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I. ABSTRACT 

Estuaries are exposed to varying stressors, whether they be physical, chemical, or 

environmental.  The most notable of stressors is eutrophication of coastal and inland 

ecosystems.  This is a result of increased supply of nutrients fueling production within the 

system.  One outcome of this increased nutrient load to the system is that of algal blooms.  

These blooms can impact the aesthetic appearance and degrade the quality of health of the 

system.  Many of these coastal zones and waterways are critical habitats for many biological 

(some endangered) species and serve as recreational areas for human populations.  Elkhorn 

Slough, California is one of these critical habits.  Over its history, land use and environmental 

changes have degraded the quality of the ecosystem.  Elkhorn Slough National Estuarine 

Research Reserve (ESNERR) has been tasked with oversight and monitoring responsibilities 

to maintain the system at a suitable level for the native species to thrive.  This study, in 

conjunction with ESNERR support, will use aerial imagery of designated restoration areas to 

investigate the ability to use spectral analysis techniques to identify, classify, and calculate the 

percent coverage of algae masses.  The aim is to use the inherent spectral analysis toolboxes 

in Harris Geospatial’s ENVI to ingest 3-band RGB imagery and differentiate and accurately 

classify algal coverage.  The goal is to compare ENVI’s performance and accuracy, using 

ground-truthed base-image against traditional, time-intensive hand analytics.  There is an 

extensive imagery library that has not be analyzed.  This study will assess the potential ability 

to automate the process and increase classification capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Estuaries, Water Quality, Environmental Monitoring, Spectral Analysis, Elkhorn 

Slough, algae monitoring, dissolved oxygen, hypoxia, eutrophication 
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II. INTRODUCTION 

A. BACKGROUND 

Estuaries are remarkable systems common to global coastlines and are considered some 

of the most biologically productive environments in the world (Wise 2017).  They provide 

ecologically and economically valuable wildlife refuge, biological nursery, and dynamic 

nutrient transformation zones (Chuwen et al 2009; Hoeksema et al 2018; Paerl et al 1998).  

Three-quarters of the world’s population resides within coastal river basins; forty-four percent 

of that population lives within 150 km of the coast, and this percentage is even higher within 

the United States (Handler et al 2006; Le et al 2011; Paerl et al 1998).  Increased awareness 

of, and attraction to these zones has created a dependence upon these systems for sustainment 

and recreation. 

1. Estuary Definition 

The term estuary is defined as a system characterized by and emphasis on riverine input 

and at least a periodic connection with the ocean; where some regions are described by their 

geometry of permanently open to the ocean, where others are closed from the ocean by a sand 

bar across their mouths, either intermittently, seasonally, or for a protracted period of time 

(Hoeksema et al 2018).  These coastal zones are areas where terrestrial rivers meet ocean 

influences, impacting its ecological state or nature (Palmer et al 2011 and Plew et al 2015).  

Classification of estuaries varies according to different aspects, while the diversity of estuary 

types is well known from literature, the major contributors defining type are the relationships 

of tidal range, sediment status, and relative wave-tide-fluvial processes (Cooper 2001). Global 

coastlines vary in all the above-mentioned factors.  Therefore, classification of an estuary may 

be difficult, each has a unique combination of tidal, climate, geomorphological, and river input 

(Palmer et al 2011).  Traditionally, the classification has been attributed to the coastal geometry 

and the stratification owing to seawater intrusion (Hansen and Rattray1966).  Independent of 

classification, estuaries have been and remain vital to commercial, and recreational industries; 

for the purposes of tourism, fisheries, and water supply (Le et al 2011). 
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2. Human Impact on Estuarine Systems 

Estuaries have great capacity to support and maintain biodiversity (terrestrial & marine) 

and provide protection to coastal infrastructure by buffering energetic wave activity from the 

ocean.  These low-profile systems provide a barrier to extreme flooding events associated with 

storms and hurricanes (Leonardi et al 2018).  They are also the focal points for urban, 

industrial, and agricultural development and usage as recreational activities (Hoeksema et al 

2018).  Exchanges and interactions from increasing populations within coastal zones tend to 

have consequences, at times; significant.  Large population densities and impacts of human 

activities on coastal ecosystems can result in various alterations such as deterioration of water 

quality (WQ) and significant changes in the hydrological and biogeochemical cycles and 

biodiversity (Guimaraes et al 2017), to name a few. 

The physical layout of estuaries can be altered as well. The protective nature and 

energy-buffering capabilities provided creates a nutrient rich system within the sediments and 

encompassing water, adding to the economic worth and attraction (Kennish 2019).  Flow 

patterns have been changed in many systems and estuaries have been diked to use land space 

and sediments for agricultural purposes (Figure 1) (Orescanin et al 2019).  These expansions 

in estuarine land use alter critical hydrological and biogeochemical dynamics, impacting health 

and biological suitability further up or down stream, and historically dried out areas subside 

too low for marsh to survive (Clark and O’Conner 2019).  A secondary affect from coastal 

wetland diking is the significant degradation of WQ throughout the system due to a lack of 

flushing (water residence time) behind tidal and flow control structures (Orescanin et al 2019). 
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Figure 1. Restoration of the Nisqually Delta (diked) 

