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ABSTRACT 
 
The escalating prevalence of obesity and its association with comorbidities like insulin 
resistance and type 2 diabetes have raised the interest in adipose tissue biology and its 
therapeutic potential. Adipose tissue remodeling during the development of obesity is an 
important regulator of systemic metabolic homeostasis, and dysfunctional adipose tissue is 
linked to the risk of developing type 2 diabetes. Adipocyte differentiation and function are 
orchestrated by a complex network of transcription factors and coregulators that transduce 
regulatory signals into epigenome alterations and transcriptional responses. While the role of 
transcription factors involved in adipogenic pathways is well established, the role of their 
associated coregulators remains poorly understood. Of particular interest is G protein 
pathway suppressor 2 (GPS2), a core subunit of the HDAC3 corepressor complex, which is 
downregulated in humans with obesity and implicated in regulating metabolic and anti-
inflammatory pathways in various tissues. The overall aim of this thesis was to identify 
hitherto unknown functions of GPS2 in the adipose tissue, with a particular emphasis on 
mechanisms underlying adipocyte dysfunction in the context of obesity and type 2 diabetes.  
 
In Paper I, by generating a unique loss-of-function model using human multipotent adipose-
derived stem cells, we showed that loss of GPS2 triggers the commitment of fibroblast-like 
progenitors towards the adipogenic lineage and induces hypertrophy of mature adipocytes 
associated with a deep remodeling of the adipocyte lipidome. Furthermore, we demonstrated 
that adipocyte hypertrophy was likely the consequence of the increased expression of ATP-
binding cassette subfamily G member 1 (ABCG1) that mediates sphingomyelin efflux from 
adipocytes and modulates the activity of lipoprotein lipase (LPL). We validated the cell-
derived findings by gene expression analysis of an obese cohort, where GPS2 is 
downregulated in diabetic patients and negatively correlated with the expression of ABCG1. 
 
In Paper II, by characterizing adipocyte-specific Gps2 knockout mice, we discovered a 
hitherto unknown function of GPS2 in the induction of adipocyte hypertrophy, inflammation 
and mitochondrial dysfunction. The knockout phenotype was driven by over-activation of 
the transcription factor HIF1A that orchestrates an inadequate white adipose tissue 
remodeling and disrupts mitochondrial activity. The validation of the experimental mouse 
data in a human cohort of non-obese and obese individuals with or without diagnosed type 2 
diabetes showed a negative correlation between the expression of GPS2 and HIF1A, 
adipocyte hypertrophy and insulin resistance. 
 
In Paper III, we found that the expression of GPS2 in the white adipose tissue of humans 
was strongly correlated with the insulin secretion rate. The causality of this relationship was 
confirmed using adipocyte-specific Gps2 knockout mice, in which adipocyte dysfunction 
caused by the loss of GPS2 triggered the secretion of factors that provoked pancreatic islet 
inflammation and impaired beta cell function.  
 
In conclusion, the research within this thesis revealed novel insights into the multifaceted 
regulatory roles of GPS2 in altering the epigenome and the transcriptome linked to adipose 



tissue metabolism and inflammation. These discoveries increase our understanding of the 
mechanisms underlying the development of obesity and its link with type 2 diabetes, and they 
may help to define novel potential targets for treating these metabolic diseases. 
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1 INTRODUCTION 

1.1 Obesity 

Obesity is a metabolic disease, the prevalence of which has exponentially increased in the 
last thirty years. In 2016 the World Health Organization (WHO) estimated that more than 1.9 
billion people worldwide were overweight and among those more than 650 million were 
obese1. This pathological condition represents one of the major health issues correlated with 
high cost for the public health care system, in particular because it is a major risk factor for 
the development of comorbidities associated with metabolic syndrome, such as diabetes, 
cardiovascular disease, hypertension, dyslipidemia, coronary heart disease, and certain types 
of cancer2. 
 
Obesity is characterized by an excess of body fat accumulation, an outcome of the imbalance 
between energy intake and energy expenditure. While a small number of obese cases result 
from monogenic alterations, the common form of obesity is the outcome of a complex 
interplay of multiple factors like obesogenic environment and genetics. These factors can 
contribute to a dynamic alteration of the epigenetic signature resulting in a ‘personalized’ 
epigenome, which influences the fat distribution and the susceptibility and progression of 
this pathology3 (Figure 1). 
 

 
 

Figure 1. Components of epigenetic responses that influence obesity. 
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Several candidate genes have been linked to obesity, including genes that regulate energy 
homeostasis. For example, mutations in the genes encoding leptin or leptin receptor lead to 
severe obesity4,5; leptin is an adipocyte-specific hormone which acts on the hypothalamus 
suppressing food intake. However, these mutations are rarely observed in obese human 
subjects, and paradoxically the majority of cases are leptin-resistant with high levels of 
circulating leptin in proportion to the fat mass6. Genome-wide association studies have 
identified a cluster of single nucleotide polymorphisms (SNPs) located within the Fat Mass 
and Obesity Associated (FTO) gene, which are associated with the susceptibility of being 
affected by obesity7. Also, the environment has a major impact on the risk of developing 
obesity. Energy expenditure depends on the physical activity and it has been shown that 
watching TV for more than 5 hours per day increases the risk of childhood obesity8. Likewise, 
energy intake depends on the composition of macronutrients in the diet that have different 
effects on satiety. Nowadays it is easy to find food that is rich in fats which, when compared 
to proteins, have a reduced effect on inducing satiety9. Moreover, multiple evidences suggest 
that fetal nutrition influences a long-term programming of genetic expression that can 
determine the later onset of obesity and type 2 diabetes independently from genetic 
inheritance10.  
 
In clinical practice, obesity is estimated by the body mass index (BMI), calculated as weight 
in kilograms divided by height in meter squared (kg/m2). The classification of overweight 
and obesity proposed by the WHO applies to both men and women and to all adult age 
groups. Individuals with a BMI of 18.5 to 24.9 are considered normal weight, those with a 
BMI between 25 and 29.9 are considered overweight, and those with a BMI over 30 are 
considered obese (Table 1)11. 
 

Classification BMI Risk of comorbidities 

Underweight < 18,50 
Low (but risk of other clinical 
problems increased) 

Normal range 18,50 – 24,99 Average 

Overweight  ≥ 25,00  

Preobese 25,00 -29.99 Increased 

Obese class I 30,00 – 39,99 Moderate 

Obese class II  35,00 – 39,99 Severe 

Obese class III ≥ 40,00 Very severe 

 
Table1. Classification of obesity according to BMI and associated risk of comorbidity.  
 
Even if BMI is accepted as a strong predictor of overall mortality, several studies reported an 
inverse association between BMI and mortality in patients with different disease situations. 
Metabolically obese normal-weight subjects (MONW, introduced by Ruderman), have a 
normal BMI but suffer from metabolic complication typically found in obese subject12. On 
the other hand, metabolically healthy obese (MHO) have a BMI above 30 kg/m3 but don’t 
show insulin resistance or dyslipidemia. It has been estimated that in the United States about 
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10% of adults have obese BMI and are metabolically healthy, while 8% have a normal BMI 
and are metabolically unhealthy13. The BMI classification presents some limitations, such as 
that it does not distinguish between muscle and fat accumulation and it does not accurately 
measure the distribution of visceral and subcutaneous fat. Additionally, it has been shown 
that most of MONW have a relatively low BMI but significantly more visceral adipose tissue, 
while MHO have a high BMI with less visceral adipose tissue14.  
 
Currently, the main therapeutic methods to control energy balance and reduce body weight 
are caloric restriction, exercise and bariatric surgery. However, calorie-reducing diet and 
exercise demand persistent efforts and considerable willpower from affected individuals and 
they are often unsuccessful for long-lasting results. Bariatric surgery reduces food intake by 
reconstructing the digestive system and induces significant weight loss. Nevertheless, it 
comes with the risk of side-effects such as dumping syndrome, reflux and nutritional 
malabsorption, which makes this treatment nun suitable for many obese individuals15.  
Therefore, there is a need to better characterize adipose tissue biology and its crosstalk with 
other organs to develop new treatment strategies for obesity and its comorbidities. 

1.2 Adipose tissue 

In mammals, adipose tissue is composed of two different tissues, the white adipose tissue 
(WAT) and the brown adipose tissue (BAT). The WAT is classified as visceral fat, located 
around internal organs in the intra-abdominal cavity, and as subcutaneous fat, situated under 
the epidermis in the lower and upper part of the body16. The belief that the BAT is present 
only in human newborns has been recently changed by evidence showing its presence above 
the clavicle and in the subscapular region in human adults17. 
 
WAT is mainly composed of unilocular adipocytes and has an extensive role in storage and 
release of free fatty acids based on energetic request of the organism (Figure 2). It shows a 
high level of plasticity and it expands in response to caloric excess via hyperplasia, increased 
number of adipocytes, or hypertrophy, increased adipocyte size, or both16. It communicates 
with metabolically relevant organs by secreting adipokines, which can act locally as paracrine 
factors or have a long-range effects and act on the feeding centers in the hypothalamus18. 
 
