
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2020

Improvements to Iterated Local Search for Microaggregation Improvements to Iterated Local Search for Microaggregation

Tracy Bierman
Nova Southeastern University, tracy.bierman@gmail.com

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item

NSUWorks Citation NSUWorks Citation
Tracy Bierman. 2020. Improvements to Iterated Local Search for Microaggregation. Doctoral dissertation.
Nova Southeastern University. Retrieved from NSUWorks, College of Computing and Engineering. (1118)
https://nsuworks.nova.edu/gscis_etd/1118.

This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1118&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

i

Improvements to Iterated Local Search for Microaggregation

by

Tracy Alan Bierman

A dissertation to be submitted in partial fulfillment of requirements

for the degree of Doctor of Philosophy
in

Computer Science

College of Computing and Engineering

Nova Southeastern University

2020

We hereby certify that this dissertation, submitted by Tracy Bierman conforms to acceptable
standards and is fully adequate in scope and quality to fulfill the dissertation requirements for
the degree of Doctor of Philosophy.

___ ________________
Michael J. Laszlo, Ph.D Date
Chairperson of Dissertation Committee

___ ________________
Francisco J. Mitropoulos, Ph.D. Date
Dissertation Committee Member

___ ________________
Sumitra Mukherjee, Ph.D. Date
Dissertation Committee Member

Approved:

___ ________________
Meline Kevorkian, Ed.D. Date
Dean, College of Computing and Engineering

College of Computing and Engineering
Nova Southeastern University

2020

June 22, 2020

June 22, 2020

June 22, 2020

ii

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Improvements to Iterated Local Search for Microaggregation

by
Tracy Alan Bierman

May 2020

Microaggregation is a disclosure control method that uses k-anonymity to protect
confidentiality in microdata while seeking minimal information loss. The problem is NP-
hard. Iterated local search for microaggregation (ILSM) is an effective metaheuristic

algorithm that consistently identifies better quality solutions than extant
microaggregation methods. The present work presents improvements to local search, the
perturbation operations and acceptance criterion within ILSM.

The first, ILSMC, targets changed clusters within local search (LS) to avoid vast numbers
of comparison tests, significantly reducing execution times. Second, a new probability
distribution yields a better perturbation operator for most cases, significantly reducing the
number of iterations needed to find similar quality solutions. A third improves the

acceptance criterion by replacing the static balance between intensification and
diversification with a dynamic balance. This helps ILSM escape local optima more
quickly for some datasets and values of k.

Experimental results with benchmark data show that ILSMC consistently reduces
execution times significantly. Targeting changed clusters within LS avoids vast numbers
of unproductive tests while allowing search to concentrate on more productive ones.
Execution times are decreased by more than an order of magnitude for most benchmark

test cases. In the worst case it decreased execution times by 75%. Advantageously, the
biggest improvements were with the largest datasets. Perturbing clusters with higher
information loss tend to reduce information loss more. Biasing the perturbation
operations toward clusters with higher information loss increases the rate of improvement

by more than 50 percent in the earliest iterations for two of the benchmarks. Occasionally
accepting worse solutions provides diversification; however, increasing the probability of
accepting worse solutions closer in quality to the current best solution aids in escaping
local optima. This increases the rate of improvement by up to 30 percent in the earliest

iterations. Combining the new perturbation operation with the new acceptance criterion
can further increase the rate of improvement by as much as 20 percent for some test
cases. All three improvements are orthogonal and can be combined for additive effect.

i

Acknowledgements

I dedicate this work to my father, Larry. From my earliest days he instilled in me a love
of education. He was not afforded many opportunities, so he made sure I was. Through

the years, no one followed my progress more closely, asking for an update nearly every
time we met. Thank you, dad, I love you.

I am grateful to my advisor Dr. Michael Laszlo, who has shown considerable patience.

His advice has proven a necessary ingredient in the success of this dissertation. Thank
you to my committee members Dr. Frank Mitropoulos and Dr. Sumitra Mukherjee. Dr.
Mitropoulos introduced me to the many crosscutting aspects of programming. Dr.
Mukherjee built upon my love of algorithms and feature vectors whose objective

functions I will attempt to optimize for many years to come. Dr. Laszlo helped me
visualize a world of data in compendious and expressive ways. My three favorite
professors, my three favorite classes.

I am also in awe of the incredible and clever little algorithm Dr. Laszlo and Dr.
Mukherjee created and allowed me the privilege to make better. They almost left no room
for improvement. I am most grateful for the “almost” part.

My wife Kaley gets the credit for starting me on this journey. It feels like yesterday when
she surprised me with a date to a graduate school open house and made me apply. I
remember presenting myself as indifferent, but secretly I was overjoyed. Thank you , my
love, for encouraging me to take the leap, for being my resting place along the way and

single handedly caring for two rambunctious children for nights on end.

To my son Joseph and my daughter Katherine I greatly appreciate your boundless joy,
inventive minds and unconditional love. You are the reason for almost everything I do.

My advice is not to wait as long as I did to achieve your dreams, but also know that good
things do eventually come to those who persevere.

v

Table of Contents

Abstract iii
List of Tables vi

List of Figures vii, viii

Chapters

1. Introduction 1
Background 1
Problem Statement 7
Dissertation Goal 9

Research Questions 10
Relevance and Significance 10
Barriers and Issues 14

2. Review of the Literature 16

Microaggregation and k-Anonymity 16
Summary 24

3. Methodology 25
Overview 25

Prior Research and Improvements 27
Local Search (LS) 28
Avoiding Costly Tests with LSC and updateC 33
Iterated Local Search for Microaggregation (ILSM) 38

Avoiding Costly Tests with ILSMC 44
Using Sampling to Bias Dissolve 46
A Dynamic Acceptance Criterion 48

4. Results 51

Introduction 51
Benchmark Datasets 52
Experimental Results 53
LSC versus LS 53

ILSMC versus ILSM 57
bDissolve versus dissolve 65
Dynamic Acceptance Criteria versus Static 71
Advantages of Combining bDissolve and dAcceptanceCriteria 77

5. Conclusions, Implications, Recommendations, and Summary 82
Conclusions 83
Implications 86
Recommendations 87

Summary 87

6. References 89

vi

List of Tables

Tables

1. Benchmark Datasets 26

2. First row of data from each dataset 52

3. Average execution time per run (in seconds): LSC compared to LS 54

4. Information loss: LSC compared to LS after 5000 runs 56

5. Average execution time (in seconds) per iteration: ILSMC compared to ILSM 60

6. Information loss using: ILSMC compared to ILSM 61

7. Information loss for runs using: bDissolve compared to dissolve 67

vii

List of Figures

Figures

1. Decrease in cluster pairs list size with updateC iterations (Tarragona 3) 55

2. Decrease in cluster pairs list size with updateC iterations (Census 3) 55

3. Decrease in cluster pairs list size with updateC iterations (EIA 3) 56

4. Decrease in information loss with time, ILSMC vs ILSM (EIA 3) 57

5. Decrease in information loss with time, ILSMC vs ILSM (EIA 10) 58

6. Decrease in information loss with time, ILSMC vs ILSM (Tarragona 3) 58

7. Decrease in information loss with time, ILSMC vs ILSM (Census 10) 59

8. Decrease in information loss with time, ILSMC vs ILSM (Tarragona 10) 59

9. Decrease in cluster pairs list size with updateC (EIA 3) 64

10. Decrease in cluster pairs list size with updateC (Tarragona 3) 64

11. Decrease in cluster pairs list size with updateC (Census 3) 65

12. Decrease in information loss, bDissolve vs dissolve (Tarragona 5) 67

13. Decrease in information loss, bDissolve vs dissolve (Tarragona 10) 68

14. Decrease in information loss, bDissolve vs dissolve (EIA 5) 68

15. Decrease in information loss, bDissolve vs dissolve (EIA 10) 69

16. Decrease in information loss, bDissolve vs dissolve (Census 3) 70

17. Decrease in information loss, bDissolve vs dissolve (Census 5) 70

18. Decrease in information loss, bDissolve vs dissolve (Census 10) 71

19. Decrease in information loss, dAccept vs accept (Census 3) 73

20. Decrease in information loss, dAccept vs accept (EIA 3) 73

21. Decrease in information loss, dAccept vs accept (Tarragona 3) 74

viii

22. Decrease in information loss, dAccept vs accept (EIA 5) 74

23. Decrease in information loss, dAccept vs accept (Census 5) 75

24. Decrease in information loss, dAccept vs accept (Tarragona 5) 75

25. Decrease in information loss, dAccept vs accept (EIA 10) 76

26. Decrease in information loss, dAccept vs accept (Census 10) 76

27. Decrease in information loss, dAccept vs accept (Tarragona 10) 77

28. Decrease in information loss, bDissolve + dAccept vs ILSM (Census 3) 78

29. Decrease in information loss, bDissolve + dAccept vs ILSM (Census 5) 79

30. Decrease in information loss, bDissolve + dAccept vs ILSM (EIA 3) 79

31. Decrease in information loss, bDissolve + dAccept vs ILSM (EIA 5) 80

32. Decrease in information loss, bDissolve + dAccept vs ILSM (Census 10) 80

33. Decrease in information loss, bDissolve + dAccept vs ILSM (EIA 10) 81

34. Decrease in information loss, bDissolve + dAccept vs ILSM (Tarragona 3) 81

1

Chapter 1

Introduction

Background

This research studied the problem of securing the release of data from statistical

databases against disclosure of confidential information. Specifically, it studied

techniques that improve both speed and quality of secured information.

Microdata consists of data records containing personally sensitive and private

information of individuals and/or organizations (Mateo-Sanz & Domingo-Ferrer, 1998).

Enormous amounts of microdata are widely collected. Researchers and others with

legitimate purposes seek access to the latent information within such data. However,

privacy of the data subjects is of utmost concern. Ethics, privacy laws and possible

compensatory and punitive damages due to inappropriate disclosure are all considerations

when disclosing data. Most disclosure methods that maximize privacy protections rely on

a key principle: change the released data such that individual identities can no longer be

deduced from the data. If one can deduce an identity, then they might be able to infer

something confidential using associated or linked microdata (Adam & Worthmann,

1989). Additionally, a desirable characteristic of a disclosure method is the minimal loss

of legitimately usable information within the data (Adam & Worthmann, 1989). The

characteristics of minimizing both inferences and loss of legitimate information result in

2

conversely competing design motivations; it is simple to minimize inferences if one

ignores loss of information, but significantly more difficult to simultaneously minimize

both with speed and in terms of quality.

Microaggregation is a disclosure method that seeks to maximize privacy protection

while also minimizing loss of legitimate information. It is a statistical disclosure control

technique that relies on data modification to provide k-anonymity (Samarati, 2001;

Sweeney, 2002) to the individual subjects within the data. K-anonymity provides a

guarantee that an individual’s information cannot be distinguished from k minus one

other individuals (Sweeney, 2002). It is achieved by partitioning the set of records into

groups with a minimum of k and a maximum of 2k-1 records (for fixed integer k). This is

called the k-partition. It then replaces the records in each group by the group’s mean

value. Information loss is measured by the sum of the squared Euclidean distances

between the value of the original records and their associated group’s mean value.

Finding good solutions to the microaggregation problem, ones with acceptable

information loss, is known to be NP-hard (Oganian & Domingo-Ferrer, 2001).

Practical application of microaggregation usually involves large numbers of records

(Chang, Li, & Huang, 2007). This leads to large numbers of groups within the partition

because k tends to be relatively small. It is an optimization problem with the goal of

searching and finding a partition with overall minimum information loss. Heuristic search

algorithms are known to find good solutions (Chang et al., 2007; Panagiotakis & Tziritas,

2011). In addition, meta-heuristic search (Blum & Roli, 2003) and specifically iterated

local search is known to provide significant improvements (Laszlo & Mukherjee, 2015).

3

Specifically, the microaggregation problem is a combinatorial optimization problem

defined by points in Euclidian space, partitions, constraints and an objective function to

be optimized. All possible feasible combinations of variable assignments that satisfy the

constraints are the candidates that make up the global search space. The subset of those

candidates with optimal objective function value make up the set of solutions. In this

report the term solution generally refers to the local optimum solution. The most optimal

solution from this set would be the globally optimal solution. However, the

microaggregation problem is NP-hard and no polynomial time algorithms exist; thus,

finding the globally optimal solution may need exponential computation time to find.

Therefore, practical methods for solving the microaggregation problem do not guarantee

the globally optimal solution but settle for good enough solutions in exchange for

significantly lower execution run time (Laszlo & Mukherjee, 2015).

Local search is described as a heuristic method for finding better and possibly good

enough solutions for many computationally hard combinatorial optimization problems

(Blum & Roli, 2003). Local search, as applied to the microaggregation problem, starts

with some initial candidate (i.e. a k-partition within a subset of the global search space.)

The search space is defined by a neighborhood structure and a set of rules governing

moves from the current selected solution to a neighbor solution. A search of neighbors is

performed based on the defined set of move rules. Generally, a move is made to a

neighbor when it is found to be better than the current best solution. Alternatively, a

group of neighbors is searched and then a move is made to the best one better than the

current best solution. Searching continues until no better neighbors can be found. This is

4

a form of iterative improvement where the current best solution is progressively

improved through a successive number of moves to better neighboring solutions.

Often in practice, search spaces are so large that heuristic search methods only

search a very small subset of the possible candidates (Laszlo & Mukherjee, 2015).

Therefore, while the final solution will be a local optimum, it will likely not be known if

it is the global optimum solution. It is also quite possible that all the candidates searched

are poor candidates resulting in an inferior local optimum.

One way to increase the probability of finding a good solution is to perform many

searches over the global search space (Laszlo & Mukherjee, 2015). The starting point of

these local searches is important. If these small search spaces represented by the starting

candidates are not diverse, the searches can become entrapped by the same local optimum

solution. Key to increasing the probability of finding a good solution is to perform many

searches starting from a diverse number of candidates within the global space (Blum &

Roli, 2003). Making starting candidates sufficiently diverse minimizes the overlap of

associated sub search spaces. In practice, sufficient diversity can nearly guarantee escape

of the previous local optimum solution. Maximizing diversity provides the highest

probability of finding a different local optimum. Nonetheless, the latest local optimum

solution may be a worse solution not a better one. Selecting candidates at random is a

way to maximize diversity. The best solution from among the resulting group of local

optima is then selected. Performing repetitive searches with random starting candidates is

known as local search within a random restart regime (Laszlo & Mukherjee, 2015).

Further improvement can be achieved by combining two or more basic heuristic

methods into higher-level frameworks (Blum & Roli, 2003). These frameworks are

5

commonly referred to as metaheuristics and their intent is to increase search efficiency

and effectiveness over singular heuristic methods. Iterated local search (ILS) is a specific

metaheuristic method that employs local search with two additional higher-level

heuristics (Blum & Roli, 2003). Local search is run on a random k-partition to obtain an

initial local optimum solution. The solution is saved in memory as the current best

solution. Then a loop is entered. A perturbance heuristic is then used to perturb the

solution and change it a little. The resulting k-partition is then used as input to another

run of local search. Another local optimum solution is found and returned. Then a

decision is made whether to accept or not accept this new solution. If it is better than the

current best solution it is automatically accepted, and it replaces the current best solution

in memory. If it is not better a second heuristic is used to decide whether to accept or

reject the inferior solution. It then returns to the beginning of the loop. If the solution was

accepted it is perturbed and the loop proceeds again as described above. However, if the

solution was rejected, then the current best solution is perturbed instead, and the loop

proceeds again as describe above. The Iterations continue until some stop criterion is met.

