injadat, et 

al., 2016). The aforementioned study did not have a statistic for ensemble models such as 

Random Forest (RF) or XGBoost. Ensemble models are rather popular according to the 

literature, due to the fact that they aggregate the strong points of individual classifiers to 

produce a more robust score as a result (Dey, 2016).  
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Based on the studies discussed above, we performed several empirical 

experiments using all four models with sample data. As our research continued, we 

compiled enough empirical and documented research to support the use of SNA metrics 

𝐷𝐶(𝑡𝑖) and 𝐸𝑠 integrated into one metric to detect and identify events (Díez-Pastor, et al., 

2015) . We did not, however, have a documented and supported approach to evaluate our 

metric using machine learning classifiers. We decided to use the quartiles data 

exploration approach to evaluate our method (Lee & Sumiya, 2010). In future research 

we intend to implement SVM, ANN, RF, and XGBoost to provide more concrete 

evaluation data for our approach using confusion matrices.  
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Chapter 3 

Methodology 

Overview of Research Methodology 

The approach to event detection detailed in this document was the result of 

assiduous and careful review of the literature on the subject and continuous empirical 

experimentation with sample data.  To help the reader better illustrate the techniques in 

our approach, an example case study was used in the various sections throughout the 

chapter. The example study used a sample dataset collected and processed using the same 

techniques that were discussed in this document.  

Our discussion first addressed the research methods that were used in the study. 

The discussion began with part one of our case study which demonstrated how a dataset 

was collected by leveraging the Twitter platform’s application programming interface 

and searching for tweets based on a hashtag keyword search. Part two of the case study 

detailed the attributes that made up a collected dataset that are part of an imported raw 

dataset file. Part two of the case study then detailed which attributes were used for further 

calculations and which ones were discarded. Following parts one and two of the case 

study, the discussion moved to the calculation of the Diffusion Centrality (𝐷𝐶(𝑡𝑖)) 

attribute. To create the 𝐷𝐶(𝑡𝑖) attribute a dataset of tweets first had to be presented as a 

graph of users and connecting edges (Otte & Rousseau, 2002). The 𝐷𝐶(𝑡𝑖) scores were 

then derived by considering the inherent interconnectivity of Twitter users (Proskurnikov 

& Tempo, 2017). With respect to SNA, the 𝐷𝐶(𝑡𝑖) metric evaluated how many times or 

how frequently a message spread by a user could be seen by other users in the same 

discussion stream (Kang, et al., 2012).   
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Following the 𝐷𝐶(𝑡𝑖) attribute, the calculation of the Shannon Entropy (𝐸𝑠) 

attribute was discussed. 𝐸𝑠 was a metric that had its origins in Thermal Physics, but it had 

been adapted to the field of Information Science (Wang, et al., 2018). With regards to our 

research, 𝐸𝑠 was a metric that evaluated the amount of user diversity that existed in an 

aggregated sample of Twitter text (Ghosh, et al., 2011). The metric lacked the precision 

for a nuanced analysis of text, however it was useful for evaluating the diversity of a 

dataset at the macro level (Bentz, et al., 2017). The 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 were integrated to 

form a unique single attribute called Newsworthiness (NW) which we discussed at length. 

NW is the ratio of user message spreading over user diversity. When displayed on a 

graph, increased levels of NW suggested the occurrence of events in a discussion stream. 

The approach to measuring NW is discussed in the next section.  

The discussion moved next to instrument development and validation. In this 

section we discussed how we would measure the NW attribute. During early research, we 

experimented with machine learning classifiers and the use of a threshold line to identify 

events based on increased levels of NW. Initial results from our empirical testing were not 

satisfactory so we decided to pursue the use of machine learning in later research. 

Ultimately, machine learning classifiers were desirable because they provided concrete 

evaluative results in the form of confusion matrices (Lokeswari & Rao, 2016). In lieu of 

classifiers we decided to implement quartiles as an evaluative technique because they 

were supported in several studies of SNA and Twitter (Pozdnoukhov & Kaiser, 2011). As 

it was suggested previously, the downside to using quartiles as a metric was that the 

technique did not consider the dataset as a whole, but as a set of fragmented ranges 

(Rousseeuw & Hubert, 2011). We opted for quartiles because they allowed for a method 
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of displaying data which isolated “normal” user spreading activity from outliers (Lee & 

Sumiya, 2010). This method of data evaluation allowed us to show the full range of the 

NW attribute distribution while using the 𝑄3 (upper quartile) value as a boundary fence 

(Rousseeuw & Hubert, 2011). Our suggestion in this case was that events tended to occur 

in the region above 𝑄3 as events were associated with elevated levels of NW. Based on 

initial empirical testing, we found that the quartiles method was not ideal, but it provided 

a sufficient method of measuring a dataset NW distribution over a time period that was 

covered in a study. 

The discussion moved next to data analysis. To analyze the efficacy of our 

approach, we compared our results to the results provided by a popular existing approach 

to event detection. One of the popular approaches to event detection that was found in the 

literature was measuring keyword frequency over a time-period. Peaks in keyword 

occurrence during a particular time index suggested events (Figueiredo & Jorge, 2019; 

Guo, et al., 2017; Wang, et al., 2012). Initial empirical testing proved that increased 

occurrence of keywords during a given time index resulted in peaks when the keyword 

frequency trajectory was shown in a linear graph using two dimensions (time index and 

frequency). We analyzed the efficacy of our approach by comparing the linear trajectory 

of NW with the trajectory of keyword frequency using the same dataset. Initial 

experiments with our case study sample data showed that the NW trajectory resulted in 

the occurrence of more defined peaks during the time-period covered.  

Following the section covering data analysis, the discussion moved to formats for 

presenting results. It was mentioned in the previous section that our approach and the 

existing method of event detection would be evaluated using linear trajectory graphs for 
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the time-period covered. Based on empirical testing with the case study dataset, the most 

efficient and effective method of displaying results was a smoothed linear graph that 

included data points for individual tweets that occurred at their respective time indices. 

The smoothed line took data from the averages of the points that were plotted at every 

time index and created a linear representation based on the averages. The points on the 

graph helped to explain where the weight of the clustering of tweets fell, causing the 

trajectory to ascend or descend, resulting in peaks and troughs. 

The discussion of our method concluded with a section covering required 

resources and a summary. The summary included our datasets for the study and the time-

period that was covered. We made use of two datasets for this research. The time-period 

covered for the two datasets was fourteen days. The individual time index for the study 

was a single day. The topic for the first dataset was based on a keyword search using the 

phrase “Tulsa+Rally” as the search terms. The second dataset was collected using the 

keywords “Atlanta+Protests.” The two datasets had between them fourteen and twelve 

thousand tweets (based on API availability) and were collected every day over a period of 

fourteen days. For each day sampled, the API was leveraged multiple times to ensure a 

completeness of coverage for the 24-hour period. The summary also included a 

discussion of our future research. In future research we plan to use four machine learning 

classifiers to evaluate NW. Specifically, these are Artificial Neural Network, XGBoost, 

Random Forest, and Support Vector Machine. We will also integrate sentiment analysis 

as an additional attribute to the composite NW metric. Sentiment analysis will provide an 

additional layer of evaluation by considering events in terms of user emotion in addition 

to user diversity and message spreading activity.  
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Research Methods Employed 

In the following section, we discussed the research methods that were 

implemented in our study. The discussion began with our approach to dataset collection 

using a hashtag or keyword search within the Twitter API. The discussion continued with 

the calculations of the 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 scores. The discussion of the section concluded 

with the integration of the 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 scores into the single attribute called NW.  The 

previously mentioned research methods were explained using our case study which 

helped to clarify the process by example. 

Case Study: Collecting the Dataset Based on a Hashtag Search 

To better illustrate the many aspects of our method, for this research we collected 

a sample dataset as part of a case study which is intended to illustrate the steps involved 

in the approach. The case study included collecting the dataset, processing it, and 

graphing the results. In this section we were concerned with acquiring Twitter data, so we 

began by finding currently trending topics and selecting a sample hashtag as the basis for 

our search. After a brief perusal of the Twitter interface, we acquired a list of the top 50 

topics that were currently trending. We selected the second hashtag from the list, which 

was #DowJones.  We used the R programming language to leverage the Twitter API so 

that it returned a requested sample of 10,000 tweets, which was the maximum number 

allowed by the API per one-time request. The Twitter API returned the requested number 

of tweets which spanned a time frame of nineteen hours from their posting time index in 

the discussion stream.  
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Case Study:  API Table Attributes and the #DowJones Dataset 

Prior to creating the four variables that we would need to predict events, some 

initial preprocessing of the #DowJones dataset needed to take place. The raw collection 

of tweets that were provided by the API included 16 attributes.  Of these 16 raw attributes 

only four needed to be kept. These attributes were created, text, screenName, and 

isRetweet. Table 1 illustrates the attribute names and their corresponding data types.  The 

remaining 12 raw attributes were not used and were discarded.  Table 2 displays the API 

attributes that were discarded from the raw tweet collection. Of the four attributes that 

were kept, three were used to create the 𝐷𝐶(𝑡𝑖) attribute.  Once this attribute was created, 

the screenName and isRetweet attributes were discarded. The text attribute was used to 

calculate 𝐸𝑠. Once the 𝐸𝑠 attribute was calculated, the text attribute was discarded. The 

created attribute was the only original attribute that was kept throughout the rest of the 

event detection process.  

 

 

 

Twitter Data Attribute Name Data Type 

created Time index/Time 

text Character 

screenName Character 

isRetweet Boolean 

 

 

List of Twitter API columns that will be used for event detection 

Table 1 
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Twitter Data Attribute Name 

favorited statusSource 

favoriteCount replyToSN 

id replyToUID 

latitude retweeted 

longitude retweetCount 

 

Calculating 𝐷𝐶(𝑡𝑖) Scores from the Twitter Retweet Graph 

Before a dataset could be used to detect events, there would be a total of four 

attributes. The first attribute, hour (converted from the created attribute), was carried 

over from the original tweet samples collected from the Twitter API. The other three 

attributes needed to be calculated. These attributes were 𝐷𝐶(𝑡𝑖), 𝐸𝑠, and NW. To 

calculate the values for 𝐷𝐶(𝑡𝑖), the tweets collected from the API had to first be 

visualized as a graph. A Twitter graph is a construct in sociological research that is a 

visualized representation of a network of connected entities, usually people. In the SNA 

literature, the terms graph and network are synonymous (Otte & Rousseau, 2002).  A 

graph is formally defined as G=(V,E), where V={𝑣1, …, 𝑣𝑛} and E={𝑒1, …, 𝑒𝑘} are finite 

sets. The individual v ∈ V elements are vertices (individual Twitter users in a discussion 

stream) and e ∈ E elements are edges (lines that connect user vertices) (Proskurnikov & 

Tempo, 2017).   

List of Twitter API columns that will be discarded 

Table 2 
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The edges of a graph can be weighted or unweighted. A weighted edge is a 

connection from a network that has an associated numerical value that assesses its 

strength in a category relative to another edge. An example of a weighted edge in the 

context of our research is a connection between two Twitter users where message sharing 

occurs several times in a single day as opposed to other connected users who may share 

only once a day. A connection such as the one just described may be assigned a 

numerical value to demonstrate the higher rate of message exchange. If a network has no 

comparisons of relative strength in their connections, the edges are unweighted (Malliaros 

& Vazirgiannis, 2013; Newman, 2004).  The edges of a graph can also be directed or 

undirected. If the edges between two users in a graph are directed, then it is implied that 

the flow of information is only from one Twitter user to another, not both ways. If the 

edges of the graph are undirected, the flow of messaging is implied to take place back 

and forth between both users (Newman, 2004; Proskurnikov & Tempo, 2017).  In the 

context of our research, the flow of messaging between users in the graph was 

undirected.  The edges between users were also unweighted, meaning none of the 

connections between them held any greater emphasis over others.  All edges possessed 

equal weight. The implication of not having any special weights or directed flow between 

users implied that there were no special considerations to be taken when calculations 

were evaluated. Calculations would be based on user connectivity, not directional flow or 

weight. 

A Twitter graph was created with each tweet representing a node and a retweet 

action representing a line connecting the users (Malliaros & Vazirgiannis, 2013).  The 

𝐷𝐶(𝑡𝑖) scores were determined based on the connectivity of the graph’s users (Otte & 
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Rousseau, 2002; Proskurnikov & Tempo, 2017). The scores were calculated from the 

two-dimensional retweet graph using the R programming language and the keyplayer 

development package within R Studio.  The 𝐷𝐶(𝑡𝑖) scores were evaluated using the 

formula 𝐷𝐶(𝑡𝑖) = ∑ 𝑃𝑟𝑡𝑇
𝑡=1 , where 𝑡𝑖 was an individual tweet from a discussion stream 

and 𝑃𝑟𝑡 was the probability that one network (user) node could reach an adjacent 

(neighboring) node in t iterations where T was the total number of iterations in the time 

period covered in the discussion stream and t was a single iteration (An & Liu, 2016).  

The formula mentioned above required a few additional definitions and 

supplemental discussion to provide clarity. A sparse matrix in the context of this study is 

a two-dimensional mathematical matrix representation of a finite SNA graph where 

connections and lack of connections between users are represented by zeroes and ones. 

The matrix is referred to as sparse because a large number of its cells contain zeroes 

(Davis & Hu, 2011). A matrix cell with a 1 value in it represents a connection between 

users. A sparse matrix is defined as 𝐴 = (𝑎𝑖𝑗)𝑖,𝑗∈𝑉, where 𝑎𝑖𝑗 is a value corresponding to 

an edge in a graph of a discussion stream and 𝑖, 𝑗 ∈ 𝑉 represents two connected users 

from the finite set of users in a discussion stream. A sparse matrix is the encoding that 

defines the connections between users in a network graph (Proskurnikov & Tempo, 

2017). A diffusion model is a small world representation of a Twitter discussion stream 

that represents all of the potential propagation paths that a message could take through 

peer-to-peer interactions between users in a network subset (Zhang, et al., 2016).  

Based on the above definitions, the following discussion provides further details 

for the process of calculating 𝐷𝐶(𝑡𝑖) from a SNA graph.  𝐴 ∈  ℝ𝑛𝑥𝑛 is a sparse matrix of 

an undirected network with n nodes (users) based on a graph of a Twitter discussion 
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stream. Sparse matrix A contains the structural information for how the users and edges 

are connected in a network subset. Pr = A * x is a probability matrix created by 

multiplying an assigned value representing a level of probability x by sparse matrix A (An 

& Liu, 2016; Takada, et al., 2010). 

 Probability matrix Pr is a variable which stores values that estimate the 

likelihood that a user node will spread a message to another user node (An & Liu, 2016). 

An easier way to understand the formula Pr = A * x is to decompose it in the following 

manner.  Pr is a variable which contains the results of A * x, which will be used in later 

calculations.   A is a sparse matrix that contains the connective information about a 

Twitter network. Specifically, it contains the mapping data describing which user 

connects to other users (users and edges). The x variable in the formula represents the 

probability that a user will send a message.  The x variable is multiplied by the sparse 

matrix containing users and edges, represented by A.  The multiplication results in a 

matrix of numbers which represents a probability value that a user will send his message. 

This value remains the same throughout the number of iterations that a network passes in 

their time-period. To that end, the value x does not change if the same user sends 

different messages (An & Liu, 2016).  

The value of probability variable x is an aspect of user behavior prediction that is 

used in many studies of information diffusion (Han & Tang, 2015). In our research, the 

value of probability variable x was applied to all users in a sparse matrix (An & Liu, 

2016). We found examples in the literature which supported this implementation. To this 

end, we found studies which used a single explanatory variable to simulate a binary user 

state (Cha, et al., 2010; Diederich & Busemeyer, 2003).  For example, a user could send 
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or not send a message. A user could also be informed or not be informed.  In those 

studies, a value such as .4 was assigned to a variable to represent a probability that a user 

would behave in a particular manner (Diederich & Busemeyer, 2003).  The model that 

studies use to implement diffusion probability is defined within a sparse matrix 

(Heaukulani & Ghahramani, 2013).  In the cases we researched, when the probability 

variable was applied to the sparse matrix the outcome was determined by the topology of 

connected users (Heaukulani & Ghahramani, 2013). We chose the implementation of 

probability variable x as a single value because the approach helped to simplify the 

simulation of human decision-making (to send a message or not) in our Twitter 

discussion stream model (Diederich & Busemeyer, 2003; Han & Tang, 2015). 