BAT, like WAT, accumulates and stores lipids in multilocular adipocytes. The main function 
of BAT is to maintain the core body temperature in response to cold stress by generating 
heat, a process known as thermogenesis. BAT is more vascularized compared to WAT. 
Furthermore, brown adipocytes are differentiated from white adipocytes due to their 
mitochondria content and enrichment with uncoupling protein 1 (UCP1) (Figure 2). They 
are massively innervated by the sympathetic nervous system, which regulates the expression 
of UCP1 through activation of the β3-adrenergic receptor. During cold exposure the body 
temperature is stabilized by non-shivering thermogenesis in which UCP1 uncouples the 
oxidative phosphorylation from ATP production generating heat19. 
 
UCP1-expressing thermogenic adipocytes can also be found in WAT upon prolonged cold 
stimulation or activation of pathways that increase intracellular cyclic AMP (cAMP); these 
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cells are called “beige” or “brite” adipocytes. The beige adipocytes have a higher 
mitochondrial density compared to the white ones, with a more oxidative phenotype that 
promotes energy consumption20 (Figure 2). 
 

 
 
Figure 2. Morphological differences between the three types of adipocytes. 

1.3 Physiological function of white adipocytes 

The primary function of white adipocytes is to maintain the whole metabolic balance of the 
body by being the major site for storage and release of fatty acids. The energy surplus is 
stored in adipocytes through the lipogenic process in the form of triglyceride-containing lipid 
droplets. However, during energy expenditure or starvation, the lipid reserves are released 
through lipolysis, where triglycerides are broken down into glycerol and fatty acids. The 
released fatty acids are then transported to the muscle, liver and BAT where they are oxidized 
for the modulation of the body energy balance21. Lipogenesis and lipolysis are sensitive to 
nutrition and multiple hormone-sensitive enzymes that regulate the balance between lipid 
influx and efflux into/from the adipocytes to maintain the systemic energy homeostasis and 
insulin sensitivity.  

1.3.1 Lipogenesis and lipolysis  

During the feeding state, high blood glucose levels stimulate the release of insulin from the 
beta cells of the pancreas which promotes glucose uptake in the adipocytes, and its 
metabolization into acetyl coenzyme A, an important substrate for the synthesis of 
endogenous fatty acids through de novo lipogenesis. However, in adipocytes glucose is not 
the main source for the production of fatty acids but is the main source to produce glycerol 
for their esterification. Under normal conditions, the fatty acids used for triglyceride 
production in adipocytes come from circulating triglycerides22. During energy surplus, 
circulating triglycerides are synthetized in the form of lipoprotein by the liver and intestine 
and delivered to the WAT. The triglycerides are hydrolyzed into free fatty acids (FFAs)23 by 
the endothelial cells of the adipose tissue, through the action of the key enzyme lipoprotein 
lipase (LPL). The FFAs are then transported by scavenger receptor CD36 or fatty acid 
binding protein (FABPs) through the endothelial lumen into the adipocytes24,25. Finally, the 
endogenous and exogenous fatty acids are esterified into triglycerides by the sequential 
actions of multiple enzymes including diacylglycerol acyltransferase (DGAT) which 
catalyzes the last step of triglyceride synthesis and plays a critical role in their deposition in 
the lipid droplets of the adipocytes26 (Figure 3). Insulin is the predominant stimulus that 
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promotes lipogenesis. Besides stimulating glucose uptake and activation of glycolytic and 
lipogenic enzymes, insulin promotes fatty acid uptake and esterification increasing the 
expression and activity of the LPL27,28, the translocation of fatty acid transport protein and 
their related gene expression29. Recently, the membrane ATP-binding cassette transporter G1 
(ABCG1) has been identify as an important player in triglyceride storage in adipocytes30. 
Beyond the well-characterized role of ABCG1 in the regulation of cholesterol efflux in 
macrophages, new studies suggest it plays a role in the regulation of adiposity. Abcg1 
knockout mice showed protection from diet-induced obesity and reduced adipose tissue mass 
with smaller adipocytes31. Further, ABCG1 has been shown to mediate sphingomyelin efflux 
contributing to increased LPL activity and triglyceride storage in the adipocytes32   
 
On the other hand, lipolysis is the process that induces the breakdown of triglycerides and  
supplies free fatty acids for oxidation to the liver, muscle and BAT, and glycerol for hepatic 
gluconeogenesis based on the energy need33,34. During fasting, the elevated levels of 
circulating glucagon and catecholamine released by the sympathetic nervous system 
stimulate the activation of the cAMP-dependent protein kinase A (PKA) pathway and 
consequent lipolysis in the adipocytes35. Triglycerides are broken down into di-, 
monoacylglycerides and finally into individual fatty acids by the action of three lipases: 
adipocyte triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoacylglycerol 
lipase (MGL)36,37(Figure 3). 
 

 
 
Figure 3. Schematic representation of lipogenesis and lipolysis in adipocytes. 
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1.3.2 Endocrine function of the adipocytes 

In addition to energy storage, over the past 20 years the role of adipose tissue has been 
expanded to integrate its endocrine function that includes the production of a variety of 
factors such as metabolites, lipids and adipokines, that regulate systemic metabolism and 
inflammation38,39. The first discovered secreted adipokine was leptin40, followed by 
adiponectin41. Later many other adipokines have been discovered including resistin and 
proinflammatory cytokines such as chemokine (C-C motif) ligand 2 (CCL2, also known as 
monocyte chemoattractant protein 1, MCP1), interleukin 6 (IL-6) and tumor necrosis factor 
alfa (TNFa)39. Interestingly, adipocyte-secreted factors have the ability to regulate a variety 
of biological process such as immune response, inflammation, glucose metabolism, insulin 
sensitivity, blood pressure, vascular growth and function, cell adhesion and lipid metabolism. 
Adipokines have the ability to crosstalk with central and peripheral cells and their 
dysregulated production or secretion is implicated in metabolic, inflammatory and 
cardiovascular diseases as well as cancer. 
 
Leptin, popularly known as the satiety hormone, is encoded by the obesity (ob) gene and 
regulates energy balance by targeting the hypothalamus and suppressing appetite40,42. Mouse 
models with deficiency of leptin (ob/ob) or leptin receptor (db/db) show increased food intake 
and body weight gain with decreased of energy expenditure40,43. In line with this, the 
administration of recombinant leptin to rodents suppresses food intake and induces weight 
loss, however, this effect is not as strong when leptin is administrated to humans44,45. Apart 
from this central effect, leptin also regulates the function of peripheral organs such as the 
pancreas, modulating glucose homeostasis by acting on beta cell mass and expression and 
secretion of insulin46. Furthermore, leptin modulates the immune response47 and vascular 
permeability through stimulating angiogenic factors such as fibroblast growth factor 2 
(FGF2) and vascular endothelial growth factor (VEGF)48. 
 
Adiponectin targets several tissues and acts to regulate insulin sensitivity, being crucial in 
the regulation of energy homeostasis. Adiponectin acts on the liver, suppressing hepatic 
gluconeogenesis49. Moreover, adiponectin is able to improve insulin sensitivity, promoting 
adipogenesis and lipid accumulation50, but also enhancing insulin secretion from the 
pancreatic beta cells51. 
 
Resistin is almost exclusively produced by adipocytes and induces insulin resistance and 
glucose intolerance52. This hormone is able to regulate  beta cells function impairing glucose-
stimulated insulin secretion53. In addition, resistin affects the blood perfusion of the pancreas 
and WAT54 and, since adequate beta cell development depends on vascular perfusion55, 
resistin may have a potential role in the development and expansion of the beta cells. 
 
Adipocytes can also secrete inflammatory cytokines such as MCP1, IL-6 and TNFa. During 
obesity, the expression of these cytokines increases and contributes to the chronic 
inflammation of the adipose tissue characteristic of this pathology56. MCP1 is a potent 
chemotactic factor for monocytes which contributes to macrophage infiltration in adipose 
tissue and drives insulin resistance and hepatic steatosis during obesity57. TNFa is a pro-
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inflammatory cytokine that activates the release of other pro-inflammatory cytokines such as 
IL-658. Both TNFa and IL-6 have effects on adipocyte proliferation and differentiation, 
downregulating the expression of peroxisome proliferator-activated receptor γ  (PPARγ) and 
CCAAT/enhancer-binding protein α (C/EBPα)59,60. These two cytokines also affect the 
insulin signaling pathway suppressing the secretion of adiponectin60,61. 

