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ABSTRACT 
Protein aggregation is a hallmark of a wide range of human disorders, including Alzheimer’s 

disease and type II diabetes, and are often associated with imbalances in the cellular protein 

homeostasis. Molecular chaperones play an important role in modulating proteostasis and 

thereby counteract toxic consequences of misfolded or aggregated proteins. In this thesis, we 

investigated the molecular chaperone functions of several isolated BRICHOS domains 

against amyloid fibril formation and non-fibrillar protein aggregation. We propose that the 

ability of the BRICHOS domain to chaperone substrates with structurally distinct aggregation 

pathways is encoded in its ability to form different assembly states. 

BRICHOS domains are found in about ten distantly related protein families. It was proposed 

that they have an intramolecular chaperone-like function, preventing misfolding of a b-sheet 

prone region within their respective precursor proteins. Surprisingly, the activity of the Bri2 

BRICHOS and proSP-C BRICHOS domain can extend to other aggregation-prone peptides 

and proteins. However, the molecular mechanisms of this diverse substrate spectrum 

remained unclear. Here we show that the Bri2 BRICHOS domain forms polydisperse 

assembly states ranging from monomers, that efficiently reduce amyloid-associated 

neurotoxicity in hippocampal mouse brain slices, to large oligomers that exclusively exhibit 

activities against non-fibrillar protein aggregation (paper I). Based on these findings, we 

designed a stable Bri2 BRICHOS monomer mutant that specifically blocks the formation of 

toxic species during amyloid fibril formation and partly disassembles wild-type Bri2 

BRICHOS oligomers into monomers (paper II). Furthermore, we show that the conversion 

from Bri2 BRICHOS monomers towards large oligomers and hence the generation of 

activities against non-fibrillar protein aggregation is triggered by reducing conditions and is 

mediated through distinct thiol reactivities (paper III). The ability to adopt polydisperse 

assembly states together with activities against fibrillar and non-fibrillar protein aggregation 

are not only limited to Bri2 BRICHOS but similarly apply to Bri3 BRICHOS (paper IV). In 

contrast to Bri2 BRICHOS and Bri3 BRICHOS, proSP-C BRICHOS exists mostly as trimers 

in solution but a mutation at the homologous position in Bri2 BRICHOS (as shown in paper 

II) similarly resulted in a stable proSP-C BRICHOS monomer variant. This monomer mutant 

enabled us to investigate in detail the binding spectrum of the proSP-C BRICHOS domain 

towards different aggregates during amyloid fibril formation (paper V). 

This thesis gives new insights into the structure and function relationship of the molecular 

chaperone domain BRICHOS.  



LIST OF SCIENTIFIC PAPERS 
 

This doctoral thesis is based on the following original papers, referred to in the text by 

Roman numerals. 

I. Bri2 BRICHOS client specificity and chaperone activity are governed by 
assembly state. 
Chen G., Abelein A., Nilsson H. E., Leppert A., Andrade-Talavera Y., 
Tambaro S., Hemmingsson L., Roshan F., Landreh M., Biverstål H., Koeck 
P. J. B., Presto J., Hebert H., Fisahn A. and Johansson J. 
Nature Communications. (2017); 8(1):2081. 
 

II. Augmentation of Bri2 molecular chaperone activity against amyloid-β 
reduces neurotoxicity in mouse hippocampus in vitro. 
Chen G., Andrade-Talavera Y., Tambaro S., Leppert A., Nilsson H. E., 
Zhong X., Landreh M., Nilsson P., Hebert H., Biverstål H., Fisahn A., 
Abelein A. and Johansson J. 
Communications Biology. (2020); 3(1):32. 
 

III. Extracellular small heat shock protein like chaperone function generated 
under reducing conditions. 
Leppert A., Chen G., Lianoudaki D., Zhong X., Landreh M. and Johansson J. 
Manuscript 
 

IV. Recombinant Bri3 BRICHOS domain is a molecular chaperone with 
effect against amyloid formation and non-fibrillar protein aggregation. 
Poska H., Leppert A., Tigro H., Zhong X., Kaldmäe M., Nilsson H. E., 
Hebert H., Chen G. and Johansson J. 
Scientific Reports. (2020); 10(1):9817. 
 

V. An ATP-independent anti-amyloid molecular chaperone domain binds to 
small secondary nucleation competent Aβ aggregates. 
Leppert A., Tiiman A., Kronqvist N., Landreh M., Abelein A., Vukojević V. 
and Johansson J. 
Manuscript 

  



 

 

OTHER PAPERS NOT INCLUDED IN THE THESIS 
 

Recombinant BRICHOS chaperone domains delivered to mouse brain 
parenchyma by focused ultrasound and microbubbles are internalized by 
hippocampal and cortical neurons. 
Galan-Acosta L., Sierra C., Leppert A., Pouliopoulos A. N., Kwon N., Noel 
R. L., Tambaro S., Presto J., Nilsson P., Konofagou E. E., Johansson J. 
Molecular and Cellular Neuroscience. (2020); 105:103498 
 

High intracellular stability of the spidroin N-terminal domain in spite of 
abundant amyloidogenic segments revealed by in-cell 
hydrogen/deuterium exchange mass spectrometry. 
Kaldmäe M., Leppert A., Chen G., Sarr M., Sahin C., Nordling K., 
Kronqvist N., Gonzalvo-Ulla M., Fritz N., Abelein A., Laín S., Biverstål H., 
Jörnvall H., Lane D. P., Rising A., Johansson J. and Landreh M. 
The FEBS Journal. (2019); DOI: 10.1111/febs.15169. 
 

BRICHOS: a chaperone with different activities depending on 
quaternary structure and cellular location? 
Leppert A., Chen G. and Johansson J. 
Amyloid. (2019); 26(sup1):152-153. 
 

Blood-brain and blood-cerebrospinal fluid passage of BRICHOS 
domains from two molecular chaperones in mice. 
Tambaro S., Galan-Acosta L., Leppert A., Chen G., Biverstål H., Presto J., 
Nilsson P. and Johansson J. 
Journal of Biological Chemistry. (2019); 294(8):2606-2615. 
 

BRICHOS - an anti-amyloid chaperone: evaluation of blood-brain 
barrier permeability of Bri2 BRICHOS. 
Tambaro S., Galan-Acosta L., Leppert A., Presto J. and Johansson J. 
Amyloid. (2017); 24(sup1):7-8. 
 

Dissociation of a BRICHOS trimer into monomers leads to increased 
inhibitory effect on Aβ42 fibril formation. 
Biverstål H., Dolfe L., Hermansson E., Leppert A., Reifenrath M., Winblad 
B., Presto J. and Johansson J. 
Biochimica et Biophysica Acta. (2015); 1854(8):835-843. 

 



CONTENTS 
1 Introduction .................................................................................................................... 1 

1.1 Protein basics ....................................................................................................... 1 

1.1.1 Protein structure ....................................................................................... 1 

1.1.2 Protein folding ......................................................................................... 3 

1.1.3 Protein aggregation .................................................................................. 5 

1.1.4 Amyloid ................................................................................................... 7 

1.1.5 Amyloid formation .................................................................................. 7 

1.2 Protein aggregation disorders .............................................................................. 9 

1.2.1 Amyloid-associated disorders ............................................................... 10 

1.2.2 Non-amyloid-associated disorders ........................................................ 12 

1.3 Protein homeostasis ........................................................................................... 13 

1.3.1 Protein quality control ........................................................................... 13 

1.3.2 Molecular chaperones ............................................................................ 14 

1.3.3 ATP-independent molecular chaperones .............................................. 15 

1.4 The BRICHOS proteins ..................................................................................... 17 

1.4.1 Prosurfactant protein-C (proSP-C) ........................................................ 18 

1.4.2 Integral membrane protein 2B (ITM2B) - Bri2 .................................... 19 

1.4.3 Other BRICHOS proteins ...................................................................... 20 

1.5 The BRICHOS domain ...................................................................................... 22 

1.5.1 Structure ................................................................................................. 22 

1.5.2 Function ................................................................................................. 23 

2 Aims of the thesis ........................................................................................................ 25 

3 Methodology ................................................................................................................ 27 

3.1 Characterisation of proteins ............................................................................... 27 

3.1.1 Circular dichroism spectroscopy ........................................................... 27 

3.1.2 Mass spectrometry ................................................................................. 27 

3.2 Evaluation of protein-protein interactions ......................................................... 29 

3.2.1 Fluorescence basics ............................................................................... 29 

3.2.2 Kinetics of amyloid fibril formation ...................................................... 30 

3.2.3 Fluorescence correlation spectroscopy .................................................. 33 

4 Results and discussion ................................................................................................. 37 

4.1 Assembly-function relationship of BRICHOS domain proteins ...................... 37 

4.1.1 Quaternary structures ............................................................................. 37 

4.1.2 Effects on protein aggregation and associated toxicity ......................... 38 



 

 

4.1.3 Bri2 BRICHOS assembly mechanism .................................................. 41 

4.2 Modulation of the proSP-C BRICHOS and Bri2 BRICHOS assembly 

state and anti-amyloid activity ........................................................................... 44 

4.3 ProSP-C BRICHOS as a tool to study amyloid formation ................................ 45 

5 Conclusions and future perspectives ........................................................................... 49 

6 Acknowledgments ........................................................................................................ 51 

7 References .................................................................................................................... 55 

 

  



LIST OF ABBREVIATIONS 

AD Alzheimer’s disease 

ALS Amyotrophic lateral sclerosis 

Asp Aspartic acid 

Ab Amyloid-b 

AbPP Amyloid-b precursor protein 

bis-ANS 4,4′-bis-1-anilinonaphthalene-8-sulfonate 

CD Circular dichroism 

CS Citrate synthase 

Cys Cysteine 

FBD Familial British dementia 

FCCS Fluorescence cross-correlation spectroscopy 

FCS Fluorescence correlation spectroscopy 

FDD Familial Danish dementia 

HMW High molecular weight 

ILD Interstitial lung disease 

MS Mass spectrometry 

PN Proteostasis network 

PQCS Protein quality control system 

SOD1 Superoxide dismutase-1 

SPR Surface plasmon resonance 

ThT Thioflavin T 

Trx Thioredoxin 



 

 1 

1 INTRODUCTION 

1.1 PROTEIN BASICS 
Proteins are essential for the smallest self-sustaining unit of life: the cell. They maintain its 

metabolism and structure, and mediate communication in large cellular networks in 

extremely dynamic and challenging milieus. To undertake these diverse roles proteins adopt a 

wide variety of three-dimensional architectures where some structures are more rigid, others 

possess a certain degree of structural flexibility and some are even unstructured.  

Essentially, proteins are linear polymers made up of one type of building blocks – the amino 

acids. In theory, the 20 common amino acids can be randomly assembled in an indefinite 

number of combinations and lengths. Indeed, small peptides that consist of only 3 amino 

acids to large multidomain proteins with about 27,000 amino acids are found in eukaryotes. 

How many proteins are actually expressed is still under investigation but there are estimations 

that about 20,000 proteins comprise the human proteome (1). Nevertheless, this number is 

likely to increase drastically considering variants of the same protein due to alternative 

splicing, single amino acid polymorphisms, and posttranslational modifications. One feature 

that all proteins have in common is that they adopt three-dimensional structures that are 

designed to optimally perform their function. 

1.1.1 Protein structure 
A hierarchy of structural levels describes the conformation of a protein. The first level of 

protein organization is the primary structure which is defined by the order of amino acids that 

are covalently linked via peptide bonds into a linear chain. From the genetic code 20 amino 

acids are transcribed and translated, and they all (except proline) have the same backbone 

structure, consisting of an amino group, an a-carbon and a carboxylic acid group. However, 

their side chains, located at the a-carbon atom differ and determine the chemical properties of 

each amino acid. The chemical character of the side chains allows to cluster amino acids 

according to their properties, for example amphipathic, hydrophobic, hydrophilic, charged, 

non-charged or aromatic. These various chemical identities have a great impact on how 

amino acid residues are participating in interactions with each other or water molecules and 

consequently on protein structure, stability and function. Peptide bonds are formed by the 

amino and carboxyl group of two neighboring amino acids. This bond has partial double-

bond character where the three non-hydrogen atoms are co-planar, limiting free rotation of 

the peptide bond (Figure 1). In contrast, the N-Ca and Ca-C bonds are single bonds that can 
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rotate freely unless they are sterically hindered, for example by their side chains. This makes 

proteins quite special polymers since rigid and flexible bonds alternate, limiting the number 

of possible conformations.  

 

Figure 1: Chemical structure of a dipeptide with the co-planar peptide bond highlighted in grey. The 
side chains located at the a-carbon atom of the connected amino acids are highlighted with R1 and R2. 

Proteins are more than single amino acid residues lined up like pearls on a string but folded 

three-dimensional entities. The next level of organization is the secondary structure of a 

protein and describes the local conformation of the polypeptide backbone. It is conceivable 

that a polymer would exist as random coil but in fact, there are different types of secondary 

structure elements that are formed by a polypeptide chain: helices, b-sheets, turns, and loops. 

In general, secondary structure elements are stabilized by regular backbone hydrogen bonds 

between amino acid residues that are in close proximity. The most common secondary 

structure element is the a-helix whose shape could be imagined by a winded telephone cord. 

It is stabilized by hydrogen bonds between the carbonyl oxygen atom of one residue and the 

amide nitrogen of another residue that is located four residues ahead. The side chains of each 

amino acid residue project outward from the helix. Contrary to the a-helix, the b-sheet is 

made of strands that are laterally aligned in a slightly bended plane and held together by 

hydrogen bonds of the polypeptide backbone. The strands in a b-sheet run parallel or 

antiparallel but mixed b-sheets with both variants are also found, e.g. in the core region of the 

BRICHOS domain. The strands in the b-sheet can be located in different parts of the 

polypeptide chain and thereby allow the formation of complex and compact structures.  

Even though the secondary structure refers only to the conformation of the peptide backbone, 

the amino acid side chains at the a-carbon atom influence the structure. For example, long 

polar residues (arginine, lysine, glutamine, glutamic acid) are more frequently found in a-

helices most likely because their side chains can project outward from the helix. On the other 



 

 3 

hand, aromatic (tryptophan, tyrosine, phenylalanine) and side chains branched on the b-

carbon (valine, isoleucine, threonine) predominate in strands possibly because in a b-sheet 

every other side chain is pointing in a different direction, allowing the accommodation of 

bulky side chains or side chains branched close to the polypeptide backbone (2). However, 

the likelihood of an amino acid occurring in a secondary structure element is also dependent 

on the local and global environment, neighboring residues, and the final fold of a protein. 

