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POPULAR SCIENCE SUMMARY OF THE THESIS 
Exposure to stress hormones (glucocorticoids, GC) during fetal life is known to affect the 

child in many ways, including negative effects on cognition, brain morphology, behavior and 

metabolism. Our research confirms these findings. We have shown that first trimester GC 

treatment in pregnant women at risk of having a child with a disease called congenital adrenal 

hyperplasia (CAH) adversely affects cognition and metabolism in treated children. Moreover, 

our results suggest that girls seem more vulnerable than boys to GC exposure, as girls 

performed worse in verbal and non-verbal IQ tests and verbal working memory, but no effect 

was found in boys. In addition, girls, but not boys, had affected glucose and insulin 

metabolism, with a lower HOMA-β index, an estimation of pancreas ability to secret insulin, 

an indication of reduced insulin sensitivity. Finally, older teenagers and young adults of both 

sexes had higher blood lipids than a group of matched (age, sex) controls.     

CAH is a disease caused by a defect in the adrenal steroid synthesis, leading to a shortage of 

cortisol and androgen excess. This disease is potentially life-threatening after birth if not 

treated with cortisone. However, girls are affected already during fetal life with virilization of 

the external genitalia because of the high androgen level, sometimes to the extent that sex-

assignment is difficult to determine at birth. If the mother is treated with GC during 

pregnancy, androgen levels will be low and virilization reduced. However, because the 

genital development occurs in early gestation, GC treatment must begin as soon as possible, 

preferably in gestation week 6-8 to be effective. At that time in pregnancy, it is not yet 

possible to determine whether the fetus has the disease or not. Because CAH has a recessive 

inheritance (parents with a mutation have a 25% risk of having a child with the disease) and 

only the girls with CAH benefit from the treatment, 7/8 children (statistically) will be treated 

unnecessarily. Thus, adverse side effects without any benefit are not acceptable.   

This thesis investigates potential long-term effects in children without CAH who were 

exposed to GC during the first trimester (as it was not known if they were affected with CAH 

or not). Forty-two treated children and young adults (age range, 4-26 years) and 75 age- and 

sex-matched controls from the general population were included in the studies. The results 

show that GC exposure during fetal life has adverse effects on metabolism and cognition, 

with girls overall being more vulnerable than boys. Thus, prenatal GC treatment in 

pregnancies at risk of CAH is questionable given that most treated cases do not benefit from 

the treatment.   



 

 

ABSTRACT 
Congenital adrenal hyperplasia (CAH), due to 21-hydroxylase deficiency (21OHD), is a 

disease with an inborn error of the adrenal steroid synthesis. This enzyme deficiency leads to 

cortisol shortage and androgen excess. If left untreated, CAH is potentially life-threatening 

especially in the neonatal period, but girls are also affected in the prenatal period with 

virilization caused by the surplus of adrenal androgen. Prenatal dexamethasone (DEX) 

treatment will minimize the androgen levels and reduce virilization. However, because the 

development of genitalia occurs in early gestation, the treatment must start in gestational 

week (GW) 6-8 to be efficient. Because of the recessive mode of inheritance and because 

genotyping of the fetus is not possible until GW 12, statistically, 7 of 8 fetuses will be treated 

unnecessarily during the first trimester of fetal life. This quandary emphasizes the importance 

of investigating the potential risks of DEX treatment. Glucocorticoid (GC) exposure during 

fetal development is known to negatively affect the child (e.g. cognition, behavior and 

metabolism and altered brain morphology).  

This thesis is part of a long-term study of children without CAH who were prenatally treated 

with DEX because of the potential risk of having CAH. Specifically, the thesis investigates 

the effects of DEX treatment on cognition (study I), behavior (study II), metabolism (study 

III) and blood pressure (study IV). Forty-two DEX-treated children and young adults without 

CAH (age range, 4-26 years) and 75 controls from the general population matched for age 

and sex were included in the studies. We identified a negative effect on cognition in DEX-

treated girls but not in boys. Girls did worse on test assessing verbal IQ, non-verbal IQ and 

verbal working memory. There were no differences in behavioral problems, evaluated by 

parents and self-rated questionnaires in treated versus non-treated children. We found a lower 

HOMA-β in girls, but not in boys (another sex-dimorphic effect), suggesting a lower beta-cell 

function due to prenatal DEX exposure. In the younger age group (<16 years), fasting glucose 

levels were higher in the treated group in both sexes. In the older age group (≥16 years), total 

cholesterol and LDL cholesterol levels were higher in the exposed group in both sexes. When 

we assessed 24-hour ambulatory blood pressure, the only significant finding was higher pulse 

pressure in the younger age group during nighttime measurements.   

In conclusion, early prenatal DEX treatment seems to have a sex-dimorphic effect on 

cognition and glucose metabolism. It also affects blood lipids in both sexes. Owing to these 

findings, and other negative findings previously shown in this cohort, the safety of prenatal 

DEX treatment is questionable. New, and an earlier prenatal diagnosis is needed to avoid 

treating healthy fetuses and males with CAH. 
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1 INTRODUCTION 
Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is one of the most 

common causes of ambiguous genitalia in females. Most individuals with CAH have 

mutations in the gene coding for this enzyme leading to a reduced synthesis of glucocorticoid 

(GC) and mineralocorticoid (MC) in the adrenal cortex [1]. Accumulation of steroid 

precursors will give an increased androgen synthesis in the adrenals already during early fetal 

development. Consequently, the external genitalia of the female fetus will become virilized, 

sometimes to the extent that sex assignment is difficult to determine at birth [2]. Prenatal 

dexamethasone (DEX) treatment aims to reduce the androgen overload and ameliorate the 

virilization in girls with CAH. To be effective, the treatment has to start before genotyping 

of the fetus is possible and the majority of the fetuses will thus be treated  unnecessarily 

during embryogenesis [3]. Possible side effects of the treatment are of major concern because 

children not needing treatment should not be exposed to unnecessary risks [4]. This thesis 

assesses the potential long-term side effects of prenatal DEX treatment in the context of 

CAH, focusing on the children and adults not having CAH but exposed to DEX during the 

first trimester of fetal life.  
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2 BACKGROUND                                        

 CONGENITAL ADRENAL HYPERPLASIA (CAH) 
CAH is caused by an enzyme deficiency in the steroid synthesizing pathway in the adrenal 

cortex (Figure 1). Over 95% of patients with CAH have a deficient 21-hydroxylase enzyme 

which leads to a shortage of cortisol and aldosterone, accumulating 17-

hydroxyprogesterone (17-OHP) and an increased androgen synthesis [1].  

                                                                                  Reprint from Parsa and New 2017 with permission from Elsevier[2]  

Figure 1. Deficiency of 21-OH leads to accumulation of precursors and an increase in testosterone production. 

 

Cortisol is synthesized in the adrenal cortex and released to the circulation in response to 

adrenocorticotropic hormone (ACTH) synthesized in the pituitary. ACTH synthesis is in 

turn stimulated by the hypothalamic release of the corticotropin-releasing hormone (CRH) 

and the antidiuretic hormone (ADH). There is also a negative feedback mechanism due to 

increased circulating cortisol, which inhibits pituitary and hypothalamic hormonal 

synthesis. These hormones and their interactions are called the hypothalamus-pituitary-

adrenal (HPA) axis [5].  
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Reprint from Hardy et al 2010 with permission from Elsevier[6] 
 

Figure 2. Changes in the adrenal steroid synthesis; in CAH and its response to glucocorticoid treatment.   
 
 

Because the adrenal cortex cannot synthesize enough cortisol in individuals with CAH, the 

pituitary will increase ACTH release to stimulate steroid synthesis. This situation leads to an 

accumulation of steroid precursors and an overproduction of androgens instead of an 

increased cortisol synthesis. High androgen levels during fetal development affect the 

external genitalia and virilize the female fetus [7] (Figure 2). 

The characteristic of 21OH deficiency depends on the severity of the mutation and 

reduction of enzyme synthesis [8, 9]. The phenotype ranges from mild in non-classic (late-

onset) CAH, to the more severe phenotype in the classic form, with or without salt-wasting 

(SW) [1]. SW CAH is life-threatening in the neonatal period, during starvation, infection, 

or both. The shortage of MC (Aldosterone) leads to a SW crisis risk due to the individual´s 

inability to control water and electrolyte balance, resulting in hyponatremia. Cortisol 

deficiency may lead to severe hypoglycemia. Because the newborn infant usually has a 

starving period during the first days of life, before the mothers’ breast milk production 

increases, the risk of adrenal crisis is most flagrant. Neonatal screening programs have been 

introduced to analyze the level of 17-OHP in the newborn child (the major precursor that 

accumulates in the steroid synthesis pathway), and the goal is to prevent a life threatening 

SW crisis [10-12]. The incidence of 21OHD in Sweden is 1/10 000 children, where about 

50% of these children have no symptoms before diagnosis because of the neonatal 

screening [13].  

Children with classic CAH are usually diagnosed short after birth either by ambiguous 

genitalia in girls, via the neonatal screening program for CAH or by clinical signs of adrenal 

insufficiency [12]. Females, with classic CAH, are virilized to different degree, sometimes 

https://www-sciencedirect-com.proxy.kib.ki.se/topics/biochemistry-genetics-and-molecular-biology/glucocorticoid
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to the extent that sex may be hard to establish at birth. The genitalia of boys with CAH are 

not affected but they may have hyperpigmentation of the scrotum. Classic CAH is divided 

into two sub-types, depending on the ability to synthesize aldosterone: Salt wasting CAH 

(SW CAH) and Simple virilizing CAH (SV CAH) [1]. In SW CAH, the child has insufficient 

cortisol and aldosterone production with a considerable risk of SW crisis. In SV CAH, the 

child has a less deficient aldosterone synthesis but a severe cortisol deficiency and an 

excess of androgens, enough to virlize female fetuses [14].  

Individuals with non-classic CAH (late-onset CAH) have milder disease, although the 

pituitary still produces an excess of ACTH to meet the demand of cortisol, with an 

androgen overload. Symptoms of androgen excess is usually presented later in life since the 

levels are not high enough to cause prenatal virilization in females. Hence, these children 

may be missed in the screening process due to lower 17-OHP levels, compared to levels 

obtained in classic CAH [15]. Therefore the diagnosis may be delayed until childhood or 

even until adult age when the clinical signs of hyperandrogenism become more evident. 

Children may show signs of precocious puberty and in women it may cause hirsutism (i.e. 

excessive growth of facial or body hair). Males may escape diagnosis completely. The 

symptoms of androgen excess are reduced by GC treatment, but there is no absolute cortisol 

or aldosterone deficiency [15].  

Treatment of CAH starts as soon as the child has been diagnosed and aims to replace the 

shortage of cortisol and aldosterone. However, for various reasons, treatment is hard to 

calibrate perfectly. Individuals may be either undertreated, or more commonly, over-treated 

because of the fear of adrenal crisis [14]. The difficulty in calibrating the cortisol treatment 

may lead to long-term effects due to the under- or over replacement of GC [16]. 

 VIRILIZATION  

Classic CAH, affects the genital development during gestational week (GW) 8-12 [17, 18]. 

The  severity of genital virilization in girls correlates somewhat to the severity of the 

genotype, although there are also other influencing factors since girls with the same mutation 

may have a different degree of virilization [19, 20]. The virlization is classified according to 

the Prader stages (on a scale from 1-5), with stage 5 indicating the most severe virilization 

[21]. The internal genitalia, i.e. the uterus and the ovaries, are though unaffected. In Prader 1, 

only the clitoris is enlarged but the labia, urethra and vaginal orifices are unaffected. In Prader 

5, the urethral orifice is located almost at the tip of the enlarged clitoris and the vaginal and 
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urethral orifices are fused to a common urogenital sinus. The labia are also fused into a 

scrotum-like pouch [22] (Figure 3). 

 

                 

                                                                           Reprint from Principles of gender-specific medicine 2017 with permission from Elsevier [23] 

Figure 3. Prader scale of female external genitalia.  