There was an alternate approach to creating the probability matrix, which was to 

provide the probability values for each node if the data was available.  There was no 

guidance available in the literature to justify the use of such an approach. We chose the 

first method described previously, which is a simplified and more generic approach to 

creating a probability matrix to simulate diffusion. It was not a complex simulation which 

incorporated a changing probability (which was preferable), but it provided an adequate 

time series model of diffusion which met our goals of identifying events by analyzing 

message spread (An & Liu, 2016; Diederich & Busemeyer, 2003).  For many studies in 

the literature, this simplified approach was preferable to individually assigning 

probabilities to users using complicated diffusion models (Vandekerckhove & 

Tuerlinckx, 2008).  

 The 𝐷𝐶(𝑡𝑖) metric is generally intended to work with the connected users and 

edges of a Twitter network graph (a.k.a the architecture) and a diffusion model which 
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explains how a message spreads through it. Due to the rigidity and difficulty of formal 

mathematical diffusion models such as cascade and threshold in SNA studies, 

researchers have sought to implement alternate methods to simplify the simulation of 

information diffusion (Diederich & Busemeyer, 2003).  As a result, simpler probability 

matrix methods have been used in SNA research in lieu of the more intractable formal 

models (Vandekerckhove & Tuerlinckx, 2008). The probability matrix Pr in the 

aforementioned formula simulates a diffusion model using a simpler generic approach 

(Takada, et al., 2010).  This simpler approach uses the product of multiplying sparse 

matrix A with a numerically assigned level of probability x, .3 for example (An & Liu, 

2016).  The researcher is charged with assessing the value for probability x.  The T 

variable in the 𝐷𝐶(𝑡𝑖) calculation formula is the number of iterations a Twitter network 

will go through to spread information among users in the network. The T variable and Pr 

probability matrix are the two inputs to the equation 𝐷𝐶(𝑡𝑖) = ∑ 𝑃𝑟𝑡𝑇
𝑡=1 .  

Case Study:  Calculating the 𝐷𝐶(𝑡𝑖) Scores for the #DowJones Dataset 

Our research used hour for the time index. Samples were taken over a 14-hour 

period. The first of the attributes that we created as part of our case study using the 

#DowJones dataset was 𝐷𝐶(𝑡𝑖). As was discussed in the prior section, the tweets had to 

be visualized as a graph before the 𝐷𝐶(𝑡𝑖) scores could be evaluated. The graph for our 

case study was visualized using the igraph package in R studio.  The rows from the text 

and screenName attributes were represented as users in the graph. The screenName and 

text attribute members from the dataset were each represented as individual users. Edges 

were displayed in the graph representing connections between the users.  These edges 

represented retweet relationships between users. Individual points in the graph 
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represented tweets (users) whose value in the isRetweet field was TRUE, indicating that 

all of the tweets in the graph were retweets.  After the graph of the “#DowJones” dataset 

was rendered, the keyplayer package was used to calculate the 𝐷𝐶(𝑡𝑖) scores.  The scores 

were saved as the second attribute of the dataset next to hour. An example of the 𝐷𝐶(𝑡𝑖) 

scores can be seen in Table 4.  The sparse matrix which is used to calculate 𝐷𝐶(𝑡𝑖) is 

discussed next. 

Case Study: The Sparse Matrix for the #DowJones Dataset 

The sparse matrix, which was discussed above, was used to calculate 𝐷𝐶(𝑡𝑖) for a 

dataset.  To calculate 𝐷𝐶(𝑡𝑖) a Twitter discussion stream had to first be represented as a 

graph.  The graph was converted from a system of users and edges to a sparse matrix 

which was used as a parameter to create a probability matrix. The probability matrix was 

used to evaluate Diffusion Centrality measures using the formula 𝐷𝐶(𝑡𝑖) = ∑ 𝑃𝑟𝑡𝑇
𝑡=1 . The 

probability matrix contained the probability that a user would spread a message to an 

adjacent (neighboring) user.  According to the simulated model that drives the probability 

matrix, a user has a single chance (probability) to spread its message to an adjacent user 

(An & Liu, 2016; Saito, et al., 2011). Table 3 below demonstrates a scaled-down sample 

sparse matrix taken from the #DowJones dataset.  
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 corporatepiggie kevinsvenson_ matthewryancase realdonalbtrump rumanaalvi1 

1 0 0 0 0 0 

2 0 0 0 0 0 

3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

7 0 0 0 0 0 

8 0 0 0 0 0 

9 1 0 0 0 0 

10 0 1 0 0 0 

11 0 0 1 0 0 

12 0 0 0 1 0 

13 0 0 0 0 1 

14 0 0 0 0 1 

15 0 0 0 0 0 

16 0 0 0 0 0 

17 0 0 0 0 0 

 

In Table 3 the node and edge configurations are stored in the sparse matrix in a 

two-dimensional format. The names of the individual users are listed as column names.  

The sequential numbers on the vertical axis represent the users in the network where a 

potential connection exists. The cells that lie beneath a user’s column in the matrix define 

whether or not the aforementioned user has a connecting edge with another user. With 

regards to the sum total of a single user’s connections, the data is read vertically from the 

top down at each intersection point between the user column and the numbered row. All 

matrix cells are zeroes unless there is a connection between two users in which case a 1 

inhabits the cell at the intersecting juncture between the user’s column and the numbered 

row (Davis & Hu, 2011).  Sparse matrices differ from other data structures such as 

adjacency matrices with regards to undirected networks. For example, in an adjacency 

Table 3 

Example of Sparse Matrix for #DowJones Dataset 
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matrix an undirected network is identified by the symmetric placement of zeroes in the 

matrix with respect to the 1 values (Wagner & Neshat, 2010; Weisstein, 2007). In a 

sparse matrix, users and their connecting counterparts are placed along the vertical and 

horizontal axes. All cells are zeroes unless there is a connection, so there is no symmetric 

placement of zeroes (Davis & Hu, 2011).  

To illustrate the process that was detailed above, consider in Table 3 the username 

“realdonaldbtrump” that occupies the fourth column of the sample matrix. All of the cells 

are zero with the exception of the twelfth row. This configuration indicates that user 

“realdonaldbtrump” is only connected to one other user in this discussion stream. The 

user that is associated with row 12 is known internally by the function creating the sparse 

matrix. Alternately, if we consider the user “rumanaalvi1” that occupies the fifth column, 

we observe that there are two cells with a 1 value in them. This configuration indicates 

that user “rumanaalvi1” is connected to two other users. By viewing the sparse matrix, it 

is not explicitly evident who the users are that are connected to “realdonaldbtrump” or 

“rumanaalvi1” since the connected users are only identified by sequential numbers. The 

user to user relationships are visually evident when the edge and node connections are 

restored in graph format. User relationships can be identified by reverse engineering the 

cells that have a value of 1 in them and matching them to corresponding users. In a very 

large discussion stream, that would take considerable time.  
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hour diffusion 

𝑡1723 3 2.44 

𝑡1724 3 1.8 

𝑡1725 3 15.12 

𝑡1726 3 41.36 

𝑡1727 4 0.28 

𝑡1728 4 1.12 

𝑡1729 4 63.4 

𝑡1730 4 1.52 

 

If we look at the first row in Table 4, the 𝐷𝐶(𝑡𝑖) value for the tweet is 2.44. By 

contrast, the tweet with the highest 𝐷𝐶(𝑡𝑖) value in the example table is 63.4.  In the 

context of our research 𝐷𝐶(𝑡𝑖) was the expected number of times users in a Twitter 

discussion stream heard about a message that was spread (Bramoullé & Genicot, 2018).  

To further extrapolate, 𝐷𝐶(𝑡𝑖) is a measure of the level of spreading influence that a 

Twitter user has with respect to the overall discussion stream (Kang, et al., 2012). A user 

whose tweet had a 𝐷𝐶(𝑡𝑖) score of 2.44 would not have their message received and 

further retweeted as often as a user who had a  𝐷𝐶(𝑡𝑖) score of 63.4.  In short, the tweet 

in Table 4 whose 𝐷𝐶(𝑡𝑖) is 63.4 would have a more substantial influence over the 

discussion stream because his tweet would be seen more times and retweeted more 

frequently than others.  

Calculating 𝐸𝑠 Scores from the Tweet Text Attribute 

The third attribute of the dataset was Shannon Entropy (𝐸𝑠).  Mathematically 

speaking, 𝐸𝑠 is the discrete probability distribution of Twitter text to measure the 

uncertainty or randomness of the data by analyzing its complexity (Wang, et al., 2018).  

#DowJones dataset with 𝑡𝑖 , hour and 𝐷𝐶(𝑡𝑖) columns 

𝒕𝒊 

Table 4 
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In several studies, in addition to uncertainty and randomness, 𝐸𝑠 has been adapted to 

measure surprise and diversity (Ghosh, R., et al., 2011; Vajapeyam, 2014). In the context 

of this research, 𝐸𝑠 was used to measure the average level of user diversity that existed in 

an aggregation of tweets (Ghosh, et al., 2011; Hasan, et al., 2016).   

The Shannon Entropy of a set of aggregated tweets could be calculated using the 

formula 𝐸𝑠 =  − ∑ 𝑑𝑖log (𝑑𝑖)
𝑁
𝑖=1 , where d data points are sorted into N groups based on 

the time index. The data points d in this calculation refer to the individual words that 

make up the text of a tweet sent by a user (Vajapeyam, 2014).  The individual words of a 

tweet are the fundamental units of communication between sender and receiver according 

to Shannon’s Information Theory (Caballero, et al., 2017).  In our research, 𝑑𝑖 was a 

probability variable which was concerned with word frequency in Twitter text. In this 

context, word frequency in communication related to the minimum amount of words 

necessary to retain the integrity of information (Vajapeyam, 2014). The 𝑑𝑖 variable was 

calculated after we aggregated all tweets according to the time index of their posting.  

The aggregated user text that was sorted by time index was then evaluated for 𝐸𝑠, which 

told us the level of diversity in the users who contributed them.   

Case Study: Calculating the 𝐸𝑠 scores for the “#DowJones” Dataset 

The text attribute from the original dataset of tweets was used to calculate the 𝐸𝑠 

scores for the #DowJones dataset. Our example dataset covered a time-period of 19 

hours. All of the tweets for each hour index in the dataset were aggregated and then an  

𝐸𝑠 score was evaluated for all of the tweets that were posted during that minute index. 

For example, all tweets which were posted at hour 3 were grouped together and evaluated 
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to a collective 𝐸𝑠 score of 1.604. An example of the #DowJones dataset with three of the 

four required attributes can be seen in Table 5 below.  

 

 

 

 

  
hour diffusion entropy 

𝑡1723 3 2.44 1.604 

𝑡1724 3 1.8 1.604 

𝑡1725 3 15.12 1.604 

𝑡1726 3 41.36 1.604 

𝑡1727 4 0.28 1.5244 

𝑡1728 4 1.12 1.5244 

𝑡1729 4 63.4 1.5244 

𝑡1730 4 1.52 1.5244 

 

𝐸𝑠 is essentially the measure of disorder in a system (Li, et al., 2015). The 𝐸𝑠 

metric has been adapted for use in several studies of SNA to measure the amount of 

diversity in a system (Matei, et al., 2015). It is within this context that we used the 𝐸𝑠 

metric. To this end our goal was to evaluate the level of diversity that existed in Twitter 

text during a particular hour time index from a dataset (Ghosh, et al., 2011). The 

literature views the 𝐸𝑠 measure in this domain as the level of collaboration in a system 

(Matei, et al., 2015).  For our research purposes, diversity was the result of collaboration 

of many users who were collaborating in a discussion.  Collaboration was evaluated by 

analyzing the number of participants and the shares of their participation in a Twitter 

discussion stream. By analyzing the collaboration of users in the discussion stream we 

derived the diversity that existed within the discussion stream (Ghosh, et al., 2011; Matei, 

et al., 2015). We obtained the collaboration (and consequently the diversity) of the 

𝒕𝒊 

Table 5 

#DowJones dataset with 𝑡𝑖 , hour, diffusion, and entropy columns 
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discussion stream by calculating the average 𝐸𝑠 for the aggregated tweets from the 

discussion stream for a single hour index. In short, the higher the 𝐸𝑠 score, the higher the 

diversity which meant that more users were collaborating in a discussion (Matei, et al., 

2015). 

The 𝐸𝑠 score for diversity is a number that ranges from zero to approximately 3.5, 

which suggests a high level of diversity in the system being measured. A score which 

ranges from approximately 1 to around 2.5 suggests a diversity that is very low to 

average. A score of 2.5 < 𝐸𝑠 < 2.9 suggests an above average level of diversity. A score 

of 𝐸𝑠 >= 3 suggests a high level of diversity (Ifo, et al., 2016). Based on empirical testing, 

a score of 𝐸𝑠 >= 4 has occurred but is rare. The first 𝐸𝑠 score in Table 5 is 1.604.  This 

score suggests a low average diversity for the aggregated tweets at the third hour of the 

#DowJones dataset. The smaller average diversity score for the third hour suggests that a 

smaller group of people posted a larger number of tweets for the time index.  

There is one shortcoming to the 𝐸𝑠 attribute that should be briefly discussed to 

provide more clarity as to the capabilities and limitations of the metric. According to 

several studies in the literature, 𝐸𝑠 is used to measure diversity in natural language 

(Papadimitriou, et al., 2010). The preferred application of this diversity measurement is at 

the macro level. To this end, 𝐸𝑠 is frequently used in closed communities (such as a 

Twitter discussion stream sample) to measure the amount of participation contributed by 

users in a larger community.  The 𝐸𝑠 metric does not have the ability to evaluate 

language diversity at the micro level (Bentz, et al., 2017; Kalimeri, et al., 2012). 

Specifically, 𝐸𝑠 can measure diversity in textual language, but it is not capable of 

providing a nuanced evaluation of language based on word order. Two tweets that use the 
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same words but have different word orders (thus potentially different contexts) will have 

the same 𝐸𝑠 score (Bentz, et al., 2017). This shortcoming excludes 𝐸𝑠 from being used in 

studies which require a detailed evaluation of text at the micro level. 

Integrating the 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 Variables into a Single Variable 

There were many examples in the research literature demonstrating the creation of 

new variables from existing ones.  Díez-Pastor, et al. (2015) used ensembles of variables 

from machine learning datasets to solve a problem of class imbalance, which is a problem 

that arises when the proportions of one variable to another are skewed (Díez-Pastor, et 

al., 2015).  Davis and F. Abdurazokzoda (2016) aggregated several different socio-

linguistic categories such as population and cultural traits into an individual variable. The 

intention of the aggregated data was to summarize and bring together many cross-domain 

elements into a single variable for study (Davis & Abdurazokzoda, 2016). Randall, et al. 

(2014) aggregated several aspects of a patient’s personal information to provide patient 

cross record linkage across many different distributed medical datasets (Randall, et al., 

2014). In all these studies new variables were created using combinations of data 

aggregation and ratios (Du Jardin, 2010).  

The reasons for creating a new variable ranged from solving classification 

problems, to combining summarized information, to providing multi-variable linkage. In 

the case of our research, we needed to implement elements of information summary and 

multi-variable linkage to create a new variable for our study (Davis & Abdurazokzoda, 

2016; Randall, et al., 2014). To this end, we combined elements of information spread 

with a quantitative metric of diversity into a single variable to measure events on Twitter 

(Ghosh, et al., 2011; Kang, et al., 2012). Next, we further discuss the ensemble of 
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variables we used. The dataset at this point had three variables, which were time index p, 

𝐷𝐶(𝑡𝑖), and 𝐸𝑠. Based on a review of the literature (Du Jardin, 2010), the method we 

decided to integrate the 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 variables into a single ratio.  The quotient of the 

ratio of the two variables resulted in a numeric value we called newsworthiness, 

represented by NW.  NW is the ratio of  𝐷𝐶(𝑡𝑖): 𝐸𝑠, expressed mathematically as NW = 

𝐷𝐶(𝑡𝑖)

𝐸𝑠
 .  It was a metric of user activity that quantified the distribution of user message 

spreading actions over the user diversity in a discussion stream.   

The 𝐸𝑠 attribute was a value that frequently fell in the range of 0 < 𝐸𝑠 < 3 (Ghosh, 

et al., 2011; Hasan, et al., 2016). Based on several test datasets, a sample that contained 

Twitter text where  𝐸𝑠 > 4 was anomalous but did occur. Based on our sample datasets, 

the 𝐷𝐶(𝑡𝑖) attribute was a value that ranged from 0 < 𝐷𝐶(𝑡𝑖) < ∞.  Low 𝐸𝑠 scores can 

result in larger ranges of NW.  Although, based on the guidance from the literature this 

appeared to be antithetical to logic, several studies suggested a valid reason for this 

occurrence. One reason for the disproportion between low 𝐸𝑠 and high NW was a 

systematic repetition of a message by a discrete cluster of users in a discussion stream 

(Gurajala, et al., 2016). If a small number of messages was repeated at a high frequency, 

the contribution to a discussion resulted in a corpus of tweets void of diversity in content. 