Most proteins fold into compact structures that are approximately spherical and therefore 

referred to as globular. The tertiary structure specifies the final orientation of all unstructured 

and secondary structure elements of a single polypeptide chain. Nevertheless, long 

polypeptide chains consist often of two or more domains, that are functional folded subunits 

with characteristics of individual globular proteins. Furthermore, proteins can assemble into 

large multimeric complexes made of the same molecule (homomer) or of different molecules 

(heteromer). This is referred to as the quaternary structure of a protein. The latter two levels 

of protein organization are strongly influenced by the properties of the amino acid side chains 

since they contribute to the stability of the fold by electrostatic and hydrophobic interactions, 

disulfide bridges, Van der Waals contacts and hydrogen bonds (3). In globular proteins, 

hydrophobic side chains tend to be hidden in the core of a protein or in protein-protein 

interfaces, while hydrophilic residues locate on the surface. Defining these four levels of 

protein structure is important to enable a closer look at the processes of how proteins find 

their correct fold or aggregate under non-favorable conditions. 

1.1.2 Protein folding 
In the cellular machinery proteins undergo a constant turnover and most of them have half-

lifes between a few minutes to several hours (4). In order to keep pace with the biochemical 

reactions in the cell, proteins must adopt their functional three-dimensional structure in a 

reasonable amount of time. It is astonishing that in silico and in vitro experiments have 

shown that some proteins can fold in the low µs range – at their respective theoretical speed 

limit (5).  

Historically, two main observations paved the way for the field of protein folding. Firstly, 

Anfinsen and co-workers showed that denatured ribonuclease spontaneously refolds in 

solution (6) and concluded that all information needed for the native state of a protein is 

encoded on the primary structure (7). Secondly, Levinthal postulated in 1968 that there is a 

kinetic paradox regarding the folding speed of proteins. He noted that there is a discrepancy 

in the folding time of a protein in nature and how long it would theoretically take a denatured 
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polypeptide chain to refold, if the folding fully depends on a trial and error search of the 

correct conformation (8). As an example, one could imagine a 100 residues protein, where 

each amino acid residue of the peptide backbone has one rotational degree of freedom with 

two possible configurations. This would result in 2100 possible conformations and if one 

assumes a conversion time for each configuration of 1 ps, the time needed to test all 

combinations to find the correct fold would be far longer than the age of the earth. This 

illustrates that protein folding cannot work at random and lead to the hypothesis that there are 

intrinsic properties, that are encoded in the primary structure that guides the polypeptide 

chain into the correct native conformation (6).  

Over the years many theories have emerged to explain the kinetic dilemma of protein folding. 

One was the framework model, in which secondary structures emerge first in the denatured 

polypeptide chain, followed by the organization of the pre-formed structures to the native 

state (9). Another model was the hydrophobic collapse model, where the denatured 

polypeptide chain collapses, hydrophobic residues are buried in the core and the final fold 

develops in a restrained volume, thereby limiting the conformational possibilities (10). Even 

though both models could be experimentally supported under specific conditions they were 

both lacking explanations for the kinetics and thermodynamics of protein folding. Therefore, 

a new mechanism was proposed that unites features of both previously mentioned models. In 

the nucleation-collapse model long range hydrophobic interactions stabilize a folding 

intermediate with weak secondary structures until the native state is formed (11). Over the 

years, this view on protein folding was further extended and fine-tuned leading to a funnel-

shaped energy landscape of protein folding, illustrated in Figure 2 (12). In theory, many 

unfolded high energy polypeptide conformations exist that adopt incrementally lower-energy 

and partially folded intermediates, called molten globule states (13). These meta-stable folds 

allow exploring of conformations towards the global Gibbs free energy minimum (native 

state) more rapidly. In this model the unfolded polypeptide chain can take different routes 

towards the native state and other thermodynamically stable folds may exist. Fast folding 

proteins may have only a few poorly stable molten globule states and the native state is a 

deep energy minimum, allowing fast transitions (14). However, complex proteins might have 

many intermediates that need to overcome energy barriers on their folding pathway as well as 

convert from several near-native conformations to the correct fold. Therefore, the funnel-

shaped energy landscape is often illustrated with valleys (local minima) and hills on the way 

to the native protein conformation (12, 15). It is also important to mention that the energy 

landscape looks different for each protein and is highly dependent on the protein environment 
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and protein-protein interactions. Even though there have been a lot of improvements in the 

field of protein folding over the years, there are still major difficulties to overcome in order to 

be able to predict the correct three-dimensional structure of a protein in silico (16).  

 

Figure 2: Illustration of the funnel-shaped free energy landscape of protein folding and misfolding, as 
well as non-fibrillar and fibrillar aggregation. Reproduced from Hartl et al. 2011 (17). 

1.1.3 Protein aggregation 
Protein aggregation is a double-edged sword. On the one hand, protein aggregation is 

extremely important, for example the main cytoskeletal globular protein actin polymerizes to 

form filaments, which supply mechanical support to the cell (18). On the other hand, several 

detrimental human diseases like Alzheimer’s disease (AD) or cataract are characterized by 

protein aggregates of the amyloid-b peptide or crystallin, respectively (19, 20). Non-native 

protein aggregation involves the formation of large protein assemblies that can be defined in 

two general categories: amorphous or amyloid. Amorphous aggregation can be understood as 

the unordered aggregation of proteins in an insoluble structure formed by random 
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intermolecular contacts. In contrast, amyloid fibrils are highly structured self-assemblies with 

an ordered cross-b structure (21). 

In the literature, protein misfolding and protein aggregation are quite often used 

interchangeably, but it is important to note that they can be mutually dependent but not 

necessarily need to be. This becomes clear looking at the origin of large fibrillar aggregates 

that are formed by the amyloid-b peptide (Ab), found in amyloid plaques in the brains of AD 

patients. In this case, the aggregate formation is not initiated by a protein that is intrinsically 

misfolded but instead by processing of the amyloid-b precursor protein (AbPP). The 

precursor protein is folded and inserted into the cell membrane, but aberrant cleavage leads to 

the production and accumulation of highly aggregation-prone and toxic species. 

Consequently, AD can be considered as a protein aggregation disorder rather than a protein 

misfolding disease (22, 23). In contrast, some mutations in superoxide dismutase-1 (SOD1) 

that are found in familial forms of amyotrophic lateral sclerosis (ALS) destabilize the native 

protein conformation, thereby increasing non-native self-interactions that lead to the 

accumulation of insoluble aggregates. In this case, protein misfolding leads to protein 

aggregation and therefore these SOD1 mutations related to ALS can be considered as protein 

misfolding diseases (22, 24). 

In general, non-native protein conformations have in common that they follow an alternative 

folding pathway in the energy landscape and if they are not guided back on track, e.g. by 

molecular chaperones, they can assemble and get trapped in low energy minima as aggregates 

(Figure 2) (25). Especially, folding intermediates or misfolded proteins are likely to expose 

large hydrophobic patches in a protein-specific unfavorable local environment. Salt or pH 

conditions, elevated temperatures, redox stress, or mutations can play important roles leading 

to unwanted protein-protein interactions and aggregation (24, 26-28). 

Until now it is still difficult to measure and interpret aggregation kinetics of different proteins 

since a deep knowledge of their initial structures, specific transient key intermediates and 

end-products are necessary (29, 30). The interpretation of folding and misfolding pathways is 

even more difficult because their respective transient intermediates can be easily mistaken for 

one another (31). However, in recent years there have been great advances to measure and 

characterize the structures and aggregation kinetics of especially amyloid fibril forming 

peptides and proteins (32-35). 
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1.1.4 Amyloid 
Historically, amyloid was discovered as pathological deposits in human diseases, but it is 

now known that there are also physiological relevant, so called ´functional amyloids´, found 

from bacteria to eukaryotes (36, 37). It has been suggested that almost any protein or 

polypeptide can aggregate and form amyloid fibrils in solution if incubated under the right 

conditions (38). Surprisingly, there are only 37 peptides or proteins known to form extra- or 

intracellular amyloid deposits in human pathologies, raising the questions which intrinsic 

properties of the polypeptide chain, cellular conditions and mechanisms prevent non-native 

fibrillar aggregation and toxicity, considering the large size of the human proteome (39, 40). 

One part of the answer to this is that cells have evolved a large integrated network of 

molecular chaperones that help to prevent unwanted protein aggregation through different 

mechanisms. 

From a molecular point of view amyloid fibrils are protein homopolymers that form highly 

ordered double-layered β-sheet structures following the fibril axis, and the β-strands run 

perpendicularly to the fibril axis (33). As a side note, these features separate amyloid fibrils 

structurally from for example actin filaments that have mixed secondary structural elements. 

Amyloid fibrils are characterized by a high affinity for the dye Congo red, resulting in green, 

yellow or orange birefringence under polarized light, and have distinctive X-ray diffraction 

patterns (41). The typical amyloid fibrils are unbranched, composed of 2 or more 

protofilaments, have a diameter of about 70-200 Å and can be several µm long (42, 43). This 

conformation is highly stable as it most likely resides in an even lower Gibbs free energy 

minimum compared to the native fold (Figure 2) (44). An overview of the current picture of 

the free energy landscape of protein folding including amorphous aggregates, amyloid fiber 

pre-states (oligomers and protofibrils) as well as amyloid fibers are represented in Figure 2. 

Even though amyloid is known since more than a hundred years it is still a “hot” topic in 

basic research as there is a lot more to learn about the highly dynamic heterogeneous and 

polymorphic aggregation mechanism, associated toxicity and effects of aggregation 

modulators. 

1.1.5 Amyloid formation 
One of the most studied amyloid fibril forming peptides is the AD-related Aβ peptide (34, 

45). Proteolytic processing of AβPP generates Aβ peptides of different lengths, of which the 

42-residue variant Aβ42 is the most aggregation-prone and toxic (46). Aβ42 is very “sticky” 

and has a high tendency to self-associate, ending in the formation of large fibril agglomerates, 

as seen in senile plaques (47). Even though many proteins and peptides are shown to form 
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amyloid fibrils in solution, most of them require harsh denaturing conditions, as for example 

high temperature or a strong acidic environment, under which it is difficult to determine 

interactions with other proteins (48). It turned out that the Aβ42 peptide is an excellent model 

substrate to study amyloid self-assembly mechanism, since Aβ42 fully fibrillates under 

physiological conditions, in the low micromolar range and on a short time scale (47). This 

allows to investigate the effects of for example molecular modulators on Aβ42 fibril formation 

and dissect their mechanism of action. 

Amyloid fibril formation in general displays sigmoidal growth kinetics, characteristic of a 

nucleation-dependent polymerization process (Figure 3) (49). The sigmoidal shaped profile 

can be divided into three phases: a lag phase, a growth phase and a plateau phase. During the 

lag phase, no fibril formation is detectable but unstructured monomers start to interact with 

each other and form various sized small metastable assemblies (oligomers), a process referred 

to as primary nucleation. After reaching a critical oligomer concentration, protofibrils and 

highly structured β-sheet rich fibrils form. The fibrils can be elongated at the ends and serve 

also as a reaction surface for the formation of new oligomers in an exponentially accelerated 

manner, called secondary nucleation. When all monomers are converted into fibrils, the 

growth ends and the plateau phase is reached (50). This is a very simplistic description of the 

dynamic heterogeneous self-assembly mechanism and it is important to note that primary 

nucleation, secondary nucleation, elongation and also fragmentation of fibrils occur during all 

phases. However, the reaction rates vary together with the concentrations of certain species 

during the time course of the experiment. The reaction rates and their contributions to the 

overall aggregation mechanism is highly dependent on the substrate and the experimental 

conditions. For example, the introduction of shear forces by agitation will increase 

fragmentation of fibrils, which will increase the number of accessible fibril ends and 

consequently affect the elongation rate constants. In recent years, reproducible measurements 

of amyloid fibril formation made it possible to develop mathematical models to describe the 

macroscopic aggregation profiles by microscopic rate constants and eventually describe the 

self-aggregation mechanism under numerous conditions and in presence of molecular 

modulators (32, 47, 51-56). Some insights into the kinetic analysis are given in chapter 

(3.2.2). 
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Figure 3: Schematic illustration of the sigmoidal growth kinetics of amyloid fibril formation showing 
the three phases of fibrillar growth. It is important to note that this is a very simplistic picture of 
amyloid fibril formation and at each time point a heterogenous mixture of different species is present. 

1.2 PROTEIN AGGREGATION DISORDERS 
Protein synthesis and folding are complex processes where a plethora of molecular machines 

are involved, and many things can go wrong. A study using different human cells even 

suggested that about 30 % of all newly synthesized cellular proteins never make it to their 

native structure, but get degraded by the proteasome (57). Despite the high capacity to 

recycle defective produced proteins, cells can get overwhelmed if they are generated at a too 

high rate. Diseases that are linked to the aggregation and accumulation of misfolded or 

aggregation-prone proteins are referred to as protein aggregation disorders and can be 

subdivided into amyloid and non-amyloid disorders (Tables 1 and 2). Amyloid-associated 

disorders are relatively clearly characterized by an abnormal accumulation of aggregated 

protein in extra- or intracellular deposits with biochemical characteristics of amyloid. In 

contrast, non-amyloid-associated disorders are more diverse comprising near-native, 

amorphous or fibrillar (but non-amyloid) aggregated protein deposits. Nevertheless, it is 

important to keep in mind that this classification is based on the structural features of the final 

observable protein deposit but transient intermediate species with different structures occur. 

