
Nova Southeastern University Nova Southeastern University

NSUWorks NSUWorks

CCE Theses and Dissertations College of Computing and Engineering

2020

Deep Neural Networks for Sentiment Analysis in Tweets with Deep Neural Networks for Sentiment Analysis in Tweets with

Emoticons Emoticons

Mutharasu Narayanaperumal
Nova Southeastern University, nmarasu@gmail.com

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

 Part of the Computer Sciences Commons

Share Feedback About This Item

NSUWorks Citation NSUWorks Citation
Mutharasu Narayanaperumal. 2020. Deep Neural Networks for Sentiment Analysis in Tweets with
Emoticons. Doctoral dissertation. Nova Southeastern University. Retrieved from NSUWorks, College of
Computing and Engineering. (1117)
https://nsuworks.nova.edu/gscis_etd/1117.

This Dissertation is brought to you by the College of Computing and Engineering at NSUWorks. It has been
accepted for inclusion in CCE Theses and Dissertations by an authorized administrator of NSUWorks. For more
information, please contact nsuworks@nova.edu.

http://nsuworks.nova.edu/
http://nsuworks.nova.edu/
https://nsuworks.nova.edu/
https://nsuworks.nova.edu/gscis_etd
https://nsuworks.nova.edu/cec
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

DEEP NEURAL NETWORKS FOR SENTIMENT ANALYSIS IN TWEETS WITH

EMOTICONS

by

Mutharasu Narayanaperumal

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Information Systems

College of Engineering and Computing

Nova Southeastern University

2020

ii

iii

Table of Contents

List of Tables v

List of Figures ix

1 Introduction 1
1.1 Problem Statement 2

2 Review of Literature 3
2.1 Convolutional Neural Network (CNN) 3
2.2 Long Short-Term Memory (LSTM) 9

2.2.1 2-layer Bidirectional LSTM 12
2.2.2 Siamese Bidirectional LSTM 14

2.3 Word Embedding 18
2.3.1 Continuous Bag of Words (CBOW) 19
2.3.2 Skip-gram 20

3 Methodology 22
3.1 Data Set 22
3.2 Data preprocessing 27
3.3 Evaluation criteria 27
3.4 Base-line models 29
3.5 Embedding Layer 29

3.5.1 Custom word2vec model 30
3.5.2 Pre-trained word2vec model 31
3.5.3 Pre-trained GloVe model 31
3.5.4 Pre-train fastText model 31

3.6 CNN Model 32
3.6.1 Simple CNN 32
3.6.2 Multichannel CNN 35

3.7 LSTM Model 37
3.8 Comparison of extended approaches to baseline models 40

4 Results 41
4.1 Embedding vectors 41

4.1.1 Custom word2vec 41
4.1.2 Pre-trained word2vec – Google news 42
4.1.3 Pre-trained word2vec – Twitter data 42
4.1.4 Pre-trained GloVe 42
4.1.5 Pre-trained fastText 42

4.2 Linear model results 42
4.3 CNN model results 44

4.3.1 CNN with custom word2vec 44
4.3.2 CNN with pre-trained Google word2vec 46
4.3.3 CNN with pre-trained Twitter word2vec 47

iv

4.3.4 CNN with pre-trained GloVe 49
4.3.5 CNN with pre-trained fastText 50
4.3.6 Multichannel CNN with custom word2vec 52
4.3.7 Multichannel CNN with pre-trained Google word2vec 53
4.3.8 Multichannel CNN with pre-trained Twitter word2vec 55
4.3.9 Multichannel CNN with pre-trained GloVe 56
4.3.10 Multichannel CNN with pre-trained fastText 58

4.4 LSTM model results 60
4.4.1 BiLSTM with custom word2vec 60
4.4.2 BiLSTM with pre-trained Google word2vec 62
4.4.3 BiLSTM with pre-trained Twitter word2vec 63
4.4.4 BiLSTM with pre-trained GloVe 65
4.4.5 BiLSTM with pre-trained fastText 66
4.4.6 BiLSTM with attention layer - custom word2vec 68
4.4.7 BiLSTM with attention layer - pre-trained Google word2vec 69
4.4.8 BiLSTM with attention layer - pre-trained Twitter word2vec 71
4.4.9 BiLSTM with attention layer - pre-trained GloVe 72
4.4.10 BiLSTM with attention layer with pre-trained fastText 74

4.5 Model evaluation 76
4.6 Model comparison 78
4.7 Selected model 79
4.8 Summary 80

5 Conclusions, and Future work 81

6 References 83

v

List of Tables

Tables

1. Sample data from the dataset 23

2. Emoticons in the tweets with the number of occurrences 24

3. No of rows in BASE_MODEL, and WITH_EMOTICON dataset by sentiment

class 25

4. Word2vec model hyperparameters 30

5. CNN Model hyperparameters 36

6. Variety of CNN models 37

7. LSTM model hyperparameters 39

8. Variety of LSTM models 40

9. Logistic Regression - confusion matrix 43

10. Logistic Regression - precision, recall,	𝑭𝟏	score, support, accuracy, macro

average, and micro average 43

11. CNN with custom word2vec - confusion matrix 45

12. CNN with custom word2vec - precision, recall,	𝑭𝟏	score, support, accuracy,

macro average, and micro average 46

13. CNN with pre-trained Google word2vec - confusion matrix 47

14. CNN with pre-trained Google word2vec - precision, recall,	𝑭𝟏	score, support,

accuracy, macro average, and micro average 47

15. CNN with pre-trained twitter-based word2vec - confusion matrix 49

16. CNN with pre-trained twitter-based word2vec - precision, recall,	𝑭𝟏	score,

support, accuracy, macro average, and micro average 49

vi

17. CNN with pre-trained GloVe - confusion matrix 50

18. CNN with pre-trained GloVe - precision, recall,	𝑭𝟏	score, support, accuracy,

macro average, and micro average 50

19. CNN with pre-trained fastText - confusion matrix 52

20. CNN with pre-trained fastText - precision, recall, 𝑭𝟏	score, support, accuracy,

macro average, and micro average 52

21. Multichannel CNN with custom word2vec - confusion matrix 53

22. Multichannel CNN with custom word2vec - precision, recall, 𝑭𝟏	score, support,

accuracy, macro average, and micro average 53

23. Multichannel CNN with pre-trained Google news word2vec - confusion matrix 55

24. Multichannel CNN with pre-trained Google news word2vec - precision, recall,

𝑭𝟏	score, support, accuracy, macro average, and micro average 55

25. Multichannel CNN with pre-trained Twitter data word2vec - confusion matrix 56

26. Multichannel CNN with pre-trained Twitter data word2vec - precision, recall,

𝑭𝟏	score, support, accuracy, macro average, and micro average 56

27. Multichannel CNN with pre-trained GloVe - confusion matrix 58

28. Multichannel CNN with pre-trained GloVe - precision, recall, 𝑭𝟏	score, support,

accuracy, macro average, and micro average 58

29. Multichannel CNN with pre-trained fastText - confusion matrix 59

30. Multichannel CNN with pre-trained fastText - precision, recall, 𝑭𝟏	score, support,

accuracy, macro average, and micro average 59

31. BiLSTM with custom word2vec - confusion matrix 61

vii

32. BiLSTM with custom word2vec - precision, recall, 𝑭𝟏	score, support, accuracy,

macro average, and micro average 62

33. BiLSTM with pre-trained Google word2vec - confusion matrix 63

34. BiLSTM with pre-trained Google word2vec - precision, recall, 𝑭𝟏	score, support,

accuracy, macro average, and micro average 63

35. BiLSTM with pre-trained twitter data based word2vec - confusion matrix 65

36. BiLSTM with pre-trained twitter data based word2vec - precision, recall,

𝑭𝟏	score, support, accuracy, macro average, and micro average 65

37. BiLSTM with pre-trained GloVe - confusion matrix 66

38. BiLSTM with pre-trained GloVe - precision, recall, 𝑭𝟏	score, support, accuracy,

macro average, and micro average 66

39. BiLSTM with pre-trained fastText - confusion matrix 68

40. BiLSTM with pre-trained fastText - precision, recall, 𝑭𝟏	score, support, accuracy,

macro average, and micro average 68

41. BiLSTM with attention layer – custom word2vec confusion matrix 69

42. BiLSTM with attention layer – custom word2vec precision, recall, 𝑭𝟏	score,

support, accuracy, macro average, and micro average 69

43. BiLSTM attention with pre-trained Google news word2vec - confusion matrix 71

44. BiLSTM attention with pre-trained Google news word2vec - precision, recall,

𝑭𝟏	score, support, accuracy, macro average, and micro average 71

45. BiLSTM attention with pre-trained Twitter data word2vec - confusion matrix 72

46. BiLSTM attention with pre-trained Twitter data word2vec - precision, recall,

𝑭𝟏	score, support, accuracy, macro average, and micro average 72

viii

47. BiLSTM attention with pre-trained GloVe - confusion matrix 74

48. BiLSTM attention with pre-trained GloVe - precision, recall, 	𝑭𝟏	score, support,

accuracy, macro average, and micro average 74

49. BiLSTM with attention pre-trained fastText - confusion matrix 75

50. BiLSTM with attention pre-trained fastText - precision, recall, 	𝑭𝟏	score, support,

accuracy, macro average, and micro average 75

51. CNN model recommended hyperparameters 77

52. BiLSTM models’ recommended hyperparameters 77

53. Models with accuracy for BASE_MODEL and WITH_EMOTICON datasets 78

ix

List of Figures

 Figures

1. Kim's (2014) CNN model for two channels. 4

2. Left: Regular RNN model, Right: Attention RNN (Source: Wang et al., 2016) 12

3. 2-layer Bidirectional LSTM (Source: Baziotis et al, 2017) 13

4. Siamese Bidirectional LSTM (Source: Baziotis et al, 2017) 15

5. Word embedding for the words ‘I can do it’. (Source: Wehrmann et al., 2017) 18

6. CBOW model 20

7. Skip-Gram model 21

8. Sentiment label distribution – Raw dataset 23

9. Number of emoticons distribution by Sentiment class 25

10. Tweets length distribution- Left: BASE_MODEL, Right: WITH_EMOTICON 26

11. Word length distribution- Left: BASE_MODEL, Right: WITH_EMOTICON 26

12. Simple CNN model 34

13. Multichannel CNN model 36

14. BiLSTM model with attention layer 38

15. CNN with custom word2vec – accuracy 45

16. CNN with custom word2vec - precision, recall, 𝑭𝟏 score and loss 45

17. CNN with pre-trained Google word2vec - accuracy 46

18. CNN with pre-trained Google word2vec - precision, recall, 𝑭𝟏	score and loss 47

19. CNN with pre-trained twitter-based word2vec – accuracy 48

x

20. CNN with pre-trained twitter-based word2vec - precision, recall, 𝑭𝟏	score and

loss 48

21. CNN with pre-trained GloVe - accuracy 49

22. CNN with pre-trained GloVe - precision, recall, 𝑭𝟏	score and loss 50

23. CNN with pre-trained fastText - accuracy 51

24. CNN with pre-trained fastText - precision, recall, 𝑭𝟏	score and loss 51

25. Multichannel CNN with custom word2vec - accuracy 52

26. Multichannel CNN with custom word2vec - precision, recall, 𝑭𝟏	score and loss 53

27. Multichannel CNN with pre-trained Google news word2vec - accuracy 54

28. Multichannel CNN with pre-trained Google news word2vec - precision, recall,

𝑭𝟏	score and loss 54

29. Multichannel CNN with pre-trained Twitter data word2vec - accuracy 55

30. Multichannel CNN with pre-trained Twitter data word2vec - precision, recall,

𝑭𝟏	score and loss 56

31. Multichannel CNN with pre-trained GloVe - accuracy 57

32. Multichannel CNN with pre-trained GloVe - precision, recall, 𝑭𝟏	score and loss

57

33. Multichannel CNN with pre-trained fastText - accuracy 58

34. Multichannel CNN with pre-trained fastText - precision, recall,𝑭𝟏	score and loss

59

35. BiLSTM with custom word2vec - accuracy 61

36. BiLSTM with custom word2vec - precision, recall, 𝑭𝟏	score and loss 61

37. BiLSTM with pre-trained Google word2vec - accuracy 62

xi

38. BiLSTM with pre-trained Google word2vec - precision, recall, 𝑭𝟏	score and loss

63

39. BiLSTM with pre-trained twitter data based word2vec - accuracy 64

40. BiLSTM with pre-trained twitter data based word2vec - precision, recall, 𝑭𝟏	score

and loss 64

41. BiLSTM with pre-trained GloVe - accuracy 65

42. BiLSTM with pre-trained GloVe - precision, recall, 𝑭𝟏	score and loss 66

43. BiLSTM with pre-trained fastText - accuracy 67

44. BiLSTM with pre-trained fastText - precision, recall, 𝑭𝟏	score and loss 67

45. BiLSTM with attention layer – custom word2vec accuracy 68

46. BiLSTM with attention layer – custom word2vec precision, recall, 𝑭𝟏	score and

loss 69

47. BiLSTM attention with pre-trained Google news word2vec - accuracy 70

48. BiLSTM attention with pre-trained Google news word2vec - precision, recall,

𝑭𝟏	score and loss 70

49. BiLSTM attention with pre-trained Twitter data word2vec - accuracy 71

50. Figure 51. BiLSTM attention with pre-trained Twitter data word2vec - precision,

recall, 𝑭𝟏	score and loss 72

51. BiLSTM attention with pre-trained GloVe - accuracy 73

52. BiLSTM attention with pre-trained GloVe - precision, recall, 𝑭𝟏	score and loss 73

53. BiLSTM with attention pre-trained fastText - accuracy 74

54. BiLSTM with attention pre-trained fastText - precision, recall, 𝑭𝟏	score and loss

75

xii

An Abstract of a Dissertation Submitted to Nova Southeastern University

in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

DEEP NEURAL NETWORKS FOR SENTIMENT ANALYSIS IN TWEETS WITH

EMOTICONS

by

Mutharasu Narayanaperumal

May 2020

Businesses glean meaningful feedback in regard to products and services from
social media posts in order to improve the quality of products and services, as well
as to meet customer expectations. Sentiment analysis is increasingly being used
to help businesses by assigning positive or negative polarity to such posts.
Although methods currently exist to determine the polarity of sentiments, such
methods are unreliable when posts contain terms that are not typically part of a
standard dictionary used for sentiment analysis, such as slang and informal
language. This dissertation has aimed to empirically investigate alternative
methods to improve the classification accuracy of sentiments in such contexts.
Specifically, it considers posts written in English that include emoticons.

The benchmark Sentiment140 English language datasets were used for evaluation
and labeled tweets that included emoticons. Two types of deep neural networks–
Convolution Neural Networks (CNN) and Long Short-Term Memory (LSTM)
Networks–were used for classification since they have been demonstrated to
produce the best results. All terms in the tweets were represented using the pre-
trained embedding vectors word2vec, GloVe, and fastText. Baseline models were
trained and tested using tweets with their emoticons removed. For each baseline
model, a corresponding model was trained that included emoticons as inputs; in
others, emoticons were replaced with English language. Accuracy, precision,
recall, and 𝐹"	scores of models using emoticons were compared to their
corresponding baseline models that did not use emoticons.

Experiments are conducted on data with emoticons and emoticons removed for
all the models. Our experiments showed that LSTM that uses an attention model
with fastText embedding outperformed the linear models for identifying
sentiment for the all datasets used. We also learned that when we replaced
emoticons with English language, the sentiment classification accuracy improved.
We therefore concluded that inclusion of emoticons as features achieves the
highest accuracy in our research on sentiment classification.

