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by 

Mutharasu Narayanaperumal 

May 2020 

Businesses glean meaningful feedback in regard to products and services from 
social media posts in order to improve the quality of products and services, as well 
as to meet customer expectations. Sentiment analysis is increasingly being used 
to help businesses by assigning positive or negative polarity to such posts. 
Although methods currently exist to determine the polarity of sentiments, such 
methods are unreliable when posts contain terms that are not typically part of a 
standard dictionary used for sentiment analysis, such as slang and informal 
language. This dissertation has aimed to empirically investigate alternative 
methods to improve the classification accuracy of sentiments in such contexts. 
Specifically, it considers posts written in English that include emoticons. 
 
The benchmark Sentiment140 English language datasets were used for evaluation 
and labeled tweets that included emoticons. Two types of deep neural networks–
Convolution Neural Networks (CNN) and Long Short-Term Memory (LSTM) 
Networks–were used for classification since they have been demonstrated to 
produce the best results. All terms in the tweets were represented using the pre-
trained embedding vectors word2vec, GloVe, and fastText. Baseline models were 
trained and tested using tweets with their emoticons removed. For each baseline 
model, a corresponding model was trained that included emoticons as inputs; in 
others, emoticons were replaced with English language. Accuracy, precision, 
recall, and 𝐹"	scores of models using emoticons were compared to their 
corresponding baseline models that did not use emoticons. 
 
Experiments are conducted on data with emoticons and emoticons removed for 
all the models. Our experiments showed that LSTM that uses an attention model 
with fastText embedding outperformed the linear models for identifying 
sentiment for the all datasets used. We also learned that when we replaced 
emoticons with English language, the sentiment classification accuracy improved. 
We therefore concluded that inclusion of emoticons as features achieves the 
highest accuracy in our research on sentiment classification. 
 
Keywords: Sentiment analysis, deep Learning, emoticon, embedding, convolution 
neural network, long short-term memory, attention 
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1 Introduction 

Sentiment analysis is valuable in social media monitoring as it allows one to gain 

insights into certain contexts or topics and is used in a diverse set of fields, such as 

marketing and advertising, social media, economics, and political science (Rosenthal et al., 

2015). Social media platforms such as Twitter, Facebook, and YouTube are currently 

among the most popular venues for customers to debate and review new products and 

services in various markets (Poria, Cambria, Howard, Huang, & Hussain, 2016). However, 

the inherent chaotic nature of social media content poses severe challenges to the practical 

applications of sentiment analysis, such as extracting meaningful feedback for products or 

services, understanding product quality, or meeting customer expectations. 

In recent years, deep neural networks have been shown to be effective for text 

classification (Kim, 2014). Convolution Neural Networks (CNN) were initially built for 

the computer vision domain. Subsequently, CNNs were explored for natural language 

processing purposes and achieved excellent results for text classification (Zhang & 

Wallace, 2017), modeling sentences (Kalchbrenner, Grefenstette, & Blunsom, 2014), 

sentiment analysis (dos Santos & Gatti, 2014). Long Short-Term Memory (LSTM), a deep 

learning model effective in analyzing long sequences, has been used to categorize emotions 

in natural language processing contexts (Cliché, 2017). These deep learning methods use 

word embeddings to learn the semantic relationships of words in order to improve model 

performance (Mikolov, Chen, Corrado, & Dean, 2013).  

In this dissertation, we considered the significance of including emoticons in Twitter 

messages and followed an approach similar to Kim (2014), which involved the use of a 
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few different variations of CNN models. In addition, we evaluated a variety of LSTM 

models to identify an accurate deep learning model for sentiment analysis. We considered 

the emoticons of the input text and evaluated the importance of emoticons in sentiment 

analysis. 

1.1 Problem Statement 

A sentiment analysis technique was used in this study to classify the text data of 

Twitter posts into one of two sentiment polarities: POSITIVE, NEGATIVE. The sentiment 

analysis model produced different polarities for each tweet depending on whether it 

considered or ignored emoticons (Kiritchenko, Zhu, & Mohammad, 2014). Emoticons and 

product ratings are instances of emotional signals from customers that are connected to 

sentiments expressed in sentences or transcripts. The research we developed evaluated 

methods to improve the accuracy of sentiment classification by incorporating emoticons as 

features.  

Recent research on polarity detection includes deep neural network techniques (CNN 

and LSTM), ensemble methods, and word embedding (Cambria, Poria, Gelbukh, & 

Thelwall, 2017). We considered the tweeter’s text from the Sentiment140 dataset, using 

the deep learning techniques CNN and LSTM to investigate whether including emoticons 

could improve predictive accuracy.  
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2 Review of Literature 

In this section, the existing research on Sentiment Analysis that uses deep learning 

networks and word embedding methods is discussed. Subsection 2.1 presents how CNNs 

utilize layers with convolution filters. Subsection 2.2 involves a discussion of LSTM, a 

subtype of recurrent neural networks, which has a memory that learns from context. 

Finally, word embedding is described in subsection 2.3. 

2.1 Convolutional Neural Network (CNN) 

The CNN is a deep neural network that utilizes layers with convolution filters that are 

applied to a set of features (Kim, 2014). Kim’s (2014) research slightly changed the CNN 

architecture that was designed by Collobert et al. (2011). Collobert et al. (2011) considered 

the complete input sentences that would be passed through the lookup table layer in order 

to generate local features around each word of the sentence. Those features go through 

convolutional layers, which combines these features into a global feature vector that can 

then be fed to fully connected layers. The model proposed by Kim (2014) is shown in 

Figure 1.  

Kim (2014) had a CNN model with one layer of convolution, in which the features 

were extracted from a small window of words instead of whole sentences. The input 

sentence of the model is represented as:  

𝑋":% =	𝑋" ∥ 𝑋& ∥ ⋯ ∥ 	𝑋%  

where 𝑛 is the length of the sentence, 𝑋":% refers to the combinations of the words 

𝑋", 𝑋&, … , 𝑋%, ∥ is the concatenation operator, and 𝑋' ∈ 𝑅( 	is the K-dimensional input word 

vector that corresponds to ith word in the sentence. Each sentence in the word vector should 
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have the same length and pad all the sequences to the maximum length of the sentences 

(𝑛). A convolution operation uses a filter 𝑤 ∈ 𝑅)( and a window of ℎ words to generate a 

new feature. A feature 𝑐' 	produced through a window of words 𝑋':'*)+" in the sentence is 

represented as: 

𝑐' = 𝑓(𝑤. 𝑋':'*)+" + 𝑏) 

where 𝑏 is the bias term, 𝑓 is a non-linear hyperbolic tangent function, and 𝑤 is the filter.  

 

Figure 1. Kim's (2014) CNN model for two channels. 

The convolution layer filter is applied to each possible window of words (ℎ) in the 

input sentence to generate a feature map:  

𝑐	 = 	 [𝑐", 𝑐&, … , 𝑐%+)*"] 

where 𝑐 ∈ 𝑅%+)*". It then collects the most important feature in each feature map that is 

extracted through a maximum over-time pooling operation i.e., Ĉ = max{c}. This operation 

ideally selects a feature that has the highest value on each feature map. For each filter in 

this model, a feature is produced. Kim’s (2014) model utilized multiple filters with various 

window sizes of words to generate multiple features. These selected essential features form 
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the penultimate layer and are shifted to a fully connected softmax layer. Subsequently, the 

softmax layer produces the probability distribution over the labels.  

Kim (2014) implemented dropout regularization on the penultimate layer with a 

constraint on 𝑙&-norms of the weight vectors. Dropout regularization limits correlated 

hidden units by randomly dropping out during forward backpropagation operations. For 

instance, normal forward propagation gives,  

𝑦	 = 	𝑤. 𝑧 + 𝑏 

where 𝑦 is the output units, 𝑧 is the penultimate layer 𝑧 = [�̂�", �̂�&, … , �̂�,], and 𝑚 is the 

filters. When adopting the dropout layer, the previous forward propagation output 

becomes: 

𝑦 = 𝑤. (𝑧	⨀	𝑟) 	+ 	𝑏 

where ⨀ is the element-wise multiplication operator and 𝑟 is a ‘masking’ vector of 

Bernoulli random variables, with the probability of 𝑝 being 1 ( 𝑟 ∈ 𝑅,). Gradients used 

unmasked units for backpropagation. 

Kim (2014) experimented with six different datasets including movie reviews, the 

Stanford Sentiment Treebank, a task-specific subjective dataset, and customer product 

reviews. The CNN model was trained on all six datasets and attuned to the hyperparameters 

to maximize classification accuracy. This model used “relu” as an activation function, 

[3,4,5] as filter windows size (ℎ) along with a 100-feature map per window, 0.5 as a 

dropout rate, and 𝑙& as a regularization method, and 50 as a batch size. This CNN model 

initialized word vectors through pre-trained word2vec vectors that have been trained on 

100 billion words from Google News, in addition to 300 dimensions used as a continuous 

bag-of-words mechanism. 
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Kim (2014) examined several variants of CNN models, such as the CNN-rand (base 

model), where all words are randomly initialized and updated during training. Within the 

CNN-static model where pre-trained vectors are defined by word2vec, all words that have 

been randomly initialized are retained as static and tuned to the model’s parameters. The 

next model is CNN-non-static, which uses the same parameters as the CNN-static model, 

but only pre-trained vectors that are modified in each task. The CNN-multichannel model 

uses two sets of word vectors in a model and both are treated as ‘channels.’ Both channels’ 

pre-trained vectors are initialized with word2vec. A filter is used on both channels, but 

gradients are used on just one of the channels to perform a backpropagation process. This 

model allows one set of vectors to remain static while another is being adjusted closely. 

This research compared the models’ performances using a confusion matrix, precision, 

and recall. Those metrics showed that the static vectors’ model provided a better result than 

other CNN models. Kim’s (2014) baseline model did not perform better than models with 

pre-trained vectors. A simple model with static vectors predicted sentiment classification 

extremely well. That demonstrated that the pre-training of word vectors is an important 

feature in deep neural network models for NLP. The author also commented that the 

multichannel model prevented overfitting problems better than a single channel model 

when the number of observations was small. 

In CNNs, choosing the right model architecture and identifying the hyperparameters, 

such as filter size, and regularization parameters, are critical tasks. Zhang et al. (2015) 

performed a sensitivity analysis to determine the effect of architecture components on 

model performance using a single layer CNN that was similar to Kim’s (2014) architecture. 

In this sensitivity experiment, initially tokenized sentences were converted into word 
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vectors using the pre-training word embedding models, including word2vec or GloVe. 

Zhang et al. (2015) compared the model’s performance using nine different datasets–seven 

of them were used by Kim (2014) for sentence classification. To provide a point of 

reference for the CNN’s performance, Zhang et al. (2015) classified the sentiment through 

a linear kernel support Vector Machine (SVM) and recorded the model’s performance. 

This SVM model experimented with uni-gram, bi-gram, and a combination of uni-gram 

and bi-gram features. This model considered frequent 30k n-grams for all datasets for 

training and tuned the hyperparameters through cross-fold validation, which optimized the 

model’s accuracy. 

Zhang et al. (2015) built a CNN baseline model with hyperparameters, which had been 

used in Kim’s (2014) work for evaluating performance. Performance of the model was 

measured through mean performance metrics via 10-fold cross validation (CV), in addition 

to randomly chosen dropout rates, filter sizes, feature maps, activation functions (from a 

list of including relu/tanh/Sigmoid/SoftPlus/Cube/tanh cube). The CV operation involved 

setting the pooling size as 1-max/k-max, the dropout rate from 0.0 to 0.9, and a random 

parameter weight. They repeated the CV experiment 100 times and recorded the model 

mean, minimum, and maximum average accuracy over each iteration. Afterwards, Zhang 

et al. (2015) measured performance with all datasets using different versions of the CNN 

models, as well using static and non-static word vectors.  

Based on all of the experiments, they recommended the following hyperparameters 

for a sentiment analysis single layer CNN model: non-static word2vec or GloVe rather than 

one-hot word vectors, with a filter region size to be set between 1 and 10, as well as the 

number of feature maps for each filter region size to be between 100 and 600, the use of 
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‘relu’ and ‘tanh’ as activation functions, including 1-max pooling, and a dropout rate 

higher than 0.5 for the regularization. The sensitivity analysis concluded that the CNN 

model hyperparameters would vary based on the dataset size.  

In this dissertation, we used Kim’s (2014) single channel CNN model as our base 

model along with Zhang et al.’s (2015) recommended hyperparameters. The input for this 

network was Twitter messages that were split into a sequence of words. Each word was 

mapped to an embedding vector, via one of the pre-trained word vectors: word2vec, GloVe, 

and fastText. The word vector was formed with 𝑠 × 𝑑 size, where 𝑠 is the number of words 

in the tweet and 𝑑 is the embedding dimension. We followed the padding logic that was 

used by Kim (2014), which produced the same matrix dimension for all tweets 𝑋 ∈ 𝑅-!×/. 

In the tweet, some of the words may mislead the classification of certain phrases and 

marked the sentence as non-meaningful. For that, we added a dropout layer in the network 

that received embedding layer output and dropped random words to avoid overfitting. 