During amyloid formation, for example early aggregates show little amyloid features and it 

has been shown that also in amyloid diseases disordered off-pathway aggregates exist (58). In 

some cases, classification is still under debate (e.g. SOD1) and in others the involved peptide 

or protein appear in both groups as different types of aggregates are found in different 

diseases (e.g. immunoglobulins). 
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1.2.1 Amyloid-associated disorders 

Intra- or extracellular amyloid deposits in the brain are a common feature in a variety of 

neurodegenerative disorders, such as AD, and Parkinson’s disease (PD) but amyloid deposits 

are also found in other organs like the lung (interstitial lung disease (ILD)) or pancreas (type 

II diabetes). To date, there are 37 proteins or peptides identified to form extra- or intracellular 

amyloid, like the AD related Aβ peptide or the ABri and ADan peptides derived from mutant 

Bri2 protein, involved in familial British and Danish dementia (FBD and FDD, respectively) 

(39, 41, 59). The dementias include a wide range of neurological disorders, like vascular 

dementia and Creutzfeldt-Jakob disease, which all are characterized by a loss in memory and 

other cognitive impairments (60). During my studies we were mostly working with the Aβ 

peptide and therefore I will briefly introduce AD, but Table 1 contains a selection of peptides 

and proteins that are found in amyloid-associated disorders.  

AD is the most abundant disease among the dementias, accounting for an estimated 60-80 % 

of all cases. Since age is the greatest risk factor for AD and other dementias, the total number 

of affected people is predicted to increase dramatically, based on current demographics (61). 

AD patients show an irreversible decline in cognition, overall functioning and behavior, 

thereby diverging dramatically from a normal aging process (62). Clinical diagnosis during 

early stages of AD is still challenging and definitive assessment is only possible by the 

detection of disease-specific extracellular neuritic amyloid plaques and intracellular tangles in 

the brain, that contain primarily Aβ and hyperphosphorylated tau, respectively. These 

amyloid deposits occur mainly in brain areas correlated with memory functions, like the 

hippocampus and other medial lobe structures (63, 64). 

Table 1: Selection of peptides and proteins found as amyloid in human diseases. The number of 
residues corresponds to the length of the disease-relevant aggregated form. Adapted from (39) and 
(65). 

Peptide or protein Number of residues Associated disease 

Neurological disorders   

Amyloid-β peptide (Aβ) 40 or 42 Alzheimer’s disease 

a-Synuclein 140 Parkinson’s disease 

ABri 34 Familial British dementia 

ADan 34 Familial Danish dementia 
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Tau protein 352–441 Frontotemporal dementia with 

parkinsonism (FTDP) 

Huntingtin with polyQ expansion ~3,144 Huntington’s disease 

Prion protein (PrP) 208 Spongiform encephalopathies 

(Creutzfeldt-Jakob disease) 

Superoxide dismutase 1 (SOD1)† 154 Amyotrophic lateral sclerosis 

(ALS) 

Non-neurological disorders   

Lung surfactant protein C (SP-C) 35 Interstitial lung disease 

Islet amyloid polypeptide (IAPP) 37 Type II diabetes 

Transthyretin (TTR) 127 Senile systemic amyloidosis 

Insulin 30 + 21 Injection-localized amyloidosis 

Serum amyloid A protein (SAA) 45–104 AA amyloidosis 

Proteins S100A8/A9 92/113 Prostate cancer 

Fibrinogen 45–81 Fibrinogen amyloidosis 

Lysozyme (LYS) 130 Lysozyme amyloidosis 

Leukocyte cell-derived 

chemotaxin-2 (LECT-2) 

133 LECT2 amyloidosis 

† Still under debate if deposits are considered amyloid or non-amyloid. 

Even though amyloid fibrils have common structural features and deposits of aggregated 

peptides and proteins are found in diseases, there is still a lot more to learn about the 

molecular mechanisms how and to what extent they contribute to each disease. This is 

aggravated by the fact that the aggregation mechanism in each disease is substrate-specific 

and that modulators, like molecular chaperones play more important roles. In AD research, 

for example, a lot is known about the generation of the Aβ peptide but little about its 

aggregation mechanism at molecular detail in vivo and the correlation with 

neurodegeneration. From a neuropathological perspective, the extracellular Aβ plaque burden 

does not correlate well with cognitive impairment and surprisingly, diffuse amyloid plaques 

can be found in postmortem brain tissues of healthy individuals (66, 67). These observations 

are interesting from two aspects, first of all the formation of diffuse plaques in a normal aging 

process could indicate that some individuals are able to modulate the amyloid aggregation 
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pathway bypassing toxic species, and secondly that these amyloid fibers could structurally 

differ from the ones found in AD patients. Indeed, some studies show that the levels of 

soluble low molecular weight Aβ aggregates, supposedly toxic oligomers, correlate better 

with cognitive decline (68-72) and structures of AD patient-derived amyloid fibrils show that 

amyloid fibrils are indeed polymorphic (34, 73). Besides these macromolecular changes, AD 

and many other aggregation disorders, remain multifactorial diseases where factors like 

inflammation or oxidative stress play important roles. This leaves many open questions about 

the mutual dependency of all these factors and, consequently, it remains to be established 

which screws that are the right ones need to be turned in order to modulate disease. 

1.2.2 Non-amyloid-associated disorders 
When talking about protein aggregation disorders or misfolding diseases the context is often 

limited to amyloid-associated diseases. However, from a molecular perspective, mature 

amyloid fibrils are structurally different from amorphous or native-like aggregates and their 

aggregation mechanisms and interactions with molecular chaperones are likely very different. 

In order to emphasize the importance of non-amyloid-associated disorders, some peptides and 

proteins that are found in human diseases are listed in Table 2. 

Table 2: Selection of peptides or proteins deposited as non-amyloid in human diseases. The number 
of residues corresponds to the length of the disease-relevant aggregated form. Adapted from (39) and 
(65). 

Peptide or protein Number of residues Associated disease 

Neurological disorders   

Neurogenic locus notch 

homolog protein 3 

(Notch 3) ectodomain 

1,589 Cerebral autosomal dominant 

arteriopathy with subcortical 

infarcts and 

leukoencephalopathy 

(CADASIL) 

Actin 375 Alzheimer’s disease 

Ataxin-1 815 Spinocerebellar ataxia 1 

Superoxide dismutase 1 (SOD1)† 154 Amyotrophic lateral sclerosis 

(ALS) 
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Non-neurological disorders   

γ-Crystallins variable ~180 (74) Cataract  

Hemoglobin 574 (tetramer) Sickle cell anemia 

Fibronectin (FN) 2,355 FN glomerulopathy 

Cystic fibrosis transmembrane 

conductance regulator (CFTR) 

(75, 76) 

Various fragments Cystric fibrosis 

† Still under debate if deposits are considered amyloid or non-amyloid. 

1.3 PROTEIN HOMEOSTASIS 
The cellular environment is highly crowded where proteins are suggested to reach total 

concentrations of around 150-300 mg/ml, making correct folding of nascent polypeptides a 

difficult process (77). Nevertheless, it is important that proteins of a cell fold correctly and 

remain in a fine-tuned balance also under changes in the intra- and extracellular environment. 

This condition is referred to as protein homeostasis (proteostasis), which is achieved by 

controlling the concentration, conformation, binding partners and localization of proteins 

through the proteostasis network (PN) (78). If the PN is perturbed, newly synthesized 

proteins might not fold efficiently or adopt non-native conformations in which they can lose 

their function or even gain toxic activities. Especially, chronic production of aberrant proteins 

during aging or due to stress conditions can push the PN towards and over its limits and lead 

to the accumulation of toxic protein aggregates that are associated with multiple diseases (see 

Tables 1 and 2) (78-80). 

1.3.1 Protein quality control 
As a safety mechanism, eukaryotic cells possess several protein quality control systems 

(PQCSs) that govern correct folding of proteins, prevent protein aggregation and remove 

cytotoxic assemblies. PQC occurs during all stages of a protein’s lifecycle from synthesis to 

degradation and takes place co- and post-translationally (81, 82). Especially, the synthesis of 

large proteins with several domains is a delicate process where unfolded segments are 

susceptible to aggregation and therefore need to be protected during translation and folding. 

One example where cells can regulate the quality of newly synthesized proteins early on is by 

controlling the mRNA composition and structure, which affects the speed of translation. In 

turn, the translation rate determines the time during which the nascent chain can fold and 

molecular chaperones are able to bind exposed aggregation-prone regions, in order to protect 
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them from unwanted interactions and misfolding (83, 84). However, co-translational protein 

quality control is regulated in many other ways that involve for example interactions of the 

ribosome with the polypeptide chain or enzymatic modifications of the nascent chain (82).    

After synthesis, folding and assembly, proteins are still exposed to various stresses in their 

physiological milieu, or by external insults like heat, oxidative stress, toxic substances or 

mechanical damage. To deal with non-native or aggregated proteins, cells invest in another 

line of defense, called the post-translational quality control. Central to this defense are 

numerous molecular chaperones that work together to promote the correct fold of proteins, by 

targeting incorrectly folded variants. Subsequently, they are capable to “hold”, refold, 

disaggregate misfolded substrates or participate in proteasomal degradation by the ubiquitin-

proteasome system and autophagy (81, 85). Additionally, cells have developed pathways to 

sequester aggregated proteins in specialized compartments in case the capacities of the 

PQCSs are exceeded, which helps to protect the cellular environment from harmful 

consequences of ultimately aggregated and potentially toxic proteins (86, 87). 

1.3.2 Molecular chaperones 
A molecular chaperone is defined as a protein that stabilizes or promotes folding of another 

protein, without being part of the final structure (88). The most famous group of molecular 

chaperones are the heat-shock proteins (HSPs). Their name originates from the finding that 

the expression of several proteins in fruit flies was upregulated in response to heat stress, 

which is a straightforward experimental treatment (89). However, also other environmental 

factors, like oxidative stress, heavy metals or inflammation that increase the concentration of 

aggregation-prone folding intermediates raise HSP levels. Despite this stress-dependent 

activation, molecular chaperones also maintain cellular protein homeostasis under normal 

conditions by promoting folding into native states over aggregation (17, 90). Historically, 

Laskey and coworkers discovered in 1978 the assembly factor nucleoplasmin that is required 

for the formation of nucleosomes, an ordered unit of DNA around histones. Nucleoplasmin 

was shown to interact with histones and prevent their precipitation. This was the first direct 

evidence for the existence of a molecular chaperone (91). In general, molecular chaperones 

are involved in many different processes, like preventing aggregation, augmenting 

folding/unfolding, assisting in assembly processes or enhancing degradation of misfolded 

proteins. The underlying mechanism of action of each molecular chaperone are highly 

diverse and not always fully understood. However, there is a common perception that 

molecular chaperones reduce the probability of unspecific inter- and intramolecular 
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interactions of their substrates, which they likely recognize by exposed hydrophobic surfaces 

(17, 22, 90, 92). 

Molecular chaperones are roughly divided into two groups based on their ability to bind and 

consume ATP and the HSPs are further classified according to the molecular weight of their 

first-identified family member, upregulated under heat-shock conditions. The literature 

concerning molecular chaperones is extensive and the nomenclature becomes quite confusing 

if one compares chaperones between different families and organisms. There are the HSP 

families: HSP40, HSP60, HSP70, HSP90, HSP110 as well as the small HSP (sHSP). Each of 

these families contain several proteins with similar functions and domains but might have 

slightly different molecular weights, as indicated by their name, due to for example splice 

variants. For the human HSP families a new nomenclature has been proposed, based on a 

classification through conserved structural motifs. The new proposed abbreviation for the 

human HSPs is indicated in brackets: HSP40 (DNAJ), HSP70 (HSPA), HSP90 (HSPC), 

HSP110 (HSPH), sHSP (HSPB), and the chaperonin families HSP60/HSP10 (HSPD/E) and 

TRiC (also known as CCT) (93). 

The ATP-dependent chaperones HSP70 (HSPA), HSP90 (HSPC), HSP110 (HSPH) and the 

chaperonins are multicomponent molecular machines that participate widely in protein 

folding, unfolding and refolding (17). They are able to recognize exposed non-native 

structural motives and help proteins, via repetitive cycles of substrate binding and release, to 

adopt their native conformation or prepare them for degradation. Additional cofactors and co-

chaperones, like sHSPs (HSPB) and HSP40 (DNAJ) enhance their binding efficiency and 

specificity (17, 94). ATP-independent molecular chaperones on the other hand block protein 

aggregation in an energy-independent manner. Since the BRICHOS domain possesses 

characteristics, similar to ATP-independent molecular chaperones, the next paragraph is 

dedicated to describing this group of proteins in more detail. 

1.3.3 ATP-independent molecular chaperones 
ATP-independent molecular chaperones are able to maintain substrates in a folding 

competent state without refolding them and therefore are often referred to as “holdases”. By  

keeping their clients in near-native conformations, they allow efficient refolding or 

degradation by downstream ATP-dependent molecular chaperones (95). ATP-independent 

molecular chaperones respond to a myriad of stresses and are extremely diverse in their 

structures and modes of action. Some members have additional chaperone-independent 

functions and their molecular chaperone functions become more dominant under stress 
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conditions. Examples are thioredoxin (Trx) as reductase (96), a2-Macroglobulin as broad-

spectrum protease inhibitor in human blood (97) or Get3 which is involved in the integration 

of tail-anchored (TA) proteins in the membrane of the endoplasmic reticulum in yeast (98). 

But are there some common structural characteristics and activation mechanisms that are 

shared by ATP-independent molecular chaperones? There is no universal answer to this 

question but one feature that many ATP-independent molecular chaperones have in common 

is that they possess a high degree of conformational flexibility and are able to transit between 

low- and high-affinity states for non-native client proteins (99). Some ATP-independent 

molecular chaperones, for example, form polydisperse high molecular weight (HMW) 

assemblies where either oligomerization from smaller subunits (e.g. Get3 (98)) or 

dissociation of the oligomers into smaller species (e.g. aB-Crystallin (100)) is important for 

their activation. But also increasing substrate affinity through structural changes in the 

oligomer substructure (e.g. a-Crystallin (101)), or partial unfolding of the monomer 

conformation in order to dimerize (e.g. Hsp33 (102)), as well as simple overexpression of an 

active chaperone (e.g. Spy (103)) have been demonstrated. The dynamic behavior in most 

cases of ATP-independent molecular chaperones is key to their function, as it enables them to 

adequately respond to stress insults by shifting the equilibrium towards the most active 

conformation. 

Conditions that regulate ATP-independent molecular chaperone plasticity and activity are as 

diverse as this protein family itself. It has been shown that (1) the presence of unfolded or 

partially folded clients (104); (2) changes in the environmental conditions (pH, temperature, 

redox,…) (102, 105, 106); (3) post-translational modifications (100) and, (4) the formation of 

heteroassemblies between different molecular chaperones (107) modulate their activity. This 

broad spectrum of structural and functional triggers likely reflects the stress-specific response 

for each ATP-independent molecular chaperone. However, this does not necessarily mean 

that there is only one molecular chaperone responding to one unique stress condition. 