The dissonance between a small cluster of users and high NW could be attributed to spam 

bots, whose primary objective was message amplification (Gurajala, et al., 2015).  

  During the integration of 𝐸𝑠 with 𝐷𝐶(𝑡𝑖), the 𝐸𝑠 attribute was placed in the 

numerator of the NW equation to avoid results that evaluate to very small numbers. To 

that end, we placed the 𝐸𝑠 attribute in the denominator of our equation, resulting in 

graphs of the NW distribution that clearly articulated peaks and valleys that were 
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consistent with events.  The NW attribute took the information content of Twitter message 

text and the architecture of connected users as input and provided a metric to evaluate the 

levels of human activity (Ghosh, et al., 2011; Kang, et al., 2012).  It was where the levels 

of NW were highest in a discussion stream those events were identified.  The creation of 

the NW metric can be seen in the algorithm below. 

Event Detection 1 NW Peak Identification 

 

Function integrateAttributes 

 Input:   𝐷𝐶(𝑡𝑖),  𝐸𝑠 

 Output: NW 

FOR all rows in 𝐷𝐶(𝑡𝑖) 

Divide by corresponding rows in 𝐸𝑠 

ENDFOR 

EndFunction 

Function calculate 𝑄3 

 Input:   NW 

 Output: 𝑄3 

Sort NW in ascending order 

Calculate 0.75 percentile of sorted NW 

EndFunction 

Function createSmoothedLineGraph 

 Input:  NW, hour  

 Output:  Smoothed linear curve 

  FOR all rows in hour  

  AND all rows in NW 

   Plot hour on x-axis 

   Plot NW on y-axis 

ENDFOR 

EndFunction 

Function detectEventPeak 

 Input: NW smoothed line curve 

 Output: Event_Peak 

  Event_Peak = ø 

  IF NW smoothed line curve > 𝑄3 

  ANDIF  

IN smoothed line curve{Apex_points} THEN 
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Apex_points ⊆ Event_Peak 

  ENDIF 

 

Case Study: Calculating the NW attribute for the #DowJones dataset 

We calculated the NW attribute values in the #DowJones dataset using the 

algorithm presented in the previous section. For every row of the dataset, the 𝐷𝐶(𝑡𝑖) 

value was divided by the 𝐸𝑠 value. An example of the #DowJones dataset with the NW 

attribute is seen in Table 6.  

 

 

 

  
hour diffusion entropy newsworthiness 

𝑡2589 5 24.72 1.5441 16.00932582 

𝑡2590 5 33.48 1.5441 21.68253351 

𝑡2591 5 24.72 1.5441 16.00932582 

𝑡2592 5 24.72 1.5441 16.00932582 

𝑡2593 6 0.4 1.5213 0.262933018 

𝑡2594 6 0.4 1.5213 0.262933018 

𝑡2595 6 24.36 1.5213 16.01262078 

     

 In the first row of Table 6 the NW value is 16.00932582.  This value was obtained 

by evaluating the ratio of 𝐷𝐶(𝑡𝑖) for the tweet in question over the average 𝐸𝑠 for the 

hour in which the tweet was posted. The higher NW value in this tweet suggests that the 

combined user spreading activity and average diversity level of the discussion stream is 

somewhat higher for this tweet than the others. To further extrapolate on this point, the 

tweet with NW 16.00932582 suggests that the discussion stream with which it is 

associated is higher in messaging activity and has more users. In other words, the 

discussion stream at the time this tweet was posted was more active overall. 

#DowJones dataset with 𝑡𝑖 , 𝐷𝐶(𝑡𝑖), 𝐸𝑠, and NW columns 

, columns 𝒕𝒊 

Table 6 

, 
column

s 
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Instrument Development and Validation 

Quartiles as a Metric 

In our study we looked at a number of metrics to identify one metric to evaluate 

the NW values which would suit our research needs. Our evaluation of metrics shifted 

from machine learning classifiers to quartile ranges.  After further review and initial 

testing, the latter seemed to be a better fit.  We initially searched the research literature to 

identify an appropriate metric with which to evaluate the NW distribution with regards to 

event detection. We attempted a technique that implemented the use of a threshold line 

(Aminikhanghahi & Cook, 2017), the location of which was calculated using machine 

learning classifiers such as Artificial Neural Network, XGBoost, and SVM (Lokeswari & 

Rao, 2016; Stamp, 2018). Preliminary experimental results were less than satisfactory 

and not sufficient for us to justify pursuing this approach to identify events. We made the 

decision to pursue the use of machine learning classifiers to identify an event threshold in 

future research. In lieu of machine learning, we decided to pursue an approach that 

instead focused on statistical exploration of the NW distribution spread itself (Rosenthal, 

et al., 2019). This decision to emphasize statistical exploration led us to the use of 

quartiles which will be discussed next. 

Quartile Analysis refers to a statistical method of data exploration in which a data 

attribute is split into four equal groups after its distribution is placed into ascending order.  

Each of the four subcomponents is called a quartile (Shih & Liu, 2016). The three points 

that divide the distribution into quartiles are denoted by the variables 𝑄1, 𝑄2, and 𝑄3 

(Langford, E., 2006). The values of each variable in reference to the subdivided 

distribution are 𝑄1 = 25%, 𝑄2 = 50%, and 𝑄3 = 75% (Shih & Liu, 2016). To illustrate the 
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use of quartiles, consider the following example. There is a dataset, for example 

{1,2,3,4,5,6,7,8,9,10,11,12}.  First, the dataset is placed in ascending order and then it is 

split into two halves. These are the upper half and the lower half, for example: lower half 

{1,2,3,4,5,6} and upper half {7,8,9,10,11,12}. If the dataset does not split evenly into two 

subsets, the median value is included in both the upper half and the lower half (Langford, 

E., 2006).  The lower half and upper half are then further subdivided into halves resulting 

in four subgroups total, each called a quartile, {1,2,3|4,5,6|7,8,9|10,11,12}.  The three 

lines that separate the four quartiles in this dataset are our values of 𝑄1, 𝑄2, and 𝑄3.  The 

three values serve as regional “fences” which partition the dataset into functional regions 

of equal spread (Domínguez, et al., 2017).  𝑄1 is the 25th percentile, which for this dataset 

is 𝑄1 = 3.25. 𝑄2 is the 50th percentile, which is 𝑄2 = 6.5. 𝑄3 is the 75th percentile, which 

is 9.75 (Langford, 2006; Shih & Liu, 2016).  

In many studies in the research literature, the statistical region of 𝑄1 to 𝑄3 is 

referred to as the interquartile range (IQR).  In our example, the IQR includes the set 

{4,5,6,7,8,9}. The values in the dataset that fall to the left of 𝑄1 and to the right of 𝑄3 are 

where outliers are found (Rousseeuw & Hubert, 2011). There are many studies in the 

literature which focus on the IQR for data evaluation due to its isolation from outlier 

influence (El Asri, et al., 2019; Tommasel, et al., 2016). Other studies focus on the areas 

outside of the IQR because the emphasis of the research is on outlier detection (Lee & 

Sumiya, 2010; Pozdnoukhov & Kaiser, 2011). Our research fell into this latter category. 

For our study, we were concerned with tweets that fell within the area above the 𝑄3 fence 

in particular.  For this reason, we chose the upper quartile outside of the IQR for our 
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testing emphasis. In the next section, we will further discuss the use of the upper quartile 

region that was adapted for our research. 

Use of Quartiles in Our Approach 

Quartiles are an evaluative method that we found in several SNA studies where 

the research required an established range of values representing a “normal” to 

“abnormal” range of data points from a dataset (Lee & Sumiya, 2010). Pozdnoukhov and 

Kaiser (2011) used the ranges delimited by 𝑄1, 𝑄3, and IQR to quantify the level of 

normality of crowd behaviors using both long and short-term time-series datasets that 

were collected from Twitter (Pozdnoukhov & Kaiser, 2011).  Lee and Sumiya (2010) 

used the 𝑄1 and 𝑄3 calculated values to define a range of usuality in a dataset of geo-

tagged tweets to detect the regularity of geographical events in a discussion stream. 

Outliers from the upper half of the dataset are identified as unusual tweets (Lee & 

Sumiya, 2010).   

Quartiles have limitations when it comes to evaluating distributions of data. They 

do not consider the data as a whole, since it is examined in fragmented ranges (i.e. upper 

half and lower half). The values of upper and lower quartiles are susceptible to the effects 

of outliers, which makes them often susceptible to undesirable influence from variance.  

In the case of our research, however, outliers help to identify events since they are 

sporadic occurrences of data that fall outside of an established “normal” range.  We hope 

to improve upon any limitations imposed by quartiles in future research when we include 

machine learning classifiers and accuracy metrics in our methodology. We implemented 

the use of quartiles in our research because it allowed us to split the NW distribution into 

two measurable ranges (upper half and lower half) that were delimited by the fences of 
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𝑄1 and 𝑄3.  The “fenced” areas (for our research, the area above 𝑄3) allowed us to 

evaluate the levels of user activity as normal and abnormal (Lee & Sumiya, 2010; 

Rousseeuw & Hubert, 2011). The lower half (from the minimum value to the distribution 

median) represented the normal range of user NW activity for our study. 𝑄1 served as the 

NW lower fence in our measurement, however we were not concerned with tweets that 

fell below this threshold. In our research, events would be found in the upper half of the 

distribution (from the median to the maximum value) above the 𝑄3 fence.  The 𝑄1 lower 

fence was kept in our measurement model in order to maintain the integrity of the 

technique as it was described in the literature. The following section demonstrates the 

conversion of the NW attribute into a fenced-off measurement model using 𝑄1 and 𝑄3 as 

fences which define and delimit our area of interest (Joarder & Firozzaman, 2001; 

Rousseeuw & Hubert, 2011).  

Our decision to use a single value to act as a threshold throughout our time-period 

to identify events was supported by several studies (Nairac, et al., 1997; Weng & Lee, 

2011).  Events were identified as patterns that occur within a specified time domain 

(Weng & Lee, 2011). In order to properly identify irregular patterns that occurred in a 

temporal trajectory, ranges of normal and abnormal values had to be established (Nairac, 

et al., 1997). The use of a threshold value was a technique used in many anomaly 

identification studies known as novelty detection.  Its purpose was to establish a boundary 

between normal and abnormal data (Nairac, et al., 1997; Pimentel, et al., 2014). In the 

context of our research, our 𝑄3 fence was our novelty detection threshold. It was a 

statistically calculated boundary that separated normal levels of NW from outliers which 
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could form peaks identifying as events. The threshold was uniformly implemented 

throughout our time-period (Pimentel, et al., 2014).  

Case Study: Calculating the 𝑄1 and 𝑄3 Fences for the NW Distribution 

To calculate the 𝑄1 and 𝑄3 boundary lines from the #DowJones dataset we 

ordered all the values from the NW attribute distribution from lowest to highest. Next, we 

split the ordered range at the median of the entire dataset which was 5.39. In the lower 

half of the #DowJones dataset, we found the median of the range which was 0.68 which 

was our 𝑄1 fence. Next, we found the median value of the upper half of the #DowJones 

dataset which was 20.8. This value was our 𝑄3 boundary fence.  The 𝑄1 fence (lower-half 

median) did not exceed a value of one which suggested that the range of NW values in the 

lower-half of the dataset were all rather small.  𝑄2, which was the median of our 

complete #DowJones dataset, had a value of 5.39. Since 𝑄3 was our upper fence 

boundary, tweets with a score of greater than 20.8 NW fell within the outliers region of 

the dataset.  As it was mentioned in the section above, even though tweets that fell below 

the 𝑄1 fence were considered outliers, for our research they would be considered part of 

the normal range of NW activity. 

Sample Used 

The following section discusses our method for collecting data for this study. Our 

study used an application programming interface to gather raw tweets that were 

continuously contributed by users as part of a global discussion stream that was 

composed of a torrent of dynamically changing and frequently trending topics. The 

section also discusses our dataset size and unit index of time for the study.  

The Twitter API 



60 
 

 

The Twitter application programming interface (API) is a public-facing layer of 

the social media platform (https://developer.twitter.com/en/docs). The API allows 

developers, analysts, and statisticians to collect messages from the platform without 

having to use unethical methods of data gathering such as scraping, which seek to copy 

published data from Twitter directly from the browser to an alternate location. The API 

provides a direct connection to the Twitter microblogging service which can be leveraged 

programmatically using a development environment such as R-Studio or Python. When 

considering data collection for our research, the size of the dataset needed to be 

determined by the scope and duration of the study (Perera, et al., 2010). In the next 

section, we discuss the duration, size, and subject matter in the datasets used for our 

study. 

Size, Time Period, and Topics for the Two Datasets 

In our research, we identified events by studying how topics trended in a 

discussion stream within a 14-day time window. Some studies used a time-period which 

lasted several months and used hundreds of thousands of tweets in an individual dataset. 

Originally, we had committed to using two prior topics: “cybersecurity” and 

“#DowJones.” We queried the Twitter API using both sets of keywords during different 

sessions and discovered that neither topic produced a sufficient quantity of tweets for a 

viable dataset. This suggested to us that neither topic had characteristics that were 

causing them to trend in a discussion stream. To serve as our alternates, the first dataset 

we collected was done using the keywords “Tulsa+Rally”.   The second dataset we 

collected was performed using the keywords “Atlanta+Protests” as search criteria. Each 

dataset had 14 one-day units per dataset. The topic of each of the two datasets was chosen 
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by performing a search of current events in the media and performing API sampling to 

determine if the topic was trending.  According to the literature, the life span of an 

average Twitter topic was quite volatile. A topic could remain relevant in a discussion 

stream for a little as a day to as long as a month. There was no strict guideline in the 

literature that dictated a size for a dataset collected from an API. In general, if the 

duration of a study lasted a significant amount of time (like two months, for example), 

the size was expected to be larger. Since our datasets covered a period of 14 days, we 

made use of a dataset size of approximately 14,000 tweets per dataset. The 

“Atlanta+Protests” dataset contained approximately 12,000 tweets. In the following 

section, we demonstrated our approach using a sample dataset collected from the API. 

Data Analysis 

Comparing Our Approach to a Popular Existing Approach 

Our methodology for detecting events was compared to an approach that was 

commonly found in the literature (Figueiredo & Jorge, 2019; Guo, et al., 2017; Wang, et 

al., 2012) which used keywords and term frequencies measured over a period of time. 

The approach used an unsupervised classification algorithm called Latent Dirichlet 

Allocation (LDA). LDA is a method of deconstructing a sample of text into its 

constituent topics (Lansley & Longley, 2016). To accomplish the deconstruction, the 

algorithm uses a combination of text mining, probability, and word clustering. Words are 

clustered into relevant groups based on probability of appearance in the text. Text mining 

tools are used to prepare the text by removing unnecessary words, characters, and 

whitespace (Karl, et al., 2015). The result of the text pre-preparation is a data structure 

called a Document Term Matrix (DTM).  
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The DTM is a two-dimensional matrix of zeros and ones which documents and 

enumerates the occurrence of words in a sample of text (Figueiredo & Jorge, 2019). 

Mathematical algorithms such as LDA use the DTM as the foundation to perform text 

mining analysis tasks such as classification and clustering (Karl, et al., 2015). For our 

research, we used the DTM as the basis for mathematical comparison against our method 

of event detection.  The DTM provided us with a frequency distribution which was then 

translated into word counts for each time index over a time-period.  

In the remaining sections of this chapter, we discuss how the DTM of the 

#DowJones dataset was prepared and then converted into quartiles using the same 

techniques that were used in our approach. First, the method of converting the dataset to a 

DTM is discussed. Second, leveraging the DTM for a word frequency chart is detailed. 

Third, the word frequency information from the DTM is converted to a variable called 

keyword_frequency, whose distribution is evaluated mathematically to calculate the fence 

line boundaries of 𝑄1 and 𝑄3 to identify outliers.  Finally, the keyword_frequency 

trajectory is plotted in a graph with the hour attribute on the x-axis and the word count 

attribute on the y-axis. The 𝑄1 and 𝑄3 fence lines were placed in the graph to delineate 

normal word count ranges and identify any event peaks that occurred above the 𝑄3 fence 

(Lee, R. & K. Sumiya, 2010). The chapter ends with a discussion about comparing event 

detection results of our method and an existing approach.  Since the formal process of 

determining the fence values of 𝑄1 and 𝑄3 was explained earlier in this document 

(Langford, 2006), we used the “#DowJones” case study example dataset to demonstrate 

the conversion process for the existing approach to event detection.  

