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Abstract 

Sea otter populations in Alaskan waters have presented both growth and declines over the past 
years, which some researchers have attributed to changes in predator-prey dynamics. This project 
utilized stable isotope ratios to determine potential differences in the trophic ecology dynamics 
of the northern sea otter (Enhydra lutris kenyoni) in southern Alaskan waters. Stable carbon 
(δ13C) and nitrogen (δ15N) isotope ratios from Prince William Sound otters, a relatively stable 
population, were compared to endangered sea otter populations from the Alaska Peninsula and 
Aleutian Island Archipelago. Location was a significant factor differentiating trophic ecology 
between southcentral and southwestern sea otter populations (p<0.01). Sea otter populations 
significantly varied in δ13C and δ15N between Prince William Sound, and the Aleutian 
Archipelago and Alaskan Peninsula (p<0.01). The southwest population had a greater 
enrichment in δ15N suggesting a trophic ecology in contrast to the southcentral population. There 
was no significant variation in δ13C and δ15N within the Prince William Sound and within the 
Alaskan Peninsula and Aleutian Island Archipelago sea otter populations suggesting common 
trophic position within these populations. Neither δ13C or δ15N were significantly impacted by 
age or sex in either population. This indicates common trophic ecology within sea otter 
populations that are distinct from regional populations. Therefore, food availability or diet would 
not seem to be a driving factor distinguishing the endangered western population from the 
southcentral group from at least 1996 to 2003. This study emphasized the importance of 
considering trophic ecology within a species based on regional variations and further supports 
research regarding sea otter trophic ecology. 
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Statement of Significance 

 Southern Alaskan sea otter populations have faced dramatic declines over the past five 

decades that has led to differences in trophic structuring between regional populations. Northern 

sea otters in Alaska waters are divided into three distinct populations based on geography and 

size: southeast, southcentral, and southwestern Alaska. While the southeastern and southcentral 

populations are relatively stable, the southwestern population has experienced severe declines 

which has led to the listing of this population as endangered. For decades, the U.S. Fish and 

Wildlife service has worked collaboratively with the Alaska Sea Otter and Steller Sea Lion 

Commission, a non-profit tribal consortium, to collect sea otter data in an effort to understand 

both the similarities and distinctions among these populations and individuals. 

 This study set out to assess if differences in diet, or trophics, were a contributing factor in 

the different population declines. The potential for trophic differences among the southcentral 

and southwestern populations were measured in the stable carbon (𝛿13C) and stable nitrogen 

(𝛿15N) isotopes ratios of vibrissae (whiskers) from thirty-six northern sea otters from two regions 

in southern Alaska. Raw data allowed for comparison of trophic differences based location, age 

class (adult versus subadult), and sex.  

Location of sea otter populations affects diet and thus foraging and diving habits. While 

sea otters are predominantly benthic foragers, they also forage on forage fishes, each group of 

prey having distinct isotopic values. Prince William Sound in southcentral Alaska includes 

Knight and Montague islands, Knight Island has predominately rocky-bottom sediments 

(Esslinger et al., 2014). Montague Island has soft-bottom sediments along the southwestern 

coastline while the northwestern coastline consists of rocky bottom sediments which are 

common amongst southcentral Alaska (Clakins, 1978, Kvitek et al., 1992). This is in contrast to 

portions of southwest Alaska’s coastlines that are predominantly soft-bottom sediments with 

associated low-density sea otter populations (Estes and Bodkin, 2002). Regional differences and 

thus variations in bottom sediment affect sea otter diet and foraging behaviors. Sea otter 

populations in southcentral Alaska tend to have greater enrichment in stable carbon isotope ratios 

which suggests foraging on predominately benthic organisms associated with a more rocky-

bottom environment (Kvitek et al., 1992). Whereas southwestern sea otter populations are 

generally more enriched in nitrogen isotope ratios, eluding to a more pelagic-based organismal 

foraging strategy, coinciding with the soft-bottom environment (Clakins, 1978). Little to no 
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variation in carbon and nitrogen stable isotope ratios between adult -subadult and male-female 

otters suggest sea otter diets are generally consistent among location, age and sex. Likewise, as 

sea otter pups are weaned from their mothers, diet and foraging behaviors reflect regional 

variations rather than present significant inter-regional differentiations (Burek et al., 2005). 

These interactions provide insight into the regional differences associated with diet and foraging 

behaviors of northern sea otter populations. 

  

Background 

Range and Population Status 

 Historically, populations of sea otter (Enhydra lutris) have extended from Baja California 

to the islands of Japan, following along the northern Pacific Rim (Bodkin and Monson, 2003). 

Sea otters are separated into various subspecies based on geographic location and extent. The 

southern sea otter (E. lutris nereis) ranges from the island of San Nicolas in southern California 

to Port Año Nuevo between San Francisco and Santa Cruz (USFWS, 2008d). The northern sea 

otter is found in the northeast Pacific Ocean from the northwest coast of North America to the 

Russian Far East. Northern sea otters are further divided into two subspecies. Subspecies E. l. 

kenyoni extends from Washington state to Amchitka Island in Alaska’s Aleutian Archipelago. E. 

lutris lutris extends from the Commander Islands, the Russian side of the Aleutian Archipelago, 

southward through the Russian Kuril Islands (Bodkin and Monson, 2003; Bodkin, 2004; 

USFWS, 2008d; Jefferson et al., 2015). The subspecies E. l. kenyoni is subdivided into three 

stocks based on genetics, morphology, and geographic distribution (Ferrero et al., 2000) within 

Alaskan waters: Kodiak, Prince William Sound, and Southeastern Alaska (Figure 1). The U.S. 

Geological Survey (USGS) estimated in 2003 that approximately 150,000 sea otters were located 

along the North Pacific coast of the United States (USFWS, 2005a). In 2005, the U.S. Fish and 

Wildlife Service (USFWS) estimated that 70,000 sea otters were in Alaskan waters (USFWS, 

2005b). 

 Sea otter populations vary both between the northern and southern subspecies and also 

vary among geographic regions. On January 14, 1997, the southern sea otter (E. l. nereis) was 

listed as a threatened species by the Marine Mammal Commission under the Endangered Species 

Act. On August 9, 2005 the southwestern stock of the northern sea otter (E. l. kenyoni) was listed 

as a threatened distinct population segment by the USFWS under the Endangered Species Act 
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(Federal Register, 2005). An organism listed as threatened under the Endangered Species Act 

will most likely become extinct throughout the majority of its range in the foreseeable future. 