The perturbance heuristic should be formulated on the observation that better

solutions have many attributes and characteristics in common with the better and best

solutions from previous iterations(Laszlo & Mukherjee, 2015). The advantage is each

successive iteration takes advantage of information from previous iterations. In simple,

each new iteration of local search is started with a solution similar to the best solutions

found so far.

This leads to the other high-level heuristic for accepting which solution is used for

the next iteration. The acceptance heuristic (known as the acceptance criterion) could be

6

as simple as only accepting a new solution if it is better than the current best solution

(Blum & Roli, 2003). However, if only the best solutions are accepted then only the

current best solution is perturbed. Then the danger arises of being entrapped by the

current best solution. Therefore, the acceptance heuristic should add some diversity to

expand the search space. It does this by accepting some solutions found by LS which are

not necessarily the best solution found so far. Accepting a solution not as good as the

current best solution is often referred to as a worsening move. If after one or more of

worsening moves, and a new best solution is not found, the heuristic could determine to

reject the new solution. This effectively undoes or returns the search back to the current

best solution.

From the discussions above two counter motivations are evident. Local search in a

random restart regime provides maximum diversity by starting every iteration of LS with

a random partition. It does not seek to exploit previous search experience. This

maximizes the probability local maxima are escaped. Conversely, the perturbation

heuristic in ILS seeks to exploit previous search experience by producing new solutions

“very similar” to the best solutions already found. Nonetheless, if too little change results

from the perturbance the search will likely lead to the same local optimum as before. Key

to the ILS metaheuristic is the degree to which the solution and the perturbed result are

similar yet dissimilar (Blum & Roli, 2003).

These countervailing forces are referred to as diversification and intensification.

“Diversification generally refers to the exploration of the search space” and

“intensification refers to the exploitation of the accumulated search experience” (Blum &

Roli, 2003). Both will be described in greater detail in the Literature Review section. Just

7

note they are important concepts in metaheuristics. They are complementary yet likely

contrarian and counter motivating and must be balanced. They generally determine the

behavior of the metaheuristic (Blum & Roli, 2003). A metaheuristic is the smart balance

of these two concepts. They guide and direct the underlying subordinate search heuristic.

The intent is to improve performance over just the use of the subordinate heuristic alone.

A metaheuristic can statically balance diversification versus intensification, or it can

dynamically change the balance. It can also use a combination of the two.

The researchers Laszlo and Mukherjee (2015) use both diversification and

intensification to great effect in their iterated local search for microaggregation (ILSM).

It consistently identifies better quality solutions than other extant microaggregation

methods (Laszlo & Mukherjee, 2015). Core to their approach is a novel local search

heuristic (LS). LS starts with any valid partition, and it monotonically produces a valid

solution with equal or less information loss. Also, LS does not change the partition size,

the number of groups within the partition. It should be noted that LS is not likely to find

the globally optimal solution and may even produce inferior solutions. To help avoid

inferior solutions, the researchers use LS within the context of their iterated local search

metaheuristic ILSM. Key to their approach are their perturbation operations which

change only a small portion of the solution yet guarantee escape of local optima by

changing the size of the partition.

Problem Statement

Previous research on ILSM by Laszlo and Mukherjee (2015) describe a problem

where “at present, all pairs of clusters are tested, yet relatively few are likely to interact.”

Local Search (LS) processes a fixed set of cluster pairs and tests for the beneficial

8

swapping and shifting of points between the cluster pairs. These tests are the costliest part

of local search. Nonetheless, few tests are likely to result in swaps or shifts. Most tests

can be avoided if the cluster pairs that have a possible interaction can be efficiently

identified and used to inform the next iteration within LS.

Previous research on ILS, detailed in the Literature Review section, suggests

dynamically adjusting balances between intensification and diversification is generally

more effective than simple static balances. ILSM, while an effective ILS

microaggregation algorithm, uses simple fixed balances between intensification and

diversification in two key areas that lower information loss. The perturbation operations

use a simple fixed uniform distribution to select clusters to involve in perturbations. The

acceptance criterion accepts solutions from LS using a simple fixed uniform distribution.

As ILSM runs, it has been observed that information loss becomes unevenly

distributed. Many of the groups within the k-partition result in relatively low information

loss while many others remain with relatively high information loss. Also, it is observed

that perturbations that involve clusters with higher information loss tend to result in

larger reductions of information loss. This suggests that the perturbances should be

biased toward clusters with higher information loss; however, ILSM selects clusters to

perturb with a uniform probability distribution. If probability distributions biased toward

selecting clusters with higher information loss can be efficiently constructed, the

perturbation operations can be guided toward more promising clusters and larger

corrections.

Accepted solutions within ILS can be the current best solution or some similar

solution with a small amount of additional information loss. An inverse correlation has

9

been observed between the size of the additional information loss and the likelihood the

accepted solution leads to a new best solution. This suggests that ILS should bias

accepting solutions from LS toward solutions with lower additional information loss. If

probability distributions biased toward smaller additional information loss can be

efficiently constructed, the acceptance function can be guided toward accepting solutions

more likely to escape local optima and lead to a new best solution.

Three novel improvements are defined in this study. They address the three

problems discussed above. Most unnecessary tests within LS are avoided, significantly

reducing execution times compared to LS. A new perturbation operation and acceptance

criterion are more effective in most test cases, reducing the number of iterations needed

to reach similar solutions compared to ILSM.

Dissertation Goal

The goal of this research was to develop improvements to ILSM capable of equal or

better quality microaggregation partitions while using significantly less execution time.

Benchmarks were used to demonstrate that these improvements significantly improve

performance of ILSM.

Most unnecessary shift and swap tests are now avoided within LS significantly

reducing execution times. ILSM statically balances intensification and diversification in

two key areas. Improvements presented here dynamically balance intensification and

diversification in these two areas. Selecting clusters to perturb with a biased probability

distribution significantly improves effectiveness of the perturbation operation. A second

dynamic probability distribution improves the effectiveness of accepting solutions. All

10

three improvements are complementary and additive, demonstrating even greater

improvement when used together.

Research Questions

The following questions posed here are answered in Chapter 5. The answers are

supported by the experimental results using benchmark datasets where the experiments

and methodology are outlined in Chapter 3.

RQ1: Concerning the efficiency of LS, how does tracking changed clusters help

avoid testing cluster pairs compared to LS where all cluster pairs are tested?

RQ2: Concerning the effectiveness of the perturbation operations, how does the use

of a dynamically biased probability distribution for selecting clusters to perturb compare

to a static uniform distribution?

RQ3: Concerning the effectiveness of the acceptance criteria, how does the

effectiveness of a dynamically biased probability distribution for accepting solutions

within ILSM compare to a static uniform distribution?

Relevance and Significance

The information latent in statistical databases is of immense value to social science

and statistical database researchers (Fienberg, 2005; United Nations General Assembly,

2014). It is often referred to as social science data in the literature (Fienberg, 2005).

Providing researchers and analysts access to this kind data it is seen as logical and

beneficial to society. Researchers should try to release as much as possible without undue

disclosure risks (Fienberg, 2005). Individuals and organizations are often the original

source of this information. This leads to confidentiality and privacy concerns of

11

individuals and organizations associated with data. Addressing these concerns is widely

seen as necessary before dissemination can occur. The United Nations felt it was so

important it passed a general assembly resolution regarding the principles surrounding

the release of its own statistical information (United Nations General Assembly, 2014).

United Nations General Assembly Resolution

Fundamental Principles of Official Statistics

Principle 1. Official statistics provide an indispensable

element in the information system of a democratic society, serving

the Government, the economy and the public with data about the

economic, demographic, social and environmental situation. To

this end, official statistics that meet the test of practical utility are

to be compiled and made available on an impartial basis by official

statistical agencies to honour citizens’ entitlement to public

information.

Principle 6. Individual data collected by statistical agencies

for statistical compilation, whether they refer to natural or legal

persons, are to be strictly confidential and used exclusively for

statistical purposes.

Feinberg (2005) defines Confidentiality – “Broadly, a quality or condition accorded

to statistical information as an obligation not to transmit that information to an

unauthorized party.” Confidentiality is rooted in privacy, where privacy is defined as

12

follows – “The right of individuals to control the dissemination of information about

themselves (Fienberg, 2005).” The concern with releasing statistical information is

described as “The attribution of information to a data provider, whether it be an

individual or organization (Fienberg, 2005)” that is confidential. Identity and attribute

disclosure are the two general types of disclosure (Fienberg, 2005). Identity disclosure

happens when an individual or organization can be identified by analysis of released data

and/or possibly enable by matching it to other known data. Attribute disclosure happens

when analysis of released data can result in a higher likelihood that an attribute can be

inferred about an individual or organization. Identity disclosure often facilitates attribute

disclosure, so both are usually considered together. Disclosure is spoken of in terms of

likelihood or probability of discovery. Any meaningful releases of data would increase

the likelihood or risk of inferences through analysis of the data. This statistical nature of

the problem is why the literature refers to disclosure in terms of confidentiality,

disclosure limitation and statistical disclosure control instead of absolute protections and

preventions. See Fienberg (2005) for an in depth examination of confidentiality and

disclosure limitation.

The confidentiality problem is innate in all information that has privacy concerns

and it is commensurate with the mix of privacy concern, nature of the release and

legitimate use (Adam & Worthmann, 1989; Fienberg, 2005). Releasing census data,

medical information, sales and commerce information, and social media data all pose

innate confidentiality and privacy concerns (Adam & Worthmann, 1989; Campan &

Truta, 2009; Sweeney, 2002). Data stewards of statistical databases could even have legal

obligations that must be upheld. Some legal obligations come with the possibility of

13

penalties if information is disclosed (“Health Insurance Portability and Accountability

Act of 1996,” 1996). The Health Insurance Portability and Accountability Act (HIPAA),

passed by Congress in 1996, mandates standards and guidelines for the protection and

confidential handling of health and medical information. It also establishes penalties for

inappropriate disclosure and mishandling of information.

Medical advancements, specifically in the personalization of medicine, like

molecular medicine, systems biology and genomics are improving healthcare and raising

the importance of medical information (Adam & Worthmann, 1989; Sweeney, 2002).

Medicine is becoming more effective, safer while becoming even more personal and

tailored. Improvements and the increasing ubiquity of information technology in the

overall practice of medicine along with its embedding in medical equipment have

resulted in mass collection of personal medical information. Combined with analytical

advances it is now practical for researchers to perform large-scale biomedical data mining

(Adam & Worthmann, 1989; Sweeney, 2002).

Data stewards have a vital responsibility to maintain individual confidentiality when

releasing statistical data (Duncan, Elliot, & Salazar-González, 2011). The United Nations

affirms its importance by specifically addressing this issue within Principle 6 of its

Fundamental Principles of Official Statistics: “Individual data collected by statistical

agencies for statistical compilation, whether they refer to natural or legal persons, are to

be strictly confidential and used exclusively for statistical purposes” (Duncan et al., 2011;

United Nations General Assembly, 2014). The National Institute of Standards and

Technology have a published guide to protecting the confidentiality of personally

identifiable information (National Institute of Standards and Technology, 2014). The

14

Federal Information Security Management Act (FISMA) decrees all Federal government

agencies must follow the NIST guidelines.

Legal obligations like those imposed by laws like HIPPA and ethical responsibilities

imposed by the medical, legal and other professions greatly impeded the release of data

for legitimate use. Also, the possibility of financial liability associated with a disclosure

gives financial disincentives for owners and stewards of data to release it. If

confidentiality protections against disclosure risks could be proved and data utility

retained with computationally efficiency the barriers to releasing data would be greatly

reduced. The amount and variety of released data would be greatly increased. Without a

doubt, these increases would result in commensurate increases in information discoveries

and in a significantly greater overall social benefit.

Barriers and Issues

Best-known solutions to the microaggregation problem structure it as a

combinatorial optimization (CO) problem. Methods and algorithms applied to CO

problems are generally classified as complete or approximate. Complete methods find

globally optimal solutions in bounded time for finite instances of the problem. The

microaggregation problem is NP-hard and no polynomial time algorithms exist; thus,

complete methods are likely in the worst case to need exponential computation time to

find the global optimum. Approximate methods seek to significantly reduce execution

time but do so by trading the guarantee of finding the global optimal solution for finding

solutions considered good enough. Approximate methods tend to use either constructive

or local search approaches. Constructive methods typically start with an empty solution

15

and incrementally build it out to a complete solution. They are usually much faster than

local search methods but usually result in lower quality in comparison.

 Therefore, practical methods for solving the microaggregation problem do not

guarantee the globally optimal solution but settle for good enough solutions in exchange

for significantly lower execution time. Current solutions can typically only search a small

portion of the overall solution space. Search heuristics must be efficiently employed to

affectively explore these extremely large spaces.

The perturbation operations for ILSM use a uniform distribution to select clusters to

perturb. This uniform distribution is quite simple and easily calculated with a simple call

to the random function. This research found that introducing bias into the perturbation

operations improved the effectiveness of individual ILSM iterations, but construction of

biased probability distributions in real-time was costly. Approximating the biased

probability distribution with sampling proved just as effective with little computational

costs in comparison.

The acceptance criterion for ILSM uses a uniform distribution to select solutions to

accept from LS. As in the perturbation operations, this uniform distribution is also quite

simple and easily calculated with a simple call to a random function. This research found

that introducing bias into the acceptance criteria improved the effectiveness of individual

ILSM iterations but constructing biased probability distributions from history was costly

and not possible early in the run of the algorithm. However, using an exponential

probability distribution as a function of the additional information loss proved effective

with some of the benchmarks. It also had little computational costs in comparison to

constructing probability distributions in real-time.

16

Chapter 2

Review of the Literature

Microaggregation and k-Anonymity

The literature describes microdata as sets of data records associated with data

subjects, including both individuals and organizations (Mateo-Sanz & Domingo-Ferrer,

1998). Microdata are widely collected and their number is expected to grow

exponentially as computer and networking technology advances (Sweeney, 2002).

Statistical analyses on microdata have long led to new and significant discoveries of

information and to the social good (Adam & Worthmann, 1989). This has led

governments to increasingly encourage release of it to the public. It has also led to ever

increasing demand from researchers (Fienberg, 2005).

When microdata are used raw, the discoveries and conclusions of most analyses are

easily linked to the associated data subjects (Samarati, 2001; Sweeney, 2002). It is for

this reason most microdata are considered sensitive and have confidentiality and privacy

concerns. An obvious step in protecting a data subject’s anonymity is removing or

obfuscating explicit identifiers like names, telephone numbers, addresses, and social

security numbers.

Obviously, if the explicit identifiers were not removed, disclosure happens by

definition. However, what is not obvious is that microdata can still be somewhat easily

17

exploited, and disclosures made even after explicit identifiers are removed. Implicit

identifiers within the microdata, called quasi-identifiers (Samarati, 2001; Sweeney,

2002), can be matched within generally available public information. Matches within this

publicly available information generally leads to discovery of explicit identifiers. Identity

disclosure occurs as a result. This in turn facilitates further disclosure when matched up

with released microdata specifically resulting in attribute disclosure. Much publicly

available information is nefariously useful and easily obtained from governments

(Sweeney, 2002). Examples include census data and voter rolls.

A fundamental principle of disclosure control methods is that disclosure risks are

guaranteed to be below some acceptable level (Fienberg, 2005). The concept is to

sufficiently obscure or mask the data such that disclosure risks are reduced (Adam &

Worthmann, 1989; Sweeney, 2002). Classically, the disclosure risks are assessed after the

obscurations are made. To do this, attempts are made to match the quasi-identifiers to

other publicly available data. A second fundamental but competing principle is to retain

as much as possible of the utility and usefulness of the original data. This can be

conceptualized as strategically making obscurations with the most efficient changes

possible. The focus is on minimizing the loss of information.