Population overcrowding and additional environmental stressing has the potential to 

negatively impact the system.  The past few decades, research and studies have resulted in an 

increased focus in gaining a better understanding of the physical and biochemical balances that 

maintain “suitable” and “good” health of our global estuaries.  It is of world-wide concern that 

estuaries are now considered the most degraded of all temperate marine ecosystems (Chuwen 

et al 2009).  While increased regulatory efforts in the United States and elsewhere have yielded 

many improvements in environmental quality compared to a few decades ago, environmental 

degradation persists on a global scale and broad environmental goals have yet to be achieved 

(McCormick and Cairns 1994).  Government agencies and the general public have become 

increasingly concerned about maintaining the quality of aquatic resources (Maznah and Omar 

2010).  The ability to protect biological resources depends on the ability to identify and predict 

the effects of human actions on biological systems; thus, the data provided by indicator 

organisms can be used to estimate the degree of environmental impact and its potential danger 

for others (Karr and Chu 1999). 
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3. Eutrophication Impact 

Eutrophication is one of the main WQ issues worldwide, affecting both freshwater and 

marine ecosystems (Guimaraes et al 2017).  Eutrophication is defined as the supply of excess 

nutrients and supplements that result in excessive growth of primary producers. Plankton and 

microalgae can contribute up to 95% of the primary production distribution in response to 

readily available nutrients (Kotsedi et al 2012).  All facets of a eutrophic system can and will 

be negatively impacted within the estuarine system, if not properly monitored and kept in 

check.  Eutrophication of surrounding coastal waters is a problem of epidemic proportion and 

can have disastrous short- and long-term consequences for WQ and resource utilization (Millie 

et al 2004).  Twomey and Thompson (2001) found that unmonitored eutrophic systems would 

progress to a level of biological and hydrologic degradation due to the emergence of harmful 

algal blooms (HAB’s), which can result in the total loss of habitat biota, and commercial value. 

Human activities compound the task of monitoring and assessing health status of 

estuaries.  Resultant land alterations can increase nutrient loads, displaying nuisance algal 

blooms, degraded WQ, and habitat loss (Twomey and Thompson 2001).  As Agencies and the 

general public have become more aware of the potential dangers  associated with hydrologic 

flow alterations, significant time and effort has been put into understanding the primary 

production and algal concentrations (Geyer et al 2018; Guimaraes et al 2017; Handler et al 

2006; Hoeksema et al 2018; Hubertz and Cahoon 1999; Kotsedi et al 2012; Maznah and Omar 

2010; McCormick and Cairns 1994; Millie et al 2004; Sharp 2010; Paerl et al 1998; and Paerl 

et al 2007).  Much of this work has focused on phytoplankton populations rapid response to 

physical, chemical, and biological changes in eutrophic estuarine systems (Hsieh et al 2007). 

B. STUDY SITE 

Elkhorn Slough (ES) is a 7-mile-long tidal estuary located in central California that is 

permanently open to Monterey Bay (Figure 2).  It’s a biologically rich environment that 

provides habitat diversity to resident and migratory birds, plants, marine mammals, and fish, 

and has been identified as a Globally Important Bird Area by the American Birding 

Conservancy, and recently received a RAMSAR classification for significant estuarine habitats 

(ESNERR 2019). 

https://www.elkhornslough.org/story/


10 

 

A: Aerial Image of the extent of ES., B: Location of ES in relation to Monterey Bay, CA., and C: 

Location of ES in relation to the California Coast. 

Figure 2. Elkhorn Slough, Watsonville, CA 

This ecological and economically valuable ecosystem, like many others across the 

globe, has been and is being threatened by local human impacts, such as agriculture and energy 

development.  Local farming activities are responsible for introducing excess nutrients and 

other harmful pollutants that exacerbate biological and geochemical changes within the 

system.  Eutrophication in estuaries surrounding these agriculturally and productive sites 

commonly suffer from the phenomena of hypoxic and anoxic conditions, due to the excessive 

algal growth and production from readily available nutrients (Bricker et al 2007).  Alterations 

of the biogeochemical cycling can have long lasting impacts.  ES has experienced episodic 

periods of hypoxic (DO < 2 milligrams per liter (mg/L)), and anoxic (DO = 0 mg/L) conditions 

within the various arms and branches of the estuary (Figure 3).  Aside from the stresses of 

hypoxia and anoxia, DO levels greater than 5 mg/L are considered oxic and “suitable for 

supporting biological diversity.  DO levels between 2 – 5 mg/L are a transitional zone, leading 

to a hypoxic environment. 
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Figure 3. DO measurements collected from North Marsh (NM), ES. 

ES supports hundreds of species of fish, invertebrates, and birds, and is considered one 

of the most extensive salt marshes in the state outside of San Francisco Bay (Jeppesen et al 

2016).  With this perspective, ES has been the focus of WQ monitoring and restoration efforts.  

Over the years of monitoring, ES has developed a report card based on WQ conditions.  