 

Depending on the severity of the virlization reconstructiv surgery may be needed. Surgery 

may be indicated to separate the vaginal and uretral orfices, but it can also be suggested to 

reduce the clitoris´size. Surgery on the clitoris may lead to reduced innervation and 

sensation, which is why decision regarding surgery preferably is postponed until the girl is 

old enough to decide on her own. Moreover, if genitoplasy is performed in infancy, there is 

often a need for further reconstructive surgery at puberty [24]. 

 PRENATAL TREATMENT OF CAH 

Prenatal DEX treatment of CAH has been available since the middle of the 1980s. It is based 

on the hypothesis that virilization can be reduced if the mother´s DEX treatment achieves 

adequate fetal adrenal suppression. However, to be effective, the treatment has to start before 

GW 7, because the development of the genitalia occurs during GW 8-12 [3, 17, 25, 26]. The 

necessity to start the treatment early in pregnancy becomes a dilemma since genotyping is not 

yet possible at that time in gestation. In addition, because CAH has a recessive mode of 

inheritance, the statistical probability that the fetus is a girl with CAH is only one out of eight. 

Accordingly, most fetuses will be exposed to DEX treatment unnecessarily until GW 12, 

when genotyping on DNA from a chorionic villus sampling (CVS) is possible. This means 

that healthy children and boys with CAH do not have any known benefit that could balance 

the treatments potential risks. 
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Today, early fetal sex-typing (SRY detection), using cell-free fetal DNA from maternal 

blood, can avoid boy´s prenatal treatment, if done after 4.5 weeks of gestation [27]. 

However, the unnecessary treatment of healthy girls cannot be avoided, and a majority 

(three out of four), will still be exposed unnecessarily. In this context, a careful risk 

assessment of the terapy is of great importance, especially given that the plausible long-

term effects of the DEX treatment are poorly understood. Because there was uncertainties 

about the safety of this treatment, an international meeting in Gloucester, Massachusetts in 

2002, was held. A consensus was reached that prenatal DEX treatment of CAH should only 

be offered as part of a clinical trial, with written consent from the mother only after 

information about the potential risks [11].  

Long-term effects of synthetic GC (sGC) in growing children and adults have been studied 

for many years. Thus, there is good knowledge of the benefits of treatment regarding various 

diseases and side effects. Using this knowledge, we can decide whether a treatment should be 

initiated or not. The same risk-benefit analysis is legitimated when exposing a fetus to 

medical treatment. However, to make accurate decisions, more information is needed about 

the treatment´s long-term effects.  

In Sweden, prenatal treatment of CAH has been used since 1984, and since 1999 only within 

the frame of a clinical follow-up study (the PREDEX-study) [28]. Since then, our research 

group has systematically evaluated the long-term effects of DEX-treated individuals until 

adult age. Our research team studies the impact of DEX on maternal health during treatment, 

fetal and postnatal growth, metabolic health, programming effects on whole-genome 

methylation and cognitive development including behavioral aspects [4, 26, 28-35]. In 

addition, we also investigate the possible effects on brain structure and function and the 

correlation with cognitive function, using functional magnetic resonance imaging (fMRI) [35, 

36]. 

The thesis aims to assess possible long-term effects of early prenatal DEX treatment in the 

context of CAH. The focus has been on evaluating the impact of DEX therapy on cognition, 

behavior and metabolic health in healthy/non-CAH individuals exposed to DEX during the 

first trimester of fetal life.  
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 GLUCOCORTICOIDS  

2.4.1 Regulation and synthesis of cortisol  

The HPA axis (Figure 4) regulates the synthesis of cortisol, ACTH and CRH and controls the 

body´s basal cortisol level as well as stress-induced levels. The amount of circulating cortisol 

is therefore, dependent on this system and its degree of sensitivity and activity, and 

consequently impacts almost all bodily tissues at basal state and during increased physical 

or emotional stress [5].  

                                                         
        Reprint from Handbook of Behavioral Neuroscience 2016 with permission from Elsevier [37] 

Figure 4. The HPA-axis  
 

Cortisol cannot be stored in the adrenal gland making the cortisol level dependent on rapid 

synthesis. However, the quantity and activity of cortisol are also regulated by other 

mechanisms. Some 95% of the total cortisol amount secreted into the circulation are bound 

to either GC-binding globulin (CBG) or albumin, which inactivates it. Only about 5% of 

the total amount of cortisol is unbound to protein and thus metabolically active. The CBG 

level is therefore also a regulator of the amount of active cortisol. In situations of increased 

stress, in addition to increased synthesis, the CBG will down-regulate its synthesis to 

increase the amount of active cortisol [5, 38-40]. Moreover, the 11β-hydroxysteroid 

dehydrogenase (11β-HSD) enzymes regulate the activity of cortisol. 11β-HSD2 inactivates 
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cortisol to cortisone and 11β-HSD1 activates cortisone to cortisol [41]. These enzymes are an 

effective way of regulating cortisol activity. Depending on the nature of the organ, different 

tissues have these enzymes activated to different degrees. In the placenta, 11β-HSD2 is 

highly expressed to reduce the amount of maternal cortisol reaching the fetus [41].  

Cortisol exerts its effects by binding to the GC receptor (GR) and the MC receptor (MR). 

The GR can only be activate by GC, but the MR may be activated by both MR and cortisol. 

MR has a tenfold higher affinity for cortisol than GR and is presumed to be the primary 

receptor activated in basal state. In times of increased stress, the GR is of primary 

importance to initiate the synthesis of proteins needed in the specific tissues. The negative 

feedback loop is mostly dependent on GR, especially in states of high stress levels. The 

diverse properties of the MR and GR make the balance between them in different tissues 

important in the homeostasis of the HPA axis [38, 42]. The GR and MR are proteins 

located in the cell's cytosol and when bound to GC or MC they form dimers that enter the 

nucleus. In the nucleus the dimers either repress or enhance transcription of specific genes 

through binding to the GC response elements in the genome. There are also MR and GR 

receptors in the cell membrane that are thought to have non-genomic effects [41].  

Activation of the MR and GR has different effects in the cell. MR activation primarily leads 

to increased expression of proteins associated with regulating ion and water transport in 

different cell types, whereas activation of GR has various effects in different tissues due to 

its mutiple isoforms. At translation of the GR protein, different mechanisms alter the final 

protein characteristics. For instance, there are multiple initiation sites on the gene, 

alternative splicing and post-translational modifications leading to different length and 

nucleotide sequences of the RNA, all of which affects the final protein [41, 43].   

GR and MR are widely distributed in the human body including the central nervous system 

(CNS). In the CNS, MR is mostly confined to the structures associated with the limbic 

system. In contrast GR is abundant in the CNS, but has the highest density in the 

hypothalamus, hippocampus, amygdala and prefrontal cortex [44]. The receptors also have 

different effects depending on their location in the CNS. In the hippocampus, which is dense 

in both receptors, MR is hypothesized to be associated with regulating behavior while the 

GR is facilitating the storage of information [45].  

The different isoforms of the GR, the varying MR/GR ratio, the 11β-HSD activity and the 

amount of CBG are all part of regulating cortisol's diverse effects in different tissues [45]. In 

the kidneys, for example, the MR expression is high. On the other hand, the 11β-HSD2 is 
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also more active than 11β-HSD1, leading to a lower level of active cortisol to prevent a 

cortisol-induced MR effect on salt and water homeostasis [46].  

Because GR is the primary receptor in times of increased cortisol level and the primary 

target for sGC, the distribution and function of GR are of most importance in increased 

times of stress and the major contributor to side effects of sGC [47]. sGCs differ in their 

affinity to the MR and GR compared to endogenous cortisol. sGCs have a higher affinity to 

GR and less to MR compared to cortisol and are also more efficient activators of the GR 

receptor. In addition, sGCs are less affected by 11β-HSD enzymes and thus less inactivated. 

Moreover, they don´t bind to carrier proteins to the same extent as cortisol. These properties 

of sGCs are part of the physiology behind the efficacy but also the adverse effects of sGCs 

when used in the treatment of different medical conditions [41].   

2.4.2 Cortisol and human physiology  

Cortisol has numerous effects on almost all organ systems. The effects usually differ in the 

organs due to earlier mentioned modulatory effects of the GR. The HPA axis's homeostasis is 

the key to normal function in the basal state and situations of increased stress. Below is a 

summary of the most prominent effects of cortisol in the human body                        

Glucose and lipid metabolism  

Cortisol affects the liver, pancreas, adipose tissue and muscle cells to produce precursors to 

facilitate glucose production. A large contributor to glucose production is the liver. Cortisol 

activates gluconeogenesis and suppresses glycogen synthesis to generate energy to muscles 

and the CNS. The substrate for glucose production is primarily glycogen but fatty acids and 

amino acids also contribute [48]. In fat tissue, cortisol promotes lipolysis to supply the liver 

with free fatty acids as a substrate in glucose production. In muscle cells and other organs 

with high protein content (e.g., skin, bone and connective tissue) cortisol increases protein 

degradation to provide the liver with amino acids for the same reason. In addition, cortisol 

affects the pancreas by reducing insulin secretion and increasing the glucagon level, which 

facilitates lipolysis but also stimulates gluconeogenesis in the liver [49, 50]. This mechanism 

is essential in times of starvation. However, an unhealthy excess of cortisol leads to drainage 

of the body´s storage of proteins (in muscle, bone and other connective tissues) and increased 

lipolysis that results in an increase of glucose and lipids in the circulation [5].  
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Cardiovascular system 

Blood pressure (BP) and water balance are also affected by cortisol. Cortisol affects the 

arterioles by increasing their sensitivity to neuromodulators (e.g. catecholamines), which 

results in vasoconstriction and increased blood pressure. Further, it suppresses the effects of 

other elements (such as prostaglandins and histamines) leading to diminished vasodilation. In 

addition, cortisol has a positive effect on myocardial contraction which also contributes to the 

increased blood pressure [51]. Cortisol can also impact the kidneys by activating the MR. 

MR-activation increases the glomerular filtration rate (GFR), enhances excretion of 

potassium and retention of sodium and by that, increases water retention. Cortisol deficiency 

leads to hypotension and vice versa. However, cortisol-induced hypertension is thought to 

primarily result from an increased responsiveness and constriction of the arteries; the 

contribution of the kidneys may be of lesser importance [51, 52].  

 

Immune system 

Cortisol affects the immune system and inflammatory responses in an inhibitory fashion. 

Cortisol decreases the synthesis of a number of mediators of inflammation, including 

prostaglandins, thromboxanes and leukotrienes. Cortisol also stabilizes the lysosomes and 

reduces the local proteolytic enzyme release and thereby swelling [5]. Furthermore, cortisol 

decreases the leukocyte's recruitment to a specific inflammatory site by inhibiting the 

production of peptides that attracts leukocytes in the capillaries and suppresses the 

differentiation and maturation of monocytes and lymphocytes. These anti-inflammatory 

properties of GC are effective in treatment of inflammatory diseases (e.g., reumatoid 

arthritis) and inflammation in general [53].  

 

Bone and calcium metabolism 

Bone maturation and growth, as well as mineral density are affected by cortisol. The 

osteoblasts are affected by a reduction in their activity, increased apoptosis and a decrease 

in osteoblastogenesis. The osteoclasts are instead activated with an upgraded activity and 

survival. These combined effects lead to bone resorption and an increase of circulating 

amino acids, which can be used for gluconeogenesis. Cortisol also reduces the absorption of 

calcium in the intestine and the kidneys, leading to a secondary increase in parathyroid 

hormone and an enhanced osteoclast activity [54]. Thus, an increase in endogenous cortisol 

or treatment with sGC, may lead to osteoporosis.  

An excess of GC affects childhood growth negatively due to adverse effects on osteoblast 

and growth hormone (GH) activity [6, 54]. At physiological level, cortisol is essential for 
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normal GH secretion but an excess of GC can impact the GH-axis negatively by inhibiting 

secretion of GH releasing hormone and increasing release of the inhibitory peptide 

Somatostatin. In addition, GC can affect translation of genes involved in the GH axis (e.g. 

the GH receptor and Insulin-like growth factor-I) [55].    