Subsequently, we built the convolutional operation of the dropout layer output. Each 

convolution operation used a filtering matrix 𝑤 ∈ 𝑅0×/, where 𝑐 is the convolution size 

(i.e., the number of words). The convolutional operation is:  

𝑐'	 = 𝑓(C𝑤1,(

	

1,(

D𝑋[':'*)+"]E1,( + 𝑏)	

where 𝑏 ∈ 𝑅 is the bias term, and 𝑓(𝑥) is the activation function. The output of the 

convolution 𝑐 ∈ 𝑅-!+)*" is the concatenation of the convolution operator among all 

possible windows of words in a given tweet. Since we used different sizes of filters, each 

convolution produced tensors of different shapes, and so built a layer for each of them, and 

merged each convolution result into a single feature vector.  
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Next we applied a max-pooling operation in all convolutions, where 𝑐,56 =

𝑚𝑎𝑥(𝑐)	.	This operation extracted the most important feature from each convolution. The 

output of this operation returned the most important n-grams in the embedding vector for 

a better result on sentiment polarity. The max-pooling task collected all the 𝑐,56 of each 

filter into one vector, 𝑐,56 ∈ 𝑅,, where m is the number of filters. This convolution layer 

used ‘relu’ or ‘tanh’ as an activation function. We also built a multichannel CNN model. 

A multichannel convolutional neural network for sentiment classification involved using 

multiple versions of the CNN model with various sized kernels from the embedding layer 

to the max-pooling task. The kernel size in a CNN defined the number of words to consider 

as the convolution was passed across the input tweet, providing a grouping parameter.  

The final layer was the dropout layer, which is the most popular approach to 

regularizing a CNN and served to reduce overfitting issues. This layer prevented neurons 

from co-adapting and forced them to learn individually valuable features. The dropout layer 

passed the vector through a softmax layer in order to produce the expected sentiment 

analysis. This CNN model used ‘categorical_crossentropy’ as a loss function and 

‘adagrad’ or ‘adam’ as an optimizer. A categorical cross-entropy loss function compared 

the distribution of the prediction with the desired distribution as described here: 

𝐿(𝑦, 𝑦I) = 	∑ ∑ (𝑦'1 × 𝑙𝑜𝑔	(𝑦I))%
'78

,
178   

where 𝑦I	is the predicted label. The optimizer ‘adagrad,’ or the adaptive gradient, allowed 

the learning rate to adapt based on the parameter. It performed larger updates for infrequent 

features and smaller updates for frequently occurring features. 

2.2 Long Short-Term Memory (LSTM) 

A Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) 
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model and has emerged as a powerful model in NLP applications that involve sequential 

data (Karpathy, Fei-Fei, & Li, 2016). The central principle of the LSTM model is that it 

can collect and retrieve information over long periods of time using its gating mechanisms. 

In NLP, LSTM uses its memory cells to remember long-range information and helps to 

maintain the message context. It makes use of standard stochastic gradient descent and 

truncated backpropagation through time. Karpathy et al. (2016) described how the LSTM 

resolved the difficulties of training RNN’s backpropagation, which caused the gradients in 

an RNN to either explode or vanish.  

The typical RNN recurrence form ℎ9:  is represented as: 

ℎ9: = tanh𝑊: Rℎ9
:+"

ℎ9+": S  

where the hidden state vector is ℎ ∈ 𝑅%, 𝑊: is the parameter matrix on each layer that has 

dimensions [𝑛 × 2𝑛], tanh is applied element wise, t = 1. . T is the time, and l = 1. . L is 

the depth. 𝑊: will change between layers and is shared the throughout the network. In 

RNN, the inputs from the layer below in depth (ℎ9:+") and before in time (ℎ9+": ) are 

transformed and combined before being squashed by tanh (Karpathy et al., 2016). 

 LSTM models were mainly designed to mitigate the vanishing gradient problem. In 

addition to ℎ9: , LSTM will maintain a memory vector 𝑐9:. In LSTM, each time-step uses 

explicit gating mechanisms for the read, write, or reset operations. The precise form of this 

model is delineated below: 

Y

𝑖
𝑓
𝑜
𝑔

[ = Y

𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚	
𝑠𝑖𝑔𝑚	
𝑡𝑎𝑛ℎ

[𝑊: Rℎ9
:+"

ℎ9+": S	

𝑐9: = 𝑓 ⊙ 𝑐9+": + 𝑖 ⊙ 𝑔	
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ℎ9: = 𝑜	 ⊙ 𝑡𝑎𝑛ℎ	D𝑐9:E 

where 𝑊:  is a [4𝑛	 × 	2𝑛] matrix, and the activation functions ‘sigm’, and ‘tanh’ are 

implemented element wise. The three vectors 𝑖, 𝑓, 𝑜 ∈ 𝑅%	are represented as binary gates. 

𝑖’s primary function is to update each memory cell, whereas 𝑓 resets to zero, and 𝑜 

maintains each hidden vector’s local state. The activations of these gates depend on the 

sigmoid function that maintains the range between 0 and 1 in order to keep the model 

differentiable. The vector g ∈ 𝑅% keeps the value between -1 and 1 and is used to modify 

the memory contents additively. This additive operation is an essential feature of the LSTM 

model, because during backpropagation a sum operation assigns gradients. This allows 

gradients on the memory cells 𝑐 to flow backward through time uninterrupted for long 

periods. In a LSTM, a network is required to maintain two vectors (𝑐9: 	&	ℎ9: ) at every point.  

The standard LSTM cannot detect all the important context for sentiment 

classification. In order to address this issue, Wang, Huang, Zhu, and Zhao (2016) proposed 

a LSTM model with an attention mechanism that can capture the key part of a sentence for 

sentiment classification. The following diagrams differentiate the regular RNN versus the 

additive attention RNN (Wang et al., 2017). The attention layer yields an additional weight 

vector (𝛼) for the LSTM that will be concatenated with the hidden layer vector (ℎ) and 

return a weighted representation of sentence (𝑟). That vector identifies the contribution of 

important elements in the final representation. The attention layer mechanism allows a 

LSTM to detect the most important part of a sentence when different aspects are present in 

the input dataset. 
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Figure 2. Left: Regular RNN model, Right: Attention RNN (Source: Wang et al., 2016) 

Baziotis et al. (2017) presented two LSTM models for sentiment classification. The 

first LSTM model was designed to identify sentiment on the message-level. This model 

has a 2-layer Bidirectional LSTM, which was implemented with an attention mechanism 

for addressing the most informative words in the message. The second model was 

developed for topic-based sentiment analysis tasks. Baziotis et al. (2017) proposed a 

Siamese Bidirectional LSTM network with different attention logic than in the message-

level deep learning network. For training these models, SemEval2017’s subtasks A, B, C, 

D, and E dataset tweets were used. 

2.2.1 2-layer Bidirectional LSTM 

A 2-layer Bidirectional LSTM neural network model uses Twitter messages as input, 

in the form of a sequence of words. The input word vector 𝑋 was converted into the low-

dimensional vector space 𝑅; through an embedding layer, where 𝑋 is (𝑥", 𝑥&, … , 𝑥<), 𝐸 is 

the size of the embedding layer, and 𝑇 is the total words in a tweet. This model initializes 

the weights of the embedding layer with pre-trained word embedding vectors via GloVe 

and custom word vectors generated by 330M Twitter messages.  

As illustrated in Figure 3, the study by Baziotis et al. (2017) used a Bidirectional 

LSTM (BiLSTM) to get word annotation summaries of the data from both directions. It 
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also stacked two layers of the BiLSTM to extract more important features from the tweets. 

The BiLSTM consists of a forward LSTM 𝑓 that reads the text from 𝑥" to 𝑥< 	and a 

backward LSTM 𝑓 that reads the text from 𝑥< to 𝑥". To do this final annotation for a given 

word, 𝑥', is achieved by concatenating both direction annotations i.e., hi = ℎ=eee⃗ ||ℎ=e⃖ee	, ℎ𝑖 ∈ 𝑅2L, 

|| in which 𝐿 indicate the concatenation operation and the size of each LSTM, respectively.  

 

Figure 3. 2-layer Bidirectional LSTM (Source: Baziotis et al, 2017) 

Normally, all the words in the tweet will not contribute to equally classifying the 

sentiment. This model used an attention mechanism to collect the importance of each word. 

This mechanism assigns a weight 𝑎' 	to each word annotation, and consequently estimates 

the fixed representation of the whole message 𝛾 as the weighted sum of all word 

annotations.  

𝑒' = 𝑡𝑎𝑛ℎ	(𝑊)ℎ' + 𝑏))	, 𝑒' 	 ∈ [−1,1]	

𝑎' =
𝑒𝑥𝑝	(𝑒')

∑ 𝑒𝑥𝑝	(𝑒9)<
97"

,C𝑎' = 1
<

'7"

	

𝛾 = 	C𝑎'ℎ'

<

'7"

, 𝛾 ∈ 𝑅&>	
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where 𝑊) and 𝑏) are the weights from the attention layer that will be high for the most 

essential words of a sentence. This model passes the feature vector 𝛾 for sentiment 

classification to a fully connected softmax layer in order to compute a probability 

distribution over all classes. This BiLSTM model used these as the hyperparameters, 

embedding the layer dimension as 300, the BiLSTM as 300, Gaussian noise 𝜎 as 0.2, 

dropout rate as 0.3 at the embedding layer, dropout rate as 0.25 at LSTM layer, and 𝑙& 

regularization of 0.0001 as the loss function.	

2.2.2 Siamese Bidirectional LSTM 

Baziotis et al. (2017) proposed another LSTM model as the Siamese Bidirectional 

LSTM (Figure 4), which has a different attention mechanism than the former one for a 

topic-based sentiment analysis task. This LSTM model takes two inputs from tweets 

(sequence of words) 𝑋9? 	and topics (sequence of words) 𝑋9@, where 𝑋9? =

(𝑥"9? , 𝑥&9? , … 𝑥9?9?), 𝑇9? is the number of words in the tweet, 𝑋9@ = (𝑥"9@ , 𝑥&9@ , … 𝑥9@9@), and 

𝑇9@ is the number of words in the topic. This LSTM model projects all words to a low-

dimensional vector space 𝑅;using the pre-trained word embedding vector, where 𝐸 is the 

size of the embedding layer. 

For the topic-based sentiment analysis, the LSTM used a BiLSTM with shared weights 

to map the words of the tweet and the topic to the same vector space in order to make a 

meaningful comparison between the content of each (Baziotis et al., 2017). The BiLSTM 

generates annotations for the tweet 𝐻9?and the topic 𝐻9@, where 𝐻9? = (ℎ"9? , ℎ&9? , … , ℎ9?9?) 

and 𝐻9@ = (ℎ"9@ , ℎ&9@ , … , ℎ9@9@) and each word annotation contains the concatenation of 

forward and backward layer annotation, that is defined as: 

ℎ'
1 = ℎ=

Aeeee⃗ ||ℎ=
Ae⃖eee, ℎ'

1 ∈ 𝑅&> , 𝑗 ∈ {𝑡𝑤, 𝑡𝑜} 
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where || denotes concatenation operator, and size of the LSTM represents 𝐿. 

Next, this network used a mean-Pooling layer over the annotation of the topic 𝐻9@ for 

accumulating them to a single annotation. This layer produces a topic annotation,  

ℎ9@oooo =
1
𝑇9@

Cℎ'9@
<"#

'7"

 

To get the final context-aware annotation for each word, the topic annotation ℎ9@oooo is 

concatenated to each word,  

ℎ' = ℎ'9? ∥ 	 ℎ9@oooo, ℎ'
1 ∈ 𝑅B> 

 

Figure 4. Siamese Bidirectional LSTM (Source: Baziotis et al, 2017) 

The BiLSTM uses a context aware attention mechanism by adding the context vector 

𝑢), to increase the contribution of words that would produce a better sentiment score for a 

given topic.  

𝑒! = 	𝑡𝑎𝑛ℎ(𝑊"ℎ! 	+	𝑏"), 𝑒! ∈ [−1, 1],	

𝑎' =
𝑒𝑥𝑝	(𝑒'<𝑢))

∑ 𝑒𝑥𝑝	(𝑒'<𝑢))
<"$
97"

,C𝑎'

<"$

97"

= 1,	

𝛾 =C𝑎'ℎ'

<

'7"

, 𝛾 ∈ 𝑅B>		
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where	𝑊" ,	𝑏) ,	and	𝑢)	are	jointly	learned	weights. 𝛾 is passed through a dropout layer. 

This LSTM model used these as the hyperparameters: embedding layer dimension as 300, 

BiLSTM as 128, Gaussian noise 𝜎 as 0.2, dropout rate as 0.3 at the embedding layer, 

attention layer, dropout rate as 0.25 at LSTM layer, and 𝑙& regularization of 0.0001 at the 

loss function. Baziotis et al. (2017) used Gaussian noise at the embedding layer in both 

LSTM attention models to reduce the overfitting issues. They also added an 

𝑙&	regularization penalty to the loss function to discourage large weights and stop the 

training when validation loss value stopped declining. 	

In order to find the impact of the attention mechanisms, they evaluated the 

performance of each model, both with and without the attention layer. Research suggests 

that when the ability to store long-range information of a model is high with an additional 

attention layer, that model performs better at sentiment classification (Baziotis et al., 2017). 

In this dissertation, we performed the sentiment classification using an LSTM model with 

an attention layer, in addition to Kim’s (2014) CNN model.  