Monitoring sites within the Lower ES region have better WQ relative to the southern estuary 

sites and those located in the northern-most ES reaches, attributing the differences to existing 

water control structures (Mercado et al 2014).  The range of daily average DO values was from 

0.2 to 14 mg/L, with values dipping into the hypoxic zone in the summer months (Jun – Aug) 

(Schmit 2010).  Biological and physical factors impact the variability of DO levels resulting 

from excess algal and plankton growth, and tidal exchange (residence times).  In addition to 

those previously mentioned, restricted circulation in estuaries is now being considered a major 

factor.  The majority of sites with poor WQ and increased hypoxia corresponded to those 

located behind these water control structures that restrict flow and increase the residence time; 

sites with better quality were close to the mouth and areas along the lower channel, which had 

unrestricted flow, full tidal exchange, and short residence time (Mercado et al 2014). 
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1. Hypothesis 

Estuarine systems are the focal areas of WQ restoration efforts and monitoring 

programs.  These complex environments have dynamic interactions that can alter, degrade and 

ultimately, result in habitat and species loss.  Investigations into health maintenance and 

indicators of degradation are abundant with focuses on using algae as the primary variable 

(McCormick and Cairns 1994).  Algae blooms can alter a system chemically and physically, 

and most notably deplete DO levels in the surface waters (Egerton et al 2014).  Techniques use 

Chlorophyll-a (Chl-a) as a proxy for phytoplankton biomass, a primary response to 

eutrophication that leads to WQ degradation (Stanley 1993).  A review of these studies, past 

and present, DO was not considered as a primary WQ parameter.  Salinity (SAL), Temperature, 

Chl-a, and nutrients have primary emphasis placed on them as directly related to WQ 

conditions and health (Kotsedi et al 2012).  without the need for hand-annotated estimates of 

algal coverage. 

The objective of this research is to determine the reliability of using the ENVI to 

identify and classify algal (Ulva [sp]) coverage from 3-band RGB imagery collected remotely, 

within the NM site of ES.  Furthermore, algae coverages estimated will be investigated to 

determine possible fluctuations in the DO seasonal trend.  The hypotheses to be tested here are 

that 1) Harris Geospatial’s ENVI spectral analysis program can be used to differentiate and 

accurately classify algal coverage (against verified base-imagery), automating algal coverage 

calculation within estuarine environments; and 2) Algae coverage can be used as an indicator 

of DO levels. 

Image classification stats will be compared against the current hand-analysis technique, 

as a faster and accurate alternative process available for use. 
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III. FIELD AND ANALYSIS METHODS 

This study was performed as a partnership with the Elkhorn Slough National Estuarine 

Research Reserve (ESNERR), to assess algal growth relationships with WQ at the four (4) 

sites within ES that are considered areas of concern for ecological impacts due to 

eutrophication (Figure 4). Identification of any correlations between the percent cover of algae 

and the area of an estuarine system is one that requires information from two main sources, 1 

– WQ measurements (DO, SAL, temperature), and 2 – photographic images algae growth 

within the estuary over time. ESNERR collected aerial imagery over the NM site over the past 

four years and provided the images from their survey database.  WQ data that was downloaded 

from the Central Data Management Office (CDMO) website.  The images were initially 

classified by ESNERR using DroneDeploy and hand annotation.  Here, images are classified 

using the spectral analysis program, ENVI to separate and calculate area coverage.  That 

coverage was then compared to the corresponding time series of WQ data to identify trends or 

correlations between algae growth and changes in the DO and duration of hypoxia. 

 

Figure 4. WQ sampling locations within ES. 
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Past studies have used various methods for algae coverage calculation, ranging from 

in-situ sampling to using Unmanned Aerial Vehicles (UAVs) as remote sensing surveys, to 

looking for the spectral signatures of chlorophyll-a (Chl-a) (Koparan et al 2018, Hansen et al 

2017, Le et al 2013, Palmer et al 2013, Ali 2011, Egerton et al 2014, and Reif 2011).  Matthew 

and Bernard (2013), like many of the previous studies found that Chl-a was a strong indicator 

and could be used as a proxy for algal and phytoplankton biomass.  Their research found that 

Chl-a correlated to spectral reflectance in the 420 – 480 nm range.  Other pigment 

characteristics found specifically to algae were found to have signatures in the 620 – 700 nm 

range, lending to the applicability of using remote sensing techniques and applications to 

quickly and accurately assess large areas of coastal waters (Matthew and Bernard 2013). 

For this study, algal cover is estimated through spectral classification using ENVI with 

the imagery collected by UAV’s during field studies.  A recent study showed that ENVI offers 

multiple capabilities for classification, using various algorithms and regions of interest (ROI’s) 

dictated by the user, and is accurate in identifying specific features or interest (Mielke 2019).  

ENVI, a spectral analysis program was selected to classify provided imagery for is ease and 

speed of automatic classification process 

A. IMAGERY ACQUISITON 

The ESNERR team started collecting and building a photographic library of ES in late 

2015.  These image surveys are conducted monthly or whenever feasible to access the site, 

using a UAV with a mounted camera.  The Da-Jiang Innovations (DJI) Phantom 4 Pro 

quadcopter outfitted with a 20-megapixel (MP) camera (Figure 5) has been used to collect the 

3-band (RGB color spectrum) images.  Flight plans were preset and executed in an east-west 

direction with a nadir-looking orientation. Individual images are then stitched together using 

photogrammetry techniques, creating a full coverage ortho-mosaic image of the sample 

location.  All was accomplished using the mapping software application DroneDeploy.  