The southwest Alaska threatened distinct population segment was believed to be suffering since 

it had undergone a population decline of approximately 55-67%, with as much as 90% in certain 

regions, hypothesized to be a result of predation by killer whales (Orcinus orca) or a 

combination of oceanographic changes and fisheries effects (Federal Register, 2005). 

The Prince William Sound population has been relatively stable from 2011 to 2014 

(Bodkin, 2004; Esslinger et al., 2014) and is estimated to contain approximately 11,989 otters 

(USFWS, 2008c; Ballachey et al., 2014). Along the northern part of Knight Island in the 

southern Sound, however, the population has yet to recover from the Exxon Valdez oil spill in 

1989 (Bodkin, 2004). Contrary to the previous statement, sea otter populations in the western 

portion of Prince William Sound, part of the south central population stock, have increased 

between 1993 and 2000, the western population of Prince William Sound is not likely to be listed 

as “depleted” or “threatened” under the Endangered Species Act in the foreseeable future 

(USFWS, 2008c; USFWS, 2013). The USFWS survey found 47,676 sea otters in southwest 

Alaska (USFWS, 2008c). Comparisons of trophic ecology between the southwest Alaska 

threatened distinct population segments and the relatively stable Prince William Sound 

populations may provide insight into the stability of the southcentral stock over the southwest 

stock. 

 

Biology and Anatomy 

 Sea otters are members of the family Mustelidae and are related to river otters, minks, 

ferrets, and weasels (Levinton, 2001). Sea otters are the largest member of the Mustelids by body 

size and weight. Kenyon (1969) demonstrated a slight sexual dimorphism in sea otters; male sea 

otters can reach lengths of up to 148 cm (58 inches) and generally weigh approximately 45 kg 

(100 lbs) while female sea otters are typically smaller. Their overall length is up to 140 cm (55 

inches) and they can weigh up to 32.5 kg (72 lbs). (Kenyon, 1969; Fisher, 1940; and Garrison, 

2005). Sea otter lifespan also varies with sex; males typically live from 10-15 years in the wild, 

whereas females can live up to 20 years in the wild (Estes et. al., 1999). Sea otters, given the 

common name, are greatly adapted to life both in the sea as well as on land. 
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Figure 1. Approximate locations and distributions (shaded region) of the three 
stocks of northern sea otters in southern Alaska (USFWS, 2014). 
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The hind feet of sea otters are webbed for ease of swimming at depth and on the surface while 

their forefeet have un-webbed toes that are highly sensitive and dexterous for finding and 

manipulating food (Fischer, 1939; Jefferson et al., 2015). Sea otters have three primary modes of 

aquatic movement: craniocaudally thrusting for short bursts of speed, paddling motion with the 

hind feet for long-distance traveling, and a lateral sweeping motion with the tail for slow, low 

energy movement (Estes and Bodkin, 2001).  

Life in saltwater requires highly specialized adaptations especially with the intake of 

seawater while feeding and its high salt content. Sea otters and other marine mammals have 

evolved complex kidney systems that allow for the intake of saltwater as a result of consuming 

prey items. This kidney design is known as a reniculate kidney which is multi-lobed allowing the 

animal to survive in a greater range of salinities that terrestrial mammals lack (Costa, 1981; 

Atkinson, Aubin, and Ortiz, 2009). Sea otters have high metabolic rates, and as a result they 

must consume approximately 23-35% of their body weight each day (Estes et. al., 1974; Estes 

and Bodkin, 2001). To satiate this high metabolic cost, sea otters consume a variety of 

invertebrates, which have higher levels of electrolytes compared to teleost fish; subsequently, sea 

otters maintain a positive water balance by also consuming saltwater (Costa, 1981; Jefferson, 

Webber, Pitman, 2015). Primarily consuming invertebrates, sea otters have teeth designed for 

crushing and scooping, rather than containing sharp cutting cusps for tearing meat. To crush the 

shells of their prey, they have large, flat, and rounded molar teeth (Fisher 1941) and sharp 

canines for scooping the organisms out of the shells (Hilderbrand 1954; Timm-Davis et al., 

2015).  

 Sea otters are the only marine mammals that do not contain a layer of blubber; rather, 

they rely solely on the thickness of their fur to keep them warm. Their fur has the greatest 

density of hairs per square centimeter of any mammal on Earth (100,000 hairs/cm2 or 850,000 to 

one million hairs/in2) (Kenyon, 1969; Estes and Bodkin, 2002; Jefferson et al., 2015). Sea otter 

fur is composed of two layers, an undercoat and an overcoat. The undercoat consists of long, fine 

fibers and the overcoat consists of long and sparse, guard hairs. This design allows for a layer of 

air to become trapped in the undercoat, keeping the skin dry when under water (Eberhardt and 

Schneider, 1994; Jefferson et al., 2015). Mammal fur is superior to blubber for heat regulation 

when in the air but is significantly less efficient in water. Fur is incapable of efficiently 

regulating heat flow, requires high levels of maintenance, and is highly compressible with 
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increased water depth and pressure. Sea otters require constant grooming of their fur to maintain 

the layer of air between their skin and the undercoat, taking up about 10% of their daily activities 

(Estes and Bodkin, 2002). They will float on their backs and gently blow air into the undercoat to 

maintain the layer of air between the skin and the undercoat (Jefferson et al., 2015). This layer of 

air in the undercoat provides a heat barrier as sea otters dive to forage, while consuming and 

digesting prey provides additional heat gain at the surface (Estes and Bodkin, 2002).  

 

Trophic Ecology 

 Contrary to what might be expected, sea otters have poor vision underwater (Estes, 

1980). Instead, otters rely on their vibrissae (whiskers) and their highly sensitive forepaws to 

hunt-down and manipulate their prey (Figure 2). When underwater, sea otters will detect prey 

vibrations with their vibrissae, then the otter will move any obstacles with their forepaws to grab 

the prey item (Kvitek et al., 1992). Sea otters have flaps of skin under their forearm pits that act 

as pockets allowing otters to store prey and rocks for the ascent to the surface (Jefferson et al., 

2015). At the surface, sea otters will float on their backs and may use tools (e.g. rocks) collected 

to smash open shells of their prey to obtain the protein-packed meat and tissues (Kenyon, 1978; 

Estes, 1980).  