There is a tension between these two opposing or conflicting objectives (Domingo-

Ferrer & Torra, 2005). The conflict is between minimizing the disclosure risk by

discarding information and maximizing the information by retaining information. In other

words, achieving enough obscurations while minimizing obscurations. These two

principles are by their nature inherently statistical (Fienberg, 2005). K-anonymity is well

suited at solving this tension (Domingo-Ferrer & Torra, 2005).

18

The importance of releasing statistical and social science along with the innate

requirements of protecting confidentiality has led to a broad assortment of disclosure

control methods over many years. Early methods stressed protection over quality. Much

of the early research used simple masking of the data through generalizations and

suppression (Adam & Worthmann, 1989; Samarati, 2001; Sweeney, 2002). The

technique required the masked data to be tested by matching it with other publicly

available data and analyzing the results for disclosure. The process was iterated, and

additional masking performed till the information was deemed sufficiently protected.

Around 2001, the literature starting making a strong case that k-anonymity, for a

given 𝑘, provided a kind of guarantee against disclosure risk (Samarati, 2001; Sweeney,

2002). It still achieved anonymity through generalizations and suppression; however,

testing the masked data by matching it to other publicly available information was

conveniently no longer required (Domingo-Ferrer & Torra, 2005). The k-anonymity

method guarantees a statistical level of disclosure risk. The value of 𝑘 became the

representative measure of data protection against disclosure risk. Later literature begins to

show a consensus forming around k-anonymity as a superior method (Samarati, 2001;

Sweeney, 2002); one of the reason given is that k-anonymity “neatly” reduces the

“tension” between the objectives of data protection and data utility. It allows focus to be

placed on the mission of minimizing information loss since efforts need only to

singularly satisfy the k-anonymity constraint. Much of the research now concentrates on

improving the quality of k-anonymity methods and their computational efficiency.

(Chang et al., 2007; Domingo-Ferrer, Sebe, & Solanas, 2008; Domingo-Ferrer & Torra,

19

2005; Hansen & Mukherjee, 2003; Kokolakis & Fouskakis, 2009; Laszlo & Mukherjee,

2015; Panagiotakis & Tziritas, 2013).

Microaggregation is a class of methods simply defined as grouping microdata into

groups of k individuals where similar individuals are placed in the same group (Mateo-

Sanz & Domingo-Ferrer, 1998). Placement is done by criterion that optimizes a measure

of similarity and homogeneity within groups. The value of k is typically a set value;

however, groups can contain more than k individuals. No individual’s attribute variables

should dominate a group. To mitigate an individual from dominating a group, individuals

may be added making the group larger than k, until the individual no longer dominates

(Mateo-Sanz & Domingo-Ferrer, 1998). Also, groups that contain 2k or more individuals

can always be split without increasing information loss. After the groups are established a

representative aggregate (an average individual) is derived for each group. For each

group, the original variables in each record are replaced with the variable values from the

representative (Mateo-Sanz & Domingo-Ferrer, 1998). Consensus is also forming that

microaggregation like k-anonymity offers compelling benefits. It turns out

microaggregation is well suited to satisfy k-anonymity (Domingo-Ferrer & Torra, 2005).

The constraint of k-anonymity is easily met by setting the minimum group size to the

value of k.

Constructing a microaggregation is a partition problem (Mateo-Sanz & Domingo-

Ferrer, 1998; Oganian & Domingo-ferrer, 2001); however, it differs from hierarchical

and k-means clustering. Typical clustering constructs a partition with a fixed number of

groups while the sizes of groups are not constrained. Microaggregation constructs a

partition of groups where the number of groups is not constrained while the sizes of the

20

groups have a minimum constraint of size k. Both univariate cases of clustering (Brucker,

1978) and microaggregation (Hansen & Mukherjee, 2003) have polynomial-time

algorithms while the multivariate cases for both are known NP-hard (Oganian &

Domingo-ferrer, 2001).

Microaggregations can be categorized as either fixed size with fixed size groups and

variable size with group sizes greater than or equal to k (Mateo-Sanz & Domingo-Ferrer,

1998). Most methods create fixed sizes. However, methods that produce variable group

sizes can reduce informational loss but usually at additional computational cost. Some

methods use heuristic search and tend to have better results. Recent work has applied a

meta-heuristic approach called iterated local search. A number of heuristic and meta-

heuristic search methods generate good partitions for larger k-partitions typically seen in

practical applications (Chang et al., 2007; Domingo-Ferrer, Martinez-Balleste, Mateo-

Sanz, & Sebe, 2006; Domingo-Ferrer & Mateo-Sanz, 2002; Goldberger & Tassa, 2010;

Hansen & Mukherjee, 2003; Kokolakis & Fouskakis, 2009; Laszlo & Mukherjee, 2007,

2015; Oommen & Fayyoumi, 2010; Panagiotakis & Tziritas, 2013; Rebollo-Monedero,

Forné, & Soriano, 2011).

Fixed sized methods generally start with a given number k and a pool of unselected

points of size X; then strategically selecting k neighboring points from the pool they place

them in a new group; iterating this they create new groups till there are ⌊𝑋 𝑘⁄ ⌋ groups.

Then they strategically distribute the remaining unselected points, which will be less than

k, throughout the existing groups. What distinguish these fixed size methods are the

different strategies used to form groups.

21

Heuristic methods typically leverage searchable structures to discover local optima.

For example some model paths in a network where the path corresponds to the

construction of an optimal partition (Hansen & Mukherjee, 2003). Heuristics are then

devised for making good decisions selecting between branches while traversing the

network structure. The second is to construct a neighborhood of similar solutions and

search the neighborhood for the local optima using a heuristic to score each neighbor

(Blum & Roli, 2003). Neither approach provides globally optimal solutions and on

occasion can produce bad solutions. Using an iterative restart regime can sometimes help

since only the best solution from one of the iterations is used (Blum & Roli, 2003).

This brief review of the literature leads to the following conclusions. Consensus has

formed favoring k-anonymity since it can provide data protection as a statistically

measurable level of disclosure risk. The simple value of 𝑘 becomes the representative

measure of disclosure risk where any combination of quasi-identifies will always return

at least 𝑘 identical individuals. In addition, it does not require disclosure risk assessment,

as does the classical masking approach. K-anonymity is seen as a novel and elegant way

to reduce the tension between the conflicting objectives of data protection and data utility

(Domingo-Ferrer & Torra, 2005). This reduces the challenge by achieving an

independent quantitative standard for data protection; thereby, allowing efforts to be

concentrated on data utility.

The literature also shows that microaggregation can easily satisfy the k-anonymity

constraint. It is simply a partition with clusters of at least size k or greater to some

maximum size. Yet the structure is conducive to reducing information loss. It neatly aids

in the decoupling of data protection from the mission of reducing information loss. For

22

this it is considered novel and elegant. An additional benefit is that microaggregation

frameworks provide a more natural and efficient fit in achieving k-anonymity; it does so

across the widest variety of attribute types when compared to classical generalization and

suppression (Domingo-Ferrer & Torra, 2005).

Microaggregation also narrows the challenge of reducing information loss to a

challenge of minimizing a well-defined objective function. For most methods, the

objective function and quantitative measure is the sum of squares error criterion. The sum

of squares error, made available by microaggregation, has become the independent

quantitative standard for information loss like k-anonymity has for data protection.

Currently ILSM consistently identifies solutions with lower information loss than

other known microaggregation algorithms. It employs a metaheuristic explorative search

algorithm described as Iterated Local Search for Microaggregation. Iterated local search

(ILS) is a general technique described as both a simple and powerful metaheuristic. ILS

applies a local search heuristic to an initial candidate to find an initial local optimum

solution. A second heuristic perturbs or strategically changes that solution. Using the

perturbed result as input, it performs local search again resulting in another unique local

optimum solution. At this point a third heuristic chooses (also referred to as the

“acceptance criterion”) one of the previous solutions to perturb. Then the cycle of

accepting, perturbing and restarting local search is repeated until some termination

criteria are met (e.g. a set number of overall iterations or set number of iterations since

last improvement.)

Blum and Roli (2003) describe good iterated local search metaheuristics as having

the following characteristics. The local search heuristic should be effective. Constructing

23

a good or good enough initial starting candidate should be fast. The main purpose of the

perturbation is to define the amount of change to the new local optimum solution and

where those changes are made. This is described as strength in the literature where more

strength roughly correlates to more intensification. Also, the perturbation must

sufficiently guarantee local search escapes the new local optimum and finds a unique

local optimum solution. The perturbations should exploit the natural tendencies within

the microdata where the best solutions tend to be near good solutions. Intensifying search

near the current best solution should find a better solution quicker than restarting with

just another random partition. Strength can be fixed or vary. Strength may vary with the

size of the problem or be used to adjust the balance of intensification versus

diversification as needed. The acceptance heuristic based on the new local optimum

should use diversification to counterbalance the intensification of the perturbations. It can

be described as between the two extremes, always accepting the new solution and

accepting the new solution only if it is an improvement.

ILSM achieves these objectives well. Its local search (LS) when run in a random

restart regime produces better quality solutions on benchmark datasets than most extant

heuristics. It constructs random initial candidates extremely fast although it does not

concern itself with quality. The random candidates are considered good enough. The

perturbations change the size of the microaggregation partition guaranteeing that local

optima are escaped. By removing a group and dispersing the members amongst the

remaining groups or making a new group from excess points leaves the candidate

relatively unchanged from the latest solution. The result is a mostly similar (near)

partition to the original. The probability of accepting new solutions over the best-found

24

solution is set at eighty percent. This was the best value found to biases the search toward

diversification as a counterbalance to the intensification of the perturbations.

Summary

This literature suggests several areas for possible improvement. Laszlo and

Mukherjee (2015) state that “the most costly part of LS is testing whether a pair of

clusters can swap or shift points.” One of the improvements in this report uses an

approach to significantly reduce the number of cluster pairs that must be tested. ILSM

uses a static approach to strength within the perturbations. Blum and Roli (2003) state

“that variable strength is in general more effective.” A second improvement uses

sampling to increase strength in the perturbation operations. It was found to significantly

reduce the number of iterations for equivalent results. ILSM uses a fixed approach in its

acceptance criterion, if the new solution is not an improvement it accepts it eighty percent

of the time. Blum and Roli (2003) suggest an adaptive acceptance criterion which

exploits search history can be more effective than fixed approaches. A third improvement

accepts new solutions using delta information loss to dynamically balance intensification

versus diversification. It too was found to reduce the number of iterations for equivalent

results.

25

Chapter 3

Methodology

This chapter discusses the methodology for evaluating novel improvements to local

search (LS), the perturbation operations and the acceptance criterion within ILSM. The

improvements are described and explained in this section in context of the prior research.

Overview

The first improvement efficiently identifies cluster pairs that do not interact

allowing vast numbers of costlier tests to be avoided. The second uses a new probability

distribution within the perturbation operations to select better perturbations. The new

probability distribution biases the selection of clusters toward clusters demonstrated to

result in a higher reduction of information loss. The third replaces within the acceptance

criterion, the static probability of accepting a solution with one that is dynamically

varied. Dynamically varying the probability of acceptance adjusts the balance between

intensification and diversification and was demonstrated to be beneficial.

Algorithms and experiments reproducing ILSM and LS were recreated as presented

in Laszlo and Mukherjee’s (2015) previous work. The same set of experiments were

performed for implementations of LSC, ILSMC, ILSM with bDissolve and ILSM with

dAcceptanceCriterion. Results were recorded for quality (percentage of information loss)

26

with every iteration of ILSM & ILSMC, and the execution elapsed times to complete the

runs.

The experiments were performed using the same three benchmark datasets used by

Laszlo and Mukherjee (2015). These widely used datasets were used to evaluate many

existing microaggregation heuristics. As in Laszlo and Mukherjee’s study (2015), the

data used is normalized so all attributes have the same proportionate effect on group

formation. Each attribute has a mean of zero and a standard deviation of one. The three

benchmarks are list in Table 1.

Name
Number of

Points (n)

Dimensions

of the points
Description

Tarragona 834 13

Comprising figures of 834 companies in the Tarragona

area of Spain. Data corresponds to the year 1995.
Examples of variable attributes: fixed assets, current

assets, uncommitted funds, paid-up capital, short-term
debt and sales.

Census 1080 13

Obtained on July 27, 2000 using the Data Extraction
System of the U. S. Bureau of the Census. Examples of
variable attributes: adjusted gross income, employer

contribution for health insurance and federal income
tax liability.

EIA 4092 10

Obtained from the U.S. Energy Information Authority.
Data corresponds to the year 1996. Examples of
variable attributes: sales to residential consumers, sales

to commercial consumers, sales to industrial
consumers and sales to all consumers.

Table 1: Benchmark Datasets

The values of k (k = 3,4,5,6 and 10) for generating the microaggregation problem

instances were the same values used in previous work. These are values typically used in

practical microaggregation problems.

27

Prior Research and Improvements

As stated before, microaggregation provides k-anonymity to individuals in a dataset

by replacing each group of records and associated attributes with a single mean record.

The mean record consists of attributes where each attribute is the mean of the group’s

related attributes. It does this for all groups of individuals in the partition. The downside

of this substitution is the loss of information. Simply stated, microaggregation is the

problem of constructing a partition that provides k-anonymity yet minimizes information

loss. Several assumptions and definitions need to be discussed to provide specific

structure and more concise description of the prior research. First the microaggregation

problem discussed here is limited to datasets with numerical attributes. A dataset with

records of d numerical attributes is modeled as a set of points, X in ℝ𝑑, where the d-

tuple of real number attributes is modeled as a point vector in d-dimensional

Euclidean space. A k-partition 𝑃𝑘(𝑋), later denoted by 𝑃, is defined as a partition of 𝑋,

where every group 𝐶𝑖 in the partition contains at least k points from 𝑋 and every point is

included in one and only one group. Using inputs 𝑋 and k, sum of squared errors (SSE)

can now be defined as SSE(𝑃) = (∑ ∑ ∆(𝑥, 𝐶̅
𝑖)𝑥∈𝐶𝑖𝐶𝑖∈𝑃𝑘(𝑋)), where 𝐶𝑖 is a group in the

partition and ∆(𝑥, 𝐶̅
𝑖) is the squared Euclidean distance from 𝑥 to its group mean 𝐶̅

𝑖.

Given 𝑋 and k the microaggregation problem can now be succinctly described as

constructing a k-partition 𝑃 that minimizes SSE. To be consistent with Laszlo and

Mukherjee (2105), the measure of quality is the standardized information loss for a k-

partition Pk(X) where X is the set of points and standard percentage information loss is

defined as ℋ(𝑃𝑘(𝑋)) =
SSE(𝑃𝑘(𝑋))

∑ ∆(𝑥,𝑋)𝑥∈𝑋
 × 100. Values for ℋ(𝑃𝑘(𝑋)) range from zero to

one hundred percent..

28

Local Search (LS)

Local Search (LS) is a heuristic local search method for the microaggregation

problem presented by Laszlo and Mukherjee (2015). LS was designed as a non-

increasing (monotonic) search heuristic that iteratively searches a neighborhood of k-

partitions. During its search LS converges to a local optimum while the neighborhood

structure enforces partition feasibility, which means every neighbor in the neighborhood

is a valid k-partition.

While LS can be used standalone, LS was designed to be complementary to the

ILSM (Laszlo & Mukherjee, 2015). The neighborhood structure utilized by LS is also

utilized by the ILSM perturbation operations. ILSM complements LS, by expanding the

search space that LS searches. It does this by perturbing the solutions from LS and

increasing or decreasing the partition size. Changing partition size is highly effective in

keeping the overall algorithm from cycling.