Central Nervous system (CNS) 

Cortisol is not only essential for neuronal growth and survival but also for differentiation. An 

excess (or a lack of) cortisol influences cognition, behavior and mood [44]. Cognition, 

behavior and emotions involve the limbic system, the parietal cortex and the prefrontal 

cortex. These areas are abundant in GR and MR [56]. In animal studies, MR activation seems 

to enhance neurogenesis and proliferation, whereas activating GR inhibits neurogenesis [57]. 

This shows the importance of the balance between the GR and MR activation and which 

receptor is dominant in the different brain areas to develop optimal cognitive and 

psychological development and general wellbeing [58]. This may be an explanation for the 

negative effects of long-term stress and long-term sGC treatment has on the CNS, since high 

levels of cortisol and sGC primarily activate the GR [47]. The cortisol levels, regulated by the 

HPA axis, also control the circadian rhythm, which is important for normal cognitive 

functions, behavior and mood, and altered circadian rhythm has a negative impact on both 

[59, 60]. Cortisol also impact neurotransmitters (e.g., serotonin, dopamine and glutamate), 

with effects on cognitive and behavioral CNS functions. The association between GC and 

depression is well studied but the underlying mechanisms are not clear [61]. Patients with 

severe depression and anxiety usually have high cortisol levels and they often exhibit 

cognitive impairments. The same effects have been found in patients with Cushing’s 

syndrome (a cortisol-producing tumor) with a decrease in cognitive function and 

development of depression [62, 63].  

2.4.3 Cortisol and fetal development  

Cortisol as well as other adrenal hormones has vital effects on the human body throughout 

life, but they are also important during fetal development. Cortisol play an important role in 

fetal maturation by the end of the pregnancy but are also crucial during organogenesis  [64]. 

For example, cortisol is important for neuronal maturation, remodeling and survival and 

altered GC levels during development may result in both structural and functional changes 

in the brain, as well as in many other fetal organs [47, 56, 65, 66]. At the end of pregnancy, 

cortisol levels increase to mature the organs, especially the lungs, by increasing the 

surfactant production in the alveolar cells, which helps the alveoli keep open after birth. 
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Mothers at risk of premature delivery receive sGC to reduce neonatal morbidity and 

respiratory distress syndrome in the child [67, 68].  

Fetal development of the adrenal glands 

The fetal adrenal glands develop from GW 4-8 and are large compared to other fetal organs 

throughout pregnancy. The fetal adrenal growth is dependent on ACTH production and other 

growth factors [48]. Fetal production of adrenal hormones starts about GW 7 and fetal 

cortisol synthesis is thought to be of most importance during GW 8-12, whereafter the fetal 

production decreases again. After GW 14, cortisol's fetal production is low until the last 

trimester when it increases again to prepare the child for delivery [69]. Based on animal 

studies, it is probable that MR and GR's ratio also varies throughout gestation. Studies on 

human fetal brains have also found that the amount of GR, MR, cortisol and ACTH differ 

depending on the time of gestation [39, 47, 70, 71].  

 

Fetal development of the brain 

By GW 8, the rudimentary structures of the human brain are developed. The critical period 

for brain development of the neocortex is from GW 8 until about midgestation. Most of the 

neurons are formed and have migrated during that period and starts to interact with each other 

by GW 15 [72, 73]. This indicates that the brain may be particularly vulnerable during this 

period of fetal development as to possible alterations in GC level. 

 

The role of placenta during fetal development 

The placenta protects the fetus from the mother´s increasing cortisol levels during 

pregnancy due to the high expression of 11β-HSD2 in the placenta. The cortisol level in the 

fetal circulation is about 13 times lower than in the maternal circulation [74]. The levels of 

11β-HSD2 in the placenta increase as the pregnancy proceeds but drops significantly in late 

gestation, leading to increased fetal cortisol levels that prepare the child for postnatal life. 

However, in studies assessing the fetal effects of maternal stress, the fetus seems to still be 

affected by higher levels of cortisol despite the placental 11β-HSD2 enzyme [75]. The 

mechanism for the increase of cortisol in the fetal circulation is not fully understood. 

However, one hypothesis asserts that maternal cortisol reaches a level that exceeds the 

capacity of the 11β-HSD2. An alternative hypothesis is that high cortisol levels 

downregulate the presence of 11β-HSD2, possibly by DNA methylation [74, 76, 77].  

 

https://sv.bab.la/lexikon/engelsk-svensk/throughout%23translationsdetails-en1
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The effect on the fetus from sGC will differ depending on the type of sGC administered to 

the mother. Some sGCs (e.g., DEX and betamethasone) are minimally inactivated by the 

placenta and will reach the fetus unimpeded, while the placental enzyme largely inactivates 

hydrocortisone and prednisolone [41]  

 COGNITION  

Cognition, behavioral problems and mood have been studied in pre- and postnatal sGC 

exposure. Not only excess of GC but also deficiency of cortisol has been found to negatively 

affect cognition, mood and behavior [63, 78].   

2.5.1 Psychometric intelligence  

The definition of psychometric intelligence and the best way to assess it has been debated and 

have changed over time. However, it is usually referered to as organized in a hierarchical 

structure, with the general intelligence factor (g) on top, with underlying cognitive abilities 

underneath [79-81]. Depending on the theory, the abilities vary in content and number. The 

most common theory on which most intelligence tests are based is the Cattel-Horne-Carroll 

theory, which has a three-level hierarchy based on a factor analysis of different standardized 

tests. A commonly used test in children is the Wechsler Intelligence Scale for Children 

(WISC), which also addresses the properties of IQ (intelligence quotient) similarly providing 

full-scale IQ and intelligence indices (standardized population mean=100, SD=5), as well as 

subtests (standardized population mean=10, SD=3) in a hierarchical structure [82, 83].   

2.5.2 Memory  

The memory process can be divided into different phases; encoding, consolidation and 

storage and retrieval. Separate but partly overlapping brain networks are thought to be 

involved in different parts of the memory process [44]. Encoding is the process by which the 

brain perceives the information and processes it into a memory. Different types of sensory 

input are processed in the encoding phase, usually defined as visual, acoustic or semantic 

input. The medial temporal lobe (MTL) has a crucial part in the memory process, both during 

encoding and consolidation. The MTL structure includes the amygdala, the hippocampus and 

the area surrounding the hippocampus  [44, 58, 84]. In the consolidation phase, the memories 

become more stable, making it possible to store them for longer periods and retrieve them 

later. The prefrontal cortex (PFC) seems to have an essential part in long-term memory 

storage and retrieval [44, 63, 85, 86]. The memory process is dependent on the neurons' 

ability to change, i.e. their plasticity. Memory is the result of changes in the synapses; 

about:blank
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neurotransmitter release, dendritic growth, formation of new synapses and up- or down-

regulation of receptors [44, 87].  

2.5.3 Executive function (EF) 

Executive functions (EFs) are a set of higher-order cognitive processes that regulate and 

control lower-order cognition, mood and behavior. EFs are strongly associated with general 

intelligence (g) and related to success in school, working life and social and psychological 

development and wellbeing [88-90]. EF can be defined as composed of different basic 

cognitive processes that together regulate goal-directed behavior [88]. The three core EF´s are 

listed below. 

Inhibition and interference control: The control of attention to a specific task and     

suppression of attention to other stimuli, i.e. the ability to resist disturbances and stay 

focused. It also includes the ability to inhibit impulses and thus, controls our behavior, 

thoughts and emotions [88].  

Working memory (WM): The ability to remember information and mentally process it (as 

opposed to short-term memory which does not include the aspect of mental processing) [90]. 

WM is often divided into verbal and nonverbal (visual-spatial) WM.  

Cognitive flexibility:  the ability to shift attention or perspectives to new information or 

between different tasks.  

EF´s are associated with the PFC, which matures late and is not fully developed until well 

past adolescence [88]. Correspondingly, the EF has been demonstrated to develop rapidly in 

school-age children and peak between 20 and 30 years of age. [91].  

2.5.4 Cognition and glucocorticoids  

Optimal levels of cortisol play an important role in the memory process [38]. Non-optimal 

levels of cortisol, on the other hand, impair this process [63]. The effects of cortisol can be 

visualized, as an inverted U-shaped curve where too low and too high GC levels are negative 

to the memory process. The length of exposure is also an important factor. Shorter periods of 

high cortisol levels may facilitate memory, whereas long-term exposure is harmful [63]. The 

adverse effects on memory are not only be dependent on the duration of the exposure, but it 

has also been shown to be dose-dependent [92]. Cognitive impairments seem to be reversible 

but some studies have shown that they may become permanent [62]. Chronic overexposure to 

GC (endogenic and exogenous) increases the risk of long-term deficits [58, 62, 63, 93]. In a 

long-term follow-up study of Cushing patients, cognitive impairments found at diagnosis 
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(attention, non-verbal WM, and verbal WM) still existed several years post-surgery [62]. 

Several studies on healthy individuals treated with sGC (for other reasons than cortisol 

deficiency) have shown negative side effects on cognitive function, especially memory. In 

addition, sGC treatment has also been found to induce structural changes such as reduced 

volume of the hippocampus and anterior cingulate cortex (ACC), which are part of the limbic 

system, affecting both emotions and cognition [58, 93, 94].  

2.5.5 Cognition and prenatal glucocorticoid exposure  

Numerous human and animal studies have assessed third trimester GC exposure. It is difficult 

to say if these results apply to our cohort of early gestation GC treatment. Most likely, there is 

time-specific differences and the fetus' vulnerability probably differs in early compared to 

late prenatal development [95].  

Studies of mid- to late gestational GC exposure have shown structural effects on the brain in 

both animals and humans, especially in the areas associated with memory and learning [47]. 

In primates, prenatal sGC treatment has been associated with reduced hippocampus volume, 

reduced number of neurons, and a reduced number of GRs [96-98]. Most animal studies have 

assessed the offspring at birth and have not evaluated them in childhood or as adults. 

However, a study exposing primates to both late and early prenatal sGC and assessing them 

at two time points, at birth and 2 years of age, found a reduced neuronal proliferation rate in 

the hippocampus at birth, regardless of the timing of GC exposure. However, at the age of 2 

years, the effect could no longer be found. The follow-up study at 2 years of age, however, 

only included males and a possible effects in females might have been missed [99, 100]. It 

might also have been an effect of the CNS's known plasticity and that structural changes may 

be reduced or diminished with time [101]. Human studies examining the effects of late 

prenatal GC treatment (due to risk of premature delivery) have shown similar results. A brain 

MRI study of children 6-10-years of age, born at term, but exposed to sGC prenatally, found 

a significantly thinner cingulate cortex and prefrontal cortex. The largest effect was seen in 

the rostral ACC (rACC), with a 30% cortical reduction in thickness compared to controls 

[102]. The ACC is part of the limbic cortex and the rACC is involved in emotion processing 

and learning [86].  

Studies on cognitive effects after late prenatal GC treatment have shown varying results 

depending on the number of sGC doses administrated. Most of the studies evaluating one- 

or two-dose regimens found no association with major cognitive impairments, regardless of 

their age at assessment or the study design [103-106]. In many of these studies, a trained 
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psychologist evaluated the children, but some also used parent-completed questionnaires. 

One study even showed better results in children exposed to two doses of prenatal GC 

compared to non-treated controls [107]. In contrast, studies evaluating the effect of multiple 

sGC doses in late gestation have shown a negative impact on full-scale intelligence in 

preschool children and lower performance in tests assessing attention and speed in adults 

[108, 109]. High endogenous cortisol levels in mid-to-late gestation, due to maternal stress, 

have also been associated with lower full-scale IQ, verbal IQ and non-verbal IQ (WISC). 

Further, parental ratings concerning the child´s development, have shown negative effects on 

cognitive development and higher ratings on attention problems [110-114].  

Little is known about the possible changes in the CNS structure caused by early gestational 

DEX treatment in individuals at risk of CAH. To our knowledge, our research group is the 

only one that has published results from a study investigating sGC-exposed healthy 

individuals (non-CAH) and brain structure. A fMRI was performed in prenatally short-term 

DEX-treated healthy young adults and healthy population controls. DEX treatment was 

associated with a bilateral enlargement of the amygdala, larger left superior frontal gyrus and 

a widespread increased diffusivity of white matter compared to the healthy non-treated 

controls. There was no relationship between altered brain structure and cognition [35]. 