1.4 Adipose tissue remodeling  

Fat mass remodeling is an adaptive response of adipocytes to the energetic body request. In 
a state of overnutrition the extra calories are stored in adipose tissue. To maintain the 
metabolic homeostasis, adipocytes enlarge to increase their storage capacity and store excess 
of lipids in a “safe” manner. When adipocytes fail to store excess lipids, they accumulate in 
“ectopic” places, such as liver, bone marrow and skeletal muscle, leading to lipotoxicity16. 
 
Adipose tissue expansion in adulthood is achieved mainly by two processes: hypertrophy, an 
increase in lipid accumulation and the size of existing adipocytes, as well as hyperplasia, the 
proliferation and differentiation of adipocyte precursors to produce new adipocytes, in a 
process known as adipogenesis. Adipose tissue expansion occurs in combination with 
extracellular matrix and vascular remodeling (Figure 4). The balance between hypertrophy 
and hyperplasia has a deep impact on metabolic health. Studies in rodents and humans have 
shown that adipocyte expansion proceeds until a given critical volume, and once adipocytes 
have reached the maximum size, the increase in cell number is initiated62. 
 

 
 

Figure 4. Mechanisms of adipose tissue remodeling. 
 
Hyperplasia is considered a healthy adaptation mechanism of adipose tissue which is able to 
maintain proper vascularization and levels of beneficial adipokines like leptin and 
adiponectin63. In contrast, hypertrophy of adipose tissue is associated with increased hypoxia 
caused by the massively expanded adipocyte size limiting oxygen diffusion. Hypoxic adipose 
tissue induces, instead of normal vascularization, the expression of pro-fibrotic genes leading 
to tissue fibrosis64. Hypertrophic adipocytes experience increased mechanical stress from the 
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contact with neighboring cells that contributes, with the hypoxic stress, to adipose tissue 
inflammation (Figure 4). All these elements combined with adipose tissue dysfunction lead 
to elevated levels of nutrients in the blood and ectopic lipid deposition in non-adipose organs 
which contributes to the early onset of metabolic disease.  

1.4.1 Adipogenesis 

Adipocytes arise from pluripotent mesenchymal precursors that have the ability to 
differentiate into several cell types, including adipocytes, chondrocytes, osteocytes and 
myocytes. These progenitor cells are present in the stromal vascular fraction (SVF) of adipose 
tissue as well as in the bone marrow. Adipogenesis can be considered a two-step process: the 
commitment and the terminal differentiation. Under appropriate stimulation the fibroblast-
like progenitor cells become committed to the adipocyte lineage, giving rise to adipocyte 
precursors. When induced, the preadipocytes undergo multiple rounds of mitosis (mitotic 
clonal expansion) and then accumulate triglycerides and differentiate into mature adipocytes.  
 
White adipocyte precursors derive preferentially from the MYF5- lineage. However, the 
presence of MYF5+ adipocyte precursors in WAT revealed that white adipocytes can derive 
from both MYF5+ and MYF5- lineages65. BAT adipocyte precursors are derived only from 
the MYF5+ lineage66. Both brown and white mature adipocytes can also originate from 
endothelial precursors67, while brown mature adipocytes can additionally originate from 
stem-cell-like skeletal muscle satellite cells68. Beige adipocytes can originate either from 
WAT adipocyte precursors or directly from mature white adipocytes (Figure 5). 
 

 
 

Figure 5. Origins of white, beige and brown adipocytes. 
 
The commitment from pluripotent stem cells to the adipocytes lineage is induced by multiple 
factors, which include insulin, glucocorticoids, transforming-growth factor β (TGFβ) 
superfamily members, such as TGFβ and bone morphogenetic proteins (BMPs), and Wnt 
family members. 
Insulin is essential for in vitro adipocyte differentiation through the activation of the 
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intracellular insulin-signaling pathway. The binding of insulin to the insulin receptor leads to 
the recruitment and phosphorylation of the insulin receptor substrate 1 (IRS1) that further 
activates the phosphoinositide 3-kinase (PI3K) and the downstream kinase AKT. This 
cascade leads to the activation of mTOR, cAMP-responsive element-binding protein (CREB) 
and the family of forkhead proteins (FOXOs)69. Disruption of the insulin signaling pathway 
leads to failure of adipogenesis70,71. Glucocorticoids, by activating the glucocorticoid 
receptor (GR), are also a crucial components for adipocyte differentiation, as they facilitate 
growth arrest72 and contribute to the terminal differentiation upregulating the expression of 
C/EBP family members73.  TGFβ inhibits adipocyte differentiation through the activation of 
SMAD3, which is able to bind to C/EBPβ and repress its transcriptional activity on the 
PPARγ promoter74. In contrast, BMP4 and BMP2 promote adipocyte differentiation. The 
exposure of multipotent stem cells, like C3H10T1/2, to BMP4 triggers the commitment of 
these cells to the adipocyte lineage75. Interestingly, BMP4 also has a function during the 
terminal phase of differentiation impairing the acquisition of a brown-like phenotype and 
inducing more a white-like phenotype of the mature adipocytes76. The action of BMP2 on 
the other hand is controversial and it seems to be dependent on its concentration. Low levels 
of BMP2 stimulate adipocyte differentiation while high levels of BMP2 stimulates the 
development of chondrocytes and osteoblasts 77,78. Wnt signaling is an important switch in 
the regulation of adipogenesis. Interestingly, some Wnt family proteins can induce the 
commitment to the adipocyte lineage79, while others can inhibit adipocyte differentiation in 
the late stages of adipogenesis80. For example, it has been shown that WNT10B prevents 
adipocyte differentiation by blocking the expression of PPARγ and C/EBPα80 (Figure 6). 
 

 
 

Figure 6. Regulation of adipogenesis by extracellular factors. 
 
After induction, pre-adipocytes undergo clonal expansion, in which the cells synchronously 
enter into the S phase of the cell cycle and undergo one or two rounds of mitosis. Then the 
cells exit the cell cycle and begin to accumulate cytoplasmic triglycerides and to express 
genes involved in lipid metabolism and adipocyte functionality81.    
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1.4.2 Transcription factors in adipogenesis  

Although brown and white adipocytes have different embryonic origins and physiological 
functions, both have similar transcription cascades controlling their differentiation into 
mature adipocytes. There are three transcription factor (TF) families playing pivotal roles in 
adipogenesis, cooperating to induce a transcriptional cascade that leads to the stable 
differentiation of the adipocytes. These TFs are  PPARγ, C/EBPα, C/EBPβ, C/EBPδ, and 
adipocytes determination and differentiation dependent factor 1 (ADD-1), also known as 
sterol regulatory element-binding protein 1 (SREBP-1)16. However, during the first stage of 
adipogenesis, other TFs have important functions in this process, including GR, signal 
transducer and activator of transcription 5A (STAT5A) and CREB (Figure 7).  
 

 
 
Figure 7.  The transcriptional cascade controlling adipogenesis. 
 
C/EBPβ and C/EBPδ are rapidly transcribed directly after the phosphorylation of CREB. 
Despite the rapid expression upon induction of differentiation, C/EBPβ is initially inactive 
and only becomes activated to bind DNA around 16 hours post induction. This is generally 
concomitant with the entry into the S phase and the mitotic clonal expansion82. 18-24 hours 
after the induction, C/EBPβ coordinately activates the expression of PPARγ and C/EBPα 
through C/EBP regulatory elements in the promoters of their respective genes. Subsequent 
to their expression, PPARγ and C/EBPα activate an extensive group of genes that trigger the 
adipocyte phenotype. Further, PPARγ and C/EBPα positively cross-activate each other 
through their respective C/EBP regulatory elements83. Once expressed, PPARγ and C/EBPα 
also stimulate SREBP1c, which is involved in the regulation of lipidogenesis84. The 
stimulation of thermogenic brown or beige phenotype during adipogenesis is, additionally, 
driven by specific factors like PR/SET domain 16 (PRDM16) and PPARγ coactivator 1 α 
(PGC-1α). PRDM16 is a zinc-finger protein that regulates brown fat cell fate by stimulating 
the expression of brown adipocyte-specific genes and suppressing white adipocyte-specific 
gene expression. In fact, it has been reported that PRDM16 represses the expression of 
resistin by interacting with the corepressor C-terminal binding protein-1 and 2 (CtBP1, 
CtBP2), while the recruitment of PGC-1α to PRDM16 displaces CtBP, allowing PRDM16 
to activate the expression of brown fat genes85.  Furthermore, it has been shown that the 
interaction of PRDM16 with C/EBPβ leads to brown fate adipocytes86. 
 
The ability to recruit new fat cells is a critical factor for healthy adipose tissue expansion and 
metabolic health during obesity. A high generation rate of adipocytes is associated with 
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hyperplastic adipose tissue and a better metabolic profile in obese individuals87. The 
generation of smaller adipocytes correlates with increased angiogenesis and reduced hypoxic 
stress and inflammation88. Long-term weight regain after bariatric surgery shows an 
increased number of fat cells and improved insulin sensitivity compared to body weight-
matched control subjects89. In addition, diabetic patients treated with thiazolidinediones 
paradoxically experience weight gain, associated to subcutaneous adipocyte hyperplasia, but 
with a significantly improve metabolic profile90.  