Keywords: Sentiment analysis, deep Learning, emoticon, embedding, convolution
neural network, long short-term memory, attention

xiii

Acknowledgements

Throughout my time in graduate school, many people have helped me, and I am so
appreciative of their contributions. First, I would like to sincerely thank my advisor, Prof.
Dr. Sumitra Mukherjee for his tremendous support of my PhD study and related research,
as well as for his patience, motivation, and extensive knowledge. His direction helped me
throughout my research and writing of this thesis. I would also like to thank to my
committee members, Dr. Mitropoulos and Dr. Laszlo, for the guidance they offered and
the clarity they gave me.

Several friends and colleagues have been supportive of my efforts to attain a PhD and I
wish to thank them as well. Dr. Shyamala Srinivasan, one of my teachers in my master’s
degree who provided an emotional push in the initial stage, to move me from a point of
indecision to commitment to my doctorate. Also, I would like to thank my manager Dr.
Kaan Katircioglu, who provided encouragement at a key point in this journey when I was
slowing down on my progress on the PhD journey.

Finally, I would like to show my sincerest gratitude to my parents and family members.
Often, they used to ask and encourage me about what the graduation timeline was and that
made me want to continue in the PhD program. Ultimately, I would like to thank my wife,
Leela, who has supported me throughout this process. This dissertation would not have
been possible without her warm love, continued patience, and endless support. I owe her a
sincere debt of gratitude. And to my children Hritik, Anish and Anisha; they used to track
my progress and helped make this happen.

1

1 Introduction

Sentiment analysis is valuable in social media monitoring as it allows one to gain

insights into certain contexts or topics and is used in a diverse set of fields, such as

marketing and advertising, social media, economics, and political science (Rosenthal et al.,

2015). Social media platforms such as Twitter, Facebook, and YouTube are currently

among the most popular venues for customers to debate and review new products and

services in various markets (Poria, Cambria, Howard, Huang, & Hussain, 2016). However,

the inherent chaotic nature of social media content poses severe challenges to the practical

applications of sentiment analysis, such as extracting meaningful feedback for products or

services, understanding product quality, or meeting customer expectations.

In recent years, deep neural networks have been shown to be effective for text

classification (Kim, 2014). Convolution Neural Networks (CNN) were initially built for

the computer vision domain. Subsequently, CNNs were explored for natural language

processing purposes and achieved excellent results for text classification (Zhang &

Wallace, 2017), modeling sentences (Kalchbrenner, Grefenstette, & Blunsom, 2014),

sentiment analysis (dos Santos & Gatti, 2014). Long Short-Term Memory (LSTM), a deep

learning model effective in analyzing long sequences, has been used to categorize emotions

in natural language processing contexts (Cliché, 2017). These deep learning methods use

word embeddings to learn the semantic relationships of words in order to improve model

performance (Mikolov, Chen, Corrado, & Dean, 2013).

In this dissertation, we considered the significance of including emoticons in Twitter

messages and followed an approach similar to Kim (2014), which involved the use of a

2

few different variations of CNN models. In addition, we evaluated a variety of LSTM

models to identify an accurate deep learning model for sentiment analysis. We considered

the emoticons of the input text and evaluated the importance of emoticons in sentiment

analysis.

1.1 Problem Statement

A sentiment analysis technique was used in this study to classify the text data of

Twitter posts into one of two sentiment polarities: POSITIVE, NEGATIVE. The sentiment

analysis model produced different polarities for each tweet depending on whether it

considered or ignored emoticons (Kiritchenko, Zhu, & Mohammad, 2014). Emoticons and

product ratings are instances of emotional signals from customers that are connected to

sentiments expressed in sentences or transcripts. The research we developed evaluated

methods to improve the accuracy of sentiment classification by incorporating emoticons as

features.

Recent research on polarity detection includes deep neural network techniques (CNN

and LSTM), ensemble methods, and word embedding (Cambria, Poria, Gelbukh, &

Thelwall, 2017). We considered the tweeter’s text from the Sentiment140 dataset, using

the deep learning techniques CNN and LSTM to investigate whether including emoticons

could improve predictive accuracy.

3

2 Review of Literature

In this section, the existing research on Sentiment Analysis that uses deep learning

networks and word embedding methods is discussed. Subsection 2.1 presents how CNNs

utilize layers with convolution filters. Subsection 2.2 involves a discussion of LSTM, a

subtype of recurrent neural networks, which has a memory that learns from context.

Finally, word embedding is described in subsection 2.3.

2.1 Convolutional Neural Network (CNN)

The CNN is a deep neural network that utilizes layers with convolution filters that are

applied to a set of features (Kim, 2014). Kim’s (2014) research slightly changed the CNN

architecture that was designed by Collobert et al. (2011). Collobert et al. (2011) considered

the complete input sentences that would be passed through the lookup table layer in order

to generate local features around each word of the sentence. Those features go through

convolutional layers, which combines these features into a global feature vector that can

then be fed to fully connected layers. The model proposed by Kim (2014) is shown in

Figure 1.

Kim (2014) had a CNN model with one layer of convolution, in which the features

were extracted from a small window of words instead of whole sentences. The input

sentence of the model is represented as:

𝑋":% =	𝑋" ∥ 𝑋& ∥ ⋯ ∥ 	𝑋%

where 𝑛 is the length of the sentence, 𝑋":% refers to the combinations of the words

𝑋", 𝑋&, … , 𝑋%, ∥ is the concatenation operator, and 𝑋' ∈ 𝑅(is the K-dimensional input word

vector that corresponds to ith word in the sentence. Each sentence in the word vector should

4

have the same length and pad all the sequences to the maximum length of the sentences

(𝑛). A convolution operation uses a filter 𝑤 ∈ 𝑅)(and a window of ℎ words to generate a

new feature. A feature 𝑐' 	produced through a window of words 𝑋':'*)+" in the sentence is

represented as:

𝑐' = 𝑓(𝑤. 𝑋':'*)+" + 𝑏)

where 𝑏 is the bias term, 𝑓 is a non-linear hyperbolic tangent function, and 𝑤 is the filter.

Figure 1. Kim's (2014) CNN model for two channels.

The convolution layer filter is applied to each possible window of words (ℎ) in the

input sentence to generate a feature map:

𝑐	 = 	 [𝑐", 𝑐&, … , 𝑐%+)*"]

where 𝑐 ∈ 𝑅%+)*". It then collects the most important feature in each feature map that is

extracted through a maximum over-time pooling operation i.e., Ĉ = max{c}. This operation

ideally selects a feature that has the highest value on each feature map. For each filter in

this model, a feature is produced. Kim’s (2014) model utilized multiple filters with various

window sizes of words to generate multiple features. These selected essential features form

5

the penultimate layer and are shifted to a fully connected softmax layer. Subsequently, the

softmax layer produces the probability distribution over the labels.

Kim (2014) implemented dropout regularization on the penultimate layer with a

constraint on 𝑙&-norms of the weight vectors. Dropout regularization limits correlated

hidden units by randomly dropping out during forward backpropagation operations. For

instance, normal forward propagation gives,

𝑦	 = 	𝑤. 𝑧 + 𝑏

where 𝑦 is the output units, 𝑧 is the penultimate layer 𝑧 = [�̂�", �̂�&, … , �̂�,], and 𝑚 is the

filters. When adopting the dropout layer, the previous forward propagation output

becomes:

𝑦 = 𝑤. (𝑧	⨀	𝑟) 	+ 	𝑏

where ⨀ is the element-wise multiplication operator and 𝑟 is a ‘masking’ vector of

Bernoulli random variables, with the probability of 𝑝 being 1 (𝑟 ∈ 𝑅,). Gradients used

unmasked units for backpropagation.

Kim (2014) experimented with six different datasets including movie reviews, the

Stanford Sentiment Treebank, a task-specific subjective dataset, and customer product

reviews. The CNN model was trained on all six datasets and attuned to the hyperparameters

to maximize classification accuracy. This model used “relu” as an activation function,

[3,4,5] as filter windows size (ℎ) along with a 100-feature map per window, 0.5 as a

dropout rate, and 𝑙& as a regularization method, and 50 as a batch size. This CNN model

initialized word vectors through pre-trained word2vec vectors that have been trained on

100 billion words from Google News, in addition to 300 dimensions used as a continuous

bag-of-words mechanism.

6

Kim (2014) examined several variants of CNN models, such as the CNN-rand (base

model), where all words are randomly initialized and updated during training. Within the

CNN-static model where pre-trained vectors are defined by word2vec, all words that have

been randomly initialized are retained as static and tuned to the model’s parameters. The

next model is CNN-non-static, which uses the same parameters as the CNN-static model,

but only pre-trained vectors that are modified in each task. The CNN-multichannel model

uses two sets of word vectors in a model and both are treated as ‘channels.’ Both channels’

pre-trained vectors are initialized with word2vec. A filter is used on both channels, but

gradients are used on just one of the channels to perform a backpropagation process. This

model allows one set of vectors to remain static while another is being adjusted closely.

This research compared the models’ performances using a confusion matrix, precision,

and recall. Those metrics showed that the static vectors’ model provided a better result than

other CNN models. Kim’s (2014) baseline model did not perform better than models with

pre-trained vectors. A simple model with static vectors predicted sentiment classification

extremely well. That demonstrated that the pre-training of word vectors is an important

feature in deep neural network models for NLP. The author also commented that the

multichannel model prevented overfitting problems better than a single channel model

when the number of observations was small.

In CNNs, choosing the right model architecture and identifying the hyperparameters,

such as filter size, and regularization parameters, are critical tasks. Zhang et al. (2015)

performed a sensitivity analysis to determine the effect of architecture components on

model performance using a single layer CNN that was similar to Kim’s (2014) architecture.

In this sensitivity experiment, initially tokenized sentences were converted into word

7

vectors using the pre-training word embedding models, including word2vec or GloVe.

Zhang et al. (2015) compared the model’s performance using nine different datasets–seven

of them were used by Kim (2014) for sentence classification. To provide a point of

reference for the CNN’s performance, Zhang et al. (2015) classified the sentiment through

a linear kernel support Vector Machine (SVM) and recorded the model’s performance.

This SVM model experimented with uni-gram, bi-gram, and a combination of uni-gram

and bi-gram features. This model considered frequent 30k n-grams for all datasets for

training and tuned the hyperparameters through cross-fold validation, which optimized the

model’s accuracy.

Zhang et al. (2015) built a CNN baseline model with hyperparameters, which had been

used in Kim’s (2014) work for evaluating performance. Performance of the model was

measured through mean performance metrics via 10-fold cross validation (CV), in addition

to randomly chosen dropout rates, filter sizes, feature maps, activation functions (from a

list of including relu/tanh/Sigmoid/SoftPlus/Cube/tanh cube). The CV operation involved

setting the pooling size as 1-max/k-max, the dropout rate from 0.0 to 0.9, and a random

parameter weight. They repeated the CV experiment 100 times and recorded the model

mean, minimum, and maximum average accuracy over each iteration. Afterwards, Zhang

et al. (2015) measured performance with all datasets using different versions of the CNN

models, as well using static and non-static word vectors.

Based on all of the experiments, they recommended the following hyperparameters

for a sentiment analysis single layer CNN model: non-static word2vec or GloVe rather than

one-hot word vectors, with a filter region size to be set between 1 and 10, as well as the

number of feature maps for each filter region size to be between 100 and 600, the use of

8

‘relu’ and ‘tanh’ as activation functions, including 1-max pooling, and a dropout rate

higher than 0.5 for the regularization. The sensitivity analysis concluded that the CNN

model hyperparameters would vary based on the dataset size.

In this dissertation, we used Kim’s (2014) single channel CNN model as our base

model along with Zhang et al.’s (2015) recommended hyperparameters. The input for this

network was Twitter messages that were split into a sequence of words. Each word was

mapped to an embedding vector, via one of the pre-trained word vectors: word2vec, GloVe,

and fastText. The word vector was formed with 𝑠 × 𝑑 size, where 𝑠 is the number of words

in the tweet and 𝑑 is the embedding dimension. We followed the padding logic that was

used by Kim (2014), which produced the same matrix dimension for all tweets 𝑋 ∈ 𝑅-!×/.

In the tweet, some of the words may mislead the classification of certain phrases and

marked the sentence as non-meaningful. For that, we added a dropout layer in the network

that received embedding layer output and dropped random words to avoid overfitting.

Subsequently, we built the convolutional operation of the dropout layer output. Each

convolution operation used a filtering matrix 𝑤 ∈ 𝑅0×/, where 𝑐 is the convolution size

(i.e., the number of words). The convolutional operation is:

𝑐'	 = 𝑓(C𝑤1,(

	

1,(

D𝑋[':'*)+"]E1,(+ 𝑏)	

where 𝑏 ∈ 𝑅 is the bias term, and 𝑓(𝑥) is the activation function. The output of the

convolution 𝑐 ∈ 𝑅-!+)*" is the concatenation of the convolution operator among all

possible windows of words in a given tweet. Since we used different sizes of filters, each

convolution produced tensors of different shapes, and so built a layer for each of them, and

merged each convolution result into a single feature vector.

9

Next we applied a max-pooling operation in all convolutions, where 𝑐,56 =

𝑚𝑎𝑥(𝑐)	.	This operation extracted the most important feature from each convolution. The

output of this operation returned the most important n-grams in the embedding vector for

a better result on sentiment polarity. The max-pooling task collected all the 𝑐,56 of each

filter into one vector, 𝑐,56 ∈ 𝑅,, where m is the number of filters. This convolution layer

used ‘relu’ or ‘tanh’ as an activation function. We also built a multichannel CNN model.

A multichannel convolutional neural network for sentiment classification involved using

multiple versions of the CNN model with various sized kernels from the embedding layer

to the max-pooling task. The kernel size in a CNN defined the number of words to consider

as the convolution was passed across the input tweet, providing a grouping parameter.

The final layer was the dropout layer, which is the most popular approach to

regularizing a CNN and served to reduce overfitting issues. This layer prevented neurons

from co-adapting and forced them to learn individually valuable features. The dropout layer

passed the vector through a softmax layer in order to produce the expected sentiment

analysis. This CNN model used ‘categorical_crossentropy’ as a loss function and

‘adagrad’ or ‘adam’ as an optimizer. A categorical cross-entropy loss function compared

the distribution of the prediction with the desired distribution as described here:

𝐿(𝑦, 𝑦I) = 	∑ ∑ (𝑦'1 × 𝑙𝑜𝑔	(𝑦I))%
'78

,
178

where 𝑦I	is the predicted label. The optimizer ‘adagrad,’ or the adaptive gradient, allowed

the learning rate to adapt based on the parameter. It performed larger updates for infrequent

features and smaller updates for frequently occurring features.

2.2 Long Short-Term Memory (LSTM)

A Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN)

10

model and has emerged as a powerful model in NLP applications that involve sequential

data (Karpathy, Fei-Fei, & Li, 2016). The central principle of the LSTM model is that it

can collect and retrieve information over long periods of time using its gating mechanisms.

In NLP, LSTM uses its memory cells to remember long-range information and helps to

maintain the message context. It makes use of standard stochastic gradient descent and

truncated backpropagation through time. Karpathy et al. (2016) described how the LSTM

resolved the difficulties of training RNN’s backpropagation, which caused the gradients in

an RNN to either explode or vanish.