Essential to operation of LS is the definition of its neighborhood structure N

(Laszlo & Mukherjee, 2015). First, for a given 𝑋 and k, 𝒫𝑘(𝑋), denoted by 𝒫, is define

as the set of all k-partitions. Then 2𝒫𝑘(𝑋), denoted by2𝒫, is defined as the power set of 𝒫,

the set of all possible subsets of 𝒫. The neighborhood structure for LS is realized by the

function N ∶ 𝒫 → 2𝒫 . This function maps every k-partition 𝑃𝑘(𝑋), denoted by 𝑃, where

𝑃 ∈ 𝒫 to one of the subsets in the power set 2𝒫. In short, N maps every k-partition to its

neighborhood. Neighborhoods are subsets of k-partitions from the set 𝒫. A partition

P’ ∈ 𝒫 is a neighbor of P (i.e. P ’ ∈ N(P)), if P’ meets the following criteria: P’ can be

obtained from P by performing at most a single application of either of the following two

operations: (a) A swap, the operation of transposing a pair of points from two groups of P

29

; (b) A shift, the operation of moving a point from some group 𝐶∈ 𝑃 where |𝐶| > 𝑘 to

another group C’ ∈ 𝑃 where C’ ≠ 𝐶. Note: The partition 𝑃 is always a member of its own

neighborhood.

LS operates in the following way (Laszlo & Mukherjee, 2015). LS starts with an

initial k-partition P. LS then calls an update procedure passing P as a parameter. The

update procedure then returns a k-partition with a lower SSE or a copy of the original P.

The return value is assigned to P’ . When P’ and P are equivalent, LS exits. In this way LS

starts from any k-partition P and successively generates k-partitions with monotonically

decreasing information loss. It does through a sequence of local improvement moves

within update. The value returned from LS is called a local optimum solution. The

pseudocode for LS follows:

LS(P) {
 while(true)

 P’ update(P);
 if (SSE(P’) = SSE(P)) return P’;

 P P’;
}

Given a k-partition P, consider the set { {𝐶𝑖 , 𝐶𝑗} | 𝐶𝑖 ∈ 𝑃, 𝐶𝑗 ∈ 𝑃, 𝐶𝑖 𝐶𝑗}, the set of

every group pair where 𝐶𝑖 𝐶𝑗. The update procedure can be described as a traversal that

visits every pair in the set just once in random order. With each visit there are many

applications of the two operations to the points within the groups. The two operations are

the swap and shift operations mentioned above. The update procedure operates in the

following way (Laszlo & Mukherjee, 2015). A k-partition P is passed in as a parameter. It

then generates the set of all possible group pairing {𝐶𝑖 , 𝐶𝑗} where 𝐶𝑖 𝑃, 𝐶𝑗 𝑃 and

𝐶𝑖 𝐶𝑗. The update procedure then generates a random ordering from the set of group

30

pairings. It then starts with the first group pair in the ordering and generates the set of all

possible point pairs {𝑥, 𝑦} where 𝑥 𝐶𝑖 and 𝑦 𝐶𝑗. It then applies the swap operation for

the first point pair forming the neighbor P’ where P’ ∈ N(P). If SSE(P’) < SSE(P) the

move is committed by replacing P with P’ . The update procedure continues performing

a swap for every point pair {𝑥, 𝑦} and committing moves where there are improvements.

It then applies the shift operation for the first point 𝑥, where 𝑥 𝐶𝑖 , shifting it to 𝐶𝑗. The

neighbor P’ is formed, where P’ ∈ N(P). If SSE(P’) < SSE(P) then the move is

committed by replacing P with P’. It continues performing a shift and test for every point

in 𝐶𝑖 and committing moves where there are improvements. The same is performed for

𝐶𝑗. The update procedure continues processing all the group pairs in order until they are

exhausted. It is possible after application of all the operations that P’ never has a lower

SSE than the initial P; therefore, the returned value from update is either an improved k-

partition with lower SSE or a copy of the input parameter unchanged. In this way the

update procedure starts from any valid k-partition P and successively generates k-

partitions with monotonically decreasing information loss (Laszlo & Mukherjee, 2015).

LS repeatedly calls update passing in the improved k-partition from the previous call.

Once update does not improve the k-partition all subsequent calls to update will also fail

to improve the k-partition. At this point there is no reason to continue and LS stops and

exits. The value returned from LS is called a local optimum solution. It is a k-partition

where the groups have been optimized into tightly bound clusters. In the following

discussions the term cluster will be interchangeable with group.

31

The k-partitions resulting from a swap and shift operation are denoted respectively

by 𝑠𝑤𝑎𝑝(𝑃, 𝐶𝑖, 𝐶𝑗,𝑥, 𝑦) and 𝑠ℎ𝑖𝑓𝑡(𝑃, 𝐶𝑖 , 𝐶𝑗,𝑥) and defined as follows (Laszlo &

Mukherjee, 2015):

𝑠𝑤𝑎𝑝(𝑃, 𝐶𝑖 , 𝐶𝑗, 𝑥, 𝑦) = {𝐶𝑞|𝐶𝑞 ∈ 𝑃, 𝑞 𝑖, 𝑗} ∪ {𝐶𝑖\{𝑥} ∪ {𝑦}} ∪ {𝐶𝑗\{𝑦} ∪ {𝑥}}

𝑠ℎ𝑖𝑓𝑡(𝑃, 𝐶𝑖 ,𝐶𝑗, 𝑥) = {𝐶𝑞|𝐶𝑞 ∈ 𝑃, 𝑞 𝑖 , 𝑗} ∪ {𝐶𝑖\{𝑥}} ∪ {𝐶𝑗 ∪ {𝑥}}

Everything necessary is now defined to illustrate the pseudocode for 𝑢𝑝𝑑𝑎𝑡𝑒:

update(P) {

 for every pair of cluster {Ci , Cj} where Ci P, Cj P and Ci Cj
 for every pair of points x ∈ Ci and y ∈ Cj
 if (SSE(swap(P, Ci, Cj, x, y)) < SSE(P))
 P ← swap(P, Ci, Cj, x, y);

 for every point x ∈ Ci
 if (SSE(shift(P, Ci, Cj, x)) < SSE(P))
 P ← shift(P, Ci, Cj, x);

 for every point y ∈ Cj
 if (SSE(shift(P, Cj, Ci, y)) < SSE(P))
 P ← shift(P, Cj, Ci, y);

 return P;
}

Laszlo and Mukherjee (2015) identified two opportunities within update to improve

efficiency. The first is the optimization of SSE(𝑠𝑤𝑎𝑝(𝑃, 𝐶𝑖, 𝐶𝑗, 𝑥, 𝑦)) < SSE(𝑃) within a

new function swapTest and shiftTest. The swapTest and shiftTest check if a swap or shift

would be beneficial, resulting in lower SSE. They decide the following:

𝑠𝑤𝑎𝑝𝑇𝑒𝑠𝑡(𝑃, 𝐶𝑖 , 𝐶𝑗, 𝑥, 𝑦) = SSE (𝑠𝑤𝑎𝑝(𝑃, 𝐶𝑖 , 𝐶𝑗,𝑥, 𝑦)) < SSE(𝑃)

𝑠ℎ𝑖𝑓𝑡𝑇𝑒𝑠𝑡(𝑃, 𝐶𝑖 ,𝐶𝑗,𝑥) = SSE (𝑠ℎ𝑖𝑓𝑡(𝑃, 𝐶𝑖 , 𝐶𝑗, 𝑥)) < SSE(𝑃)

To help explain swapTest, consider the simple Boolean method that would just

perform the swap and then decide SSE(𝑃) > SSE (𝑠𝑤𝑎𝑝(𝑃, 𝐶𝑖 , 𝐶𝑗, 𝑥, 𝑦)). If the answer is

true replace P with the new k-partition. Similar statements also hold for shiftTest. These

32

are naïve implementations of swapTest and shiftTest; however, the cost of swap, shift,

and SSE operations justify well-designed tests. Laszlo and Mukherjee (2015) developed

two efficient tests that avoid the costly calculations of SSE (see theorems below).

The second opportunity is the quick identification of cluster pairs that do not

interact. If a cluster pair can be identified efficiently, 𝑂(𝑘3) time for swaps and 𝑂(𝑘2)

time for shifts can be avoided for each cluster pair identified. The new function maySwap

decides if any pair of points from the pairs of clusters could possibly satisfied swapTest

(Laszlo & Mukherjee, 2015). In short, it is a quick reject test. If maySwap is not satisfied,

then no pair of points from the cluster pairs could possibly satisfy swapTest and it can be

avoided altogether. Each time maySwap is not satisfied many calls to swapTest are

avoided. Similar statements hold for mayShift and shiftTest. The maySwap and mayShift

quick reject tests are based on the understanding that two clusters can be too far apart to

favorably interact. So, if a pair of clusters are sufficiently far apart, the associated calls to

swapTest and shiftTest will fail and can be avoided. A naive implementation for

maySwap and mayShift would be to always assume they are close enough to interact and

always return true; however, a well-designed quick reject test is justified by the cost of

testing cluster pairs for interaction (Laszlo & Mukherjee, 2015).

Four theorems have been developed that show these fundamental Boolean-valued

functions (swapTest, shiftTest, maySwap and mayShift) are easily implemented as

efficient tests. Experimentation has shown them to greatly improve computational

efficiency. The four theorems follow, see Laszlo and Mukherjee (2015) for proofs.

𝑠𝑤𝑎𝑝𝑡𝑒𝑠𝑡 (𝐶𝑖, 𝐶𝑗 ,𝑥, 𝑦) = ∆(𝑥,�̅�𝑖) + ∆(𝑦, �̅�𝑗)+ (
1

|𝐶𝑖|
+

1

|𝐶𝑗|
) ∆(𝑥, 𝑦) > ∆(𝑥, �̅�𝑗) + ∆(𝑦, �̅�𝑖)

33

𝑠ℎ𝑖𝑓𝑡𝑡𝑒𝑠𝑡(𝐶𝑖, 𝐶𝑗,𝑥) =
|𝐶𝑖|

|𝐶𝑖| − 1
 ∆(𝑥, 𝐶̅

𝑖) >
|𝐶𝑗|

|𝐶𝑗| + 1
 ∆(𝑥, 𝐶�̅�)

𝑚𝑎𝑦𝑠𝑤𝑎𝑝(𝐶𝑖 ,𝐶𝑗) = (𝑟𝑖 + 𝑟𝑗) > 𝛿(𝐶̅
𝑖 ,𝐶�̅�)

𝑚𝑎𝑦𝑠ℎ𝑖𝑓𝑡(𝐶𝑖, 𝐶𝑗) =
|𝐶𝑖|

|𝐶𝑖| − 1
 𝑟𝑖

2 >
|𝐶𝑗|

|𝐶𝑗| + 1
 (𝛿(𝐶̅

𝑖 𝐶�̅�) − 𝑟𝑖)
2

The fundamental Boolean tests, swapTest, shiftTest, maySwap, and mayShift can now be

shown in update. The pseudocode follows:

update(P) {

 for every pair of cluster {Ci , Cj} where Ci P, Cj P and Ci Cj
 if (maySwap(Ci, Cj)) // quick reject test
 for every pair of points x ∈ Ci and y ∈ Cj

 if (swaptest(P, Ci, Cj, x, y)) // swap test
 P ← swap(P, Ci, Cj, x, y);
 if (mayShift(Ci, Cj)) // quick reject test

 for every point x ∈ Ci
 if (|Ci| > k)
 if (shifttest(P, Ci, Cj, x)) // shift test

 P ← shift(P, Ci, Cj, x);
 if (mayShift(Cj, Ci)) // quick reject test
 for every point y ∈ Cj

 if (|Cj| > k)
 if (shifttest(P, Cj, Ci, y)) // shift test
 P ← shift(P, Cj, Ci, y);

 return P;
}

Avoiding Costly Tests with LSC and updateC

Even though there are efficient implementations for swapTest and shiftTest, and for

the quick reject tests, maySwap and mayShift, the costliest part of LS is still testing

whether a pair of clusters can swap or shift points. The update procedure is basically a

loop that visits every possible pair of clusters in random order and tests them for

beneficial swaps and shifts. The number of cluster pairs visited is
|𝑃|(|𝑃|−1)

2
 where P is the

34

k-partition passed as a parameter to update. However, Laszlo and Mukherjee (2015) state

that few cluster pairs are likely to interact. They conclude that if it were possible to

efficiently identify all the pairs of clusters that do interact, many more tests could be

avoided. Remember the maySwap and mayShift identify pairs of clusters that do not

interact, a subtle but crucial difference. During this study it was generally observed that

few clusters interacted after a relatively small number of calls to update confirming their

earlier understanding.

Consider new procedures LSC and updateC that introduces the variable

targetClusters into the LS and update procedures. This new variable is a set of targeted

clusters used to seed the generation of cluster pairs within the updateC procedure. The

original update targets all the clusters in the k-partition every time it is called. Passing the

complete set of clusters from the k-partition into updateC makes it equivalent to update.

The LSC and updateC call signatures are also changed to accept this variable as a

parameter. The updateC procedure is also changed to return a tuple which includes the

improved k-partition and this targetClusters variable. The pseudocode for LSC and

updateC follows.

LSC(P, targetClusters) {
 while(true)

 (P’, targetClusters) updateC(P, targetClusters);
 if (SSE(P’) = SSE(P)) return P’;

 P P’;
}

35

updateC(P, targetClusters) {
 changed ← Ø;

 for every cluster pair {Ci, Cj} where Ci targetClusters, Cj P and Ci Cj
 if (maySwap(Ci, Cj)) // quick reject test
 for every pair of points x ∈ Ci and y ∈ Cj
 if (swaptest(P, Ci, Cj, x, y)) // swap test

 P ← swap(P, Ci, Cj, x, y);
 changed ← changed ∪ {Ci, Cj};
 if (mayShift(Ci, Cj)) // quick reject test

 for every point x ∈ Ci
 if (|Ci| > k)
 if (shifttest(P, Ci, Cj, x)) // shift test

 P ← shift(P, Ci, Cj, x);
 changed ← changed ∪ {Ci, Cj};
 if (mayShift(Cj, Ci)) // quick reject test
 for every point y ∈ Cj

 if (|Cj| > k)
 if (shifttest(P, Cj, Ci, y)) // shift test
 P ← shift(P, Cj, Ci, y);

 changed ← changed ∪ {Ci, Cj};
 return (P, changed); // changed clusters are targeted
}

The contents of the targetClusters can range from the complete set of clusters in the

k-partition down to a set containing just a couple of clusters. A set of cluster pairs is then

constructed within updateC by pairing every cluster in targetClusters with every cluster

in the k-partition. Again, when the targetClusters variable contains the complete set of

clusters from the k-partition, the set of cluster pairs generated within updateC is

equivalent to the set cluster pairs generated within update. The advantage is gained when

targetClusters only contains a couple of clusters and the number of cluster pairs

subsequently generated is significantly smaller.

The target clusters are simply the changed clusters from the previous call to

updateC. It suffices for now to say LSC should be called with the entire set of clusters in

the k-partition (i.e. a call would look like LSC(P, {C | CP})). Later it will be shown how

36

passing in a set of targeted clusters to LSC is beneficial. The updateC procedure changes

clusters whenever a swap or shift occurs. It also follows that both clusters involved in

either operation are changed; therefore, targetClusters will never have a single cluster.

They are then both added to the changed variable if they do not already exist. Upon

return from the call, updateC returns a tuple, the new k-partition P and the set of clusters

changed during the call. The changed clusters become the target clusters. LSC then calls

updateC again and passes as input parameters the two outputs from the previous call.