Word Frequency Chart  
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In the literature, there are several studies which use single-word (unigram) search 

approaches to event detection (Choudhury & Alani, 2014; Di Eugenio, et al., 2013).  To 

recreate the unigram single word approach, we created a graph that displayed the 

frequency of word occurrences in Twitter text based on data retrieved from the DTM 

(Welbers, et al., 2017).  The frequency graph provided the key words that were used most 

frequently in the Twitter dataset which we used to create a keyword_frequency attribute, 

which subsequently were converted to quartiles for event detection.  

Creating the keyword_frequency Attribute from the Word Frequency Chart 

There was no available clear guidance in the literature on the issue of choosing an 

appropriate number of keywords from a frequency graph to predict events. Based on 

empirical evidence gathered from experimenting with sample data, we compiled a list of 

approximately 25 keywords for a regular expression search through the original tweet 

text. The regular expression search results were used to create a word count variable as 

part of the input for our smoothed line trajectory. The number of times each keyword 

occurred in a row of tweet text was counted as a numerical value for each tweet. 

Case Study:  Convert keyword_frequency Attribute Distribution into 𝑄1 and 𝑄3 

In the previous section, in our approach we used the NW attribute of the 

#DowJones dataset to create the calculated values of 𝑄1 and 𝑄3 to function as fence 

boundaries to isolate average activity from event peaks (Lee & Sumiya, 2010; 

Rousseeuw & Hubert, 2011).  To this end, we also used 𝑄1 and 𝑄3 to function as fence 

boundaries in the existing approach to isolate routine data points from event peaks.  For 

the existing approach we used the keyword_frequency attribute to calculate our 𝑄1 and 𝑄3 

fences.  The method of event identification for the existing approach was the same 
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method that we used in our approach. We looked for event peaks that formed above the 

𝑄3 boundary fence after 𝑄1 and 𝑄3 had been calculated and placed in the distribution 

graph (Domínguez, et al., 2017; Subramani & Kumarapandiyan, 2012).  

To calculate 𝑄1 and 𝑄3 for the keyword_frequency attribute, the distribution had 

to first be placed in ascending order (Vega, et al., 1998). The median of the distribution 

was identified and then the distribution was split in half. In the lower half of the split 

distribution, the median was identified. The median value of the lower half of the 

keyword_frequency distribution was the value for 𝑄1.  In the upper half of the 

keyword_frequency distribution the median value was identified. The median value of the 

upper half was the value of our 𝑄3 fence (Vega, et al., 1998). The calculated values of 𝑄1 

and 𝑄3 were placed in our keyword_frequency distribution graph as our boundary fences 

(Joarder & Firozzaman, 2001; Lee & Sumiya, 2010). Just as we did in our approach, we 

used 𝑄1 and 𝑄3 to isolate average data points from event peaks (Lee & Sumiya, 2010; 

Rousseeuw & Hubert, 2011).  In the smoothed histogram graph shown in Figure 4, the 

word count distribution has a minimum value of zero and a maximum value of five. The 

value of 𝑄1 for the distribution is one.  The median value for the entire distribution is 

three and the value of 𝑄3 is four. When the keyword_frequency distribution was plotted, 

the upper boundary fence for the graph was four.  
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hour keyword frequency 

19 dowjones 1103 

20 dowjones 912 

20 trump 911 

20 money 750 

19 trump 678 

2 dowjones 637 

20 stock 445 

20 donald 407 

20 ethanjsomers 399 

3 dowjones 380 

20 cdc 370 

 

The keyword_frequency attribute in Table 7 displays a sample of the count of the 

keywords that are found in the original tweets from the #DowJones dataset.  The tweets 

are sorted by the hour index in which they were posted in the discussion stream. The 

keywords evaluated in the count are based on frequencies that are taken from the 

#DowJones DTM (seen in Table 8) frequency table. As an example, the first row of 

Table 7 shows that at hour 2 the text corresponding to the tweet in this row has a count of 

five keywords that are mentioned by the user. 

Comparing the Two Event Detection Methods 

The peak and valley formations that occur beyond the 𝑄3 fence served as an 

objective metric by which our method and the existing approach were evaluated for 

identifying events (Lee & Sumiya, 2010; Pozdnoukhov & Kaiser, 2011).  In Chapter 1, 

we defined an event as a set of tweets on a related topic within a certain period that 

surpass a threshold defined by statistical measures of diffusion and entropy.  This 

definition was expanded in our approach to include the identification of events based on 

Sample of the keyword counts listed with the hour of their occurrence 

Table 7 
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the occurrence of peaks and plateaus above the 𝑄3 boundary. The identification of peaks 

and plateaus applied to both our method and the existing method of event detection.  In 

our discussion, we referred to the occurrence of both peaks and plateaus above the 𝑄3 

fence as “event peaks,” as event peaks are harbingers of events. The number of well-

defined event peaks during the time-period covered determined which of the two methods 

performed event detection more effectively (Lee & Sumiya, 2010). 

As it was mentioned above, event peaks were representative of events in a 

timeline, whether the trajectory uses NW or word frequency to measure the events. What 

the event peaks did not concretely quantify was the magnitude of the event (Lee & 

Sumiya, 2010). A peak might form just below the 𝑄3 boundary fence. Such a peak would 

be disqualified as an event, but it did not discount the possibility that the peak represented 

an increase in activity. The quantifying of event magnitude is the subject for later 

research. Our research focused only on the existence or occurrence of events in a dataset 

timeline.  

  Based on the definition of event detection mentioned above, the “statistical 

measures of diffusion and entropy” that were used in our method were implemented 

using a metric that we created through the integration of diffusion and entropy into a 

single attribute called Newsworthiness (NW).  By performing this integration, a single 

attribute could identify events by evaluating the ratio of message sharing activities to user 

diversity over a time-period.  The threshold from our definition was the fence defined by 

the value of 𝑄3, which was located at the median of the upper half of the NW attribute 

distribution.  The threshold for the existing approach was the 𝑄3 fence calculated from 

the distribution for the “keyword_frequency” attribute (Langford, 2006; Rousseeuw & 
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Hubert, 2011).  Tweets which fell above the 𝑄3 value for both methods were outliers 

(Domínguez, et al., 2017).  Event peaks are intrinsically tied to outliers since they refer to 

groups of data points that occur outside of an established “normal” range (i.e. 𝑄1 and 𝑄3) 

(Zubiaga, et al., 2012).   

One of the shortcomings of the quartile evaluation metric was that it used ranges 

and did not provide a single accuracy metric (like a confusion matrix) (Langford, 2006; 

Rousseeuw & Hubert, 2011).  To this end, we discuss two objective methods to identify 

events that have been used in several highly cited studies. These methods were the 

number of well-defined event peaks (Kolchyna, et al., 2016; Yu & Wang, 2015) and 

temporal bursts (Lappas, et al., 2012). These evaluative techniques could be used to 

identify events in both our approach and the existing method.  These techniques were not 

as desirable as quantitative methods of evaluation, but they objectively and effectively 

detected events by visually identifying recurring spatiotemporal patterns throughout the 

duration of the time index. We briefly discuss these two objective methods and how they 

related to our contribution to the field of SNA research. The second method we will leave 

as an open option for later research as it is more complicated, involves more resources, 

and requires further review of the literature. For now, we simply included it as part of the 

discussion for our current research.  

The first objective event detection method was to evaluate the number of well-

defined peaks created by outliers beyond the 𝑄3 fence in the upper half of the NW 

distribution. (Earle, et al., 2012; Yu & Wang, 2015). Peaks define elevated user activity 

(NW) and increased frequency of keywords (keyword_frequency).  The method which 

produces more defined peaks (NW vs.  keyword_frequency) in the upper half (beyond the 
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𝑄3 fence) better identifies the occurrence of events.  This evaluative approach was not as 

concrete as a confusion matrix, however our method mathematically defined a fence 

between “normal” and “abnormal” activity effectively using the upper half 𝑄3 value to 

delineate the separation between normal Twitter activity and abnormal activity (Lee & 

Sumiya, 2010). 

The second objective method for detecting events beyond the 𝑄3 fence was the 

occurrence of temporal bursts (Lappas, et al., 2012). A temporal burst (TB) is the 

occurrence of an unusually high frequency of hashtag usage in a discussion stream during 

a specific timeframe. A TB has a life cycle of three basic phases which occur at specific 

points in its timeline. The first phase is the initial growth or onset of the TB where the 

height of the NW trajectory line begins a period of increased elevation. This onset is 

followed by a peak, which occurs when the height of the NW trajectory line halts its 

upward motion. This halted upward motion can result in either a well-defined, rounded 

peak or an extended flat surface called a plateau.  The final phase of the TB is a 

relaxation of the NW intensity (Kolchyna, et al., 2016). Relaxation occurs when the NW 

trajectory line starts a descent after halting at its highest point. The principal benefit of 

using a TB as an objective measure is that the duration and periodicity (repeated cycles) 

of the burst can be evaluated with more scrutiny, since there are three phases which 

define it (growth, peak, relaxation).  

A TB pattern for user activity (NW) and keyword frequency (keyword_frequency) 

can demonstrate important signatures for research. A signature, with respect to graphs, is 

a unique or distinguishing pattern or frequency of peaks and valleys in a linear time-

series trajectory that facilitates the identification and characterization of a phenomenon of 
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interest (Conte, et al., 2004).  A TB can last for several hours, remaining at its highest 

point for long periods (forming a plateau), before its zenith weakens and declines 

(Abdelhaq, et al., 2013; Ratkiewicz, et al., 2010). Several burst instances could also occur 

in tandem, forming a recurring pattern of peaks and valleys (Kolchyna, et al., 2016; 

Lappas, et al., 2012). TB signatures such as these help to describe what kind of event is 

occurring in a discussion stream (Abdelhaq, et al., 2013). The approach that better 

defines the shape and patterns that are inherent in a dataset, better identifies events 

(Ratkiewicz, et al., 2010). For our research, we focused on the number of well-defined 

peaks in the time index (Dou, et al., 2012; Zhang, et al., 2015). Our novel event detection 

approach contributed to the body of SNA research by combining measurable user 

messaging behavior with spatiotemporal patterns evaluated using a mathematically 

calculated fence (𝑄3) isolating normal from abnormal activity (Langford, 2006; Shih & 

Liu, 2016).  In furtherance of our contribution, we developed a new attribute (NW) to 

evaluate user activity by integrating two existing SNA attributes (Shannon Entropy and 

Diffusion Centrality) (Ghosh, et al., 2011; Kang, et al., 2012).  

Formats for Presenting Results 

In this section we discuss our chosen method of graphically displaying the 

trajectory of the NW data throughout its time period. The efficacy of our method was 

demonstrated using empirical data in our case study. Through many preliminary 

experiments, we found that the most efficient way of displaying the NW trajectory was 

using a combination of a smoothed line graph with points. This manner of graphing the 

data aided in the detection of events by articulating peak formations in the linear 
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trajectory where events occur. The points in the graph helped to explain why the 

smoothed line ascended or descended at certain time indices.   

Case Study: Plotting the NW Distribution Over the Dataset Time Index 

The #DowJones hashtag dataset had a total time index of 19 hours. The NW 

attribute distribution that was created in the previous section was plotted in a smoothed 

line graph with the hour attribute on the x-axis and NW on the y-axis.  The range of NW 

values below the 𝑄3 fence line represented the normal Twitter message spreading habits 

for the overall time index. The linear trajectory of the graph ranged from 4 NW at its first 

hour and reaches a maximum value of approximately 33 NW at hour 9.5.  The lowest 

point of the trajectory was 3 NW at 17.5 hours where the trajectory remained unchanged 

until the end of the time index.  The graph in Figure 2 showed both tweets as data points 

and a smoothed linear curve. The smoothed curve was created using a moving average of 

the data points. There was a large number of points at or below the  𝑄1 fence line at time 

indices one through seven and again at fifteen through nineteen. At time indices one 

through fourteen there are also several data points with higher NW scores. Due to the 

wide spread of values in the data points at these time indices, the moving average of the 

smoothed line curve remained above the 𝑄1 fence value and does not go below it. Event 

peaks in the graph are discussed next. 

What was of interest to us in our research were data points in the NW trajectory 

that ascended above the 𝑄3 fence, formed a rounded or plateaued summit, and then 

descended. Summit formation could occur once or several times during the progression 

of the NW trajectory. The summits which formed above the 𝑄3 fence (which in this 

sample graph was 20.8 NW) were event peaks. An event peak is a cresting formation of 
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NW above the 𝑄3 boundary fence that results from a crescendo of user-related messaging 

activity in a diverse social media discussion stream.  In the graph in Figure 2 the 

trajectory showed two event peaks which formed above the 𝑄3 fence line.  The first peak 

developed at half past the 9th hour in the time index.  The second event peak formed at 

half past the 12th hour.  At hour 13 the NW trajectory began its second descent and 

crossed below the 𝑄3 fence line at hour 14.  

We could read the NW graph in the following manner. From hour zero to the 

eighth hour, the user messaging behavior was within normal, average ranges. This was 

evident from the NW trajectory during this time period. From halfway past the ninth hour 

to the eleventh hour there was a surge in NW which suggested that the users in the 

discussion stream had significantly increased their participation in the discussion. This 

surge and peak in NW were interpreted as an event on our graph. A second event 

immediately followed the first. The two events were separated by a shallow valley that 

formed after the eleventh hour. 

 

Figure 2. Trajectory for the NW distribution over the 19-hour period 
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Case Study: Plotting the the keyword_frequency Distribution. 

As seen in Figure 3, the trajectory for the keyword_frequency attribute ranged 

from a minimum of two keywords per tweet to a maximum of just below four keywords 

per tweet. The smoothed curve averaged the number of tweets per hour index in its linear 

graph representation. The crest of the trajectory’s apex was almost tangent to the 𝑄3 

fence, falling just before the boundary line. The trajectory line descended between the 

range of two and three keywords per tweet for average frequency.  When we used the 𝑄1 

and 𝑄3 lines as boundary fences with the existing method no events were identified since 

the apex of the keyword_frequency attribute fell just below the 𝑄3 line. However, the 

trajectory clearly demonstrated an articulated peak at hour 9 of the time series which 

could be identified as an event. The data from Figure 3 suggested that 𝑄1 and 𝑄3 

boundary fences were not an efficient objective method for identifying events using a 

smoothed line trajectory for word frequency distribution. Contrarily, based on empirical 

evidence, the 𝑄1 and 𝑄3 approach did appear to be well-suited to identifying events using 

the NW attribute and a smoothed line trajectory. The statistical evaluative method did not 

have the same uniform level of efficacy for both attributes.  
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Resource Requirements 

The following resources were used to perform Social Network Analysis 

computations of 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 using two datasets to calculate NW. The derived values of 

NW were plotted in two dimensions using a graphing library for analysis. 

1. Toshiba Qosmio X70-A laptop computer with the following configurations. 

(a) Processor:  Intel Core i7-4700 CPU @ 2.4GHz 2.40 

(b) Hard Disk:  1 TB Disk Drive 

(c) 256 GB Solid State Drive 

(d) Operating System: Windows 10, 64-bit 

2. R-Studio Version 1.1.383 

3. R i386 3.4.3 

4. R libraries used for Natural Language Processing and classification: 

Figure 3. Keyword time-series frequency graph for wrdcnt 

distribution 
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          (a)  library(twitteR) 

          (b)  library(ROAuth) 

          (c)  library(centiserve) 

          (d)  library(igraph) 

          (e)  library(tidytext) 

          (f)  library(ggplot2) 

Summary 

Research Plan 

The research in this document focused on the use of the newly created NW 

attribute to identify event peaks that occur over a specified time index.   The approach 

made use of several techniques and metrics used in common SNA research found in the 

literature. We plan to pursue four different applications of our approach for future 

research. These applications include collection of datasets, evaluation of our NW metric 

with machine learning algorithms, sentiment analysis (SA) scores as an additional 

attribute, and temporal bursts to evaluate event peaks. We wish to collect datasets from 

many different domains to see if one produces more occurrences of events. For our 

current research, we collected two datasets. The first was a 14-day sample based on the 

keyword search “Tulsa+Rally”.  The second dataset was another 14-day collection based 

on the keywords “Atlanta+Protests”.  We will collect future datasets from political, 

criminal justice, healthcare, and popular culture domains to determine if our approach 

identifies more events in certain domains over others.  