Maternal stress in early pregnancy has also been shown to have similar results, but only in 

girls. Children assessed with MRI at 7 years of age were found to have a larger right 

amygdala volume associated with high maternal cortisol levels in early gestation. No 

association was found in boys [115].  

Many studies investigating long-term effects of early DEX treatment in children at risk of 

CAH have focused on the cognitive outcome owing to the numerous animal studies showing 

changes in brain structure, behavior and memory [47]. The methods used by these studies to 

assess cognition varied. Some studies used direct assessment by a psychologist in addition to 

parent-rated questionnaires and others have only used parental questionnaires rating the 

child´s cognitive development, scholastic performance, or both. Because CAH is a rare 

disease and prenatal treatment has only been in use since the 1980s, it is challenging to design 

studies with sufficient statistical power. Besides, the prenatally treated individuals consist of 

several subgroups, i.e. long-term treated girls with CAH, short-term treated boys with CAH, 

and short-term treated healthy individuals of both sexes. Accordingly, in the stratified 

analyses, sample sizes, and consequently, statistical power decrease (especially in analyses of 

possible sex-dimorphic effects).  
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Studies investigating cognitive functions, based on parent-rated developmental 

questionnaires, have not shown any negative effects of DEX treatment on cognitive 

development, cognition or scholastic performance [116, 117]. The first study, published in 

1995, assessed 40 children (age range: 6 months - 5.5 years) 26 DEX-treated (3 with CAH 

and 23 non-CAH) and 14 untreated (3 with CAH and 11 non-CAH) [117]. The other study, 

published in 2004, included 487 children (age 1 month - 12 years), 174 DEX-treated (48 with 

CAH and 125 non-CAH) and 313 untreated (195 with CAH and 118 non-CAH). This study 

had a large cohort but all children above 6 years of age (44 DEX-treated and 162 untreated) 

were rated only by three questions in the Child Behavior Check List’s (CBCL) school 

competence section [116]. 

Two research groups in addition to ours have evaluated cognition with direct assessment by 

psychologists. The American research group (2012) found a possible (near significant 

[p=0.066]) DEX effect in healthy short-term DEX-treated children, with lower performance 

on the sequential processing test, which assesses short-term memory [118]. None of the other 

cognitive tests showed any differences (the Kaufman Assessment Battery for Children and 

the Wide Range Assessment of Memory and Learning). This study assessed 140 children 

(aged 5–12 years), 67 DEX-treated (16 with CAH and 51 non-CAH) and 73 untreated (37 

with CAH and 47 non-CAH) [118].   

The Polish group (2014) used almost the same psychometric test battery as we did, but 

restricted the cohort to girls. Thirty-three girls aged 6-23 years participated in the study. Of 

these 33 girls, 17 were DEX-treated (9 with CAH and 8 without CAH) and 16 untreated (all 

with CAH). They did not have a group of non-treated girls without CAH to compare the DEX 

results of the girls not affected by CAH. Nevertheless, they found that DEX-treated girls with 

CAH performed better in subtests used to estimate both verbal IQ (p=0.03) and non-verbal IQ 

(p=0.04) compared to non-treated girls with CAH [119]. Furthermore, the short-term DEX-

treated healthy girls performed worse than the DEX-treated girls with CAH and at the same 

level as non-treated girls with CAH. These findings suggest a possible negative effect in the 

healthy DEX-treated girls as individuals with CAH are known to perform worse on WM 

tasks compared to non-CAH controls [120-122]. However, it´s probably presumptuous to 

draw any conclusions about the DEX-treated healthy girls as the study did not have a non-

treated control group. Moreover, the American research group did not find positive 

cognitive effects of DEX in long-term-treated girls with CAH; rather, the girls with CAH 

performed overall worse if they had been long-term-treated with DEX. However, these 

findings did not reach statistical significance [118].  
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In our original cohort of DEX treated individuals, published 2007, we found that healthy 

DEX-treated children performed poorer than non-treated controls in the WISC subtest Digit 

span assessing verbal WM (n=26 DEX treated)[29]. The difference between these two groups 

was found to have a large effect size (Cohen´s d=0.95). The children also rated their 

scholastic performance lower than controls and the test performance in Digit span 

significantly correlated with their self-rating in scholastic performance. No differences 

between groups were found in full scale IQ, learning and long-term memory, nor did parent-

rated questionnaires show any differences in scholastic performance [29]. When evaluating 

them again as adults, these between-group differences could not be replicated (n=23 DEX 

treated) [123].  

 BEHAVIOR  

The limbic system, including the limbic cortex, amygdala, hypothalamus and hippocampus, 

are important structures in processing emotional stimuli and are known to affect our mood 

and behavior [124, 125]. Structural changes have been found within the limbic system with 

respect to different behavioral problems, especially aggression [126-128]. The areas 

associated with the limbic system are abundant in GC receptors and are highly dependent on 

appropriate levels of cortisol for normal neuronal development and plasticity [63].  

Behavioral problems in childhood can be characterized as either internalizing or 

externalizing problems. Internalizing problems refer to inward-focused behavior (e.g., 

anxiety and depression) while externalizing problems refer to outward-focused behavior, 

also referred to as “acting out” (e.g., hyperactivity, aggression and disruptive behavior) 

[129]. Behavioral problems in childhood are often assessed using questionnaires, filled in 

by the parents or by the child. There is relatively good agreement between the parents and 

the child’s assessment of the child’s problems in younger children. However, as the child 

grows older, the parent-child agreement decreases, especially in items measuring 

withdrawal and attention problems [130]. One common parent-rated questionnaire is the 

CBCL, which addresses both internalizing problems (e.g., anxiety, withdrawal and somatic 

complaints) and externalizing problems (e.g., rule-breaking and aggression) [131]. The 

different questionnaires often include subscales measuring different behavioral constructs that 

may or may not be associated. In the Emotionality-Activity-Sociability-Shyness 

Temperament Survey for children (EAS), shyness (tendency to feel awkward or worried 

during social encounters, especially with unfamiliar people) and sociability (tendency to 

seek out others’ company, e.g., through different social activities) are two separate 

constructs but can be intercorrelated [132].  
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2.6.1 Behavior and glucocorticoids  

Emotional and psychiatric side effects of GC treatment in humans are thoroughly studied and 

sGC treatment is associated with a potential risk of developing depression and psychosis [63, 

133, 134]. Children treated for nephrotic syndrome with high doses of sGC showed 

depression, anxiety and aggression that increased over time and was positively associated 

with the dosage [134]. However, studies focusing on endogenous cortisol levels and 

behavioral problems show inconsistent and ambiguous results. Some studies have found that 

high cortisol levels are associated with internalizing problems, whereas others have found 

that high cortisol levels are associated with externalizing problems [127]. Different types of 

behavioral problem may also co-exist, causing difficulty when analyzing possible 

associations.  

Behavioral problems and other psychiatric diagnoses have also been associated with 

structural findings in the CNS [124, 127]. Studies in children with externalizing problems, 

such as aggression and conduct problems, have found altered volumes in the prefrontal 

region, amygdala and hippocampus [126, 128]. However, if these findings are related to 

changes in the HPA axis is not confirmed  

2.6.2 Behavior and prenatal glucocorticoid exposure 

Studies on late gestation GC exposure have shown behavioral effects in animal offspring 

(e.g., reduced locomotor activity in guinea pigs, interpreted as a sign of anxiety, and 

abnormal behavior in primates, expressed as increased clinging and reduced social 

interaction) [135, 136]. Human studies on late gestation sGC treatment due to a risk of 

preterm birth have shown diverse results depending on the number of sGC doses 

administered, similar to studies addressing the cognitive effects. One or two doses have not 

shown any significant effects on behavior or mental health [103-105]. However, results 

indicate negative effects on behavior after multiple sGC doses. Children assessed at 3 years 

of age by parental questionnaires and again at 6 years of age by parental and teachers 

questionnaires showed more aggressive/destructive behavior and more 

hyperactivity/distractibility compared to controls at both ages [137]. When studying sGC-

treated children’s behavior and mental health at 12 years of age by teachers´ questionnaires 

(the Rutter score) the prenatally DEX-treated children were found to have an increase in total 

behavioral problems and an increase in the sub-score for inattention. However, when 

assessing the same individuals again at 16 years of age by parental questionnaires and self-

reports regarding attention-deficit hyperactivity disorder (ADHD) symptoms, the results did 
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not persist  [138]. Another similar study, investigating the long-term effects of multiple doses 

of prenatal sGC on attention and hyperactivity, found poorer achievement in psychologist-

assessed measures of attention and speed. However, when the individuals rated themselves 

for the same problems, no differences could be found [109]. These results imply that there 

might be a difference in the parental and self-reported questionnaires compared to the 

teacher’s evaluation, direct assessments, or interviews by a psychologist [130].  

Maternal stress in mid- to late gestation has also shown to have negative behavioral effects in 

infants [139-142]. Based on maternal questionnaires (the infant behavior questionnaire, IBQ) 

the children have been described as having more “difficult behavior” (sub score: Distress to 

limitation) and more “negative reactivity” (sub score: Fear). Furthermore, evaluation in 4-

year-old children, based on parental ratings, found that the children scored higher in total 

emotional/behavioral problems than the controls. They also found that boys, but not girls, 

were rated as having more hyperactivity/inattention problems [141]. In addition, several 

studies have reported an association between maternal stress during pregnancy and later 

autism spectrum disorder, as well as ADHD in the children [143-145]. However, in these 

studies, the child's genetics were not analyzed and hence the possible effect of shared genetics 

was not determined.  

The behavioral effects caused by early gestation GC exposure are not as comprehensively 

studied as late gestation exposure. However, primates exposed to DEX in early or late 

gestational showed that early, but not late, exposure was associated with reduced social 

behavior and increased food-seeking behavior [146]. Human studies on early gestation GC 

exposure have primarily evaluated increased cortisol exposure due to maternal stress. 

Maternal stress level is often measured by self-ratings of perceived stress, but some studies 

also measure the cortisol level in serum or saliva additional to the maternal ratings. An 

increase in maternal cortisol levels in early gestation (measured in saliva) has been found to 

be associated with both a larger right amygdala volume and more affective problems in girls 

but not in boys, which would indicate a sex-dimorphic effect [115]. Natural disasters, 

maternal illness, or both in early gestation have also been shown to be associated with 

“poorer temperament” in infants (higher scores in the dimensions: fussy/difficult, 

unadaptable, and dull) [147].   

The possible behavioral effects of prenatal DEX treatment in children at risk of having 

CAH have previously been evaluated and the published results are all based on parental or 

self-assessed questionnaires. Young children (n=26 DEX, mean age: 2.5±1.3 years), 
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prenatally treated with DEX, were reported by their mothers to be less sociable, more 

emotional and shyer compared to how the mothers of the non-treated controls rated their 

children. Moreover, they were found to have more internalizing problems and higher scores 

in total behavioral problems [117]. However, because this study had a mixture of healthy 

and CAH children in both groups and the assessment was made at a noticeably young age, 

the results are somewhat difficult to evaluate. In our first Swedish cohort of DEX-treated 

children (n=26, mean age 11±2.3), the behavioral problems were rated by the parents and 

the children themselves. The DEX-treated healthy children rated themselves as having 

more social anxiety compared to non-treated healthy children. However, the parents did not 

report increased social anxiety in their children. Moreover, the parents found their children 

more sociable than the parents’ ratings of the children in the non-treated control group [29]. 

As previously discussed, the concordance between parental and self-assessment for 

evaluating behavior is not always high. Thus, many of the results from studies that evaluate 

temperament or behavior only by parental questionnaires are difficult to interpret [130]. In 

our study, assessing behavior in DEX-treated children with CAH (n=11, mean age 11.7 

years), the parents rated the DEX-treated children as more withdrawn/depressed and the boys 

(but not girls) as having more social problems. None of these problems was confirmed in 

their self-ratings [148].  