It was stated above that few clusters interact after a relatively small number of calls

to update. It is not uncommon for the number of changed clusters to drop significantly

within the first 25% of calls to updateC. The number of cluster pairs tested in updateC is

a function of the size of the targetClusters set from the previous call. The set of cluster

pairs consists of the possible combinations of the changed clusters with all the clusters in

the partition. The size of this set is calculated by the formula |𝑐||𝑃| −
|𝑐|(|𝑐|+1)

2
 where c is

the set targetClusters. For small values of |𝑐|, which is likely most of the time, the size

approaches |𝑐||𝑃|.

Each call to update must test
|𝑃|(|𝑃|−1)

2
 cluster pairs. For comparison take a partition

of 1000 clusters, the original LS and update would test nearly 500K pairs for every call to

update. If most of the calls to updateC have only 4 target clusters, then the approximate

number of cluster pairs tested is 4K compared to the nearly 500K pairs tested for every

call to update. Thus, in this example many of the calls to updateC result in most of the

tests (i.e. maySwap, mayShift, swapTest and shiftTest) being avoided.

This approach for avoiding tests is valid in part because the four fundamental tests

maySwap, swapTest, mayShift and shiftTest are functions (when given the same input

37

they always return the same output). Because a pair of clusters is visited only once during

a single call to update, once a pair is visited, it is not visited again until the next call to

update. There are two possible outcomes that result from a visit to a pair of clusters. The

first is when either a swap or shift occurs. The outcome is that both clusters are changed.

The second is when neither a swap nor shift occurs during the visit. This second outcome

is more interesting. If two or more clusters remain unchanged by the current call to

update, in the next call to update, when an unchanged cluster is paired with another

unchanged cluster, the pair can be skipped. This is because the four fundamental tests

when given the same input always return with the same output. If the previous call, and

the current call to update up to this point, have not resulted in a change to either cluster,

then the pair is identical to when they were tested in the previous call. Since the pair

failed the tests then (i.e. maySwap, swapTest, mayShift and shiftTest) they will do the

same now.

Recall that the update procedure can be described as a traversal that visits in random

order every cluster pair in the set, visiting each pair just once. During each visit, the pair

is tested, and beneficial swaps and shifts are performed. Now, consider only the possible

traverses where the traversal first visits all the cluster pairs with two unchanged clusters.

Then follow that with all the visits to the pairs with one or two changed clusters. We

know that all the visits to the first group of pairs with unchanged clusters will result in no

swaps or shifts. Only in the second group where there is at least one changed cluster per

pair is there a possibility for swaps and/or shifts. If we limit updateC to just traversing the

second group, then only cluster pairs with one or more changed clusters in the previous

call need to be visited and tested. All the clusters pairs that had both clusters return

38

unchanged in the previous call to updateC can be skipped and have their tests avoided in

the current call to updateC. While this is a loosening of the random order requirement,

there were no discernable negative effects associated with limiting the random traverses

to only those orderings that meet the above requirement.

The first research question for this study asks with respect to the efficiency of LS,

can the clusters with which a given cluster potentially interacts be efficiently identified,

thereby avoiding a vast number of pairwise tests? Using the above approach many

pairwise tests can indeed be avoided. For example, if updateC is called with only 2

changed clusters then the number of cluster pairs tested is (2|𝑃| − 3) versus
|𝑃|(|𝑃|−1)

2
 for

update. For a partition with 1000 clusters that is approximately 2K cluster pairs for

updateC compared to 500K for update. When few clusters interact, this improvement

avoids vast numbers of tests. However, its real strength is when it is coupled with

ILSMC, discussed below.

Iterated Local Search for Microaggregation (ILSM)

Local Search (LS) starts with any k-partition and searches the space around it to find

local optima. It does so by identifying basins of attraction with good local optima (Blum

& Roli, 2003). The effectiveness and performance of a local search heuristic depends on

the starting point, the size of problem search space and the relative size of basins of

attraction to good local optima. LS shows sensitivity to its starting point. Section 1 noted

that LS, while currently the best of all known heuristics on benchmark problems, is not

likely to find a globally optimal solution and may even produce inferior local optima.

Blum and Roli (2003) state that running local search in a random restart regime can help

39

overcome this weakness but may be less effective when the size of search space increases

and/or relative size of basins of attraction decrease past a certain point. LS when run in a

random restart regime demonstrates it can consistently find good solutions and

sufficiently overcome any sensitivity to starting points. However, to find even better

performance Laszlo and Mukherjee employed their LS within the iterated local search

(ILS) metaheuristic resulting in ILSM.

ILSM is like running LS in a random restart regime. However, the ILS

metaheuristic approach does not restart local search with a random starting point. Instead

starting points are chosen from along a trajectory. This is known to extend effectiveness

compared to the random restart regime. Trajectory is modeled by using local optima from

past searches. The trajectory guides the search, providing necessary direction to ever

improving basins of attraction. It would be ideal, if it were possible, to model trajectory

as a basin of attraction itself . A special neighborhood might be constructed where all the

neighbors are themselves local optima (Blum & Roli, 2003). Then one would just search

this neighborhood to find the global optimum. Unfortunately, no viable neighborhood

structures of just local optima are known (Blum & Roli, 2003).

Nonetheless, a meta-structure representing trajectory of local optima can be

envisioned. Consider an operation bounded on either side by two requirements (Blum &

Roli, 2003). The first would be to sufficiently perturb the local optima to achieve enough

difference. The second, which would be in opposition, would be to not perturb so much

as to make it indistinguishable from a random starting point. The concept behind

trajectory is to provide enough change to escape entrapment by the local optimum but

preserve as much of the momentum that defines the trajectory. In this way the

40

perturbation operation becomes a balance of not too much perturbation causing the

trajectory to be lost and not too little so that local search undoes the perturbation.

ILSM perturbation operations are based on the concepts of the meta-structure

discussed above. ILSM starts with a uniform random k-partition. ILSM applies LS to the

initial candidate to find an initial local optimum solution. A perturbation operation then

perturbs the solution. Using the perturbed result as input, LS is restarted resulting in a

new unique local optimum solution. At this point the ILSM acceptance criterion is

applied. If the new solution is also the new best-found solution it is accepted and saved as

the current best solution. Otherwise, the new solution is inferior and accepted with an

eighty percent probability. For the other twenty percent, the new solution is rejected, and

the current best solution is returned to. The cycle of perturbing, restarting LS and

accepting is repeated. The overall process is repeated until some termination condition

(e.g. 5000 iterations) is met and the best solution is returned. The pseudocode for ILSM

follows:

ILSM(P) {
 P ← LS(P);

 bestP ← P;
 while (not terminationCondition)
 P’ ← perturb(P);

 P” ← LS(P’);
 P ← acceptanceCriterion(P”, bestP);
 If (SSE(P) < SSE(bestP))
 bestP ← P;

 return bestP;
}

Laszlo and Mukherjee (2015) designed their perturbation operations dissolve and

distill to be complementary to their local search method LS. While LS preserves the

number of clusters in the resulting partition, the perturbation operations either decrease or

41

increase the number of clusters in the perturbed partition while leaving most of the

partition unchanged. Changing the number of clusters thus prevents entrapment by the

previous local optimum. This satisfies the first stated objective of perturbation operations,

to sufficiently perturb solutions to assist in escape of local optima. The pseudocode for

the perturb procedure follows.

perturb(P) {

 if (size(P) = minP) return distill(P);
 else if (size(P) = maxP) return dissolve(P);
 else if (random < 0.5) return distill(P);

 else return dissolve(P);
}

The minP and maxP values represent the smallest and largest possible sizes for k-

partition within ILMS. This keeps cluster sizes in a range from 𝑘 points to 2𝑘 − 1 points,

thus satisfying the constraint k. It follows that the acceptable range of k-partition sizes

ranges from ⌈
𝑛

2𝑘−1
⌉ to ⌊

𝑛

𝑘
⌋. Nonetheless, minP is usually set higher because better

solutions tend to come from the larger partitions. A value for minP that restricts partition

sizes to a top percentile (e.g. top quintile) is practical (Laszlo & Mukherjee, 2015).

The dissolve operation removes one cluster at random from the k-partition and

strategically distributes the points contained within the cluster throughout the partition. It

follows that the size of some cluster 𝐶 may be greater than k and contain |𝐶| − 𝑘 extra

points. Excess points are those extra points in groups larger than k and farthest from the

mean center not counting the k closest points. The distill operation constructs a new

cluster for the k-partition from the excess points if there are enough. This operation can

only be performed if the size of the partition is less than the maximum size of ⌊𝑛
𝑘⁄ ⌋ where

𝑛 is the number of points in the dataset. It chooses one of the excess points at random to

42

seed the new cluster. Then the 𝑘 − 1 best excess points are moved to the new cluster with

the centroid recalculated between every move. After either dissolve or distill most of the

k-partition is left unchanged. This satisfies the second objective of perturbation

operations, to preserve as much of what makes the solution good. Overall, the

perturbation operations utilize intensification, they exploit the accumulated search

experience. The balance between intensification and diversification in both dissolve and

distill is statically set by the uniform probability distributions used within the operations.

The dissolve operation maintains feasibility (results in a valid k-partition) as it

decreases the number of clusters in the partition. As illustrated in the pseudocode below,

dissolve removes a random cluster 𝐶 and distributes the associated points 𝑝 ∈ 𝐶 to nearby

clusters that result in the lowest cost. Each point 𝑝 is placed within the cluster with the

closest centroid represented by the symbol 𝐷. The distance function 𝛿(𝑝, 𝐷) returns the

Euclidean distance between the point 𝑝 and cluster centroid 𝐷. Euclidean distance as

calculated by the distance function represents the associated information loss. The

pseudocode for the dissolve operation follows:

dissolve(P) {

 C ← some cluster of P;
 for each point p ∈ C
 D ← some cluster of D ∈ P \ {C} minimizing δ(p, D̅);

 D ← D ∪ {p};
 return P \ {C};
}

The distill operation maintains feasibility as it increases the number of clusters in

the partition. Clusters that contain excess points are referred to as oversized. 𝑆 is the set

of oversized clusters. 𝑄 is the set of all excess points. 𝑁 is the new cluster. So, when

distilling 𝑁 an excess point 𝑝 is selected at random from the set of excess points 𝑄. This

43

is used to seed 𝑁. The point 𝑝 is removed from 𝑄 and shifted from the oversized cluster

𝐶𝑝 where it resides to the new cluster 𝑁. The centroid for 𝑁 is the new point. While the

first point was selected at random all subsequent points are selected to minimize

information loss (Euclidean distance) of 𝑁. The closest point 𝑞 to 𝑁 is removed from 𝑄,

shifted from cluster 𝐶𝑞 to 𝑁, and the centroid is recalculated for 𝑁. This is repeated until

the new cluster 𝑁 is filled with k points. The pseudocode for distill follows:

distill(P) {
 S ← set of clusters C ∈ P such that |C| > k;
 Q ← excess points of the oversized clusters S;

 p ← some point of Q;
 Q ← Q \ {p};
 N ← {p};

 while (|N| < k)
 p ← some point q ∈ Q that minimizes δ(q, N̅);
 Q ← Q \ {p};

 Cp ← Cp \ {p};

 N ← N ∪ {p};
 return P ∪ {N};

}

The acceptance criterion is used as a tuning parameter that lets a new local optimum

be used in the search path even though it is not better than the current best-found one. It

can be advantageous to use the inferior of the two in the next iteration. Doing so adds

diversification to the search path aiding escape from the current local optimum. The

acceptance criterion decides which of the current best or new inferior solution to use in

the next iteration. When an inferior local optimum is chosen, it is said to bias search

toward diversification. The intention is to add enough diversity that leads to a breakout. If

after some number of explorative cycles, it does not find a new best solution, the

44

acceptance criterion rejects the current inferior solution and returns the search back to the

current best solution. The pseudocode for the acceptanceCriterion follows:

acceptanceCriterion(P, bestP) {
 if SSE(P) < SSE(bestP) return P;

 random ← Uniform random real number in [0,1];
 if (random < A) return P”; // A = 0.8 in original work
 else return bestP;

}

Avoiding Costly Tests with ILSMC

LSC and updateC avoid vast numbers of tests by targeting clusters to test within

modified versions of LS and update. The approach is effective because few clusters

interact in most of the calls to update. How LSC and updateC work to avoid vast number

of tests is discussed above. A naïve version of ILSMC would just replace LS(𝑃′) with

LSC(𝑃′, 𝑃′) inside ILSM. While experiments showed significant improvement for naïve

ILSMC compared to ILSM, an opportunity to avoid even more tests would be missed.

The calls to the distill and dissolve perturbation operations in naïve ILSMC are

sandwiched between calls to LSC. The perturbances are very localized within these

operations. This results in very few clusters being changed by the perturbations thus

giving opportunities for exploitation within LSC. If the changed clusters are tracked

within both perturbation operations, this could be communicated to LSC and then to

updateC. If there is not a target set of clusters passed in, LSC must be called with the

complete set of cluster pairs. By communicating a target set of clusters to LSC, vast

numbers of additional cluster pairs can be avoided. This is in comparison to LSC without

any form of communications from the perturbation operations. In summary, tracking the

changed clusters within the perturbation operations, dissolveC and distillC, and

45

communicating them as targeted clusters to LSC allows many more tests to be avoided

compared to naïve ILSMC. Pseudocode for dissolveC and distillC follow.

dissolveC(P) {
 C ← some cluster of P;

 changed ← Ø; // <-- new line
 for each point p ∈ C
 D ← some cluster of D ∈ P \ {C} minimizing δ(p, D̅);

 D ← D ∪ {p};
 changed ← changed ∪ {D}; // <-- new line
 return (P \ {C}, changed); // <-- modified
}

distillC(P) {
 S ← set of clusters C ∈ P such that |C| > k;

 Q ← excess points of the oversized clusters S;
 p ← some point of Q;
 Q ← Q \ {p};

 N ← {p};
 changed ← {N}; // <-- new line
 while (|N| < k)

 p ← some point q ∈ Q that minimizes δ(q, N̅);
 Q ← Q \ {p};
 Cp ← Cp \ {p};
 N ← N ∪ {p};
 changed ← changed ∪ {Cp}; // <-- new line
 return (P ∪ {N}, changed); // <-- modified
}

The changes to dissolve and distill are minimal. Two lines are added, and one

modified in both dissolveC and distillC (see source code lines commented with “new

line” and “modified”). The first new line in each operation initializes the changed

variable. The second new line adds changed clusters to the changed set. The last line in

both perturbation operations is modified to return a tuple which includes the perturbed k-

partition and the set of changed clusters to be targeted. Now ILSMC can be created with

minimal changes to ILSM, just replace LS, perturb, dissolve, and distill procedures with

LSC, perturbC, dissolveC, and distillC. The pseudocode for ILSMC follows.