The second application for future research will be the use of machine learning 

algorithms to evaluate our approach with more concrete precision. Our current method of 
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evaluating our approach uses statistically created boundary lines and peak occurrence to 

identify events. This is not an ideal approach to evaluate events, but for this current study 

it allows us an objective method to identify and quantify them as peak formations in a 

smoothed line trajectory. We plan to see if Support Vector Machine, Artificial Neural 

Network, Random Forest, and XGBoost provide concrete evidence to validate our 

approach. Accuracy scores will provide a metric we will use for evaluation.  

SA is the third application that we will pursue in later research.  SA scores will 

provide an additional attribute that can be used to further fortify the NW metric. The real 

benefit of SA is that it will provide an additional dimension to our human user 

contribution metric that is inherent in the NW attribute. In its current state NW tells us 

how much users are messaging each other and how diverse the composition is with 

regards to the number of participants in a discussion stream.  SA will add a level of 

emotional strength that is associated with the increased user activity. This addition to the 

NW metric will not only fortify the existing efficacy of the attribute from a statistical 

standpoint, it will also allow for a sentiment dissection of a trajectory. Specifically, SA 

data that is incorporated into NW will allow us to evaluate not only where and when event 

peaks form, but what emotions potentially cause the surge in activity.  

The last item we may pursue for later research is the use of temporal bursts (TB) 

in detecting event peaks. TB are a more detailed and robust way of analyzing all of the 

phases of an event curve from ascension, to crest formation, to eventual decline. Several 

studies in the literature use techniques such as wavelet analysis to evaluate TB. We do 

not plan on using wavelet analysis with our research, but that decision may change. Also, 

our plan to use machine learning algorithms for NW evaluation may render our interest in 
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TB moot. Machine learning algorithms require different features as input which could 

potentially render a smoothed linear curve unnecessary. We will keep the study of TB in 

our future plans as an open option, but our interest in the first three previously discussed 

applications is more concrete. 
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Chapter 4 

Results 

This chapter provides a discussion of the results that were obtained from 

experiments using five datasets. Three of the datasets were short-term collections that 

covered the same 13-hour time-period. We collected these shorter datasets with the 

primary objective of identifying the same events in parallel samples to demonstrate the 

efficacy and reliability of our approach. The remaining two datasets covered a longer 

time-period of two weeks. Our goal with the 13-hour datasets was to achieve a minimum 

amount of bias in the smoothed line trajectories between the three graphs. The 

experiments compared the smoothed line trajectories of Newsworthiness and keyword 

frequency during their respective time periods. The graphs of the trajectories were 

observed for the number of well-formed event peaks which occurred. The first three 

sections of this chapter will discuss the datasets that were used in the experiments. 

Specifically, the topics chosen for the datasets and the sizes of the collections will be 

discussed. Section four will discuss the results of comparing the three trajectories from 

the 13-hour datasets. Section five will compare the results of the Russian GRU 

Disinformation Newsworthiness and keyword frequency datasets. Sections six and seven 

will discuss the results of the Newsworthiness graph trajectories for the two fourteen-day 

datasets. Sections eight and nine will discuss the keyword frequency graph trajectories 

for the two fourteen-day datasets. The chapter will end with a summary of the experiment 

results. 
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The Russian Disinformation and RollingStones Datasets 

We collected four short-term datasets as part of our research effort. The first 

dataset we collected was a 28-hour sample based on a topic that was trending in news 

media in the domain of cybersecurity. The remaining three datasets covered a more 

discrete time-period (13-hours) and came from the domain of popular culture. The 13-

hour popular culture dataset will be discussed in more detail later in this section. With 

regards to the 28-hour dataset, it was reported on July 29, 2020 that the Russian GRU 

was behind a cyber disinformation campaign designed to spread fake news featuring 

information pertinent to the coronavirus in order to cause confusion and chaos in the 

general public (Tucker, 2020). Our sample consisted of 8,466 tweets and 28-hours-worth 

of discussion. We converted the sample into both Newsworthiness and keyword 

frequency datasets to compare their trajectories.  

With regards to the remaining three short-term datasets, we intended to 

demonstrate that our NW method would not succumb to bias. To accomplish this task, we 

collected multiple datasets on the same topic that covered the same time-period. By doing 

this, we would plot the resulting graph trajectories and then compare the graphs. If the 

smoothed linear trajectories were similar in their paths and shapes, then our results could 

be successfully repeated and reproduced, thus providing evidence that our approach did 

not produce random results.  When we collected the duplicate datasets, we used an API 

keyword search from a currently trending topic from popular culture. At the time of 

collection, one of the topics that was trending in the news media was a story concerning 

the musical group The Rolling Stones. The band was seeking legal action against the 

Donald Trump presidential campaign vis-à-vis the campaign’s use of the band’s 
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copyrighted music at its political rallies (Kirka, 2020). Due to the limitations of the 

Twitter API, the maximum number of tweets that could be collected per request was 

10,000. We collected three different datasets of 10,000 tweets using the keywords 

“Rolling+Stones.” The three datasets covering the same time periods were collected over 

a period of approximately six hours on June 29th, 2020 using the Twitter API. We made 

the decision to collect these parallel samples for two reasons. First, in the interests of 

expedition and efficiency, we decided to opt for a shorter target period of time for the 

datasets.  Second, we chose the “Rolling Stones” keywords because based on empirical 

sampling and analysis, topics based in popular culture often demonstrated a more short-

lived and intense cycle of public interest.   

The three datasets at the time of collection contained a time frame of 

approximately 10 hours-worth of tweets. To plot a smoothed line graph in R, a minimum 

of 11 points on the x-axis was required.  This minimum number of data points on the x-

axis was a limitation imposed by R development environment. If too few data points 

were used, then an error would result in the R development environment. Based on 

empirical data using R and several prior datasets, 11 points was a minimum acceptable 

number for use with the smoothed line function. A second round of dataset collections 

was performed using the API hours later, resulting in three aggregated datasets that 

covered a total of 13 hours-worth of tweets. To ensure that the three resulting datasets 

were unique, each of the three collections were randomized. In each of the three datasets, 

8,000 tweets were randomly sampled from their parent dataset of 10,000. The random 

sampling was performed in such a way as to maintain the integrity of the timeline. 

Specifically, there were samples taken from each hour of the 13-hour time period. The 
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three randomly sampled datasets were named respectively, “RollingStones1,” 

“RollingStones2,” and “RollingStones3.” 

The Tulsa Rally Dataset 

The selection of a dataset for a longer-term collection needed to be weighed and 

considered for a number of factors. The two variables that we decided to use for selecting 

our topics for dataset collection were scope and volatility. For the determination of scope, 

we needed to choose a topic that was not overly broad, otherwise a longer period of time 

would be required for a fair analysis. For example, a topic of Coronavirus occurring in 

2020 is rather large in scope and would likely require months, if not greater than a year to 

adequately analyze. Often times, popular culture topics like the previously mentioned 

“Rolling+Stones” topic are much smaller in scope. Frequently they tend to generate a 

large amount of short-term interest before they are rendered inconsequential by topics of 

greater, more lasting consequence. 

 For our first long-term dataset, we chose a topic that would last at least a week 

within the mainstream media discussion cycle. After considering several recently 

trending news topics, we decided on Donald Trump’s Tulsa political rally (Steakin & 

Pereira, 2020). We chose this topic because at the time of collection, the event was 

scheduled to take place five days in the future. Eight days followed the rally in our 

collection timeline. If our approach was successful in identifying events, a spike in the 

smoothed line trajectory for the dataset would occur in association with day five of the 

fourteen-day dataset. Essentially, the rally was a highly publicized and advertised event 

with a fixed date, which was June 20th, 2020. This gave us a point of reference for us to 

measure peaks in Newsworthiness. 
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Volatility was the second variable we considered when choosing our topic for the 

long-term datasets. Many topics that trend on Twitter can last less than a day. We needed 

to pick a topic that would reliably generate a large number of tweets over a longer period 

of time. The “Tulsa+Rally” keyword search produced such a large return of tweets that 

several collections needed to be made during each day of the collection period in order to 

acquire tweets to represent the entire 24-hour period.  For each day of the fourteen-day 

period, 1,000 tweets were collected, covering the morning, afternoon, and evening 

periods. At the end of the fourteen days of collection, each of the fourteen datasets of 

1,000 tweets were aggregated into a single composite dataset of 14,000 tweets. Day one 

of the dataset began on June 15th, 2020. The final day of collection was June 28th, 2020. 

The Atlanta Protests Dataset 

We chose the topic for our second long-term dataset using the same criteria that 

we used for the first dataset, which were scope and volatility. Three days prior to the start 

of collection, one of the most significantly trending topics in the news media was that of 

progressing social unrest in Atlanta, Georgia due to controversial police action in that 

city. The police action resulted in days of protest and destruction of business and property 

(McKay, R., 2020). We started collecting tweets from the Twitter API using the search 

criteria “Atlanta+protests” on June 15th, 2020.  The timeline of events for the topic began 

on June 12th, 2020 with the police shooting of Rayshard Brooks. The timeline ended on 

June 23rd, 2020 with Brooks’s televised funeral, spanning an approximate total inclusive 

period of twelve days. We used two documented real-life events from the timeline to 

serve as points of reference as a comparison against the smoothed line trajectory of our 

Newsworthiness metric. The first of these two points of reference was the public 
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announcement of charges against the two police officers involved in the police action 

which were filed on June 17th, 2020. The second point of reference was the televised 

funeral of the victim of the police action, Rayshard Brooks which took place on June 23 

(Cohen, 2020; McKay, R., 2020). Similar to the “Tulsa+Rally” dataset, event peaks 

would be associated with the points of reference in the timeline.  

The “Atlanta+protests” topic trended heavily for the first eight days of collection. 

During the days of heavy trending, multiple samples were collected throughout the day to 

ensure that the morning, afternoon, and evening time periods were represented. For the 

remaining six days in the collection period there were fluctuating volumes of tweets 

available on the topic. For the final five days, the number of total available tweets had 

diminished to a degree that we were able to collect all of the available tweets on the topic 

starting from midnight to 11:59 pm of the 24-hour period. At the end of the 14-day 

collection period, all of the individual datasets were aggregated into a single composite 

csv file. For the “Atlanta+protests” composite dataset, we had a final total amount of 

12,203 tweets.  

Results of the 13-Hour Datasets 

This section provides a discussion of the results that were obtained from the three 

13-hour datasets that were collected using the search criteria “Rolling+Stones.” The three 

datasets were scored for 𝐷𝐶(𝑡𝑖) and 𝐸𝑠. These two metrics were then converted into the 

Newsworthiness attribute.  An example of the converted metrics is seen below in Table 8.  

The first column in the table lists the individual time index for the period covered, which 

for this experiment was the hour index. The Newsworthiness attribute for all three 
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datasets was graphed separately as smoothed linear trajectories. The resulting graphs of 

the three 13-hour datasets can be seen in Figures 4, 5, and 6. 

 

 

 

  

 

 

Trajectory for the NW distribution of Rolling Stones sample 1 

Figure 4 
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Trajectory for the NW distribution of Rolling Stones sample 2 

Trajectory for the NW distribution of Rolling Stones sample 3 

Figure 6 

Figure 5 
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Discussion of the Results 

            The results of the three graphs seen in Table 9 (below) were very similar in the 

overall shapes of their trajectories. Each of the three graphs identified two primary events 

in the 13-hour timeline. The second event was the more significant, as its peak formed 

well past the 𝑄3 fence. There were three subtle but noteworthy variances between the 

three graphs. First were the values of the 𝑄1 and 𝑄3 fences. In RollingStones1, the value 

of the upper fence, 𝑄3, was 14.7. In RollingStones2 and RollingStones3, the values of 𝑄3 

were respectively 14.4 and 12.4. The second variance between the graphs was found in 

the location of the peak in the first event. In all three graphs, the first event lasted 

approximately 4.5 days. In the first graph (Figure 5), the crest of the event formed at 

approximately 13 units on the Newsworthiness scale. In graphs two and three (Figures 6 

& 7) the event peak formed at approximately 12. The third variance could be seen in the 

peak location of the second event in the 13-hour time period. The crest of the second 

event for graphs one and two both fell at approximately 32.5 units on the 

Newsworthiness scale. In graph 3, the crest formed at approximately 30. With all the 

graphs considered together, the tolerance between the three measured less than 2.5 in 

Newsworthiness. The results suggested that our approach consistently identified the same 

events within the 13-hour time-period with a minimum bias between the three smoothed 

linear trajectories.  

 

 

 

 



86 
 

 

 

 

hour avgEntropy diffusion  newsworthiness 

4 1.9732 70.24 35.5969 

8 1.7917 62 34.6040 

8 1.7917 62 34.6040 

8 1.7917 62 34.6040 

6 1.8138 62 34.1823 

6 1.8138 62 34.1823 

6 1.8138 62 34.1823 

    

 

  

 

dataset Metric Min-Max  Event peaks Q3 Variance 
Standard 

Deviation 

RollingStones1 NW 0-157.90 2 14.7 95.67 9.78 

RollingStones2 NW 0-176.95 2 14.4 92.78 9.63 

RollingStones3 NW 0-173.09 2 12.4 92.48 9.61 

       

 

          According to the side-by-side comparison of dataset metrics, seen above in Table 

9, the maximum Newsworthiness value for the first sample was slightly less than the 

latter two samples with a value of 157.9 (approximately 18 units smaller than the next 

highest in Newsworthiness).  As mentioned above, the 𝑄3 upper fence was two units 

smaller than the others in the third sample.  The variance of the first sample was also 

slightly larger than the other samples by approximately three units. The cumulative effect 

of the previously mentioned biases between the three samples was a shorter event peak in 

the first sample for the second event (occurring between hours five and ten). However, 

the biases just discussed do not alter the number and duration of events in the three 

Table 9 

Sample from RollingStones1 dataset after NW conversion 

Comparing results from all 3 RollingStones datasets 

Table 8 
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samples. All three samples identified the same two events. The most significant of the 

two events occurred above the 𝑄3 upper fence and lasted a duration of five hours.  

Comparing the Results of the Russian GRU 28-Hour Datasets 

“Russian+Disinformation” Newsworthiness Trajectory 

          The Russian GRU Disinformation dataset consisted of 28-hours-worth of data 

points. Each hour (p =1 hour) was one index point on the x-axis. For temporal context, 

we inserted a vertical line in the x-axis at hour 4 which corresponded to the date that the 

Russian disinformation story broke in the media, which was July 29, 2020. A trajectory 

for the time-period can be seen below in Figure 7.  

 

 

 

 

 

Figure 7 

Trajectory for the NW distribution of the “Russian+Disinformation” dataset 
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“Russian+Disinformation” Newsworthiness Dataset Results Discussion 

            The trajectory for the 28-hour period of the “Russian+Disinformation” dataset 

identified three event peaks. The most significant event of the time-period took place 

from approximately hour 14 to hour 20. The event peak crested well above the 𝑄3 

boundary at approximately 82 units of Newsworthiness. Two additional minor event 

peaks occurred prior to and immediately following the most significant peak in the time-

period. The first event peak occurred between hour 5 and hour 9. The third peak occurred 

between hour 24 and hour 28. Event peaks one and three did not break the plane of the 

𝑄3 upper boundary.  The vertical line point of reference occurred in a trough prior to the 

ascent of the trajectory toward the first event peak. This juxtaposition between reference 

point and peak suggests a possible correlation between the known event and the peak 

formation.  

“Russian+Disinformation” Keyword Frequency Trajectory 

There was little agreement between the keyword frequency trajectory and the NW 

trajectory. The keyword trajectory identified three event peaks as did the NW graph. 

None of the three event peaks fell beyond the 𝑄3 upper boundary. The first event peak 

was identified as the most significant peak in the time-period. The second and third peaks 

in the time-period were less significant than the first. The second event peak took place 

from hour 19 to hour 23. The third event peak took place from hour 26 until the end of 

the period. The keyword frequency trajectory can be seen in Figure 8 below. 
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“Russian+Disinformation” Keyword Frequency Dataset Results Discussion 

            As we mentioned above, there is little congruence between the keyword 

frequency trajectory and the trajectory of the Newsworthiness graph. The 

Newsworthiness trajectory identified the second event peak as the most significant. The 

keyword frequency trajectory identified the first event peak as the most significant. Both 

trajectories shared two fundamental empirical findings. The first was that the known 

point of reference occurred in both trajectories in a trough before the formation of the 

first event peak. The second shared finding was that the first event for the two trajectories 

lasted the same time span, i.e. from hour 4 to hour 10. The second and third event peaks 

were not in sync between the two trajectories. Event peaks two and three in the 

Newsworthiness trajectory were more clearly defined. We made two observations when 

we compared the two trajectories. First, the single mutually shared finding (i.e. the point 

of reference event occurring just prior to formation of the first event peak) provided more 

Trajectory for the keyword frequency distribution of the “Russian+Disinformation” dataset 

Figure 8 
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evidence to us suggesting a correlation between the known event on record and the 

formation of the event peak.  Our second observation was that although the two methods 

captured the same number of events, the keyword frequency method did not appear to be 

as sensitive to certain discussion stream activity when identifying certain events. 