The typical RNN recurrence form ℎ9: is represented as:

ℎ9: = tanh𝑊: Rℎ9
:+"

ℎ9+": S

where the hidden state vector is ℎ ∈ 𝑅%, 𝑊: is the parameter matrix on each layer that has

dimensions [𝑛 × 2𝑛], tanh is applied element wise, t = 1. . T is the time, and l = 1. . L is

the depth. 𝑊: will change between layers and is shared the throughout the network. In

RNN, the inputs from the layer below in depth (ℎ9:+") and before in time (ℎ9+":) are

transformed and combined before being squashed by tanh (Karpathy et al., 2016).

 LSTM models were mainly designed to mitigate the vanishing gradient problem. In

addition to ℎ9: , LSTM will maintain a memory vector 𝑐9:. In LSTM, each time-step uses

explicit gating mechanisms for the read, write, or reset operations. The precise form of this

model is delineated below:

Y

𝑖
𝑓
𝑜
𝑔

[= Y

𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚	
𝑠𝑖𝑔𝑚	
𝑡𝑎𝑛ℎ

[𝑊: Rℎ9
:+"

ℎ9+": S	

𝑐9: = 𝑓 ⊙ 𝑐9+": + 𝑖 ⊙ 𝑔	

11

ℎ9: = 𝑜	 ⊙ 𝑡𝑎𝑛ℎ	D𝑐9:E

where 𝑊: is a [4𝑛	 × 	2𝑛] matrix, and the activation functions ‘sigm’, and ‘tanh’ are

implemented element wise. The three vectors 𝑖, 𝑓, 𝑜 ∈ 𝑅%	are represented as binary gates.

𝑖’s primary function is to update each memory cell, whereas 𝑓 resets to zero, and 𝑜

maintains each hidden vector’s local state. The activations of these gates depend on the

sigmoid function that maintains the range between 0 and 1 in order to keep the model

differentiable. The vector g ∈ 𝑅% keeps the value between -1 and 1 and is used to modify

the memory contents additively. This additive operation is an essential feature of the LSTM

model, because during backpropagation a sum operation assigns gradients. This allows

gradients on the memory cells 𝑐 to flow backward through time uninterrupted for long

periods. In a LSTM, a network is required to maintain two vectors (𝑐9: 	&	ℎ9:) at every point.

The standard LSTM cannot detect all the important context for sentiment

classification. In order to address this issue, Wang, Huang, Zhu, and Zhao (2016) proposed

a LSTM model with an attention mechanism that can capture the key part of a sentence for

sentiment classification. The following diagrams differentiate the regular RNN versus the

additive attention RNN (Wang et al., 2017). The attention layer yields an additional weight

vector (𝛼) for the LSTM that will be concatenated with the hidden layer vector (ℎ) and

return a weighted representation of sentence (𝑟). That vector identifies the contribution of

important elements in the final representation. The attention layer mechanism allows a

LSTM to detect the most important part of a sentence when different aspects are present in

the input dataset.

12

Figure 2. Left: Regular RNN model, Right: Attention RNN (Source: Wang et al., 2016)

Baziotis et al. (2017) presented two LSTM models for sentiment classification. The

first LSTM model was designed to identify sentiment on the message-level. This model

has a 2-layer Bidirectional LSTM, which was implemented with an attention mechanism

for addressing the most informative words in the message. The second model was

developed for topic-based sentiment analysis tasks. Baziotis et al. (2017) proposed a

Siamese Bidirectional LSTM network with different attention logic than in the message-

level deep learning network. For training these models, SemEval2017’s subtasks A, B, C,

D, and E dataset tweets were used.

2.2.1 2-layer Bidirectional LSTM

A 2-layer Bidirectional LSTM neural network model uses Twitter messages as input,

in the form of a sequence of words. The input word vector 𝑋 was converted into the low-

dimensional vector space 𝑅; through an embedding layer, where 𝑋 is (𝑥", 𝑥&, … , 𝑥<), 𝐸 is

the size of the embedding layer, and 𝑇 is the total words in a tweet. This model initializes

the weights of the embedding layer with pre-trained word embedding vectors via GloVe

and custom word vectors generated by 330M Twitter messages.

As illustrated in Figure 3, the study by Baziotis et al. (2017) used a Bidirectional

LSTM (BiLSTM) to get word annotation summaries of the data from both directions. It

13

also stacked two layers of the BiLSTM to extract more important features from the tweets.

The BiLSTM consists of a forward LSTM 𝑓 that reads the text from 𝑥" to 𝑥< 	and a

backward LSTM 𝑓 that reads the text from 𝑥< to 𝑥". To do this final annotation for a given

word, 𝑥', is achieved by concatenating both direction annotations i.e., hi = ℎ=eee⃗ ||ℎ=e⃖ee	, ℎ𝑖 ∈ 𝑅2L,

|| in which 𝐿 indicate the concatenation operation and the size of each LSTM, respectively.

Figure 3. 2-layer Bidirectional LSTM (Source: Baziotis et al, 2017)

Normally, all the words in the tweet will not contribute to equally classifying the

sentiment. This model used an attention mechanism to collect the importance of each word.

This mechanism assigns a weight 𝑎' 	to each word annotation, and consequently estimates

the fixed representation of the whole message 𝛾 as the weighted sum of all word

annotations.

𝑒' = 𝑡𝑎𝑛ℎ	(𝑊)ℎ' + 𝑏))	, 𝑒' 	 ∈ [−1,1]	

𝑎' =
𝑒𝑥𝑝	(𝑒')

∑ 𝑒𝑥𝑝	(𝑒9)<
97"

,C𝑎' = 1
<

'7"

	

𝛾 = 	C𝑎'ℎ'

<

'7"

, 𝛾 ∈ 𝑅&>	

14

where 𝑊) and 𝑏) are the weights from the attention layer that will be high for the most

essential words of a sentence. This model passes the feature vector 𝛾 for sentiment

classification to a fully connected softmax layer in order to compute a probability

distribution over all classes. This BiLSTM model used these as the hyperparameters,

embedding the layer dimension as 300, the BiLSTM as 300, Gaussian noise 𝜎 as 0.2,

dropout rate as 0.3 at the embedding layer, dropout rate as 0.25 at LSTM layer, and 𝑙&

regularization of 0.0001 as the loss function.	

2.2.2 Siamese Bidirectional LSTM

Baziotis et al. (2017) proposed another LSTM model as the Siamese Bidirectional

LSTM (Figure 4), which has a different attention mechanism than the former one for a

topic-based sentiment analysis task. This LSTM model takes two inputs from tweets

(sequence of words) 𝑋9? 	and topics (sequence of words) 𝑋9@, where 𝑋9? =

(𝑥"9? , 𝑥&9? , … 𝑥9?9?), 𝑇9? is the number of words in the tweet, 𝑋9@ = (𝑥"9@ , 𝑥&9@ , … 𝑥9@9@), and

𝑇9@ is the number of words in the topic. This LSTM model projects all words to a low-

dimensional vector space 𝑅;using the pre-trained word embedding vector, where 𝐸 is the

size of the embedding layer.

For the topic-based sentiment analysis, the LSTM used a BiLSTM with shared weights

to map the words of the tweet and the topic to the same vector space in order to make a

meaningful comparison between the content of each (Baziotis et al., 2017). The BiLSTM

generates annotations for the tweet 𝐻9?and the topic 𝐻9@, where 𝐻9? = (ℎ"9? , ℎ&9? , … , ℎ9?9?)

and 𝐻9@ = (ℎ"9@ , ℎ&9@ , … , ℎ9@9@) and each word annotation contains the concatenation of

forward and backward layer annotation, that is defined as:

ℎ'
1 = ℎ=

Aeeee⃗ ||ℎ=
Ae⃖eee, ℎ'

1 ∈ 𝑅&> , 𝑗 ∈ {𝑡𝑤, 𝑡𝑜}

15

where || denotes concatenation operator, and size of the LSTM represents 𝐿.

Next, this network used a mean-Pooling layer over the annotation of the topic 𝐻9@ for

accumulating them to a single annotation. This layer produces a topic annotation,

ℎ9@oooo =
1
𝑇9@

Cℎ'9@
<"#

'7"

To get the final context-aware annotation for each word, the topic annotation ℎ9@oooo is

concatenated to each word,

ℎ' = ℎ'9? ∥ 	 ℎ9@oooo, ℎ'
1 ∈ 𝑅B>

Figure 4. Siamese Bidirectional LSTM (Source: Baziotis et al, 2017)

The BiLSTM uses a context aware attention mechanism by adding the context vector

𝑢), to increase the contribution of words that would produce a better sentiment score for a

given topic.

𝑒! = 	𝑡𝑎𝑛ℎ(𝑊"ℎ! 	+	𝑏"), 𝑒! ∈ [−1, 1],	

𝑎' =
𝑒𝑥𝑝	(𝑒'<𝑢))

∑ 𝑒𝑥𝑝	(𝑒'<𝑢))
<"$
97"

,C𝑎'

<"$

97"

= 1,	

𝛾 =C𝑎'ℎ'

<

'7"

, 𝛾 ∈ 𝑅B>		

16

where	𝑊" ,	𝑏) ,	and	𝑢)	are	jointly	learned	weights. 𝛾 is passed through a dropout layer.

This LSTM model used these as the hyperparameters: embedding layer dimension as 300,

BiLSTM as 128, Gaussian noise 𝜎 as 0.2, dropout rate as 0.3 at the embedding layer,

attention layer, dropout rate as 0.25 at LSTM layer, and 𝑙& regularization of 0.0001 at the

loss function. Baziotis et al. (2017) used Gaussian noise at the embedding layer in both

LSTM attention models to reduce the overfitting issues. They also added an

𝑙&	regularization penalty to the loss function to discourage large weights and stop the

training when validation loss value stopped declining. 	

In order to find the impact of the attention mechanisms, they evaluated the

performance of each model, both with and without the attention layer. Research suggests

that when the ability to store long-range information of a model is high with an additional

attention layer, that model performs better at sentiment classification (Baziotis et al., 2017).

In this dissertation, we performed the sentiment classification using an LSTM model with

an attention layer, in addition to Kim’s (2014) CNN model.

We additionally built the BiLSTM to be trained by the input tweets. These neural

networks were constructed with sequential data by sharing their weights across the

sequence. The input list of words was mapped to an embedding vector, via one of the pre-

trained word vectors: word2vec, GloVe, and fastText. After the embedding layer, the

sequence of words was passed through the BiLSTM to get to another hidden state. The

hidden state ℎ9 at time 𝑡 was be computed as,

ℎ9 = 𝑓(𝑊) × 𝑥9 + 𝑈) × ℎ9+" + 𝑏))	

where,	𝑥9 is the word embedding vector, weight matrix is 𝑊) ∈ 𝑅,×/, and 𝑈) ∈ 𝑅,×,,

𝑏) ∈ 𝑅, is the bias term, and 𝑓(𝑥)	is non-linear function (tanh).	

17

In order to attribute all words in a tweet equally to people’s understanding of the

message context of a given tweet, we leveraged the use of an attention mechanism (Baziotis

et al., 2017). In addition to the attention layer, a dense vector collected the weights of

various word vectors, which is delineated in the following equations.

𝑢9' = 𝑡𝑎𝑛ℎ	(𝑊ℎ9' + 𝑏)	,

𝛼9' =
C6D	(F"%

&F$)
∑ C6D	(F"'

& F$)(
')!

,

𝑠9 =C𝛼9'ℎ9'

%

'7"

Specifically, 𝑡 represents 𝑡9) tweet in the dataset, and n is the word count in a tweet.

The ℎ9' represents the concatenation output of the BiLSTM layer. The term 𝑤 represents

the weight matrix of the neural network and b is the bias term of the multilayer perception

(Baziotis et al., 2017). After that, we compared the 𝑢9' and the word level context vector

𝑢? using their similarity, and we measured the importance of each word in a tweet. The

normalized importance weight 𝛼9' was computed through a softmax function. When the

weight is high for an 𝛼9' that represents 𝑖9) word, it is the most important for sentiment

classification. Finally, 𝑠9 represents a sentence vector, which is the weighted sum of word

annotations.

The output of the attention layer was passed to a dense layer, and the activation

functions for this layer were ‘tanh’ or ‘adam’. After the dense layer, there was a dropout

layer to avoid overfitting problems. The output of this dropout followed a dense layer of

two hidden layers, using softmax as an activation function. That produced the sentiment

label that belonged to one of the two classes.

18

2.3 Word Embedding

In natural language processing systems, words are expressed as discrete atomic

symbols. As this encoding format treats each word independently, it does not provide

additional information to the system when attempting to identify semantically similar

words (Wehrmann, Becker, Cagnini, & Barros, 2017). Word embeddings are helpful

because they encode both the syntactic and semantic information of words that should lie

close in the embedded 𝑑-dimensional space. Word embeddings also consist of lists of

words 𝑤	in a 𝑑-dimensional space where semantically similar words are neighbors that

could be generated using a dictionary.

Let 𝑇 ∈ {𝑤", 𝑤&, . . . , 𝑤%}	be a text with 𝑛 words, which will vary based on the text, and

𝑓(𝑤') = 𝑣' 	be a mapping function that will map the word 𝑤' into vector 𝑣'. The word

embedding space is defined by 𝑇 ∈ 𝑅%×/. Figure 5 illustrates an example of the word-

based representation of word embedding. Currently sentiment analysis classification tasks

are performed through the network models such as CNN and LSTM, which process the

text encoded as a sequence of word embeddings and produce a more promising result than

raw word vectors (Kim, 2014).

Figure 5. Word embedding for the words ‘I can do it’. (Source: Wehrmann et al., 2017)

Word embedding methods are broadly classified into two categories, including

19

frequency-based and prediction-based embedding (Baroni et al., 2014). GloVe is an

effective frequency-based tool that uses an unsupervised learning algorithm for obtaining

vector representations for words (Baroni et al., 2014). word2vec is one of the

computationally efficient predictive models for learning word embeddings from NLP.

word2vec uses the Continuous Bag of Words (CBOW) or the Skip-gram model (Mikolov

et al., 2014). Both of these models in word2vec are built with lightweight feedforward

neural networks. FastText is an extension for word2vec that breaks words into several n-

grams. In fastText, each word’s word vector embedding will be the sum of all n-grams of

that word. GloVe and fastText also supports CBOW and Skip-gram models for generating

word embedding vectors.

2.3.1 Continuous Bag of Words (CBOW)

The CBOW model predicts target words from source context words i.e., in given a

context, the goal is to know which word is the most likely to appear in it. In this model, all

the words surrounding the target word when it is a target are fed into the networks and take

the average of the extracted hidden layer. The input layer consists of a sequence of words

{𝑥", 𝑥&, … , 𝑥I}	as a one-hot encoding format, including 𝐶 as the number of words, and 𝑉

as the vocabulary size. The hidden layer is an N-dimensional vector. The input vectors are

connected to the hidden layer through a 𝑉 × 𝑁	weight matrix 𝑤, and the hidden layer is

attached to the output layer by a 𝑁 × 𝑉 weight matrix 𝑤J. Finally, the output layer has a

list of words in the training dataset that is also one-hot encoded. The following figure

describes the CBOW architecture.

20

Figure 6. CBOW model

The output 𝑦1 	is obtained by passing the input 𝑢1 	through the softmax function.

					𝑦1 = 𝑝(𝑤K1 	|	𝑤", 𝑤&, … , 𝑤0)

=	
𝑒𝑥𝑝	(𝑢1)

∑ 𝑒𝑥𝑝	(𝑢1J)L
17"

In this equation, 𝑢1 =	𝑣?1J
< . ℎ, and h is the average of the input weighted by 𝑤, such that

"
I
𝑤.∑ 𝑥'I

'7" and 𝑣?1J
< is the jth column of 𝑤J. The weights 𝑤 and 𝑤J are calculated via

backpropagation.