 METABOLISM AND GLUCOCORTICOIDS 

As mentioned previously, cortisol has multiple metabolic effects, including altered glucose 

metabolism and cardiovascular changes [50-52]. Cortisol level, both at basal state and 

increased stress, is regulated by the HPA axis and changes in the homeostasis of the HPA 

axis may lead to different metabolic effects depending on how the HPA axis is affected. The 

sensitivity of the HPA axis may be altered at different levels (the hypothalamus, pituitary or 

adrenal cortex) leading to harmful cortisol responses with implications for various organ 

systems  [127]. Besides affected synthesis of cortisol, changes in the GR quantity, MR/GR 

ratio and enzyme activity may also alter the effects of cortisol. Additionally, other parts of the 

brain are involved in regulating the HPA axis (e.g., the amygdala, hippocampus, prefrontal 

cortex) and structural or functional effects in these areas may also impact metabolism [149].  

2.7.1 HPA axis and prenatal glucocorticoid exposure  

Numerous animal studies have shown that prenatal exposure to sGC alters the HPA axis, 

although with somewhat variable results. In some studies, the prenatal sGC treated offspring 

have shown a reduced HPA-activity while others instead found an increased activity [150, 

151]. Several studies in rodents have also found sex-dimorphic effects, with different results 
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in males compared to females [135, 152-154]. In addition, the physiological changes found in 

guinea pig offspring have been found to transfer into the third generation, which suggests an 

epigenetic effect. DNA methylation has been suggested to be one of the epigenetic 

mechanisms [155, 156]. Following prenatally sGC-treated sheep from infancy up to 

adulthood, showed that the HPA axis activity changed as the sheep matured and the adrenals 

became increasingly ACTH-resistant with age  [157-159]. Contrary to the findings in sheep, 

primates exposed to prenatal sGC resulted in a sensitized HPA axis [98, 146, 160].  

Mid- to late gestation GC treatment in humans born preterm has resulted in a lower stress-

induced cortisol level in infants, assessed at 4-6 weeks of age. This finding indicates a 

postnatal suppressive effect on the HPA axis, which is consistent with animal studies on 

sheep [159, 161-163]. However, when testing children born full-term but prenatally sGC-

treated in mid-to-late gestation, the results showed an increase in cortisol levels after induced 

stress (heel-stick), indicating a sensitized HPA axis similar to the primate studies described 

above [160, 164]. The same research group also studied the effects on the HPA axis in regard 

to maternal stress in the second and third trimester and found corresponding results as in 

sGC-treated the full-term babies. The postnatal cortisol levels were higher and more 

prolonged after inducing stress (heel-stick) in the gestational stress-exposed group [164]. 

Other studies assessing maternal stress have shown similar results with an increased basal 

cortisol level [165]. When assessing the prenatal sGC effects on the HPA axis in older 

children, the results differ as well. At 6-11 years of age, one study found the HPA axis to be 

sensitized, with higher cortisol levels than in the control group after exposing then to 

psychosocial stress (a public speaking task) [166]. On the other hand, another study found the 

opposite results in children after late gestation sGC treatment. Lower cortisol and ACTH 

levels were found after a similar stress test at 8-9-years of age [167]. Still, other research 

groups have not found any differences at all [168]. In summary, the results of late gestation 

GC treatment on the HPA axis are not fully clarified, although many studies found altered 

homeostasis in one way or another.   

To our knowledge, studies on HPA axis response in individuals who were DEX-treated in 

early gestation have not yet been studied.  

2.7.2 Metabolism and prenatal glucocorticoid exposure  

Animal studies have shown that primates treated with DEX in late gestation had offspring 

with higher insulin levels at 8 months of age [160]. Another study looking at early prenatal 

DEX treatment in sheep found no differences in insulin, glucose or amino acid metabolism at 



 

 23 

5 years of age. However, they found that insulins inhibition of lipolysis was increased in the 

DEX-exposed group. The authors argue that decreased lipolysis may contribute to the 

development of obesity later in life [169].  

Human studies have found inconsistent results. Adults exposed to late gestation sGC 

treatment showed a lower insulin response to an oral glucose tolerance test (OGTT),  

indicating altered insulin sensitivity [168]. There are also findings of reduced beta-cell 

function, measured as HOMA-β after late sGC treatment. However, other studies could not 

identify any metabolic effects [170-172].  

In the cohort of early prenatally DEX-treated individuals at risk of CAH, only one study was 

published besides the one included in this thesis. A French research group found that DEX-

treated individuals (non-CAH) exhibited a higher glucose level at 30 minutes during a 

glucose stimulation test (OGTT) and lower insulin levels after glucose and arginine 

stimulation, suggesting a reduced beta-cell function [173].                                                                                                                                     

2.7.3 Blood pressure and prenatal glucocorticoid exposure 

Prenatal GC exposure and long-term effects on BP can result from altered activity in HPA 

axis, but it can also be a direct effect on different organs. In the kidneys, prenatal sGC may 

affect the nephrogenesis with a reduced number of nephrons. In animal studies, there are 

convincing associations with reduced nephron number and hypertension [174-176]. 

Furthermore, sGC can increase the reactivity of the arteries smooth muscle cells, leading to 

increased arterial resistance and BP [177, 178]. In sheep, early (but not late) prenatal sGC 

exposure resulted in increased BP but no effects were found on the HPA axis or vascular 

reactivity [179]. When analyzing the number of glomeruli and the GFR, they found that 

DEX-treated offspring had lower number of glomeruli and higher filtration rate, which they 

argued might be causing the hypertension found in the same animals [180]. On the other 

hand, another research group found that a short DEX exposure in early gestation was 

associated with increased responsiveness in coronary arteries in 1-week-old and 4-month-old 

sheep. However, they found no difference in BP but argued that the responsiveness might 

represent an early stage in hypertension development [181, 182].  

In primates, the results differ as well. One study found that neither early nor late gestation 

DEX treatment resulted in altered BP, glomerular number or kidney size [183]. Another 

study showed that primates treated with DEX in late gestation had offspring with higher BP 

at 12-14 months of age compared to non-treated controls [160].  
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Several human studies on late gestation GC exposure (in pregnancies at risk of preterm labor) 

and the possible effect on postnatal BP have presented somewhat contradicting results. A few 

follow-up studies show no effect on BP or pulse pressure in children or young adults [168, 

170, 171, 184-187]. However, some results have indicated higher BP already in adolescence 

[188]. Additionally, two studies have shown possible effects on aortic stiffness. Both of these 

studies were follow-up studies during adolescence or young adulthood with no negative 

findings on BP after sGC exposure, although the increased aortic stiffness might be a risk 

factor in developing high BP at an older age [170, 172]. Maternal stress has also been shown 

to affect BP already at 5-6 years of age [189].  
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3 HYPOTHESIS AND AIMS 
The overall aim of the thesis was to identify whether first-trimester DEX treatment has any 

negative consequences on health in children at risk of CAH. The overall hypothesis was that 

prenatal DEX treatment has negative long-term effects on somatic health, cognition and 

behavior.  

The specific aims of the studies outlined herein are:  

Study I 

Identify possible long-term cognitive effects due to early prenatal DEX treatment in healthy 

children at risk of CAH.  

Study II 

Identify long-term behavioral effects due to early prenatal DEX treatment in healthy 

children at risk of CAH.  

Study III 

Study the effects of first-trimester DEX treatment on glucose metabolism, lipid profiles and 

renal function in children and adults exposed to DEX during the first trimester of fetal life. 

Study IV 

Study the effects of first-trimester DEX treatment on BP in children and adults exposed to 

DEX during the first trimester of fetal life. 

 

 

 

 

 

 

 

 



 

26 

4 METHODS 

 STUDY POPULATION  

This thesis is part of a larger study, the PREDEX study on long-term effects of prenatal DEX 

treatment in individuals with and without CAH. The study´s objective was to include the 

entire Swedish cohort of prenatally DEX-treated individuals at risk of CAH. Because there is 

only one laboratory in Sweden that analyzes all CVS and the possible CYP 21 mutations 

(Karolinska University Hospital, Department of Clinical Genetics), the identification of all 

DEX-treated mothers was possible.   

In total, 77 mothers were treated from 1986-2010. In 1999, all mothers who met the treatment 

criteria were only treated as part of the PREDEX study, i.e. a long-term prospective, non-

randomized clinical study. In 2010, our group decided to halt the inclusion due to our initial 

reports on plausible negative effects on cognition in treated cases [4, 29] (Figure 5). 

  

  Figure 5. Flowchart of the DEX-treated individuals in this thesis.          
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Four of the pregnancies resulted in miscarriages or termination, which resulted in 73 born 

children  [31]. Six of the 73 treated mothers (7 pregnancies) did not respond to our follow-up 

request within the PREDEX study (8). 57 (78%) of the 73 DEX-treated children did not have 

CAH and this sub-cohort is the focus of the present thesis. Seven families declined to 

participate in the follow-up or could not be reached for follow-up (8 pregnancies) and one 

child died in an accident at a young age. In the cohort of individuals born before 1989, 10 

declined participation for cognitive testing at the time of the first assessment (2002-2004)    

but agreed to participate when they were asked again to participate in the second follow-up 

(2011-2016), where 4/10 families responded positively [29].  

In total, 42 children and young adults without CAH and who were exposed to DEX during 

the first trimester of fetal life (age range, 4-26 years) were included in the present thesis. For a 

detailed description of the number of participants per study, se figure 5.    

Prenatal treatment protocol for CAH: Women who previously had given birth to a child with 

classic CAH were offered treatment with DEX starting about GW 7 in the event of a 

subsequent pregnancy. A dose of 20 μg/kg and day (of the maternal pre-pregnancy weight), 

divided into 3 doses per day (with a maximum of 1.5 mg/day) was prescribed. Healthy/non-

CAH fetuses and CAH boys were treated during the first trimester, as the treatment was 

terminated after the genotyping results were obtained. Girls with CAH were treated until 

term. Genotyping was performed on DNA obtained from a chorionic villous sampling 

approximately GW 12 [190] (Figure 6).         

Figure 6. Flowchart of the prenatal DEX treatment protocol.    

The control group in the studies consisted mostly of individuals from the general population 

randomly selected from the Swedish civil registry and was matched for age and sex with the 

DEX-treated cases. A subgroup of the controls comprised healthy siblings of the DEX-treated 

children. For practical reasons, all population controls were selected from the Stockholm 

County area except for the healthy siblings.  Invitation letters were sent to 394 individuals in 

the Stockholm County area: approximately 100 controls accepted to participate and 62 

actively declined participation. The rest either did not respond to the invitation or were not 
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possible to contact by telephone. Of the positive responders, not all participated in all the 

assessments and thus the number of controls differs between Study I-IV. 

All study participants underwent several investigations within the frame of the PREDEX 

study: medical examination, blood sampling, cognitive testing, including parental and self-

reporting questionnaires and 24-hour ambulatory BP monitoring (ABPM). Participants from 

age 16 years also underwent fMRI of the brain and a test assessing emotional regulation. The 

two latter investigations are not part of the present thesis. The majority of the participants 

underwent all tests, but a few of the youngest choose not to participate in the blood sampling 

and the ABPM tests [34, 35, 148, 191].  

  COGNITION - STUDY I 

Cognition was assessed using standardized tests administered by a trained psychologist as 

well as by parent-rated and self-rated questionnaires. Thirty-four children between 7 and 17 

years of age at the time of testing were included in the cognition study and 66 controls 

matched for age and sex (mean age:10.5 ±2.6 years). 

Outcome measures 

One subtest in each of the four indices of the Wechsler Intelligence Scales for Children 

(WISC-III) was used. Vocabulary from the Verbal Comprehension Index (VCI), as an 

estimation of verbal psychometric intelligence, Block Design from the Perceptual 

Organization Index (POI), as an estimation of non-verbal psychometric intelligence, Digit 

Span from the Freedom from the Distractibility Index (FDI) to assess verbal WM and 

attention and Coding from the Processing Speed Index (PSI) to assess processing speed 

[192].  