Furthermore, it is very likely that ATP-independent molecular chaperones have distinct but 

also overlapping substrate spectra (108).  

Another fascinating question that comes up when one thinks about ATP-independent 

molecular chaperones is the reason for their existance, considering that ATP-dependent 

molecular chaperones that are able to refold or degrade substrates are highly abundant in 

organisms. Two reasonable arguments are that ATP-depletion under stress conditions and 

low-level ATP compartments, like the extracellular space were the driving force for their 

evolution. Under these conditions, ATP-independent molecular chaperones are rapidly 
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activated and comprise a functional reservoir of proteins that can protect the proteome from 

harm (109). However, these explanations do not sufficiently reason the existence of ATP-

independent molecular chaperones in ATP rich compartments, like the cytosol or 

mitochondria, even under non-stress conditions. It was suggested that the structural diversity 

and mode of substrate recruitment are different for ATP-independent molecular chaperones 

compared to ATP-dependent molecular chaperones and consequently expand the substrate 

spectrum, as well as binding and refolding efficiency of ATP-dependent molecular 

chaperones (109). Nevertheless, there might be additional, yet unknown reasons for their 

evolution. 

Taken together the plasticity of ATP-independent molecular chaperones substantially 

contribute to the basal cellular homeostasis, protects the proteome during stress conditions 

and likely plays an important protective role in a number of human diseases that are 

characterized by the accumulation of aggregated proteins, like AD, PD and cataract. 

1.4 THE BRICHOS PROTEINS 
In 2002 Sánchez-Pulido and colleagues described a novel protein sequence motif found in 

several unrelated proteins that are linked to a variety of diseases, like dementia, respiratory 

distress and cancer. The so-called BRICHOS domain, named after the protein family 

members BRI2, CHOndromodulin-I and proSurfactant protein C (proSP-C) are found in 10 

human protein families of which two, namely Bri2 and proSP-C, are associated with amyloid 

formation (110, 111). The BRI family has members in ancient species like flies and worms 

and might be the oldest family of proteins that contain a BRICHOS domain (110). Later, 

Hedlund and coworkers refined the characterization of the BRICHOS proteins by integrating 

amino acid side chain properties and secondary structure predictions. They discovered that 

generally all BRICHOS domains span about 100 amino acid residues and likely possess a 

unique fold. The BRICHOS domains from different families have low pairwise sequence 

identities (down to ~20 %) but a strong consensus in their predicted secondary structures, 

suggesting that the BRICHOS structure is widely preserved. Thus, it was hypothesized that 

all BRICHOS domains share some functional properties but may have evolved different 

specific functions. It is interesting to note that there are just three amino acids that are strictly 

conserved, one aspartic acid (Asp) and two cysteine (Cys) residues. The regions around the 

Cys have the highest sequence similarities (112). Until now only the structure of proSP-C 

BRICHOS has been solved showing that the two conserved Cys form an intramolecular 

disulfide bond, and their strict conservation suggests that this disulfide bridge is present in all 

BRICHOS domains (111, 113). 
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BRICHOS containing proproteins are known or predicted to be type II transmembrane (TM) 

and secretory proteins that share a similar architecture of a N-terminal cytosolic domain, a 

hydrophobic TM region or signal peptide, a linker region, a BRICHOS domain and a C-

terminal domain that has a high propensity to form β-sheet rich structures (Figure 4A). The 

only exception is proSP-C that lacks the C-terminal domain but has an aggregation-prone TM 

region (Figure 4B) (110, 112). Since my studies mainly focus on the BRICHOS domains 

from proSP-C and Bri2, I will review them and their precursor proteins in more detail. 

 

Figure 4: Schematic overview of the general BRICHOS protein architecture of (A) all BRICHOS 
domain containing proteins except proSP-C, which is shown in (B). The N-terminal domain is 
highlighted in magenta, the TM region or signal peptide (SP) in green, the linker in grey, the 
BRICHOS domain in red, the C-terminal region in blue and the membrane segment in yellow. The 
strictly conserved Asp (D) and Cys (C) residues are labeled and the intramolecular disulfide bond of 
the two Cys is indicated. The aggregation-prone regions are shown with grey stripes. 

1.4.1 Prosurfactant protein-C (proSP-C) 
Lung surfactant proteins maintain the stability and spreading of the surfactant phospholipid 

layer in the alveoli. It covers the inside of our lungs in order to prevent them from collapsing 

at the end of expiration and protect them against microbial pathogens. Therefore, these 

proteins are important and malfunctions (caused by mutations or lung injuries) are associated 

with severe respiratory dysfunction (114). 

Surfactant protein C (SP-C) is a 35 amino acid protein, which is exclusively produced in 

alveolar type II epithelial cells, via proteolytic processing of the 197 residues spanning 

precursor protein proSP-C (115, 116). ProSP-C is synthesized in the endoplasmic reticulum 

(ER) where it is inserted into the ER membrane in a type II orientation (the N-terminus is 

facing the cytosol and the C-terminus the lumen of the ER). The TM region makes up major 

parts of SP-C (116, 117). Along the secretory pathway proSP-C becomes 1) palmitoylated in 

the N-terminal region of the TM/SP-C part, 2) transferred into multivesicular bodies, 3) 
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processed in a multistep fashion, first at the C-terminal end, followed by the N-terminal part 

and 4) packed into lamellar bodies for secretion into the air space together with phospholipids 

(118-120). 

Mature SP-C mainly adopts an α-helical conformation in the lipid bilayer and it is one of the 

most hydrophobic proteins known with more than 80 % non-polar residues and its central 

hydrophobic domain is comprised of an isoleucine and valine rich region (121, 122). Both 

these amino acids are known to be abundant in β-sheet rich structures and are predicted to 

have a high propensity to form amyloid (123, 124). Mutations in the proSP-C gene (SFTPC) 

are associated with ILD that is characterized by intracellular protein aggregates (125, 126). 

Interestingly, most disease-causing mutations are located in the linker region or in the 

BRICHOS domain leading to abnormal processing and trafficking (127). Abnormal 

processing was also observed by expressing C-terminally truncated mature proSP-C 

constructs in a lung epithelial cell line, suggesting an important function of the BRICHOS 

domain (128). Furthermore, expression of mature SP-C in transgenic mice leads to severe 

pathology (129). Therefore, it has been suggested that the BRICHOS domain works as an 

intramolecular chaperone domain, guiding the aggregation-prone TM region into the correct 

conformation and preventing β-sheet aggregation (111). 

1.4.2 Integral membrane protein 2B (ITM2B) - Bri2 
The Bri2 protein is a type II TM protein encoded by the integral transmembrane protein 2B 

(ITM2B) gene, which is expressed in high levels in the brain and many peripheral tissues, like 

the placenta, kidney or pancreas (130). Full-length Bri2 comprises 266 amino acids, consists 

of an N-terminal cytosolic part (residues 1-54), a TM region (residues 55-75), a linker 

(residues ~76-130), a BRICHOS domain (residues ~130-231) and a C-terminal region 

(residues 232-266) (131) and undergoes several proteolytic processing steps within the 

secretory pathway (Figure 5). At first Bri2 is cleaved in the C-terminal region, which releases 

a 23 residues peptide (Bri23) and a membrane-bound N-terminal part called mature Bri2 

(mBri2) (132, 133). The cleavage is most likely not exclusively performed by a single 

protease but data indicate furin as the main protease (132). Nevertheless, several other 

proprotein convertases have been shown to process Bri2, although less efficiently than furin 

(134). The membrane-associated mBri2 is further shed by the α-secretase ADAM10, cleaving 

in the linker region close to the suggested BRICHOS domain, which is subsequently released 

into the extracellular space (135). The exact position of the cleavage site is still unknown but 

for AβPP it has been shown that ADAM10 cleavage is not primary structure-specific but 

rather depends on the distance from the plasma membrane (136). Processing by ADAM10 
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leaves a membrane-bound N-terminal fragment (NTF) of Bri2, which undergoes 

intramembrane processing by the signal peptide peptidase-like proteases 2a and 2b 

(SPPL2a/b). As a result, a Bri2 intracellular domain (ICD) as well as a C-domain, which 

refers to the C-terminal part of the NTF, is released (135).  

 

Figure 5: Schematic overview of the Bri2 protein and its processing into fragments. The N-terminal 
domain is shown in magenta, the TM region in green, the linker in grey, the BRICHOS domain in red, 
and the C-terminal region in blue. The strictly conserved Cys residues form an intramolecular 
disulfide in Bri2 BRICHOS monomers (paper I). Numbers indicate the last residue of each region, and 
the arrows the cleavage sites. 

Interestingly, two different autosomal dominant mutations in the ITM2B gene lead to the 

release of extended C-terminal peptides, ABri and ADan, of 34 residues length, that deposit 

primarily in the CNS as amyloid. These peptides have been found to cause FBD and FDD 

that share clinical and pathological similarities with AD, in particular amyloid angiopathy and 

neurofibrillary tangles in the hippocampus (130, 137, 138). There have been two hypotheses 

suggested for the cause of FBD and FDD. One is that the C-terminal extended peptides 

aggregate and gain toxic functions similar to Aβ. The second hypothesis is that mutations in 

the ITM2B gene contribute to a loss of function of the Bri2 protein and redirect it for 

degradation. The latter theory is supported by data showing that Bri2 modulates the 

processing of AβPP, implying that decreased levels of Bri2 give rise to increased levels of 

secreted Aβ, which in turn lead to disease (139), and by the finding that Bri2 BRICHOS 

prevents Aβ fibril formation and neurotoxicity (see further below). There is data supporting 

both theories and therefore a “two-hit” mechanism where both hypotheses have been 

integrated has been postulated. Whether one or the other hypothesis or both are true remains 

to be seen. 

1.4.3 Other BRICHOS proteins 
The by far most studied BRICHOS proteins are proSP-C and Bri2. However, there are 

several other less well described BRICHOS families. There are 2 more members in the Bri 
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subfamily, namely Bri1 and Bri3. Bri1 is predominantly expressed in osteogenic and 

chondrogenic tissues (140). One in vitro study suggests that Bri1 is involved in the early 

stages of chondrogenesis (141) and another one that Bri1 is important in cell differentiation 

during odontogenesis (142). Bri3 is mainly expressed in the brain and processed by furin, 

releasing a C-terminal peptide fragment, which is similar to Bri2. However, compared to 

Bri2, no shedding and release of the Bri3 BRICHOS ectodomain and intramembrane 

proteolysis have been observed (143, 144). Both Bri2 and Bri3 are able to modulate 

processing of AβPP, leading to a reduction of secreted Aβ peptides (145).  

Another subfamily that contains a BRICHOS domain are the gastrokines: GKN1, GKN2 and 

GKN3. GKN1 and GKN2 are expressed in the gastric mucosa in humans. They are 

associated with gastric cancer and their expression is downregulated in gastric 

adenocarcinoma tissues (146, 147). Even though GKN1 is a stomach-specific protein it has 

also been reported to inhibit Aβ40 fibril formation and interact with endogenous AβPP in a 

GKN1 transfected neuroblastoma cell line. It was suggested that these attributes are 

correlated to the BRICHOS domain in GKN1 (148). In contrast to GKN1 and GKN2 the 

GKN3 gene has a premature stop codon in humans but is functional in other mammals, 

including mice. In mice, GKN3 is upregulated in gastric atrophy and might limit epithelial 

cell proliferation under this condition (149). 

Chondromodulin-1 (CHM-1, alternative name: leukocyte cell-derived chemotaxin 1) is most 

abundantly expressed in cartilage and cardiac valves and is important for promoting 

chondrocyte differentiation and inhibition of angiogenesis. Decreased levels of CHM-1 are 

found in association with chondrosarcoma (150, 151). Tenomodulin is most abundant in 

dense connective tissues and skeletal muscle, and its expression correlates well with the 

embryonal differentiation of tendon fibroblasts in chick (152, 153). BRICHOS proteins of the 

group C family have only been studied on the gene level and according to their sequence and 

secondary structure conservation. It is interesting that the group C family has the highest 

conservation in the C-terminal region among all BRICHOS families, indicating an important 

function of this region (112). Proteins of the Arenicin family are so far only found in marine 

worms. They differ from other BRICHOS families as the transmembrane region contains a 

signal peptide and the C-terminal region has been shown to be an anti-microbial peptide 

(154). 
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1.5 THE BRICHOS DOMAIN 

1.5.1 Structure 
So far, the only available high-resolution structure of a BRICHOS domain is the crystal 

structure of recombinant human (rh) proSP-C BRICHOS (Figure 6A). The core consists of a 

mixed anti-parallel and parallel five-stranded β-sheet that is flanked by two α-helices. Helix 1 

packs against face A, helix 2 against face B and a long loop connects both helices (111). 

Homology models of all human BRICHOS families based on the X-ray structure of proSP-C 

BRICHOS largely match their predicted secondary structures, especially in the core region, 

illustrated for Bri2 BRICHOS (Figure 6B) (155). As mentioned earlier there are just three 

residues that are highly conserved among all BRICHOS proteins, two Cys and one Asp 

(112). These two Cys in proSP-C BRICHOS and Bri2 BRICHOS form an intramolecular 

disulfide bond that links helix 2 and face B in proSP-C BRICHOS, and likely also in Bri2 

BRICHOS (111). This disulfide bond might increase the stability of the BRICHOS domains 

and could play an important role in the regulation of their function. Human proSP-C 

BRICHOS has two additional Cys that form another intramolecular disulfide bond between 

the loop region just after helix 1 and face A, which likely has an impact on the dynamical 

properties of the domain, although it is not conserved among the proSP-C BRICHOS family. 