Mission planning used a 75% front overlap with a 65% side overlap.  Flights were flown at 60 

meters (m) with a single pass and no perimeter oblique views.  Historical weather and 

environmental conditions were collected, corresponding to each survey (Table 1) in order to 

account for variability in lighting.  
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Table 1. Flight Survey and Instrument Inventory 

            

 
Image Jan 16 Feb 16 May 16 Apr 18 Jul 18 Sep 18 Oct 18 Jan 19 Mar 19 

 

 
Date taken: 12 10 02 09 25 17 25 23 04 

 

 

Imaging 

Sensor: 

1/2.3" 

CMOS 

1/2.3" 

CMOS 

1/2.3" 

CMOS 

1/2.3" 

CMOS 

1/2.3" 

CMOS 

1/2.3" 

CMOS 

1/2.3" 

CMOS 

1/2.3" 

CMOS 

1/2.3" 

CMOS  

 
Flight time: 1202 1351 1044 1325 1356 1322 1408 1258 1410 

 

 

Wind speed 

(m/s): 
2.2 4.0 3.1 5.4 1.3 4.9 1.3 2.2 3.6 

 

 

Cloud 

cover: 
Clear Clear Cloudy 

Partly 

cloudy 
Cloudy Clear Clear Clear 

Mostly 

cloudy  

 

Pixel size 

(m): 
0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 

 
            

Meteorological data recorded at the time of flights.  All times are local times (PST/PDT).  GMT = 

+8/+7, respectively.  Data was collected from the Elkhorn WX station (KCAWATSO38) (Weather 

Underground 2020).  From here on, all images will be reference with the title listed here (month, year). 

 

 

Figure 5. DJI Phantom 4 Pro Quadcopter. 

Orthomosaic maps were processed and geo-rectified with DroneDeploy software using 

fixed ground control points which remained constant for each flight, then exported as geotiffs 

for use in ENVI. Nine (9) 3-band RGB geotiffs were provided for classification analysis in 

DroneDeploy (ESNERR) and ENVI (this study).  These images are from the NM location 
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(Figure 5).  Images analyzed here spanned from 2016 – 2019 and were taken across a variety 

of months. 

B. IMAGE ANALYSIS PROCESSING 

Image processing used ENVI for spectral signature identification and classification, similar to 

studies conducted using satellite imagery for coral reef habitat mapping and tracking of 

bleaching events in that remote imagery is processed (Riegl and Purkis 2005; Rowlands et al 

2008).  ENVI provides different methods of automatic classification through its use supervised 

and unsupervised internal algorithms (Mielke 2019). 

ENVI’s classification accuracy was dependent upon consistency throughout the 

process with all nine images.  Image normalization was performed for assessment of the 

spectral classification capability and helped with comparison of classified outputs.  Every ROI 

file consisted of the same five class types for feature identification.  The included classes used 

a standard color scheme during classification (purple = dirt/mud, cyan = water, yellow = 

vegetation, bright green = algae (abw), and dark green = algae (uw)). 

ENVI’s classification process requires that the program have a set of “class types” 

composing ROI files for analysis and classification of remotely collected imagery.  Ideally 

these ROI’s are verified to what the environmental types are at a set time.  For this study, 5 

classes; algae (abw), algae (uw), dirt/mud, vegetation (other than algae), and water were 

identified as the prominent features across all images.  Using the ROI function, each base 

image was used to ROI build files containing the spectral signatures of the 5 classes.  Each of 

the class types is identified by drawing a polygon around features the correspond to the class.  

ROI files containing the desired class types was saved as an overlay to be used in classification. 

This overlay serves as ground-truth for post-analysis error matrix and total coverage 

calculations.  Class features selected in the ROI were verified during the field surveys by visual 

inspection from prominent features that remained constant across seasonal changes (increase 

in water level, etc.).  Algae (abw and uw) coverage was the only variable feature but was 

evident and recognizable in all images.  This in-situ verification of the base images will be the 

basis, assessing classification performance of ENVI.  ROI files were required for each image 

because there was no anchor point, linking all images to a common projection. 
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Next step was to analyze each image with one of the various classification methods 

provided.  The supervised Spectral Angle Mapper (SAM) was the choice algorithm during the 

classification process because of the nature of the algorithm to identify spectral signatures 

within the image.  As previously mentioned, ENVI contains various classification algorithms.  

ENVI support documentation was reviewed to confirm the applicability to SAM to goals of 

this study (Harris1 2020).  Supervision refers to the fact that training data or the generated ROI 

files is required for classification.  Following the prompts within ENVI, each base image was 

used as the input file and compared against is corresponding ROI file.  Completing the 

classification process, the output file will be the representation of the base image, colored in 

the scheme dictated by the ROI files and their class representation color. 

Post- classification work included the creation of the error matrix comparing ENVI’s 

producer accuracy to its user accuracy performance assessment.  Producer accuracy measures 

ENVI’s ability of correctly identify the algae classes, where user accuracy represents the 

probability measure of ENVI to place class type values (or pixels) into the correct class 

grouping. (Harris 2020).  These matrices are generated internal to ENVI, in the confusion 

matrix toolbox.  Tables 3 through 6 provide the accuracy assessment of ENVI’s prediction 

capability for this study. 