To assess learning, long-term memory and interference, two subtests from A Developmental 

Neuropsychological Assessment (NEPSY) were used: Wordlist and Memory for faces [193].  

To further assess the child’s verbal processing speed and ability to inhibit an overlearned 

response, the Stroop color-word test was used [194].  

Visual-spatial WM was tested using the Spatial Span Board from the Wechsler Nonverbal 

Scale of Ability [195].  

Handedness was measured by the Manual Preference Test from a previous version of the 

NEPSY [196].  

To evaluate the children scholastic performance the parents as well as the children filled out 

the questionnaires. For the parental evaluation we used the school competence section in the 
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Child Behavior Check List (CBCL) [197] and for the children the Scholastic Competence 

subscale from the Self-Perception Profile for Children were used [198] .  

 BEHAVIOR - STUDY II 

Behavioral problems and possible psychopathology were assessed using questionnaires: Two 

parent-rated and two self-rated scales for the children. One of the parent-rated questionnaires 

evaluated the child’s temperament. 34 DEX-treated children were in aged 7 - 17 years at the 

time of testing and were thus included in the behavioral study together with 67 controls 

matched for age and sex (mean age:10.5±2.6 years) 

Outcome measures  

Parent-rated questionnaires:  

The CBCL is a psychiatric screening instrument for children consisting of 113 questions 

about the child’s behavior. It´s divided into eight syndrome scales: Aggression, 

Anxiety/Depression, Attention problems, Rule-breaking behavior, Somatic complaints, 

Social problems, Thought problems and Withdrawal/Depression. The syndrome scales can be 

aggregated into two broadband scales: Internalizing problems and Externalizing problems. 

Moreover, a Total problem score can be calculated that includes all items. In addition, there is 

a section assessing the child’s adaptive behavior, including Activities, Social relations and 

Scholastic competence. These combined results yield a total competence score [199].  

The Social Phobia and Anxiety Inventory for Children - Parent Report (SPAI-C-P) is a 26-

item parent-rated questionnaire covering cognitive, physiological and behavioral symptoms 

of social phobia in children according to the DSM-IV. The questionnaire measures the child’s 

anxiety level and is divided into three subscales: Public Performance, Assertiveness/General 

Conversation and Traditional Social Encounters [200, 201]. 

The Emotionality-Activity-Sociability-Shyness Temperament Survey for children (EAS) 

estimates the child’s temperament. The survey is divided into four subscales: Sociability, 

Activity, Shyness and Emotionality [132]. 

Self-rated questionnaires: 

The Social Anxiety Scale for Children-Revised (SASC-R) consists of three subscales: Fear of 

Negative Evaluation, Social Avoidance and Distress in new social situations and General 

Social Avoidance and Distress [202].  
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 METABOLISM - STUDY III 

All participants were instructed to fast from midnight the night before the blood sampling 

procedure. They were also instructed to bring a portion of the first-morning urine in a test 

tube provided the day before. All participants were offered topical anesthesia to reduce pain 

and discomfort due to blood sampling. All blood samples were analyzed at an accredited 

laboratory: Department of Clinical Chemistry, Karolinska University Hospital, Sweden. Forty 

DEX-treated children and 75 controls, matched for age and sex, were included (mean 

age:16.3±6.2 years). 

Outcome measures 

Height and weight were measured during the medical examination. Blood sampling was 

performed in the morning to evaluate the following metabolic markers:   

Renal function: P-cystatin C, cystatin C GFR, P-sodium, P-potassium and U-

albumin/creatinine. The GFR was calculated using the Schwartz bedside (Creatinine) and 

CAPA (cystatin C) formulas [203-205].  

Blood count: B-Hemoglobin, B-Erythrocytes, B-Leukocytes and B-Thrombocytes.    

Glucose metabolism: fP-glucose, fP-insulin, fS-C-peptide and B-HbA1. Beta-cell function 

and insulin resistance were estimated using the homeostatic model assessment, HOMA-β and 

HOMA-IR [206, 207].  

Blood lipids: fS-total cholesterol, fS-HDL (high-density lipoprotein), fS-LDL (low-density 

lipoprotein) and fS-TG (triglycerides). 

 BLOOD PRESSURE – STUDY IV 

BP was recorded on the non-dominant arm using an appropriately sized arm cuff and 

measured every 30 minutes during waking hours and 60 minutes during sleep. All 

participants were instructed to notify what time they went to bed and what time they woke up 

the next day. In all, 38 DEX-treated children and 70 controls matched for age and sex were 

included. The mean age of DEX-treated children and controls was 15.6±6.4 years and 

16.9±5.5 year, respectively.   

Outcome measures 

ABPM was conducted with the oscillometric monitor model 90207 (Space Labs, Redmond, 

WA) which has been validated in children and adolescents [208, 209]. The ABPM results 

included 24-h, daytime and nighttime mean systolic and diastolic BP, mean arterial pressure 

(MAP) and mean heart rate. Nighttime blood pressure dipping was defined as the difference 
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between the mean systolic and diastolic daytime BP and mean systolic and diastolic 

nighttime BP expressed as a percentage of the daytime mean. Pulse pressure was defined as 

the difference between mean systolic pressure and mean diastolic pressure. The individuals´ 

ABPM values were compared to published pediatric normative data for ABPM [210]. 

Ambulatory hypertension was defined as mean daytime or nighttime systolic or diastolic BP 

value(s) >95th percentile [210].   
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5 STATISTICS 
For all analyses (Papers I-IV), variables were tested for normality and homogeneity of 

variance prior to data analyses. If the assumption of normality were not met, the variables 

were analyzed using nonparametric methods. Group differences were analyzed using DEX 

(treated, untreated) and sex (male, female) as the independent variables and age as a 

covariate, if applicable, in conjunction with other appropriate covariates when necessary. In 

general, all tests were two-tailed and p-values of < 0.05 were considered statistically 

significant. Interactions between DEX and sex were followed up with sex-specific tests. We 

did not control for multiple comparisons to avoid missing small but potentially clinically 

relevant effects. 

All statistical analyzes were performed in SPSS 23 (IBM, Armonk, NY, USA), except for 

study IV, where the analyses were performed in R, version 4.0.2 [211, 212].  

 STUDY-SPECIFIC STATISTICS  

In study I, raw scores from the Wechsler scales were transformed to scaled scores using age-

specific Swedish norm tables before analyses [213]. For NEPSY and the Stroop color-word 

test, raw scores were transformed according to the American manuals [193, 194]. Because the 

raw scores were transformed into age-specific standardized scores, we did not include age at 

testing as a covariate in the analyses. General two-way ANOVAs with factors DEX (treated, 

untreated) and sex (male, female) as independent variables were used to calculate group 

differences. Effect sizes were calculated using Cohen’s d, with positive results representing 

higher test scores in healthy controls and negative results representing higher test scores in 

the DEX-treated group. Effects were categorized as large when d ≥0.80, moderate when d 

≥0.50 and small when d ≥0.20.  

In study II, linear regression analysis was performed to analyze group differences in 

behavioral outcomes (rating scales) using DEX, sex and parental education as predictors. 

Parental education was included as an estimate of the families´ socioeconomic backgrounds. 

Effect sizes were calculated using Cohen’s d, with positive results representing higher test 

scores in DEX-treated children and negative results representing higher test scores in the 

healthy control group. Effects were categorized as large when d ≥0.80, moderate when d 

≥0.50 and small when d ≥0.20.  

 

https://www.sciencedirect.com/topics/neuroscience/regression-analysis
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In study III, linear regression analysis was performed to estimate group differences for 

metabolic outcomes using DEX, sex and age as predictors. We further divided the cohort into 

two age groups (one group <16 years and one group ≥16 years) to estimate the effects of 

DEX in pre- and post-pubertal children.   

In study IV, raw ABPM data were normalized to standard deviations scores (SDS) using the 

LMS (Lambda-Mu-Sigma) method. The LMS is a linear transformation that calculates the 

SDS of our individuals’ ABPM values compared to mean ambulatory BP in pediatric 

normative data relative to height and sex previously published by Wuhl et al [210]. By 

applying this method, the data analysis for both sexes and all heights could be combined. 

Linear regression analysis was performed to estimate group differences using DEX, sex and 

age as predictors. We also divided the cohort into pre- and post-pubertal children to 

investigate the outcome similar to the metabolic outcomes. 
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6 RESULTS 

 COGNITION - STUDY I 

In study I, we examined possible cognitive effects after first-trimester DEX treatment in 

children without CAH. We found a sex-dimorphic effect on several cognitive measures. The 

DEX-treated girls scored significantly lower on three of four sub-tests from the WISC-III 

with large size effects: Block Design, Vocabulary and Digit Span (Figure 7). 

Figure 7. Group averages for WISC-III. (A) Coding (p=0-068, d=0.66), (B) Block design (p=0.021, d=0.81), 

(C) Vocabulary (p=0.014, d=0.84), and (D) Digit span (p=0.001, d=1.00).  

In the Span Board-backwards test, the DEX treated girls scored significantly lower than the 

control girls with a moderate size effect (p=0.034, d=0.79). No effect could be seen in the 

Span Board-forward test (Figure 8). 

Figure 8. Group averages for span board forward (A) and backward (B). DEX-treated girls scored lower than 

female controls on span board backwards (p=0.034, d=0.72). 
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In boys, there were no significant findings in any of the cognitive tests and no differences 

between groups were identified in girls or boys for handedness, NEPSY or the Stroop color-

word test.  

Results from the CBCL questionnaires did not show any differences in scholastic competence 

when rated by the parents. However, when analyzing the results of their self-perceived 

scholastic ability, the DEX-treated children rated their ability lower than controls (p=0.001). 

In girls the effects size was large (d=1.28) and in boys moderate (d=0.51). 

 BEHAVIOR - STUDY II 

In study II, we evaluated possible behavioral effects of DEX treatment in healthy children 

(non-CAH). We did not find any significant differences compared to the control group.  

CBCL - There were no differences between the groups on the scales measuring adaptive 

functioning (CBCL total competences score), in the two broad-band scales: Internalizing 

problems and Externalizing problems or any of the eight specific syndrome scales. However, 

DEX treated girls were scored by their parents to have more attention problems and social 

problems, although the difference was not significant (Table 1). 

Table 1 Results from CBCL, showing group means and standard deviations for girls. Regression coefficients 

(ȕ), ZiWh 95% cRQfideQce iQWeUYaOV (CI ORZeU, CI XSSeU) effect sizes (Cohen's d, adjusted for parental education) 

and p-values for the main effects of DEX. 

SPAI-C-P - Parental estimations of their children's social anxiety level, divided into the three 

subscales (Assertiveness/General Conversation, Traditional Social Encounters and Public 

Performance), did not show any significant differences (all ps>0.05).    

EAS - Parental estimation of children's temperament using the EAS subscales shyness, 

emotionality, sociability and activity did not reveal any significant group differences (all 

ps>0.05). However, we found a near-significant result showing that parents rated their 

DEX-treated girls as being less shy compared to the parental ratings of the controls 

(p=0.068, d=-0.68). 
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SASC-R - We found that girls scored higher on all three self-reported anxiety subscales 

(Fear of Negative Evaluation, Social Avoidance and Distress- New and Social Avoidance and 

Distress - General), although the differences were non-significant (all ps>0.05) (Table 2).  

Table 2 Results from SASC-R, showing group means and standard deviations for girls. Regression coefficients 
(ȕ), ZiWh 95% cRQfideQce iQWeUYaOV (CI ORZeU, CI XSSeU) effect sizes (Cohen's d, adjusted for parental education) 
and p-values for the main effects of DEX.             

   

 METABOLISM - STUDY III 

In study III we investigated possible metabolic effects after first-trimester DEX treatment in 

children without CAH.  

Renal function: No significant DEX effects were found in the whole cohort for renal function. 

However, after dividing the group by age (<16 years and ≥16 years), we found a significantly 

higher P-potassium level in the DEX-treated younger children (p=0.025).  

Blood count: No differences were found in blood count when analyzing the whole group, but 

after separating them into two age groups (<16 years and ≥16 years), the younger DEX-

treated children had a slightly higher leukocyte count (p=0.003).  