Molecular dynamic (MD) simulations of the proSP-C BRICHOS structure revealed that 

movement of helix 1 exposes face A, which is supposedly the binding site for substrates 

(111). This fits very well with the observation that face A has mostly hydrophobic amino 

acids that match the hydrophobic SP-C target sequence. In contrast Bri2 BRICHOS has 

several charged sidechains in face A, which goes in line with the properties of the proposed 

target sequence of Bri23. This suggests a correlation between the proposed binding sites of 

the BRICHOS proteins and their target peptides (155). Furthermore, many conserved 

residues in the proSP-C family are located in the β-sheet face A and B, and mutations seen in 

ILD largely coincide with the strictly conserved amino acids (111). In vitro, rh proSP-C 

BRICHOS forms stable trimers that are stabilized by non-covalent interactions and a salt 

bridge between the subunits (Figure 6C). Peptide binding experiments using mass 

spectrometry (with collision-induced dissociation) show that monomers bind designed model 

peptides with apparent dissociation constants in the micromolar range (156). Furthermore, 

addition of detergents that increase the monomer/trimer ratio also improve the efficiency to 

inhibit Aβ42 fibril formation, supporting the theory of the monomer being the active species 

and the trimer the storage conformation (157). The role of the strictly conserved Asp has not 

been elucidated to date, albeit MD simulations comparing wild-type (WT) and an Asp to Asn 

(asparagine) substituted variant show that the face A in the WT, but not in the Asp to Asn 
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variant becomes accessible for substrates at moderately elevated temperatures. This suggests 

that the Asp contributes in some way to the dynamics of proSP-C BRICHOS and may 

regulate its binding properties (111). 

 

Figure 6: (A) Crystal structure of the proSP-C BRICHOS domain (PDB ID: 2yad). Both sides of the 
central five-stranded b-sheet are labeled, the intramolecular disulfide bonds are shown in stick 
representations (yellow) and the loop (which is missing due to proteolytic cleavage) that connects both 
a-helices (a1 and a2) is indicated with a dashed line. (B) Structural model of the Bri2 BRICHOS 
domain (I-Tasser web server (158)) with the same color coding as in A. (C) Crystal structure of the 
proSP-C BRICHOS domain in the trimer conformation (PDB ID: 2yad). The salt bridges that stabilize 
the trimer are highlighted with dashed ellipses and the threonine residues at position 187 (T187) that 
are located in the interface between each subunit of the trimer are shown in orange stick 
representations (see 4.1). 

1.5.2 Function 
It has been shown that rh proSP-C BRICHOS and Bri2 BRICHOS efficiently delay Aβ40 and 

Aβ42 fibril formation in vitro and improve the longevity and locomotor activity in an Aβ42 

overexpressing fly model (159-164). However, the two rh BRICHOS domains show different 

effects on the kinetics of Aβ42 fibrillation. While proSP-C BRICHOS binds to fibril surfaces 

and blocks secondary nucleation events, Bri2 BRICHOS additionally inhibits the elongation 

of already formed fibrils (160). Furthermore, it has been shown that both rh BRICHOS 

domains reduce neuronal network toxicity evoked by Aβ42 in hippocampal mouse brain slices 

(53, 161, 165). Interestingly, only rh Bri2 BRICHOS is able to prevent non-fibrillar 

aggregation of different model substrates by forming transient complexes. Poska and co-

workers pointed out that Bri2 BRICHOS has no refolding activities and releases no active 

substrate molecules, but its behavior is appealingly similar to the ATP-independent molecular 

chaperones sHSP26 and sHSP42 from baker’s yeast (161). These sHSP bind non-selectively 

to misfolded substrates, and thereby prevent them from aggregation. In all experiments it 
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appears that the Bri2 BRICHOS domain is a more versatile and efficient chaperone than 

proSP-C BRICHOS. 
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2 AIMS OF THE THESIS 

The studies outlined above describe the proSP-C and Bri2 BRICHOS domains as efficient 

molecular chaperones to reduce amyloid fibrillation and associated toxicity. In contrast to 

proSP-C BRICHOS, Bri2 BRICHOS has additional chaperone functions to prevent non-

fibrillar protein aggregation, similar to sHSPs. The underlying structural correlations of their 

distinct functions were, however, largely unknown. 

The main aim of this thesis was to investigate and modulate the structure-function 

relationship of the molecular chaperone domain BRICHOS concerning its ability to prevent 

structurally different substrates from aggregation. 

More specifically: 

Þ Study the ability of the Bri2 BRICHOS domain to interfere in the aggregation 

pathway of structurally distinct substrates in detail (Paper I). 

Þ Use the information from Paper I and design a Bri2 BRICHOS monomer mutant 

with increased abilities to prevent amyloid fibrillation associated toxicity (Paper II). 

Þ Investigate the molecular mechanisms that convert Bri2 BRICHOS monomers, that 

are essentially inactive in preventing non-fibrillar protein aggregation into active 

oligomers (Paper III). 

Þ Expand the BRICHOS repertoire by a functional characterisation of the Bri3 

BRICHOS domain that shares about 60 % sequence conservation to Bri2 BRICHOS 

(Paper IV). 

Þ Use the knowledge from Paper II and create a proSP-C BRICHOS monomer mutant 

with the aim to understand the binding spectrum towards small oligomeric species 

during amyloid fibrillation (Paper V). 
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3 METHODOLOGY 

3.1 CHARACTERISATION OF PROTEINS 

3.1.1 Circular dichroism spectroscopy 
Circular dichroism (CD) spectroscopy is an established method for the determination of the 

overall secondary structure of proteins (166). CD spectrometers are measuring the absorption 

difference between right- and left-handed circular polarized light after the light passes 

through a medium. The amide groups of a polypeptide chain absorb light in the far-UV range 

(< 260 nm). Furthermore, all naturally occurring amino acids are in the L-configuration 

which makes proteins chiral. Based on these two physical properties of proteins, the 

absorption of right- and left-handed circular polarized light is uneven and makes the 

transmitted light elliptic (circular dichroism). Secondary structure elements in proteins 

produce characteristic absorption patterns in the far-UV range, that can be related to empirical 

reference spectra. Especially, helical proteins have a strong CD absorption signal with a 

characteristic amplitude minimum at 222 nm, but also other secondary structure elements 

have characteristic signals. Additionally, the side chains of amino acid residues in the protein 

core have a characteristic CD absorption in the near-UV region (320 – 260 nm) and can give 

some insights about the tertiary structure of a protein. CD spectroscopy is very useful to study 

the thermodynamic stability of proteins and mutants thereof by measuring their unfolding 

behavior for example by increasing the temperature or by adding chaotropic agents (166). CD 

spectroscopy can also be used to measure the kinetics of amyloid fibril formation, as the 

transition from monomers with a random-coil like structure to fibrils is correlated with a 

strong increase in overall b-sheet content (50). Nevertheless, it is important to keep in mind 

that proteins with mixed secondary structures will result in a CD spectrum where all elements 

are superimposed. There are plenty of programs that calculate the secondary structure content 

from CD spectra, but the deconvolution varies a lot dependent on the method. Furthermore, 

large changes in the conformation of a protein can also result in no observable changes in the 

CD spectrum, if for example the changes only involve movement of entities with no 

secondary structure changes or if a high helical content (which has the strongest CD signal) 

shields other transformations in the CD spectrum. 

3.1.2 Mass spectrometry 
Mass spectrometry (MS) is a valuable method that can be used to analyze intact proteins and 

peptides and to detect them qualitatively and quantitatively in complex mixtures. In reference 

(167) principles of mass spectrometry are well explained. There are numerous of different 
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set-ups and mass spectrometer configurations that were designed to answer specific research 

questions. The BRICHOS proteins we investigated are able to form different assembly states 

and we introduced mutations with the aim to increase the monomer content in the respective 

BRICHOS domain preparations. For this purpose, we mainly used electrospray ionization 

mass spectrometry (ESI-MS) first of all to verify the correct masses of our protein 

preparations and secondly to investigate their quaternary structure. 

ESI is a soft ionization method where droplets of a protein solution are dispersed by 

electrospray and ionized while the solvent around the protein evaporates. This leaves charged 

molecules in the gas phase that are transferred into the vacuum chamber of the mass 

spectrometer for analysis. The number of charges on the protein molecules is dependent on 

the size of the protein and the number of accessible basic residues. In MS, molecules are 

analyzed according to their mass-to-charge ratio of the ions and a typical spectrum shows the 

mass-to-charge ratio vs. the ion signal. Short peptides have likely only a few protonation sites 

and the spectra are relatively simple. Intact proteins on the other hand with multiple 

protonation sites result in more complex spectra. A pure protein preparation will show a 

distribution of characteristic clusters containing multiply charged ions. In order to avoid 

overlapping spectra and a good signal-to-noise ratio it is important to have highly pure 

samples (salt, for example, will result in strong background noise). 

We also used a proteomics mass spectrometry workflow to investigate inter- and 

intramolecular disulfide bonds in the Bri2 BRICHOS domain. For proteomics analysis, 

complex protein mixtures are proteolytically digested and in order to reduce the complexity 

of the sample during mass spectra recordings, the digested peptides are pre-fractionated for 

example by high-performance liquid chromatography. The peptides are subsequently 

analyzed by tandem mass spectrometry (MS/MS). First, the peptides are separated according 

to their mass-to-charge ratio (MS1). Then a particular m/z ratio from the MS1 scans is 

selected for fragmentation, for example by electron-capture dissociation (ECD) or collision-

induced dissociation (CID) and these peptide fragments are then analyzed according to their 

m/z ratio (MS2). The fragmented peptide spectra from MS2 scans contain information about 

the peptide amino acid sequence and together with the information from the MS1 scan it is 

possible to match the sequenced peptide with a protein. This allows the identification of many 

individual proteins in solution. However, we used this workflow in order to investigate if 

different Bri2 BRICHOS assemblies form homo- or heterodisulfide bonds under non-

reducing conditions in pure protein preparations. For the analysis we created a library 

containing the theoretical m/z ratios of the proteolytically digested Bri2 BRICHOS domain 
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(MS1) and a second library with theoretical reference spectra of the fragmented peptides 

(MS2). Practically we were looking for precursor ions that match the expected m/z ratio of 

oxidized Cys peptides and match the corresponding MS2 scan against our library.  

Even though mass spectrometry is a powerful tool for answering a variety of protein related 

research questions it has also some limitations. One is that in mass spectrometry one can only 

find something that one is “correctly” looking for. This means for example, that a protein 

with an unknown post-translational modification will have a different m/z ratio compared to 

the non-modified counterpart. However, the experimenter only recognizes a certain mass and 

does not know if this mass corresponds to a different protein or is due to a modification of a 

protein. Therefore, it is up to the experimenter to have a good guess in order to match his 

assumption and interpret the data. Furthermore, the absence of detection in mass 

spectrometry of a peptide fragment or a protein does not necessarily mean that it is not 

present in the sample. It could be that this particular peptide fragment is just not being ionized 

well or that the abundance is extremely low and hence invisible in background noise. 

3.2 EVALUATION OF PROTEIN-PROTEIN INTERACTIONS 

3.2.1 Fluorescence basics 
Absorption is defined as the interaction between a molecule and light whereby the energy of a 

photon is transferred. Electrons in a molecule can occupy different energy states, dependent 

on their configuration. The absorption of a photon by a molecule causes an electron transition 

to a higher electronic and vibrational state. The absorbed energy can be emitted via non-

radiative processes such as heat to the solvent or emission of light, termed luminescence. 

There are two types of luminescence, fluorescence and phosphorescence. Fluorescence 

involves an electron transition from an excited singlet state to the ground state. On the other 

hand, phosphorescence is associated with an additional spin conversion (intersystem 

crossing) and the transition from an excited triplet state to the ground state. Since a molecule 

cannot emit more energy than it has taken up via the accepted photon and some energy from 

the excited state always gets “lost” by non-radiative processes, a fluorescent molecule emits 

light with lower energy. Consequently, the fluorescence spectrum of a molecule is 

characterized by a red shift in respect to its absorbance spectrum. Molecules that emit 

fluorescence are called fluorophores (168). 

In proteins the amino acids tryptophan, tyrosine and phenylalanine are natural fluorophores 

and can be used in several fluorescence spectroscopy applications. However, most peptides or 

proteins have either none of these natural fluorophores or have them in an unfavorable 
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structural orientation or position. Furthermore, the quantum yield of these three amino acids 

is not very high compared to other organic fluorophores which might limit their application. 

To overcome this, numerous fluorescent dyes have been developed with improved quantum 

yield, photostability and chemical modifications that interact with, stain and label 

biomolecules.  

Two examples of extrinsic fluorophores that we have been using are 4,4′-bis-1-

anilinonaphthalene-8-sulfonate (bis-ANS) and Thioflavin T (ThT). Bis-ANS fluorescence 

depends on the polarity, viscosity and temperature of the environment. Interactions of bis-

ANS with a hydrophobic surface lead to an increase of the fluorescence emission intensity 

and blue shift of the emission maximum (169). Many ATP-independent molecular 

chaperones expose hydrophobic surfaces in order to interact with their clients. Thus, bis-ANS 

fluorescence has been used to determine if certain stress conditions lead to an increase in 

surface hydrophobicity. From these results one cannot conclude if the molecular chaperone is 

active or inactive, but it can be a piece in the puzzle characterizing a molecular chaperone.  

ThT is intensively used to stain amyloid fibrils in vitro and to measure the growth kinetics of 

amyloid fibril formation. This dye is a benzothiazole that has an absorption maximum at 

~412 nm in water and exhibits little or no fluorescence. When ThT binds to amyloid fibrils its 

absorbance maximum shifts to ~440 nm in combination with a strong increase of the 

fluorescence quantum yield with an emission maximum at ~485 nm. The current knowledge 

suggests that ThT behaves like a “molecular rotor”. In free ThT a benzylamine and 

banzathiol ring can rotate freely around their shared carbon bond and the excited state is 

rapidly quenched. Once ThT binds to a substrate where rotational quenching is restricted, 

relaxation of the excited state to the ground state is more likely to occur via fluorescence 

(169, 170).  

3.2.2 Kinetics of amyloid fibril formation 

In our studies we exclusively used Ab42 as a model substrate to investigate the effects of 

different BRICHOS domains to interfere with amyloid aggregation. This chapter is not meant 

as a detailed manual for the fitting routines and interpretation of the kinetic models that 

describe the rate constants of Ab42 fibrillation, but rather tries to give a general overview. 