1.4.3 Hypertrophic adipose tissue 

During chronic overnutrition the number and size of adipocytes reaches a saturation point in 
which the adaptive homeostatic mechanisms of the structural remodeling of the adipose tissue 
fail. This leads to adipocyte hypertrophy and dysfunction characterized by sustained 
inflammation, impaired secretion of adipokines, exacerbated fibrosis and ectopic lipid 
accumulation which contribute to the pathogenesis of insulin resistance91. Hypertrophic 
adipocytes are a hallmark of a maladaptive mechanism of WAT enlargement and represent a 
risk factor for developing type 2 diabetes, in addition to the obese status associated risk92. 
Furthermore, hypertrophic adipocytes show an increased basal rate of lipolysis resulting in 
an overflow of FFAs and cholesterol to muscle and liver. In this context, the regional 
distribution and contribution to leakage of FFAs and cholesterol of the different fat pads is 
very important. It has been shown that adipocytes from visceral fat have bigger lipolytic 
activity compared to those from subcutaneous depots. Additionally, adipocytes derived from 
omental adipose tissue of obese individuals have a higher release of FFAs in response to β-
adrenergic stimulation compared to controls93. FFAs released from visceral fat have direct 
access to the liver through the hepatic portal system, causing several metabolic disturbances 
such as impaired insulin metabolism and action, increased gluconeogenesis and release of 
glucose and altered lipoprotein profiles. Reduced hepatic clearance of insulin triggers 
hyperinsulinemia that causes downregulation of insulin receptors in skeletal muscle and 
reduction of glucose uptake. At the same time, the pancreatic beta cells produce more insulin 
to reduce the glycaemia but over time their degeneration leads to development of 
hyperglycaemia and type 2 diabetes onset. Furthermore, due to a relative vasculature 
deficiency, adipocyte hypertrophy induces a local adipose tissue hypoxia94, which induces a 
significant change in adipokine production increasing the secretion of pro-inflammatory 
cytokines and reducing the secretion of leptin and adiponectin95.  In comparison, the 
expansion of subcutaneous fat pads occurs by increasing the number of small cells, which 
are well vascularized and show a “healthy” phenotype2. 

1.5 Epigenetic and transcriptional regulation of adipose tissue plasticity  

The definition of epigenetics was first introduced by Conrad Waddington in 1942 as “the 
branch of biology which studies the casual interactions between genes and their products 
which bring the phenotype into being”96. Since then this original definition has been modified 
repetitively and today epigenetics is more broadly understood as the study of heritable 
phenotype changes in the chromosome without alterations in the DNA sequence97. Dynamic 
gene expression, termed as the transcriptome, is important during development, cell and 
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tissue homeostasis and disease, and can be modulated by several regulatory components. 
During activation of gene transcription, for example, chromatin adopts a locally accessible 
and transcriptionally active form referred to as euchromatin, while highly condensed and 
transcriptionally less active genetic material is known as heterochromatin. Gene expression 
or repression can be controlled by the covalent DNA methylation or by post-translational 
modifications of histone tails, including acetylation and methylation. The histone 
modification status, termed as epigenome, is critical for the creation of the local chromatin 
environment that induce or repress the gene expression. The transcriptome can be directly 
regulated by epigenetic modification at cis-regulatory elements such as promoters, defined 
as proximal TF-binding regions close (<2 kb) to the transcription start site, and enhancers, 
defined as distal TF binding regions (up to several hundreds of bp away from the transcription 
start site) that communicate with promoters within topologically associating domains (TADs) 
to initiate  transcription98. Additionally, the activity of TFs depends on the recruitment of 
coactivator or corepressor complexes, which often contain epigenetic chromatin-modifying 
enzymes as subunits99,100. The genome-wide chromatin binding of TFs and coregulators is 
described as the cistrome (Figure 8).  
 

 
 

Figure 8. Regulatory components of gene expression.  
 
DNA methylation is a modification that directly targets the DNA by adding a methyl group 
to the carbon-5 position of cytosine in CpG islands, usually associated with gene silencing. 
The summary of all genome-wide DNA methylation events in a given cell type can be 
referred to as the ‘methylome’. DNA methylation can be a potential molecular mechanism 
that results from the interaction between genetics and environment, influences the metabolic 
homeostasis, and predisposes to metabolic disease101. It has been theorized that the nutritional 
status of the fetus “in utero” induces epigenetic reprogramming, preserved through 
generations, that can affect metabolic health later in life102. The children of mothers who were 
exposed to the Dutch famine during their pregnancy showed altered DNA methylation of the 
imprinted insulin like growth factor 2 gene103 and were predisposed to develop obesity and 
metabolic disease later in life104. Moreover, DNA demethylation plays an important role in 
the lineage commitment of mesenchymal stem cells (MSCs). It has been demonstrated that 
the treatment of the murine mesenchymal cell line C3H10T1/2 with 5-azacytidine, a 
methyltransferase inhibitor, results in the demethylation of the Bmp4 gene, which contributes 
to the commitment of MSCs to adipocyte lineage105. Different studies have further 
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investigated the association between obesity-related traits and DNA methylation in adipose 
tissue. It has been shown that omental and subcutaneous adipose tissue have differential 
methylation in response to gastric bypass before and after weight loss, which is correlated 
with changes in clinical trait like fasting glucose levels106.  The DNA methylation comparison 
of isolated fat cells from women examined 2 years after gastric bypass with never obese 
weight-matched women showed that 27% of the differentially methylated CpG sites were 
mapped to genes important for adipogenesis, which could contribute to the adipose 
hyperplasia observed in post-obese woman107. Several lines of evidence indicate that 
different diets also have an impact on the human methylome. For example, a randomized trial 
showed that overfeeding with saturated fatty acids (SFAs) or polyunsaturated fatty acids 
(PUFAs) induces different DNA methylation patterns in human adipose tissue that can 
predict the weight increase in response to overfeeding108.  
 
The major covalent modifications of histone tails involve acetylation, methylation, 
phosphorylation, ubiquitination, and SUMOylation. The summary of these histone 
modifications, along with DNA methylation, in a given cell type can be referred to as the 
‘epigenome’. As the epigenome is dynamically regulated and differs from cell type to cell 
type, one organism has multiple epigenomes despite having only one genome. A particular 
histone modification can have different effects on gene expression. For instance, histone 
lysine acetylation is linked to gene activation, while lysine methylation outcomes depends 
on the site of modification: histone H3 lysine 4 dimethylation or trimethylation is associated 
with active genes, while histone H3 lysine 9 dimethylation or trimethylation inactivates gene 
expression109. Histone modifications are added or removed by a large number of enzymes, 
that as part of coregulator complexes contribute to the complex regulation of epigenetic 
processes determining gene expression110.  
 
The stimulation of differentiation induces a dynamic modulation of the chromatin landscape. 
Whole-genome DNase I hypersensitive site (DHS) analysis, which identifies open chromatin 
regions, showed that in the early stages of adipogenesis C/EBPβ binds with other TFs, such 
as STAT5A and GR, to particular ‘hotspots’, inducing chromatin remodeling and expression 
and recruitment of late-acting adipogenic factors, such as PPARγ (Figure 9). Moreover, it 
has been shown that some of the DHS sites are detected only at day 2 after induction of 
adipogenesis, and not in mature adipocytes, indicating some genes are induced only 
transitory. These transient sites are involved in the regulation of the cell cycle and are 
enriched in C/EBPβ and GR binding sites111. When PPARγ is highly activated at the end of 
adipocyte differentiation, its expression can be regulated via an autoregulatory loop in 
cooperation with C/EBPa and coregulator complexes112(Figure 9). Another study, using 
chromatin immunoprecipitation coupled with next-generation sequencing (ChIP-seq) 
analysis, showed that the expression of adipogenic genes is related to increased marks of 
open chromatin, such as histone H3 lysine K4 methylation (H3K4me) and histone H3 lysine 
K27 acetylation (H3K27ac), in the distal region of these genes113. The comparison between 
mouse and human models during adipogenesis allowed the identification of cis-regulatory 
elements, i.e. enhancers, which are different between the two models because of the 
evolutionary turnover of transcription factors sites that is facilitated by the presence of distal 
regulatory elements at adipocyte-dependent loci113. These events are important for both WAT 
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and BAT, but how the different adipocyte lineages are specifically established remains still 
not completely understood. It has been shown that around 55% of PPARγ-binding site 
profiles of adipocytes from epididymal WAT, inguinal WAT and interscapular BAT are 
overlapping114. However, the genome-wide comparison between interscapular BAT and 
epidydimal WAT shows that 10% of PPARγ-binding sites are specific to BAT115. This 
suggests that the BAT and the WAT-selective gene transcriptional programs are driven by a 
selective chromatin structure that drives selective PPARγ and C/EBPs recruitment. 
 