Sea otters will often raft with other otters during feeding which enhances behavioral 

activities and the social structure. Garshelis (1984) found that sea otters in Prince William Sound 

would often share their food with both pups and other members of the raft, strengthening the 

social organization. Bodkin et al. (2004) noted that during sea otter dives, 64% of the time is 

devoted to foraging while only 36% is attributed to traveling. Average feeding dive durations for 

sea otters was 66 seconds, with an average of 59 seconds at a depth of 11.9 meters for males, and 

an average 67 seconds at a depth of 9.6 meters for females (Calkins, 1978). Caution should be 

noted when considering research done solely with direct visual observation on sea otters and 

their foraging activities as they tend to be biased as otters outside of the visual range cannot be 

properly observed (Estes and Bodkin, 2001). 

 More than 150 prey species are known to be included in sea otter diets while only a 

handful of species are consistent with the diets of individual otters (Calkins, 1978; Estes et al., 

2003; Jefferson et al., 2015). Calkins (1978) observed that sea otters in Prince William Sound 

fed mostly on three major groups of bottom-dwelling invertebrates: mollusks (oysters, clams, 
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mussels, chiton, snails, and octopi), crustaceans (crabs), and echinoderms (sea urchins and sea 

stars). Calkins (1978) and Jefferson, Webber, and Pitman (2015) both noted that when 

invertebrate densities were low, sea otters relied on fish. Sea otters employ various hunting 

strategies depending on prey. Estes (1999) and Estes et al. (2003) observed that some sea otters  

replicated their mother’s diet and hunting strategy; these individuals are known as specialist 

predators. These specialist sea otters can consume 25% more prey items per unit time than sea 

otters that do not replicate their mother’s behaviors; these individuals are known as non- 

specialists. Therefore, it is more advantageous for the pup to mimic the mother’s dietary and 

hunting behaviors (Tinker et al., 2008). 

Sea otters have a strong relationship and play a pivotal role within the coastal 

environment, so much so that sea otters are a keystone species; the removal of sea otters would 

trigger cascading ecological effects. Sea otters are also considered apex predators, meaning they 

have little predation threat and are at the highest trophic level of the local food chain, controlling 

population densities of prey species (Estes and Bodkin, 2002). Sea otters are known to help 

maintain biodiversity of their local communities in areas where sea otters are absent or recently 

reestablished (Jefferson et al., 2015). Extensive evidence shows sea otters significantly alter prey 

abundance and modify community structure in rocky-bottom environments (Kvitek et al., 1992). 

Contrary to rocky-bottom environments, little research has been conducted on structural altering 

by sea otters on soft-bottom environments. However, because of the depth at which infauna 

organisms’ refuge in soft-bottom environments, sea otters may have less of an impact on these 

communities. Furthermore, sea otters living in soft-bottom communities act as a measure of 

disturbance as they tend to dig for prey. Also, the discarding of shells from prey increases 

potential settlement area of larval organisms (Kvitek et al., 1992). 

A major study on the role of sea otters as apex predators observed the trophic cascade of 

absent sea otters on kelp forests and sea urchin abundance. In kelp forest communities where sea 

otters prey on urchins, the kelp is abundant and healthy. Following the removal of sea otters, 

urchins proliferate and begin to feed on the kelp, thus reducing the kelp forest density. Overall, 

the removal of kelp resulted in a decrease in abundance of organisms that rely on the kelp forest, 

such as invertebrates, fish, and mammals (Estes and Bodkin, 2002; Bodkin et al., 2004). 
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Figure 2. Northern sea otter vibrissae (https://aquarium.org/how-sea-otters-keep-cozy/). 
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Environment, Diet, and Feeding Behavior 

Montague and Knight Islands are located along the southern extent of Prince William 

Sound in southcentral Alaska. The southern and southwestern ends of Montague Island are 

predominantly composed of soft-bottom sediments (Kvitek et al., 1992) while the northwestern 

end is composed of rocky shorelines (Calkins, 1978). The coastline of Knight Island, by contrast, 

tends to be rocky-bottomed overall; this is in contrast to the soft-bottom sediments that dominate 

the vast region of southcentral Alaska (Esslinger et al., 2014). Estes and Bodkin (2002) 

demonstrated that the diets of sea otters will often vary according to location and local prey 

availability, season, and residence time. For example, Kodiak Island and Prince William Sound 

have predominantly rocky-bottom sediments and thus sea otters’ primary diets consist of clams 

(Calkins, 1978). By contrast, in the Aleutian, Commander, and Kuril Islands - where bottom type 

is soft sediment and there are low-density populations of sea otters - prey consist primarily of sea 

urchins and fish (Estes and Bodkin, 2002). Sea otters display proficient and advanced survival 

skills to overcome difficulties (high metabolism, low-capacity energy stores, low food resources) 

faced in their harsh habitats (Estes et al., 2003). 

 

Anthropogenic Effects and Sea Otter Regulation 

 Sea otters have a variety of natural predators, including both killer whales (Orcinus orca) 

and bald eagles (Haliaeetus leucocephalus) (Anthony et al., 2008). Humans, however, have 

negatively impacted sea otter populations both directly and indirectly. Direct impacts include 

hunting of the sea otters and pinniped species for the fur trade in the mid-1700s; during this time 

sea otter populations declined and reached record low-densities in Alaska (Doroff et al., 2003). 

Indirect impacts like the oil spill of the Exxon Valdez also have lasting effects that are still 

observed today (Monson et al., 1999). On March 24, 1989 the Exxon Valdez tanker ran aground 

in Prince William Sound, spilling 42 million liters (10.8 million gallons) of crude oil into the 

waters over a three-day period. The Exxon Valdez spill is ranked as the second largest oil spill in 

U.S. waters (although the Deepwater Horizon oil spill is the largest to date, per Ramseur (2010)). 

Garrott et al. (1993) documented the effects of the Exxon Valdez oil spill on sea otter populations 

in Prince William Sound. Prior to the spill, sea otter populations were estimated to be 

approximately 6,546 individuals; following the spill that number dropped to 3,898 individuals. 



	 16	

By comparison, therefore approximately 2,648 sea otters were directly affected by the Exxon 

Valdez event (Garrott et al., 2003).  