46

ILSMC(P) {

 targetClusters ← {C|CP} // <-- new line
 P ← LSC(P, targetClusters); // <-- modified

 bestP ← P;
 while (not terminationCondition)
 (P’, targetClusters) ← perturbC(P); // <-- modified

 P” ← LSC(P’, targetClusters); // <-- modified
 P ← acceptanceCriterion(P”, bestP);
 If (SSE(P) < SSE(bestP))

 bestP ← P;
 return bestP;
}

perturbC(P) {
 if (size(P) = minP) return distillC(P);
 else if (size(P) = maxP) return dissolveC(P); // <-- modified

 else if (random < 0.5) return distillC(P); // <-- modified
 else return dissolveC(P); // <-- modified
}

Using Sampling to Bias Dissolve

During this study it was observed that perturbations tend to find larger reductions in

information loss when they involve clusters with higher information loss. The dissolve

operation uses a uniform probability distribution to pick the clusters to dissolve and

places no focus on relative information loss. This study considered a few new probability

distributions biased toward selecting clusters with higher information loss. Preliminary

experiments with sloped straight-line probability distributions biased toward clusters with

higher information loss were beneficial. To apply the new probability distributions,

clusters need to be sorted by increasing amount of information loss. The 𝑖𝑡ℎ cluster where

𝑖 1 and 𝑖 |𝑃| is then selected with the probability defined by the probability mass

function. A couple probability mass functions were developed but the following

probability mass function was settled upon and used in the experiments:

47

𝑋 is a discrete random variable with range 𝑥

𝑓(𝑥) = P(𝑋 = 𝑥) =
1

|𝑃|𝑠
(𝑥𝑠 − (𝑥 − 1)𝑠)

𝑥 {1, 2, … , |𝑃|}

𝑠 ℤ+

The variable 𝑠 is the sampling constant and 𝑥 is the ordinal number of the 𝑖𝑡ℎ cluster

in the set of clusters 𝑃 ordered from lowest information loss to the highest. However, to

select clusters with probabilities defined by this probability mass function does not

require the set of clusters to be sorted by information loss before every selection. This is

very advantageous since it is costly to sort the clusters within the dissolve operation.

Instead several cluster samples are selected at random from the k-partition and the one

with the largest information loss is selected. There is the possibility of selecting a cluster

more than once. The constant 𝑠 is the sampling constant and corresponds to the number

of samples selected. The probability that 𝑥 the 𝑖𝑡ℎ cluster is selected is P(𝑋 = 𝑥) defined

by the probability mass function above. Notice that when the sampling constant is set to 1

the probability mass function defines the uniform probability distribution. Increasing the

sampling constant increases the bias toward clusters with higher information loss. The

sampling constant is a tuning parameter for increasing intensification within dissolve. A

48

good value for the sampling constant was identified and set to 𝑠 = 5 for the experiments.

The pseudocode for bDissolve follows:

bDissolve(P, s) {
 𝑆 ← s random clusters sampled 𝐶𝑖 ∈ 𝑃 for 𝑖 = [1, 𝑠];
 𝐶 ← cluster with the highest information loss from 𝑆;

 changed ← Ø;
 for each point p ∈ C

 D ← some cluster D ∖ {𝐶} minimizing δ(p, D);
 D ← D ∪ {p};

 changed ← changed ∪ {D};
 return (P \ {C}, changed);
}

Bias will not be introduced into the distill operation. Preliminary experiments

suggested that biasing the selection of a starting point is not yet decisively beneficial.

First, there are relatively few excess points. Second, there are only weak correlating

characteristics currently identified that facilitate selection of points with higher

tendencies toward better outcomes. Further work needs to be done on ways to identify

better starting points.

A Dynamic Acceptance Criterion

Search is generally the process of iteratively moving from the current best solution

to better solutions. However, iterative local search through the acceptance criteria

employs a strategy that allows interim search moves to solutions of worse quality. The

intention is to add diversification to aid escape from local optima. The concept is that a

few worse moves will lead to a breakout and to a better local optimum. As described

earlier, the acceptance criterion is a key component of iterated local search. If the new

solution in not the current best-found solution, it decides which of two partitions to

process next. Accepting the new inferior solution P or rejecting it and returning to the

49

current best-found solution instead. In ILSM the acceptance criterion is a fixed

probability A. Higher values of A emphasize diversification and lower values

intensification. A good fixed value for A was found to be 80% (Laszlo & Mukherjee,

2015). The formulas that follow are the probabilities of selecting 𝑃 rather than 𝑏𝑒𝑠𝑡𝑃

under each of two possible conditions:

Pr(𝑐ℎ𝑜𝑜𝑠𝑖𝑛𝑔 𝑃 𝑜𝑣𝑒𝑟 𝑏𝑒𝑠𝑡𝑃) = {
1, SSE(𝑃") < SSE(𝑏𝑒𝑠𝑡𝑃)

𝐴, otherwise

This acceptance criterion implements a uniform probability distribution. The pseudocode

follows:

acceptanceCriterion(P, bestP) {
 if SSE(P) < SSE(bestP) return P;
 random ← Uniform random real number in [0,1);

 if (random < A) return P”; // A = 0.8 in original work
 else return bestP;
}

The improvement in this section modifies the acceptance criterion above. The

objective is to accept current solutions closer in quality to the best-found solution with

higher probability than ones with lesser quality. The modification changes the acceptance

probability to a formula based on the difference in error between P and the current best

solution. The idea is to vary acceptance probability based on the size of the increase in

the sum of the squared errors. The formulas that follow are the new probabilities of

selecting 𝑃 rather than 𝑏𝑒𝑠𝑡𝑃 under each of two possible conditions:

Pr(choosing 𝑃 over 𝑏𝑒𝑠𝑡𝑃) = {
1, SSE(𝑃”) < SSE(𝑏𝑒𝑠𝑡𝑃)

 𝑒
(

(SSE(𝑏𝑒𝑠𝑡𝑃)− SSE(𝑃"))
(𝑇 ∗ SSE(𝑏𝑒𝑠𝑡𝑃)

)

,otherwise

50

The pseudocode for the new acceptance criterion follows:

dAcceptanceCriterion(P”, bestP) {

 if (SSE(P”) < SSE(bestP)) return P”;
 random ← Uniform random real number in [0,1];

 if (random < 𝑒
(

(SSE(𝑏𝑒𝑠𝑡𝑃)– SSE(𝑃”))

(𝑇 ∗ SSE(𝑏𝑒𝑠𝑡𝑃)
)
) return P”;

 else return bestP;
}

If the difference in errors between the current best-found solution and 𝑃 is relatively

small, then the probability of acceptance is adjusted to be high. If the difference in errors

is relatively high, the probability of acceptance is adjusted to be low. The constant 𝑇 is a

tuning parameter, it was experimentally found to work best at 0.00001. By varying the

acceptance criterion, it can quickly reject a path with increasing SSE since the likely

benefit of continuing the search is decreasing. Otherwise, it will keep accepting inferior

solutions as long as the error remains low enough and there is still a relatively higher

likelihood of benefit in continuing the search.

51

Chapter 4

Results

This chapter presents results from experiments using benchmark datasets. The

results demonstrate performance of LSC, ILSMC, ILSM with bDissolve, and ILSM with

dAcceptanceCriterion compared to the original LS and ILSM. The results that follow

answer the three research questions posed in Chapter 1 using the methodology in Chapter

3.

Introduction

Laszlo and Mukherjee (2015) presented LS and ILS for microaggregation (ILSM)

for producing k-anonymity microaggregations. They demonstrated their algorithm has

advantages over extant microaggregation methods. The goal of this study was to

demonstrate the advantages of three novel improvements to LS and ILSM. The first

improvement adds cluster tracking to LS, ILSM and the original perturbation operations

to create LSC and ILSMC. The second improvement adds biasing to the dissolve

perturbation operation and creates bDissolve. It biases the perturbation operator toward

clusters with higher loss. The third improvement changes the acceptance criteria from

static to dynamic creating dAcceptanceCriteria. It dynamically changes the probability of

acceptance based on the difference in quality between the current solution and the best

52

solution found so far. Current solutions closer in quality to the best solution are accepted

with higher probability than ones with lesser quality.

Benchmark Datasets

The experiments used the following three benchmark datasets: Tarragona (834

records with 13 attributes), Census (1082 records with 13 attributes), and EIA (4092

records with 10 attributes). These benchmarks were also used in the Laszlo and

Mukherjee (2015) study and previous studies. As in Laszlo and Mukherjee (2015), the

dataset attributes were normalized to a mean of zero and a standard deviation of one so

that no single attribute would have a disproportionate effect on the results from the

experiments. Table 2 presents the first row of data from each of the three datasets.

 Tarragona Census EIA

Attribute 1 -0.37861 0.739487803 -0.427604166

Attribute 2 -0.48639 -0.432373901 -0.538286816

Attribute 3 -0.2837 0.713255797 -0.32878662

Attribute 4 -0.02597 -0.596032084 -0.458881554

Attribute 5 -0.02308 0.013888974 -0.539673926

Attribute 6 0.07261 -0.640145244 -0.612108827

Attribute 7 -0.068 -0.419519668 -0.061995332

Attribute 8 -0.41123 -0.543431262 -0.196206166

Attribute 9 -0.1062 -0.371754498 -0.430195776

Attribute 10 -0.03452 0.260923742 -0.574804969

Attribute 11 -0.00071 0.362487702 -

Attribute 12 -0.14978 0.290109471 -

Attribute 13 -0.13883 0.341212348 -

Table 2: First row of data from each dataset

53

Experimental Results

As with the prior study, this study ran experiments on partitions with the same

values of k (k = 3,4,5,6 and 10). This study also uses the standardized information loss

described in Section 3 as the measure of quality for the k-partition. All the experiments

ran Java bytecode. All experiments were performed on 2.3 GHz Intel Core i7-3615QM

This study recreated the experiments published by Laszlo and Mukherjee (2015). It

achieved similar results in terms of quality (percentage loss of information) and execution

times. Figures are not shown for values of k = 4 and k = 6 because the results for k = 3

and k = 5 are representative for those values of k in all test cases.

LSC versus LS

Experiments consisted of 5000 runs of LSC and LS each in a random restart regime.

Quality in terms of percentage loss of information and execution times were recorded.

The averages for the 5000 runs were computed and used to compare LSC and LS.

Table 3 reports the average execution time per run in seconds for LSC and LS. The

numbers in parentheses present the ratio of LS to LSC run times. Table 4 reports the

average results for quality (percentage information loss) for each experiment test case.

Figure 1 through Figure 3 show the dramatic decrease in sizes of the cluster pair

lists with iterations of updateC as compared to update. Within both LSC and LS is a loop

that calls (iterates) updateC and update, respectively. At the beginning of both updateC

and update, a new list of cluster pairs is constructed. The sizes of the cluster pair lists for

each of the nth iterations were recorded. The sizes were then averaged per the n iterations

over the 5000 runs and charted for comparison purposes. While 15 charts were

constructed for the three datasets, one for each of the 5 values of k, the value of k had

54

minor impact on the shape of the charts. The three figures are representative of all values

of k.

The average execution time for LSC was significantly reduced compared to LS (see

Table 3). The table shows the greatest reduction was 52% for the EIA dataset and k = 3.

The least reduction was 30% for the Tarragona dataset and k = 10.

The results charted in Figure 1 through Figure 3 shows why there is a significant

reduction in execution times. Note from Figure 1, every run of LSC had 18 or fewer

iterations of updateC for the Tarragona dataset and k = 3. LS had 22 or fewer iterations

of update. The cluster pairs list sizes averaged less than 1500 pairs or fewer for more than

half the iterations with LSC and updateC compared to LS and update with average list

sizes of 35K+ for all but the last several iterations. Looking at Figure 1 through Figure 3

most cluster pairs for most iterations are not in the cluster pair lists thus avoiding the

associated quick reject tests, shift tests and swap tests (i.e. mayShift, maySwap, shiftTest

and swapTest). By the seventh iteration the number of cluster pairs eliminated from the

cluster pairs lists of LSC were greater than 75%, 80% and 85% respectively for the

 k = 3 k = 4 k = 5 k = 6 k = 10

 Tarragona

LSC run 0.037 0.052 0.074 0.094 0.16
LS run 0.063 (1.70) 0.086 (1.65) 0.12 (1.62) 0.150 (1.60) 0.23 (1.44)

Census

LSC run 0.040 0.044 0.054 0.066 0.12
LS run 0.070 (1.75) 0.071 (1.61) 0.084 (1.56) 0.100 (1.52) 0.18 (1.5)

EIA

LSC run 0.69 0.44 0.35 0.31 0.30
LS run
perturbation

operations is This
is because the
number of
clusters changed

by the
perturbation
operations is

1.43 (2.07) 0.85 (1.93) 0.59 (1.69) 0.51 (1.65) 0.49 (1.63)

Table 3: Average execution time per run (in seconds): LSC compared to LS

55

Tarragona, Census, and EIA datasets. An obvious question is why only a 30% to 53%

reduction in execution times given the vast number of cluster pairs eliminated from the

lists. The reason is that many of the associated tests that were avoided are only the quick

reject tests which are already very efficient and fast. The experiments demonstrated the

advantages of LSC over LS in terms of execution run times.

Figure 1: Decrease in cluster pairs list size with updateC iterations (Tarragona 3)

Figure 2: Decrease in cluster pairs list size with updateC iterations (Census 3)

56

Figure 3: Decrease in cluster pairs list size with updateC iterations (EIA 3)

The average results for quality (information loss) were similar for both LSC and LS

(see Table 4). On a per iteration basis, the results did not show LSC converging faster

than LS. Faster convergence of LSC as compared to LS was entirely due to shorter

iteration execution times helped by the improved computational efficiency. This was not

unexpected because updateC only rejects cluster pairs that are assured to fail the shift and

swap tests. It is just a quicker reject test that complements mayShift and maySwap.

Table 4: Information loss: LSC compared to LS after 5000 runs

 k = 3 k = 4 k = 5 k = 6 k = 10

 Tarragona

LSC Best 14.68% 17.23% 20.32% 23.66% 30.23%
LS Best 14.68% 17.24% 20.30% 23.66% 30.22%

Census

LSC Best 4.87% 6.67% 7.88% 8.86% 11.96%
LS Best 4.86% 6.66% 7.87% 8.86% 11.94%

EIA

LSC Best 0.44% 0.59% 1.21% 1.02% 2.46%
LS Best 0.45% 0.59% 1.19% 1.03% 2.45%

57

ILSMC versus ILSM

Experiments consisted of 20 runs of ILSMC and ILSM where each run terminated

after 5000 iterations. The runs were started with random k-partitions. Quality in terms of

percentage loss of information and execution run times were recorded. The averages for

the 20 runs were computed and used to compare ILSMC to ILSM.

Figure 4 through Figure 8 show how average information loss decreases over time

for ILSMC compared to ILSM across a representative set of results. The blue lines are for

ILSMC and the orange lines are for ILSM. ILSMC ran significantly faster than ILSM and

it why the blues lines are much shorter. The most dramatic results were for the EIA

dataset, k = 3, where ILSMC ran in 6.01 seconds compared to 1371 seconds for ILSM.

The effects on computational efficiency lessen as the values for k get larger but still the

least speedup was a speed up of 4 times for Tarragona, k = 10.

Figure 4: Decrease in information loss with time, ILSMC vs ILSM (EIA 3)

58

Figure 5: Decrease in information loss with time, ILSMC vs ILSM (EIA 10)

Figure 6: Decrease in information loss with time, ILSMC vs ILSM (Tarragona 3)

59

 Figure 7: Decrease in information loss with time, ILSMC vs ILSM (Census 10)

Figure 8: Decrease in information loss with time, ILSMC vs ILSM (Tarragona 10)

60

 Table 5 reports the average execution elapsed time per iteration in seconds for

ILSMC and ILSM. The numbers in parentheses present the total execution time for 5000

iterations. The average times for ILSMC were significantly reduced compared to ILSM.