2.3.2 Skip-gram

The Skip-gram model follows a similar topology to the CBOW model. This model’s

input is a target word, and the outputs are the lists of words surrounding the input word.

Both input and output vectors are in the same dimension and in one-hot encoded format

(Baroni et al., 2014). The Skip-Gram model architecture is presented in Figure 7. In this

model, 𝑥 represents the one-hot input vector size 1×N, which is connected to the hidden

layer through an 𝑉 × 𝑁	weight matrix 𝑤, and the hidden layer is attached to the output

layer by an 𝑁 × 𝑉 weight matrix 𝑤J. In the hidden layer, the 𝑖9) row represents the weights

that correspond to the 𝑖9) word in the vocabulary vector 𝑉. The output one-hot vector 𝐶 is

1 ×N.

21

Figure 7. Skip-Gram model

The output of the 𝑗9) node of the 𝑐9) output word is obtained by passing the input

𝑢01 	through the soft-max function.

𝑦01 = 𝑝(𝑤01 =	𝑤8,0|	𝑤")

=	
𝑒𝑥𝑝	(𝑢01)

∑ 𝑒𝑥𝑝	(𝑢1JL
17")

	

In this equation, 𝑢01 =	𝑣?1J

< . ℎ, h is the average of input weighted by w. i.e., 𝑥<𝑤, and

𝑣?1J
< is the jth column of the 𝑐9) output word. The weights w and 𝑤J are calculated with

backpropagation and a stochastic gradient descent.

Since word embedding places the related words close together, it will be easy to

interpret the tweet. In this research, this strategy was used to address all the errors in the

tweets. In our study, we leveraged the list of pre-trained word embedding vectors including

word2vec, GloVe, and fastText from open source code environments.

22

3 Methodology

The benchmark Sentiment140 English language dataset was used for evaluation in this

dissertation. This dataset contained labeled tweets that included emoticons. Two types of

deep neural networks – Convolution Neural Networks (CNN) and Long Short-Term

Memory (LSTM) – were used for classification since they have been demonstrated to

produce the best results. All terms in the tweets were represented using their word2vec or

GloVe or fastText embeddings. Baseline models were trained and tested using tweets with

their emoticons removed. For each baseline model, a corresponding model was trained that

included emoticons as inputs. Alternate methods for obtaining embeddings for emoticons

were explored. Accuracy, precision, recall, and 𝐹" scores of models using emoticons were

compared to their corresponding baseline models that do not use emoticons.

The rest of this chapter is organized as follows: Section 3.1 summarizes the dataset.

Section 3.2 describes text pre-processing procedures for the baseline models and the

models with emoticons. Section 3.3 defines the evaluation measures used. Section 3.4

explains the embedding method using word2vec. The CNN model and the LSTM model

are presented in sections 3.5 and 3.6, respectively. Section 3.7 outlines the method of

comparing models trained with emoticons to the corresponding models trained without

emoticons.

3.1 Data Set

In this research, we predicted the sentiment of twitter messages using the

Sentiment140 English language dataset (Sentiment140, 2009). These Twitter datasets were

limited to 140 characters of text and contained both transcripts and emoticons. The dataset

23

had six columns: polarity of the tweet, the id of the tweet, date of the tweet, the query of

the user on api, the user that tweeted, and the text of the tweet. This study only included

the polarity and text columns for classification. These datasets had 1.6 million rows and

had been previously annotated with the three labels 4, 0, 2, which have been represented

as positive, negative, and neutral, respectively (Go, Bhayani, & Huang, 2009). However,

there was no sample data for the neutral label, so we do not consider that. Figure 8

illustrates the data distribution for the sentiment labels in this dataset. Both sentiment labels

positive and negative were equally distributed in this dataset. Table 1 illustrates the same

data for both labels from the dataset.

Figure 8. Sentiment label distribution – Raw dataset

Table 1.Sample data from the dataset

Sentiment Text Sentiment label

0

@switchfoot http://twitpic.com/2y1zl - Awww,
that's a bummer. You shoulda got David Carr of
Third Day to do it. ;D NEGATIVE

0

@tsarnick yay totally send me an e-mail! Cool
I'm back at my appartment tomorrow so I'll have
my laptop and my video software :) NEGATIVE

0

@CaitlinOConnor i want tacos and margarhitas
telll gay i say hello<3
Managed to save 50% The rest go out of bounds NEGATIVE

4
editing my profile for the first time in forever ...
Tommy's an uncle again ! <3 POSITIVE

4

@tsarnick yay totally send me an e-mail! Cool
I'm back at my appartment tomorrow so I'll have
my laptop and my video software :) POSITIVE

4

@lauracowen hope you customised it with
#ubuntuuk/#lugradio wallpapers and left podcasts
on the desktop Never hurts to advertise ;) POSITIVE

24

For this research, we considered only the rows that had at least one emoticon i.e.,

131,523 rows were filtered from the sentiment140 dataset. This dataset had special

characters that were transformed into an ascii format for understanding all the tweets

clearly. The given dataset had hashtags, URLs, html tags, special characters, carriage return

characters (\n), and line terminator characters (\t). We removed all these characters and did

not consider them in our study. The filtered dataset’s text column was copied into two more

columns: one for a BASE_MODEL experiment and another one for a WITH_EMOTICON

experiment. In the BASE_MODEL text column, all the emoticon characters were replaced

with UNK. The sentiment140 dataset had the emoticons in the form of icons, instead of

emojis, including: :‑), :), :-], :], :-3, etc. Table 2 describes the list of ninety emoticons in the

WITH_EMOTICON experiment text column alongside the number of occurrences across

the tweets. Most of the tweets regularly used by most of the users had smiley faces, eyes

crossed and tongue sticking out, thumbs up, and heart emoticons.

Table 2. Emoticons in the tweets with the number of occurrences

Emoti
con

Occurs Emo
ticon

Occur
s

Emotic
on

Occur
s

Emoti
con

Occur
s

Emoti
con

Occurs Emoticon Occurs

 :/ 74497 =D 871 :') 205 :c 74 =3 21 >:3 5
 <3 13846 ;D 785 :$ 188 :b 73 :-} 21 :-] 5
 xp 12011 :L 714 :> 180 :< 71 O-O 19 <pout> 2
 ;) 7516 :o 652 >_< 165 *) 70 :{ 18 :-3 2
:3 4410 =/ 522 ;] 160 8D 63 v.v 14 o/\\o 1
 xD 2848 =] 485 =p 146 8-) 54 >:/ 14 ^<_< 1
 XD 1879 >.< 414 DX 122 :} 47 :(13 ><> 1
 :p 1756 :\\ 412 o_O 117 D:< 36 =L 12 =) 1
 :| 1680 :-/ 404 \\o/ 103 >:O 35 *-) 11 ;^) 1
 :O 1659 :@ 383 :X 103 o_o 34 ^5 10 :D 1
 ":(" 1464 XP 382 =\\ 101 D= 34 :-> 9
 :S 1398 </3 335 O_O 100 :^) 34 >;) 7
 d: 1355 0:3 317 O_o 87 %) 34 :) 7
 'D:' 1240 8) 299 :o) 83 >:[28 :& 7
 ';-)' 1122 :* 287 :-* 78 :-0 23 >:\\ 6
 ':]' 1041 :[213 D; 76 D8 22 :# 6

25

Figure 9. Number of emoticons distribution by Sentiment class

The WITH_EMOTICON text column were prepared using a list of English language

emoticons mentioned in Wikipedia (Wikipedia, n.d.), in which each emoticon icon was

replaced with the appropriate text. For instance, ‘:‑)’ was replaced with ‘happy face,’ ‘;-)’

was replaced with ‘happy face,’ ‘:‑(‘ was replaced with ‘angry,’ etc. Figure 9 delineates the

number of emoticons distributed across the sentiment labels in the WITH_EMOTICON

text column. More than 90% of tweets had one or two emoticons, and only a few tweets

had more than two emoticons.

 The number of rows in each of the sentiment labels POSITIVE and NEGATIVE in

both datasets is reported in Table 3. Figure 10 explains the difference between the two

datasets’ tweets’ length distribution in sentiment class. On the right side, the two graphs

show the higher than default maximum tweet length of 140. Additionally, the

WITH_EMOTICON dataset describes the minimum tweet length, but overall tweet sizes

are greater than the default twitter message.

Table 3. No of rows in BASE_MODEL, and WITH_EMOTICON dataset by sentiment
class

 POSITIVE NEGATIVE
WITH_EMOTICON 78,529 52,994
BASE_MODEL 78,529 52,994

26

Figure 10. Tweets length distribution- Left: BASE_MODEL, Right: WITH_EMOTICON

Since new text was added in the WITH_EMOTICON text column, we expected an

increase in the number of words in the raw dataset tweets. Figure 11 reports word length

distribution in these two text columns, with the overall number of words in

WITH_EMOTICON being larger than what is in the BASE_MODEL text column. We

split a randomized sample method through the datasets, 80:10:10, into two sets of training

test, and validation datasets. One of the training and test datasets had the BASE_MODEL

text column and another set of training and test datasets had the WITH_EMOTICON text

column. Both training datasets had 106,533 rows, validation datasets had 13,153 rows, and

the test datasets had 11,837 rows.

Figure 11. Word length distribution- Left: BASE_MODEL, Right: WITH_EMOTICON

27

3.2 Data preprocessing

The raw tweets had so many meaningless and unstructured data and repetitive words.

Hence, each experiment followed a few preprocessing steps in order to make some changes

to tweet transcripts so as to conduct further text analysis. In the previous section, we

defined a few preprocessing steps to copy the filtered dataset text column into two further

columns. Besides that, datasets went through the following preprocessing steps:

1) convert the text to lower case

2) removal of all nullable rows

3) removal of all additional empty spaces

4) removal of all numbers, alphanumeric and punctuations

We also removed and replaced all the stop words and stem words from the dataset

using the NLTK (Natural Language Toolkit) English language dictionary, because such

words have low predictive power (Rosenthal et al., 2017). For handling the stem and stop

words, initially we split each tweet into a list of words using an NLTK tokenizer tool. If

any of the tokens belonged to the NLTK stem’s bag of words, the appropriate stem word

from the NLTK stem was replaced for that token, and the token that was in NLTK corpus’s

stop words were removed from the tweet. Finally, we used NLTK wordnet lemmatization

on the tweets, which linked words with similar meanings to one word. The lemmatization

process used the bag of words from the tokenizer and mapped the appropriate word, based

on the sentence. Subsequently, it excluded all the rows from the dataset where the tweet

length was less than one.

3.3 Evaluation criteria

The primary evaluation criteria for this sentiment analysis compared the model

28

accuracy of the BASE_MODEL and the WITH_EMOTICON experiments. To evaluate

the sentiment classification, model accuracy was measured using a confusion matrix,

accuracy, precision, recall, and 𝐹" score metrics. The confusion matrix explains the

distribution of predicted values across actual sentiment classes. Accuracy is the measure

of all the correctly identified classes against the actual class. Precision is the fraction of the

relevant instances among the predicted instances. Recall is the fraction of the desired

instances that has been predicted over the total amount of desired instances. The 𝐹" score

is defined as the weighted average of recall and precision. The following equations describe

the accuracy (𝐴𝑐𝑐), recall (𝑅𝑒𝑐), precision (𝑃𝑟𝑒), 𝐹", and other metrics from confusion

matrix:

𝐴𝑐𝑐' =	
<M%*	<N%

<M%*	<N%*OM%*	ON%
,		𝐴𝑐𝑐 = 	 ∑ <M%

(
%)* *	∑ <N%

(
%)*

∑ <M%(
%)* *	∑ <N%(

%)* *∑ OM%(
%)* *	∑ ON%(

%)*
	

Rec' =	
𝑇𝑃'

𝑇𝑃' + 𝐹𝑁'
, 𝑅𝑒𝑐 = 	

∑ 𝑇𝑃'%
'78

∑ 𝑇𝑃'%
'78 +∑ 𝐹𝑁'%

'78

Pre' =
𝑇𝑃'

𝑇𝑃' + 𝐹𝑃'
, 𝑃𝑟𝑒 =

∑ 𝑇𝑃'%
'78

∑ 𝑇𝑃' + ∑ 𝐹𝑃'%
'78

%
'78

𝐹" =	
2 × 	𝑃𝑟𝑒	 × 	𝑅𝑒𝑐
𝑃𝑟𝑒 + 𝑅𝑒𝑐

whereby 𝐴𝑐𝑐', Rec', and Pre' are the accuracy, recall, and precision for the class 𝑖

respectively, 𝑛 is the number of classes in the sentiment classification, TP – True Positive,

FP – False Positive, FN – False Negative, and TN – True Negative. 𝑇𝑃' is the number of

examples in class 𝑖 that are predicted in class 𝑖. 𝑇𝑁' is the number of examples NOT in

class 𝑖 that are NOT predicted in class 𝑖. 𝐹𝑃' is the number of examples NOT in class 𝑖 that

are predicted in class 𝑖. 𝐹𝑁' is the number of examples in class 𝑖 that are NOT predicted

class in 𝑖. In addition to these metrics, we will also evaluate the classification output using

29

a macro-averaging (𝑀𝑎𝑐𝑟𝑜5PQ) metric to determine the accuracy of the model. As the

following equation illustrates, macro-averaging was the average of the precision and recall

of the system on different sets. The evaluation process measured the impact of including

emoticons on the sentiment classification task.	

𝑀𝑎𝑐𝑟𝑜_𝑃𝑟𝑒5PQ =
𝑃𝑟𝑒" +⋯+ 𝑃𝑟𝑒(

𝑘 	

𝑀𝑎𝑐𝑟𝑜_𝑅𝑒𝑐5PQ =
𝑅𝑒𝑐" +⋯+ 𝑅𝑒𝑐(

𝑘 	

3.4 Base-line models

As Rosenthal et al. (2017) demonstrated, CNNs with multiple convolution operations

are good for classifying sentiments. Baziotis et al. (2017) demonstrated how a BiLSTM

with an attention layer yields better accuracy for sentiment classification. Within both

experiments of our research, these models were employed to classify the sentiment as

POSITIVE or NEGATIVE. Finally, the accuracy and performance of each method in the

experiment was analyzed and the importance of emoticons in the sentiment analysis

process was evaluated. The inclusion of emoticons resulted in a higher level of accuracy

since positive or emotional words were included from the emoticons. Since Rosenthal et

al. (2017) and Baziotis et al. (2017) used different datasets than our research dataset, we

had to use a linear model as a base model for evaluating all the deep learning sentiment

classification models.

3.5 Embedding Layer

Before building a sentiment analysis model, all the features contained in the tweets

needed to be extracted and formed into a group of semantically related words through word

30

embedding. This study used a few different embedding approaches for our neutral network

models, including custom word2vec embedding vectors, pre-trained word2vec embedding

vectors, pre-trained GloVe embedding vectors, and pre-trained fastText embedding

vectors. These embedding vectors were fed to an embedding layer.

3.5.1 Custom word2vec model

In order to construct word2vec embedding vectors through the given tweets, we used

the Genism package from python. This API requires the input data to be in a list of

sentences, with each sentence being a list of words meant for building the embedding

vectors. Initially, the training dataset tweet messages were transformed into the format of

a list of words. This model was defined by providing the number of dimensions (size), the

maximum distance between a target word and words around the target word (window), it

included or excluded terms based on their frequency (min_count), and the number of

threads (workers). We determined the size of the vocabulary using the list of words in the

training dataset’s text column (vocabulary size). We then trained the word2vec model with

the list of words, with a few iterations (epochs). Table 4 describes the list of parameters

used in the word2vec model.