Article V of the Convention between Great Britain, Japan, Russia, and the United States 

for the Protection and Preservation of Fur Seals resulted in the cessation of fur seal hunting in 

1911, but also protected sea otters from being commercially hunted and exploited (Fanshawe et 

al., 2003). Following this international treaty, approximately 1,000 to 2,000 sea otter individuals 

remained within the thirteen remnant populations that existed following the extensive fur-trade 

hunting, the southern sea otter is descended from one of these remnant colonies (Kenyon, 1969). 

In 1965, repopulation efforts were undertaken in unoccupied areas between California and Prince 

William Sound. Some sea otters found in Prince William Sound were relocated to southeast 

Alaska, British Columbia, Washington State, and Oregon. Forty-three otters were translocated to 

Washington State, 89 to British Columbia, and 412 to southeast Alaska. Of these translocated 

individuals, only 4 survived in Washington, 28 in British Columbia, and 150 in southeast Alaska 

(Bodkin and Monson, 2003). Interestingly, the growth rates of individual translocated sea otters 

were considerably greater than remnant individuals, with a 21% average growth rate as opposed 

to 9% growth rates of the remnants (Bodkin et al., 1999; Bodkin and Monson, 2003). 

 By the mid-1980s, southwestern Alaska comprised roughly 80% of the world’s sea otter 

populations (Burn, 2004). However, in recent times, sea otter populations have been declining 

with no specific cause. Estes et al. (1998) have hypothesized that changes in killer whale feeding 

behaviors could dramatically affect and alter the balance of marine ecosystems thus altering prey 

abundances, though this hypothesis has been proven to be controversial among scientists 

(Schrope, 2007; Garcia et al., 2016). Changes in killer whale diet behavior have been attributed 

to increased ocean temperatures (Estes et al., 1998). Furthermore, such a change may explain 

why southwestern sea otter populations in Alaska are declining overall. Researchers have 

continually proposed hypotheses to explain these decreases in Alaskan sea otter populations, 

though one particular hypothesis has yet to be adopted as the ultimate reason for the declines. 

Rather, a combination of certain factors is most likely the cause for population declines (Garcia 

et al., 2016). 

 

Stable Isotope Ratios 
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 Stable isotopes are used by researchers to better understand and quantify ecosystem 

structuring via trophic dynamic studies. A stable isotope is a naturally occurring, non-reactive 

form of an atom that is non-radioactive and thus not subject to decay. Stable isotopes have the 

same elemental atomic number but have additional neutrons, thus changing the atomic mass of 

the element. An example of a stable isotope would be carbon-13, which possesses one more 

neutron than carbon-12. Though additional neutrons affect the atomic mass, they do not affect 

electron shells, nor the chemical reactions within these shells (DeNiro and Epstein, 1978; 

Arnold, 1982; Minagawa and Wade, 1984; Peterson and Fry, 1987; Kling et al., 1992; Kelly, 

1999; Vander Zanden et al., 1999; Post et al., 2000; Fry, 2006). Atoms whose stable isotopes are 

commonly used for ecological analyses include carbon, nitrogen, oxygen, hydrogen, and sulfur.  

Stable isotope analysis studies have included demonstrating increased carbon in the 

atmosphere from ice core samples in Antarctica to analyzing ancient human diets via isotope 

ratios from bone samples (Schoeninger and Moore, 1992; Stelling and Yu, 2019). Abundances of 

these stable isotopes vary naturally depending on the ecosystem in which they are extracted 

(Peterson and Fry, 1987; Fry, 2006; Laitha, 2007). Stable isotope analysis is a tool for 

overserving trophic structuring of the past as isotopes are considered natural tracers. Stable 

isotopes can be used to better comprehend the dynamics of marine ecosystems, focusing on the 

biological and physical contributions of life and ecosystems. Through the analysis of stable 

isotopes, marine and estuarine ecosystems’ food web structure can be determined; furthermore, 

scientists have noted that the use of multiple stable isotopes when conducting research provide 

more accurate results (Laitha, 2007; Newsome et al., 2010). Stable isotope ratios are utilized by 

ecologists to better understand the interaction of organisms with different ecological zones 

(Clementa and Koch, 2001). In the Aleutian Archipelago, for example, surface water 

productivity has been shown to decrease from east to westward by observing stable isotope ratios 

(Hunt and Stabeno, 2005). 

 Substantial interest in the use of stable isotopes has increased since the late 1970s, 

specifically carbon and nitrogen for analysis of the dynamics and structures of food web ecology 

and ecological communities (Peterson and Fry, 1987; Kling et al., 1992; Kelly, 1999; Vander 

Zanden et al., 1999; Post et al., 2000; Newsome et al., 2010). Food webs illustrate trophic 

interactions within ecological communities, but are difficult and time consuming to reconstruct 

and at times inadequately represent the mass flow within these ecological communities (Paine, 
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1998; Hairston and Hairston, 1993; Polis and Strong, 1996; Vander Zanden and Rasmussen, 

1999; Post, 2002; and Newsome et al., 2010). One of the most accurate measures of food web 

dynamics is to follow the pathway of organic matter; stable carbon and nitrogen isotopes are 

generally used (McCutchan and Lewis, 2001). The ratio between the carbon of a sample and a 

carbonate standard can be used to determine ultimate sources of carbon and represented by the 

ratio of carbon, δ13C (Post, 2002; and Newsome et al., 2010). On the other hand, the ratio 

between nitrogen in a sample and atmospheric nitrogen gas (N2) can determine the trophic 

position of an organism, δ15N (Wada et al., 1991; Post, 2002; and Newsome et al., 2010). The 
13C/12C ratio responds conservatively due to the low trophic fractionation of carbon (i.e. the 

processes that affect relative abundances of stable isotopes), approximately 1-3‰ (DeNiro and 

Epstein, 1978; Fry and Arnold, 1982; Peterson and Howarth, 1987; and Schäuble, 2004), while 

nitrogen fractionation is larger approximately 3-5‰ (DeNiro and Epstein, 1981; Minagawa and 

Wade, 1984). Analysis of stable isotope ratios may reveal differences in trophic structure with 

geographic variations. Furthermore, stable isotope ratios may shed light on trophic variations 

within particular populations based on sex and age of individuals. 