Evidence of this could be seen in the two trajectories when comparing the second event 

peak formations. In the Newsworthiness trajectory, the second peak is very significant 

and well-formed. In the keyword frequency trajectory, the second event peak is out of 

sync, less significant, and closer to a ripple than a peak.  

Results of the “Tulsa+Rally” Dataset: Newsworthiness 

           The “Tulsa+Rally” dataset contained 14,000 tweets and covered a time-period of 

14 days. The rally took place on June 20th, 2020 and we began collection on June 15th, 

2020. We completed collection on June 28th. To better place our smoothed line trajectory 

in temporal perspective, we added a vertical line to the graph with a label denoting the 

time when the rally took place. The graph displaying the Newsworthiness results of the 

“Tulsa+Rally” dataset can be seen in Figure 9.  
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“Tulsa+Rally” Dataset Results Discussion 

The fourteen-day graph of the “Tulsa+Rally” dataset identified three distinct 

events. The peaks of all three events occurred either tangent to or above the 𝑄3 fence line.  

The rally took place on the sixth day of collection (June 20th, 2020 at 8 pm). A vertical 

line was placed in this time index to serve as a contextual point of reference, so it was 

inserted into the graph at approximately three quarters of the distance between day 6 and 

7.  We interpreted the results of the graph in the following manner with respects to the 

rally that took place. The first event, which crested during the fourth day of collection, 

lasted six days. The amount of discussion activity on this topic diminished on the day of 

the rally. This first event could be attributed to the anticipation and buildup of the 

upcoming event, which was heavily discussed in news media outlets (Mason, 2020). The 

second event started its trajectory ascent on the seventh day of collection and crested on 

the ninth day of collection. The third event began its ascent on day 11 and crested on day 

Trajectory for the NW distribution of the “Tulsa+Rally” dataset 

Figure 9 
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12. We interpreted the occurrence of the second event as the public reaction to the rally, 

which ended at approximately 10 pm on June 20th. The trough that formed between 

events one and two we interpreted as a temporary ebb in discussion due to the fact that 

people were either physically attending the rally in person or viewing it on media. We 

interpreted the second trough as a temporary reduction of discussion on the rally 

precipitated by other breaking news.  

Results of the “Atlanta+Protests” Dataset: Newsworthiness 

            The “Atlanta+Protests” dataset contained a total of 12,203 tweets, and like the 

“Tulsa+Rally” dataset it covered a period of 14 days. We inserted two vertical lines into 

the x-axis of the graph to serve as contextual points of reference. Both points referred to 

peripheral events which occurred during the 14-day collection period which related to the 

police action and resulting civil unrest in Atlanta (McKay, 2020).  The first of the two 

reference points was the issuing of charges against two police officers. This event took 

place on the third day of collection, June 17th. The reference line was placed in the 

midpoint between days three and four as the charges were announced sometime in 

midday. The second reference line referred to the televised funeral for police shooting 

victim Rayshard Brooks, which aired on the 9th day of collection, on June 23. The 

reference line was placed at the midpoint between days nine and ten since the televised 

event took place at midday. The graph displaying the Newsworthiness results of the 

“Atlanta+Protests” dataset can be seen in Figure 10. 
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“Atlanta+Protests” Dataset Results Discussion 

The “Atlanta+Protests” graph identified three events over the 14-day time-period. 

The peak for event one, which formed at day four, did not fall beyond the 𝑄3 fence line. 

Event one lasted for a period of six days before it resulted in a trough. The peak for event 

two occurred just breaking the plane of 𝑄3.  Its peak formed on day nine of the time 

period. The most significant of the three events was event three which lasted from day 11 

through the middle of day 13. Event two lasted two days and event three lasted only two 

days. Our interpretation of the events as they are depicted in the graph is detailed in the 

following sections.  

Collection of this dataset began three days after the shooting of Rayshard Brooks. 

Civil unrest was already forming locally in the city of Atlanta. The public discussions of 

this event had become aggregated in the news media as part of a larger evolving 

discussion involving civil unrest and the role of law enforcement throughout the country. 

Trajectory for the NW distribution of the “Atlanta+Protests” dataset 

Figure 10 
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Charges against the two officers involved in the shooting were announced on June 17th, 

day three of collection. Event one occurred during this point of reference. Following the 

announcement of charges, there was a slight uptick in discussion activity on the collected 

topic. The activity crested the following day and then gradually leveled off into a trough. 

The overall profile of event one was a longer time-period and a shorter, wider crest. This 

evidence to us suggested that the announcement of charges contributed to an existing, 

growing level of discussion on this topic, but it did not precipitate the increase and peak 

formation in Newsworthiness. 

The second event crested right in the middle of day nine of collection. This 

second event lasted for a period of three days and peaked coincidentally with the second 

reference point in our timeline, i.e. the televised funeral. The funeral had been discussed 

on several media outlets and on social media for several days. As with the first event 

peak in this dataset, we interpreted that the action associated with the reference point did 

not precipitate the increase in discussion activity but added to an existing discussion. The 

third event in the “Atlanta+Protests” timeline was the most significant in terms of 

Newsworthiness score, yet was the shortest in duration, lasting only two days. There was 

no available data to use as a point of reference to determine the possible precipitation of 

increased discussion. After analyzing the two long-term datasets we made the observation 

that there was a possible correlation between the location of the dated reference point and 

the ascent of the trajectory line to its apex. If the dated reference line was located before 

the trajectory line begins its ascent, it suggested a possible causal relationship. For 

example, the reference point for the “Tulsa+Rally” dataset occurred immediately before 

the ascent of the trajectory line. If the reference line occurred in the middle of the 
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Trajectory ascent, it was more likely that the occurrence played a contributing role and 

was not the cause of the increased activity.  

Results of the “Tulsa+Rally” Dataset: Keyword Frequency 

            After we completed the two graphs for the “Tulsa+Rally” and the 

“Atlanta+Protests” datasets using Newsworthiness on the y-axis, we graphed these same 

datasets using keyword frequency.  Keyword frequency was the existing method for 

event detection that we chose to use to compare against the results of Newsworthiness. 

We took the tweets from the “Tulsa+Rally” dataset and we used the text mining 

techniques that were discussed previously in this document to identify the repository of 

keywords. The keywords were then counted for their occurrence on each date. The graph 

of the keyword frequency distribution for the “Tulsa+Rally” dataset can be seen in Figure 

11. 

 

 

Trajectory for the keyword distribution of the “Tulsa+Rally” dataset 
Figure 11 
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“Tulsa+Rally” Keyword Frequency Dataset Results Discussion 

The keyword frequency graph for the “Tulsa+Rally” dataset only showed two 

areas where keyword occurrence increased over the 14-day period. The first area of 

increased frequency occurred on day eight, where there was a subtle ripple in the 

smoothed line trajectory. When we compared this result with our Newsworthiness graph, 

there was a sizable discrepancy between the two graphs.  Our analysis of the difference 

between the two graphs is detailed in the chapter summary below.  Days 7 through 11 in 

the Newsworthiness graph showed the most significant event peak in the time-period. 

The keyword frequency graph for this time period suggested only a mild increase in 

keyword usage. The second area of increased keyword usage occurred from day 11 to 

day 14. The graph suggested a gradual increase, ending in a plateau for the smoothed line 

trajectory. In the Newsworthiness graph, this time-period showed a second event peak 

which formed on day 12. The smoothed line trajectory for the “Tulsa+Rally” 

Newsworthiness graph ended on day 14 in a downward slope. In the keyword frequency 

graph, only days 11 through 14 could be interpreted as an event, since no other well-

formed peak could be identified. Ultimately, the results of the keyword frequency graph 

did not corroborate the results found in the Newsworthiness graph. The Newsworthiness 

graph identified three distinct event peaks, while the keyword frequency graph identified 

only one. There was not enough data available to suggest why the same peaks did not 

form in the keyword graph.  

Results of the “Atlanta+Protests” Dataset: Keyword Frequency 

The results of the keyword frequency graph of the “Atlanta+Protests” dataset 

validated the results of the Newsworthiness graph. Both graphs showed event peaks 
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occurring during the same time periods. This level of corroboration was not evident in the 

two graphs resulting from the “Tulsa+Rally” dataset. The graph of the “Atlanta+Protests” 

keyword frequency dataset can be seen in Figure 12. 

 

 

  

“Atlanta+Protests” Keyword Frequency Dataset Results Discussion 

             There was considerable agreement in event detection between the 

“Atlanta+Protests” Newsworthiness and keyword frequency graphs.  In both graphs, the 

most significant event that was identified had its peak on day 12 of collection. The two 

graphs had trajectories that ended with full descending slopes. They also both identified 

the first event as lasting approximately seven days before the trajectory descended into a 

trough. The second event in each of the two graphs lasted from day 8 through day 10. We 

made an observation regarding the two “Atlanta+Protests” graphs with respects to the 

two points of reference and their corresponding event peaks. The locations of the 

Trajectory for the keyword distribution of the “Atlanta+Protests” dataset 

Figure 12 
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reference points in the developing event peaks suggested that the charges against the 

officers and the televised funeral contributed to the increased discussion but did not 

precipitate the increase. In both cases, the trajectories were already moving in an upward 

direction. 

Summary of Results 

                The following section summarizes the results of the experiments that we 

performed with a total of nine datasets that we collected using the Twitter API.  The first 

three datasets were short-term collections spanning a period of 13 hours per dataset.  The 

13-hour datasets were collected in parallel, meaning they were collected over the same 

time span using the same search term criteria.  The purpose of the parallel dataset 

collection was to validate that our approach to event detection consistently produced the 

same results in a two-dimensional smoothed line graph with minimal bias. The fourth and 

fifth datasets were short-term samples that we collected using the keywords 

“Russian+Disinformation” that covered a time span of 28-hours. The remaining four 

datasets covered a time-period of 14 days.  Two of the datasets were collected using the 

search criteria “Tulsa+Rally.” The remaining two datasets were collected using the search 

terms “Atlanta+Protests.” For each of the collected dataset pairs, two approaches to event 

detection were evaluated. The first approach was our method, which used 𝐷𝐶(𝑡𝑖), 𝐸𝑠, and 

Newsworthiness.  The second approach was an existing method of event detection which 

used unigram keyword frequency. The results were promising but demonstrated the need 

for additional research in the future.  
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dataset Min-Max  Event Peaks Q3 Variance Standard Deviation 

NW RollingStones1 0-157.90 2 14.7 95.67 9.78 

NW RollingStones2 0-176.95 2 14.4 92.78 9.63 

NW RollingStones3 0-173.09 2 12.4 92.48 9.61 

NW Russian Disinformation 0-217.94 3 29.3 683.43 26.14 

WC Russian Disinformation 0-13 3 10 15.99 3.99 

NW Tulsa Rally 0 - 76.21 3 2.09 10.38 3.22 

WC Tulsa Rally 0 - 13 1 5 5.53 2.35 

NW Atlanta Protests 0 - 264.18 3 15.2 224.31 14.97 

WC Atlanta Protests 0 - 11 3 7 9.97 3.15 

 

 

 

 

Dataset Event Day  Average 

NW 

Max 

NW 

Average 

WC 

Max 

WC 

TulsaRally 

NW 

1 5 3.31 76.21 N/A N/A 

TulsaRally 

NW 

2 8-9 3.31 76.21 N/A N/A 

TulsaRally 

NW 

3 12 3.31 76.21 N/A N/A 

TulsaRally 

WC 

1 12-14 N/A N/A 3 3 

AtlantaProtests 

NW 

1 3-4 10.79 52.51 N/A N/A 

AtlantaProtests 

NW 

2 9 15.60 60.97 N/A N/A 

AtlantaProtests 

NW 

3 12 45.36 45.66 N/A N/A 

AtlantaProtests 

WC 

1 4-5 N/A N/A 6.41 10 

AtlantaProtests 

WC 

2 9 N/A N/A 5.36 9 

AtlantaProtests 

WC 

3 12 N/A N/A 8.24 11 

 

 

Average and Maximum NW and keyword counts for each day when event peak 

occurs 

Metrics for all 7 NW and keyword count datasets 

Table 10 

Table 11 
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day newsworthiness frequency 

3 15.23 497 

4 9.81 410 

4 11.89 337 

3 4.77 198 

4 15.98 183 

3 1.38 54 

3 1.91 48 

3 0.76 28 

3 0.12 25 

3 0.61 22 

3 0.70 21 

 

 Summary of the three “RollingStones” 13-Hour Datasets               

            We will refer to Tables 10, 11, and 12 above to explain the results of our 

experiments.  Based on the smoothed line graphs shown earlier in this chapter and the 

data in the above tables, we have made the following observations. The metrics for the 

three 13-hour short-term datasets shown in Table 10 (“RollingStones1”, 

“RollingStones2”, “RollingStones3”) demonstrated that the Newsworthiness 

methodology consistently identified the same number of events for the three parallel 

datasets.  The most significant difference in min-max values between the samples was 

19.05. Specifically, the “RollingStones1” sample had a Newsworthiness that was smaller 

than the other two. This meant that the more significant event peak (second peak) for 

“RollingStones1” would be shorter than the other two “RollingStones” samples. 

Additionally, the 𝑄3 fence value for the “RollingStones3” sample was less than the other 

two datasets by two units of Newsworthiness. This meant that “RollingStones3” had a 

larger range of outliers in the dataset than the other two. The “RollingStones1” sample 

Newsworthiness frequency table for Alanta+Protests dataset 

Table 12 
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also had a variance that was slightly larger than the other two datasets (approximately 3 

units greater than the other two). When all these metrics were considered comparatively, 

the three 13-hour “RollingStones” datasets captured the same number of event peaks with 

the same durations. The biases between them were relatively minimal. 

  4.10.2 Summary of the “Tulsa+Rally” Newsworthiness Dataset         

            The two 14-day datasets provided mixed results with regards to event detection 

when the Newsworthiness graphs were compared against the keyword frequency graphs. 

The first of the two longer datasets, the “Tulsa+Rally” dataset, detected three event peaks 

when the Newsworthiness trajectory was shown on a graph. All three event peaks fell 

beyond the 𝑄3 fence line. The first detected event broke the plane of the 𝑄3 fence, 

cresting at a Newsworthiness y-axis value of 2.09. The total duration of the first event 

was six days. A vertical line representing a known event, in this case the 8 pm rally that 

took place on June 20, was inserted past the midway point between day six and day seven 

where a trough had formed in the trajectory. The second event crested at day nine and 

lasted from day 7 to day 11 where a second trough had formed. The third event crested on 

day 12 and lasted from day 11 to day 14 where the trajectory descended into the 𝑄1 lower 

fence.   

            When we analyzed the metrics for the “Tulsa+Rally” dataset in Table 10, we 

noticed three numbers that we found interesting. The min-max value (0 - 76.21), 𝑄3 fence 

(2.09), and variance (10.38) were all significantly lower than the results found for the 

“Atlanta+Protests” 14-day dataset. We also analyzed the average and maximum 

Newsworthiness values for each event that was identified within the time-period. There 

was no variance in these two metrics for all three of the events in the dataset. In the 
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“Tulsa+Rally” dataset, as seen in Table 11, events were identified for day 5, days 8-9, 

and day 12. For all three of these events, the average Newsworthiness was 3.31 and the 

maximum was 76.21. The smaller values for the dataset observed in Table 10 were the 

result of smaller 𝐷𝐶(𝑡𝑖) values and relatively larger 𝐸𝑠 values. This, in turn, caused 

smaller overall values of Newsworthiness. We believe that the lack of variance and the 

smaller values were the result of two influences. First, the smaller 𝐷𝐶(𝑡𝑖) score suggested 

that there was either a larger number of dispersed individual users with lower messaging 

influence or a smaller number of user subnetworks discussing the topic. Second, we 

believed that the average size 𝐸𝑠 score was the result of a comparatively smaller user 

diversity. This average diversity combined with fewer user subnetworks and large 

volume of messages could result in duplicated messaging.  To provide additional clarity 

to this discussion, we originally defined Newsworthiness as NW=f(
𝐷𝐶(𝑡𝑖)

𝐸𝑠
,p).  What 

became clear to us following testing of all seven of the datasets was that clusters of nodes 

with higher NW were more directly correlated with the formation of peaks in a smoothed 

line trajectory. If 𝐷𝐶(𝑡𝑖) scores were high enough, even after integration with 𝐸𝑠 scores, 

the resulting NW values would remain high. What this implied to us was that nodes with 

higher 𝐷𝐶(𝑡𝑖) scores were connected to larger networks of users. The users who resided 

at the center of these larger networks held the greatest influence, therefore they were 

attributed the largest 𝐷𝐶(𝑡𝑖) scores.   Based on the evidence, we concluded that the 

combination of more dispersed user connectivity, average user diversity, and a large 

volume of messages resulted in a lack of variance for the time-period. We also concluded 

that the pervasive low 𝐷𝐶(𝑡𝑖) scores in the “Tulsa+Rally” dataset, which contributed to 

the low NW, occurred because the discussion stream for this topic was void of a larger 
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network of interconnected users. This lower user interconnectivity implied a reduced 

amount of influence for information spread attributed to all participating users in the 

discussion stream.  