Detailed descriptions of different kinetic models regarding amyloid fibrillation can be found 

in references (50, 52, 54). 
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An important problem in analyzing individual Ab42 aggregation traces is that they per se do 

not contain much mechanistic information. Therefore, global fitting approaches have been 

developed in order to fit amyloid aggregation data from several varying Ab42 concentrations 

simultaneously. One important assumption that has to be made and verified before different 

advanced models can be applied is that the Ab42 monomer concentration at the end point of 

the reaction (plateau) is neglectable, meaning that almost all monomers have converted into 

fibrillar mass. One has to keep in mind that once fibrils are formed the kinetic analysis does 

not account for the dissociation of Ab42 monomers from fibril ends, as this process is 

relatively slow compared to fibril formation and therefore does not significantly affect the 

kinetics of fibrillar growth. Additionally, the fluorescence of the reporter dye (ThT) has to 

scale proportional to the fibrillar mass starting from different initial Ab42 monomer peptide 

concentrations. With these assumptions in mind and reproducible, high-quality data at hand 

one can start to evaluate different kinetic models. 

In chapter 1.1.5 the general aggregation behavior of amyloid fibril formation and associated 

nucleation reactions are outlined. In the first step of the analysis the data is normalized to 

values between 0 and 1, based on the assumption that the relative fibrillar mass across all 

measured Ab42 concentrations is equal at the endpoint of the experiment and consequently the 

information on the reaction kinetics are encoded in the shape of curves (52). Ab42 aggregation 

profiles usually follow a sigmoidal growth behavior (Figure 3) and can be fitted to: 

 𝐹 = 𝐹! + 𝐴/(1 + exp	(𝑟"#$(𝜏%/' − 𝑡))) (1) 

where F0 is the baseline value, A the amplitude, rmax the maximum growth rate, and t1/2 the 

aggregation half time.  

The half time from different kinetic traces is dependent on the initial monomer peptide 

concentration m(0) and can be expressed through a power law function: 

  t%/'	µ	𝑚(0)g (2) 

where g is the scaling exponent, t1/2 the aggregation half time and m(0) the monomer peptide 

concentration. 

The scaling exponent which is the slope represented by t1/2 vs. m(0) in a double logarithmic 

plot gives an indication of the reaction order of the aggregation process and suggests if the 

reaction is truly dependent on the initial Aβ42 monomer peptide concentration. Amyloid 

aggregation can be described by different microscopic mechanisms (i.e. primary nucleation, 
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secondary nucleation, elongation and fragmentation) of which each can have a highly 

differing impact on the overall aggregation, dependent on the conditions and type of peptide. 

For example, Aβ42 aggregation kinetics with agitation will result in fibril fragmentation, 

increase the number of fibril ends and therefore increase the impact of elongation on the 

overall reaction. We used quiescent conditions throughout and it has been shown that 

monomer dependent secondary nucleation is the dominant process for the formation of new 

Aβ42 aggregates, once a critical fibrillar mass has formed under these conditions (52).  

Next, global fit analysis can be performed using aggregation traces with different initial 

monomer concentrations. The detailed equations are shown in the method sections of paper I, 

II, IV and V. The global fit expression contains parameters that describe the microscopic rate 

constants for primary nucleation (kn), fibril elongation (k+), and secondary nucleation (k2) as 

well as the reaction orders for primary (nc) and secondary nucleation (n2). In order to avoid 

overfitting, the degrees of freedom are restricted and the combined rate constants 3k)k* and 

3k*k' are chosen as the only free parameters during the global fitting routine. For extracting 

individual rate constants another set of experiments with a high initial concentration of 

fibrillar seeds is needed. In this experiment, the aggregation traces normally exhibit a concave 

profile, where the initial slope is directly proportional to the fibril elongation rate (k+). This 

can be explained by the high number of fibrils that are already present at t=0 h and elongation 

is dominating over primary and secondary nucleation. This fitting procedure enables us to 

describe the microscopic rate constants of amyloid fibril formation and can be applied to 

investigate the effects of different aggregation modulators on individual rate constants. One 

important note that I would like to add is that an inhibitory effect on secondary nucleation 

reactions is sometimes directly linked to the notion of a decreased number of toxic oligomers 

and therefore an amyloid modulator might be an important drug candidate. However, toxic 

Aβ42 oligomers are not part of the fitting analysis but rather concluded from an inhibitory 

effect on the secondary nucleation rate constant. Indeed, several studies have shown that if an 

inhibitor shows strong effects on the rate constants for secondary nucleation, additional 

toxicity experiments seem to confirm the assumption (53, 171, 172). Nevertheless, there is 

another study demonstrating that an aminosterol enhances the overall rate of Aβ42 

aggregation by increasing secondary nucleation reactions but still decreasing Aβ42-induced 

toxicity (173). This is counterintuitive, but the authors concluded that enhancing secondary 

nucleation will also speed up the conversion of oligomers to mature fibrils and hence bypass 

toxic species more rapidly. In summary, it remains to be seen what the best way is to reduce 
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neurotoxicity in human amyloid associated diseases, but it seems that modulating secondary 

nucleation pathways is a promising approach. 

3.2.3 Fluorescence correlation spectroscopy 
Fluorescence correlation spectroscopy (FCS) is a powerful tool to investigate the molecular 

properties of a fluorescent molecule in solution or to determine interactions and binding 

constants between molecules. A typical FCS set-up consist of a confocal fluorescence 

microscope with a small detection volume, avalanche photodiode detectors to detect the 

emitted photons and a hardware correlator that can calculate the autocorrelation function 

G(t). The following description is based on references (174, 175). 

In FCS stochastic fluctuations arising from Brownian motion of fluorescent molecules in a 

small observation volume element (OVE) are measured over time and the recorded 

fluorescence signal is analyzed using autocorrelation (Figure 7). The autocorrelation analysis 

determines the relationship between two observations of fluctuating molecules in a time 

series and determines a pattern in this series. From this, the autocorrelation function describes 

characteristic time constants and amplitudes for molecules in the OVE. Any molecular event 

that causes fluctuations in the fluorescence intensity results in a characteristic decay of the 

G(t), which is calculated from the time-trace of the fluorescence intensity I(t). G(t) is 

described by: 

𝐺(𝜏) =
〈𝐼(𝑡) + 𝐼(𝑡 + 𝜏)〉

〈𝐼(𝑡)〉'  (3) 

Figure 7A shows the movement of a fluorescent molecule in a confocal volume that is being 

detected and analyzed by FCS. Diffusion of the particles cause changes in the number of 

fluorescent molecules in the OVE that are observed as fluorescence intensity fluctuations 

(Figure 7B). If one considers a very short lag time (ts) compared to the average diffusion time 

of the molecule (tD) one can appreciate that the number of fluorescent molecules in the OVE 

is not very likely to change during ts. Therefore, I(t) and I(t + ts) is likely very similar, thus 

the similarity between all analyzed ts lag times is very similar and consequently G(t) is close 

to its maximum value (Figure 7C). In theory, G(t) reaches its maximum at t = 0 and G(0) is 

inversely proportional to the average number of fluorescent molecules in the OVE (176). By 

using different fitting models to describe the autocorrelation function from recorded data 

(assuming that the recorded intensity fluctuations are caused by free diffusion of molecules) it 

is possible to calculate the intercept with the y-axis which reports an estimate on the number 

of fluorescent molecules in the OVE. On the other hand, if one considers a very long lag time 
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(tL) compared to (tD), the number of fluorescent molecules in the OVE is not very similar, 

I(t) and I(t + tL) are not correlated anymore and at G(tL) decays towards 0 (Figure 7B and C). 

The characteristic diffusion time of a molecule (tD) is defined by the lag time where G(t) 

decays to its half-maximum value. From this analysis the primary experimental obtained 

parameters of a molecule are the number of particles in the OVE and tD. In order to 

quantitatively interpret FCS data, it is important to accurately adjust and calibrate the set-up 

before each set of experiments. Without going into details, calibration with a reference 

fluorophore is important to know the exact size and shape of the OVE in order to correctly 

calculate for example the diffusion coefficient of a molecule.  

 

Figure 7: Overview of an FCS measurement. (A) An excited fluorescently labeled protein is diffusing 
through the confocal OVE. (B) Detected fluorescence intensity fluctuations due to the diffusion of 
fluorescently labeled molecules through the OVE (or due to the chemical properties of the 
fluorophore). (C) Characteristic decay of the autocorrelation function derived from the intensity 
fluctuations in B. Reproduced from Macháň et al. 2016 (175). 

Probably the most important step in the analysis of FCS data is the choice of an appropriate 

fitting model for G(t). The autocorrelation function in Figure 7C is a good example for a 

monodisperse system that has only one characteristic tD. However, samples can be more 

complex, as they can contain mixtures of free fluorophores and fluorophores bound to a 

protein, as well as two or more molecules that interact with each other. Consequently, the 
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autocorrelation function contains contributions from several diffusion times. Therefore, it is 

important to have some preliminary idea about the sample composition and how many 

parameters one would expect (i.e. deciding on the number of free parameters in the fitting 

function). Additionally, FCS data often has a low signal-to-noise ratio and correlated noise in 

G(t). Another fact that one has to keep in mind is that I(t) contributes with the square to G(t). 

This means that the brightness of a relatively rare large particle (in comparison to the average 

particle) which contains several fluorophores strongly influence the shape of G(t). In order to 

overcome the issue of overfitting of the data by “model picking” several quite complex 

methods have been developed in order to interpret FCS data more bias-free (177, 178). 

Taken together, FCS is a very powerful tool that can be used to study the characteristic 

molecular properties and interactions of a molecule, peptide or protein but one has to be 

aware that a thorough calibration of the set-up and mindful data analysis is the foundation of 

a meaningful experiment. 
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4 RESULTS AND DISCUSSION 

4.1 ASSEMBLY-FUNCTION RELATIONSHIP OF BRICHOS DOMAIN 

PROTEINS 
As described in 1.3.3 ATP-independent molecular chaperones are diverse in their sequence, 

assembly size, and mechanism of action. Most of these chaperones are highly flexible and 

exist in dynamic equilibria between low- and high-affinity states for non-native or misfolded 

substrates, that shift in response to stress conditions (99). The proSP-C BRICHOS and Bri2 

BRICHOS domains have been shown to interfere in the aggregation pathway of several 

substrates and are able to adopt various quaternary structures. Despite its high expression in 

brain tissue, the Bri3 BRICHOS domain has not been investigated regarding its quaternary 

structures and molecular chaperone functions. While the proSP-C BRICHOS domain forms 

mainly trimers in solution, Peng and co-workers observed already in 2010 HMW assemblies 

of Bri2 BRICHOS under non-reducing conditions, but did not investigate this finding in 

greater detail (111, 113, 161, 164). Therefore, we sought to get a more comprehensive 

understanding of the ability of the Bri2 BRICHOS domain to inhibit different types of protein 

aggregation in relation to its quaternary structure (paper I). Furthermore, we characterized the 

Bri3 BRICHOS domain in comparison with the Bri2 BRICHOS domain (paper IV). 

4.1.1 Quaternary structures 
Using the spider silk protein derived solubility tag NT* (179) enabled us to separate Bri2 

BRICHOS monomers, dimers and large polydisperse oligomers (Paper I). More specifically, 

size exclusion chromatography (SEC) after removal of the solubility tag NT* reveals that 

Bri2 BRICHOS forms an equilibrium between monomers and non-covalently linked dimers. 

Furthermore, isolated covalently linked Bri2 BRICHOS dimers partially associate non-

covalently into tetramers. Electron microscopy and SEC show that the Bri2 BRICHOS 

oligomers form well-structured particles consisting of 20 – 30 subunits with a dihedral (D2) 

symmetry and that the particles contain an even, but variable number of disulfide-linked 

subunits. A summary of different Bri2 BRICHOS assembly states are illustrated in Figure 8. 

The formation of large polydisperse oligomers ranging from 12 to more than 32 subunits with 

dimers as the basic building block is a feature that many classical sHSPs have in common 

(180-182). In contrast to the Bri2 BRICHOS domain, dimer association and oligomer 

assembly of sHSPs is likely not dependent on the formation of intermolecular disulfide bonds 

but rather non-covalent interactions of multiple regions within the molecular chaperone 

(183). These results show that there are some common basic features concerning the 
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quaternary structure that are similar between sHSPs and the Bri2 BRICHOS domain but also 

distinct differences. Furthermore, we found disulfide dependent HMW assemblies of the Bri2 

BRICHOS domain in conditioned culture medium of a neuroblastoma cell line, a transfected 

human embryonic kidney cell line and after incubation of Bri2 BRICHOS monomers in 

mouse serum. The existence of different quaternary structures in these experiments indicate 

their potential physiological relevance. In the following descriptions Bri2 BRICHOS species 

refer to: oligomers (polydisperse HMW assemblies), dimers (mainly covalently linked 

dimers), monomers (monomers in equilibrium with some non-covalently linked dimers). 

ATP-independent molecular chaperones are suggested to bind substrates through exposed 

hydrophobic surface areas. We show that Bri2 BRICHOS monomers, dimers and oligomers 

expose hydrophobic patches but more pronounced for Bri2 BRICHOS oligomers. The overall 

secondary structure of Bri2 BRICHOS monomers and dimers is similar to trimeric proSP-C 

BRICHOS that is characterized by a high content of random coil structures. In contrast, Bri2 

BRICHOS oligomers appear to be somewhat more structured, indicating structural 

rearrangements upon assembly formation. In the light of these results, we speculated that 

there are differences in the efficiency of the Bri2 BRICHOS species to interfere with fibrillar 

or amorphous protein aggregation. Furthermore, in paper IV we found that unresolved 

preparations of the Bri2 BRICHOS domain and the Bri3 BRICHOS domain are very similar 

regarding their ability to form disulfide dependent HMW assemblies, secondary structure and 

surface hydrophobicity. However, in this study we used Trx as solubility tag and not NT*, 

and both BRICHOS domain constructs form almost exclusively large oligomers. We 

speculate that this observation might be related to the use of Trx as solubility tag and I will 

come back to this observation at the end of chapter 4.1.3. 

4.1.2 Effects on protein aggregation and associated toxicity 
In order to gain insights into how Bri2 BRICHOS monomers, dimers and oligomers as well 

as the unresolved preparation of Bri3 BRICHOS affect amyloid fibrillation we analyzed Ab42 

self-aggregation kinetics by the ThT fluorescence assay, as outlined in 1.1.5 and 3.2.2. 

Comparing the sigmoidal fitting parameters, aggregation half time (t1/2) and maximum rate of 

aggregation (rmax), revealed that the Bri2 BRICHOS dimer is the most efficient species 

followed by the monomer. It is important to mention that concentrations were calculated 

assuming monomeric protein solutions, which lowers the effective molecular ratio of e.g. 