 
 

Figure 9. Dynamic modulation of the chromatin landscape during adipogenesis. 

1.5.1 Transcriptional coregulators involved in adipocyte biology 

Many TF-associated proteins, often acting in multi-protein complexes, have been identified 
to play a critical role as coactivators or corepressors in determining the activity of TFs at 
specific gene loci. In general, gene expression is inactive when TFs are not bound to DNA 
or when DNA-bound TFs are silenced by corepressor complexes. During signal-dependent 
activation, some TFs can be transcriptionally induced (e.g. C/EBPs), and most TFs undergo 
post-translational modifications and conformational changes. These alterations then either 
induce DNA-binding (e.g. in case of GR), or trigger the exchange of corepressors for 
coactivators (e.g. in case of PPARγ) to subsequently activate the transcription of target gene.  
 
Various coactivators have been characterized to play significant roles in adipocyte biology. 
The two homologous proteins CREB-binding protein (CBP, gene name Crebbp) and p300 
regulate adipocyte differentiation and fat accumulation. CBP and p300 have a histone 
acetyltransferase activity and are considered crucial coactivators that function beyond CREB 
with a multitude of TFs.  Because of these features, they are predominantly found at 
enhancers to acetylate histone H3 lysine K27, a key histone modification linked to gene 
activation. Heterozygous Crebbp knockout mice showed lipodystrophy and are protected 
from weight gain induced by high fat diet without affecting the functionality of other 
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organs116. Embryonic fibroblasts from heterozygous Crebbp knockout mice had impaired 
capacity to differentiate to adipocytes due to the reduce activation of C/EBPb and PPARg 
and inhibition of SREBP-mediated lipogenesis. In addition it has been demonstrated that 
p300 is required for adipocyte differentiation117.  
The thyroid hormone receptor-associated protein (TRAP) complex, today referred to as the 
mediator (MED) complex, is a multiprotein complex that connects TFs to the basal 
transcriptional machinery assembled by RNA polymerase II (Pol II). The subunit 1 of the 
mediator complex, known as MED1 or TRAP220, is a coactivator of PPARg and important 
for adipocyte differentiation. Depletion of MED1 in embryonic fibroblasts induces the loss 
of their adipogenic potential118. Importantly, it has been demonstrated that the recruitment of 
MED1 and p300 proteins is important for the establishment of promoter-enhancer loops at 
specific target genes and activation of their transcription during adipocyte differentiation119.   
 
Amongst the different corepressor complexes, of particular interest for adipose tissue 
remodeling and functionality is the ‘histone deacetylase 3 (HDAC3) corepressor complex’. 
This complex contains the core subunit HDAC3, nuclear receptor corepressor (NCoR, alias 
NCOR1), silencing mediator of retinoid and thyroid hormone receptors (SMRT, alias 
NCOR2), transducin b-like protein 1 (TBL1 alias TBL1X), TBL-related 1 (TBLR1, alias 
TBL1X) and G protein pathway suppressor 2 (GPS2). A variety of transgenic mouse models 
have increased our understanding of the function of these core subunits in adipose tissue. 
Adipocyte-specific Ncor1 knockout mice display overactivation of PPARg with increased 
adiposity but optimal insulin sensitivity120. On contrast, mutant Nocr2 mice, lacking the 
nuclear-receptor binding domain 1 of SMRT (NCOR2), show hypertrophic adipocytes and 
insulin resistance upon diet-induced obesity121,122. Interestingly, the hypertrophic phenotype 
of these mice was driven by mitochondrial dysfunction due to decreased mitochondrial 
biogenesis and fatty acid oxidation. A genome-wide DNA-binding profiling study using 
mouse 3T3-L1 cells showed that SMRT has a role as gatekeeper of adipogenesis123, 
consistent with earlier data indicating that the corepressor activity of NCoR and SMRT on 
PPARg was crucial for the inhibition of adipogenesis124. Two independent adipocyte-specific 
Hdac3 knockout models revealed opposite effects on the browning of WAT. Emmett et al. 
demonstrated that the adipocyte-specific loss of HDAC3 was inducing a deficient WAT 
remodeling and browning. They suggested HDAC3 to modulate the activity of the 
coactivator PGC-1a important for Ucp1 gene transcription125.  In contrast, Ferrari et al. 
showed that specific loss of HDAC3 in adipocytes was leading to browning of WAT and 
increasing the expression of Ucp1126. Mice lacking TBLR1 in adipocytes showed increased 
adiposity and insulin resistance likely due to impaired fasting-induced lipolysis127. Finally, 
as discussed in the next chapter, several studies have especially pinpointed the involvement 
of the subunit GPS2 in adipocyte biology. 

1.5.2 GPS2 functions in metabolism and inflammation  

GPS2 was originally cloned in 1996 as a human cDNA encoding a potential human 
suppressor of  the G protein pathway128 and independently identified in yeast two-hybrid 
screening using PPARa as bait129. GPS2 was then biochemically purified and found to be a 
subunit of the HDAC3 corepressor complex and suggested to inhibit gene repression via 
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interfering with JNK signaling130. GPS2 is a highly conserved and ubiquitously expressed 37 
kDa protein, containing 327 amino acids (aa) in mice and humans. Structure analysis has 
revealed that the N-terminal coiled-coil domain (aa 1-90) of GPS2 forms a three-way 
corepressor complex core structure with SMRT and TBL1131. The C-terminal GPS2 domain 
(aa 100-327) is suspected to be unstructured and has been demonstrated to function as binding 
site for TFs, including PPARs132,133, liver X receptors (LXRs)134,135 and c-Jun136.  Both in 
vivo and in vitro studies indicate that GPS2 is implicated in the (epi-)genomic modulation of 
metabolic and inflammatory pathways in different organs like liver, adipose tissue and 
macrophages133,136,137. Some of these studies have provided evidence that GPS2 acts along 
with the corepressor complex, while others suggest independent roles as gene- and cell type-
selective coactivator or as regulator of nongenomic signaling. 
 
In hepatocytes, GPS2 is necessary for the anti-inflammatory action of LRH1 and LXRβ 
(termed ‘trans-repression’) of the hepatic acute phase response (APR). It has been reported 
to act like a bridge between SUMOylated nuclear receptors and the NCoR-containing 
corepressor complex on acute phase gene promoters. This GPS2-SUMO-nuclear receptor  
complex is able to stay bound to the promoters even upon inflammatory stimulation, thereby 
repressing the APR response134(Figure 10A). The hepatic function of GPS2 has also been 
explored using hepatocyte-specific knockout mouse models. Loss of GPS2 in hepatocytes 
induced PPARa-dependent lipid catabolism, increasing the expression of fatty acid oxidation 
genes and thereby protecting the mice from the development of non-alcoholic fatty liver 
disease (Figure 10B). Liver gene expression data from human patients validated the 
conserved hepatic function of GPS2 in mice and humans where the expression levels of GPS2 
were correlated with the expression of fibrogenic and inflammatory genes138.  
 
Another study demonstrated that GPS2 is an important player in the regulation of cholesterol 
efflux, coordinating the expression of ABCG1 in human hepatocytes and macrophages135. 
This study unraveled an unusual mechanism of action of GPS2 as ‘pioneer’ factor to promote 
chromatin access of TFs. Upon treatment with LXR agonists, GPS2 cooperates at the ABCG1 
locus with histone lysine demethylases (KDMs) to trigger H3K9 demethylation, LXR DNA-
binding and promoter-enhancer communication (Figure 10C). Notably, a highly related 
mechanism was afterwards identified for the recruitment of PPARγ to the promoters of Atgl 
and Hsl in 3T3-L1 adipocytes139. In this case, GPS2 was demonstrated to inhibit the E2 
ubiquitin ligase RNF8, thereby stabilizing the histone demethylase KDM4A and creating the 
right chromatin environment for the binding of PPARγ to the promoters of selective target 
genes (Figure 10D).  
 
A recent study reported a role for GPS2 in the epigenomic control of macrophage activation 
during metabolic stress. Macrophage-specific Gps2-knockout mice display a pro-
inflammatory profile with elevated systemic and adipose tissue inflammation, and reduced 
insulin sensitivity. The analysis of cistrome, epigenome and transcriptome showed that GPS2 
occupies H3K27ac-marked enhancers at regulated genes, and upon removal of GPS2 the 
response of these genes to inflammatory stimuli was enhanced136 (Figure 10E). 
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The role of GPS2 in adipose tissue biology is still poorly understood and subject of debate. 
It has been shown that the expression of GPS2 was down-regulated in the adipocytes of 
humans with obesity, thereby contributing to chromatin remodeling and transcriptional 
activation of key inflammatory genes including IL-6, IL-8 and CCL2, favoring the 
inflammation of adipose tissue137. The role of GPS2 in controlling the inflammatory response 
in adipocytes was recapitulated in vivo using aP2-GPS2 transgenic mice140.  In addition, 
GPS2 may also have a cytoplasmic role preventing the hyper-stimulation of TNFa-induced 
gene program140 or regulating the insulin signaling pathway via AKT ubiquitination141. 
 