Glucose metabolism: We observed a significant DEX effect on HOMA-β with lower beta-

cell function in the whole group of DEX-treated children (p=0.049). After post hoc analyzes, 

the lower HOMA-β values persisted in DEX-treated girls (p=0.024) but not in boys 

(p=0.550). No significant differences were found when analyzing fP-glucose, fP-insulin and 

B-HbA1. When separating the individuals into two age groups (<16 years and ≥16 years), we 

found a significantly higher fP-glucose in the younger DEX-treated children (p=0.001) and a 

lower HOMA-β value (p=0.048). As in the whole cohort results, the post hoc analysis 

revealed that the difference in HOMA-β persisted in girls (p=0.05) but not in boys (p=0.540). 

For fP-glucose, there was no interaction with DEX and sex. In the older age group (≥16 

years), no significant DEX effects on glucose metabolism were observed.   



 

 37 

Blood lipids: There were no significant effects on blood lipid profiles when the entire DEX-

treated cohort was compared to the controls. However, when the age groups were analyzed 

separately, a significant effect of DEX was identified in the older age group (≥16 years) for 

cholesterol (p=0.003) and LDL cholesterol (p=0.009). No interactions were found between 

DEX and sex. In the younger age group (<16 years), there were no significant findings.  

 BLOOD PRESSURE - STUDY IV 

In study IV we examined the possible effects on BP after prenatal DEX treatment in healthy 

children. When analyzing the cohort across all ages, we did not identify any differences in 

24-h BP. When dividing the cohort into two age groups (<16 years and ≥16 years), the 

younger DEX-treated children had significantly higher mean nighttime PP (β=11.6, 

t(34)=2.1, p=0.039). No significant differences were observed in the older age group. 
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7 DISCUSSION  
Prenatal DEX treatment in the first trimester, result in negative effects on cognition and 

metabolism. Furthermore, DEX treatment seems to affect girls in a higher degree than boys. 

Our results are partly confirmed by other studies on DEX treatment in the context of CAH 

[118, 173]. However, since studies on first-trimester DEX treatment in CAH risk pregnancies 

are relatively few, we are required to compare our results with studies assessing other types of 

GC exposure and at different periods of fetal life.  

Animal studies may be applicable, but there are probably many differences between humans 

and animals because different species have different maturity levels at birth, different 

gestational length, different cognitive development, etc. [214]. Results from studies on 

maternal stress may, to some extent, be relevant for our results. However, the stress level is 

often difficult to validate. Also, the cortisol level measured in maternal plasma and amniotic 

fluid is not always associated with the mothers´ estimated stress level [139]. Maternal stress 

also induces a rise in endogenous cortisol in contrast to DEX exposure. The different GCs 

have different GR affinity and different potency for activating the GR. In addition, they differ 

in their sensitivity to the 11β-HSD2 enzyme [41]. Effects due to mid to late gestation sGC 

treatment in pregnancies at risk for prematurity may be comparable to our results. However, 

there are probably differences because sGC exposure affects the fetus during different stages 

of development. Organogenesis occurs in early gestation, but the organs' maturation usually 

occurs in later pregnancy [64, 65]. The fetal HPA axis also evolves during gestation and the 

levels of these hormones changes as the pregnancy progresses [71].  

These facts make our field of research and the results obtained in this thesis novel. Our 

affected cognitive functions and metabolism findings are in line with animal and human 

studies of maternal tress and late gestation sGC treatment [47, 65, 66, 76, 144, 151, 214-216]. 

However, there are not many convincing results from other research groups investigating 

cognition after DEX treatment in non-CAH individuals, perhaps due to the assessment 

methods, the lack of a control group and small group size [217]. However, a French research 

group found similar results to ours on glucose metabolism and further studies are hopefully in 

progress from other groups [173]. Our studies found no evidence of negative DEX effects on 

behavior, which is consistent with other groups studying the prenatal treatment of CAH, but 

in contrast to the studies on late gestation sGC exposure and maternal stress [138, 144, 151, 

217, 218]. However, the majority of the individuals exposed to late prenatal exposure are also 

born preterm. In addition, they often need neonatal medical care for a prolonged period, 
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probably leading to anxiety and stress in the mothers, which might also influence the outcome 

[219, 220].  

 COGNITION 

In study I, DEX-treated girls performed worse than controls in three out of four of the WISC-

III subtests, and in the fourth subtest there was a trend in the same direction. Further, the 

DEX-treated girls also performed worse in the backward part of the Spatial Span board test, 

assessing visual-spatial WM. In WISC-III there are four index scores (VCI, PSI, POI and 

FDI), but it also renders an estimate for verbal IQ and non-verbal IQ. Our interpretation is 

that DEX exposure during early gestation affects verbal WM, visual-spatial WM, verbal IQ 

and non-verbal IQ in girls but not in boys [31]. Accordingly, the finding of a lower result on 

the digit span test (assessing verbal WM) in DEX-treated healthy girls in our first study 

published 2007 should be regarded as confirmed [29]. The differences showed medium to 

large effect-sizes in all the significant test results (d=0.72-1.00). Moreover, DEX-treated girls 

rated their scholastic ability lower than controls with a difference over 1 SDS (p=0.001, 

d=1.28), consistent to the results of our earlier study [29].  

There are few other studies published on early DEX treatment in pregnancies at risk for CAH 

and its effects on children’s cognitive outcome, to compare our results with. The studies 

differ in the set-up in regard to cohort, methods and outcomes. There are primarily three 

research groups assessing cognition concerning first-trimester prenatal DEX treatment: Our 

Swedish research group in Stockholm, the American research group in New York and the 

Polish group in Warsaw [217]. Two American papers have been published (1995 and 2004) 

assessing cognition by parental questionnaires on cognitive development. Neither of these 

studies found negative effects of DEX treatment. However, both of these studies had a 

mixture of children with CAH and children without CAH in the DEX-treated and non-treated 

groups. Further, they had no control group of healthy non-DEX exposed children to compare 

the results of the DEX-treated individuals without CAH [116, 117]. There are two studies 

published with a similar setup as ours, with direct assessment by a psychologist but with 

some differences in methods and cohort. The American group found that healthy short-term 

DEX-treated children (boys and girls combined) performed worse on short-term memory, 

however the result was only near significant (p=0.066) [118]. The Polish group found a 

significant difference between girls with CAH, depending on whether they had been 

exposed to prenatal DEX treatment. The DEX-treated girls with CAH performed better than 

the non-DEX-treated girls with CAH and the healthy girls performed worse than the DEX-

treated girls with CAH and at the same level as non-treated girls with CAH [119]. They 
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suggested a potentially negative effect in the healthy DEX-exposed girls because 

individuals with CAH are known to perform worse in tests assessing WM compared to 

healthy controls [120-122]. However, they did not have a healthy, non-treated control group, 

making the results in the DEX-treated healthy girls challenging to interpret.  

Maternal stress in early pregnancy has also shown to have a sex-dimorphic effect in 

inhibitory control (an aspect of executive functions) and structural changes in the amygdala 

[115, 221]. Children tested at 6-9 years of age assessed by direct psychometric testing and 

MRI of the brain, found lower performance in girls in tests assessing inhibitory control, but 

no effect could be seen in boys [221]. The study also showed a reduced performance in girls 

and boys on the sequential memory task, assessing visuospatial WM. These children were 

also examined with an MRI of the brain, which showed an association between early 

gestational maternal stress and a larger amygdala volume on the right side in girls but not in 

boys [115]. Moreover, they found that mid-gestational stress was associated with a 

reduction in gray matter volume in several areas associated with memory and EF (e.g., the 

prefrontal and temporal cortex) in both sexes [222]. These findings of early prenatal excess 

of cortisol are consistent with our findings of reduced executive function in girls and 

structural changes in the amygdala [29, 31, 35]. WM is primarily associated with the 

prefrontal cortex, the temporal lobe and the parietal lobe. Not surprisingly, lesions in these 

areas result in impaired cognitive abilities [223, 224]. Both animal and human studies show 

structural changes in these areas after prenatal GC exposure. Reduction of the hippocampal 

volume, a reduced number of neurons in the hippocampus, decreased size and activity level 

in the ACC and reduced volume of the amygdala have been reported [35, 78, 96, 98, 102, 

115, 128].  

The sex-dimorphic effect and the reason for this finding is not apparent; however, one can 

speculate that it may be because men and women activate different areas during WM tasks, 

suggesting that they use different strategies to solve the same problem [225]. Women often 

activate the limbic system and the prefrontal cortex more extensively than men during WM, 

whereas men use the parietal and temporal areas more [225, 226]. There are also sex 

differences in total brain size, volumes of gray matter vs. white matter, size differences in 

brain regions associated with cognition and differences in what hemisphere is primarily used 

during WM tasks [225-229]. Because we assess children and teenagers, CNS maturation 

during adolescence is another factor to consider. During adolescence, the brain changes both 

structurally and functionally. Some parts (e.g., the frontal and parietal cortices) are not fully 

mature until well past adolescence [230]. Maturation in adolescence seems to occur at 
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different rates for males and females with respect to total brain volume and gray matter 

volume, with girls peaking approximately 2 years earlier than boys [230-232]. In some 

regions (such as the prefrontal cortex), the difference in time of maturation is even larger 

[227]. Our study did not divide the children into different age groups, nor did we associate 

the results to their pubertal stage, which might have given us more information about the data 

from a developmental perspective. However, when we assessed the cognitive abilities in the 

DEX-treated healthy adults in our cohort, we did not find any differences in WM or 

intelligence regardless of sex [123]. The lack of negative outcome in the older individuals 

might be a result of compensatory mechanisms in girls, that obscure a true difference, but it 

might also be caused by the plasticity of the brain and the neurons ability to grow and 

reorganize [233]. However, since we also found structural changes in the brain in these 

individuals, the theory of complete neuronal recovery seem less convincing.       

 BEHAVIOR 

In study II, we found no significant association with DEX treatment and negative behavior or 

temperament based on parental and self-reported questionnaires. Thus, our findings do not 

support our hypothesis that early fetal DEX treatment affects behavior or temperament in 

childhood or adolescence. In our first group of prenatally DEX-treated children, we found 

that the children rated themselves as having more social anxiety [29]. In the extended study 

presented in this thesis, we found that girls (but not boys) scored higher on all subscales of 

SASC-R assessing social anxiety, although no significant differences could be found. 

Further we found a difference in the CBCL syndrome scales for attention problems and 

social problems with higher parental ratings in DEX-treated girls. However, this difference 

did not either reach significance. Indications of increased problems with attention and 

anxiety have been found in follow-up studies investigating effects of prenatal maternal 

stress and in studies assessing children exposed to sGC in mid- to late gestation [115, 137, 

139, 141]. 

In the American study from 1995, the DEX-treated children were rated by their parents as 

less sociable, more emotional and shyer than the non-treated controls. They also had more 

internalizing problems and total behavioral problems [117]. However, this study had a 

mixture of healthy and CAH children (boys and girls) and the parental evaluations were 

made at an early age (mean=2.5±1.3 years, range: 6 months - 5.5 years). Their later extended 

study (mean=5.55±3.46 years, range: infancy - 12 years) found no differences in behavioral 

outcomes [116]. Similar results were found in the Polish cohort, with no effects on behavior 

due to prenatal DEX treatment [119].  
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Our interpretation is that there are no major behavioral effects of DEX treatment when 

using an indirect assessment method (parental questionnaires) [234]. However, despite the 

lack of significant results, we found differences between girls and boys when assessing 

anxiety. DEX-treated girls scored themselves as having more social anxiety in coherence 

with the sex-dimorphic results on cognition and metabolism. Girls seem to be more affected 

by prenatal GC exposure than males. 

 METABOLISM 

In study III, the results indicate a negative effect on glucose metabolism due to prenatal DEX 

treatment. We speculate that this finding may have considerable impact on health as the 

individual grows older. If the reduced HOMA-β in females suggests that beta-cell activity is 

affected already in childhood, the risk of impaired glucose tolerance (IGT), impaired fasting 

glucose levels (IFG) and eventual type 2 diabetes will be considerable. Individuals with type 

2 diabetes have a significantly greater risk of developing cardiovascular disease (CVD) than 

non-diabetic individuals [235, 236]. Notably, IFG alone is not a risk factor for developing 

CVD; instead, it seems as though IGT is a prominent risk factor [237].  