Summary of the “Tulsa+Rally” Keyword Frequency Dataset         

            The keyword frequency graph for the “Tulsa+Rally” dataset did not corroborate 

the results of the Newsworthiness graph. The keyword frequency graph showed a gradual 

decline of keyword frequency over the first three days of the time-period. Days 7 through 

9 showed a very mild uptick in keyword frequency, but not enough that we could classify 

it as an event. Days 10 through 14 of the keyword graph showed a gradual upward slope 

in frequency. The trajectory for the time-period ended as a flatline plateau. According to 

the metrics displayed in Table 10, the “Tulsa+Rally” dataset had one event peak lasting 

from day 12 through day 14. The min-max values for the dataset was a minimum of zero 

keywords and a maximum of 13. The 𝑄3 fence value was 5 and the variance was 5.53. 

According to the data in Table 11, “Tulsa+Rally” had during its one event peak an 

average keyword count of 3 and a maximum keyword count of 3. We found that the 

metrics were not very insightful for explaining the differences between the 

Newsworthiness and keyword graph trajectories. What we found interesting was the 

overall absence of a repeated pattern in the keyword frequency graph trajectory. The 

smoothed line graph showed a small amount of variance, which included the event 

plateau at the end of the time period.  

             After we analyzed metrics from the Newsworthiness and keyword frequency 

graphs for the “Tulsa+Rally” datasets, we made an observation. The keyword frequency 

graph was intended to be sensitive to increases and decreases in the frequency of words 
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that were inherent in messages circulating in a discussion stream. There may not have 

been keywords occurring with enough frequency to cause peaks to form in the same 

locations that formed in the Newsworthiness graph. To further illustrate our observation, 

the graph displayed in figure 9 showed a trajectory that demonstrated some mild 

undulation and rippling, terminating with a gradually climbing plateau. The smoothed 

line graph for the Newsworthiness dataset, which covered the same time-period, showed 

a trajectory that formed three well-defined peaks. Based on the evidence, we posited that 

the Newsworthiness graph may have captured event-related activity in its trajectory that 

word frequency could not effectively capture. There was not enough evidence in the 

metrics to suggest a possible reason for the dissonance between the two trajectories.  

Summary of the “Atlanta+Protests” Newsworthiness Dataset 

            The “Atlanta+Protests” Newsworthiness graph detected three event peaks in the 

14-day period. The first of the three events lasted for a duration of seven days. The peak 

of the first event did not fall beyond the 𝑄3 fence. The second event broke the plane of 

the 𝑄3 fence with a crest that measured approximately 16 units of Newsworthiness on the 

y-axis. It lasted from day 8 through day 10. The third event was the most significant in 

the dataset. It crested with a Newsworthiness magnitude of approximately 51 units and 

lasted for a total of three days. Two known events were inserted as points of reference 

into the “Atlanta+Protests” graph. The first reference point was inserted in the middle of 

day three. It coincided with the time at which formal charges were filed against two 

police officers involved in the shooting. The second point of reference referred to a 

televised funeral that had been discussed in the media for several days. This second 

reference point was inserted in day 9 of the time-period. 
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              With regards to the “Atlanta+Protests” Newsworthiness dataset, there were three 

observations which we found interesting. The first dealt with the metrics that were 

produced by the dataset. The second observation which interested us were the specific 

conditions under which event peaks formed in our experiments. The third observation 

was the location of event peaks with respect to the known points of reference in the 

timeline. In the next three sections we will discuss each of these observations in detail. 

Chapter 4 will conclude with a summary of the results found with the “Atlanta+Protests” 

keyword frequency dataset.  

               The first observation we found interesting was the spread of the metrics 

resulting from our experiment with the “Atlanta+Protests” Newsworthiness dataset. As 

seen in Table 10 above, the variance for the dataset was 224.31which was significantly 

larger than what we observed in the “Tulsa+Rally” dataset. We identified three event 

peaks for the time-period. The events occurred on days 3-4, day 9, and day 12 as shown 

in Table 11. Between the three event peaks there was a substantial amount of variance. 

The variance between the three event peaks with regards to Newsworthiness magnitude 

was significant. The average Newsworthiness score for event peak one was 10.79. Event 

peak two had an average of 15.60 and the third peak averaged 45.36. What these metrics 

suggested to us was that there was a significant amount of movement and fluctuation of 

messaging activity among users in the discussion stream. The decline in the graph’s 

smooth line trajectory at the end of the time-period suggested a slowing down of activity 

for the time-period covered.  

              Previously, we discussed significant differences in Min-Max levels between the 

“Tulsa+Rally” and “Atlanta+Protests” datasets as shown in Table 10. Even with these 
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differences in maximum levels of Newsworthiness, both datasets identified three distinct 

event peaks each in their respective trajectories. This observation brought us to our 

second point of interest in our results. After analyzing the metrics in Table 10 and Table 

11, we eliminated the original notion that higher scores of Newsworthiness alone caused 

the formation of event peaks. After making this observation, we compiled Table 12, to 

demonstrate evidence as to what we believed was a contributing factor to the formation 

of event peaks. We hypothesized that event peaks were formed by a higher frequency of 

discussion stream nodes that had higher levels of newsworthiness plotted in the same 

time-period index.  In Table 12 the node in the first row had a Newsworthiness of 15.23. 

What was implied by the table was that 496 additional nodes had the same 

Newsworthiness score. This cluster of 497 nodes on day 3 contributed to the peak that 

formed on that day in the time-period. In Figure 8 (“Atlanta+Protests” Newsworthiness 

smoothed line graph) a row of jittered points can be seen at 15.23 above the event peak 

for day 3.  The relationship between event peaks and the frequency of nodes with high 

Newsworthiness is a topic we will pursue in much greater detail in future research. The 

assumption we made concerning node frequency and event peaks will require additional 

testing to validate.  

              The final observation that we made was the location of event peaks with regards 

to known reference points that were inserted into the timeline. As seen in Figure 8, there 

were two reference points that were discussed previously. The first was the news of 

charges being filed against two officers involved in a shooting in Atlanta. This known 

event took place on June 17th, 2020. The second point of reference was the televised 

funeral for Rayshard Brooks which aired on June 23rd, 2020. In Figure 8, the first known 
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reference point was marked at the incline slope of the first event, just prior to the peak. 

The second reference point occurred in sync with the second event peak. What this data 

suggested to us was that the two points of reference contributed to, but did not directly 

cause, the two event peaks to form. The two marked and dated reference events 

contributed to a discussion that was already occurring. What contributed to this 

observation was that in Figure 7 (“Tulsa+Rally” Newsworthiness dataset graph), the 

known point of reference was marked in a trajectory low point. The day following the 

point of reference, the trajectory began an upward ascension toward an event peak. This 

juxtaposition of reference point and event peak led us to believe that there was a causal 

relationship between the reference point and the event.  

Summary of the “Atlanta+Protests” Keyword Frequency Dataset 

            The “Atlanta+Protests” keyword frequency graph identified three events on the 

same days for the same durations as the Newsworthiness graph. The first event in the 

keyword frequency graph was identified as lasting from day 2 to day 7. The event crested 

on day 5 and took place in conjunction with the first point of reference (charges brought 

against officers). The reference point occurred two days before the peak formed. The 

second event lasted from day 8 to day 11, cresting on day 9. This second event crested 

one day after the occurrence of the second reference point (televised funeral). The third 

event peak formed on day 12. This final event ended on day 14 with a trajectory that 

descended in a downward slope toward 𝑄1.  There was a substantial amount of 

congruence between the Newsworthiness graph and the keyword frequency graph. This 

was in direct contrast to the results that were obtained from the two “Tulsa+Rally” 

graphs. 
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Summary of the “Russian+Disinformation” Newsworthiness Dataset 

The “Russian+Disinformation” Newsworthiness dataset lasted for a time span of 

28-hours and identified three events in its trajectory. Only one of the event peaks formed 

a crest above the 𝑄3 upper boundary, which was the second event. This was the most 

significant event in the time-period since its peak formed at approximately 84 units of 

Newsworthiness. Peak one and peak three both formed their crests below the 𝑄3 

boundary. Event one lasted from hour 4 to hour 10. Event three lasted from hour 24 to 

hour 28 when the time period ended. The most significant event in the period lasted from 

hour 11 to hour 21. The known event point of reference for the time-period was the 

release of the “Russian+Disinformation” story in the news on July 29, 2020, which was 

hour 4 of the collection period. The point of reference occurred in a trajectory trough 

prior to the ascent and formation of the first event peak.  

Summary of the “Russian+Disinformation” Keyword Frequency Dataset 

The “Russian+Disinformation” keyword frequency trajectory identified three 

events, which was in agreement with the corresponding Newsworthiness trajectory. The 

first event peak lasted from hour 4 to hour 10 which was also in agreement with the 

Newsworthiness approach. The remaining two events did not correspond to the 

Newsworthiness trajectory in their significance or their locations on the timeline. The 

keyword frequency trajectory identified the first event as the most significant. The 

Newsworthiness approach identified the second event as most significant. We observed 

one additional finding which was in agreement with the Newsworthiness trajectory. The 

known event point of reference in the “Russian+Disinformation” keyword frequency time 

period occurred in a trough just prior to the upward movement of the trajectory.  



109 
 

 

Chapter 5 

Summary, Contributions, and Future Work 

Research Summary 

Events & Event Detection, SNA Metrics, and Newsworthiness 

 An event is defined as a set of messages on a related topic within a defined time-

period that surpass a threshold measured by the statistical values of Diffusion Centrality 

and Shannon Entropy. Event detection is the identification of events that are present in a 

time-ordered social media discussion stream such as Twitter.  One of the more popular 

approaches to event detection that we found in the research literature was temporal 

keyword frequency measurement. This technique involved the measurement of message 

keyword occurrence throughout the trajectory of a time-period. Increases and decreases 

in keywords associated with a certain topic have been viewed in many studies as 

synonymous with the growth and decline of events. One drawback to this approach has 

been that it tended to marginalize the human behavioral perspective of activity in a 

discussion stream.   

Social Network Analysis (SNA) is an interdisciplinary field that combines 

elements of sociology and computer science. SNA, as a discipline, is concerned with 

studying human behavior and how entities interact with each other. Diffusion Centrality 

(𝐷𝐶(𝑡𝑖)) and Shannon Entropy (𝐸𝑠) are two metrics that fall under the large umbrella of 

SNA evaluative tools. 𝐷𝐶(𝑡𝑖) is a SNA value that measures the message spreading 

influence that individual users in a discussion stream subset have with respects to the 

network of connected users as a whole.  𝐸𝑠 is a metric that was adapted to information 

science from the field of Physics where it was originally used to measure the level of 
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disorder in a system. In the field of SNA 𝐸𝑠 measures the level of diversity in a system. 

𝐸𝑠 was used in several studies in the literature with regards to diversity of users and 

messaging in social media. We found in our research that the 𝐸𝑠 metric excelled at the 

macro level of measurement. Specifically, it was proficient at measuring the levels of 

diversity of overall participant contributions to a collective project. According to our 

research, a “project” translated to a discussion stream and a “participant” translated to a 

user. We proposed the integration of 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 into a single metric we called 

Newsworthiness (NW) to identify and measure events in a discussion stream. We defined 

NW as a SNA metric of user activity that quantifies the distribution of user message 

spreading actions over the user diversity in a discussion stream. We formally defined the 

NW metric as (
𝐷𝐶(𝑡𝑖)

 𝐸𝑆
, p), where 𝐷𝐶(𝑡𝑖) was a user’s Diffusion Centrality score, 𝐸𝑠 was 

the average Shannon Entropy of the message text for the time period index, and p was the 

individual time period index being studied. After many preliminary trial experiments, we 

found that using a smoothed linear graph with jittered points was the optimum method to 

track the trajectory of a discussion stream through its time-period coverage. 

Short-Term Dataset Collection 

We decided to collect a total of six Twitter datasets to demonstrate the 

identification of events using our NW metric. We performed our collections using the 

Twitter platform’s application programming interface (API). The platform’s API 

included some inherent limitations for average users, which included a 10,000-tweet limit 

per 15-minute window. There was also a restriction on how far back in time we could 

collect tweets (8-days at most).  The first three datasets were short-term collections that 

covered a period of 13 hours per dataset. The three datasets were collected in parallel, 
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meaning all three covered the same topic over the same time span. The reason for 

collecting the three short-term parallel datasets was to demonstrate that our approach 

identified the same events in all three smoothed line graphs with minimal bias. The topic 

that we chose for our 13-hour datasets was based on news that was trending and would 

likely fade from public interest more quickly. Empirically, we found that topics in 

popular culture often tended to demonstrate a shorter and more intense public interest 

based on the news being circulated. We proceeded with the rationale that topics with 

shorter and more intense cycles of interest would likely produce more well-formed event 

peaks. With this rationale in mind, we selected the Twitter API keywords 

“Rolling+Stones .” This keyword search related to a story that was circulating in the 

news about the musical group The Rolling Stones. The band had issued a cease and desist 

order to the Donald Trump campaign ordering them to stop using their music at political 

rallies. Each of the three parallel “Rolling+Stones” samples had 8,000 tweets per dataset. 

Long-Term Dataset Collection 

In our original research proposal, we proposed two datasets. The original topics 

were “cybersecurity” and “#DowJones.” We had to forego these two topics because 

neither keyword search produced a sufficient quantity of tweets at the Twitter platform’s 

API. As a result, we monitored the news using outlets that were seen as the most reliable 

for news and free of bias. According to the Media Bias Chart at 

https://www.adfontesmedia.com/ , abcnews and Reuters were two of the least biased 

sources for news, so we used these outlets to find trending topics (Media Bias Chart, 

2020). We started collection on June 15, 2020, and on this date two stories were 

circulating heavily. The first was the Trump rally in Tulsa, Oklahoma, which took place 
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on June 20, 2020. The second story concerned the shooting of Rayshard Brooks by a 

police officer in Atlanta, Georgia. On both of these topics, we collected tweets every day 

for a period of 14 days. For each individual one-day period, we collected throughout the 

day to ensure that the entire 24-hour period had been represented. At the end of the 14-

day collection period, the “Tulsa+Rally” dataset had a total of 14,000 tweets. The second 

dataset (we used keywords “Atlanta+Protests”) had a total of 12,203 tweets.  

Known Events as Reference Markers 

We decided to include an additional measure to evaluate the occurrence of events 

in each of the two 14-day datasets. For each of the two datasets, we inserted known 

events (represented by a vertical line) into the y-axis timeline as points of reference to 

evaluate the juxtaposition of event peaks with the known events. In the “Tulsa+Rally” 

dataset, we inserted the vertical line in the middle of the time index that corresponded to 

June 20, 2020. Collection began on June 15, 2020, so the point of reference was five days 

from the start of the collection. In the “Atlanta+Protests” dataset, we inserted two points 

of reference. The first was on the third day of collection, June 17, 2020. At this point of 

reference, charges were formally brought against the two officers who shot Rayshard 

Brooks. The second point of reference for the dataset was on the ninth day of collection, 

June 23, 2020. This second point of reference corresponded to a planned televised funeral 

for Brooks. Since both event reference points in the “Atlanta+Protests” occurred in the 

middle of the day, we inserted the vertical lines in the middle of both time period indexes. 
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Results of RollingStones Parallel Datasets 

The results of the three parallel “Rolling+Stones” samples validated our original 

assumption that the NW approach would identify the same events in all instances of the 

time-period. In all three datasets, two events were identified. We used the 𝑄3 quartile 

value for the dataset distribution as a threshold line to delineate the separation of average 

NW values from outliers. Ideally, event peaks formed beyond the 𝑄3 line, as events were 

related to the existence of outliers in a dataset. However, event peaks could form tangent 

to or below the 𝑄3 line. The location of where the event peak falls is related to the 

magnitude of the event. Event magnitude evaluation is a topic that we plan to pursue in 

later research. The first event in the “Rolling+Stones” samples fell below the 𝑄3 line 

however the second event developed a well-formed peak above 𝑄3 at hour 6. We 

qualified the first event in this dataset series as “less significant” than the second event. 