After the completion of the classification process and error matrix generation, 

quantification of the algal extent in the images was needed.  Both ENVI and DroneDeploy had 

different procedures of calculating the overall percent coverage.  The methods of both analysis 

tools for calculating total percentage are: 

1. ENVI Calculations of Algae Coverage 

Internal to ENVI’s classification protocol, a text file (.txt) is generated with all the 

spectral information per classified image.  The file contains class type name, area coverage (in 

pixel count and percent) of the image.  Total algal coverage for each image was derived from 

the addition of both algae (abw and uw) class counts.  Total percent coverage is annotated in 

Table 2. 
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2. ESNERR Calculations of Algae Coverage 

Coverage calculations are performed in the web-based program DroneDeploy.  This 

program requires using hand analysis of the imagery, marking and designating areas of interest, 

like using Google Earth (DroneDeploy 2020).  Classification is conducted drawing polygons 

around visual areas of identifiable algal patches.  Each polygon covers image pixels and 

internally converts those pixels to a corresponding area in acres (AC).  All generated polygons 

areas were summed, then divided by the total marsh area (roughly 100.98 AC), yielding total 

coverage. 
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IV. RESULTS/DISCUSSIONS 

A. IMAGERY ANALYSIS 

The technique of using optical remote imagery for identification and habitat mapping 

has been documented as a suitable method within shallow water systems (Rigel and Purkis, 

2005).  Based on that premise, images collected from a UAV were collected and classified 

using ENVI and DroneDeploy.  The classification performance of ENVI was evaluated and 

results were compared against the “hand-analysis” technique in DroneDeploy.  Algal 

identification and coverage calculations were the primary focus of both methods and the basis 

of comparison.  Table 2 shows resulting coverage comparisons between respective methods 

and measured DO levels at the time the nine (9) images were collected. 

Table 2. Image Classification (ENVI/DroneDeploy) comparison with Avg DO. 

IMAGE DATE 
ENVI Spectral 

Calculation 

Drone Deploy 

Calculation 
Difference 

DO Level 

(Avg) 

JAN 16 16.3 14.5 +1.8 NA 

FEB 16 18.5 14.7 +3.8 7.5 

MAY 16 23.9 29.0 -5.1 3.5 

APR 18 13.6 8.0 +5.6 4.5 

JUL 18 14.0 2.8 +11.2 3.8 

SEP 18 4.8 1.0 +3.8 2.8 

OCT 18 13.0 4.9 +8.1 5.9 

JAN 19 15.6 15.3 +0.3 8.1 

MAR 19 17.1 11.5 +5.6 9.2 

ENVI, DroneDeploy, and difference values are coverage percentages for algae.  DO values are 

mg/L (average for the collection date of the image).  Blue rows - wet season and orange rows - dry 

season. 

Total algal coverage (percent) varied between the two method capabilities.  Overall, 

relative skill comparison between ENVI and DroneDeploy are very close with an RSME of 

4.3%, indicating a good agreement in capability to identify and differentiate desired features.  

Comparisons shown in Table 2 represent estimates of the desired algae from a given images 

per each method, respectively. Four (4) images (two with smallest difference and two with the 

largest difference) are used to show the accuracy of ENVI and its automated analysis for 

brevity.  These images will be referenced by the collection month and year (i.e., Jan 16, Jan 
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19, Jul 18, and Oct 18).  Figures 6 through 9 are comparisons of ENVI classified outputs against 

the original 3-band RGB images. 

Tables 3 through 6 represent the accuracy assessment of ENVI’s prediction 

capabilities, compared to ground-truth data.  ENVI was very precise with is classification 

protocol, effectively identifying greater than 90% of algae (both classes) coverage within the 

Jan16 images (Figure 6).  The Jan 19 (Figure 7) similarly, posted similar results within the 

producer category which is ENVI’s ability of correctly identify the algae classes (Harris 2020).  

There was a significant disparity in the user accuracy for Jan 19 (Figure 7).  User accuracy 

represents the probability measure of ENVI to place class type values (or pixels) into the 

correct class grouping. (Harris 2020).  ENVI performed at 51%, placing the features with 

similar pixel properties int to the algae (uw) class.  Despite the confusion with submerged algae 

in the Jan 19 image (Figure 7), ENVI displayed excellent accuracy.  Total coverages for Jan 

16 (Figure 6) and Jan 19 (Figure 7) comparing ENVI’s automation process against 

DroneDeploy hand-analysis were very close, at 1.8% and 0.3%, respectively (Table 2). 

For the Jul 18 (Figure 8) and Oct 18 (Figure 9) images, ENVI was efficient in its 

producer classification capability, classifying algal types, with accuracies ranging from 96% 

to 98% (Table 5 and Table 6).  Significant errors occurred in the discrimination of algae (uw) 

pixels, with an accuracy at 8.2%.  Oct 18 (Figure 9) did not see the same disparity that was 

exhibited in Jul 18 (Figure 8).  Algae (uw) attribution was at 87%, with these variations 

possibly contributing to the total coverage differences of +11.2 and +8.1, respectively (Table 

2). 
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1. January 16 – Field Survey 

 
Cyan coloring indicates water.  Yellow represents vegetations such as marsh grass (growing 

in the middle of the marsh).  Light and dark shaded green indicates algae.  Trees and 

shrubbery were classified in this grouping as well.   Purple indicates exposed dirt and 

submerged mud regions.  ENVI and DroneDepoly total algae was 16.3% and 14.5%, 

respectively (Table 2). 