 
 
Figure 10. Multiple function of GPS2 in metabolism and inflammation. 
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2 AIMS OF THE THESIS 

The overall aim of this thesis was to extend the current knowledge about the role of GPS2 in 
adipose tissue biology, with a particular emphasis on mechanisms underlying adipocyte 
dysfunction in the context of obesity and type 2 diabetes.  
 
The specific aims were: 
 
Paper I 

• To explore which pathways are regulated by GPS2 during the in vitro differentiation 
of human adipocytes. 

 
Paper II 

• To investigate the mechanisms by which GPS2 controls adipose tissue remodeling 
during energetic surplus in mice and humans. 

 
Paper III 

• To characterize how GPS2-dependent reprogramming of adipose tissue during the 
progression of type 2 diabetes influences glucose homeostasis.  
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3 METHODOLOGICAL CONSIDERATIONS 

The aim of this chapter is to highlight interesting aspects of key methods. A detailed 
description of material and methods is provided in each study. 

3.1 Patients  

All studies were conducted in accordance with the guidelines of the Helsinki Declaration and 
registered in the public trial registry, Clinicaltrials.gov, under the number NCT02368704.  
The Ethics Committee of CPP Ile-de-France approved the clinical investigations and written 
informed consent was obtained from all individuals. Visceral and subcutaneous adipose 
tissue (VAT and SAT) biopsies were obtained from different populations admitted to the 
Lariboisière and Geoffroy Saint-Hilaire hospital, Paris, France. VAT and SAT samples from 
non-obese subjects were obtained after local surgery, while VAT and SAT from obese 
subjects were obtained during bariatric surgery. The clinical and anthropometric variables of 
the different populations used for the papers were described in detail in each study. 

3.2 Mouse models   

Although the complete (conventional) knockout of a gene is of great importance for studying 
the overall effects of the loss of a specific protein in the whole animal, we decided to generate 
tissue-specific (conditional) knockout mice using the Cre-lox system for two reasons: firstly 
because the total body Gps2 knockout mice are embryonically lethal132, and secondly because 
the main question of the research presented in this thesis was to specifically evaluate the 
effects of the loss of GPS2 in adipocytes and to evaluate the  consequences of this disturbance 
on the cross-talk of the adipose tissue with other organs.  
 
Gps2flox/flox mice were generated at Ozgene Pty, Ltd. (Bentley DC, Australia) using a 
targeting construct, which contained loxP sites flanking exons 2 and 5 of Gps2 gene, followed 
by a FRT site and a neomycin cassette inserted between exons 5 and 6136. The targeting vector 
was electroporated into C57BL/6 Bruce4 embryonic stem (ES) cells. The correctly 
recombined ES colony was then injected into C57BL/6 blastocysts. Male chimeras were 
mated with female C57BL/6 mice to get mice with a targeted Gps2 allele. The mice were 
crossbred with C57BL/6 flp-recombinase mice to remove the neomycin cassette and to create 
heterozygous Gps2flox/+ mice. These mice were then crossbred with C57BL/6 mice for nine 
generations before being bred with heterozygous Gps2flox/+ mice to finally obtain the 
Gps2flox/flox mice. Gps2flox/flox mice were crossed with adiponectin-Cre mice (B6; FVB-
Tg(Adipoq-Cre)1Evdr/J; Jackson Laboratory stock no. 010803) in order to generate 
adipocyte-specific Gps2 knockout mice (AKO). Gps2flox/flox mice littermates were used as 
control (labeled as wild-type, WT). 
 
The use of conditional gene targeting to create mouse models is often matter of debate about 
the tissue specificity and the efficacy of the gene inactivation. For example, to generate 
adipocyte-specific knockout mice there are two different Cre lines, the transgenic Cre line 



 

22 

driven by the adiponectin (Adipoq) gene promoter, and the transgenic Cre line driven by the 
adipocyte protein 2 (aP2) gene promoter. We decided to use the Adipoq-Cre since it has been 
demonstrated to have a higher tissue specificity compared to the aP2-Cre, that has shown 
recombination in endothelial and nonendothelial cells of heart and skeletal muscle142. 

3.3 In vitro models 

The usage of in vivo mouse models has the advantage of allowing the study of a factor in the 
physiological context involving crosstalk between multiple tissues and signaling pathways. 
However, to elucidate specific molecular mechanisms in a particular cell type, it is necessary 
to use in vitro cell-based models. One advantage is that such models often increase the data 
reproducibility, particular for genomic experiments, and allow better to dissect cell type-
specific pathways. Additionally, given possible differences between human and mouse 
biology, the use of human models is necessary to support human relevance. Finally, cell 
models are crucial to implement the 3R principle in animal research (replace, reduce, refine). 

3.3.1 Human multipotent adipose-derived stem cells 

The majority of the experiments in Paper I were made using human multipotent adipose-
derived stem (hMADS) cells isolated from prepubic fat pad of a 4-month-old healthy 
male143,144. hMADS cells have a normal karyotype and were used between passages 12 and 
24. hMADS cells represent a particularly relevant human cell model as they retain many 
molecular and functional properties of human white adipocytes, including browning, have a 
high self-renewal capacity, and can differentiate into mature adipocytes and osteocytes145. 
Adipogenesis from preadipocytes to mature adipocytes does not require the presence of 
rosiglitazone during the process, a great advantage to study the effect of a factor without the 
interference of the PPARg agonist. Unfortunately, hMADS cells proliferate slowly even with 
the addition of FGF2, and their complete differentiation into mature adipocytes takes more 
than 14 days.      

3.3.2 Mouse 3T3-L1 pre-adipocyte cell line 

The 3T3-L1 cell line is a commercially available immortalized pre-adipocyte cell line originally 
derived from Swiss 3T3 mouse embryos146. The main advantage of this model is that they grow 
rapidly and differentiate into mature adipocytes in only 6 days. 3T3-L1 cells are highly 
expandable which is advantageous when a sizeable number of cells with low degree of biological 
variation is necessary. Unlike the hMADS cells, 3T3-L1 are already pre-committed to the 
adipogenic lineage. Although some key components (e.g.  PPARg, C/EBPs) and pathways 
relevant for human adipogenesis are likely to be conserved in 3T3-L1 cells, others may not be 
conserved. This applies in particular to mouse vs. human differences regarding the regulation of 
gene expression, largely due to genomic (e.g. location of genes) and epigenomic differences (e.g. 
chromatin modifications, location of cis-regulatory elements such as enhancers). 
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3.4 RNA interference  

RNA interference (RNAi) is a simple, rapid and powerful method to study the cellular 
function of a specific gene product. The silencing of a specific gene can be achieved by using 
small interfering RNA (siRNA) or short hairpin RNA (shRNA). Once transfected into a 
specific cell, the synthetic double-stranded shRNAs are cut into small fragments (siRNA) by 
the Dicer enzyme. The siRNA is then associated with the RNA-induced silencing complex 
(RISC) that recognize the corresponding mRNA, cleaves it and causes its subsequent 
degradation. In the papers presented in this thesis we used either siRNA or shRNA delivered 
by adenovirus or lentivirus. Since adipocytes have a low transfection rate for siRNAs, the 
virus-based shRNAs were in some cases a better option for the silencing of target genes. 
Additionally, siRNAs mediate a transient silencing of the gene of interest, while lentivirus-
delivered shRNAs induce stable gene silencing that is more appropriate for the study of long-
time treatment or when a large amount of starting material is needed. 

3.5 Multi-omics approaches to determine transcriptome, cistrome, epigenome, and 
lipidome 

3.5.1 RNA-sequencing  

RNA-sequencing (RNA-seq) is a method that uses next-generation sequencing technology to 
deeply evaluate the transcriptome profile. RNA-seq allows the evaluation of dynamic 
changes in expression of known and unknown genes, which cannot be spotted through the 
use of probe-based microarray methods. In addition, this technique is able to identify unique 
transcripts such as single-nucleotide polymorphisms or alternative splice variants, that can 
enhance the understanding of the mechanisms that underlie physiological and pathological 
conditions. This method has a simple general workflow but the sequence annotation and data 
interpretation, despite the fact that several bioinformatic programs are available, can be 
challenging. 