Bri2 BRICHOS oligomers vs. monomers in the measurements. Especially, Bri2 BRICHOS 

oligomers exist in a broad range of assembly states and therefore it is difficult to correct the 

data for equal stoichiometries. Considering that the Bri2 BRICHOS dimer is more efficient, 
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despite a lower total number of molecules relative to monomers it was intriguing to speculate 

that the mechanism of action to delay Ab42 fibrillation might vary between species. Applying 

a set of kinetic equations to extract the microscopic rate constants that can be used to describe 

Ab42 growth curves revealed that all Bri2 BRICHOS species affect fibril-end elongation and 

secondary nucleation rate constants, and that the Bri2 BRICHOS dimer is most efficient on 

both parameters. Similarly, we found in paper IV that Trx-derived Bri3 BRICHOS proteins 

have effects on secondary pathways of Ab42 aggregation. 

Next, we determined the capacity of each Bri2 BRICHOS species to prevent the Ab42-

induced reduction of the g oscillation power in hippocampal mouse brain slices. g oscillations 

are linked to learning, memory and other higher cognitive processes, and changes have been 

shown in several disorders that are associated with cognitive impairment, like AD (184-186). 

In these experiments we used crude Ab42 preparations (species < 30 kDa) and concentrations 

that are 60-fold lower compared to the concentrations we used in the bulk ThT fluorescence 

kinetic assay, where the first ThT positive aggregates are observed after about 30 minutes 

(starting from monomeric Ab42 preparations). This time roughly corresponds to the 

incubation time of Ab42 before the first g oscillation recordings are performed. Lower Ab42 

concentrations result in longer lag phases and slower overall Ab42 aggregation kinetics. 

Despite the fact that we used slightly different Ab42 preparations one can assume that the 

Ab42 mixture that is present at the start of the electrophysiological recording likely consist of 

a heterogeneous mixture of monomers, differently sized oligomers and prefibrillar aggregates 

but only a few fibrils. However, to get a better understanding about the structural properties 

of the Ab42 species that evoke neurotoxicity, further studies should be conducted with the aim 

to establish the structural properties of these aggregates. Measuring g oscillations in the 

presence and absence of different Bri2 BRICHOS species showed that all species reduce 

Ab42-induced neurotoxicity and that Bri2 BRICHOS monomers are able to completely 

prevent toxic effects of Ab42 at equimolar concentrations. Dimers and oligomers appear 

roughly equally efficient but even at a 2-fold molar excess of these BRICHOS species over 

Ab42 they do not prevent toxicity as potently as Bri2 BRICHOS monomers. 

Despite the difficulties to compare absolute numbers of Bri2 BRICHOS molecules due to 

their inherent heterogeneity, it is still appealing to speculate about the different outcomes in 

Ab42 kinetic and toxicity experiments for dimers and monomers. Surprisingly, the size of a 

hypothetical Bri2 BRICHOS dimer (juxtaposing two monomers) could match the cross-

sectional area of an experimentally solved mature Ab42 fibril with a cross-beta sheet structure 
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with two Ab42 molecules per fibril layer (187, 188). On the other hand, a Bri2 BRICHOS 

monomer fits with the cross-sectional area of a single-layer b-sheet that may exist in Ab42 

oligomers or prefibrillar aggregates. We hypothesized that Bri2 BRCHOS dimers are able to 

cover Ab42 fibril surfaces and fibril-ends of mature fibrils more efficiently than Bri2 

BRICHOS monomers and hence appear slightly more efficient in reducing the overall 

kinetics of Ab42 fibrillation. Bri2 BRICHOS monomers on the other hand could bind to 

smaller oligomeric and protofibrillar Ab42 aggregates diminishing their toxic effects on g 

oscillations. 

Previously, Bri2 BRICHOS preparations with unresolved assembly states have been shown 

to prevent non-fibrillar protein aggregation, similar to classical ATP-independent molecular 

chaperones (161). We followed the aggregation behavior of thermo-denatured CS in presence 

of different Bri2 BRICHOS species and found that exclusively Bri2 BRICHOS oligomers 

prevent amorphous protein aggregation. Furthermore, monomers that were incubated in 

serum whereby they form polydisperse oligomers are also potent in inhibiting CS from 

aggregation. This emphasizes that Bri2 BRICHOS oligomers with classical chaperone 

function can be formed under physiological conditions. Substrate-chaperone recognition sites 

and mechanisms of how ATP-independent molecular chaperones interact with different 

aggregates are still enigmatic but generally sHSPs have been shown to be less efficient in 

preventing larger proteins from aggregation, suggesting that the mass ratio is more important 

compared to the molar ratio (183). This could indicate that either non-native CS 

conformations and aggregates thereof are too big for Bri2 BRICHOS monomers and dimers 

or that Bri2 BRICHOS oligomers expose different binding sites than the monomers or 

dimers. We could not give further structural explanations about the specific substrate 

interaction sites of different Bri2 BRICHOS species, but the activation of Bri2 BRICHOS 

oligomers must go in line with structural rearrangements as observed by CD spectroscopy. 

Bri3 BRICHOS in comparison to unresolved Bri2 BRICHOS is similarly efficient in 

inhibiting non-fibrillar protein aggregation. 

In summary, we demonstrated in paper I that we can isolate different Bri2 BRICHOS species, 

that monomers are very potent in inhibiting neuronal network toxicity originated from Aβ42, 

that dimers prevent Aβ42 fibrillation most efficiently and that exclusively HMW assemblies 

are very efficient inhibitors of non-fibrillar protein aggregation (Figure 8). The closely related 

Bri3 BRICHOS domain (79 % similar or identical residues) has very similar activities 

compared to mainly oligomeric Bri2 BRICHOS preparations, suggesting overlapping and 

potentially conserved molecular chaperone functions for the BRICHOS domains of the Bri 
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family (Figure 8). Interestingly, the proSP-C BRICHOS domain which forms mostly trimers 

and some monomers in solution has been shown to exclusively inhibit secondary nucleation 

pathways during Aβ42 fibril formation and associated neurotoxicity and has only very minor 

potency in preventing non-fibrillar aggregation (53, 161). These results indicate that the 

ability to prevent distinct substrates from aggregation might be encoded in the BRICHOS 

quaternary structure, but we will come back to that in chapter 4.1.3. 

4.1.3 Bri2 BRICHOS assembly mechanism 
The Bri2 BRICHOS domain is the ectodomain of the Bri2 protein that can be released into 

the extracellular space by proteolytic cleavage (135). In paper I we found Bri2 BRICHOS 

HMW assemblies in the conditioned culture medium of different cell lines and after 

incubation of monomers in serum. Bri2 BRICHOS oligomers are clearly the only potent 

species against non-fibrillar protein aggregation and contain a polydisperse mixture of 

disulfide-linked assembly states. The two Cys residues in Bri2 BRICHOS are highly 

conserved in the BRICHOS super family (112). The conditions that initiate structural and 

functional changes might be complex and several activation mechanisms have been reported 

for ATP-independent molecular chaperones, but for Cys containing chaperones the redox 

environment might be potentially important. Therefore, we asked ourselves in paper III if the 

Bri2 BRICHOS domain is a redox-regulated molecular chaperone domain. 

We found that Bri2 BRICHOS monomers convert into polydisperse HMW assemblies under 

reducing conditions concomitant with activation of the ability to prevent non-fibrillar protein 

aggregation. The overall secondary structure and surface-exposed hydrophobic area of these 

reduction-induced Bri2 BRICHOS HMW assemblies are appealingly similar to isolated 

oligomers. Furthermore, assembly formation can be induced by shifting the redox 

equilibrium of physiological relevant redox regulators towards the reductive end of the 

spectrum. Strongly oxidizing conditions on the other hand have no influence on secondary or 

quaternary structures of Bri2 BRICHOS monomers and oligomers, do not compromise the 

ability of Bri2 BRICHOS oligomers to prevent amorphous protein aggregation or give rise to 

active Bri2 BRICHOS monomers. It is conceivable that molecular chaperone functions are 

upregulated under conditions that constitute compartment-specific stress to protein 

homeostasis. In this light it makes sense that proteins that exist in the net reducing cytosolic 

environment, like HSP33 or the two yeast peroxiredoxins PrxI and PrxII shift their 

equilibrium from the inactive towards their active molecular chaperone conformation in 

response to oxidative stress conditions (102, 189). 
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Many proteins in the oxidizing extracellular environment are stabilized by disulfide bonds 

making them potentially sensitive to reductive stress conditions (190). Even though reductive 

stress is less studied than oxidative stress, there are several papers linking reductive stress to 

serious human conditions like inflammation, cardiomyopathy with protein aggregation or AD 

(191-193). Therefore, we wondered if reductive stress conditions could lead to protein 

aggregation using an extracellular body fluid as model substrate. Surprisingly, serum proteins 

form non-fibrillar aggregates at elevated temperatures only in the presence of reductant, and 

Bri2 BRICHOS monomers, oligomers and a-crystallin can reduce this reduction-induced 

aggregation. It was a bit counterintuitive that isolated Bri2 BRICHOS oligomers appeared 

less efficient than monomers, but it is likely that reducing conditions will also give rise to 

aggregation of Bri2 BRICHOS oligomers that may affect chaperone activity. So far, we have 

shown in paper III that serum proteins are sensitive to reductive stress which is also a trigger 

for Bri2 BRICHOS monomers to form HMW assemblies with affinities towards non-fibrillar 

substrates. However, we could not show a redox cycling between monomers and oligomers 

as reported for other ATP-independent molecular chaperones (102, 189). This could either 

mean that we did not find the right conditions that would reduce disulfide bonds in the Bri2 

BRICHOS oligomer and release smaller species or, as we speculate, that anti-amyloid active 

Bri2 BRICHOS monomers might constitute a reservoir in the extracellular space that can be 

activated upon reductive stress insults to chaperones that prevent non-fibrillar protein 

aggregation. Further studies will be needed to prove or disprove either of these hypotheses. 

In order to get some further insights how Bri2 BRICHOS monomers convert into disulfide-

dependent oligomers we investigated the activation mechanism in more detail, with regard to 

the redox state of the Cys residues. At first, we quantified free thiols in solution for all Bri2 

BRICHOS species using the Ellman’s reagent. As expected, we found that under native and 

denaturing conditions all thiols are engaged in either intramolecular (monomer) and/or 

intermolecular disulfide bonds (dimer and oligomer). We could also detect (as expected) two 

free thiols for completely reduced Bri2 BRICHOS monomers. Surprisingly, we could detect 

only one free thiol per molecule under denaturing and reducing conditions for Bri2 

BRICHOS dimers and oligomers, indicating that one of two intermolecular disulfide bonds is 

resistant to complete reduction under the tested conditions. This was supported by the 

observation of a Bri2 BRICHOS dimer with one intermolecular disulfide even after 

incubation with a very high molar excesses of reductant, using polyacrylamide gel 

electrophoresis.  
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With the aim to assign the two Cys residues, namely Cys164 and Cys223 to specific disulfide 

bonds with apparently distinct reduction potentials we first used a proteomics MS set-up as 

outlined in 3.1.2. We were able to assign peptide fragments containing the Cys164-Cys164 

homodisulfide or Cys164-Cys223 heterodisulfide bonds in all fractions (monomers, dimers, 

oligomers) under non-reducing conditions and concluded that the absence of detection of the 

Cys223-Cys223 heterodisulfide bond in MS experiments is due to a high density of repelling 

charges in this peptide fragment. Using the same set-up but under reducing conditions, we 

could find peptide fragments for both Cys residues in Bri2 BRICHOS monomer fractions. 

Interestingly, in Bri2 BRICHOS dimer and oligomer fractions only the Cys164 containing 

peptide fragment is present. The lack of success to detect the Cys223 in dimer and oligomeric 

fractions can have two reasons. Either there are structural differences in comparison to 

monomers that do not allow equivalent proteolytic cleavage, or the homodisulfide bond 

Cys223-Cys223 is resistant towards full reduction. We concluded from these results that 

heterodisulfide bonds (that must occur in Bri2 BRICHOS monomers) as well as 

homodisulfide bonds, are formed in different Bri2 BRICHOS assembly states and that our 

data points to the Cys223-Cys223 homodisulfide bond as the more stable disulfide. 

Furthermore, single Cys to Ser substitution mutants show that Cys223-Cys223 dimers are 

more stable compared to Cys164-Cys164 dimers and mixing of mutants with and without the 

solubility tag linked for detection purposes, suggested that the disulfide bond in Cys223-

Cys223 linked dimers are able to swap between subunits. 

Altogether, we established in paper III that Bri2 BRICHOS monomers are able to convert 

into chaperone active polydisperse HMW assemblies (Figure 8). We concluded that cycles of 

reduction and re-oxidation of intra- and intermolecular homodisulfide bonds are mediated by 

distinct thiol reactivities, whereby the Cys223-Cys223 homodisulfide bond is key to the 

stability of the dimeric substructure. Furthermore, we speculate that shifting the equilibrium 

towards Bri2 BRICHOS oligomers in response to reductive stress conditions in the net 

oxidizing extracellular environment could contribute to protect the organismal homeostasis. 

In the end, I would like to shortly refer back to our observation that we almost exclusively 

find Bri2 BRICHOS and Bri3 BRICHOS oligomers in purifications using the Trx-tag. 

Generally cytosolic protein expression in E. coli occurs in a reducing environment and we 

used in both studies (paper I and IV) the same E. coli strain. The physiological redox 

regulators that we found to mediate the formation of Bri2 BRICHOS oligomers from 

monomers include also the Trx system. Furthermore, the Trx solubility tag contains the 

catalytic CXXC motif which might be activated (reduced) in the reducing cytosolic 
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environment. Using the Trx tag as solubility tag for protein expression will increase the 

overall cytosolic Trx concentration and the Trx-BRICHOS fusion protein will create a very 

high local concentration due to the intramolecular arrangement. One can speculate that this 

environment will shift the equilibrium of the redox sensitive Bri2 BRICHOS and Bri3 

BRICHOS domain even more towards large oligomers in comparison to the redox-inert NT*-

tag. 