Figure 6. Jan 16 Original RGB vs ENVI classification 

Table 3. Error Matrix for Jan 16 

            

    

CLASSES - GROUND TRUTH 

(PSEUDO)                 

   
  

Dirt and 

Mud 
Water Vegetation 

Algae 

(UW) 

Algae 

(ABW) 
  

 

 

C
L

A
S

S
E

S
S

 -
 

P
R

E
D

IC
T

E
D

 

 Dirt and Mud 85.3 0.0 5.2 0.0 0.0  87.3  

  Water 8.0 100.0 3.9 0.4 9.1  96.2  

  Vegetation 6.7 0.0 88.1 0.0 0.0  96.9  

  Algae (UW) 0.0 0.0 0.0 99.6 0.0  99.9  

  
Algae (ABW) 0.0 0.0 2.8 0.0 90.9  98.2 

 

   

TOTALS 100.0 100.0 100.0 100.0 100.0  

U
S

E
R

 

A
C

C
. 

             

   PROD. ACC 85.3 100 88.2 99.6 90.9   
             

Note - Values were generated using the ENVI Confusion Matrix toolbox.  All values are 

percentages 
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2. January 19 – Field Survey 

 

Cyan coloring indicates water.  Yellow represents vegetations such as marsh grass (growing 

in the middle of the marsh).  Light and dark shaded green indicates algae.  Trees and 

shrubbery were classified in this grouping as well.   Purple indicates exposed dirt and 

submerged mud regions. ENVI and DroneDepoly total algae was 15.6% and 15.3%, 

respectively (Table 2). 

Figure 7. Jan 19 Original RGB vs. ENVI classification 

Table 4. Error Matrix for Jan 19 

           

   CLASSES - GROUND TRUTH (PSEUDO)                

  
  

Dirt and 

Mud 
Water Vegetation 

Algae 

(UW) 

Algae 

(ABW) 
   

C
L

A
S

S
E

S
S

 -
 

P
R

E
D

IC
T

E
D

 

 Dirt and Mud 91.0 0.1 21.6 0.0 0.7  0.6  

 Water 0.0 97.4 2.9 0.7 0.4  92.2  

 Vegetation 9.0 1.6 70.1 0.1 0.2  98.3  

 Algae (UW) 0.0 0.5 5.4 93.8 2.1  51.4  

 Algae (ABW) 0.0 0.4 0.0 5.4 96.6  99.6  

  

TOTALS 100.0 100.0 100.0 100.0 100.0  

U
S

E
R

 

A
C

C
. 

 

           

  PROD. ACC 91.0 97.4 70.1 93.8 96.6    
           

Note - Values were generated using the ENVI Confusion Matrix toolbox.  All values are percentages 
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3. July 18 – Field Survey 

 
Cyan coloring indicates water.  Yellow represents vegetations such as marsh grass (growing 

in the middle of the marsh).  Light and dark shaded green indicates algae.  Trees and 

shrubbery were classified in this grouping as well.   Purple indicates exposed dirt and 

submerged mud regions.  ENVI and DroneDepoly total algae was 13.9% and 2.8%, 

respectively (Table 2). 

Figure 8. Jul 18 Original RGB vs ENVI classification 

Table 5. Error Matrix for Jul 18 
            

    CLASSES - GROUND TRUTH (PSEUDO)                 

   
  

Dirt and 

Mud 
Water Vegetation 

Algae 

(UW) 

Algae 

(ABW) 
  

 

 

C
L

A
S

S
E

S
S

 -
 

P
R

E
D

IC
T

E
D

 

 Dirt and Mud 94.8 46.9 0.2 0.6 1.0  56.0  

  Water 4.8 0.1 17.3 1.0 2.5  0.4  

  Vegetation 0.4 33.9 80.6 0.5 0.0  30.4  

  Algae (UW) 0.0 19.1 1.9 97.9 0.1  8.2  

  Algae (ABW) 0.0 0.0 0.0 0.0 96.4  99.9  

   

TOTALS 100.0 100.0 100.0 100.0 100.0  

U
S

E
R

 

A
C

C
. 

             

   PROD. ACC 94.8 0.1 80.6 97.9 96.4   
             

Note - Values were generated using the ENVI Confusion Matrix toolbox.  All values are 

percentages 
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4. October 18 – Field Survey 

 
Cyan coloring indicates water.  Yellow represents vegetations such as marsh grass (growing 

in the middle of the marsh).  Light and dark shaded green indicates algae.  Trees and 

shrubbery were classified in this grouping as well.   Purple indicates exposed dirt and 

submerged mud regions.  ENVI and DroneDepoly total algae was 13% and 4.9%, 

respectively (Table 2). 

Figure 9. Oct 18 Original RGB vs ENVI classification 

Table 6. Error Matrix for Oct 18 
            

    CLASSES - GROUND TRUTH (PSEUDO)                 

   
  

Dirt and 

Mud 
Water Vegetation 

Algae 

(UW) 

Algae 

(ABW) 
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S
S

 -
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R

E
D
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T

E
D

 

 Dirt and Mud 74.6 0.0 18.6 0.0 0.0  72.9  

  Water 0.0 98.3 2.9 3.0 2.1  96.3  

  Vegetation 25.4 1.6 76.9 0.0 0.4  80.3  

  Algae (UW) 0.0 0.1 1.6 96.5 0.3  87.1  

  Algae (ABW) 0.0 0.0 0.0 0.5 97.2  99.9  

   

TOTALS 100.0 100.0 100.0 100.0 100.0  

U
S

E
R

 

A
C

C
. 