Table 4. Word2vec model hyperparameters

Parameter name Value(s)
Dimensionality of the word
vectors (size)

100-300

Maximum distance between the
current and predicted word
within the distance (window)

5-15

Total frequency threshold
(min_count)

5-15

No of worker threads to train the
model (workers)

8-10

Training iterations (epochs) 16-50
Maximum padding length 150-300

31

3.5.2 Pre-trained word2vec model

We used Google’s public pre-trained word2vec embedding vector from an (, n.d.)

available repository. It has 300 dimensions of pre-trained word vectors that have been

trained using 100 billion words from a Google News dataset. This vector has the

vocabulary size of Google news, is around 3 million words, and was transformed into a

dictionary with a word as a key and coefficients as values for the embedding layer.

3.5.3 Pre-trained GloVe model

We used another pre-trained embedding GloVe (Global Vectors for Word

representation) for our sentiment classification from the Stanford NLP public data

repository. It is 200 dimensions of pre-trained word vectors (GloVe, n.d.) that were built

using 2 billion tweets, 27 billion words, and has a vocabulary size of 1.2 million. This

vector was transformed into a dictionary with a word as a key and coefficients as values.

3.5.4 Pre-train fastText model

This study tried one more pre-trained embedding of fastText for our sentiment

classification from the Facebook opensource (FastText, n.d.) environment. It is 300

dimensions of pre-trained word vectors that were trained on Common Crawl and

Wikipedia. These models were trained using CBOW, which has 300 dimensions, a window

of size 5, character n-grams of length 5, position-weights, and 10 negatives. This vector

was transformed into a dictionary with a word as a key and coefficients as values.

In our next step, we prepared the embedding layer through the above four embedding

vectors. We leveraged the Keras Tokenizer function that could be fit onto the training

dataset tweets (Keras, n.d.c.), could transform text to sequences consistently by calling the

texts_to_sequences method on the Tokenizer class, and delivered access to the dictionary

by the mapping of words to integers in a word_index attribute. Next, we created a matrix

32

of one embedding for each word in the training dataset text. We did that by enumerating

all unique words in the Tokenizer.word_index function and identifying the embedding

weight vector from the embedding vector, which was made in the initial proceedings.

Consequently, we created an embedding layer with the embedding matrix through the

Keras embedding method (Keras, n.d.d.), which was then seeded with the specific word

vectors’ embedding weights. The output dimension was set based on the embedding vector

dimension size. For instance, the pre-trained word2vec embedding layer output dimension

was 300 since this embedding vector size was 300. The trainable attribute was set as false

because we did not want it to update its learned word weights in this model. This vector

representation of words was used as input data for the CNN and LSTM models, which was

used, in turn, for sentiment classification.

3.6 CNN Model

For sentiment polarity, we implemented a model similar to Kim’s (2014) CNN model.

We made a few changes to Kim’s (2014) CNN model by fine-tuning the parameters and

building two types of CNNs: a simple CNN model and a multichannel CNN model. Each

model worked with all the four embedding vectors; hence we had 8 different CNN variants

of models for sentiment classification.

3.6.1 Simple CNN

We developed a sequential CNN model using a Keras API, as it has a linear stack of

layers, which is described in Figure 12. The training and test dataset tweet messages were

the same length across all the rows for the CNN model. The maximum length of the

document was maintained through the max_length parameter. The original tweets’

max_length value was 140 since the maximum length did not exceed 140 characters for

33

the BASE_MODEL experiment, while it was 200 for the WITH_EMOTICON experiment.

The maximum length on these two datasets was controlled by the Keras Tokenizer and the

pad_sequences functions. The Tokenizer vectorized the tweets and converted them into a

sequence of integers and then we restricted the tokenizer to using only the topmost common

vocabulary words. The number of topmost vocabulary words were managed through a

hyperparameter in this model. The padding functionality padded the sequences to the

maximum length by adding 0 values in the end.

The first layer in this CNN sequence was an embedding layer, which we were built in

the previous embedding layer section. The embedding layer passed the output to a 1D

convolution layer, which created a convolution kernel that was convolved with the layer

input over a single spatial dimension in order to produce a tensor of outputs (Keras, n.d.b.).

This conv1D layer produced the output matrix through the actions of a few parameters,

such as the number of output filters in the convolution (filters), length of the convolution

windows (kernel_size), activation function (activation), and the penalty for the loss

function via regularization method (kernel_regularizer). This study chose the

hyperparameters’ values from Table 5. We used the filters that have the range of 140-200,

kernel_size of 5, activation as ‘relu’ or ‘tanh’, and kernel_regularizer as 𝑙& or 𝑙" with 0.001

weight for this convolution layer.

The output of the convolution layer was received by a maximum pooling layer that

occurred via the Keras MaxPooling1D function (Keras, n.d.e.). This study set the

maximum pooling size as two, i.e., the pooling operation that calculated the two largest

values in each patch of each feature map. If the dimension size was set as 140 in the

previous layer, the pooling operation returned the same output dimension. This matrix

34

passed to a dropout layer, and that randomly assigned 0 weights to the neurons in the

network. If the dropout rate was 0.5, 50% of the neurons received a zero weight. This

dropout operation made the network become less sensitive when reacting to smaller

variations in the tweet. That further increased the model’s accuracy on unseen data. The

output dimension of the dropout layer still had the same dimensions of the conv1d layer.

Figure 12. Simple CNN model

The results of the dropout layer were fed to another convolution layer (convolution 2)

with a kernel_size of 7. That was passed to a maximum pooling layer, followed by a

dropout layer, as successors of convolution 2. From there, the convolution 2 was passed to

a third convolution layer with a kernel_size of 8. This convolution 3 layer was fed to a

global maximum pooling layer, which was defined by the Keras function

GlobalMaxPooling1D (Keras, n.d.e.). The global maximum pooling layer was only taking

the max vector of each input word. This pooling layer was passed to a dropout layer with

a dropout rate of 0.5.

The third dropout layer was fed into a dense layer with n number of hidden layers, as

well as ‘relu’ or ‘tanh’ as an activation function and a regularization function to avoid

overfitting issues. This layer was defined by the Keras dense function (Keras, n.d.f.). The

35

output dimensionality of the dense layer was based on the number of the hidden layer’s

hyperparameters. For instance, if the hidden layer was set as 32 and the input dimension

was set as 150, the output dimension became 32. The same regularization method used

previously was a parameter for this dense layer, which then was passed to a dropout layer

with the same dropout rate. This dropout layer dimension was the same as its parent layer.

Consequently, the dropout layer passed the output through a softmax layer for

producing the expected sentiment analysis class as an encoded format of [0, 4]. This

softmax layer was a dense layer that used the number of output classes (2) as hidden layer

units, and ‘softmax’ as activation function parameters. The final dense layer reduced the

number of dimensions to two. The training time for the simple CNN model with custom

word2vec and pre-trained word2vec models was around 20 to 40 minutes in Google’s colab

environment with a GPU runtime.

3.6.2 Multichannel CNN

Figure 13 depicts the multichannel CNN model that was used in this dissertation. This

model had three channels; each channel had an input layer in which the dimension was the

same as the maximum length parameter of the model. This input layer defined the shape of

the input vector. The input layer was passed to an embedding layer, a convolution 1-

dimension layer, a global maximum pooling layer, and a dropout layer. The channels’

convolution layers’ kernel_size values were 5, 7, and 8, respectively. All three channels’

dropout layer output vectors were concatenated and fed to a dense layer with n number of

hidden layers, ‘relu’ or ‘tanh’ as an activation function, and a regularization function. This

layer output was passed to a dropout and softmax layer as established in the previous CNN

model.

These two CNN models were compiled using ‘categorical_crossentropy’ as a loss

36

function and ‘adagrad’ or ‘adam’ as an optimizer through the Keras compile function

(Keras, n.d.g.). After that, these models were trained with the number of iterations (epochs)

and the number of samples per epoch (batch_size), which happened through the Keras fit

function (Keras, n.d.h.). Table 5 describes a few hyperparameters that allowed for the CNN

to tune the accuracy of the models.

Table 5. CNN Model hyperparameters

Parameter name Value(s)
Maximum number of words
(restricted for the same length)

30-42

Number of classes for output layer 2
Size of the vocabulary 25,000-30,000
Output dimensionality 140-200
Size of the kernel 3-8
Activation functions relu, tanh
Batch size 16, 32,64
Pooling types 2, maximum
Number of epochs (number of
cycles)

20-50

Dropout rate probability 0.2-0.5
Optimizer adagrad, adam
Loss function Categorical crossentropy
Number hidden nodes 16-64

Figure 13. Multichannel CNN model

37

The variety of simple and multichannel CNN models are illustrated in Table 6. The

overall training time for the multichannel CNN model with custom word2vec and pre-

trained word2vec models is around 30 to 60 minutes in Google’s colab environment with

a GPU runtime.

Table 6. Variety of CNN models

CNN Model
Name

Custom
word2vec

Pre-
trained

word2vec

Pre-
trained
GloVe

Pre-
trained
fastText

Simple CNN Ö Ö Ö Ö
Multichannel
CNN

Ö Ö Ö Ö

3.7 LSTM Model

As discussed earlier, Long Short-Term Memory (LSTM) units were built inside of

RNNs that encapsulate information about long-term dependencies in the text. The study

followed Cliché’s (2017) BiLSTM model architecture, depicted in Figure 14. This model

builds two LSTM units to train two LSTMs on the input tweets. The reversed copy of the

first LSTM layer should be a second LSTM. These neural networks are constructed with

sequential data by sharing their weights across the sequence. This mechanism was

maintained through the past and future features for a certain time. The length of input

training and test dataset tweet messages for this LSTM model were normalized across all

the tweets. The normalizing of the input text and encoding of the labels’ strategy was the

same as the CNN model which was explained in the previous section.

The LSTM network is a linear stack of layers that was built using the Keras API. The

first layer was an embedding layer, which encoded the input sequence into a sequence of

dense vectors of the embedding dimension. The embedding layer was chosen from one of

the embedding models that have been explained in section 3.5. The embedding layer output

38

was connected to a LSTM layer that was derived from the Keras LSTM function (Keras,

n.d.i.). The LSTM transformed the vector sequence into a single vector, based on the output

dimension size parameter that contained information about the entire sequence. In addition

to the output dimension size, this method was used by the dropout hyperparameter as it

contained a fraction of the units that were dropped for the linear transformation of the

inputs, as well as the recurrent_dropout hyperparameter for maintaining the dropout rate in

the recurrent state. The Bidirectional LSTM layer was implemented via the Keras (Keras,

n.d.a.) Bidirectional layer wrapper function.

Normally, all words in a tweet do not contribute equally to people’s understanding of

the message context of a given tweet. Hence, an attention mechanism, which ignored

emoticons in tweets, captured the words (Baziotis et al., 2017). After the attention layer, a

dense vector collected the weights of various word vectors. This LSTM layer had an

attention layer that received input from the BiLSTM. The attention layer was defined from

the work of Yang et al., (2016) which had the sentiment analysis (Keras, n.d.j.) with a

BiLSTM model with an attention mechanism.

Figure 14. BiLSTM model with attention layer

39

The output of the attention layer was passed to a dense layer with n number of hidden

neurons that were configured in the hyperparameter, and the activation function for this

layer was ‘tanh’ or ‘relu’. The dense layer output was fed to a dropout layer with the

dropout rate used across the model to avoid overfitting problems. The output of this dropout

followed a dense layer of 2 hidden layers, using ‘softmax’ as an activation function. That

produced the sentiment label that belonged to one of the two classes. This study adjusted a

few parameters for the BiLSTM model in order to tune the accuracy of the model, as shown

in Table 7.

Table 7. LSTM model hyperparameters

Parameter name Value(s)
Maximum number of words 30-42
Number of classes for output
layer

2

Size of the vocabulary 25,000-30,000
Output dimensionality for LSTM 140-200
Activation functions relu, tanh
Batch size 16, 32,64
Number of epochs 20-50
Dropout keep probability 0.2-0.5
Optimizer Adagard, adam
Loss function Categorical crossentropy
Number of hidden nodes 32-256
Number of nodes in Dense Layer 32-256

This model needed to tune the parameters or add additional channels to achieve a better

performance. The training time for the BiLSTM model with the pre-trained word2vec

model is around 2 to 2.5 hours in Google’s colab environment with a GPU runtime. We

created another BiLSTM model without the attention layer for sentiment classification. We

tested both experiments with the variety of BiLSTM models, such as with an attention layer

and without an attention layer, along with four different embedding models, which are

illustrated in Table 8.

40

Table 8. Variety of LSTM models

LSTM Model Name Custom
word2vec

Pre-
trained

word2vec

Pre-
trained
GloVe

Pre-
trained
fastText

BiLSTM Ö Ö Ö Ö
BiLSTM with attention layer Ö Ö Ö Ö

3.8 Comparison of extended approaches to baseline models

In this research, we trained the models using a training dataset for both experiments

separately. First, we tested the BASE_MODEL with the deep learning models and

evaluated its performance through the list of evaluation metrics. Next, we compared the

same process for the WITH_EMOTICON experiment and evaluated it against the

BASE_MODEL’s performance metrics to address the emoticons’ impact on the sentiment

classification. We then repeated the same process by adjusting the LSTM and CNN

models’ parameters and evaluating their performances. In addition, we measured the

training time for each of those models.

41

4 Results

The goal of this dissertation was to develop deep learning models for sentiment

analysis and to investigate whether inclusion of emoticons as features improves

classification accuracy. This chapter presents the results of the models, the validation of

the final model, and the comparison between the base model and with emoticon

experiments. The rest of this chapter is structured as follows: Section 4.1 explains the

various embedding vectors used inside the deep neural networks. Section 4.2 reviews the

linear model’s results for the emoticon and base model experiments. Section 4.3

summarizes the CNN model’s results for the emoticon and base model experiments.

Section 4.4 describes the LSTM model’s results for both experiments. Section 4.5 validates

all the model results using the validation metrics. Section 4.6 compares all the model results

for the BASE_MODEL and WITH_EMOTICON datasets. Section 4.7 selects the best

model for both datasets. Section 4.8 summarizes the model results.

4.1 Embedding vectors

The following five different embedding vectors have been used in all the CNN and

LSTM models.

4.1.1 Custom word2vec

In this model, we initially trained the word2vec embedding for both datasets. The

word2vec model was built using a genism python package word2vec function. We set the

following hyperparameters in the word2vec training function: a dimensionality size as 200,

the maximum distance between the current and predicted words as 8, ignoring all the words

with a minimum word frequency count as 10, the number of iterations for training as 32,

and the number of threads for training as 8. This model produced a vocabulary around the

42

size of 9,116 for both datasets. These word2vec models were used for creating the

embedding layers for deep neural network models.

4.1.2 Pre-trained word2vec – Google news

We downloaded the pre-trained word2vec embedding model using Google news from

https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-negative300.bin.gz for

building the embedding layers. It has 300 dimensions and a 3,000,000 vocabulary size of

embedding vectors.

4.1.3 Pre-trained word2vec – Twitter data

We also used another pre-trained word2vec embedding model using twitter data from

https://drive.google.com/uc?id=1lw5Hr6Xw0G0bMT1ZllrtMqEgCTrM7dzc&export=do

wnload for building the embedding layers. It has 400 dimensions and a 3,039,345

vocabulary size of embedding vectors.