 

Objectives 

 The purpose of this study was to examine differences in stable isotope ratios and content 

of thirty-six northern sea otter individuals from two southern Alaska regions. Regional 

differences among populations may affect foraging behaviors and thus diets of sea otters, which 

in turn may correlate with the variation in stable carbon and nitrogen isotopes. Differences in 

bottom sediment may lead to trophic ecology differences between populations (Calkins, 1978; 

Estes and Bodkin, 2002; Esslinger et al., 2014). The goal of this study was to 1) determine what 

factors or combinations of factors (i.e. location, age class and sex) affect stable isotope ratios 

among sea otter individuals, and 2) determine if there are differences between the southcentral 

and southwestern sea otter populations. 

 

Materials and Methods 

Sample Locations 

 Sea otter vibrissae samples were collected from a total of 12 sea otters from southwestern 

Alaska and a total of 24 sea otters from Prince William Sound from 1996-2003 (Table 1).  
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Table 1. Northern sea otter vibrissae samples (mean ± standard deviation) from Alaska, 1996-
2003. Southcentral Alaska = 24 individuals, southwest Alaska = 12 individuals. 
 
Southcentral Alaska  
ID    N Location Sex     Age Class  δ13C                 δ15N 
NVP9642/SO-96-42 1 Knight Is. F     Subadult -15.90 ± 0.22 10.71 ± 0.46 
NVP9644/SO-96-44 1 Knight Is. M     Adult -14.83 ± 0.22 12.32 ± 0.85 
NVP9652/SO-96-52 1 Knight Is. M     Subadult -14.52 ± 0.42 11.43 ± 0.75 
NVP9659/SO-96-59 1 Knight Is. F     Adult -12.14 ± 1.45 11.62 ± 0.48 
SO-97-24  1 Knight Is. F     Adult -14.66 ± 0.22 11.40 ± 0.53 
SO-97-47  1 Knight Is. M      Adult -14.75 ± 0.69 10.52 ± 0.73 
SO-01-19  1 Knight Is. F     Adult -14.62 ± 0.52 11.66 ± 0.65 
SO-01-26  1 Knight Is. M     Adult -15.13 ± 0.45 12.77 ± 0.95 
SO-98-38  1 Knight Is. M     Adult -14.92 ± 0.53 10.16 ± 0.23 
SO-02-33  1 Knight Is. F     Subadult -14.99 ± 0.49 10.69 ± 0.54 
SO-02-09  1 Knight Is. F     Adult -13.92 ± 0.52 13.02 ± 0.72 
NVP9623/SO-96-23 1 Montague Is. F     Subadult -14.83 ± 0.45 12.86 ± 0.46 
NVP9627/SO-96-27 1 Montague Is. M     Adult -13.53 ± 0.22 12.36 ± 0.54 
NVP9633/SO-96-33 1 Montague Is. F     Adult -12.98 ± 0.81 13.46 ± 0.95 
NVP9638/SO-96-38 1 Montague Is. M     Subadult -14.75 ± 0.49 12.13 ± 0.52 
SO-97-03  1 Montague Is. M     Adult -14.05 ± 0.39 11.88 ± 0.97 
SO-97-14  1 Montague Is. F     Adult -13.85 ± 0.43 13.18 ± 0.63 
SO-97-32  1 Montague Is. M     Subadult -13.38 ±	0.64  12.38 ± 0.82 
SO-01-04  1 Montague Is. F     Adult -14.10 ± 0.46 11.64 ± 0.88 
SO-01-10  1 Montague Is. F     Subadult -14.09 ± 0.75 11.81 ± 0.86 
SO-01-11  1 Montague Is. M     Adult -14.60 ± 0.44 11.52 ± 0.62 
SO-02-12  1 Montague Is. M     Adult -13.77 ± 0.73 10.88 ± 0.56 
SO-02-13  1 Montague Is. F     Subadult -14.50 ± 1.31   9.57 ± 1.15 
SO-02-11  1 Montague Is. F     Adult -13.34 ±	1.09 12.08 ± 0.35 
 
Southwest Alaska 
ID    N Location Sex     Age Class δ13C                 δ15N  
600-015  1 AK Peninsula M     Adult -12.70 ± 0.31 13.44 ± 0.40 
BS98014  1 AK Peninsula M     Adult -11.99 ± 0.76 17.42 ± 0.31 
BS00014  1 AK Peninsula M     Adult -14.12 ± 0.62 14.21 ± 0.72 
BS00019  1 AK Peninsula F     Adult -13.92 ± 0.58 14.99 ± 0.72 
BS00020  1 AK Peninsula M     Subadult -15.09 ± 1.71 13.82 ± 5.33 
BS95043  1 AK Peninsula F     Adult -12.83 ± 1.09 13.25 ± 1.67 
ALE_04_001  1 Aleutians F     Adult -13.27 ±	0.45 11.87 ±	0.65 
ALE_04_002  1 Aleutians F     Subadult -13.17 ± 1.11 14.36 ± 0.91 
ALE_04_003  1 Aleutians M     Subadult -13.64 ± 0.72 13.15 ± 0.77 
ALE_04_004  1 Aleutians F     Subadult -13.07 ± 1.39 13.67 ± 1.27 
195-003  1 Aleutians F     Adult -12.00 ± 0.58 15.20 ± 0.87 
BS00035  1 Aleutians F     Adult -13.75 ± 1.60 12.53 ± 1.41 
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Collection was accomplished in part by native hunters and federal agency personnel from the 

USFWS and United States Geological Survey (USGS). The southwest Alaska locations are 

found between 52º and 55º N and 160º and 177º W and included locations Kalekta Bay, Clam 

Lagoon, St. Catherine Cove, Cold Bay, Sand Point, King Cove, Zachary Bay, and Port Heiden in 

the Alaska Peninsula and Aleutian Archipelago. Sea otter tissue samples were also collected 

from Knight and Montague islands in southern Prince William Sound which are located at 

approximately 60º N and 147.5º W.  

 

Sea Otter Samples 

 Collection of sea otter vibrissae was accomplished via clipping of the vibrissae from 

deceased sea otters from all 36 northern sea otters. Vibrissae samples were collected from 

subsistence harvested and stranded sea otters from 1997-2014 in southern Alaska. All fissiped 

samples previously collected were under USFWS permit number MA041309-5 (V.A. Gill, co-

PI). Previous chemical analyses were conducted under MMPA 806. No Institutional Animal 

Care and Use Committee (IACUC) permit was needed as no living organisms will be sampled 

for this study. Samples from southcentral Alaska were collected during July and August while 

southwestern samples were collected during the months of January, February, June, August, 

September, October, and November. Collection years included 1996-1998 and 2000-2003. Age 

classes for all organisms are sub-adults (1-3 years of age) and adults (4-9 years of age). Sea otter 

vibrissae samples will be evenly distributed among sample collections based on location, sex, 

and age class. 