We additionally built the BiLSTM to be trained by the input tweets. These neural 

networks were constructed with sequential data by sharing their weights across the 

sequence. The input list of words was mapped to an embedding vector, via one of the pre-

trained word vectors: word2vec, GloVe, and fastText. After the embedding layer, the 

sequence of words was passed through the BiLSTM to get to another hidden state. The 

hidden state ℎ9 at time 𝑡 was be computed as,  

ℎ9 = 𝑓(𝑊) × 𝑥9 + 𝑈) × ℎ9+" + 𝑏))	

where,	𝑥9 is the word embedding vector, weight matrix is 𝑊) ∈ 𝑅,×/, and 𝑈) ∈ 𝑅,×,, 

𝑏) ∈ 𝑅, is the bias term, and 𝑓(𝑥)	is non-linear function (tanh).	
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In order to attribute all words in a tweet equally to people’s understanding of the 

message context of a given tweet, we leveraged the use of an attention mechanism (Baziotis 

et al., 2017). In addition to the attention layer, a dense vector collected the weights of 

various word vectors, which is delineated in the following equations.  

𝑢9' = 𝑡𝑎𝑛ℎ	(𝑊ℎ9' + 𝑏)	, 

𝛼9' =
C6D	(F"%

&F$)
∑ C6D	(F"'

& F$)(
')!

, 

𝑠9 =C𝛼9'ℎ9'

%

'7"

 

Specifically, 𝑡 represents 𝑡9) tweet in the dataset, and n is the word count in a tweet. 

The ℎ9' represents the concatenation output of the BiLSTM layer. The term 𝑤 represents 

the weight matrix of the neural network and b is the bias term of the multilayer perception 

(Baziotis et al., 2017). After that, we compared the 𝑢9' and the word level context vector 

𝑢? using their similarity, and we measured the importance of each word in a tweet. The 

normalized importance weight 𝛼9' was computed through a softmax function. When the 

weight is high for an 𝛼9' that represents 𝑖9)  word, it is the most important for sentiment 

classification. Finally, 𝑠9 represents a sentence vector, which is the weighted sum of word 

annotations. 

The output of the attention layer was passed to a dense layer, and the activation 

functions for this layer were ‘tanh’ or ‘adam’. After the dense layer, there was a dropout 

layer to avoid overfitting problems. The output of this dropout followed a dense layer of 

two hidden layers, using softmax as an activation function. That produced the sentiment 

label that belonged to one of the two classes. 
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2.3 Word Embedding 

In natural language processing systems, words are expressed as discrete atomic 

symbols. As this encoding format treats each word independently, it does not provide 

additional information to the system when attempting to identify semantically similar 

words (Wehrmann, Becker, Cagnini, & Barros, 2017). Word embeddings are helpful 

because they encode both the syntactic and semantic information of words that should lie 

close in the embedded 𝑑-dimensional space. Word embeddings also consist of lists of 

words 𝑤	in a 𝑑-dimensional space where semantically similar words are neighbors that 

could be generated using a dictionary.  

Let 𝑇 ∈ {𝑤", 𝑤&, . . . , 𝑤%}	be a text with 𝑛 words, which will vary based on the text, and 

𝑓(𝑤') = 𝑣' 	be a mapping function that will map the word 𝑤' into vector 𝑣'. The word 

embedding space is defined by 𝑇 ∈ 𝑅%×/. Figure 5 illustrates an example of the word-

based representation of word embedding. Currently sentiment analysis classification tasks 

are performed through the network models such as CNN and LSTM, which process the 

text encoded as a sequence of word embeddings and produce a more promising result than 

raw word vectors (Kim, 2014). 

 

Figure 5. Word embedding for the words ‘I can do it’. (Source: Wehrmann et al., 2017) 

Word embedding methods are broadly classified into two categories, including 
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frequency-based and prediction-based embedding (Baroni et al., 2014). GloVe is an 

effective frequency-based tool that uses an unsupervised learning algorithm for obtaining 

vector representations for words (Baroni et al., 2014). word2vec is one of the 

computationally efficient predictive models for learning word embeddings from NLP. 

word2vec uses the Continuous Bag of Words (CBOW) or the Skip-gram model (Mikolov 

et al., 2014). Both of these models in word2vec are built with lightweight feedforward 

neural networks. FastText is an extension for word2vec that breaks words into several n-

grams. In fastText, each word’s word vector embedding will be the sum of all n-grams of 

that word. GloVe and fastText also supports CBOW and Skip-gram models for generating 

word embedding vectors. 

2.3.1 Continuous Bag of Words (CBOW) 

The CBOW model predicts target words from source context words i.e., in given a 

context, the goal is to know which word is the most likely to appear in it. In this model, all 

the words surrounding the target word when it is a target are fed into the networks and take 

the average of the extracted hidden layer. The input layer consists of a sequence of words 

{𝑥", 𝑥&, … , 𝑥I}	as a one-hot encoding format, including 𝐶 as the number of words, and 𝑉 

as the vocabulary size. The hidden layer is an N-dimensional vector. The input vectors are 

connected to the hidden layer through a 𝑉 × 𝑁	weight matrix 𝑤, and the hidden layer is 

attached to the output layer by a 𝑁 × 𝑉 weight matrix 𝑤J. Finally, the output layer has a 

list of words in the training dataset that is also one-hot encoded. The following figure 

describes the CBOW architecture. 
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Figure 6. CBOW model 

The output 𝑦1 	is obtained by passing the input 𝑢1 	through the softmax function.  

					𝑦1 = 𝑝(𝑤K1 	|	𝑤", 𝑤&, … , 𝑤0) 

=	
𝑒𝑥𝑝	(𝑢1)

∑ 𝑒𝑥𝑝	(𝑢1J)L
17"

 

In this equation, 𝑢1 =	𝑣?1J
< . ℎ, and h is the average of the input weighted by 𝑤, such that 

"
I
𝑤.∑ 𝑥'I

'7"  and 𝑣?1J
< is the jth column of 𝑤J. The weights 𝑤 and 𝑤J are calculated via 

backpropagation. 

2.3.2 Skip-gram 

The Skip-gram model follows a similar topology to the CBOW model. This model’s 

input is a target word, and the outputs are the lists of words surrounding the input word. 

Both input and output vectors are in the same dimension and in one-hot encoded format 

(Baroni et al., 2014). The Skip-Gram model architecture is presented in Figure 7. In this 

model, 𝑥 represents the one-hot input vector size 1×N, which is connected to the hidden 

layer through an 𝑉 × 𝑁	weight matrix 𝑤, and the hidden layer is attached to the output 

layer by an 𝑁 × 𝑉 weight matrix 𝑤J. In the hidden layer, the 𝑖9) row represents the weights 

that correspond to the 𝑖9) word in the vocabulary vector 𝑉. The output one-hot vector 𝐶 is 

1 ×N.  
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Figure 7. Skip-Gram model 

The output of the 𝑗9) node of the 𝑐9) output word is obtained by passing the input 

𝑢01 	through the soft-max function.  

𝑦01 = 𝑝(𝑤01 =	𝑤8,0|	𝑤") 

=	
𝑒𝑥𝑝	(𝑢01)

∑ 𝑒𝑥𝑝	(𝑢1JL
17" )

	

 
In this equation, 𝑢01 =	𝑣?1J

< . ℎ, h is the average of input weighted by w. i.e., 𝑥<𝑤, and 

𝑣?1J
< is the jth column of the 𝑐9) output word. The weights w and 𝑤J are calculated with 

backpropagation and a stochastic gradient descent. 

Since word embedding places the related words close together, it will be easy to 

interpret the tweet. In this research, this strategy was used to address all the errors in the 

tweets. In our study, we leveraged the list of pre-trained word embedding vectors including 

word2vec, GloVe, and fastText from open source code environments. 
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3 Methodology 

The benchmark Sentiment140 English language dataset was used for evaluation in this 

dissertation. This dataset contained labeled tweets that included emoticons. Two types of 

deep neural networks – Convolution Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) – were used for classification since they have been demonstrated to 

produce the best results. All terms in the tweets were represented using their word2vec or 

GloVe or fastText embeddings. Baseline models were trained and tested using tweets with 

their emoticons removed. For each baseline model, a corresponding model was trained that 

included emoticons as inputs. Alternate methods for obtaining embeddings for emoticons 

were explored. Accuracy, precision, recall, and 𝐹" scores of models using emoticons were 

compared to their corresponding baseline models that do not use emoticons. 

The rest of this chapter is organized as follows: Section 3.1 summarizes the dataset. 

Section 3.2 describes text pre-processing procedures for the baseline models and the 

models with emoticons. Section 3.3 defines the evaluation measures used. Section 3.4 

explains the embedding method using word2vec. The CNN model and the LSTM model 

are presented in sections 3.5 and 3.6, respectively. Section 3.7 outlines the method of 

comparing models trained with emoticons to the corresponding models trained without 

emoticons. 

3.1 Data Set 

In this research, we predicted the sentiment of twitter messages using the 

Sentiment140 English language dataset (Sentiment140, 2009). These Twitter datasets were 

limited to 140 characters of text and contained both transcripts and emoticons. The dataset 
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had six columns: polarity of the tweet, the id of the tweet, date of the tweet, the query of 

the user on api, the user that tweeted, and the text of the tweet. This study only included 

the polarity and text columns for classification. These datasets had 1.6 million rows and 

had been previously annotated with the three labels 4, 0, 2, which have been represented 

as positive, negative, and neutral, respectively (Go, Bhayani, & Huang, 2009). However, 

there was no sample data for the neutral label, so we do not consider that. Figure 8 

illustrates the data distribution for the sentiment labels in this dataset. Both sentiment labels 

positive and negative were equally distributed in this dataset. Table 1 illustrates the same 

data for both labels from the dataset. 

 

Figure 8. Sentiment label distribution – Raw dataset 

Table 1.Sample data from the dataset 

Sentiment Text Sentiment label 

0 

@switchfoot http://twitpic.com/2y1zl - Awww, 
that's a bummer.  You shoulda got David Carr of 
Third Day to do it. ;D NEGATIVE 

0 

@tsarnick yay totally  send me an e-mail! Cool 
I'm back at my appartment tomorrow so I'll have 
my laptop and my video software :) NEGATIVE 

0 

@CaitlinOConnor i want tacos and margarhitas  
telll gay i say hello&lt;3 
Managed to save 50%  The rest go out of bounds NEGATIVE 

4 
editing my profile for the first time in forever ... 
Tommy's an uncle again !  &lt;3 POSITIVE 

4 

@tsarnick yay totally  send me an e-mail! Cool 
I'm back at my appartment tomorrow so I'll have 
my laptop and my video software :) POSITIVE 

4 

@lauracowen hope you customised it with 
#ubuntuuk/#lugradio wallpapers and left podcasts 
on the desktop  Never hurts to advertise ;) POSITIVE 
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For this research, we considered only the rows that had at least one emoticon i.e., 

131,523 rows were filtered from the sentiment140 dataset. This dataset had special 

characters that were transformed into an ascii format for understanding all the tweets 

clearly. The given dataset had hashtags, URLs, html tags, special characters, carriage return 

characters (\n), and line terminator characters (\t). We removed all these characters and did 

not consider them in our study. The filtered dataset’s text column was copied into two more 

columns: one for a BASE_MODEL experiment and another one for a WITH_EMOTICON 

experiment. In the BASE_MODEL text column, all the emoticon characters were replaced 

with UNK. The sentiment140 dataset had the emoticons in the form of icons, instead of 

emojis, including: :‑), :), :-], :], :-3, etc. Table 2 describes the list of ninety emoticons in the 

WITH_EMOTICON experiment text column alongside the number of occurrences across 

the tweets. Most of the tweets regularly used by most of the users had smiley faces, eyes 

crossed and tongue sticking out, thumbs up, and heart emoticons. 

Table 2. Emoticons in the tweets with the number of occurrences 

Emoti
con 

Occurs Emo
ticon 

Occur
s 

Emotic
on 

Occur
s 

Emoti
con 

Occur
s 

Emoti
con 

Occurs Emoticon Occurs 

 :/ 74497 =D 871 :') 205 :c 74 =3 21 >:3 5 
 <3 13846 ;D 785 :$ 188 :b 73 :-} 21 :-] 5 
 xp 12011 :L 714 :> 180 :< 71 O-O 19 <pout> 2 
 ;) 7516 :o 652 >_< 165 *) 70 :{ 18 :-3 2 
:3 4410 =/ 522 ;] 160 8D 63 v.v 14 o/\\o 1 
 xD 2848 =] 485 =p 146 8-) 54 >:/ 14 ^<_< 1 
 XD 1879 >.< 414 DX 122 :} 47 :( 13 ><> 1 
 :p 1756 :\\ 412 o_O 117 D:< 36 =L 12 =) 1 
 :| 1680 :-/ 404 \\o/ 103 >:O 35 *-) 11 ;^) 1 
 :O 1659 :@ 383 :X 103 o_o 34 ^5 10 :D 1 
 ":(" 1464 XP 382 =\\ 101 D= 34 :-> 9   
 :S 1398 </3 335 O_O 100 :^) 34 >;) 7   
 d: 1355 0:3 317 O_o 87 %) 34 :) 7   
 'D:' 1240 8) 299 :o) 83 >:[ 28 :& 7   
 ';-)' 1122 :* 287 :-* 78 :-0 23 >:\\ 6   
 ':]' 1041 :[ 213 D; 76 D8 22 :# 6   



 

 

25 

 

Figure 9. Number of emoticons distribution by Sentiment class 

The WITH_EMOTICON text column were prepared using a list of English language 

emoticons mentioned in Wikipedia (Wikipedia, n.d.), in which each emoticon icon was 

replaced with the appropriate text. For instance, ‘:‑)’ was replaced with ‘happy face,’ ‘;-)’ 

was replaced with ‘happy face,’ ‘:‑(‘ was replaced with ‘angry,’ etc. Figure 9 delineates the 

number of emoticons distributed across the sentiment labels in the WITH_EMOTICON 

text column. More than 90% of tweets had one or two emoticons, and only a few tweets 

had more than two emoticons. 