HOMA-β, is an estimation of beta-cell function, is based on fasting levels of glucose and 

insulin. The method assumes that insulin secretion and is directly dependent on the coexisting 

plasma-glucose level. However, that may not always be true. If an individual’s insulin 

sensitivity is extremely high, such as in athletes, the insulin level will be lower at the same 

glucose level, leading to a lower HOMA-β, even though there is a perfectly normal beta cell 

function. Thus, it is reasonable to propose that HOMA-β is a measure of insulin secretion 

rather than a measure of beta-cell function [238, 239]. However, our results showed neither a 

difference in insulin levels nor HOMA-IR. Consequently, we assume that the difference in 

HOMA-β indicates reduced beta-cell activity not caused by higher insulin sensitivity in the 

DEX-treated group.  

Our findings are also coherent with a recently published French study in which healthy DEX-

treated individuals were found to have a probable reduced beta-cell activity [173]. The insulin 

secretion was tested in multiple ways, not only by calculating HOMA-β values. They 

examined fasting blood samples, performed an oral OGTT and performed a euglycemic, 

hyperinsulinemic clamp. Further, they tested the insulin secretory response to i.v. glucose 

infusion and after arginine stimulation. The results showed a significantly lower insulin 

response in the DEX-treated individuals, which they argue is due to a probable decrease in 

beta-cell mass or function. They also estimated that the change in response in insulin 

https://www-sciencedirect-com.proxy.kib.ki.se/topics/medicine-and-dentistry/diabetes-mellitus
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secretion might alter glucose tolerance with time [173]. These results strengthen our 

hypothesis that early gestation DEX treatment has a negative effect on beta-cell activity.   

Our results are also in line with the many animal and human studies assessing long-term 

effects on glucose metabolism after prenatal GC exposure. In sheep, findings have revealed 

altered glucose homeostasis in adult offspring. The insulin levels were higher in adult female 

offspring after an intravenous glucose tolerance test suggesting increased insulin resistance 

[240, 241]. No effect could be found in male offspring, suggesting a possible sex-dimorphic 

effect. In humans, young adults exposed to GC treatment during late gestation because of the 

risk of being born preterm displayed a significantly lower HOMA-β compared to untreated 

controls [172]. Human studies assessing prenatal exposure to maternal stress have also shown 

similar results with impaired glucose tolerance in the exposed, especially if the stress 

exposure was early to mid-gestation [242, 243].  

We also found higher total cholesterol and LDL cholesterol levels in the older age group of 

DEX-treated individuals, but no differences were found in the younger age group. The 

difference in the results between age groups may be caused by changes in the lipid-profile 

during childhood and puberty, with a natural decrease in serum total cholesterol, HDL and 

LDL cholesterol levels [244, 245]. Thus, the DEX-effect seen in older teenagers might be 

caused by an absence of the natural decline in blood lipid levels during puberty, which might 

explain the lack of results seen in the younger children as the decline has not yet begun. 

However, our attempt to divide the group according to age to detect possible pre- and post-

pubertal effects, as earlier argued, might not have been sufficient in this regard. There was 

probably a mix of pre-pubertal and pubertal children in the younger age group, which might 

have obscured potential differences [246]. High cholesterol level, especially LDL, is a well-

known risk factor for coronary heart disease (CHD). If the individuals also have reduced 

insulin sensitivity, the risk of CHD will increase even further [245]. 

The finding of a higher leukocyte count in the DEX-treated young cohort is difficult to 

interpret. Nevertheless, it could be speculated that the higher count is due to a programming 

effect on the immune system. We have previously found altered DNA methylation in 

peripheral T cells, although the effect on DNA methylation was mainly associated with 

immune functioning and inflammation, not specifically to leukocyte count [34]. GC treatment 

is also known to induce apoptosis in some cell types of the immune system (e.g. eosinophils 

and T cells) but in other cell types it may also inhibit apoptosis and induce survival, e.g. 

neutrophils [247].  
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Younger children have a wider reference interval in leukocyte count than older children and 

adults, which might explain why we see differences in this age group and not the older one. 

In that case, the result should be considered a false-positive [248]. Naturally, it may also be 

due to a random higher number of low-grade infections in the DEX-treated group. Our 

interpretation is that further studies are needed before any conclusion is drawn.   

The finding of higher potassium levels in the DEX-treated group might be caused by an 

effect on glomeruli function or by altered aldosterone synthesis or function. Effects on the 

number of nephrons and their function have been shown in studies exposing rodents to 

prenatal GC [180, 249]. However, there are also studies in primates that contradict these 

findings [183]. Particularly noteworthy is that epigenetic changes associated with DEX were 

also found in our cohort (e.g., the CYP11B2-gene), which codes for aldosterone synthase, an 

enzyme involved in aldosterone synthesis [34].    

 BLOOD PRESSURE 

Study IV, which assessed possible effects on the cardiovascular system, failed to show 

convincing results. The only significant finding regarding BP was a higher pulse pressure 

(PP) at nighttime in the younger cohort. PP is calculated as the difference between systolic 

BP (SBP) and diastolic BP (DBP). Increased PP is caused by an increased systolic blood 

pressure but an unaffected diastolic blood pressure and is known to be a risk factor in the 

development of heart disease in adults [250, 251]. The elasticity and compliance of the large 

arteries and flow pulsatility are the major factors in the composition of PP. Aortic elasticity 

declines with age, except in younger children in which there is no correlation between aortic 

stiffness and age until approximately 8 years [252].  

Studies investigating the incidence of hypertension in school aged children have found that 

there is a higher incidence if elevated SBP than elevated DBP. Furthermore, elevated SBP, 

PP and heart rate have been shown to be associated with childhood obesity [253]. The 

suggested mechanism of higher SBP in children, is thought be due to hyperactivity in the 

sympathetic nervous system rather than early stages of arteriosclerosis. Studies have shown 

that obese individuals have higher sympathetic activity even at normal BP [254]. We did not 

find any differences in BMI or heart rate between the groups in our study, but we have found 

effects on glucose- and lipid metabolism. Since there are correlations between insulin 

secretion and the sympathetic nervous system, a possible increase in sympathetic activity 

(that we have not investigated) might be one reason for the found reduced insulin secretion in 

these individuals [255].  
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Studies on late gestation GC exposure (in pregnancies at risk of preterm labor) have shown 

effects on aortic stiffness during adolescence or young adulthood but no findings on BP [170, 

172]. Possibly is the increased aortic stiffness found in these studies also due to an increase in 

sympathetic activity and a risk factor in developing high BP at an older age.  
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8 ETHICAL CONSIDERATIONS 
This research field and its endpoints are part of an ethical dilemma. Is it ethical to treat 7 of 8 

children (or if early sex assessment is done, 3 of 4 children) to relieve suffering of one? 

Pediatric endocrinologists have discussed this question for many years and there remain 

diverse opinions on the matter. In many countries, prenatal DEX treatment is still available, 

however, in Sweden we have decided not to use this treatment because of the negative effects 

on cognition and the overall uncertainties of the treatment. It is vital to accumulate as much 

knowledge as possible regarding possible side effects of prenatal DEX treatment in otherwise 

healthy individuals to make a rational decision on its future use in the clinical care of families 

with a genetic risk of CAH. Our research is part of that process.  

The discussion among health care professionals throughout the world concerns whether it is 

ethical to treat children that do not benefit from the treatment if the negative side effects are 

minor and what defines a “minor” side effect. Is an effect on cognition of importance if 

cognitive functions are still within the normal range? In many countries, the physicians 

believe that the benefit for the virilized girl outweighs the side effects that have been 

identified in treated cases. However, in Sweden, it was decided to halt further treatment until 

more knowledge was gathered about the long-term consequences. After several studies 

showing negative results in healthy individuals, our opinion persists in that the results are not 

“minor” and that the treatment is not justifiable.  

Another ethical consideration is the actual process of enrolling and assessing the individuals 

in the study. Is it ethical to test these healthy (non-CAH) children and young adults to see 

determine whether they had suffered negative side effects of a treatment their mother decided 

to accept before they were born? One can speculate that this may interfere with the 

relationship between the mother and child. Some of the treated individuals did not even know 

that they were exposed to GC during gestation, which may also be an issue of conflict. 

Because of these ethical issues, we decided not to approach the adult participants directly but 

instead contacted the mothers to discuss the potential participation of their child. Thus, the 

child was contacted only after the mother had sanctioned it.  

Another question to address is whether neuropsychological testing is always in the best 

interest of the individual being tested. All the children and their parents have been presented 

with the results after testing. If a child is found to have some problems with i.e. concentration, 

there are different reactions to that knowledge. Some families may be grateful and using the 

new information, they will be able to address the school to get a full evaluation and, in the 
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end, suitable help. Another family may feel differently by that result, especially if they had 

not seen any previous difficulties.  

As for blood tests and ABPM in children, there is always a discussion about how much 

discomfort we can expose a child to and especially when the result is part of a study and there 

is no direct benefit for the child. Blood sampling may be scary for many children and 

sometimes it may hurt. Blood pressure measurements may also be perceived as a discomfort 

to many children. We have not tried to persuade the children nor the parent to perform the 

blood tests or ABPM if they were hesitant or scared. We have also used anesthetic plaster to 

numb the skin and always had an experienced pediatric nurse perform the drawing of blood. 

They were also told that they could stop the ABPM at any time if they wanted.  

All participants and their parents received written and verbal information before signing a 

written consent. Approval from the Stockholm Research Ethics Committee was obtained 

before start of the study. All data-carrying personal information was coded to ensure 

anonymity.  
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9 CONCLUSION AND POINTS OF PERSPECTIVE 
The results from the studies presented in this thesis, supports the hypothesis that prenatal 

DEX treatment is not to be considered safe. Additional findings reported from our research 

group support this statement. We have published several papers demonstrating adverse 

effects on cognitive functions in DEX-treated children [29, 31, 123]. Furthermore, we have 

found alterations in brain structure and differential DNA methylation associated with this 

treatment [34, 35]. In contrast to our findings, a recent review of 18 papers assessing 

prenatally DEX-treated individuals found no association with DEX treatment and cognition 

or behavior [217]. However, the review also observed that the papers differed in aspects 

previously mentioned, i.e. inclusion of a healthy control group and assessment methods. The 

paper also displays a table summarizing the quality criteria of the different studies, using the 

Newcastle-Ottawa assessment scale. The only research group that scored 9/9 was ours and 

the major difference was found in the criteria “Comparability”. This criteria comprise the 

inclusion of matched control groups and controls for additional important factors (e.g. 

parental educational level, parental socioeconomic status, geographic areas) [217].   

Within the frame of the PREDEX study, we will continue investigating the possible effects of 

DEX treatment on the HPA axis using an ACTH stimulation test (Synacthen-test) and the 

effects on bone mineralization by density scans (DEXA scan). We also plan to do further 

assessments of the glucose-insulin homeostasis, such as an OGTT and ongoing studies on 

brain structure and brain function will hopefully further elucidate the neural correlations 

underlying the observed cognitive deficits.  

The fact that we see cognitive effects in children but not adults makes it even more important 

to perform even longer follow-up, when all the Swedish DEX-treated children have become 

adults. The adult DEX cohort will then be much larger than today and we may then get more 

convincing results. The same argument is also eligible for the findings on metabolic effects of 

DEX treatment where the age groups differ in their results, making longer follow needed.  

Looking ahead, it is necessary to increase our knowledge of how prenatal DEX treatment 

affects non-CAH individuals, in order to get an international consensus whether the treatment 

should be offered or not. Not all countries agree with the Swedish standpoint in the matter. 

New, and even earlier, prenatal diagnosis is needed to avoid treating the fetuses that do not 

benefit from DEX therapy. However, the possible negative effects on girls with CAH must 

also be addressed. Thus, the worldwide medical society should use this therapy with caution. 
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