3.5.2 Chromatin immunoprecipitation coupled with next-generation sequencing  

ChIP-seq is a powerful tool to investigate the regulation of the transcription via mapping 
protein-DNA binding (cistrome) and epigenetic histone modifications (epigenome) at the 
genome-wide scale. The protocol for ChIP is composed of several different steps and some 
of them are critical to obtain a high-quality ChIP-seq profile. For example, in our ChIP we 
decided to add an additional fixative, the protein-protein cross-linker disuccinimidyl glutarate 
(DSG), before the standard DNA-protein crosslinker formaldehyde (FA), to increase the 
efficiency of the ChIP. This may be critical especially for GPS2 that as a coregulator does 
not directly bind to DNA but requires protein-protein interactions with DNA-bound TFs. 
Among the most critical factors to obtain a high-quality ChIP is the selection of a high-quality 
antibody (i.e. excellent target affinity and specificity). In this thesis we used verified (e.g. by 
ENCODE) commercially available antibodies for histone marks, H3K27ac and H3K4me3, 
while for GPS2 we used our own custom-made rabbit polyclonal antibodies raised against 
the N-terminus and the C-terminus135.    
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3.5.3 Lipidomics 

Lipidomics is an emerging tool that allows for the identification and quantification of cellular 
lipid molecule species. There are different methods to analyze the lipidome of cells, in the 
study presented in this thesis we used a mass spectrometry-based technique. The lipidome of 
eukaryotic cells is important for the cell membrane dynamics and is linked to their biological 
functions such as storing energy or suppling precursors for bioactive metabolites147. The 
study of the perturbation of the composition of different lipid species finds an interesting 
application for understanding the mechanisms under lipid metabolism and trafficking in 
healthy and disease conditions. However, the lipid species annotation and data interpretation 
remain still very challenging. 
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4 RESULTS AND DISCUSSION 

4.1 Paper I: Loss of G protein pathway suppressor 2 in human adipocytes triggers lipid 
remodeling through upregulation of ATP binding cassette subfamily G member 1 

Adipogenesis plays a critical role in adipose tissue remodeling and is an important 
influencing factor in the development of obesity. Multiple studies have elucidated the 
mechanisms by which TFs orchestrate adipogenic pathways, but it is still poorly understood 
how coregulators transduce regulatory signals into epigenome alterations and transcriptional 
responses. In this study, we combined different methodologies to investigate the contribution 
of the coregulator GPS2 to human adipocyte differentiation.  
 
GPS2 depletion increases adipogenic commitment  
To explore the function of GPS2 during adipogenesis, we generated an in vitro model using 
human multipotent adipose-derived stem (hMADS) cells. We depleted GPS2 using RNA 
interference and followed the effect of this depletion along the differentiation process. 
Transcriptome analysis of the early event of differentiation revealed that the loss of GPS2 
increased the transcription of genes important for the commitment towards the adipogenic 
lineage, such as BMP4, and inflammatory genes. Interestingly, the transcriptome changes 
were correlated with the epigenome changes, i.e. H3K27ac levels were higher in shGPS2-
upregulated genes and lower in shGPS2-downregulated genes. In addition, the cistrome 
analysis revealed enrichment of putative DNA-binding motifs for AP-1 and C/EBP family 
members at GPS2-occupied chromatin regions. Furthermore, in absence of GPS2 the cells 
had a higher response to the induction phase of differentiation to adipocytes. 
 
Loss of GPS2 increases expression of genes implicated in lipid metabolism  
To further investigate the changes upon loss of GPS2 in fully differentiated adipocytes, we 
analyzed the transcriptome, epigenome and cistrome of the lipid-filled adipocytes. GPS2 
depletion increased the expression of adipocyte marker genes, including PPARG, CEBPA 
and FABP4. The pathway analysis of the upregulated genes in shGPS2 adipocytes showed 
enrichment for different metabolic processes such as fatty acid or steroid metabolism. The 
integrated analysis of the GPS2-dependent transcriptome and epigenome showed that their 
changes were highly correlated. Additionally, the TF DNA-binding motif analysis revealed 
that binding sites for C/EBPa, PPARg and TWIST1 were among the top motifs enriched at 
GPS2-occupied chromatin regions. 
 
GPS2 depletion induces adipocyte hypertrophy and changes in phospholipid 
composition   
To explore the phenotype of mature adipocytes upon depletion of GPS2, we stained neutral 
lipids with Oil Red O and BODIPY. We discovered that the loss of GPS2 in preadipocytes 
significantly increased triglyceride accumulation within adipocytes, hypertrophy and the 
percentage of differentiated cells. Lipidome analysis showed that the removal of GPS2 
induced a depletion of sphingomyelin and an enrichment of phosphatidylcholine (PC) and 
phosphatidylethanolamine (PE), important lipids for membrane remodeling. Noteworthy, 
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shGPS2 adipocytes showed a reduction of phospholipids containing PUFAs and enrichment 
of monosaturated PC and PE species. The phospholipid phenotype was further confirmed by 
the transcriptome analysis. We found that GPS2 depletion increased the expression of genes 
encoding for enzymes involved in the synthesis of PC and PE, while it decreased the 
expression of genes encoding for enzymes involved in the synthesis of sphingolipids. 
 
ABCG1 and LPL as targets of GPS2 in adipocytes  
Previous studies have demonstrated that the loss of sphingomyelin is modulated by ABCG132 
and that ABCG1 plays a critical role in lipid homeostasis148,149. Since we observed a 
reduction of sphingomyelin in our shGPS2 cells, we investigated the effect of GPS2 depletion 
on the expression and activity of ABCG1. The loss of GPS2 significantly increased ABCG1 
mRNA and protein levels starting from day 6 of differentiation. Moreover, we found 
increased H3K27ac levels at the ABCG1 promoter and enhancer regions upon removal of 
GPS2, these altered regulatory regions were co-occupied by GPS2, C/EBPa and PPARg. 
Interestingly, we found that the increased expression of ABCG1 was observed not only when 
GPS2 was depleted in preadipocytes but also when we depleted GPS2 in mature adipocytes. 
The presence of sphingomyelin on the plasma membrane has been also reported to modulate 
the LPL activity which is important for the triglyceride accumulation. We found that the loss 
of GPS2 significantly increased the expression of LPL, the H3K27ac levels on the promoter 
and enhancer regions of the LPL locus and that these altered regulatory regions were also co-
occupied by GPS2, C/EBPa and PPARg. Furthermore, we observed increased intracellular 
and extracellular LPL activity upon removal of GPS2 (Figure 11). 

 

 
Figure 11. Graphical abstract of Paper I. Reprinted from Barilla et al. Molecular Metabolism 
(2020) 
 
GPS2 expression correlates with ABCG1 expression and diabetic status  
To explore whether our in vitro findings are relevant for human disease, we analyzed the 
transcriptome of the omental adipose tissue of obese individuals with or without type 2 
diabetes. We found that the expression levels of GPS2 were lower in diabetic obese compared 
to the non-diabetic obese individuals. The comparison between the upregulated genes in 
diabetic versus non-diabetic obese with the upregulated genes in shGPS2 versus shGFP 
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hMADS cells showed that 165 genes were overlapping in these two conditions. These 
common genes belonged to inflammatory pathways as well as lipid metabolism. Remarkably, 
we found that the expression of ABCG1 was higher in the diabetic condition compared to the 
non-diabetic one and was inversely correlated with the expression of GPS2, independently 
from the diabetic status. Therefore, we conclude that GPS2 modulates the chromatin 
landscape and gene expression during differentiation of human adipocytes. In addition, we 
identify a hitherto unknown GPS2-ABCG1 axis that is potentially linked to adipocyte 
hypertrophy in humans.  

4.2 Paper II: GPS2 deficiency triggers maladaptive white adipose tissue expansion in 
obesity via HIF1A activation 

Obesity is a complex metabolic disease strongly associated with the development of type 2 
diabetes. White adipose tissue remodeling in response to nutritional status plays an important 
role in maintaining the systemic metabolic homeostasis. It has been shown that hypertrophic 
adipocytes are often linked to dysfunctional adipose tissue and are a predisposing factor for 
the development of obesity comorbidities. However, the molecular mechanisms that 
predispose to hypertrophic adipose tissue are poorly understood. Several studies proposed 
that the alteration of the epigenome, orchestrated by transcription factors and coregulators, 
may have a critical role in the remodeling of adipose tissue.  
 
To explore the role of GPS2 in adipose tissue remodeling during energetic surplus, we 
generated adipocyte-specific Gps2 knockout (AKO) mice and challenged them with high-fat 
diet. AKO mice displayed increased adipocyte size and unhealthy adipose tissue expansion, 
characterized by impairment of insulin sensitivity, higher inflammation and collagen 
deposition. The transcriptome analysis also revealed that the genes highly expressed in AKO 
mice belonged to HIF1A-dependent pathways, in particular we observed increased 
expression of Hif1a and its target genes Vegfa and Angptl4. Next, we demonstrated that GPS2 
was bound to the promoter of the aforementioned genes and that the loss of GPS2 increased 
H3K4me3 levels, marker of active transcription, on Hif1a promoter. Concomitantly, primary 
adipocytes isolated from AKO mice under hypoxic condition showed increased expression 
of hypoxia-response genes. 
 