 The number of rows in each of the sentiment labels POSITIVE and NEGATIVE in 

both datasets is reported in Table 3. Figure 10 explains the difference between the two 

datasets’ tweets’ length distribution in sentiment class. On the right side, the two graphs 

show the higher than default maximum tweet length of 140. Additionally, the 

WITH_EMOTICON dataset describes the minimum tweet length, but overall tweet sizes 

are greater than the default twitter message. 

Table 3. No of rows in BASE_MODEL, and WITH_EMOTICON dataset by sentiment 
class 

 POSITIVE NEGATIVE 
WITH_EMOTICON 78,529 52,994 
BASE_MODEL 78,529 52,994 
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Figure 10. Tweets length distribution- Left: BASE_MODEL, Right: WITH_EMOTICON 

Since new text was added in the WITH_EMOTICON text column, we expected an 

increase in the number of words in the raw dataset tweets. Figure 11 reports word length 

distribution in these two text columns, with the overall number of words in 

WITH_EMOTICON being larger than what is in the BASE_MODEL text column. We 

split a randomized sample method through the datasets, 80:10:10, into two sets of training 

test, and validation datasets. One of the training and test datasets had the BASE_MODEL 

text column and another set of training and test datasets had the WITH_EMOTICON text 

column. Both training datasets had 106,533 rows, validation datasets had 13,153 rows, and 

the test datasets had 11,837 rows.  

 
Figure 11. Word length distribution- Left: BASE_MODEL, Right: WITH_EMOTICON 
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3.2 Data preprocessing 

The raw tweets had so many meaningless and unstructured data and repetitive words. 

Hence, each experiment followed a few preprocessing steps in order to make some changes 

to tweet transcripts so as to conduct further text analysis. In the previous section, we 

defined a few preprocessing steps to copy the filtered dataset text column into two further 

columns. Besides that, datasets went through the following preprocessing steps:  

1) convert the text to lower case  

2) removal of all nullable rows  

3) removal of all additional empty spaces  

4) removal of all numbers, alphanumeric and punctuations 

We also removed and replaced all the stop words and stem words from the dataset 

using the NLTK (Natural Language Toolkit) English language dictionary, because such 

words have low predictive power (Rosenthal et al., 2017). For handling the stem and stop 

words, initially we split each tweet into a list of words using an NLTK tokenizer tool. If 

any of the tokens belonged to the NLTK stem’s bag of words, the appropriate stem word 

from the NLTK stem was replaced for that token, and the token that was in NLTK corpus’s 

stop words were removed from the tweet. Finally, we used NLTK wordnet lemmatization 

on the tweets, which linked words with similar meanings to one word. The lemmatization 

process used the bag of words from the tokenizer and mapped the appropriate word, based 

on the sentence. Subsequently, it excluded all the rows from the dataset where the tweet 

length was less than one.  

3.3 Evaluation criteria 

The primary evaluation criteria for this sentiment analysis compared the model 
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accuracy of the BASE_MODEL and the WITH_EMOTICON experiments. To evaluate 

the sentiment classification, model accuracy was measured using a confusion matrix, 

accuracy, precision, recall, and 𝐹" score metrics. The confusion matrix explains the 

distribution of predicted values across actual sentiment classes. Accuracy is the measure 

of all the correctly identified classes against the actual class. Precision is the fraction of the 

relevant instances among the predicted instances. Recall is the fraction of the desired 

instances that has been predicted over the total amount of desired instances. The 𝐹" score 

is defined as the weighted average of recall and precision. The following equations describe 

the accuracy (𝐴𝑐𝑐), recall (𝑅𝑒𝑐), precision (𝑃𝑟𝑒), 𝐹", and other metrics from confusion 

matrix:  

𝐴𝑐𝑐' =	
<M%*	<N%

<M%*	<N%*OM%*	ON%
,		𝐴𝑐𝑐 = 	 ∑ <M%

(
%)* *	∑ <N%

(
%)*

∑ <M%(
%)* *	∑ <N%(

%)* *∑ OM%(
%)* *	∑ ON%(

%)*
	

Rec' =	
𝑇𝑃'

𝑇𝑃' + 𝐹𝑁'
, 𝑅𝑒𝑐 = 	

∑ 𝑇𝑃'%
'78

∑ 𝑇𝑃'%
'78 +∑ 𝐹𝑁'%

'78
 

Pre' =
𝑇𝑃'

𝑇𝑃' + 𝐹𝑃'
, 𝑃𝑟𝑒 =

∑ 𝑇𝑃'%
'78

∑ 𝑇𝑃' + ∑ 𝐹𝑃'%
'78

%
'78

 

𝐹" =	
2 × 	𝑃𝑟𝑒	 × 	𝑅𝑒𝑐
𝑃𝑟𝑒 + 𝑅𝑒𝑐  

whereby 𝐴𝑐𝑐', Rec', and Pre' are the accuracy, recall, and precision for the class 𝑖 

respectively, 𝑛 is the number of classes in the sentiment classification, TP – True Positive, 

FP – False Positive, FN – False Negative, and TN – True Negative. 𝑇𝑃' is the number of 

examples in class 𝑖 that are predicted in class 𝑖. 𝑇𝑁' is the number of examples NOT in 

class 𝑖 that are NOT predicted in class 𝑖. 𝐹𝑃' is the number of examples NOT in class 𝑖 that 

are predicted in class 𝑖. 𝐹𝑁' is the number of examples in class 𝑖 that are NOT predicted 

class in 𝑖. In addition to these metrics, we will also evaluate the classification output using 
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a macro-averaging (𝑀𝑎𝑐𝑟𝑜5PQ) metric to determine the accuracy of the model. As the 

following equation illustrates, macro-averaging was the average of the precision and recall 

of the system on different sets. The evaluation process measured the impact of including 

emoticons on the sentiment classification task.	

𝑀𝑎𝑐𝑟𝑜_𝑃𝑟𝑒5PQ =
𝑃𝑟𝑒" +⋯+ 𝑃𝑟𝑒(

𝑘 	

𝑀𝑎𝑐𝑟𝑜_𝑅𝑒𝑐5PQ =
𝑅𝑒𝑐" +⋯+ 𝑅𝑒𝑐(

𝑘 	

3.4 Base-line models  

As Rosenthal et al. (2017) demonstrated, CNNs with multiple convolution operations 

are good for classifying sentiments. Baziotis et al. (2017) demonstrated how a BiLSTM 

with an attention layer yields better accuracy for sentiment classification. Within both 

experiments of our research, these models were employed to classify the sentiment as 

POSITIVE or NEGATIVE. Finally, the accuracy and performance of each method in the 

experiment was analyzed and the importance of emoticons in the sentiment analysis 

process was evaluated. The inclusion of emoticons resulted in a higher level of accuracy 

since positive or emotional words were included from the emoticons. Since Rosenthal et 

al. (2017) and Baziotis et al. (2017) used different datasets than our research dataset, we 

had to use a linear model as a base model for evaluating all the deep learning sentiment 

classification models. 

3.5 Embedding Layer 

Before building a sentiment analysis model, all the features contained in the tweets 

needed to be extracted and formed into a group of semantically related words through word 
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embedding. This study used a few different embedding approaches for our neutral network 

models, including custom word2vec embedding vectors, pre-trained word2vec embedding 

vectors, pre-trained GloVe embedding vectors, and pre-trained fastText embedding 

vectors. These embedding vectors were fed to an embedding layer. 

3.5.1 Custom word2vec model 

In order to construct word2vec embedding vectors through the given tweets, we used 

the Genism package from python. This API requires the input data to be in a list of 

sentences, with each sentence being a list of words meant for building the embedding 

vectors. Initially, the training dataset tweet messages were transformed into the format of 

a list of words. This model was defined by providing the number of dimensions (size), the 

maximum distance between a target word and words around the target word (window), it 

included or excluded terms based on their frequency (min_count), and the number of 

threads (workers). We determined the size of the vocabulary using the list of words in the 

training dataset’s text column (vocabulary size). We then trained the word2vec model with 

the list of words, with a few iterations (epochs). Table 4 describes the list of parameters 

used in the word2vec model.  

Table 4. Word2vec model hyperparameters 

Parameter name Value(s) 
Dimensionality of the word 
vectors (size) 

100-300 

Maximum distance between the 
current and predicted word 
within the distance (window) 

5-15 

Total frequency threshold 
(min_count) 

5-15 

No of worker threads to train the 
model (workers) 

8-10 

Training iterations (epochs) 16-50 
Maximum padding length 150-300 
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3.5.2 Pre-trained word2vec model 

We used Google’s public pre-trained word2vec embedding vector from an (, n.d.) 

available repository. It has 300 dimensions of pre-trained word vectors that have been 

trained using 100 billion words from a Google News dataset. This vector has the 

vocabulary size of Google news, is around 3 million words, and was transformed into a 

dictionary with a word as a key and coefficients as values for the embedding layer.  

3.5.3 Pre-trained GloVe model 

We used another pre-trained embedding GloVe (Global Vectors for Word 

representation) for our sentiment classification from the Stanford NLP public data 

repository. It is 200 dimensions of pre-trained word vectors (GloVe, n.d.) that were built 

using 2 billion tweets, 27 billion words, and has a vocabulary size of 1.2 million. This 

vector was transformed into a dictionary with a word as a key and coefficients as values.  

3.5.4 Pre-train fastText model 

This study tried one more pre-trained embedding of fastText for our sentiment 

classification from the Facebook opensource (FastText, n.d.) environment. It is 300 

dimensions of pre-trained word vectors that were trained on Common Crawl and 

Wikipedia. These models were trained using CBOW, which has 300 dimensions, a window 

of size 5, character n-grams of length 5, position-weights, and 10 negatives. This vector 

was transformed into a dictionary with a word as a key and coefficients as values.  

In our next step, we prepared the embedding layer through the above four embedding 

vectors. We leveraged the Keras Tokenizer function that could be fit onto the training 

dataset tweets (Keras, n.d.c.), could transform text to sequences consistently by calling the 

texts_to_sequences method on the Tokenizer class, and delivered access to the dictionary 

by the mapping of words to integers in a word_index attribute. Next, we created a matrix 
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of one embedding for each word in the training dataset text. We did that by enumerating 

all unique words in the Tokenizer.word_index function and identifying the embedding 

weight vector from the embedding vector, which was made in the initial proceedings.  

Consequently, we created an embedding layer with the embedding matrix through the 

Keras embedding method (Keras, n.d.d.), which was then seeded with the specific word 

vectors’ embedding weights. The output dimension was set based on the embedding vector 

dimension size. For instance, the pre-trained word2vec embedding layer output dimension 

was 300 since this embedding vector size was 300. The trainable attribute was set as false 

because we did not want it to update its learned word weights in this model. This vector 

representation of words was used as input data for the CNN and LSTM models, which was 

used, in turn, for sentiment classification. 

3.6 CNN Model 

For sentiment polarity, we implemented a model similar to Kim’s (2014) CNN model. 

We made a few changes to Kim’s (2014) CNN model by fine-tuning the parameters and 

building two types of CNNs: a simple CNN model and a multichannel CNN model. Each 

model worked with all the four embedding vectors; hence we had 8 different CNN variants 

of models for sentiment classification. 

3.6.1 Simple CNN 

We developed a sequential CNN model using a Keras API, as it has a linear stack of 

layers, which is described in Figure 12. The training and test dataset tweet messages were 

the same length across all the rows for the CNN model. The maximum length of the 

document was maintained through the max_length parameter. The original tweets’ 

max_length value was 140 since the maximum length did not exceed 140 characters for 
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the BASE_MODEL experiment, while it was 200 for the WITH_EMOTICON experiment. 

The maximum length on these two datasets was controlled by the Keras Tokenizer and the 

pad_sequences functions. The Tokenizer vectorized the tweets and converted them into a 

sequence of integers and then we restricted the tokenizer to using only the topmost common 

vocabulary words. The number of topmost vocabulary words were managed through a 

hyperparameter in this model. The padding functionality padded the sequences to the 

maximum length by adding 0 values in the end.  

The first layer in this CNN sequence was an embedding layer, which we were built in 

the previous embedding layer section. The embedding layer passed the output to a 1D 

convolution layer, which created a convolution kernel that was convolved with the layer 

input over a single spatial dimension in order to produce a tensor of outputs (Keras, n.d.b.). 

This conv1D layer produced the output matrix through the actions of a few parameters, 

such as the number of output filters in the convolution (filters), length of the convolution 

windows (kernel_size), activation function (activation), and the penalty for the loss 

function via regularization method (kernel_regularizer). This study chose the 

hyperparameters’ values from Table 5. We used the filters that have the range of 140-200, 

kernel_size of 5, activation as ‘relu’ or ‘tanh’, and kernel_regularizer as 𝑙& or 𝑙" with 0.001 

weight for this convolution layer. 