4.1.4 Pre-trained GloVe

Next, we used Stanford’s GloVe pre-trained embedding model from

http://nlp.stanford.edu/data/Glove.twitter.27B.zip for building the embedding layers. This

model was built by the Stanford NLP lab using Twitter data and has 200 dimensions, as

well as a 1,193,514 vocabulary size of embedding vectors.

4.1.5 Pre-trained fastText

Subsequently, we leveraged Facebook’s fastText pre-trained embedding model from

https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip for creating

the embedding layers. This model was built by Facebook AI lab using a wiki and it has 300

dimensions as well as a 2,000,000 vocabulary size of embedding vectors.

4.2 Linear model results

We tokenized the BASE_MODEL and WITH_EMOTICON datasets using the BERT

43

tokenizer, which then produced around 118,370 tokens in each training dataset, and 13,153

tokens in each test dataset. The input text was padded with the maximum length of the

input text and varied in all the datasets. The BASE_MODEL experiment maximum length

of training and test datasets were 64 and 51 respectively, and the WITH_EMOTICON

experiment maximum length of training and test datasets were 65 and 49 respectively. We

then trained a few linear models, such as logististic regression, stochastic gradient descent

classifiers (SGD), ridge classifiers, and perceptron classifiers, using training datasets for

both experiments. The logistic regression model performed better than other linear models

for both training datasets. We measured the model’s accuracy, precision, recall, 𝐹"	score

and loss metrics for both of the experiments using validation datasets. We then measured

the test dataset prediction accuracy for both datasets. Accuracies for the base model and

the model with emoticons were 80.3% and 80.7% respectively. Table 9 and 10 describe

the logistic regression confusion matrix, precision, and recall for the test dataset. We

considered this our base model for evaluating the deep learning models.

Table 9. Logistic Regression - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6798 995 6812 981 7793
Negative 1602 3758 1555 3805 5360

 8400 4753 8367 4786

Table 10. Logistic Regression - precision, recall, F"	score, support, accuracy, macro
average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.81 0.87 0.84 7793 0.81 0.87 0.84 7793
negative 0.79 0.70 0.74 5360 0.80 0.71 0.75 5360

macro
average

0.80 0.79 0.79 13153 0.80 0.79 0.80 13153

weighted
average

0.80 0.80 0.80 13153 0.81 0.81

0.81

13153

44

4.3 CNN model results

A variety of simple and multichannel CNN models were tried for Sentiment

classification. The CNN models were trained and made predictions using four different

embedding vectors for the BASE_MODEL and WITH_EMOTICON datasets with the

hyperparameters mentioned in Table 5. We adjusted a few hyperparameters in the CNN

models based on the execution time and model performance of each dataset. The rest of

the sections will go through each of the model’s outputs.

4.3.1 CNN with custom word2vec

We tokenized both datasets using the Keras tokenizer, which then produced around

112,069 words in each dataset. The input text was padded with the maximum length of the

input text and varied in both datasets. The BASE_MODEL experiment maximum length

was 40 and the WITH_EMOTICON maximum length was 42. The rest of the CNN and

LSTM models used these steps initially before creating the embedding layer. Next, we

made an embedding layer using the custom word2vec vector. The simple CNN model was

fitted using both training datasets. We measured the model’s accuracy, precision, recall,

𝐹"	score and loss metrics for both of the experiments using validation datasets. Figure 15

and Figure 16 illustrate these metrics for this model. While fitting the models, if the

validation dataset accuracy did not improve, we stopped the iterations through early

stopping parameters we had devised. We then measured the test dataset prediction accuracy

for both datasets. Accuracies for the base model and the model with emoticons were

77.22% and 78.42% respectively. Table 9 and 10 describe the confusion matrix, precision,

and recall for the test dataset.

45

Figure 15. CNN with custom word2vec – accuracy

Figure 16. CNN with custom word2vec - precision, recall, F" score and loss

Table 11. CNN with custom word2vec - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6605 1188 6565 1228 7793
Negative 1808 3552 1610 3750 5360

 8413 4740 8175 4978

46

Table 12. CNN with custom word2vec - precision, recall, F"	score, support, accuracy,
macro average, and micro average

 Base With Emoticon
 precision recall 𝐹"	score support precision recall 𝐹"	score support
positive 0.79 0.85 0.82 7793 0.80 0.84 0.82 7793
negative 0.75 0.66 0.70 5360 0.75 0.70 0.73 5360

macro
average

0.77 0.76 0.76 13153 0.78 0.77 0.77 13153

weighted
average

0.77 0.77 0.77 13153 0.78 0.78

0.78

13153

4.3.2 CNN with pre-trained Google word2vec

In this model, we made an embedding layer using the pre-trained Google word2vec

vector for the CNN model. We fitted this model using both training datasets. We measured

the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the

experiments using validation datasets. Figure 17 and Figure 18 illustrate these metrics for

this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 76.21% and 77.56%

respectively. Table 13 and 14 describe the confusion matrix, precision, and recall for the

test dataset.

Figure 17. CNN with pre-trained Google word2vec - accuracy

47

Figure 18. CNN with pre-trained Google word2vec - precision, recall, F"	score and loss

Table 13. CNN with pre-trained Google word2vec - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6752 1041 6531 1262 7793
Negative 2088 3272 1689 3671 5360

 8840 4313 8220 4933

Table 14. CNN with pre-trained Google word2vec - precision, recall, F"	score, support,
accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.76 0.87 0.81 7793 0.79 0.84 0.82 7793
negative 0.76 0.61 0.68 5360 0.74 0.68 0.71 5360

macro
average

0.76 0.74 0.74 13153

0.77 0.76 0.76 13153

weighted
average

0.76 0.76 0.76 13153

0.77

0.78

0.77

13153

4.3.3 CNN with pre-trained Twitter word2vec

In this model, we made an embedding layer using the pre-trained twitter-based

word2vec vector for the CNN model. We fitted this model using both training datasets. We

48

evaluated the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the

experiments using validation datasets. Figure 19 and Figure 20 illustrate these metrics for

this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 77.23% and 79.67%

respectively. Table 15 and 16 describe the confusion matrix, precision, and recall for the

test dataset.

Figure 19. CNN with pre-trained twitter-based word2vec – accuracy

Figure 20. CNN with pre-trained twitter-based word2vec - precision, recall, F"	score and
loss

49

Table 15. CNN with pre-trained twitter-based word2vec - confusion matrix

Tr
ue

 la
be

l
 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6564 1229 6548 1245 7793
Negative 1766 3594 1429 3931 5360

 8330 4823 7977 5176

Table 16. CNN with pre-trained twitter-based word2vec - precision, recall, F"	score,
support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.79 0.84 0.81 7793 0.82 0.84 0.83 7793
negative 0.75 0.67 0.71 5360 0.76 0.73 0.75 5360

macro
average

0.77 0.76 0.76 13153

0.79 0.79 0.79 13153

weighted
average

0.77 0.77 0.77 13153

0.80

0.80

0.80

13153

4.3.4 CNN with pre-trained GloVe

In this model, we made an embedding layer using the pre-trained GloVe vector for the

CNN model. We fitted this model using both training datasets. We measured the model’s

accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments using

validation datasets. Figure 21 and Figure 22 illustrate these metrics for this model. We then

measured the test dataset prediction accuracy for both datasets. Accuracies for the base

model and the model with emoticons were 77.78% and 79.37% respectively. Table 17 and

18 describe the confusion matrix, precision, and recall for the test dataset.

Figure 21. CNN with pre-trained GloVe - accuracy

50

Figure 22. CNN with pre-trained GloVe - precision, recall, F"	score and loss

Table 17. CNN with pre-trained GloVe - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6465 1328 6636 1157 7793
Negative 1594 3766 1557 3803 5360

 8059 5094 8193 4960

Table 18. CNN with pre-trained GloVe - precision, recall, F"	score, support, accuracy,
macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.80 0.83 0.82 7793 0.81 0.85 0.83 7793
negative 0.74 0.70 0.72 5360 0.77 0.71 0.74 5360

macro
average

0.77 0.77 0.77 13153

0.79 0.78 0.78 13153

weighted
average

0.78 0.78 0.78 13153

0.79

0.79

0.79

13153

4.3.5 CNN with pre-trained fastText

In this model, we crafted an embedding layer using the pre-trained fastText vector for

the CNN model. We fitted this model using both training datasets. We measured the

51

model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments

using validation datasets that are shown in Figure 23 and Figure 24. We then measured the

test dataset prediction accuracy for both datasets. Accuracies for the base model and the

model with emoticons were 77.21% and 79.76% respectively. Table 19 and 20 describe

the confusion matrix, precision, and recall for the test dataset.

Figure 23. CNN with pre-trained fastText - accuracy

Figure 24. CNN with pre-trained fastText - precision, recall, F"	score and loss

52

Table 19. CNN with pre-trained fastText - confusion matrix

Tr
ue

 la
be

l
 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6536 1257 6407 1386 7793
Negative 1740 3620 1276 4084 5360

 8276 4877 7683 5470

Table 20. CNN with pre-trained fastText - precision, recall, F"	score, support, accuracy,
macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.79 0.84 0.81 7793 0.83 0.82 0.83 7793
negative 0.74 0.68 0.71 5360 0.75 0.76 0.75 5360

macro
average

0.77 0.76 0.76 13153

0.79 0.79 0.79 13153

weighted
average

0.77 0.77 0.77 13153

0.80 0.80 0.80 13153

4.3.6 Multichannel CNN with custom word2vec

In this model, we made an embedding layer using the custom word2vec vector for the

Multichannel CNN model. We fitted this model using both training datasets. We measured

the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the

experiments using validation datasets. Figure 25 and Figure 26 illustrate these metrics for

this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 78.93% and 79.38%

respectively. Table 21 and 22 describe the confusion matrix, precision, and recall for the

test dataset.

Figure 25. Multichannel CNN with custom word2vec - accuracy

53

Figure 26. Multichannel CNN with custom word2vec - precision, recall, F"	score and loss

Table 21. Multichannel CNN with custom word2vec - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6478 1315 6606 1187 7793
Negative 1456 3904 1525 3835 5360

 7934 5219 8131 5022

Table 22. Multichannel CNN with custom word2vec - precision, recall, F"	score, support,
accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.82 0.83 0.82 7793 0.81 0.85 0.83 7793
negative 0.75 0.73 0.74 5360 0.76 0.72 0.74 5360

macro
average

0.78 0.78 0.78 13153

0.79 0.78 0.78 13153

weighted
average

0.79 0.79 0.79 13153

0.79 0.79 0.79 13153

4.3.7 Multichannel CNN with pre-trained Google word2vec

In this model, we made an embedding layer using the pre-trained Google news

word2vec vector for the multichannel CNN models. We fitted this model using both

54

training datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score and loss

metrics for both of the experiments using validation datasets. Figure 27 and Figure 28

illustrate these metrics for this model. We then measured the test dataset prediction

accuracy for both datasets. Accuracies for the base model and the model with emoticons

were 77.15% and 77.38% respectively. Table 23 and 24 describe the confusion matrix,

precision, and recall for the test dataset.

Figure 27. Multichannel CNN with pre-trained Google news word2vec - accuracy

Figure 28. Multichannel CNN with pre-trained Google news word2vec - precision, recall,
𝐹"	score and loss

55

Table 23. Multichannel CNN with pre-trained Google news word2vec - confusion matrix

Tr
ue

 la
be

l
 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6652 1141 6678 1115 7793
Negative 1864 3496 1860 3500 5360

 8516 4637 8538 4615

Table 24. Multichannel CNN with pre-trained Google news word2vec - precision, recall,
𝐹"	score, support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.78 0.85 0.82 7793 0.78 0.86 0.82 7793
negative 0.75 0.65 0.70 5360 0.76 0.65 0.70 5360

macro
average

0.77 0.75 0.76 13153

0.77 0.75 0.76 13153

weighted
average

0.77 0.77 0.77 13153

0.77 0.77 0.77 13153

4.3.8 Multichannel CNN with pre-trained Twitter word2vec

In this model, we crafted an embedding layer using the pre-trained twitter-based

word2vec vector for the Multichannel CNN model. We fitted this model using both training

datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score and loss metrics

for both of the experiments using validation datasets. Figure 29 and Figure 30 illustrate

these metrics for this model. We then measured the test dataset prediction accuracy for

both datasets. Accuracies for the base model and the model with emoticons were 79.59%

and 80% respectively. Table 25 and 26 describe the confusion matrix, precision, and recall

for the test dataset.

Figure 29. Multichannel CNN with pre-trained Twitter data word2vec - accuracy

56

Figure 30. Multichannel CNN with pre-trained Twitter data word2vec - precision, recall,
F"	score and loss

Table 25. Multichannel CNN with pre-trained Twitter data word2vec - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6519 1274 6463 1330 7793
Negative 1411 3949 1300 4060 5360

 7930 5223 7763 5390

Table 26. Multichannel CNN with pre-trained Twitter data word2vec - precision, recall,
F"	score, support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.82 0.84 0.83 7793 0.83 0.83 0.83 7793
negative 0.76 0.74 0.75 5360 0.75 0.76 0.76 5360

macro
average

0.79 0.79 0.79 13153

0.79 0.79 0.79 13153

weighted
average

0.80 0.80 0.80 13153

0.80 0.80 0.80 13153

4.3.9 Multichannel CNN with pre-trained GloVe

In this model, we created an embedding layer using the pre-trained GloVe vector for

the Multichannel CNN model. We fitted this model using both training datasets. We

57

evaluated the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the

experiments using validation datasets. Figure 31 and Figure 32 illustrate these metrics for

this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 79.97% and 80.1%

respectively. Table 27 and 28 described the confusion matrix, precision, and recall for the

test dataset.

Figure 31. Multichannel CNN with pre-trained GloVe - accuracy

Figure 32. Multichannel CNN with pre-trained GloVe - precision, recall, F"	score and
loss

58

Table 27. Multichannel CNN with pre-trained GloVe - confusion matrix

Tr
ue

 la
be

l
 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6456 1337 6600 1193 7793
Negative 1298 4062 1424 3936 5360

 7754 5399 8024 5129

Table 28. Multichannel CNN with pre-trained GloVe - precision, recall, F"	score,
support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.83 0.83 0.83 7793 0.82 0.85 0.83 7793
negative 0.75 0.76 0.76 5360 0.77 0.73 0.75 5360

macro
average

0.79 0.79 0.79 13153

0.79 0.79 0.79 13153

weighted
average

0.80 0.80 0.80 13153

0.80 0.80 0.80 13153

4.3.10 Multichannel CNN with pre-trained fastText

In this model, we built an embedding layer using the pre-trained fastText for the

Multichannel CNN model. We fitted this model using both training datasets. We measured

the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the

experiments using validation datasets. Figure 33 and Figure 34 illustrate these metrics for

this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 80.15% and 80.57%

respectively. Table 29 and 30 describe the confusion matrix, precision, and recall for the

test dataset.