4.2 MODULATION OF THE PROSP-C BRICHOS AND BRI2 

BRICHOS ASSEMBLY STATE AND ANTI-AMYLOID ACTIVITY 
ProSP-C BRICHOS and Bri2 BRICHOS share ~25% identical residues or conservative 

replacements but their subunit overall secondary and tertiary structure are predicted to be 

largely conserved (112, 162). While the proSP-C BRICHOS domain forms mainly non-

covalently linked trimers (111), Bri2 BRICHOS exists as monomers and disulfide-dependent 

polydisperse assemblies. Introducing a serine to arginine (Arg) mutation in the trimer 

interface of proSP-C BRICHOS shifts the equilibrium towards monomers and increases the 

efficiency to inhibit Ab42 fibril formation (157). However, we recognized a threonine (Thr) at 

position 187 in the proSP-C BRICHOS trimer interface that pokes into a positively charged 

pocket on the neighboring subunit (Figure 6C), which corresponds to Arg221 at the 

homologous position in a structural model of Bri2 BRICHOS. 

In paper II and V we introduced mutations in the Bri2 BRICHOS (Arg 221 to glutamic acid 

(R221E)) and proSP-C BRICHOS domains (Thr 187 to Arg (T187R)), respectively, with the 

aim to create repulsions between the subunits by modulating the respective surface charge of 

the subunits. MS as well as other complementary methods showed that proSP-C BRICHOS 

T187R forms stable monomers and Bri2 BRICHOS R221E shifts the Bri2 BRICHOS 

assembly spectrum towards smaller species but disulfide dependent dimers and polydisperse 

oligomers still exist. However, upon incubation, Bri2 BRICHOS R221E oligomers appear to 

be less stable compared to WT oligomers. Notably, the equilibrium between monomers and 

non-covalently linked dimers that we find for WT Bri2 BRICHOS is completely shifted 

towards the monomer for Bri2 BRICHS R221E, even at high BRICHOS concentrations. 

Mixing of monomeric R221E with WT oligomers, destabilizes WT oligomers that 

subsequently release smaller subunits. Since polydisperse WT Bri2 BRICHOS oligomers are 

characterized by inter-subunit disulfide bonds, it is reasonable that the presence of R221E 

monomers will not be enough to fully dissociate them into small species.  



 

 45 

Both mutants suppress Aβ42 fibril formation in sub-stoichiometric concentrations and almost 

exclusively inhibit secondary nucleation events. In paper I, WT Bri2 BRICHOS monomers 

prevented secondary nucleation but also to some degree Aβ42 fibril end-elongation. Since 

monomeric WT fractions contain also non-covalently linked dimers, which R221 monomer 

fractions do not, our results corroborate that BRICHOS monomers are the most efficient 

species in blocking secondary nucleation events and hence have the greatest potential to 

prevent neurotoxic effects of small fibril surface-catalyzed Aβ42 aggregates. Accordingly, 

Bri2 BRICHOS R221E monomers most efficiently prevent Aβ42 induced neurotoxicity in 

hippocampal mouse brain slices. In line with our postulated model in paper I, Bri2 BRICHOS 

R221 dimers affect fibril end-elongation, in addition to secondary nucleation. Moreover, we 

demonstrate that the release of smaller subunits from Bri2 BRICHOS oligomers by Bri2 

BRICHOS R221E monomers enhances their overall efficiency to prevent Aβ42-derived 

neurotoxic effects, providing a possible way to modulate the anti-Aβ42 capacity of the PN 

(Figure 8). 

Turning to proSP-C BRICHOS it was previously hypothesized that the proSP-C BRICHOS 

monomer is the active conformation and the trimer acts as an inactive storage conformation 

where the proposed Aβ binding site, face A, is inaccessible (157). However, in paper V we 

found some challenging results, showing that at low concentrations the purely monomeric 

proSP-C BRICHOS T187R mutant is equally efficient in preventing the overall rate of Aβ42 

aggregation compared to the WT after correcting for the molecular stoichiometry. However, 

the sigmoidal fitting parameters t1/2 and rmax saturate for high BRICHOS concentrations at 

lower levels for the WT. Both, proSP-C BRICHOS T187R monomers and WT trimers bind 

to immobilized Aβ42 fibrils but the mutant monomer binds with an apparent 5-fold higher 

affinity as measured by surface plasmon resonance spectroscopy (SPR). This demonstrates 

that both, proSP-C BRICHOS monomers and trimers, can interact with Aβ42 and prevent its 

self-aggregation. We speculated that the proSP-C BRICHOS trimer might expose another 

binding site with lower affinity for Aβ42 fibrils compared to the monomer. However, 

structural investigation of proSP-C BRICHOS bound to Aβ42 fibrils will be needed to prove 

this hypothesis. 

4.3 PROSP-C BRICHOS AS A TOOL TO STUDY AMYLOID 

FORMATION 

A recent study proposed that Ab42 fibril proliferation occurs through a two-step nucleation 

mechanism where first Ab42 monomers form small unstable oligomers that can dissociate 
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back to monomers. However, these oligomers eventually convert into an Ab42 oligomer that 

can grow into mature fibrils (converting oligomer). Using mathematical modeling it was 

estimated that the converting oligomers roughly consist of  4 – 9 Ab42 monomers (194). After 

establishing that proSP-C BRICHOS T187R forms pure and stable monomers and strongly 

prevents secondary nucleation events we wondered if we could use this proSP-C BRICHOS 

variant to study binding towards small Ab42 aggregates by FCS.  

We used an amine-reactive dye to label proSP-C BRICHOS T187R under conditions where 

only a fraction of all proteins is labeled and essentially carry only one dye molecule per 

protein. It is important to ensure that the binding abilities of proSP-C BRICHOS T187R are 

not compromised by multiple labeling with fluorophores. FCS and fluorescence cross-

correlation spectroscopy (FCCS) experiments show that proSP-C BRICHOS T187R does not 

bind to Ab42 monomers. This was confirmed by SPR spectroscopy measurements where no 

binding towards immobilized Ab42 monomers was detected, which is similar to WT proSP-C 

BRICHOS (53). 

To determine binding of proSP-C BRICHOS to small Ab42 aggregates we followed the Ab42 

aggregation over time in presence of proSP-C BRICHOS T187R using FCCS and analyzed 

the autocorrelation curves and cross-correlation curves using the maximum entropy method 

for FCS. This method is a fitting routine that was developed for a more bias-free 

interpretation of autocorrelation curves with multiple components, which was necessary since 

Ab42 aggregation is inherently heterogeneous. FCS and FCCS data reveal that proSP-C 

BRICHOS T187R binds to a heterogeneous mixture of soluble Ab42 aggregates of increasing 

sizes over time and that multiple BRICHOS molecules are able to bind to Ab42 aggregates as 

they grow in size. Nonetheless, in our FCCS experiments we also found a distribution of 

diffusion times that represent small Ab42 aggregates that are bound by one labeled proSP-C 

BRICHOS T187R molecule. Unfortunately, we cannot resolve this diffusion time from the 

average diffusion time of a free proSP-C BRICHOS T187R molecule (not bound to Ab42). 

The reason is that in FCS the diffusion time of spherical molecules scales with the third 

power of the molecular weight. However, the FCCS data shows that these small aggregates 

must contain one labeled proSP-C BRICHOS T187R molecule and at least one labeled Ab42 

molecule and several unlabeled Ab42 monomers. We calculated that our resolution limit lies 

below a theoretical Ab42 aggregate made up of less than 9 monomers. Since proSP-C 

BRICHOS T187R does not bind to Ab42 monomers, has no effects on primary nucleation but 

inhibits secondary nucleation we concluded that these small (< 9 monomers) Ab42 aggregates 
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must be secondary nucleation competent (Figure 8). This size range fits surprisingly well 

with the upper limit of the proposed converting oligomers (194). The trimeric WT proSP-C 

BRICHOS domain has been recently extensively used to advance the kinetic description of 

Ab42 aggregation (171, 194-196). In this light, we believe that the purely monomeric and 

ATP-independent proSP-C BRICHOS T187R mutant is a good complementary molecular 

model chaperone to study the kinetics of various amyloidogenic peptides in molecular detail. 
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Figure 8: Graphical summary of the work presented in this thesis. The Bri2 BRICHOS domain can 
form monomers, dimers and disulfide-linked polydisperse oligomers and the assemblies differ in their 
activities to prevent Ab42-induced neuronal network toxicity or amorphous protein aggregation (paper 
I). The monomeric Bri2 BRICHOS R221E mutant is able to partly disassemble WT BRI2 BRICHOS 
oligomers with enhanced effects to prevent Ab42-induced toxicity (paper II). Bri2 BRICHOS 
monomers convert into disulfide-dependent oligomers under reducing conditions (paper III). HMW 
preparations of Bri2 and Bri3 BRICHOS are very similar in their abilities to prevent non-fibrillar 
protein aggregation, secondary nucleation on amyloid fibrils and amyloid fibril end-elongation (paper 
IV). The monomeric proSP-C BRICHOS T187R mutant enabled us to detect binding towards small 
secondary nucleation competent Ab42 aggregates (paper V). 
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5 CONCLUSIONS AND FUTURE PERSPECTIVES 

In this thesis, we have presented insights into the abilities of BRICHOS domains from 

different proproteins to prevent fibrillar and non-fibrillar protein aggregation and 

demonstrated an assembly specific substrate specificity for the Bri2 BRICHOS domain. 

Furthermore, we show that exclusively Bri2 BRICHOS oligomers possess molecular 

chaperone functions to prevent non-fibrillar protein aggregation and are generated from 

monomers under reducing conditions. Surprisingly, under similar conditions serum proteins 

form insoluble non-fibrillar aggregates. We propose that the recruitment of Bri2 BRICHOS 

monomers to form HMW assemblies could be a way to boost the extracellular PN and 

maintain homeostasis upon reductive stress. 

From our observations that BRICHOS monomers are the most efficient species in blocking 

the generation of toxic nuclei catalyzed at the surface of already formed amyloid fibrils, we 

were able to design a Bri2 BRICHOS monomer mutant with the ability to partly disassemble 

Bri2 BRICHOS oligomers that show enhanced anti-amyloid activities. We speculate that 

these findings harness the possibility to increase the anti-amyloid capacity of the PN in 

amyloid-associated disorders by activating endogenous Bri2 BRICHOS oligomers.  

Furthermore, we generated a stable proSP-C BRICHOS monomer mutant by introducing a 

mutation at the homologous position compared to Bri2 BRICHOS. This mutant enabled us to 

show binding of a proSP-C BRICHOS monomer to small but yet secondary nucleation 

competent, supposedly toxic, Ab42 aggregates with an estimated size of less than nine 

monomers by FCS. We hypothesize that the high efficiency of the proSP-C BRICHOS 

domain to reduce Ab42 aggregation-associated toxicity (53) is reflected by the ability to bind 

to the smallest secondary nucleation competent Ab42 aggregates. 

Even though we could unravel several features of the molecular chaperone domain 

BRICHOS there are still many open questions. For example, we show a 3D density map of a 

Bri2 BRICHOS oligomer, however, there is still little known about the structural changes that 

occur during the conversion from monomers to oligomers or about the potential substrate 

binding sites. Additionally, the physiological relevance under basal and/or stress conditions 

of each Bri2 BRICHOS species remains to be established. Furthermore, the proSP-C 

BRICHOS monomer was suggested to be the anti-amyloid active conformation while the 

trimer is inactive (157). However, we could detect binding of the proSP-C BRICHOS trimer 

to Ab42 fibrils (with 5-fold lower affinity) and similar effects on Ab42 aggregation kinetics 
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compared to the monomer mutant. This raises the questions if the trimer is able to expose 

face A, at least in one subunit or if there is a face A independent binding site for Ab42 fibrils. 

ATP-independent molecular chaperones are rather “holdases” than “foldases” and it remains 

to be seen how they sequester misfolded or aggregated proteins in the extracellular space. 

Since the extracellular environment has only low levels of ATP it is unlikely that secreted 

ATP-dependent molecular chaperones would take on this task. Some studies show that 

scavenger and lipoprotein receptors mediate the internalization of misfolded and aggregated 

proteins and that they are less toxic if they are taken up in complexes with molecular 

chaperones (197, 198). Interestingly, recombinant Bri2 BRICHOS that has been delivered to 

the mouse brain by focused ultrasound is taken up by a subset of neurons (199). We found 

that Bri3 BRICHOS behaves very similar in terms of quaternary structure and function 

compared to Bri2 BRICHOS but shedding of the ectodomain has not been reported. One 

appealing hypothesis could be that membrane-bound Bri3 BRICHOS co-oligomerizes with 

other secreted BRICHOS domains and functions as a BRICHOS specific receptor. Likewise, 

it is imaginable that regulation of Bri2 cleavage under normal and stress conditions can shift 

the equilibrium between membrane-bound and secreted Bri2 BRICHOS, making it a self-

regulated chaperone-receptor. 

Taken together, we outlined some basic principles of the structure-function relationship of the 

BRICHOS domain and paved the way for further investigations regarding the identification 

of substrate binding sites, extracellular chaperone functions and potential applications in 

aggregation disorders. 
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Momele & Magger für die langjährige Unterstützung bedanken und dass ich mich daheim 

immer direkt wohl fühle – quasi wie, wenn ich nie weg war J. Vielen Dank an meine Eltern, 

die mich ja jetzt doch schon das ein oder andere Jahr durchfüttern mussten, aber mich immer 

bei allem unterstützt haben! Okay vielleicht nicht als ich mein Biostudium abbrechen wollte 

;). Danke auch an den ganzen Bunz-Clan dafür, dass ihr mich so liebevoll bei euch 
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aufgenommen habt. To Julen (“Yes, yes!” – you appear in this section now J) for sharing all 

your (most of the time) hilarious analogies, Raul imitations and “Hold on, hold on, hold on” 

just being an amazing good friend. Maria you basically got dragged into this section with 

Julen and will forever be part of it. Thank you for your warm personality and 

counterbalancing of Julen when he becomes a bit too ecstatic. I’m really looking forward to 

your babysitting skills! 

Zum Schluss, Jessy es ist schwer auszudrücken wie glücklich ich sein kann, dich zu haben 

und dass du mir nach Schweden gefolgt bist! Dafür, dass du mich immer zum Lachen bringst, 

mir den Rücken freihältst, wenn ich mal wieder länger brauche, an meiner Doktorarbeit 

rumfummle, beim Fußball bin oder auf Männerurlaub! Ich freue mich schon auf die nächsten 

Jahrhunderte mit dir und der Marla! 
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