The output of the convolution layer was received by a maximum pooling layer that 

occurred via the Keras MaxPooling1D function (Keras, n.d.e.). This study set the 

maximum pooling size as two, i.e., the pooling operation that calculated the two largest 

values in each patch of each feature map. If the dimension size was set as 140 in the 

previous layer, the pooling operation returned the same output dimension. This matrix 
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passed to a dropout layer, and that randomly assigned 0 weights to the neurons in the 

network. If the dropout rate was 0.5, 50% of the neurons received a zero weight. This 

dropout operation made the network become less sensitive when reacting to smaller 

variations in the tweet. That further increased the model’s accuracy on unseen data. The 

output dimension of the dropout layer still had the same dimensions of the conv1d layer. 

 
Figure 12. Simple CNN model 

The results of the dropout layer were fed to another convolution layer (convolution 2) 

with a kernel_size of 7. That was passed to a maximum pooling layer, followed by a 

dropout layer, as successors of convolution 2. From there, the convolution 2 was passed to 

a third convolution layer with a kernel_size of 8. This convolution 3 layer was fed to a 

global maximum pooling layer, which was defined by the Keras function 

GlobalMaxPooling1D (Keras, n.d.e.). The global maximum pooling layer was only taking 

the max vector of each input word. This pooling layer was passed to a dropout layer with 

a dropout rate of 0.5.  

The third dropout layer was fed into a dense layer with n number of hidden layers, as 

well as ‘relu’ or ‘tanh’ as an activation function and a regularization function to avoid 

overfitting issues. This layer was defined by the Keras dense function (Keras, n.d.f.). The 
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output dimensionality of the dense layer was based on the number of the hidden layer’s 

hyperparameters. For instance, if the hidden layer was set as 32 and the input dimension 

was set as 150, the output dimension became 32. The same regularization method used 

previously was a parameter for this dense layer, which then was passed to a dropout layer 

with the same dropout rate. This dropout layer dimension was the same as its parent layer. 

Consequently, the dropout layer passed the output through a softmax layer for 

producing the expected sentiment analysis class as an encoded format of [0, 4]. This 

softmax layer was a dense layer that used the number of output classes (2) as hidden layer 

units, and ‘softmax’ as activation function parameters. The final dense layer reduced the 

number of dimensions to two. The training time for the simple CNN model with custom 

word2vec and pre-trained word2vec models was around 20 to 40 minutes in Google’s colab 

environment with a GPU runtime. 

3.6.2 Multichannel CNN 

Figure 13 depicts the multichannel CNN model that was used in this dissertation. This 

model had three channels; each channel had an input layer in which the dimension was the 

same as the maximum length parameter of the model. This input layer defined the shape of 

the input vector. The input layer was passed to an embedding layer, a convolution 1-

dimension layer, a global maximum pooling layer, and a dropout layer. The channels’ 

convolution layers’ kernel_size values were 5, 7, and 8, respectively. All three channels’ 

dropout layer output vectors were concatenated and fed to a dense layer with n number of 

hidden layers, ‘relu’ or ‘tanh’ as an activation function, and a regularization function. This 

layer output was passed to a dropout and softmax layer as established in the previous CNN 

model.  

These two CNN models were compiled using ‘categorical_crossentropy’ as a loss 
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function and ‘adagrad’ or ‘adam’ as an optimizer through the Keras compile function 

(Keras, n.d.g.). After that, these models were trained with the number of iterations (epochs) 

and the number of samples per epoch (batch_size), which happened through the Keras fit 

function (Keras, n.d.h.). Table 5 describes a few hyperparameters that allowed for the CNN 

to tune the accuracy of the models. 

Table 5. CNN Model hyperparameters 

Parameter name Value(s) 
Maximum number of words 
(restricted for the same length) 

30-42 

Number of classes for output layer 2 
Size of the vocabulary 25,000-30,000 
Output dimensionality 140-200 
Size of the kernel 3-8 
Activation functions relu, tanh 
Batch size 16, 32,64  
Pooling types 2, maximum 
Number of epochs (number of 
cycles) 

20-50 

Dropout rate probability 0.2-0.5 
Optimizer adagrad, adam 
Loss function Categorical crossentropy 
Number hidden nodes 16-64 

 

 
Figure 13. Multichannel CNN model 
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The variety of simple and multichannel CNN models are illustrated in Table 6. The 

overall training time for the multichannel CNN model with custom word2vec and pre-

trained word2vec models is around 30 to 60 minutes in Google’s colab environment with 

a GPU runtime. 

Table 6. Variety of CNN models  

CNN Model 
Name 

Custom 
word2vec 

Pre-
trained 

word2vec 

Pre-
trained 
GloVe 

Pre-
trained 
fastText 

Simple CNN  Ö Ö Ö Ö 
Multichannel 
CNN 

Ö Ö Ö Ö 

3.7 LSTM Model 

As discussed earlier, Long Short-Term Memory (LSTM) units were built inside of 

RNNs that encapsulate information about long-term dependencies in the text. The study 

followed Cliché’s (2017) BiLSTM model architecture, depicted in Figure 14. This model 

builds two LSTM units to train two LSTMs on the input tweets. The reversed copy of the 

first LSTM layer should be a second LSTM. These neural networks are constructed with 

sequential data by sharing their weights across the sequence. This mechanism was 

maintained through the past and future features for a certain time. The length of input 

training and test dataset tweet messages for this LSTM model were normalized across all 

the tweets. The normalizing of the input text and encoding of the labels’ strategy was the 

same as the CNN model which was explained in the previous section. 

The LSTM network is a linear stack of layers that was built using the Keras API. The 

first layer was an embedding layer, which encoded the input sequence into a sequence of 

dense vectors of the embedding dimension. The embedding layer was chosen from one of 

the embedding models that have been explained in section 3.5. The embedding layer output 
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was connected to a LSTM layer that was derived from the Keras LSTM function (Keras, 

n.d.i.). The LSTM transformed the vector sequence into a single vector, based on the output 

dimension size parameter that contained information about the entire sequence. In addition 

to the output dimension size, this method was used by the dropout hyperparameter as it 

contained a fraction of the units that were dropped for the linear transformation of the 

inputs, as well as the recurrent_dropout hyperparameter for maintaining the dropout rate in 

the recurrent state. The Bidirectional LSTM layer was implemented via the Keras (Keras, 

n.d.a.) Bidirectional layer wrapper function. 

Normally, all words in a tweet do not contribute equally to people’s understanding of 

the message context of a given tweet. Hence, an attention mechanism, which ignored 

emoticons in tweets, captured the words (Baziotis et al., 2017). After the attention layer, a 

dense vector collected the weights of various word vectors. This LSTM layer had an 

attention layer that received input from the BiLSTM. The attention layer was defined from 

the work of Yang et al., (2016) which had the sentiment analysis (Keras, n.d.j.) with a 

BiLSTM model with an attention mechanism.  

 
Figure 14. BiLSTM model with attention layer 
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The output of the attention layer was passed to a dense layer with n number of hidden 

neurons that were configured in the hyperparameter, and the activation function for this 

layer was ‘tanh’ or ‘relu’. The dense layer output was fed to a dropout layer with the 

dropout rate used across the model to avoid overfitting problems. The output of this dropout 

followed a dense layer of 2 hidden layers, using ‘softmax’ as an activation function. That 

produced the sentiment label that belonged to one of the two classes. This study adjusted a 

few parameters for the BiLSTM model in order to tune the accuracy of the model, as shown 

in Table 7.  

Table 7. LSTM model hyperparameters 

Parameter name Value(s) 
Maximum number of words 30-42 
Number of classes for output 
layer 

2 

Size of the vocabulary 25,000-30,000 
Output dimensionality for LSTM 140-200 
Activation functions relu, tanh 
Batch size 16, 32,64 
Number of epochs  20-50 
Dropout keep probability 0.2-0.5 
Optimizer Adagard, adam 
Loss function Categorical crossentropy 
Number of hidden nodes 32-256 
Number of nodes in Dense Layer 32-256 

 
This model needed to tune the parameters or add additional channels to achieve a better 

performance. The training time for the BiLSTM model with the pre-trained word2vec 

model is around 2 to 2.5 hours in Google’s colab environment with a GPU runtime. We 

created another BiLSTM model without the attention layer for sentiment classification. We 

tested both experiments with the variety of BiLSTM models, such as with an attention layer 

and without an attention layer, along with four different embedding models, which are 

illustrated in Table 8. 
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Table 8. Variety of LSTM models 

LSTM Model Name Custom 
word2vec 

Pre-
trained 

word2vec 

Pre-
trained 
GloVe 

Pre-
trained 
fastText 

BiLSTM  Ö Ö Ö Ö 
BiLSTM with attention layer Ö Ö Ö Ö 

 

3.8 Comparison of extended approaches to baseline models 

In this research, we trained the models using a training dataset for both experiments 

separately. First, we tested the BASE_MODEL with the deep learning models and 

evaluated its performance through the list of evaluation metrics. Next, we compared the 

same process for the WITH_EMOTICON experiment and evaluated it against the 

BASE_MODEL’s performance metrics to address the emoticons’ impact on the sentiment 

classification. We then repeated the same process by adjusting the LSTM and CNN 

models’ parameters and evaluating their performances. In addition, we measured the 

training time for each of those models. 
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4 Results 

The goal of this dissertation was to develop deep learning models for sentiment 

analysis and to investigate whether inclusion of emoticons as features improves 

classification accuracy. This chapter presents the results of the models, the validation of 

the final model, and the comparison between the base model and with emoticon 

experiments. The rest of this chapter is structured as follows: Section 4.1 explains the 

various embedding vectors used inside the deep neural networks. Section 4.2 reviews the 

linear model’s results for the emoticon and base model experiments. Section 4.3 

summarizes the CNN model’s results for the emoticon and base model experiments. 

Section 4.4 describes the LSTM model’s results for both experiments. Section 4.5 validates 

all the model results using the validation metrics. Section 4.6 compares all the model results 

for the BASE_MODEL and WITH_EMOTICON datasets. Section 4.7 selects the best 

model for both datasets. Section 4.8 summarizes the model results.  

4.1 Embedding vectors  

The following five different embedding vectors have been used in all the CNN and 

LSTM models.  

4.1.1 Custom word2vec  

In this model, we initially trained the word2vec embedding for both datasets. The 

word2vec model was built using a genism python package word2vec function. We set the 

following hyperparameters in the word2vec training function: a dimensionality size as 200, 

the maximum distance between the current and predicted words as 8, ignoring all the words 

with a minimum word frequency count as 10, the number of iterations for training as 32, 

and the number of threads for training as 8. This model produced a vocabulary around the 
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size of 9,116 for both datasets. These word2vec models were used for creating the 

embedding layers for deep neural network models. 

4.1.2 Pre-trained word2vec – Google news 

We downloaded the pre-trained word2vec embedding model using Google news from 

https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz for 

building the embedding layers. It has 300 dimensions and a 3,000,000 vocabulary size of 

embedding vectors.  

4.1.3 Pre-trained word2vec – Twitter data 

We also used another pre-trained word2vec embedding model using twitter data from 

https://drive.google.com/uc?id=1lw5Hr6Xw0G0bMT1ZllrtMqEgCTrM7dzc&export=do

wnload for building the embedding layers. It has 400 dimensions and a 3,039,345 

vocabulary size of embedding vectors.  

4.1.4 Pre-trained GloVe 

Next, we used Stanford’s GloVe pre-trained embedding model from 

http://nlp.stanford.edu/data/Glove.twitter.27B.zip for building the embedding layers. This 

model was built by the Stanford NLP lab using Twitter data and has 200 dimensions, as 

well as a 1,193,514 vocabulary size of embedding vectors.  

4.1.5 Pre-trained fastText 

Subsequently, we leveraged Facebook’s fastText pre-trained embedding model from 

https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip for creating 

the embedding layers. This model was built by Facebook AI lab using a wiki and it has 300 

dimensions as well as a 2,000,000 vocabulary size of embedding vectors.  

4.2 Linear model results  

We tokenized the BASE_MODEL and WITH_EMOTICON datasets using the BERT 
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tokenizer, which then produced around 118,370 tokens in each training dataset, and 13,153 

tokens in each test dataset. The input text was padded with the maximum length of the 

input text and varied in all the datasets. The BASE_MODEL experiment maximum length 

of training and test datasets were 64 and 51 respectively, and the WITH_EMOTICON 

experiment maximum length of training and test datasets were 65 and 49 respectively. We 

then trained a few linear models, such as logististic regression, stochastic gradient descent 

classifiers (SGD), ridge classifiers, and perceptron classifiers, using training datasets for 

both experiments. The logistic regression model performed better than other linear models 

for both training datasets. We measured the model’s accuracy, precision, recall, 𝐹"	score 

and loss metrics for both of the experiments using validation datasets. We then measured 

the test dataset prediction accuracy for both datasets. Accuracies for the base model and 

the model with emoticons were 80.3% and 80.7% respectively. Table 9 and 10 describe 

the logistic regression confusion matrix, precision, and recall for the test dataset. We 

considered this our base model for evaluating the deep learning models. 