Figure 33. Multichannel CNN with pre-trained fastText - accuracy

59

Figure 34. Multichannel CNN with pre-trained fastText - precision, recall, F"	score and
loss

Table 29. Multichannel CNN with pre-trained fastText - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6618 1175 6441 1352 7793
Negative 1436 3924 1203 4157 5360

 8054 5099 7644 5509

Table 30. Multichannel CNN with pre-trained fastText - precision, recall, F"	score,
support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.82 0.85 0.84 7793 0.84 0.83 0.83 7793
negative 0.77 0.73 0.75 5360 0.75 0.78 0.76 5360

macro
average

0.80 0.79 0.79 13153

0.80 0.80 0.80 13153

weighted
average

0.80 0.80 0.80 13153

0.81 0.81 0.81 13153

While comparing all the CNN models’ performance metrics, the WITH_EMOTICON

dataset performed a bit better than the BASE_MODEL dataset. Also, we observed that

models with a fastText embedding vector predicted the results more correctly than the other

60

embedding vectors, and that the multichannel CNN model worked better for these datasets

than the sequential CNN model with all the embedding vectors factored in.

4.4 LSTM model results

We experimented with a few different types of Bidirectional LSTM (BiLSTM) as well

as a BiLSTM with an attention layer models for sentiment classification. Both of the

BiLSTM models were trained and made predictions using the four embedding vectors for

the BASE_MODEL and WITH_EMOTICON datasets with the hyperparameters

mentioned in Table 6. We tuned a few parameters based on the execution time and model

performance of each dataset. The sections that follow analyze the output of each model.

4.4.1 BiLSTM with custom word2vec

We tokenized both datasets using a Keras tokenizer that generated around 112,069

tokens of words in each dataset. The input text in the dataset was padded with its maximum

length of the text from the input data. Maximum length was different for both datasets, the

BASE_MODEL experiment maximum length was 40 and the WITH_EMOTICON

maximum length was 42. All the BiLSTM models initially used these steps before creating

the embedding layer. After that, we made an embedding layer using the custom word2vec

vector. The BiLSTM model was fitted using both training datasets. We measured the

model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments

using validation datasets. Figure 35 and Figure 36 illustrate these metrics for this model.

While fitting the models, if the validation dataset accuracy had not improved, we stopped

the iterations through early stopping parameters. We then measured the test dataset

prediction accuracy for both datasets. Accuracies for the base model and the model with

emoticons were 80.48% and 81.07% respectively. Table 29 and 30 describe the confusion

61

matrix, precision, and recall for the test dataset.

Figure 35. BiLSTM with custom word2vec - accuracy

Figure 36. BiLSTM with custom word2vec - precision, recall, F"	score and loss

Table 31. BiLSTM with custom word2vec - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6625 1168 6634 1159 7793
Negative 1400 3960 1331 4029 5360

 8025 5128 7965 5188

62

Table 32. BiLSTM with custom word2vec - precision, recall, F"	score, support, accuracy,
macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.83 0.85 0.84 7793 0.83 0.85 0.84 7793
negative 0.77 0.74 0.76 5360 0.78 0.75 0.76 5360

macro
average

0.80 0.79 0.80 13153

0.80 0.80 0.80 13153

weighted
average

0.80 0.80 0.80 13153

0.81 0.81 0.81 13153

4.4.2 BiLSTM with pre-trained Google word2vec

In this model, we created an embedding layer using the pre-trained Google word2vec

vector for the BiLSTM model. We fitted this model using both training datasets. We

measured the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the

experiments using validation datasets. Figure 37 and Figure 38 illustrate these metrics for

this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 80.83% and 81.03%

respectively. Table 33 and 34 describe the confusion matrix, precision, and recall for the

test dataset.

Figure 37. BiLSTM with pre-trained Google word2vec - accuracy

63

Figure 38. BiLSTM with pre-trained Google word2vec - precision, recall, F"	score and
loss

Table 33. BiLSTM with pre-trained Google word2vec - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6734 1059 6481 1312 7793
Negative 1459 3901 1183 4177 5360

 8193 4960 7664 5489

Table 34. BiLSTM with pre-trained Google word2vec - precision, recall, F"	score,
support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.82 0.86 0.84 7793 0.85 0.83 0.84 7793
negative 0.79 0.73 0.76 5360 0.76 0.78 0.77 5360

macro
average

0.80 0.80 0.80 13153

0.80 0.81 0.80 13153

weighted
average

0.81 0.81 0.81 13153

0.81 0.81 0.81 13153

4.4.3 BiLSTM with pre-trained Twitter word2vec

In this model, we made an embedding layer using the pre-trained twitter-based

word2vec vector for the BiLSTM model. We fitted this model using both training datasets.

64

We measured the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of

the experiments using validation datasets. Figure 39 and Figure 40 illustrate these metrics

for this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 82.26% and 82.75%

respectively. Table 35 and 36 describe the confusion matrix, precision, and recall for the

test dataset.

Figure 39. BiLSTM with pre-trained twitter data based word2vec - accuracy

Figure 40. BiLSTM with pre-trained twitter data based word2vec - precision, recall,
F"	score and loss

65

Table 35. BiLSTM with pre-trained twitter data based word2vec - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6639 1154 6571 1222 7793
Negative 1179 4181 1047 4313 5360

 7818 5335 7618 5535

Table 36. BiLSTM with pre-trained twitter data based word2vec - precision, recall,
F"	score, support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.85 0.85 0.85 7793 0.86 0.84 0.85 7793
negative 0.78 0.78 0.78 5360 0.78 0.80 0.79 5360

macro
average

0.82 0.82 0.82 13153

0.82 0.82 0.82 13153

weighted
average

0.82 0.82 0.82 13153

0.83 0.83 0.83 13153

4.4.4 BiLSTM with pre-trained GloVe

In this model, we made an embedding layer using the pre-trained GloVe vector for the

BiLSTM model. We fitted this model using both training datasets. We measured the

model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments

using validation datasets. Figure 41 and Figure 42 illustrate these metrics for this model.

We then measured the test dataset prediction accuracy for both datasets. Accuracies for the

base model and the model with emoticons were 81.91% and 82.7% respectively. Table 37

and 38 describe the confusion matrix, precision, and recall for the test dataset.

Figure 41. BiLSTM with pre-trained GloVe - accuracy

66

Figure 42. BiLSTM with pre-trained GloVe - precision, recall, 𝐹"	score and loss

Table 37. BiLSTM with pre-trained GloVe - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6565 1228 6642 1151 7793
Negative 1152 4208 1125 4235 5360

 7717 5436 7767 5386

Table 38. BiLSTM with pre-trained GloVe - precision, recall, 𝐹"	score, support, accuracy,
macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.85 0.84 0.85 7793 0.86 0.85 0.85 7793
negative 0.77 0.79 0.78 5360 0.79 0.79 0.79 5360

macro
average

0.81 0.81 0.81 13153

0.82 0.82 0.82 13153

weighted
average

0.82 0.82 0.82 13153

0.83 0.83 0.83 13153

4.4.5 BiLSTM with pre-trained fastText

In this model, we made an embedding layer using the pre-trained fastText vector for

the BiLSTM model. We fitted this model using both training datasets. We measured the

67

model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the experiments

using validation datasets. Figure 43 and Figure 44 illustrate these metrics for this model.

We then measured the test dataset prediction accuracy for both datasets. Accuracies for the

base model and the model with emoticons were 82.31% and 82.73% respectively. Table

39 and 40 describe the confusion matrix, precision, and recall for the test dataset.

Figure 43. BiLSTM with pre-trained fastText - accuracy

Figure 44. BiLSTM with pre-trained fastText - precision, recall, 𝐹"	score and loss

68

Table 39. BiLSTM with pre-trained fastText - confusion matrix

Tr
ue

 la
be

l
 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6861 932 6512 1281 7793
Negative 1395 3965 991 4369 5360

 8256 4897 7503 5650

Table 40. BiLSTM with pre-trained fastText - precision, recall, 𝐹"	score, support,
accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.83 0.88 0.86 7793 0.87 0.84 0.84 7793
negative 0.81 0.74 0.77 5360 0.77 0.82 0.79 5360

macro
average

0.82 0.81 0.81 13153

0.82 0.83 0.82 13153

weighted
average

0.82 0.82 0.82 13153

0.83 0.83 0.83 13153

4.4.6 BiLSTM with attention layer - custom word2vec

In this model, we created an embedding layer using the custom word2vec vector and

fitted the BiLSTM with an attention layer model using both training datasets. We evaluated

the model’s accuracy, precision, recall, 𝐹"	score and loss metrics for both of the

experiments using validation datasets. Figure 45 and Figure 46 illustrate these metrics for

this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 81.21% and 81.52%

respectively. Table 41 and 42 describe the confusion matrix, precision, and recall for the

test dataset.

Figure 45. BiLSTM with attention layer – custom word2vec accuracy

69

Figure 46. BiLSTM with attention layer – custom word2vec precision, recall, 𝐹"	score
and loss

Table 41. BiLSTM with attention layer – custom word2vec confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6638 1155 6712 1081 7793
Negative 1316 4044 1350 4010 5360

 7954 5199 8062 5091

Table 42. BiLSTM with attention layer – custom word2vec precision, recall, F"	score,
support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.83 0.85 0.84 7793 0.83 0.86 0.85 7793
negative 0.78 0.75 0.77 5360 0.79 0.75 0.77 5360

macro
average

0.80 0.80 0.80 13153

0.81 0.80 0.81 13153

weighted
average

0.81 0.81 0.81 13153

0.81 0.82 0.81 13153

4.4.7 BiLSTM with attention layer - pre-trained Google word2vec

In this model, we made an embedding layer using the pre-trained Google news

word2vec vector for the BiLSTM model with an attention layer. We fitted this model fitted

70

using both training datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score

and loss metrics for both of the experiments using validation datasets. Figure 47 and Figure

48 illustrate these metrics for this model. We then measured the test dataset prediction

accuracy for both datasets. Accuracies for the base model and the model with emoticons

were 81.65% and 82.67% respectively. Table 43 and 44 describe the confusion matrix,

precision, and recall for the test dataset.

Figure 47. BiLSTM attention with pre-trained Google news word2vec - accuracy

Figure 48. BiLSTM attention with pre-trained Google news word2vec - precision, recall,
𝐹"	score and loss

71

Table 43. BiLSTM attention with pre-trained Google news word2vec - confusion matrix

Tr
ue

 la
be

l
 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6515 1278 6629 1164 7793
Negative 1135 4225 1116 4244 5360

 7650 5503 7745 5408

Table 44. BiLSTM attention with pre-trained Google news word2vec - precision, recall,
F"	score, support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.85 0.84 0.84 7793 0.86 0.85 0.85 7793
negative 0.77 0.79 0.78 5360 0.78 0.79 0.79 5360

macro
average

0.81 0.81 0.81 13153

0.82 0.82 0.82 13153

weighted
average

0.82 0.82 0.82 13153

0.83 0.83 0.83 13153

4.4.8 BiLSTM with attention layer - pre-trained Twitter word2vec

In this model, we made an embedding layer using the pre-trained twitter-based

word2vec vector for the BiLSTM model with an attention layer. We fitted this model using

both training datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score and

loss metrics for both of the experiments using validation datasets. Figure 49 and Figure 50

illustrate these metrics for this model. We then measured the test dataset prediction

accuracy for both datasets. Accuracies for the base model and the model with emoticons

were 83.24% and 83.4% respectively. Table 45 and 46 describe the confusion matrix,

precision, and recall for the test dataset.

Figure 49. BiLSTM attention with pre-trained Twitter data word2vec - accuracy

72

Figure 50. Figure 51. BiLSTM attention with pre-trained Twitter data word2vec -
precision, recall, 𝐹"	score and loss

Table 45. BiLSTM attention with pre-trained Twitter data word2vec - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6631 1162 6714 1079 7793
Negative 1042 4318 1105 4255 5360

 7673 5480 7819 5334

Table 46. BiLSTM attention with pre-trained Twitter data word2vec - precision, recall,
𝐹"	score, support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.86 0.85 0.86 7793 0.86 0.86 0.86 7793
negative 0.79 0.81 0.80 5360 0.80 0.79 0.80 5360

macro
average

0.83 0.83 0.83 13153

0.83 0.83 0.83 13153

weighted
average

0.83 0.83 0.83 13153

0.83 0.83 0.83 13153

4.4.9 BiLSTM with attention layer - pre-trained GloVe

In this model, we made an embedding layer using the pre-trained GloVe vector and

fitted the BiLSTM with an attention layer model using both training datasets. We measured

73

the model’s accuracy, precision, recall, 𝐹1	score and loss metrics for both of the

experiments using validation datasets. Figure 51 and Figure 52 illustrate these metrics for

this model. We then measured the test dataset prediction accuracy for both datasets.

Accuracies for the base model and the model with emoticons were 82.29% and 83.38%

respectively. Table 47 and 48 describe the confusion matrix, precision, and recall for the

test dataset.

Figure 52. BiLSTM attention with pre-trained GloVe - accuracy

Figure 53. BiLSTM attention with pre-trained GloVe - precision, recall, 𝐹"	score and loss

74

Table 47. BiLSTM attention with pre-trained GloVe - confusion matrix

Tr
ue

 la
be

l
 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6612 1181 6631 1162 7793
Negative 1149 4211 1024 4336 5360

 7761 5392 7655 5498

Table 48. BiLSTM attention with pre-trained GloVe - precision, recall, 𝐹"	score, support,
accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.85 0.85 0.85 7793 0.87 0.85 0.86 7793
negative 0.78 0.79 0.78 5360 0.79 0.81 0.80 5360

macro
average

0.82 0.82 0.82 13153

0.83 0.83 0.83 13153

weighted
average

0.82 0.82 0.82 13153

0.83 0.83 0.83 13153

4.4.10 BiLSTM with attention layer with pre-trained fastText

In this model, we crafted an embedding layer using the pre-trained fastText vector

for the BiLSTM model with an attention layer. We fitted this model using both training

datasets. We measured the model’s accuracy, precision, recall, 𝐹1	score and loss metrics

for both of the experiments using validation datasets. Figure 53 and Figure 54 illustrate

these metrics for this model. We then measured the test dataset prediction accuracy for

both datasets. Accuracies for the base model and the model with emoticons were 83.02%

and 83.56% respectively. Table 49 and 50 describe the confusion matrix, precision, and

recall for the test dataset.

Figure 54. BiLSTM with attention pre-trained fastText - accuracy

75

Figure 55. BiLSTM with attention pre-trained fastText - precision, recall, 𝐹"	score and
loss

Table 49. BiLSTM with attention pre-trained fastText - confusion matrix

Tr
ue

 la
be

l

 Predicted label
 Base With Emoticon
N=13153 Positive Negative Positive Negative
Positive 6564 1229 6576 1217 7793
Negative 1004 4356 946 4414 5360

 7568 5585 7522 5631

Table 50. BiLSTM with attention pre-trained fastText - precision, recall, F"	score,
support, accuracy, macro average, and micro average

 Base With Emoticon
 precision recall 𝑭𝟏	score support precision recall 𝑭𝟏	score support
positive 0.87 0.84 0.85 7793 0.87 0.84 0.86 7793
negative 0.78 0.81 0.80 5360 0.78 0.82 0.80 5360

macro
average

0.82 0.83 0.83 13153

0.83 0.83 0.83 13153

weighted
average

0.83 0.83 0.83 13153

0.84 0.84 0.84 13153

While comparing all the BiLSTM models’ accuracy, precision, recall, and 𝐹1	score,

the WITH_EMOTICON dataset performed better than the BASE_MODEL dataset. All the

LSTM models performed better in the WITH_EMOTICON experiment for sentiment

classification than the other dataset. Also, we observed that the BiLSTM models performed

76

better than CNN models, as well as that the BiLSTM model with an attention layer worked

better for these datasets than the BiLSTM model with all the embedding vectors.