Again, the greatest reduction in time was for the EIA dataset and k = 3. The average time

for ILSMC runs with this dataset were 6.01 seconds compared to 22 minutes and 51

seconds for ILSM runs, a reduction of 99.6%. The least reduction in time was for the

Tarragona dataset and k = 10, where the average time for ILSMC was 2 minutes and 2

seconds compared to 9 minutes and 24 seconds for ILSM runs, a reduction of 78%. The

Census dataset saw reductions from 84% to 96% as compared to ILSM.

k = 3 k = 4 k = 5 k = 6 k = 10

 Tarragona

ILSMC iteration 0.0011 (5.73) 0.0021 (10.5) 0.004 (19.8) 0.0069 (34.3) 0.024 (122)
ILSM iteration 0.016 (81) 0.025 (123) 0.039 (193) 0.055 (275) 0.11 (564)

Census

ILSMC iteration 0.00070 (3.49) 0.00094 (4.7) 0.0017 (8.5) 0.0027 (13.6) 0.011 (57.3)
ILSM iteration 0.018 (90) 0.017 (84.5) 0.023 (114) 0.03 (151) 0.071 (356)

EIA

ILSMC iteration 0.0012 (6.01) 0.0011 (5.26) 0.0011 (5.41) 0.0012 (5.95) 0.0024 (11.8)
ILSM iteration 0.27 (1371) 0.14 (689) 0.089 (445) 0.069 (346) 0.071 (356)

Table 5: Average execution time (in seconds) per iteration: ILSMC compared to ILSM

Table 6 compares the quality of solutions recorded using ILSMC compared to those

recorded by ILSM. The average results for quality (percentage information loss) were

nearly identical for both ILSMC and ILSM. In Chapter 3, there was a concern that

slightly lifting the requirement for randomness of the cluster pair lists could have a

negative effect on quality. No negative effects were seen, but neither did the results show

ILSMC converged faster than ILSM on a per iteration basis. Faster convergence was

entirely due to the shorter iteration times. The results show that quality was not

61

significantly affected by the cluster change tracking within ILSMC. Again, this is not

unexpected since change tracking does not affect the mechanism for selecting next steps

in the search path (i.e. swaps and shifts).

For every call to LSC and LS, the sizes of the cluster pair lists within each of the nth

iterations of updateC and update were recorded. The sizes were then averaged per the n

iterations over the 20 runs of ILSMC and ILSM and charted for comparison purposes.

While 15 charts were constructed for the three datasets, one for each of the 5 values of k,

the value of k had minor impact on the overall shape of the charts. The charts in Figure 9

through Figure 11 are representative of the three datasets for all values of k. The Figures

show how the decrease in the size of cluster pair lists greatly increases computational

efficiency.

 k = 3 k = 4 k = 5 k = 6 k = 10

 Tarragona

 ILSMC Best 14.50% 17.12% 20.17% 23.52% 30.14%
ILSMC Avg 14.55% 17.15% 20.19% 23.58% 30.22%
ILSMC Worst 14.58% 17.19% 20.22% 23.65% 30.30%
 ILSM Best 14.48% 17.11% 20.17% 23.52% 30.14%
ILSM Avg 14.57% 17.15% 20.21% 23.59% 30.19%
ILSM Worst 14.60% 17.20% 20.28% 23.65% 30.29%
 Census

 ILSMC Best 4.77% 6.13% 7.37% 8.34% 11.46%
ILSMC Avg 4.81% 6.20% 7.44% 8.41% 11.53%
ILSMC Worst 4.86% 6.29% 7.50% 8.47% 11.62%
 ILSM Best 4.77% 6.13% 7.38% 8.33% 11.47%
ILSM Avg 4.80% 6.19% 7.44% 8.41% 11.54%
ILSM Worst 4.83% 6.30% 7.53% 8.50% 11.69%
 EIA

 ILSMC Best 0.37% 0.51% 0.76% 0.94% 1.85%
ILSMC Avg 0.37% 0.52% 0.81% 0.96% 1.86%
ILSMC Worst 0.38% 0.53% 0.98% 0.99% 1.86%
 ILSM Best 0.37% 0.52% 0.76% 0.94% 1.85%
ILSM Avg 0.38% 0.52% 0.82% 0.95% 1.86%
ILSM Worst 0.41% 0.54% 0.96% 0.97% 1.86%

Table 6: Information loss using: ILSMC compared to ILSM

62

The results charted in Figure 9 through Figure 11 show why there were significant

reductions in execution times. The following describes how to interpret those charts.

ILSMC calls LSC 5001 times during a run. The first call to LSC takes a random k-

partition and finds a current best solution. This is the initialization call and it only

happens once per run. The left blue bars describe this initial call in terms of average size

of cluster pair lists per iteration of updateC. It is similar in shape to Figures 1 through 3

in the discussion about LSC vs LS. Each bar is the average of 20 values (20 runs, one call

to LSC per run). The middle orange bars describe all the calls to updateC within the calls

to LSC which follow a perturbation operation. Each bar is the average of 100K values (20

runs, 5000 calls per run). The gray bars on the right describe all the calls to update within

LS and ILSM (20 runs, 5001 calls per run). The size of cluster pair lists is fixed within

LS; however, in Figure 9 through Figure 11 the gray bars decrease for the last several

iterations. This is because not all calls to update went the full 22 iterations. When a call

went for example, 20 iterations, then a zero instead of 35K went into calculating the

averages for iterations 21 and 22.

It is important to note the larger charts with the blue, orange, and gray bars are

charted with a logarithmic scale for the vertical axis. The logarithmic scale is needed to

better illustrate the enormous difference in sizes for the cluster pair lists and better

illustrate the lower values. The inset charts are just the same orange bars for updateC

(perturbations) but with a linear scale for the vertical axis. The inset chart better

illustrates the diversity in list sizes over the successive iterations of updateC

(perturbations) which are masked by the logarithmic scale. The use of both scales is for

clarity.

63

For updateC the sizes of cluster pair lists were nearly 2 orders of magnitude less

than for update, except for the first initialization call to updateC. (see Figure 9 through

Figure 11). This resulted in vast numbers of associated tests (i.e. mayShift, maySwap,

shiftTest and swapTest) being avoided. When comparing Figure 1 through Figure 3 to

Figure 9 through Figure 11, note the sizable advantage that ILSMC has over running LSC

in a random restart regime. Every iteration of LSC in the random restart experiment

started with a complete cluster pairs list compared to ILSMC where the first call to

updateC was the only one. All subsequent calls to updateC within ILSMC were started

with small cluster pair lists. This resulted because the perturbation operations make

relatively small localized changes affecting only a small number of clusters. This

difference is why ILSMC combined with LSC had a greater impact on execution times

compared to LSC alone.

Figure 9 (EIA dataset, k = 3) shows average list size was never greater than 4500 for

updateC and many were much smaller. That compared to most iterations with nearly

850K cluster pairs for update. Figure 10 (Tarragona dataset, k = 3) shows cluster pair

lists within updateC were never larger than 1500 pairs. This compared to update which

processed 35K pairs on average for all but the last few iterations. Figure 11 (Census

dataset, k = 3) shows average list size for updateC was never larger than 1900 pairs. This

compared to 60K cluster pairs for most update iterations.

The results demonstrate that ILSMC is highly effective at reducing sizes of cluster

pair lists resulting in most of the quick reject, swap and shift tests being avoided. The

result is greater computational efficiency in ILSMC as compared to ILSM.

64

Figure 9: Decrease in cluster pairs list size with updateC (EIA 3)

Figure 10: Decrease in cluster pairs list size with updateC (Tarragona 3)

65

Figure 11: Decrease in cluster pairs list size with updateC (Census 3)

bDissolve versus dissolve

Experiments consisted of 20 runs of ILSM where each run terminated after 5000

iterations. The dissolve perturbation operation within ILSM was replaced with bDissolve.

The runs were started with random k-partitions. Quality in terms of percentage loss of

information and execution elapsed time were recorded. The averages for the 20 runs were

computed and used to compare ILSM with bDissolve to ILSM (with dissolve).

The bDissolve perturbation biases selection of clusters to dissolve toward clusters

with higher information loss. To efficiently do this one or more clusters are selected at

random and the one with the highest information loss is dissolved. The number of

clusters selected per perturbation is called the sampling rate. Increasing the sampling rate

shifts the bias from diversification toward intensification. If the sampling rate is one, then

66

bDissolve and dissolve are equivalent, and diversification is at its maximum for

bDissolve.

Preliminary experiments were run to determine the most overall effective sampling

rate. Sampling rates greater than 10 had negative results. Sampling rates less than 4 did

not provide enough biasing and the results were not significantly different compared to

ILSM. The best sampling rate was found to be 5. The probability of selecting a cluster is

discussed in Chapter 3.

Table 7 shows the quality resulting from ILSM with bDissolve compared to ILSM

(with dissolve). At the end of 5000 iterations bDissolve produced slightly lower averages

for information loss for 10 of the 15 benchmarks and was only slightly worse for one

benchmark. Nonetheless, bDissolve had its greatest impact in the early iterations.

Figures 12 through 18 show how information loss decreases over successive

iterations of ILSM with bDissolve compared to ILSM. The Figures show results over a

representative set of test cases. For two datasets, Tarragona and EIA, bDissolve showed a

clear advantage over dissolve at reducing information loss in the early iterations of ILSM,

especially in the first 1000 iterations (see Figures 12 through 16). For these two datasets

bDissolve consistently needed less than 500 iterations to achieved equivalent results to

dissolve at 1000 iterations. As the number of iterations near 5000 the results for

bDissolve and the original converge and bDissolve loses its advantage. Equivalent results

were achieved for all values of k for these two datasets (Tarragona and EIA). The

empirical results showed that there is much less opportunity to extract additional

information loss beyond the extant best values.

67

Figure 12: Decrease in information loss, bDissolve vs dissolve (Tarragona 5)

 k = 3 k = 4 k = 5 k = 6 k = 10

 Tarragona

 bDissolve Best 14.49% 17.10% 20.17% 23.50% 30.14%
bDissolve Avg 14.52% 17.13% 20.19% 23.55% 30.17%
bDissolve Worst 14.58% 17.16% 20.22% 23.62% 30.27%
 dissolve Best 14.48% 17.11% 20.17% 23.52% 30.14%
dissolve Avg 14.57% 17.15% 20.21% 23.59% 30.19%
dissolve Worst 14.60% 17.20% 20.28% 23.65% 30.29%
 Census

 bDissolve Best 4.77% 6.12% 7.37% 8.36% 11.47%
bDissolve Avg 4.80% 6.16% 7.41% 8.41% 11.53%
bDissolve Worst 4.83% 6.22% 7.45% 8.45% 11.63%
 dissolve Best 4.77% 6.13% 7.38% 8.33% 11.47%
dissolve Avg 4.80% 6.19% 7.44% 8.41% 11.54%
dissolve Worst 4.83% 6.30% 7.53% 8.50% 11.69%
 EIA

 bDissolve Best 0.36% 0.51% 0.76% 0.94% 1.85%
bDissolve Avg 0.37% 0.52% 0.78% 0.96% 1.86%
bDissolve Worst 0.38% 0.52% 0.90% 0.99% 1.86%
 dissolve Best 0.37% 0.52% 0.76% 0.94% 1.85%
dissolve Avg 0.38% 0.52% 0.82% 0.95% 1.86%
dissolve Worst 0.41% 0.54% 0.96% 0.97% 1.86%

Table 7: Information loss for runs using: bDissolve compared to dissolve

68

Figure 13: Decrease in information loss, bDissolve vs dissolve (Tarragona 10)

Figure 14: Decrease in information loss, bDissolve vs dissolve (EIA 5)

69

Figure 15: Decrease in information loss, bDissolve vs dissolve (EIA 10)

Figure 16 and 18 show that bDissolve is less effective for the Census dataset. As the

value of k increases the effect decreases. For k = 10 no improvement was obtained. The

data from the three datasets were compared but nothing stood out to explain why Census

was less affected.

70

Figure 16: Decrease in information loss, bDissolve vs dissolve (Census 3)

Figure 17: Decrease in information loss, bDissolve vs dissolve (Census 5)

7.35%

7.45%

7.55%

7.65%

7.75%

7.85%

7.95%

8.05%

8.15%

8.25%

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

A
vg

 I
n

fo
rm

at
io

n
 lo

ss

Iterations

census (k = 5)

bDissolve dissolve

71

Figure 18: Decrease in information loss, bDissolve vs dissolve (Census 10)

Dynamic Acceptance Criteria versus Static

Experiments consisted of 20 runs of ILSM where each run terminated after 5000

iterations. The acceptanceCriterion method within ILSM was replaced with

dAcceptanceCriterion. The runs were started with random k-partitions. Quality in terms

of percentage loss of information and execution elapsed time were recorded. The

averages for the 20 runs were computed and used to compare ILSM with

dAcceptanceCriterion to ILSM (with acceptanceCriterion).

The dAcceptanceCriterion method dynamically changes the probability of

acceptance based on the difference in quality between the current solution and the current

best solution. Current solutions closer in quality to the current best solution are accepted

with higher probability than ones with lesser quality. The method incorporates a tuning

factor that must be determined for best performance. The original acceptance criterion

72

had a static acceptance probability of 0.8 while dAcceptanceCriterion accepts solutions

with the following probability where T is the tuning factor.

P = 𝑒
(

(SSE(𝑏𝑒𝑠𝑡𝑃)− SSE(𝑃"))

(𝑇 ∗ SSE(𝑏𝑒𝑠𝑡𝑃)
)
, where SSE(bestP) < SSE(P”)

A higher tuning factor increases the probability of acceptance; thus, increasing

diversification. A lower tuning factor decreases the probability of acceptance; thus,

increasing intensification. As with the original if the new solution has a lower sum of the

squared error than the best known then it is accepted with a 100% probability.

Preliminary experiments were run to determine the best overall tuning factor for

dAcceptanceCriterion. The best tuning factor was found to be 0.00001.

Figure 19 through Figure 27 show how information loss decreases over successive

iterations of ILSM with dAcceptanceCriterion compared to acceptanceCriterion. Positive

effect from dAcceptanceCriterion diminished with increasing k, it provided slight or no

improvement for all three datasets at k = 10. The dynamic acceptance criterion had the

greatest effect for lower values of k (k = 3, 4, 5 and 6), see Figure 19 through Figure 21.

The exceptions were the mixed results obtained for Tarragona, k = 5 and k = 6 (Figure

24). It tended to help more in the early iterations. For Tarragona, k = 10 (Figure 27) it

hurt the end results compared to ILSM. Overall dAcceptanceCriterion had the least

impact of the three improvements.

73

Figure 19: Decrease in information loss, dAccept vs accept (Census 3)

Figure 20: Decrease in information loss, dAccept vs accept (EIA 3)

74

Figure 21: Decrease in information loss, dAccept vs accept (Tarragona 3)

Figure 22: Decrease in information loss, dAccept vs accept (EIA 5)

14.55%

14.65%

14.75%

14.85%

14.95%

15.05%

15.15%

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

22
00

24
00

26
00

28
00

30
00

32
00

34
00

36
00

38
00

40
00

42
00

44
00

46
00

48
00

50
00

A
vg

 In
fo

rm
at

io
n

lo
ss

Iterations

tarragona (k = 3)

dAcceptanceCriterion

acceptanceCriterion

75

Figure 23: Decrease in information loss, dAccept vs accept (Census 5)

Figure 24 Decrease in information loss, dAccept vs accept (Tarragona 5)

76

Figure 25: Decrease in information loss, dAccept vs accept (EIA 10)

Figure 26: Decrease in information loss, dAccept vs accept (Census 10)

77

Figure 27: Decrease in information loss, dAccept vs accept (Tarragona 10)

Advantages of Combining bDissolve and dAcceptanceCriteria

Multiple runs where used to study the advantages of using both bDissolve and

dAcceptanceCriteria in the iterated local search. Experiments consisted of 20 runs each

of the iterated local search. The runs were started with random k-partitions. Each run of

ILS performed 5000 iterations before the terminal condition was met. The results were

then averaged for comparison purposes.

Both bDissolve and dAcceptanceCriteria complemented each other and their

advantages were demonstrated to be additive in some test cases. Both methods operate in

two quite different areas of the iterated local search. They are designed to operate

exclusive of each other and there is no obvious overlap. The results did not show either

one handicapping the other.