Table 9. Logistic Regression - confusion matrix 

Tr
ue

 la
be

l 

 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6798 995 6812 981 7793 
Negative 1602 3758 1555 3805 5360 

  8400 4753 8367 4786  
 
Table 10. Logistic Regression - precision, recall, F"	score, support, accuracy, macro 
average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.81 0.87 0.84 7793 0.81 0.87 0.84 7793 
negative 0.79 0.70 0.74 5360 0.80 0.71 0.75 5360 

macro 
average 

0.80 0.79 0.79 13153 0.80 0.79 0.80 13153 

weighted 
average 

0.80 0.80 0.80 13153 0.81 0.81 
 

0.81 
 

13153 
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4.3 CNN model results 

A variety of simple and multichannel CNN models were tried for Sentiment 

classification. The CNN models were trained and made predictions using four different 

embedding vectors for the BASE_MODEL and WITH_EMOTICON datasets with the 

hyperparameters mentioned in Table 5. We adjusted a few hyperparameters in the CNN 

models based on the execution time and model performance of each dataset. The rest of 

the sections will go through each of the model’s outputs. 

4.3.1 CNN with custom word2vec 

We tokenized both datasets using the Keras tokenizer, which then produced around 

112,069 words in each dataset. The input text was padded with the maximum length of the 

input text and varied in both datasets. The BASE_MODEL experiment maximum length 

was 40 and the WITH_EMOTICON maximum length was 42. The rest of the CNN and 

LSTM models used these steps initially before creating the embedding layer. Next, we 

made an embedding layer using the custom word2vec vector. The simple CNN model was 

fitted using both training datasets. We measured the model’s accuracy, precision, recall, 

𝐹"	score and loss metrics for both of the experiments using validation datasets. Figure 15 

and Figure 16 illustrate these metrics for this model. While fitting the models, if the 

validation dataset accuracy did not improve, we stopped the iterations through early 

stopping parameters we had devised. We then measured the test dataset prediction accuracy 

for both datasets. Accuracies for the base model and the model with emoticons were 

77.22% and 78.42% respectively. Table 9 and 10 describe the confusion matrix, precision, 

and recall for the test dataset. 
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Figure 15. CNN with custom word2vec – accuracy 

 
Figure 16. CNN with custom word2vec - precision, recall, F" score and loss 

Table 11. CNN with custom word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6605 1188 6565 1228 7793 
Negative 1808 3552 1610 3750 5360 

  8413 4740 8175 4978  
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Table 12. CNN with custom word2vec - precision, recall, F"	score, support, accuracy, 
macro average, and micro average 

 Base With Emoticon 
 precision recall 𝐹"	score support precision recall 𝐹"	score support 
positive 0.79 0.85 0.82 7793 0.80 0.84 0.82 7793 
negative 0.75 0.66 0.70 5360 0.75 0.70 0.73 5360 

macro 
average 

0.77 0.76 0.76 13153 0.78 0.77 0.77 13153 

weighted 
average 

0.77 0.77 0.77 13153 0.78 0.78 
 

0.78 
 

13153 

 
4.3.2 CNN with pre-trained Google word2vec  

In this model, we made an embedding layer using the pre-trained Google word2vec 

vector for the CNN model. We fitted this model using both training datasets. We measured 

the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the 

experiments using validation datasets. Figure 17 and Figure 18 illustrate these metrics for 

this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 76.21% and 77.56% 

respectively. Table 13 and 14 describe the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 17. CNN with pre-trained Google word2vec - accuracy 
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Figure 18. CNN with pre-trained Google word2vec - precision, recall, F"	score and loss 

Table 13. CNN with pre-trained Google word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6752 1041 6531 1262 7793 
Negative 2088 3272 1689 3671 5360 

  8840 4313 8220 4933  
 
Table 14. CNN with pre-trained Google word2vec - precision, recall, F"	score, support, 
accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.76 0.87 0.81 7793 0.79 0.84 0.82 7793 
negative 0.76 0.61 0.68 5360 0.74 0.68 0.71 5360 

macro 
average 

0.76 0.74 0.74 13153 
 

0.77 0.76 0.76 13153 
 

weighted 
average 

0.76 0.76 0.76 13153 
 

0.77 
 

0.78 
 

0.77 
 

13153 

 
4.3.3 CNN with pre-trained Twitter word2vec 

In this model, we made an embedding layer using the pre-trained twitter-based 

word2vec vector for the CNN model. We fitted this model using both training datasets. We 
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evaluated the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the 

experiments using validation datasets. Figure 19 and Figure 20 illustrate these metrics for 

this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 77.23% and 79.67% 

respectively. Table 15 and 16 describe the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 19. CNN with pre-trained twitter-based word2vec – accuracy 

 
Figure 20. CNN with pre-trained twitter-based word2vec - precision, recall, F"	score and 
loss 
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Table 15. CNN with pre-trained twitter-based word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6564 1229 6548 1245 7793 
Negative 1766 3594 1429 3931 5360 

  8330 4823 7977 5176  
 
Table 16. CNN with pre-trained twitter-based word2vec - precision, recall, F"	score, 
support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.79 0.84 0.81 7793 0.82 0.84 0.83 7793 
negative 0.75 0.67 0.71 5360 0.76 0.73 0.75 5360 

macro 
average 

0.77 0.76 0.76 13153 
 

0.79 0.79 0.79 13153 
 

weighted 
average 

0.77 0.77 0.77 13153 
 

0.80 
 

0.80 
 

0.80 
 

13153 

 
4.3.4 CNN with pre-trained GloVe  

In this model, we made an embedding layer using the pre-trained GloVe vector for the 

CNN model. We fitted this model using both training datasets. We measured the model’s 

accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments using 

validation datasets. Figure 21 and Figure 22 illustrate these metrics for this model. We then 

measured the test dataset prediction accuracy for both datasets. Accuracies for the base 

model and the model with emoticons were 77.78% and 79.37% respectively. Table 17 and 

18 describe the confusion matrix, precision, and recall for the test dataset. 

 
Figure 21. CNN with pre-trained GloVe - accuracy 
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Figure 22. CNN with pre-trained GloVe - precision, recall, F"	score and loss 

Table 17. CNN with pre-trained GloVe - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6465 1328 6636 1157 7793 
Negative 1594 3766 1557 3803 5360 

  8059 5094 8193 4960  
 
Table 18. CNN with pre-trained GloVe - precision, recall, F"	score, support, accuracy, 
macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.80 0.83 0.82 7793 0.81 0.85 0.83 7793 
negative 0.74 0.70 0.72 5360 0.77 0.71 0.74 5360 

macro 
average 

0.77 0.77 0.77 13153 
 

0.79 0.78 0.78 13153 
 

weighted 
average 

0.78 0.78 0.78 13153 
 

0.79 
 

0.79 
 

0.79 
 

13153 

 
4.3.5 CNN with pre-trained fastText  

In this model, we crafted an embedding layer using the pre-trained fastText vector for 

the CNN model. We fitted this model using both training datasets. We measured the 
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model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments 

using validation datasets that are shown in Figure 23 and Figure 24. We then measured the 

test dataset prediction accuracy for both datasets. Accuracies for the base model and the 

model with emoticons were 77.21% and 79.76% respectively. Table 19 and 20 describe 

the confusion matrix, precision, and recall for the test dataset. 

 
Figure 23. CNN with pre-trained fastText - accuracy 

 
Figure 24. CNN with pre-trained fastText - precision, recall, F"	score and loss 
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Table 19. CNN with pre-trained fastText - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6536 1257 6407 1386 7793 
Negative 1740 3620 1276 4084 5360 

  8276 4877 7683 5470  
 
Table 20. CNN with pre-trained fastText - precision, recall, F"	score, support, accuracy, 
macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.79 0.84 0.81 7793 0.83 0.82 0.83 7793 
negative 0.74 0.68 0.71 5360 0.75 0.76 0.75 5360 

macro 
average 

0.77 0.76 0.76 13153 
 

0.79 0.79 0.79 13153 
 

weighted 
average 

0.77 0.77 0.77 13153 
 

0.80 0.80 0.80 13153 

 
4.3.6 Multichannel CNN with custom word2vec 

In this model, we made an embedding layer using the custom word2vec vector for the 

Multichannel CNN model. We fitted this model using both training datasets. We measured 

the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the 

experiments using validation datasets. Figure 25 and Figure 26 illustrate these metrics for 

this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 78.93% and 79.38% 

respectively. Table 21 and 22 describe the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 25. Multichannel CNN with custom word2vec - accuracy 
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Figure 26. Multichannel CNN with custom word2vec - precision, recall, F"	score and loss 

Table 21. Multichannel CNN with custom word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6478 1315 6606 1187 7793 
Negative 1456 3904 1525 3835 5360 

  7934 5219 8131 5022  
 
Table 22. Multichannel CNN with custom word2vec - precision, recall, F"	score, support, 
accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.82 0.83 0.82 7793 0.81 0.85 0.83 7793 
negative 0.75 0.73 0.74 5360 0.76 0.72 0.74 5360 

macro 
average 

0.78 0.78 0.78 13153 
 

0.79 0.78 0.78 13153 
 

weighted 
average 

0.79 0.79 0.79 13153 
 

0.79 0.79 0.79 13153 

 
4.3.7 Multichannel CNN with pre-trained Google word2vec  

In this model, we made an embedding layer using the pre-trained Google news 

word2vec vector for the multichannel CNN models. We fitted this model using both 
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training datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score and loss 

metrics for both of the experiments using validation datasets. Figure 27 and Figure 28 

illustrate these metrics for this model. We then measured the test dataset prediction 

accuracy for both datasets. Accuracies for the base model and the model with emoticons 

were 77.15% and 77.38% respectively. Table 23 and 24 describe the confusion matrix, 

precision, and recall for the test dataset. 

 
Figure 27. Multichannel CNN with pre-trained Google news word2vec - accuracy 

 
Figure 28. Multichannel CNN with pre-trained Google news word2vec - precision, recall, 
𝐹"	score and loss 
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Table 23. Multichannel CNN with pre-trained Google news word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6652 1141 6678 1115 7793 
Negative 1864 3496 1860 3500 5360 

  8516 4637 8538 4615  
 
Table 24. Multichannel CNN with pre-trained Google news word2vec - precision, recall, 
𝐹"	score, support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.78 0.85 0.82 7793 0.78 0.86 0.82 7793 
negative 0.75 0.65 0.70 5360 0.76 0.65 0.70 5360 

macro 
average 

0.77 0.75 0.76 13153 
 

0.77 0.75 0.76 13153 
 

weighted 
average 

0.77 0.77 0.77 13153 
 

0.77 0.77 0.77 13153 

 
4.3.8 Multichannel CNN with pre-trained Twitter word2vec 

In this model, we crafted an embedding layer using the pre-trained twitter-based 

word2vec vector for the Multichannel CNN model. We fitted this model using both training 

datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score and loss metrics 

for both of the experiments using validation datasets. Figure 29 and Figure 30 illustrate 

these metrics for this model. We then measured the test dataset prediction accuracy for 

both datasets. Accuracies for the base model and the model with emoticons were 79.59% 

and 80% respectively. Table 25 and 26 describe the confusion matrix, precision, and recall 

for the test dataset. 

 
Figure 29.  Multichannel CNN with pre-trained Twitter data word2vec - accuracy 
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Figure 30. Multichannel CNN with pre-trained Twitter data word2vec - precision, recall, 
F"	score and loss 

Table 25. Multichannel CNN with pre-trained Twitter data word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6519 1274 6463 1330 7793 
Negative 1411 3949 1300 4060 5360 

  7930 5223 7763 5390  
 
Table 26. Multichannel CNN with pre-trained Twitter data word2vec - precision, recall, 
F"	score, support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.82 0.84 0.83 7793 0.83 0.83 0.83 7793 
negative 0.76 0.74 0.75 5360 0.75 0.76 0.76 5360 

macro 
average 

0.79 0.79 0.79 13153 
 

0.79 0.79 0.79 13153 
 

weighted 
average 

0.80 0.80 0.80 13153 
 

0.80 0.80 0.80 13153 

 
4.3.9 Multichannel CNN with pre-trained GloVe  

In this model, we created an embedding layer using the pre-trained GloVe vector for 

the Multichannel CNN model. We fitted this model using both training datasets. We 
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evaluated the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the 

experiments using validation datasets. Figure 31 and Figure 32 illustrate these metrics for 

this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 79.97% and 80.1% 

respectively. Table 27 and 28 described the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 31. Multichannel CNN with pre-trained GloVe - accuracy 

 
Figure 32. Multichannel CNN with pre-trained GloVe - precision, recall, F"	score and 
loss 
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Table 27. Multichannel CNN with pre-trained GloVe - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6456 1337 6600 1193 7793 
Negative 1298 4062 1424 3936 5360 

  7754 5399 8024 5129  
 
Table 28. Multichannel CNN with pre-trained GloVe - precision, recall, F"	score, 
support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.83 0.83 0.83 7793 0.82 0.85 0.83 7793 
negative 0.75 0.76 0.76 5360 0.77 0.73 0.75 5360 

macro 
average 

0.79 0.79 0.79 13153 
 

0.79 0.79 0.79 13153 
 

weighted 
average 

0.80 0.80 0.80 13153 
 

0.80 0.80 0.80 13153 

 
4.3.10 Multichannel CNN with pre-trained fastText  

In this model, we built an embedding layer using the pre-trained fastText for the 

Multichannel CNN model. We fitted this model using both training datasets. We measured 

the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the 

experiments using validation datasets. Figure 33 and Figure 34 illustrate these metrics for 

this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 80.15% and 80.57% 

respectively. Table 29 and 30 describe the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 33. Multichannel CNN with pre-trained fastText - accuracy 
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Figure 34. Multichannel CNN with pre-trained fastText - precision, recall, F"	score and 
loss 

Table 29. Multichannel CNN with pre-trained fastText - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6618 1175 6441 1352 7793 
Negative 1436 3924 1203 4157 5360 

  8054 5099 7644 5509  
 
Table 30. Multichannel CNN with pre-trained fastText - precision, recall, F"	score, 
support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.82 0.85 0.84 7793 0.84 0.83 0.83 7793 
negative 0.77 0.73 0.75 5360 0.75 0.78 0.76 5360 

macro 
average 

0.80 0.79 0.79 13153 
 

0.80 0.80 0.80 13153 
 

weighted 
average 

0.80 0.80 0.80 13153 
 

0.81 0.81 0.81 13153 

 
While comparing all the CNN models’ performance metrics, the WITH_EMOTICON 

dataset performed a bit better than the BASE_MODEL dataset. Also, we observed that 

models with a fastText embedding vector predicted the results more correctly than the other 



 

 

60 

embedding vectors, and that the multichannel CNN model worked better for these datasets 

than the sequential CNN model with all the embedding vectors factored in. 