Increased activity of HIF1A is known to provoke mitochondrial dysfunction, that leads to 
impairment of fatty acid oxidation and contributes to adipocyte hypertrophy150,151. The 
transcriptome analysis showed a significant downregulation in the expression of genes 
involved in mitochondrial function and biogenesis in WAT of AKO mice. This result was 
confirmed by the quantification of the mitochondria staining within the WAT. To further 
explore if mitochondrial dysfunction was a consequence of GPS2 depletion we challenged 
the mice with a b3-adrenergic receptor agonist or cold exposure. WAT from WT mice 
responded to the treatment with increased mitochondrial biogenesis and adipose tissue 
browning characterized by UCP1 staining. In contrast, this response was strongly impaired 
in the WAT from AKO mice. Alongside, we observed a significant decrease of body 
temperature and oxygen consumption in AKO mice compared to the WT littermates. 
Interestingly, the treatment with a pharmacologic inhibitor of HIF1A reversed the pro-
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diabetic phenotype of AKO mice and restored the response to the b3-adrenergic receptor 
stimulation.  
 
To investigate the human relevance of our mouse discoveries, we measured the mRNA level 
of GPS2 and HIF1A in the subcutaneous and visceral adipose tissue of non-obese and obese 
subjects with or without diagnosed type 2 diabetes. We found that the expression of GPS2 
was significantly reduced in non-obese and obese subjects with type 2 diabetes while the 
expression of HIF1A was significantly increased in diabetic subjects. Moreover, we found 
that in obese individuals the expression of GPS2 was inversely correlated with the average 
adipocyte size and this correlation was independent from the diabetic status. Hence, we can 
propose that the loss of GPS2 associated with the development of obesity predisposes to a 
maladaptive WAT expansion and a pro-diabetic phenotype in mice and humans (Figure 12).  
 

 
 

Figure 12. Graphical abstract of Paper II. Reprinted from Drareni et al. Cell Reports (2018) 

4.3 Paper III: Adipocyte reprogramming by the transcriptional coregulator GPS2 
impacts beta cell insulin secretion  

Glucose homeostasis is regulated by a coordinated organ crosstalk that controls the secretion 
of insulin and glucagon to maintain a narrow physiological level of blood glucose. During 
type 2 diabetes, this coordinated regulation is altered, leading to inappropriate insulin 
secretion by the beta cells of the pancreas and glucose intolerance. The reprogramming of 
white adipose tissue during type 2 diabetes progression is an important factor that can affect 
the function of the beta cells. Adipose tissue-secreted factors play a pivotal role maintaining 
glucose homeostasis, but the critical regulatory components modulating their secretion 
remain poorly characterized.  
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To investigate the impact of GPS2 action in WAT on insulin secretion rates in humans, we 
measured the mRNA levels of GPS2 in subcutaneous WAT of different subjects presenting 
normal glucose tolerance or type 2 diabetes, which were subjected to graded glucose infusion 
in order to measure insulin secretion rates. We found that participants with high expression 
of GPS2 in the adipose tissue had more pronounced insulin secretion in response to glucose 
infusion compared to the subjects with low expression. However, we did not find any 
correlation between GPS2 levels in WAT and glucagon secretion. In accordance, we found 
similar association in adipocyte-specific Gps2 knockout mice (AKO) under high-fat diet. 
 
To explore the mechanism underlying the inadequate insulin secretion triggered by the loss 
of GPS2 in adipose tissue, we evaluated the size and the number of pancreatic islets in WT 
and AKO mice. We observed a decreased size of the pancreatic islets in AKO mice under 
high-fat diet in compared to WT animals. This phenotype was accompanied by increased 
macrophage infiltration, increased beta cell apoptosis and decreased beta cell proliferation. 
We therefore considered that secreted factors from WAT of AKO mice were influencing islet 
function. 
       
The transcriptome analysis of different adipose depots revealed that the most up-regulated 
genes in the WAT from AKO mice were involved in immune response and insulin secretion. 
This pathologic gene signature was then confirmed by the analysis of the protein level of 
adipokines and inflammatory cytokines in serum and WAT explant media. Serum and WAT 
explant media from AKO mice showed decreased level of adiponectin and increased levels 
of leptin, resistin and inflammatory cytokines such as IL-6 and CCL2/MCP-1 compared to 
those from WT mice.  Thus, our data suggest that GPS2 controls adipose tissue remodeling 
which influences pancreatic islet function and insulin secretion in mice and humans (Figure 
13).  
 

 
 

Figure 13. Graphical abstract of Paper III. Reprinted from Drareni et al. Cell Reports 
(2018) 
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5 CONCLUSIONS AND PROSPECTIVES  

The three studies included in this thesis focused on the role of GPS2 in adipocyte function 
and metabolism during obesity and associated type 2 diabetes. We used in vitro and in vivo 
models to investigate cell type-specific mechanisms by which GPS2 potentially links 
epigenome alterations to metabolic diseases. 
    
Paper I 

• We demonstrated that the loss of GPS2 in hMADS cells leads to coordinated changes 
of the chromatin landscape and gene expression during adipocyte differentiation. 

• The depletion of GPS2 in hMADS cells increases the expression of genes, including 
BMP4, that trigger adipogenic commitment but also upregulates ABCG1 and LPL 
expression in mature adipocytes contributing to adipocyte hypertrophy and lipidome 
remodeling including sphingomyelin depletion. 

• GPS2 and ABCG1 levels in omental adipose tissue inversely correlate with type 2 
diabetes in obese humans. 

 
In summary, we propose a model in which loss of GPS2 in hMADS cells triggers, in the early 
stage of differentiation, the commitment of fibroblast-like progenitors towards the adipogenic 
lineage and, in the late stage of adipogenesis, adipocyte hypertrophy with a deep remodeling 
of their lipidome. The hypertrophic phenotype, linked to increased triglyceride accumulation, 
was triggered by increased expression of ABCG1 and LPL, likely via de-repression of their 
promoters and enhancers, and increased LPL activity, likely via sphingomyelin depletion.  
 
This study provides novel mechanistic insights into the transcriptional and epigenetic 
regulation of adipogenesis and adipocyte hypertrophy in humans, and into the changes that 
occur in the WAT during the development of obesity and type 2 diabetes. In particular, the 
identified GPS2-ABCG1 pathway emphasizes that the network of coregulators and TFs is 
often cell type-selective and may offer possibilities for the future therapeutic intervention 
against adipocyte hypertrophy in humans. 
 
Paper II 

• We have established that the specific loss of GPS2 in mouse adipocytes predisposes 
to maladaptive adipose tissue expansion during energy surplus characterized by 
adipocyte hypertrophy and alteration of the HIF1A pathways. 

• The dysregulation of the GPS2-HIF1A interplay induces increased expression of 
Hif1a and its target genes. Consequently, this provokes disrupted mitochondrial 
activity that favors inadequate adipose tissue expansion and a pro-diabetic status. 

• Correlation analysis confirms a causal relationship between adipose tissue GPS2 
levels, hypertrophic adipocytes and HIF1A in humans.      

 
In summary, we propose a mechanism by which GPS2 acts as a corepressor of HIF1A to 
control adipose tissue expansion that predisposes to the pro-diabetic status. The de-repression 
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of HIF1A induced a mitochondrial dysfunction that can be corrected by the pharmacological 
inhibition of this TF. 
 
This study highlights how alterations of a single regulatory factor, the corepressor GPS2, 
triggers adipocyte transcriptional reprogramming determining the individual 
pathophysiological responses, such as adipocyte hypertrophy, to a common disease 
environment like obesity and type 2 diabetes. Additionally, our study advances the 
understanding of HIF1A activity control, which is already known to be important for 
therapeutic possibilities. The specific modulation of the GPS2-HIF1A pathway in adipocytes, 
could be used therapeutically to modulate adipose expansion during obesity. 
 
Paper III 

• We have shown that the expression of GPS2 mRNA in adipose tissue is positively 
associated with the insulin secretion rate in humans. 

• The use of adipocyte-specific Gps2 knockout mice allowed us to demonstrate that the 
loss of GPS2 in adipocytes has an impact on insulin secretion upon diet-induced 
obesity. Moreover, this model allowed us to demonstrate that the deregulation of beta 
cell function, observed in Gps2 knockout mice, was mediated by adipokines released 
by the adipose tissue that increased islet inflammation and cell apoptosis.  

 
Our findings suggest that GPS2 is an important regulator of the transcriptional signature of 
adipokines and inflammatory genes in adipose tissue. The depletion of GPS2 leads to 
coordinated changes of transcription in adipocytes that influences the functionality of the 
beta cells in the pancreas. Our study thus specifically advances the understanding of crosstalk 
between adipose tissue and pancreatic beta cells that predisposes to inadequate insulin 
secretion and the progression towards a pro-diabetic status. Importantly, our work implies 
that the underlying mechanisms are conserved between mice and humans, suggesting 
therapeutic possibilities to modulate insulin secretion via targeting GPS2 pathways in adipose 
tissue.  
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