4.5 Model evaluation

All the CNN and BiLSTM models were trained using training datasets of the

BASE_MODEL and WITH_EMOTICON experiments with the hyperparameters

mentioned previously. While fitting each model, we validated the model’s performance

using a validation dataset with 40 epochs. To avoid overfitting, we added the early stopping

option in Keras, and this option stopped the training process based on the parameters. These

are the parameters we used in the early stopping callback methods: the ‘monitor’ parameter

which allowed us to specify the performance measurement to monitor and end training.

We used ‘loss’ on the validation dataset; the mode parameter in the early stopping process

was set as ‘auto,’ and that allowed us to minimize loss or maximize accuracy; we set a

‘patience’ parameter as 5, which delayed the trigger in terms of the number of epochs on

which we would like to see no improvement; the ‘min_delta’ parameter was set as ‘1e-4’

for minimum improvement in each epoch; the ‘restore_best_weights’ was set as ‘True’ to

retain the best weight for the models. This stopped the fitting earlier when there was an

overfitting issue. Also, we used a regularizer at 𝑙& regularization and added a dropout rate

for avoiding the overfitting issues.

We used the same approach to overcome overfitting issues across all the CNN and

LSTM models to get the best models. The trained model validated the number of epochs

for the test dataset and measured the model’s performance using model accuracy, precision,

recall, 𝐹1	score, and macro average metrics. Based on the performance validation and

twitter message length, we used the following hyperparameters for the CNN and

77

Multichannel CNN models shown in Table 51.

Table 51. CNN model recommended hyperparameters

Parameter name Value(s)
Maximum number of words 40,42
Size of the vocabulary 25,000
Output dimensionality 140-400
Size of the kernel 3, 5, and 6
Activation functions relu
Batch size 32
Pooling types 2, maximum
Number of epochs 20-50
Dropout rate probability 0.5
Optimizer adam
Loss function categorical_crossentropy
Filters 32
Filter Length 4
Number of nodes in Dense layer 32

Table 52 describes the BiLSTM models’ recommended hyperparameters for the

given datasets. We noted down the average execution time for these four different deep

neural network models. The average training time for the CNN or sequential CNN,

Multichannel CNN, BiLSTM, and BiLSTM with an attention layer models was 2-8

minutes, 2-10 minutes, 1.5 hours, and 2 hours respectively, on the Google colab pro with

GPU platform.

Table 52. BiLSTM models’ recommended hyperparameters

Parameter name Value(s)
Maximum number of words 40,42
Number of classes for output layer 2
Size of the vocabulary 25,000
Output dimensionality for LSTM 140-400
Activation functions relu
Batch size 64
Number of epochs 20-40
Dropout keep probability 0.5
Optimizer adam
Loss function categorical_crossentropy
Number of LSTM nodes 256
Number of Dense nodes 128

78

4.6 Model comparison

As we detailed in the previous section, all the models were compared with various

performance metrics, such as accuracy, precision, recall, 𝐹1	score, and etc. Table 51

describes the models’ performances using accuracy metrics utilizing a test dataset from the

BASE_MODEL and WITH_EMOTICON experiments. While comparing all the 20

models for both experiments, the BiLSTM with an attention layer and pre-trained fastText

embedding vector model achieved the highest classification accuracy for the given

datasets. The BASE_MODEL dataset produced around 83.02% accuracy and the

WITH_EMOTICON dataset returned 83.56% accuracy for the BiLSTM with an attention

layer and pre-trained fastText embedding vector model.

Table 53. Models with accuracy for BASE_MODEL and WITH_EMOTICON datasets

 Accuracy (in %) Differenc
e (in %)

Base
Model

With Emoticon

BiLSTM - attention + pre-trained fastText 83.02 83.56 0.65%
BiLSTM - attention + pre-trained GloVe 82.29 83.38 1.31%
BiLSTM - attention + pre-trained word2vec (Twitter data) 83.18 83.27 0.11%
BiLSTM - pre-trained word2vec (Twitter data) 82.26 82.75 0.59%
BiLSTM - pre-trained fastText 82.31 82.73 0.51%
BiLSTM - pre-trained GloVe 81.91 82.7 0.96%
BiLSTM - attention + pre-trained word2vec (Google news) 81.65 82.67 1.23%
BiLSTM - attention + custom word2vec 81.21 81.52 0.38%
BiLSTM - custom word2vec 80.48 81.07 0.73%
BiLSTM - pre-trained word2vec (Google news) 80.86 81.03 0.21%
MultiCNN - pre-trained fastText 80.15 80.57 0.52%
MultiCNN - pre-trained GloVe 79.97 80.1 0.16%
MultiCNN - pre-trained word2vec (Twitter data) 79.59 80 0.51%
CNN - pre-trained fastText 77.21 79.76 3.20%
CNN - pre-trained word2vec (Twitter data) 77.23 79.67 3.06%
MultiCNN - custom word2vec 78.93 79.38 0.57%
CNN - pre-trained GloVe 77.78 79.37 2.00%
CNN - custom word2vec 77.22 78.42 1.53%
CNN - pre-trained word2vec (Google news) 76.21 77.56 1.74%
MultiCNN - pre-trained word2vec (Google news) 77.15 77.38 0.30%

We noticed that all of the models’ performances were better for the

WITH_EMOTICON dataset than the BASE_MODEL dataset. While comparing the

79

models with other metrics, such as the confusion matrix, class level precision, recall, and

𝐹1	score, all the WITH_EMOTICON dataset trained model performances and accuracy

were better. The BiLSTM with an attention layer models were in the top 10 lists for the

given datasets. We also identified that the BiLSTM models performed significantly better

for this sentiment classification than the CNN and multichannel CNN models. The

word2vec (twitter), GloVe, and fastText pre-trained embedding vectors contributed better

results than the pre-trained word2vec (Google news).

4.7 Selected model

To get a better insight into the best quantification approaches, we considered the

confusion matrix, precision, recall, 𝐹1	score, support, accuracy, macro average, and micro

average performance metrics across all the models. The BiLSTM model with an attention

layer and pre-trained fastText embedding layer achieved the best results among the tested

models. This model accuracy metric is better than the baseline linear model accuracy

metrics for both datasets. The precision, recall, 𝐹1	score, and roc auc score for the

BASE_MODEL experiments were 0.83, 0.83, 0.83, and 0.9076 respectively. The

precision, recall, 𝐹1	score, and roc auc score for the WITH_EMOTICON experiments were

0.82, 0.82, 0.84, and 0.9035 respectively. Those results were better than all of the other

deep learning models for the current datasets.

In the selected model, the positive and negative classes’ 𝐹1	score was higher for this

model than the other models in this research. Hence, we recommend the BiLSTM attention

layer with pre-trained fastText embedding vector model as the best model for the

BASE_MODEL as well as WITH_EMOTICON datasets.

80

4.8 Summary

This chapter presented twenty sentiment classification models for the BASE_MODEL

and WITH_EMOTICON datasets. The first step was to train a model using the training

datasets, and the second step was to use the test datasets to determine the model’s

performance. We evaluated the models using several performance metrics, such as the

confusion matrix, accuracy, precision, recall, 𝐹1	score, and macro-average for these two

datasets separately. We identified that BiLSTM models performed better than CNN models

for this sentiment classification.

We also discovered that the dataset with emoticons resulted in a slightly better

performance than the dataset without emoticons. Primary results show that a BiLSTM

model with an attention layer and pre-trained fastText embedding vector has the potential

to classify sentiment classification with acceptably high accuracy. Therefore, we decided

on this BiLSTM model as the best model when classifying the sentiment labels as positive

and negative.

81

5 Conclusions, and Future work

The growth of social media has allowed customers to post their feedback on products

and services. Posted opinions contain vital information for businesses and governmental

organizations because they can steer marketing campaigns and help decision makers sense

the public’s wishes on events such as elections or product promotions. However, with the

massive volume of data and different types of signals coming from customers, including

things like slang and emoticons, extracting and classifying the sentiments of the comments

is too complex a task to be done manually. NLP applications and tools can help in this

regard, and many different approaches have been offered to address this problem. This

research considered posts written in English that contained emoticons.

For addressing this issue, we used Twitter data and considered emoticons in order to

determine the sentiment polarity within two classes: POSITIVE and NEGATIVE. We

experimented with the Twitter dataset using two experiments, building one with emoticons

as English language text, and another with the dataset’s emoticons replaced with

unknowns. These two datasets were trained and tested with a variety of CNN and LSTM

neural network models. Those models made use of five different embedding vectors such

as custom word2vec, pre-trained word2vec, GloVe, and fastText. Finally, we compared

the model performance using a few different performance metrics, such as the confusion

matrix, accuracy, precision, recall, 𝐹1	score, and macro-average for each model.

After reviewing the performance metrics for all the models, we concluded that the

BiLSTM model with the attention layer that used the pre-trained fastText embedding

vector produced better classification for these two datasets, with an accuracy above 83%.

We also found that emoticons add more value when determining sentiment classifications.

82

Since there are more users who are providing their comments and feedback using

emoticons, we should consider those signals when identifying a customer’s emotions.

There are specific areas that are of interest and relevance to further sentiment analysis,

such as additional signals with a similar impact to emoticons in the text. Our future work

includes the following:

a. Considering multi-language user feedback or comments on products or

services.

b. Converting all the other signals, such as images, audio, and video clips, in

addition to text for sentiment classifications.

c. Developing models that can detect sarcasm. Sarcasm is of special interest to us

because of its complex nature and because it is common on social media.

83

6 References

Baroni, M., Dinu, G., & Kruszewski, G. (2014). Don't count, predict! A systematic
comparison of context-counting vs. context-predicting semantic vectors.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers) (Vol.1, pp. 238-247).

Baziotis, C., Pelekis, N., & Doulkeridis, C. (2017, August). Datastories at semeval-2017

task 4: Deep lstm with attention for message-level and topic-based sentiment
analysis. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017) (pp. 747-754).

Cambria, E., Poria, S., Gelbukh, A., & Thelwall, M. (2017). Sentiment analysis is a big

suitcase. IEEE Intelligent Systems, 32(6), 74-80.

Chen, X., Qiu, X., Zhu, C., Liu, P., & Huang, X. (2015). Long short-term memory neural

networks for chinese word segmentation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing (pp. 1197-1206).

Cliche, M. (2017). Bb_twtr at semeval-2017 task 4: Twitter sentiment analysis with cnns

and lstms. arXiv preprint arXiv:1704.06125.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011).

Natural language processing (almost) from scratch. Journal of machine learning
research, 12(Aug), 2493-2537.

dos Santos, C., & Gatti, M. (2014). Deep convolutional neural networks for sentiment

analysis of short texts. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical Papers (pp. 69-78).

FastText. (n.d). Pretrained model. Retrieved from
 https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M.vec.zip

Giatsoglou, M., Vozalis, M. G., Diamantaras, K., Vakali, A., Sarigiannidis, G., &

Chatzisavvas, K. C. (2017). Sentiment analysis leveraging emotions and word
embeddings. Expert Systems with Applications, 69, 214-224.

GloVe. (n.d). Pretrained model. Retrieved from
 http://nlp.stanford.edu/data/GloVe.twitter.27B.zip

Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using distant

supervision. CS224N Project Report, Stanford, 1(12), 2009.

Hochreiter, Sepp and J¨urgen Schmidhuber. 1997. Long Short-Term Memory. Neural

Computation 9(8):1735–1780.

84

Hogenboom, A., Bal, D., Frasincar, F., Bal, M., de Jong, F., & Kaymak, U. (2013, March).

Exploiting emoticons in sentiment analysis. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing (pp. 703-710). ACM.

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A Convolutional Neural

Network for Modelling Sentences. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers) (Vol. 1,
pp. 655-665).

Karpathy, A., Johnson, J., and Fei-Fei, Li (2016). Visualizing and Understanding

Recurrent Networks. ICLR.

Keras. (n.d.a). Biredirection LSTM. Retrieved from
 https://keras.io/layers/wrappers/#bidirectional

Keras. (n.d.b). Convolutional. Retrieved from https://keras.io/layers/convolutional/

Keras. (n.d.c). Tokenizer. Retrieved from https://keras.io/preprocessing/text/

Keras. (n.d.d). Embedding layer. Retrieved from https://keras.io/layers/embeddings/

Keras. (n.d.e). Pooling layer. Retrieved from https://keras.io/layers/pooling/

Keras. (n.d.f). Dense layer. Retrieved from https://keras.io/layers/core/#dense

Keras. (n.d.g). Compile. Retrieved from https://keras.io/models/model/#compile

Keras. (n.d.h). Fit. Retrieved from https://keras.io/preprocessing/image/#fit

Keras. (n.d.i). LSTM. Retrieved from https://keras.io/layers/recurrent/#lstm

Keras. (n.d.j). LSTM Attention Layer. Retrieved from

https://gist.github.com/cbaziotis/7ef97ccf71cbc14366835198c09809d2

Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP) (pp. 1746-1751).

Kiritchenko, S., Zhu, X., & Mohammad, S. M. (2014). Sentiment analysis of short informal

texts. Journal of Artificial Intelligence Research, 50, 723-762.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781.

85

Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., & Stoyanov, V. (2016). SemEval-2016
task 4: Sentiment analysis in Twitter. Proceedings of SemEval, 1-18.

Poria, S., Cambria, E., Howard, N., Huang, G. B., & Hussain, A. (2016). Fusing audio,

visual and textual clues for sentiment analysis from multimodal content.
Neurocomputing, 174, 50-59.

Rosenthal, S., Farra, N., & Nakov, P. (2017). SemEval-2017 task 4: Sentiment analysis in

Twitter. In Proceedings of the 11th International Workshop on Semantic
Evaluation (SemEval-2017) (pp. 502-518).

Rosenthal, S., Nakov, P., Kiritchenko, S., Mohammad, S. M., Ritter, A., & Stoyanov, V.

(2015, June). Semeval-2015 task 10: Sentiment analysis in twitter. In Proceedings
of the 9th international workshop on semantic evaluation (SemEval 2015) (pp. 451-
463).

Sentiment140. (2009). For Academics. Retrieved from http://help.sentiment140.com/for-

students

Wang, H., & Castanon, J. A. (2015). Sentiment expression via emoticons on social
 media. arXiv preprint arXiv:1511.02556.

Wang, Y., Huang, M., & Zhao, L. (2016, November). Attention-based LSTM for aspect-

level sentiment classification. In Proceedings of the 2016 conference on empirical
methods in natural language processing (pp. 606-615).

Wehrmann, J., Becker, W., Cagnini, H. E., & Barros, R. C. (2017, May). A character-based

convolutional neural network for language-agnostic Twitter sentiment analysis.
In Neural Networks (IJCNN), 2017 International Joint Conference on (pp. 2384-
2391). IEEE.

Wikipedia. (n.d). List of emoticons. Retrieved from

https://en.wikipedia.org/wiki/List_of_emoticons

Word2vec. (n.d). Pretrained model. Retrieved from

https://s3.amazonaws.com/dl4j-distribution/GoogleNews-vectors-
negative300.bin.gz

Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., & Hovy, E. (2016, June). Hierarchical

attention networks for document classification. In Proceedings of the 2016
conference of the North American chapter of the association for computational
linguistics: human language technologies (pp. 1480-1489).

Zhang, Y., & Wallace, B. (2017). A sensitivity analysis of (and practitioners' guide to)

convolutional neural networks for sentence classification. IJCNLP.

	Deep Neural Networks for Sentiment Analysis in Tweets with Emoticons
	Share Feedback About This Item
	NSUWorks Citation

	Microsoft Word - ArasuNarayan Dissertation Report.docx