4.4 LSTM model results 

We experimented with a few different types of Bidirectional LSTM (BiLSTM) as well 

as a BiLSTM with an attention layer models for sentiment classification. Both of the 

BiLSTM models were trained and made predictions using the four embedding vectors for 

the BASE_MODEL and WITH_EMOTICON datasets with the hyperparameters 

mentioned in Table 6. We tuned a few parameters based on the execution time and model 

performance of each dataset. The sections that follow analyze the output of each model. 

4.4.1 BiLSTM with custom word2vec 

We tokenized both datasets using a Keras tokenizer that generated around 112,069 

tokens of words in each dataset. The input text in the dataset was padded with its maximum 

length of the text from the input data. Maximum length was different for both datasets, the 

BASE_MODEL experiment maximum length was 40 and the WITH_EMOTICON 

maximum length was 42. All the BiLSTM models initially used these steps before creating 

the embedding layer. After that, we made an embedding layer using the custom word2vec 

vector. The BiLSTM model was fitted using both training datasets. We measured the 

model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments 

using validation datasets. Figure 35 and Figure 36 illustrate these metrics for this model. 

While fitting the models, if the validation dataset accuracy had not improved, we stopped 

the iterations through early stopping parameters. We then measured the test dataset 

prediction accuracy for both datasets. Accuracies for the base model and the model with 

emoticons were 80.48% and 81.07% respectively. Table 29 and 30 describe the confusion 
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matrix, precision, and recall for the test dataset. 

 
Figure 35. BiLSTM with custom word2vec - accuracy 

 
Figure 36. BiLSTM with custom word2vec - precision, recall, F"	score and loss 

Table 31. BiLSTM with custom word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6625 1168 6634 1159 7793 
Negative 1400 3960 1331 4029 5360 

  8025 5128 7965 5188  
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Table 32. BiLSTM with custom word2vec - precision, recall, F"	score, support, accuracy, 
macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.83 0.85 0.84 7793 0.83 0.85 0.84 7793 
negative 0.77 0.74 0.76 5360 0.78 0.75 0.76 5360 

macro 
average 

0.80 0.79 0.80 13153 
 

0.80 0.80 0.80 13153 
 

weighted 
average 

0.80 0.80 0.80 13153 
 

0.81 0.81 0.81 13153 

 
4.4.2 BiLSTM with pre-trained Google word2vec  

In this model, we created an embedding layer using the pre-trained Google word2vec 

vector for the BiLSTM model. We fitted this model using both training datasets. We 

measured the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the 

experiments using validation datasets. Figure 37 and Figure 38 illustrate these metrics for 

this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 80.83% and 81.03% 

respectively. Table 33 and 34 describe the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 37. BiLSTM with pre-trained Google word2vec - accuracy 



 

 

63 

 
Figure 38. BiLSTM with pre-trained Google word2vec - precision, recall, F"	score and 
loss 

Table 33. BiLSTM with pre-trained Google word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6734 1059 6481 1312 7793 
Negative 1459 3901 1183 4177 5360 

  8193 4960 7664 5489  
 
Table 34. BiLSTM with pre-trained Google word2vec - precision, recall, F"	score, 
support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.82 0.86 0.84 7793 0.85 0.83 0.84 7793 
negative 0.79 0.73 0.76 5360 0.76 0.78 0.77 5360 

macro 
average 

0.80 0.80 0.80 13153 
 

0.80 0.81 0.80 13153 
 

weighted 
average 

0.81 0.81 0.81 13153 
 

0.81 0.81 0.81 13153 

 
4.4.3 BiLSTM with pre-trained Twitter word2vec 

In this model, we made an embedding layer using the pre-trained twitter-based 

word2vec vector for the BiLSTM model. We fitted this model using both training datasets. 
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We measured the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of 

the experiments using validation datasets. Figure 39 and Figure 40 illustrate these metrics 

for this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 82.26% and 82.75% 

respectively. Table 35 and 36 describe the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 39. BiLSTM with pre-trained twitter data based word2vec - accuracy 

 
Figure 40. BiLSTM with pre-trained twitter data based word2vec - precision, recall, 
F"	score and loss 
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Table 35. BiLSTM with pre-trained twitter data based word2vec - confusion matrix 
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6639 1154 6571 1222 7793 
Negative 1179 4181 1047 4313 5360 

  7818 5335 7618 5535  
 
Table 36. BiLSTM with pre-trained twitter data based word2vec - precision, recall, 
F"	score, support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.85 0.85 0.85 7793 0.86 0.84 0.85 7793 
negative 0.78 0.78 0.78 5360 0.78 0.80 0.79 5360 

macro 
average 

0.82 0.82 0.82 13153 
 

0.82 0.82 0.82 13153 
 

weighted 
average 

0.82 0.82 0.82 13153 
 

0.83 0.83 0.83 13153 

 
4.4.4 BiLSTM with pre-trained GloVe  

In this model, we made an embedding layer using the pre-trained GloVe vector for the 

BiLSTM model. We fitted this model using both training datasets. We measured the 

model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments 

using validation datasets. Figure 41 and Figure 42 illustrate these metrics for this model. 

We then measured the test dataset prediction accuracy for both datasets. Accuracies for the 

base model and the model with emoticons were 81.91% and 82.7% respectively. Table 37 

and 38 describe the confusion matrix, precision, and recall for the test dataset. 

 
Figure 41. BiLSTM with pre-trained GloVe - accuracy 
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Figure 42. BiLSTM with pre-trained GloVe - precision, recall, 𝐹"	score and loss 

Table 37. BiLSTM with pre-trained GloVe - confusion matrix 

Tr
ue

 la
be
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6565 1228 6642 1151 7793 
Negative 1152 4208 1125 4235 5360 

  7717 5436 7767 5386  
 
Table 38. BiLSTM with pre-trained GloVe - precision, recall, 𝐹"	score, support, accuracy, 
macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.85 0.84 0.85 7793 0.86 0.85 0.85 7793 
negative 0.77 0.79 0.78 5360 0.79 0.79 0.79 5360 

macro 
average 

0.81 0.81 0.81 13153 
 

0.82 0.82 0.82 13153 
 

weighted 
average 

0.82 0.82 0.82 13153 
 

0.83 0.83 0.83 13153 

 
4.4.5 BiLSTM with pre-trained fastText  

In this model, we made an embedding layer using the pre-trained fastText vector for 

the BiLSTM model. We fitted this model using both training datasets. We measured the 



 

 

67 

model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments 

using validation datasets. Figure 43 and Figure 44 illustrate these metrics for this model. 

We then measured the test dataset prediction accuracy for both datasets. Accuracies for the 

base model and the model with emoticons were 82.31% and 82.73% respectively. Table 

39 and 40 describe the confusion matrix, precision, and recall for the test dataset. 

 
Figure 43. BiLSTM with pre-trained fastText - accuracy 

 
Figure 44. BiLSTM with pre-trained fastText - precision, recall, 𝐹"	score and loss 
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Table 39. BiLSTM with pre-trained fastText - confusion matrix 

Tr
ue

 la
be
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6861 932 6512 1281 7793 
Negative 1395 3965 991 4369 5360 

  8256 4897 7503 5650  
 
Table 40. BiLSTM with pre-trained fastText - precision, recall, 𝐹"	score, support, 
accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.83 0.88 0.86 7793 0.87 0.84 0.84 7793 
negative 0.81 0.74 0.77 5360 0.77 0.82 0.79 5360 

macro 
average 

0.82 0.81 0.81 13153 
 

0.82 0.83 0.82 13153 
 

weighted 
average 

0.82 0.82 0.82 13153 
 

0.83 0.83 0.83 13153 

 
4.4.6 BiLSTM with attention layer - custom word2vec 

In this model, we created an embedding layer using the custom word2vec vector and 

fitted the BiLSTM with an attention layer model using both training datasets. We evaluated 

the model’s accuracy, precision, recall, 𝐹"	score and loss metrics for both of the 

experiments using validation datasets. Figure 45 and Figure 46 illustrate these metrics for 

this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 81.21% and 81.52% 

respectively. Table 41 and 42 describe the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 45. BiLSTM with attention layer – custom word2vec accuracy 
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Figure 46. BiLSTM with attention layer – custom word2vec precision, recall, 𝐹"	score 
and loss 

Table 41. BiLSTM with attention layer – custom word2vec confusion matrix 

Tr
ue
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6638 1155 6712 1081 7793 
Negative 1316 4044 1350 4010 5360 

  7954 5199 8062 5091  
 
Table 42. BiLSTM with attention layer – custom word2vec precision, recall, F"	score, 
support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.83 0.85 0.84 7793 0.83 0.86 0.85 7793 
negative 0.78 0.75 0.77 5360 0.79 0.75 0.77 5360 

macro 
average 

0.80 0.80 0.80 13153 
 

0.81 0.80 0.81 13153 
 

weighted 
average 

0.81 0.81 0.81 13153 
 

0.81 0.82 0.81 13153 

 
4.4.7 BiLSTM with attention layer - pre-trained Google word2vec  

In this model, we made an embedding layer using the pre-trained Google news 

word2vec vector for the BiLSTM model with an attention layer. We fitted this model fitted 



 

 

70 

using both training datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score 

and loss metrics for both of the experiments using validation datasets. Figure 47 and Figure 

48 illustrate these metrics for this model. We then measured the test dataset prediction 

accuracy for both datasets. Accuracies for the base model and the model with emoticons 

were 81.65% and 82.67% respectively. Table 43 and 44 describe the confusion matrix, 

precision, and recall for the test dataset. 

 
Figure 47. BiLSTM attention with pre-trained Google news word2vec - accuracy 

 
Figure 48. BiLSTM attention with pre-trained Google news word2vec - precision, recall, 
𝐹"	score and loss 
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Table 43. BiLSTM attention with pre-trained Google news word2vec - confusion matrix 

Tr
ue
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6515 1278 6629 1164 7793 
Negative 1135 4225 1116 4244 5360 

  7650 5503 7745 5408  
 
Table 44. BiLSTM attention with pre-trained Google news word2vec - precision, recall, 
F"	score, support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.85 0.84 0.84 7793 0.86 0.85 0.85 7793 
negative 0.77 0.79 0.78 5360 0.78 0.79 0.79 5360 

macro 
average 

0.81 0.81 0.81 13153 
 

0.82 0.82 0.82 13153 
 

weighted 
average 

0.82 0.82 0.82 13153 
 

0.83 0.83 0.83 13153 

 
4.4.8 BiLSTM with attention layer - pre-trained Twitter word2vec 

In this model, we made an embedding layer using the pre-trained twitter-based 

word2vec vector for the BiLSTM model with an attention layer. We fitted this model using 

both training datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score and 

loss metrics for both of the experiments using validation datasets. Figure 49 and Figure 50 

illustrate these metrics for this model. We then measured the test dataset prediction 

accuracy for both datasets. Accuracies for the base model and the model with emoticons 

were 83.24% and 83.4% respectively. Table 45 and 46 describe the confusion matrix, 

precision, and recall for the test dataset. 

 
Figure 49. BiLSTM attention with pre-trained Twitter data word2vec - accuracy 
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Figure 50. Figure 51. BiLSTM attention with pre-trained Twitter data word2vec - 
precision, recall, 𝐹"	score and loss 

Table 45. BiLSTM attention with pre-trained Twitter data word2vec - confusion matrix 

Tr
ue
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6631 1162 6714 1079 7793 
Negative 1042 4318 1105 4255 5360 

  7673 5480 7819 5334  
 
Table 46. BiLSTM attention with pre-trained Twitter data word2vec - precision, recall, 
𝐹"	score, support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.86 0.85 0.86 7793 0.86 0.86 0.86 7793 
negative 0.79 0.81 0.80 5360 0.80 0.79 0.80 5360 

macro 
average 

0.83 0.83 0.83 13153 
 

0.83 0.83 0.83 13153 
 

weighted 
average 

0.83 0.83 0.83 13153 
 

0.83 0.83 0.83 13153 

 
4.4.9 BiLSTM with attention layer - pre-trained GloVe  

In this model, we made an embedding layer using the pre-trained GloVe vector and 

fitted the BiLSTM with an attention layer model using both training datasets. We measured 
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the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the 

experiments using validation datasets. Figure 51 and Figure 52 illustrate these metrics for 

this model. We then measured the test dataset prediction accuracy for both datasets. 