             

   PROD. ACC 74.6 98.3 76.9 96.5 97.2   
             

Note - Values were generated using the ENVI Confusion Matrix toolbox.  All values are 

percentages 
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B. WQ SEASONAL ANALYSIS 

WQ analysis was conducted focusing on the variations within the DO levels, on data 

collected from the Central Data Management Office (CDMO), ranging from 2016 - 2020.  The 

Central California Coast experiences two major seasons – wet, occurring from October to April 

and dry, from May to September.  The data indicated seasonal trends present in DO 

measurements during we seasons where levels reach and maintain normal oxic conditions (DO 

> 5 mg/L), with low occurrences of hypoxia.  Conversely, during dry seasons, the DO greatly 

varies, with more frequent hypoxic events and experiencing period of anoxia (DO < 0.5 mg/L).  

Figures 10 to 12 compare the wet and dry seasons for years 2016, 2018 and 2019, 

corresponding to images (Figures 6 -9 and Tables 3 - 6). 

Trend lines (longer term averages) for both DO measurements and water level were 

analyzed for identification and comparison of seasonal trends.  Trends were calculated by 

applying a seven (7) day moving filter (or moving average) over the data record, attempting to 

remove tidal influences and diurnal fluctuations.  DO was divided up to identify the varying 

conditions.  Green markers indicate oxic conditions; blue markers are the transition (2 -5 mg/L) 

state; yellow markers indicate hypoxic conditions, and red markers indicate the anoxic 

conditions. 
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Time series of water level (cyan) and DO (colored) versus time for the wet season, 2019.  Black line 

is the average water level, pin line is the average DO concentration.  For DO, green markers indicate 

oxic conditions; blue markers are the transition (2 -5 mg/L) state; yellow markers indicate hypoxic 

conditions, and red markers indicate the anoxic conditions.  Red dash lines indicated corresponding 

classification imagery. 

Figure 10. 2016 Wet Season Trend 
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Time series of water level (cyan) and DO (colored) versus time for the dry season, 2018.  Black line is 

the average water level, pin line is the average DO concentration.  For DO, green markers indicate oxic 

conditions; blue markers are the transition (2 -5 mg/L) state; yellow markers indicate hypoxic 

conditions, and red markers indicate the anoxic conditions.  Red dash lines indicated corresponding 

classification imagery. 

Figure 11. 2018 Dry Season Trend 
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Time series of water level (cyan) and DO (colored) versus time for the wet season, 2019.  Black line 

is the average water level, pin line is the average DO concentration.  For DO, green markers indicate 

oxic conditions; blue markers are the transition (2 -5 mg/L) state; yellow markers indicate hypoxic 

conditions, and red markers indicate the anoxic conditions.  Red dash lines indicated corresponding 

classification imagery. 

Figure 12. 2019 Wet Season Trend 

Average DO levels ranged between 5 – 10 mg/L, experiencing fewer hypoxic and 

anoxic periods throughout the season (Figs 10 and 12).  Drier seasons experienced decreased 

average DO values, ranging from 2 – 8 mg/L, with significantly more hypoxic and anoxic 

occurrences (Figure11).  DO variations show a strong agreement with drier months and lower 

water levels factoring into poorer WQ conditions, while the wet season and increased water 

levels indicated better WQ, respectively.  The average DO values ranged from 2.8 – 9.2 mg/L, 

across the time range of the four images selected for classification accuracies (Figures 6 – 9 

and Table 2). 

C. IMAGERY AND WQ DISCUSSION 

ENVI proved to be a suitable tool for quick and accurate algae classification from 

remotely sensed imagery.  Classified Images and error matrices were generated in ENVI for 

each image provided.  Table 6 shows the average classification accuracy (user and producer) 
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for algae (abw and uw) classes across all images.  Overall, ENVI’s precision identifying 

specific class types and capability of placing correct features in correct classes is good.  Larger 

variations in accuracy was seen in the programs ability to handle placement of algae, 

specifically submerged (uw) information into the correct class groupings, with an average 

accuracy of 58%.  Algae on the surface (abw) was handled very well, posting user and producer 

accuracies ranging from 94% and 96%, respectively. 

Table 7. ENVI Algal Classification Accuracies 

          

    USER ACCURACY  PRODUCER ACCURACY  
          

   
 Algae (abw) Algae (uw)  Algae (abw) Algae (uw)  

          

 

IM
A

G
E

 

 12 Jan 16 98.2 99.9   90.9 99.6  

  10 Feb 16 99.9 63.5   97.4 99.0  

  02 May 16 100.0 98.7   98.9 98.8  

  09 Apr 18 71.0 0.3   99.1 91.8  

  25 Jul 18 99.9 8.2   96.4 97.9  

  17 Sep 18 91.6 27.6   98.5 77.8  

  25 Oct 18 99.9 87.1   97.2 96.5  

  23 Jan 19 99.6 51.4   96.6 93.8  

  04 Mar 19 89.3 87.3   93.0 79.7  

   Average 94.4 58.2   96.4 92.8  
          

All values are percentage extracted from the Error Matrices generated at the conclusion of the 

classification process in ENVI. 

Variations seen in ENVI’s ability to place class type information into the correct class 

grouping can be associated to the process routines that look at placing similar image pixels into 

similar classifications.  Hestir et al (2008) conducted a similar study looking at submerged 

aquatic vegetation (SAV) and found that pixel composition of the target species presented a 

common problem due to spectral signature blending with surrounding vegetation and like-

features. 