Since evaluation of event magnitude is a topic for later research, we will not be able to 

precisely assess the quantitative differences between the two events at this point. The 

cumulative bias in NW values between all three datasets was minimal.  

Results of the “Tulsa+Rally” NW Dataset 

When we analyzed the first of our 14-day datasets, the “Tulsa+Rally” NW dataset, 

we identified three events in the time-period trajectory. All three events had their peak 

formations fall above the 𝑄3 outlier boundary line. The first event peak barely broke the 

plane of the 𝑄3 horizontal line, registering an NW score of approximately 2.10 units. The 

second event was the most significant event in the time-period covered for the dataset. 

The event peak formed at approximately 4.7 NW units. There were two issues with the 

“Tulsa+Rally” NW dataset that were worth mentioning. First, the vertical reference line 
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(the 8 pm Tulsa, Oklahoma rally) occurred in a trough in the smoothed line trajectory. 

The day following the known reference there was the beginning of steep incline toward 

the most significant event peak in the time-period. We interpreted this juxtaposition of 

reference point to slope formation as a correlation between the two entities.  

The second issue of note with the “Tulsa+Rally” NW dataset was the significantly 

lower overall NW scores.  Lower NW scores were caused in part by smaller 𝐷𝐶(𝑡𝑖) scores 

and perhaps larger 𝐸𝑠 scores. Lower 𝐷𝐶(𝑡𝑖) scores suggested an absence (or reduced 

number) of larger subnetworks of highly connected users.  Higher 𝐸𝑠 scores suggested a 

higher diversity among the users in the discussion stream. The p value in the NW 

algorithm served as a qualitative variable by which we could distribute the 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 

scores over a segmented temporal range for evaluation. For the “Tulsa+Rally” dataset we 

chose a single day as our value of p. The hundreds of lower scores associated with each 

24-hour period of the dataset averaged together to articulate a 14-day period where the 

NW magnitude ranged from approximately zero to five when plotted as a smoothed line 

graph. Based on this available evidence we concluded that message spread in this 

discussion stream was conducted through a larger, more diverse group, composed of 

many smaller, more dispersed subnetworks of users.  

Results of the “Tulsa+Rally” Keyword Frequency Dataset 

Next, we analyzed the smoothed linear trajectory created by the “Tulsa+Rally” 

keyword frequency dataset. In the 14-day trajectory we found only one region that we 

could reasonably classify as an “event.” It was not a full formed peak like the three 

events that were identified in the NW dataset. Starting midway through day 10 the 

trajectory begins an incline. At the end of day 14 the trajectory terminated at a plateau. 
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This plateau we identified as the graph’s one and only event for the time-period. At day 8 

there was a very subtle ripple in the trajectory, but it was not enough that we could 

reasonably call it an event. Overall, the “Tulsa+Rally” keyword frequency dataset had 

only a small amount of variance in it with regards to keyword frequency values.  

We compared the keyword frequency graph with the NW graph and we made two 

observations. First, we saw a mild correlation between the event plateau at the end of the 

keyword trajectory and the third event peak in the NW dataset. The increases in keyword 

frequency and NW between hours 11 and 12 were in sync. However, the NW trajectory 

terminated its path in a trough, while the keyword trajectory remained elevated as a 

plateau. This was where the lone similarity ended. The second observation that we made 

concerned the overall efficacy of the keyword frequency technique itself. The keyword 

technique was designed to be sensitive to increases and decreases in word occurrence to 

identify events. We hypothesized that the NW approach was able to detect events that the 

keyword frequency method could not. The NW trajectory had three well-formed peaks 

where there was little to no corroboration in the keyword trajectory.  More testing will be 

required during future research to validate this observation. 

Results of the “Atlanta+Protests” NW Dataset 

We found three event peaks in the 14-day trajectory of the “Atlanta+Protests” NW 

dataset. The most significant of the three events took place on day 12 of the time-period. 

It had the highest NW score at approximately 50 units. Event number two barely broke 

the plane of the 𝑄3 boundary with an NW score of approximately 15.3. The first event in 

the time period did not pass beyond the 𝑄3 boundary line but was the longest lasting 

event in the time-period with a duration of four days. Event one had an NW score of 
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approximately 12 units.  We made two observations concerning the “Atlanta+Protests” 

NW dataset. The first observation concerned the significantly larger NW scores in the 

dataset. The second observation dealt with the juxtaposition of known event reference 

lines with event peaks.  

The NW scores for the “Atlanta+Protests” dataset were significantly higher than 

those of the “Tulsa+Rally” dataset. This increase in scores was attributed to a greater 

number of users with high 𝐷𝐶(𝑡𝑖) scores and average 𝐸𝑠 scores. The reduced range of 𝐸𝑠 

scores suggested a somewhat smaller diversity of users participating in the discussion 

stream. While the “Tulsa+Rally” discussion stream had 𝐸𝑠 scores that fell within the 

“average” range, the majority of them were higher (greater than 2.0). The higher average 

𝐸𝑠 scores indicated greater participation in the discussion. The “Atlanta+Protests” 

discussion stream had a smaller amount of participation (𝐸𝑠 scores ranged between 1.4 to 

2.041). The larger overall 𝐷𝐶(𝑡𝑖) scores suggested there were more interconnected users 

in larger subnetworks. The largest 𝐷𝐶(𝑡𝑖) score in the “Atlanta+Protests” dataset was a 

424.84, which suggested this user was the most influential person in the discussion 

stream with regards to message spread. He or she was likely the center of the largest user 

subnetwork. Message circulation in this discussion stream was more efficient and more 

widespread at a quicker rate than the “Tulsa+Rally” dataset. The higher NW scores are 

indicative of this. 

In the “Tulsa+Rally” dataset we made the observation that the vertical line 

reference marker for the June 20, 2020 rally was rooted in a valley immediately prior to a 

trajectory ascent toward an event peak. This suggested to us that there was a possible 

causal relationship between the reference point and the formation of the subsequent 
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event. In the “Atlanta+Protests” NW dataset there were two vertical line reference 

markers. The first reference point was rooted slightly before the cresting of the first event 

peak. The second reference point was rooted in sync with the cresting of the second event 

peak. The juxtaposition of these two reference points in relation to the two event peaks 

suggested to us that the two known events correlating to the reference points contributed 

to the formation of the event peaks but did not cause them. In both cases the levels of NW 

were already increasing prior to the occurrence of the known events.  

Results of the “Atlanta+Protests” Keyword Frequency Dataset 

When we viewed the results of the “Atlanta+Protests” keyword frequency graph, 

we noticed that there was a lot of congruence between the trajectories of the two graphs. 

In both graphs, three events were identified. The third event peak in the 

“Atlanta+Protests” graph was the most significant of the three. This result was in 

agreement between the keyword frequency and NW approaches. Also in agreement was 

the fact that the first two event peaks in the time period crested beneath the 𝑄3 boundary 

line. A third item that was in agreement between the two “Atlanta+Protests” graphs was 

the fact that the first event in the time period lasted for a duration of five days. The results 

of the “Atlanta+Protests” keyword frequency dataset validated the events that were 

identified by the NW method.  

Results of the “Russian+Disinformation” NW and Keyword Frequency Datasets 

The “Russian+Disinformation” samples were part of our short-term dataset 

collection. The RollingStones datasets consisted of 13-hour time periods. The 

“Russian+Disinformation” samples consisted of 28-hour periods. By approaching tweet 

collection using the method we documented in this research, we successfully 
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implemented event detection from both short and long term perspectives (i.e. 13-hour, 

28-hour, 14-day). When we compared the results of the two different approaches for the 

“Russian+Disinformation” datasets, we noticed first that they both captured the same 

three events over the time period (p = 1 hour, 28 hour time span). The first captured event 

peak for both methods lasted approximately the same duration, i.e. 6 hours. Also, in both 

approaches, the vertical line known event reference marker occurred just prior to the 

ascent of the first event peak in the time-period. This is where the similarities ended. The 

NW approach for the time-period identified the second peak as the most significant event. 

The trajectory for the keyword frequency method identified the first event as the most 

significant in the time-period. The NW dataset had a rather large variance in its 

distribution, i.e. 683.43 as seen previously in Table 10. The maximum value for NW in 

the dataset was 217.94. The large variance size suggested that the conditions were 

favorable for the formation of more significant peak formations due to the existence of 

more outliers. 

The keyword frequency dataset had a max value of 13 keywords occurring in a 

tweet during the 28-hour time-period. The variance was 15.99 with a 𝑄3 value of 10. 

None of the three event peaks in the keyword frequency trajectory breached the 𝑄3 

boundary. The smaller variance and an unbroken 𝑄3 boundary suggested an absence of 

outliers in its distribution, which in turn would lead to an absence of significant peaks. 

The results of the two approaches suggested to us that the NW method was able to capture 

information about events that were not fully captured by keyword occurrence. The same 

three events were universally captured, however the relative amplitudes of the three 

events differed between the two trajectories. The keyword frequency trajectory identified 
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the latter two events as lesser in significance.  The NW trajectory identified the second 

event peak as very significant. These observations need to be tested further with 

additional datasets in future research to corroborate our findings.  

Contribution 

The contributions of this research to the body of knowledge are threefold. Our 

first contribution was the creation of a new metric called Newsworthiness (NW) by 

integrating two existing SNA metrics, 𝐷𝐶(𝑡𝑖) and 𝐸𝑠. The NW metric quantitatively 

identified events in a social media discussion stream by evaluating the message spreading 

influence and user diversity of participating users over a defined period of time. 

Currently, the magnitude of events is determined by evaluating significance from least 

NW values to greatest NW values. An event with the highest event peak is considered the 

“most significant” event in the time-period. In future research we will add to the existing 

event detection algorithm to provide a more concrete method of evaluating an event’s 

magnitude. 

Our second contribution was the use of quartiles to evaluate dataset distributions 

for outliers in the context of analyzing NW to identify event peaks. Ideally events in a 

dataset distribution formed above the 𝑄3 boundary line, as that region was where outliers 

in a dataset were found. As it was evidenced in our experiments, event peaks could form 

beneath the 𝑄3 boundary. Since peak formation occurred above and below the 𝑄3 

boundary, 𝑄3 threshold requirement was not deemed a rigid rule to follow. It served more 

as a guideline for us. The 𝑄3 boundary allowed us (along with NW score) to evaluate the 

magnitude of dataset distributions by tracking where peaks formed in the trajectory. As a 

general guideline, using 𝑄3 as our point of reference, a shorter peak was consistent with 
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an event of lesser magnitude. A taller peak suggested a greater magnitude. A peak that 

formed above 𝑄3 was consistent with the more ideal definition of an event since the peak 

was formed in the dataset region where outliers existed.  

The third contribution of our research was the use of 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 to analyze 

user activity in a Twitter discussion stream. As we previously discussed in our 

experiment findings, high levels of 𝐷𝐶(𝑡𝑖) in a group of networked users suggested a 

greater level of interconnectedness between the users and a higher level of messaging 

activity. The 𝐷𝐶(𝑡𝑖) metric positively affects the message spreading influence and levels 

of activity among the users in a discussion stream. A higher level of diversity (𝐸𝑠) 

negatively affects message spreading influence and activity in a discussion stream. To 

expand on this idea further, if there are more people in a discussion, a user’s spreading 

influence would need to be greater to reach the increased number of people in the 

discussion stream. For this reason, greater diversity adversely impacts the messaging 

activity among a group of users.  

 In addition to the user activity data we can derive from 𝐸𝑠 and 𝐷𝐶(𝑡𝑖), the p 

value (individual unit of time) allows us to qualitatively evaluate user activity from a 

broader, more protracted perspective. A smaller p value (e.g. hour, minute) allows for a 

more nuanced micro view of a dataset where rapid changes over a more discrete time-

period are the focus of study, for example a Twitter hashtag that goes viral. In our case, a 

larger p value (1 day) allows us to evaluate subtle changes in user activity that develop 

over longer periods (week, month). The use of 𝐸𝑠 and 𝐷𝐶(𝑡𝑖) also provides us with a 

broader framework which we will further explore in later research. It is the ability to 

articulate the topology of a discussion stream and sample its composition.  



121 
 

 

Future Work 

When we began this research, the scope was significantly broader than the 

breadth it currently maintains. We set aside a substantial amount of work we had 

previously completed in the interests of refining our study and not submitting to research 

creep. With this in mind, we decided upon the four most important goals we will pursue 

for future research.  Our first goal is the use of machine learning algorithms to identify 

events. We wish to implement and test four classifiers which are ubiquitous in the 

research literature. These classifiers are Support Vector Machine (SVM), XGBoost, 

Neural Network, and Random Forest. When we implement machine learning as part of 

our research infrastructure, it will provide us with a concrete method of evaluating the 

accuracy of event identification. We will use the accuracy metric from confusion 

matrices to give us feedback. We have used all four classifiers in empirical testing, and 

each has its own inherent performance strengths and weaknesses.  

Our second future research goal is to use SA as an additional attribute in our event 

detection algorithm. The NW metric will be the combined integration of 𝐷𝐶(𝑡𝑖), 𝐸𝑠, and 

SA. The SA attribute can include categorical emotions in its evaluation, such as anger, 

fear, and joy. It can also include numeric evaluation, such as magnitudes of negativity or 

positivity. The implementation depends on the SA lexicon that is used for analysis. The 

NRC lexicon, for example, categorizes message samples by emotion type: anger, 

anticipation, disgust, fear, joy, sadness, surprise, and trust.  Each of the emotion 

categories also has a magnitude which can be measured. The AFINN lexicon measures 

message samples using a numeric scale that ranges from negative five to positive five.  
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By implementing one or more SA lexicons in our future research, we will be able 

to evaluate two things with regards to events in a discussion stream. The first is the 

determination of what emotion (anger, joy) or sentiment valence (positive versus 

negative) is influencing the formation of an event. We could, for example, collect a 

sample dataset from a college sports discussion forum after a team wins the national 

championship. An analysis of the resulting time-period might reveal measurable amounts 

of joy and surprise. The second metric we could determine by using SA in a discussion 

stream is the magnitude of an event. The magnitude could be measured, for example, by 

using the AFINN lexicon to evaluate how positive or how negative an event was. If we 

identified an event peak in a time-period using an ensemble of 𝐷𝐶(𝑡𝑖), 𝐸𝑠, and SA, the 

SA attribute could be isolated to measure the magnitude of the event peak. A negative 

event, such as a peak that results after a natural disaster, could measure from negative one 

to negative 5 on the AFINN scale. Different SA lexicons could also be combined into an 

ensemble to exploit the benefits of both algorithms. 

The third goal of future research is to refine and scale the NW metric so that it has 

a common numeric reading after the 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 attributes are integrated. Currently, 

when NW is graphed as a smoothed line trajectory, event peaks can form whether the 

values of NW are low (the “Tulsa+Rally” dataset) or high (the “Atlanta+Protests” 

dataset). Our goal is to have a unified metric. However, if we pursue machine learning 

classifiers as part of our research infrastructure, this goal will not have as much 

relevance. Currently, the only efficient method of evaluating the inner workings of the 

NW metric is to take each of the two individual attributes and analyze them separately 

with respects to the NW smooth line trajectory. By including SA as an additional attribute 
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in the algorithm ensemble, it will make the NW metric more versatile as a numeric 

scoring tool. We touched upon our fourth goal in our contributions discussion above. We 

discussed how the Newsworthiness subcomponents of 𝐷𝐶(𝑡𝑖) and 𝐸𝑠 could be used to 

qualitatively evaluate user activity. For our fourth research goal we will take these two 

metrics and convert them into an evaluative framework that will use to quantify the 

topology and composition of a discussion stream as concrete values. 
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Appendix A: List of Acronyms 

 

List of Acronyms Used in Document 

 

Acronyms 

1. ANN – Artificial Neural Network 

2. API – Application Programming Interface 

3. DTM – Document Term Matrix 

4. LDA – Latent Dirichlet Allocation 

5. OSN – Online Social Network 

6. RF – Random Forest 

7. SNA – Social Network Analysis 

8. SVM – Support Vector Machine 
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Appendix B: List of Variable Names 

 

List of Variable Names Used in Document 

 

Variables 

1. T – Discussion Stream 

2. U – Set of users 

3. 𝐷𝐶(𝑡𝑖) – Diffusion Centrality 

4. 𝐸𝑠 – Shannon Entropy 

5. NW - Newsworthiness 

6. A – Sparse matrix 

7. Pr – Probability matrix 

8. 𝑄3 – Third quartile 
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