 

Statistical Analysis 

 To determine if trophic contribution by sea otters in southern Alaska is predominantly 

benthic or pelagic, a comparison of δ13C and δ15N by location, age class, and sex was conducted. 

Mean δ13C and δ15N of each sea otter vibrissae were used in statistical analyses as there were no 

significant differences in either δ13C or δ15N within each segment. A combination of parametric 

analyses was employed and all statistical analyses were performed in R Studio. Analysis of 

Variance (ANOVA) tests and one sample t-tests (t-test) were used to test for individual stable 

isotopes while Multivariate Analysis of Variance (MANOVA) tests and Principal Component 
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Analysis (PCA) tested for the influence of location, age class, and sex on the combined stable 

carbon and nitrogen isotope ratios. 

 

Stable Isotope Analysis 

 Stable carbon and nitrogen isotope ratios were measured for each sea otter vibrissa. To 

remove unwanted debris and potential contaminating substances, vibrissae were cleaned with 

steel wool, dried, and cut into 2.5 mm segments from the proximal end to distal end of the 

vibrissae using surgical forceps and snippers. Every other segment of each whisker segment was 

analyzed for stable isotope ratios and each archived segment was treated as a pseudo-replicate if 

additional analyses were needed (e.g. the physical loss of a sample). Samples weighed 

approximately 0.6-0.8mg and placed in 3.5 x 5mm sterile aluminum tin capsules for stable 

isotope analysis at the Smithsonian Institution Museum Support Center in Suitland, Maryland. 

Samples were combusted and analyzed using a Thermo Delta V Advantage mass spectrometer in 

continuous flow mode coupled to an Elementar vario ISOTOPE Cube Elemental Analyzer (EA) 

via a Thermo Conflo IV. For every 10-12 samples, a set of standards were run to ensure proper 

functioning of the mass spectrometer. Standards include Costech acetanilide D and a urea (Urea-

UIN3) standard, both of which are calibrated to USGS40 (L-glutamic acid) and USGS41 (L-

glutamic acid). All samples and standards were run with the same parameters and procedures, 

including an expected reproducibility of the standards to be < 0.2‰ (1σ) for both δ13C and δ15N.   

The ratio of the heavy to light isotopes for each vibrissae sample was expressed in terms 

of δ and were reported in comparison to the standard reference material Pee Dee Belemnite 

(PDB) for carbon and atmospheric air (N2) for nitrogen. The stable isotope values were obtained 

from the following equation: 

δX= [(Rsample/Rstandard)-1] x 1000 

where X is the isotope being analyzed (i.e. 13C or 15N) and R is the ratio of the heavy to light 

isotope (i.e. 13C/12C or 15N/14N). The units of the δ	values were expressed in parts per thousand or 

per mil (‰). Raw isotope values were corrected using a 2-point linear correction on the 

calibrated Costech acetanilide and urea standards. 
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Results and Discussion 

Spatial 

No significant differences were detected in both δ13C and δ15N along individual vibrissa; 

therefore, mean stable isotope values were used for the remaining statistical analyses (t-test: df = 

35, t = -88.848, p = 1.000; df = 35, t = 48.073, p = 1.000, respectively). The mean range in the 

δ13C in vibrissae in Prince William Sound was -15.90 ± 0.22 to -12.14 ± 1.45. The mean range in 

the δ15N in vibrissae in Prince William Sound was 9.57 ± 1.15 to 13.46 ± 0.95 (Table 1). The 

mean δ13C and δ15N of each sea otter vibrissa combined were significantly affected by location 

(ANOVA: df = 3, F = 4.9037, p = 0.0065; df = 3, F = 11.947, p < 0.0001, respectively; Figure 3). 

The combined mean δ13C and δ15N values were also significantly different between southcentral 

and southwest Alaska (MANOVA: df = 3, F = 5.2455, p = 0.0004; Figure 4).  

Within Prince William Sound, no significant differences, individually or combined, for 

δ13C and δ15N were found between Knight Island and Montague Island (ANOVA: df = 1, F = 

2.3298, p = 0.1362; MANOVA: df = 1, F = 1.9734, p = 0.1639; Figure 5). Additionally, no 

significant differences, individually or combined, for δ13C and δ15N were found between the 

Alaskan Peninsula and the Aleutian Islands (ANOVA: df = 1, F = 2.0468, p = 0.1617; 

MANOVA: df = 1, F = 1.7366, p = 0.2303; Figure 6). 

The two study locations, southcentral Alaska including Prince William Sound, and 

southwestern Alaska including the Aleutian Archipelago and Alaska Peninsula, are marked by 

different sediment substrata. Coastal southcentral Alaska (PWS) has a predominately rocky-

bottom environment (Esslinger et al., 2014). By contrast, the southwest Alaska (Alaska 

Peninsula and Aleutian Archipelago) margin has a generally soft-bottom environment (Calkins, 

1978). As sea otters are largely benthic foragers, differing bottom types may affect the types of 

prey located in these locations. Likely benthic prey items consumed by sea otters in southcentral 

and southwest Alaska include, but are not limited to; sea urchins, clams, mussels, octopuses, sea 

cucumbers, some sea stars, etc., these organisms typically have a trophic level around 2 or 2.5. 