Variations in the algae (uw) percentages across images (Table 6) appear to be impacted 

by pixel confusion, particularly where the visible algae resembled that of the surrounding 

water.  Use of spectral analysis identifying vegetation submerged below the water surface tend 

to have similar characteristics of the surrounding water (Everitt et al 1999).  Similarly, high 

amounts of organic material (other than algae) could have common appearance and spectral 
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signatures as true algae.  This was evident across all images, where surrounding trees were 

identified as algae (abw).  Everitt et al (1999) noted that water alters spectral information and 

interpretation within remotely sensed imagery. 

Since the images are 3-band RGB, pixel blending occurred from common spectral 

information across different features, as noted between algae (abw) and tress.  Picture 

resolution contributed to varying classification results and accuracies.  Resolution and 

distortions from both the equipment and natural events (i.e., sun glints, wind, cloud cover, etc.) 

impacted the programs ability classification against ground-truth features.  Prevailing weather 

conditions not only impact image quality but can impede the spectral measurements that can 

be collected by the sensor (Hestir et al 2008). 

The general understanding is that when more algal biomass is present, WQ conditions 

will tend to decrease owing to respiration dominating the oxygen budget within the system.  

However, images from the July to Oct indicated some of the lowest algal coverages, 

comparatively (Table 1).  The corresponding WQ data (Figure 11) showed increased hypoxic 

and anoxic events during 2018, not following the assumption of more mass equating to more 

oxygen use.  This data suggests that more is occurring, likely at shorter periods than the 

currently used (monthly) imagery can measure, altering the oxygen budget at the NM location, 

deteriorating WQ conditions and ecologic impacts due to eutrophication within the system. 

More research is needed to understand if algal coverage is accounting for the larger portion of 

DO fluctuations or if other processes are contributing to the varying oxygen levels throughout 

the wet/dry seasons on the Central California Coast. 
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V. CONCLUSIONS 

ENVI performed well compared to hand-analysis techniques in Drone Deploy, using polygons 

to identify regions or interest.  Both methods can be used for estimating the coverage or extent 

of potential impacts to estuarine health.  ENVI provides the capability to quickly classify 

remotely sensed images with 90% accuracy.  Some distortion and confusion within pixel 

identification, contrast, and confusion occurred reducing accuracy.  The key to good 

classification performance is well-developed ROIs.  Images with better resolution and 

definitive desired features will tend to distinguish and classify with less error. 

ENVI’s ability to accurately classify imagery provides a useful tool for environmental 

monitoring field, particularly looking at proxies of prevailing WQ conditions such as algae.  

The capabilities to identify algal coverage from spectral information with high accuracy (Table 

6) is truly a significant accomplishment considering that most algal coverage analysis is 

estimates.  The one true accurate method for identifying algal coverage is with in-situ water 

sample collections and calculation (Katz et al 2018). 

This spectral analysis tool enables large environments to be monitored and assessed in 

relatively short time periods.  Imagery analysis, through ENVI can be performed on the scale 

of hours vice days.  Use of ENVI enhances the frequency of monitoring and assessment 

opportunities as well.  Remotely sensed data can be acquired from field site visits or satellites 

over remote, hard to access locations. ENVI could be considered more accurate due to the 

spectral nature of the analysis, benefiting coastal assessments and monitoring programs.  The 

benefit from the use of a spectral analysis tool is to reduce the amount of time dedicated to 

hand (user intensive) analysis of the images. 

The value of remote sensing for assessing and managing wetlands is well established 

(Everitt et al 1999).  Previous works have shown that algae and phytoplankton are good 

indicators for use due the visible signature of Chl-a, around 440 nm and a plankton-specific 

pigment, phycocyanin; which absorbs at 620 nm (Matthews and Bernard 2013).  ENVI 

performed very well identifying algae with minimal misclassification due to its ability to spot 

the peaks the above-mentioned ranges. 
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Future work may include more frequent flights over impacted estuaries and coastal 

waters.  Algae impacts and response times to environmental stressors is relatively short, on the 

scale of hours to days (Sanford et al 1990).  Daily to weekly flights coupled with the faster 

image processing time could highlight the short response times that lead to algal blooms and 

water quality degradation. 

ENVI has a high potential for performing multi and hyperspectral classification studies.  

Multi and hyper-spectral imaging provides the potential for collecting enhanced spatial and 

spectral resolution, better understand optically complex aquatic ecosystems (Ryan et 2014, and 

Xi et al 2015).  Figure 13 shows the potential channel manipulations capability within ENVI. 

 

Images were collected over NM from a Micasense Altum-M camera on a DJI Inspire UAV.  Band 1 = 

Red channel, Band 2 = Green, Band 3 = Blue, Band 4 = RedEdge (707 nm – 727 nm), and Band 5 NIR 

(800 nm -880 nm) (Mielke, 2019).  Left image is near true color looking nadir on algae.  Center image 

is the same area, changing channels to RedEdge, red and green.  Right image is looking over trees, 

water and algae (in the lower right image corner) with NIR, RedEdge, and blue channels. 

Figure 13. Band Manipulation Features with ENVI 

This increased spectral analysis capability may potentially increase accuracy and 

feature definition of desired regions.  ENVI is equipped to handle this task.  Mielke (2019) 

performed a study into the ability to train the ENVI’s neural networking to classify varying 
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bottom types and beach features, increasing ENVI’s standard classification percentage.  

ENVI’s accuracy, capability and use in conjunction with WQ data and models may be useful 

for identifying and tracking degrading conditions or coastal areas and inland aquatic 

environments. 
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