78

Figure 28 through Figure 33 show how information loss decreases over successive

iterations of ILSM using both bDissolve and dAcceptanceCriterion compared to ILSM

and when bDissolve and dAcceptanceCriterion were used individually. Results for

Census and EIA (k = 3, 4,5 and 6) were improved upon by combining bDissolve and

dAcceptanceCriterion compared to ILSM (see Figure 28 - Figure 31, k = 4 and k = 6 not

shown). As before the most impact was seen in the earlier iterations. Very little

improvement was obtained by the Census and EIA experiments for k = 10, see Figure 32

and Figure 33. The Tarragona dataset for all values of k saw no advantage to combining

the features as compared to ILSM with bDissolve by itself, Figure 34 is representative of

all the results for the Tarragona dataset.

Figure 28: Decrease in information loss, bDissolve + dAccept vs ILSM (Census 3)

79

Figure 29: Decrease in information loss, bDissolve + dAccept vs ILSM (Census 5)

Figure 30: Decrease in information loss, bDissolve + dAccept vs ILSM (EIA 3)

80

Figure 31: Decrease in information loss, bDissolve + dAccept vs ILSM (EIA 5)

Figure 32 Decrease in information loss, bDissolve + dAccept vs ILSM (Census 10)

81

Figure 33: Decrease in information loss, bDissolve + dAccept vs ILSM (EIA 10)

Figure 34: Decrease in information loss, bDissolve + dAccept vs ILSM (Tarragona 3)

82

Chapter 5

Conclusions, Implications, Recommendations, and Summary

This chapter draws conclusions and details implications from the observations,

results and findings gathered in this study. From these it makes recommendations for

future study and concludes with an overall summary of the study.

Chapter 1 presented the problem statement concerning performance improvements

of Iterated Local Search for Microaggregation (ILSM) (Laszlo & Mukherjee, 2015). It

did so in terms of quality (percentage information loss) and speed (elapsed time). Three

research questions were posed within the problem statement. The first question was based

on recommendations for further study in Laszlo and Mukherjee’s original paper (2015).

The second and third questions were based on suggestions in previous research in

metaheuristics (Blum & Roli, 2003) detailed in the literature review. The first question,

RQ1, asked whether the costliest part of LS, tests of whether a pair of clusters can swap

or shift points, could be avoided. RQ2 asked whether better cluster candidates to perturb

could be efficiently selected to speed the reduction of latent information loss. RQ3 asked

whether dynamically changing the acceptance criterion would select better solutions that

escape local minimums faster.

As a response to these questions, Chapter 3 proposed three novel methods which led

to improvements. The first added cluster change tracking to ILSM creating ILSMC. It

83

added cluster change tracking to LS, ILSM and the perturbation operations. The second

was the biased dissolve perturbation, bDissolve, which biased the perturbation operator

toward clusters with higher loss. The third was the dynamic acceptance criterion,

dAcceptanceCriterion. It dynamically changed the probability of acceptance based on the

difference in quality between the current solution and the best solution. Current solutions

closer in quality to the best solution were accepted with higher probability than ones with

lesser quality.

Conclusions

Chapter 4 presented the results from the experiments conducted in this study.

Quality and speed were recorded consistent with the methodology in Chapter 3. ILSMC

had the greatest impact over ILSM. It significantly reduced the elapsed times of iterations

while producing solutions of similar quality. The new perturbation operation bDissolve

significantly increased the rate of quality improvement for the first 250 to 500 iterations

over the original dissolve. The dynamic acceptance criterion dAcceptanceCriterion had

less impact than the bDissolve operation, nonetheless, it also increased the rate of quality

improvement for the first 250 to 500 iterations over the original static acceptance

criterion. When all three were combined, improvements were orthogonal and additive,

and the overall best results were realized compared to ILSM.

Both bDissolve and dAcceptanceCriterion had lesser effect in the latter iterations as

resulting solutions neared the extant best values of the original ILSM. The difference in

quality between bDissolve and dissolve was small over the last 2000 iterations. The

bDissolve operation needed 2000 less iterations for most test cases to consistently reach

84

extant best quality compared to dissolve; however, it had the least effect on the Census

dataset.

The dAcceptanceCriterion had the least impact of all the improvements. Better

results compared to ILSM tended to be in the earlier iterations but tended to produce

similar quality compared to acceptanceCriterion after that point. Using both

improvements together was better than either by themselves for the Census and EIA

datasets, but not the Tarragona dataset. The dynamic acceptance criterion is clearly

sensitive to the type of data or the best tuning factor was not selected. For some test cases

the extant best solutions were consistently matched in 3000 to 4000 iterations as

compared to ILSM which consistently needed 4000 to 5000 iterations.

RQ1 concerns the effectiveness of tracking cluster changes to avoid tests to

significantly reduce execution run times. LSC avoided testing many cluster pairs when

compared to the original LS where all cluster pairs are tested (i.e. maySwap, mayShift,

swapTest and shiftTest). When LSC was run in a random restart regime, the average

execution times were reduced by 30% to 50% compared to LS (see Table 1).

Early in the study it became obvious many more swap and shift tests could be

avoided within ILSMC by also tracking the clusters changed within the perturbation

operations not just LSC. With cluster change tracking utilized in both LSC and the

perturbation operations, average execution times for ILSMC were reduced by 78% to

99.5% compared to ILSM (see Table 2).

The research question also asked whether quality would be affected. The most

impactful changes by far were the avoided shift and swap tests. But avoiding unneeded

tests has no bearing on next steps along the local search path, only execution speed. The

85

average quality at any iteration over the 5000 iterations was not expected to be impacted

for the better. Only the time for each iteration was expected to be reduced. The results

confirmed the average quality at any iteration count remained the same for ILSM and

ILSMC. ILSMC just executed each iteration much faster. However, a concern did lie

with partially lifting of the requirement to randomize the order of testing the cluster pairs.

The concern was that reducing randomness would negatively impact quality, despite this

the updateC procedure proved resilient and the quality of the results remained at extant

best levels.

The results also provided considerable empirical evidence that ILSMC reduces

computational complexity compared to ILSM. While ILSM was dominated by 𝑂(𝑛2)

complexity within the update procedure of LS, ILSMC was dominated by 𝑂(𝑛)

complexity within the updateC procedure of LSC reducing execution times by 70% to

99.5%. Only on the first call to LSC was ILSMC dominated by 𝑂(𝑛2) complexity.

To improve quality, RQ2 concerns the effectiveness of biasing the selection of

clusters to perturb toward ones with higher loss. The perturbation operations in ILSM

selected clusters at random. Selecting clusters to perturb with higher loss proved effective

in the early iterations of the experiment runs. The average number of iterations needed to

produce comparable results to the original were reduced by approximately 20% to 50%.

However, the results suggested that there is limit to the amount of latent information loss

that can be removed and the current best extant values are near that limit. Occasionally

new best values were found, they were only slightly better than those in the original

Laszlo and Mukherjee paper (2015). The most dramatic improvements for bDissolve

86

were in the first 250 to 500 iterations where the latent information loss at a certain

iteration counts were reduced by approximately 15% to 60% over dissolve.

RQ3 considered the effectiveness of a dynamic acceptance criterion at improving

quality over the original static criterion (a fixed percentage.) This method was like the

previous method in that it tries to improve search efficiency as oppose to computational

efficiency. The intent was to dynamically vary the probability of accepting a solution

based on the difference in quality between the current solution and the current best

solution. Current solutions closer in quality to the current best solution were accepted

with higher probability than ones with lesser quality. The dAcceptanceCriterion was only

effective for values k = 6 or less. It was ineffective for the Tarragona dataset which could

have been the wrong tuning factor was chosen or that dAcceptanceCriterion is sensitive

to something in the makeup of the data. Like bDissolve, it tended to be effective in the

early iterations of the test runs. However, the quality of the results after 5000 iterations

were practically the same reinforcing the notion that most of the latent information loss is

already removed by the end of the run. As with bDissolve, the most improvement for

dAcceptanceCriterion were in the earlier iterations.

 Implications

This study has shown that tracking cluster changes in ILSMC avoids most of the

shift and swap tests reducing elapsed execution times over the original ILSM. Also,

ILSM runs with 𝑂(𝑛2) complexity, while ILSMC runs with 𝑂(𝑛) complexity in practice

for all but the first call to LSC which runs with 𝑂(𝑛2) complexity. This is important

because this allows ILSMC to scale with larger datasets better than ILSM.

87

The biased perturbation operation and the dynamic acceptance criterion allows

ILSM and ILSMC to operate with fewer iterations. They are more effective when there

are substantial amounts of latent information loss. It is also sensitive to the makeup of the

data and is not effective with all datasets and values of k. Also, the ability to quickly

improve quality might be useful to interactive and online applications. Also, they may

prove more effective when latent information loss is not easily recovered with simple

perturbation and acceptance operations.

Recommendations

During this study it was observed that perturbations and subsequent swaps and shifts

were very localized. After the first call to LS and LSC each iteration touched a very

localized portion of the partition, see Figure 9. The broader question is whether methods

can be developed within the framework of iterated local search to take advantage of this

localization. A further line of research could address how a partition may be divided into

isolated locales to allow parallel perturbations operations and parallel solutions in

general. Parallel methods could further increase speed and scalability of ILSMC to the

benefit of microaggregation and k-anonymization users with the largest datasets.

Summary

Microaggregation for producing k-anonymity is widely employed to protect

microdata from disclosure. Laszlo and Mukherjee (2015) presented a microaggregation

method, Iterated Local Search for Microaggregation (ILSM). It consistently identifies

better quality solutions on instances of benchmark problems than all other extant

heuristics. However, speed is a practical problem and ILSM does not scale well as the

88

size of the dataset increases. Slow processing generally limits its use to offline processing

(Laszlo & Mukherjee, 2015). This study demonstrates that ILSM can be significantly

improved in three orthogonal and additive ways with ILSMC, bDissolve, and

dAcceptanceCriterion. ILSMC will be especially useful to data scientist and data owners

where datasets are too large for practical solution by ILSM.

89

References

Adam, N. R., & Worthmann, J. C. (1989). Security-control methods for statistical
databases: a comparative study. ACM Computing Surveys, 21(4), 515–556.

https://doi.org/10.1145/76894.76895

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Computing Surveys, 35, 189–213.
https://doi.org/10.1007/s10479-005-3971-7

Brucker, P. (1978). On the Complexity of Clustering Problems. In Optimization and
operations research (pp. 45–54). Springer Berlin Heidleberg.

Campan, A., & Truta, T. M. (2009). Data and structural K-anonymity in social networks.
Privacy, Security, and Trust in KDD, 33–54. https://doi.org/10.1007/978-3-642-

01718-6_4

Chang, C., Li, Y., & Huang, W. (2007). TFRP: An efficient microaggregation algorithm
for statistical disclosure control. Journal of Systems and Software. Retrieved from
http://www.sciencedirect.com/science/article/pii/S0164121207000611

Domingo-Ferrer, J., Martinez-Balleste, A., Mateo-Sanz, J., & Sebe, F. (2006). Efficient
multivariate data-oriented microaggregation. VLDB Journal, 15(4), 355–369.
https://doi.org/10.1007/s00778-006-0007-0

Domingo-Ferrer, J., & Mateo-Sanz, J. (2002). Practical Data-oriented Microaggregation

for Statistical Disclosure Control. IEEE Transactions on Knowledge and Data
Engineering, 14(1), 189–201.

Domingo-Ferrer, J., Sebe, F., & Solanas, A. (2008). A polynomial-time approximation to
optimal multivariate microaggregation. Computers and Mathematics with

Applications, 55(4), 714–732. https://doi.org/10.1016/j.camwa.2007.04.034

Domingo-Ferrer, J., & Torra, V. (2005). Ordinal, continuous and heterogeneous k-
anonymity through microaggregation. Data Mining and Knowledge Discovery,
11(2), 195–212. https://doi.org/10.1007/s10618-005-0007-5

Duncan, G. T., Elliot, M., & Salazar-González, J.-J. (2011). Statistical Confidentiality:
Principles and Practice. New York, NY: Springer New York.

Fienberg, S. E. (2005). Confidentiality and disclosure limitation. Encyclopedia of Social
Measurement, 1, 463–469. https://doi.org/http://dx.doi.org/10.1016/B0-12-369398-

5/00053-0

Goldberger, J., & Tassa, T. (2010). Efficient anonymizations with enhanced utility.
Transactions on Data Privacy, 3(2), 149–175.
https://doi.org/10.1109/ICDMW.2009.15

90

Hansen, S. L., & Mukherjee, S. (2003). A polynomial algorithm for optimal univariate
microaggregation. IEEE Transactions on Knowledge and Data Engineering , 15(4),
1043–1044. https://doi.org/10.1109/TKDE.2003.1209020

Health Insurance Portability and Accountability Act of 1996. (1996), 98.

Kokolakis, G., & Fouskakis, D. (2009). Importance partitioning in micro-aggregation.
Computational Statistics and Data Analysis, 53(7), 2439–2445.
https://doi.org/10.1016/j.csda.2008.09.028

Laszlo, M., & Mukherjee, S. (2007). A genetic algorithm that exchanges neighboring
centers for k-means clustering. Pattern Recognition Letters, 28(16), 2359–2366.
https://doi.org/10.1016/j.patrec.2007.08.006

Laszlo, M., & Mukherjee, S. (2015). Iterated local search for microaggregation. Journal

of Systems and Software, 100, 15–26. https://doi.org/10.1016/j.jss.2014.10.012

Mateo-Sanz, J., & Domingo-Ferrer, J. (1998). A comparative study of microaggregation
methods. Questiió, 22(3), 511–526.

National Institute of Standards and Technology. (2014). Security and Privacy Controls

for Federal Information Systems and Organizations.
https://doi.org/10.6028/NIST.SP.800-53Ar4

Oganian, A., & Domingo-ferrer, J. (2001). On the complexity of optimal
microaggregation for statistical disclosure control. Statistical Journal of the United

Nations Economic Commission for Europe, 4, 345-353.

Oganian, A., & Domingo-Ferrer, J. (2001). On the complexity of optimal
microaggregation for statistical disclosure control. Statistical Journal of the United.
Retrieved from http://content.iospress.com/articles/statistical-journal-of-the-united-

nations-economic-commission-for-europe/sju00495

Oommen, B. J., & Fayyoumi, E. (2010). On utilizing association and interaction concepts
for enhancing microaggregation in secure statistical databases. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 40(1), 198–207.

https://doi.org/10.1109/TSMCB.2009.2024949

Panagiotakis, C., & Tziritas, G. (2011). Successive Group Selection for. IEEE
Transactions on Knowledge and Data Engineering, 1–6. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6095550

Panagiotakis, C., & Tziritas, G. (2013). Successive group selection for microaggregation.
IEEE Transactions on Knowledge and Data Engineering, 25(5), 1191–1195.
https://doi.org/10.1109/TKDE.2011.242

Rebollo-Monedero, D., Forné, J., & Soriano, M. (2011). An algorithm for k-anonymous

microaggregation and clustering inspired by the design of distortion-optimized

91

quantizers. Data and Knowledge Engineering, 70(10), 892–921.
https://doi.org/10.1016/j.datak.2011.06.005

Samarati, P. (2001). Protecting respondents identities in microdata release. And Data

Engineering, IEEE Transactions On. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=971193

Sweeney, L. (2002). k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowlege-Based Systems, 10(5), 557–570.

https://doi.org/10.1142/S0218488502001648

United Nations General Assembly. (2014). Fundamental Principles of Official Statistics
(No. A/RES/68/261). Retrieved from http://undocs.org/A/RES/68/261

	Improvements to Iterated Local Search for Microaggregation
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1601556730.pdf.1qe4a