Likely pelagic prey items in the southwest Alaska populations include fish species, such as 

Pacific herring (Clupea pallasi), which have trophic levels of 3 (Trites, 2019). These varying 

foraging environments may correlate with the statistical findings of more enrichment in either 

carbon or nitrogen isotopes precluding benthic or pelagic feeding, respectively (Gorbics and 

Bodkin, 2006). 
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Figure 3. Isotope variation in sea otter samples based on location in southern Alaska. 
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Figure 4. Isotope variation in sea otter samples between southcentral and southwest Alaska. 
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Figure 5. Isotope variation in sea otter samples within Prince William Sound, comparing Knight 
Island and Montague Island. 
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Figure 6. Isotope variation in sea otter samples within southwest Alaska, comparing the Alaska 
Peninsula and the Aleutian Islands. 
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The otter vibrissae δ13C from PWS ranged just over 3‰ while δ15N ranged 4‰. Thus 

otters in PWS have heavier benthic diets. The southwest population was on average slightly 

more enriched in both δ13C and δ15N than the otters in PWS. The otter vibrissae δ13C from the 

Peninsula and Aleutian Islands also ranged just over 3‰ while δ15N ranged 5‰. While the 

nitrogen isotopes reflect roughly a fluctuation within one trophic level, the carbon isotopes are 

more reflective of a change in prey habitat (DeNiro and Epstein, 1978, 1981). Carbon isotope 

enrichment is a hallmark of nutrient recycling as gross and particulate matter on the way to the 

benthos are digested and excreted, sometime multiple times, each time incrementally increasing 

the carbon isotope (France and Peters, 1997). Therefore, the range in the otters’ δ13C likely 

reflects a mix of benthic (largely invertebrates) and neritic (fishes) foraging. The increased range 

in δ15N from southwest Alaska potentially reflects the inclusion of more fishes in the sea otter’s 

diet (DeNiro and Epstein, 1981). 

Sea otter populations in PWS have benthic invertebrate-dominate diets while sea otter 

populations in southwest Alaska have pelagic fish-dominated diets, though decadal shifts have 

been noted in more recent research (Calkins, 1978; J. Watt et al., 2000; Reisewitz et al., 2005). 

Research notes regional dietary variations among sea otter populations that have manifested as a 

result of the dramatic decline and increase in sea otter populations over the past five decades 

(Estes et al., 2005). These findings support the hypotheses that sea otter populations in southern 

Alaska exhibit regional dietary variations via differentiation in stable carbon and nitrogen isotope 

values. Therefore, it is logical to suggest that the southcentral sea otter populations present a 

different trophic ecology when compared to the sea otter populations in southwestern Alaska. 

These results shed may light on how regional ecosystems are affects by population decreases and 

increases within decadal time spans. This study further adds to the complexities of trophic 

ecology studies, specifically of a coastal keystone species such as the northern sea otter. 

However, a majority of the Knight Island population in PWS can be found within a range 

of 2‰ δ13C and 3‰ δ15N. The Montague Island population has a majority within 1 ‰ carbon 

and 3 ‰ nitrogen. The two remaining individuals, one from Knight Island and one from 

Montague Island, remain close to 3‰ δ15N but the Knight Island individual is more enriched in 

δ13C. These findings are consistent with data acquired in previous studies. Sea otters in Prince 

William Sound generally feed on benthic invertebrates, preying less commonly on pelagic fishes 

(Calkins, 1978). Further research conducted by Watt et al. (2000) has noted decadal shifts in 
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dietary preferences of PWS sea otters to be dominated by benthic invertebrates including, but not 

limited to, sea urchins, clams, crabs, and octopuses. Calkins (1978) further supported general 

foraging habits of sea otters in PWS presented by Kenyon (1969) in California, that showed 

mean dive times of 66 seconds. Furthermore, it was noted that males spent on average 59 

seconds foraging while females spent 61 seconds foraging, a non-significant differences in 

forage times. Continued general foraging habits of sea otters in PWS include consuming of entire 

prey species such as octopuses and clams. Some lager clams are first broken open with a large 

stone and then consumed (Calkins, 1978). Interestingly, Larson et al. (2013) found that sea otters 

in PWS tend to rarely consume sea cucumbers, while they are seen as a minor importance to sea 

otters in southwestern Alaska. Recent studies show that sea otters in PWS are proficient in 

digging-up buried benthic invertebrates and thus do not rely on a heavy pelagic fish diet (Watt et 

al., 2000). Overall, sea otters are opportunistic feeders though regional variations are noted. 

There is no clear pattern between the Alaska Peninsula and Aleutian otter populations, 

however; 66% of the Peninsula otters are found within 1‰ δ13C. and 3‰ δ15N. Although both 

locations are predominately soft bottom the Peninsula otters also have a wider range in nitrogen 

isotopes suggesting a more pelagic foraging strategy. In general, southwestern Alaska sea otter 

populations have declined 56-68% since the mid-1980s (Burn et al., 2005). This overall decline 

in sea otter populations has implication for sea otter foraging and dietary behaviors and 

preferences that are in contrast to sea otter populations in southcentral Alaska (PWS). For 

example, Evans et al. (1997) noted the keystone effect of the norther sea otter in the Aleutian 

Archipelago. That is, when sea otter populations were high, sea urchin populations were low and 

kelp forests were numerous along the coastline. As such, pelagic fishes were also abundant and 

due to the opportunistic nature of sea otters, a fish-dominated diet was common (Evans et al., 

1997). In more recent years, and corresponding with a decline in sea otter numbers, Watt et al. 

(2005) demonstrated a shift in foraging dynamics. Sea otters would feed on benthic organisms to 

satisfy dietary requirements. As southwestern sea otter populations have recently begun to 

equilibrate, fish abundance has slightly increased leading to an historic fish-dominated diet and 

foraging behavior. An interesting point noted by Watt et al. (2005) was that although kelp forests 

generally exist in soft-bottom environments, southwestern sea otter populations fed substantially 

less on benthic organisms and even were less successful in foraging buried prey items than their 

southcentral counterparts. 
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Age 

Adult sea otters comprised 66% of the study animals while 33% were subadult. The δ13C 

for all study adults ranged from -15.13 ± 0.45 to -11.99 ± 0.76 and δ15N ranged from 10.16 ± 

0.23 to 17.42 ± 0.31. The δ13C values for subadults ranged from -15.90 ± 0.22 to -13.07 ± 1.39 

and δ15N ranged from 9.57 ± 1.15 to 14.36 ± 0.91 (Table 1). No significant difference in δ13C 

and δ15N was found based on age class between southcentral and southwestern Alaska (ANOVA: 

df = 1, F = 3.3195, p = 0.0773; df = 1, F = 0.5891, p = 0.4481; MANOVA: df = 1, F = 1.6642, p = 

0.2048; Figure 7). Within Prince William Sound no significant difference for age class was 

found between Knight Island and Montague Island (MANOVA: df = 1, F = 1.4072, p = 0.267). 

Additionally, no significant difference based on age class was found between the Alaskan 

Peninsula and the Aleutian Islands (MANOVA: df = 1, F = 0.7299, p = 0.5058).  