Accuracies for the base model and the model with emoticons were 82.29% and 83.38% 

respectively. Table 47 and 48 describe the confusion matrix, precision, and recall for the 

test dataset. 

 
Figure 52. BiLSTM attention with pre-trained GloVe - accuracy 

 
Figure 53. BiLSTM attention with pre-trained GloVe - precision, recall, 𝐹"	score and loss 



 

 

74 

Table 47. BiLSTM attention with pre-trained GloVe - confusion matrix 

Tr
ue
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6612 1181 6631 1162 7793 
Negative 1149 4211 1024 4336 5360 

  7761 5392 7655 5498  
 
Table 48. BiLSTM attention with pre-trained GloVe - precision, recall, 𝐹"	score, support, 
accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.85 0.85 0.85 7793 0.87 0.85 0.86 7793 
negative 0.78 0.79 0.78 5360 0.79 0.81 0.80 5360 

macro 
average 

0.82 0.82 0.82 13153 
 

0.83 0.83 0.83 13153 
 

weighted 
average 

0.82 0.82 0.82 13153 
 

0.83 0.83 0.83 13153 

 
4.4.10 BiLSTM with attention layer with pre-trained fastText  

In this model, we crafted an embedding layer using the pre-trained fastText vector 

for the BiLSTM model with an attention layer. We fitted this model using both training 

datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score and loss metrics 

for both of the experiments using validation datasets. Figure 53 and Figure 54 illustrate 

these metrics for this model. We then measured the test dataset prediction accuracy for 

both datasets. Accuracies for the base model and the model with emoticons were 83.02% 

and 83.56% respectively. Table 49 and 50 describe the confusion matrix, precision, and 

recall for the test dataset. 

 
Figure 54. BiLSTM with attention pre-trained fastText - accuracy 
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Figure 55. BiLSTM with attention pre-trained fastText - precision, recall, 𝐹"	score and 
loss 

Table 49. BiLSTM with attention pre-trained fastText - confusion matrix 

Tr
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 Predicted label 
 Base  With Emoticon 
N=13153 Positive Negative Positive Negative  
Positive 6564 1229 6576 1217 7793 
Negative 1004 4356 946 4414 5360 

  7568 5585 7522 5631  
 
Table 50. BiLSTM with attention pre-trained fastText - precision, recall, F"	score, 
support, accuracy, macro average, and micro average 

 Base With Emoticon 
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support 
positive 0.87 0.84 0.85 7793 0.87 0.84 0.86 7793 
negative 0.78 0.81 0.80 5360 0.78 0.82 0.80 5360 

macro 
average 

0.82 0.83 0.83 13153 
 

0.83 0.83 0.83 13153 
 

weighted 
average 

0.83 0.83 0.83 13153 
 

0.84 0.84 0.84 13153 

 
While comparing all the BiLSTM models’ accuracy, precision, recall, and 𝐹1	score, 

the WITH_EMOTICON dataset performed better than the BASE_MODEL dataset. All the 

LSTM models performed better in the WITH_EMOTICON experiment for sentiment 

classification than the other dataset. Also, we observed that the BiLSTM models performed 
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better than CNN models, as well as that the BiLSTM model with an attention layer worked 

better for these datasets than the BiLSTM model with all the embedding vectors.  

4.5 Model evaluation 

All the CNN and BiLSTM models were trained using training datasets of the 

BASE_MODEL and WITH_EMOTICON experiments with the hyperparameters 

mentioned previously. While fitting each model, we validated the model’s performance 

using a validation dataset with 40 epochs. To avoid overfitting, we added the early stopping 

option in Keras, and this option stopped the training process based on the parameters. These 

are the parameters we used in the early stopping callback methods: the ‘monitor’ parameter 

which allowed us to specify the performance measurement to monitor and end training. 

We used ‘loss’ on the validation dataset; the mode parameter in the early stopping process 

was set as ‘auto,’ and that allowed us to minimize loss or maximize accuracy; we set a 

‘patience’ parameter as 5, which delayed the trigger in terms of the number of epochs on 

which we would like to see no improvement; the ‘min_delta’ parameter was set as ‘1e-4’ 

for minimum improvement in each epoch; the ‘restore_best_weights’ was set as ‘True’ to 

retain the best weight for the models. This stopped the fitting earlier when there was an 

overfitting issue. Also, we used a regularizer at 𝑙& regularization and added a dropout rate 

for avoiding the overfitting issues.  

We used the same approach to overcome overfitting issues across all the CNN and 

LSTM models to get the best models. The trained model validated the number of epochs 

for the test dataset and measured the model’s performance using model accuracy, precision, 

recall, 𝐹1	score, and macro average metrics. Based on the performance validation and 

twitter message length, we used the following hyperparameters for the CNN and 
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Multichannel CNN models shown in Table 51. 

Table 51. CNN model recommended hyperparameters 

Parameter name Value(s) 
Maximum number of words 40,42 
Size of the vocabulary 25,000 
Output dimensionality 140-400 
Size of the kernel 3, 5, and 6 
Activation functions relu 
Batch size 32 
Pooling types 2, maximum 
Number of epochs  20-50 
Dropout rate probability 0.5 
Optimizer adam 
Loss function categorical_crossentropy 
Filters 32 
Filter Length 4 
Number of nodes in Dense layer 32 

 
Table 52 describes the BiLSTM models’ recommended hyperparameters for the 

given datasets. We noted down the average execution time for these four different deep 

neural network models. The average training time for the CNN or sequential CNN, 

Multichannel CNN, BiLSTM, and BiLSTM with an attention layer models was 2-8 

minutes, 2-10 minutes, 1.5 hours, and 2 hours respectively, on the Google colab pro with 

GPU platform. 

Table 52. BiLSTM models’ recommended hyperparameters 

Parameter name Value(s) 
Maximum number of words  40,42 
Number of classes for output layer 2 
Size of the vocabulary 25,000 
Output dimensionality for LSTM 140-400 
Activation functions relu 
Batch size 64 
Number of epochs  20-40 
Dropout keep probability 0.5 
Optimizer adam 
Loss function categorical_crossentropy 
Number of LSTM nodes 256 
Number of Dense nodes 128 
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4.6 Model comparison 

As we detailed in the previous section, all the models were compared with various 

performance metrics, such as accuracy, precision, recall, 𝐹1	score, and etc. Table 51 

describes the models’ performances using accuracy metrics utilizing a test dataset from the 

BASE_MODEL and WITH_EMOTICON experiments. While comparing all the 20 

models for both experiments, the BiLSTM with an attention layer and pre-trained fastText 

embedding vector model achieved the highest classification accuracy for the given 

datasets. The BASE_MODEL dataset produced around 83.02% accuracy and the 

WITH_EMOTICON dataset returned 83.56% accuracy for the BiLSTM with an attention 

layer and pre-trained fastText embedding vector model. 

Table 53. Models with accuracy for BASE_MODEL and WITH_EMOTICON datasets 

 Accuracy (in %) Differenc
e (in %)  

Base 
Model  

With Emoticon  

BiLSTM - attention + pre-trained  fastText 83.02 83.56 0.65% 
BiLSTM - attention + pre-trained  GloVe 82.29 83.38 1.31% 
BiLSTM - attention + pre-trained word2vec (Twitter data) 83.18 83.27 0.11% 
BiLSTM - pre-trained word2vec (Twitter data) 82.26 82.75 0.59% 
BiLSTM - pre-trained fastText 82.31 82.73 0.51% 
BiLSTM - pre-trained GloVe 81.91 82.7 0.96% 
BiLSTM - attention + pre-trained word2vec (Google news) 81.65 82.67 1.23% 
BiLSTM - attention + custom word2vec 81.21 81.52 0.38% 
BiLSTM - custom word2vec 80.48 81.07 0.73% 
BiLSTM - pre-trained word2vec (Google news) 80.86 81.03 0.21% 
MultiCNN - pre-trained fastText 80.15 80.57 0.52% 
MultiCNN - pre-trained GloVe 79.97 80.1 0.16% 
MultiCNN - pre-trained word2vec (Twitter data) 79.59 80 0.51% 
CNN - pre-trained fastText 77.21 79.76 3.20% 
CNN - pre-trained word2vec (Twitter data) 77.23 79.67 3.06% 
MultiCNN - custom word2vec 78.93 79.38 0.57% 
CNN - pre-trained GloVe 77.78 79.37 2.00% 
CNN - custom word2vec 77.22 78.42 1.53% 
CNN - pre-trained word2vec (Google news) 76.21 77.56 1.74% 
MultiCNN - pre-trained word2vec (Google news) 77.15 77.38 0.30% 

 
We noticed that all of the models’ performances were better for the 

WITH_EMOTICON dataset than the BASE_MODEL dataset. While comparing the 
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models with other metrics, such as the confusion matrix, class level precision, recall, and 

𝐹1	score, all the WITH_EMOTICON dataset trained model performances and accuracy 

were better. The BiLSTM with an attention layer models were in the top 10 lists for the 

given datasets. We also identified that the BiLSTM models performed significantly better 

for this sentiment classification than the CNN and multichannel CNN models. The 

word2vec (twitter), GloVe, and fastText pre-trained embedding vectors contributed better 

results than the pre-trained word2vec (Google news). 

4.7 Selected model 

To get a better insight into the best quantification approaches, we considered the 

confusion matrix, precision, recall, 𝐹1	score, support, accuracy, macro average, and micro 

average performance metrics across all the models. The BiLSTM model with an attention 

layer and pre-trained fastText embedding layer achieved the best results among the tested 

models. This model accuracy metric is better than the baseline linear model accuracy 

metrics for both datasets. The precision, recall, 𝐹1	score, and roc auc score for the 

BASE_MODEL experiments were 0.83, 0.83, 0.83, and 0.9076 respectively. The 

precision, recall, 𝐹1	score, and roc auc score for the WITH_EMOTICON experiments were 

0.82, 0.82, 0.84, and 0.9035 respectively. Those results were better than all of the other 

deep learning models for the current datasets. 

In the selected model, the positive and negative classes’ 𝐹1	score was higher for this 

model than the other models in this research. Hence, we recommend the BiLSTM attention 

layer with pre-trained fastText embedding vector model as the best model for the 

BASE_MODEL as well as WITH_EMOTICON datasets. 
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4.8 Summary 

This chapter presented twenty sentiment classification models for the BASE_MODEL 

and WITH_EMOTICON datasets. The first step was to train a model using the training 

datasets, and the second step was to use the test datasets to determine the model’s 

performance. We evaluated the models using several performance metrics, such as the 

confusion matrix, accuracy, precision, recall, 𝐹1	score, and macro-average for these two 

datasets separately. We identified that BiLSTM models performed better than CNN models 

for this sentiment classification. 

We also discovered that the dataset with emoticons resulted in a slightly better 

performance than the dataset without emoticons. Primary results show that a BiLSTM 

model with an attention layer and pre-trained fastText embedding vector has the potential 

to classify sentiment classification with acceptably high accuracy. Therefore, we decided 

on this BiLSTM model as the best model when classifying the sentiment labels as positive 

and negative. 
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5 Conclusions, and Future work 

The growth of social media has allowed customers to post their feedback on products 

and services. Posted opinions contain vital information for businesses and governmental 

organizations because they can steer marketing campaigns and help decision makers sense 

the public’s wishes on events such as elections or product promotions. However, with the 

massive volume of data and different types of signals coming from customers, including 

things like slang and emoticons, extracting and classifying the sentiments of the comments 

is too complex a task to be done manually. NLP applications and tools can help in this 

regard, and many different approaches have been offered to address this problem. This 

research considered posts written in English that contained emoticons. 

For addressing this issue, we used Twitter data and considered emoticons in order to 

determine the sentiment polarity within two classes: POSITIVE and NEGATIVE. We 

experimented with the Twitter dataset using two experiments, building one with emoticons 

as English language text, and another with the dataset’s emoticons replaced with 

unknowns. These two datasets were trained and tested with a variety of CNN and LSTM 

neural network models. Those models made use of five different embedding vectors such 

as custom word2vec, pre-trained word2vec, GloVe, and fastText. Finally, we compared 

the model performance using a few different performance metrics, such as the confusion 

matrix, accuracy, precision, recall, 𝐹1	score, and macro-average for each model.  

After reviewing the performance metrics for all the models, we concluded that the 

BiLSTM model with the attention layer that used the pre-trained fastText embedding 

vector produced better classification for these two datasets, with an accuracy above 83%. 

We also found that emoticons add more value when determining sentiment classifications. 
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Since there are more users who are providing their comments and feedback using 

emoticons, we should consider those signals when identifying a customer’s emotions.  

There are specific areas that are of interest and relevance to further sentiment analysis, 

such as additional signals with a similar impact to emoticons in the text. Our future work 

includes the following: 

a. Considering multi-language user feedback or comments on products or 

services. 

b. Converting all the other signals, such as images, audio, and video clips, in 

addition to text for sentiment classifications. 

c. Developing models that can detect sarcasm. Sarcasm is of special interest to us 

because of its complex nature and because it is common on social media. 
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