Roughly 58% of the adults lie within the two trophic levels. Almost half of the subadults 

(42%) lie within the two trophic levels. Furthermore, about 47% of the sea otters that fell outside 

the range of the two trophic levels were from the southwest region. General trends in sea otter 

population declines and increases have led to common prey items consumed across all ages post-

weaning (Watt et al., 2000; Burek et al., 2005). As these results have shown, there are no 

significant differences in foraging habits between age classes of sea otters regardless of location. 

Therefore, it is suggested that adult and subadult sea otters within their respective regional 

populations feed on common prey items. Research by Watt et al. (2000) and supported by 

Garlich-Miller et al. (2018) noted dietary shifts associated with kelp forest abundance linked to 

sea otter population numbers, affecting all ages post-weaning. Additionally, evidence shows 

seasonal variations can induce dietary shifts. For example, from early-summer to mid-winter 

benthic invertebrates are common prey, while late-winter and spring foraging shifts to pelagic 

fish (Watt et al., 2000). Findings in this study have supported evidence that in southwestern 

Alaska sea otter populations, pelagic fish were preferentially consumed in the 1990s, though 

recent research has suggested that another shift from pelagic fish to benthic invertebrates may be 

occurring in southwestern Alaska (Reisewitz et al., 2005). 
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Figure 7. Isotope variation in sea otter samples based on age class in southern Alaska. 
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Sex 

Male sea otters comprised 44% of the study animals while 55% were female. The δ13C 

values for males ranged from -15.13 ± 0.45 to -11.99 ± 0.76 and δ15N values ranged from 10.16 

± 0.23 to 17.42 ± 0.31. Female otter values ranged from -15.90 ± 0.22 to -12.00 ± 0.58 for δ13C 

and δ15N ranged from 9.57 ± 1.15 to 15.20 ± 0.87 (Table 1). No significant differences in either 

δ13C and δ15N, or combined, were found between sex between southcentral and southwestern 

Alaska (ANOVA: df = 1, F = 0.99, p = 0.3268; df = 1, F = 0.0075, p = 0.9316; MANOVA: df = 1, 

F = 0.8178, p = 0.4501; Figure 8). Within Prince William Sound No significant sex differences 

were identified between Knight Island and Montague Island (MANOVA: df = 1, F = 0.2473, p = 

0.7831) or between the Alaskan Peninsula and the Aleutian Islands (MANOVA: df = 1, F = 

1.0226, p = 0.3979; Figure 8). 

Principal component analysis revealed 25% of all female and 20% of all male sea otters 

isotopically fell within 1‰ δ13C and 3‰ δ15N, and 50% of females and 75% of males fell within 

2‰ δ13C and 3‰ δ15N. Female otters have a predominantly wider range in δ13C while a wider 

range in δ15N is exhibited by male otters. One possible explanation for this may be that females 

tend to feed more predominantly on benthic organisms while males are feeding on more pelagic 

organisms. Female sea otters generally have a single pup at a time and will continuously nurture 

that single pup until it is weaned. A mother sea otter will only leave her pup unattended when 

she dives to forage, up to at most two minutes. Therefore, it is logical to suggest that mother sea 

otters would preferentially feed on benthic organisms as to remain as near to her pup as possible. 

In contrast, male sea otters have no obligation to care for pups and thus could embark on farther 

forage trips, including pelagic fishing. Results from this study loosely support this notion that 

mother otters may generally feed on benthic invertebrates, though more data is needed to further 

support this hypothesis. Weaning of sea otter pups takes three to six months (Burek et al., 2005) 

and during this time the pup is close to its mother learning social behaviors as well as foraging 

techniques (Jefferson et al., 2015). Post-weaning, sea otter pups are endowed with these lifestyle 

and survival skills including how to interact within a community raft, and what prey items 

present the greatest metabolic reward. The learned skills and prey identification of sea otter pups 

varies based on regional differences as seen with previous research and the results of this study 

(Reisewitz et al., 2005). 
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Figure 8. Isotope variation in sea otter samples based on sex in southern Alaska. 
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Conclusion 

 The results of this study showed distinct regional differences in stable carbon and 

nitrogen isotope ratios, and thus trophic ecologies, within sea otter populations between 

southcentral Alaska and southwest Alaska. Sea otters in Prince William Sound had a 

significantly different stable carbon and nitrogen content than sea otters from the Aleutian 

Archipelago and the Alaskan Peninsula. 

• Overall, a significant effect of location on stable carbon and nitrogen isotope ratios was 

observed between southcentral Alaskan sea otter populations and southwest Alaskan sea 

otter populations. This distinction between trophic ecologies supports pervious 

observations that sea otters in southcentral Alaska generally consume more benthic-

invertebrate heavy diet due to a rocky-bottom environment (Esslinger et al., 2014). By 

contrast, southwestern sea otters consume more pelagic organisms given the soft-bottom 

sediments and relatively abundant kelp forests (Estes and Bodkin, 2002). 

• No significant isotopic differences were found within sea otter populations in both 

southcentral and southwestern Alaska. This is likely because these populations of sea 

otters consume similar prey items and thus do not differ significantly in stable carbon and 

nitrogen isotope content. 

• Age class was not a significant factor in determining trophic differences between regions 

and within sea otter populations. This is most likely due to the fact that following a 

weaning period of 3-6 months, sea otter pups, and thus subadult sea otters, are endowed 

with the hunting skills required to feed on similar prey items as adult sea otters (Burek et 

al., 2005). 

• Lastly, sex had no significant effect on stable carbon and nitrogen isotope content in 

determining differences in trophic ecologies between regions and also within sea otter 

populations. A possible explanation for this result is similar to that of the age class 

comparison; female and male sea otters tend to have similar diets within regional trophic 

ecologies. Though a wider range in stable carbon within females may also suggest that at 

some point, females feed on a more benthic invertebrate-rich diet than males; however, 

this is a non-significant phenomenon. 

 



	 34	

This study compared stable carbon and nitrogen isotope ratios from vibrissae within 36 

sea otter individuals from two regions in southern Alaska, and is the first to make trophic 

comparisons between two sea otter populations. Distinct differences were noted based on 

location, primarily between the two regions in southern Alaska, Prince William Sound 

(southcentral) and the Aleutian Archipelago and the Alaskan Peninsula (southwest). The results 

presented here illustrate the importance of considering regional variations in determining trophic 

ecology differences within a species, which is crucial for future research in understanding how 

stable isotope analysis can assess trophic dynamics within a species. 
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