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Peer-to-peer networking overcomes the single point of failure and bandwidth limitations 

inherent to the centralized server model of file-sharing. It is both a popular means of 

sharing digital content and a major consumer of internet traffic, with BitTorrent being the 

most-used protocol. As such, significant research has gone into improving peer-to-peer 

performance in order to reduce both download times and networking costs. One aspect 

that can affect performance is the client’s selection of peers to download from, as the 

time spent downloading from even a single poor-performing peer can impact the overall 

download duration. 

A recent peer selection strategy explored having a client use historical knowledge 

acquired through third-party sources, as well as its own first-hand experience with 

previously visited peers, as a means of selecting likely good-performers, coupled with a 

peer switching strategy that replaced peers whose post-selection downloads exhibited 

poor performance contrary to what historical knowledge suggested in order to limit the 

time spent downloading from said poor-performers  Though this tactic demonstrated 

reduced download times compared to various past works, it still suffered from poor peer 

selection due to its historical knowledge not necessarily reflecting the current state of the 

peers. 

This work introduced and examined an enhancement to this hybrid peer selection and 

switching strategy by adding current intelligence regarding a peer’s available bandwidth, 

all the while avoiding the additional network costs associated with performing on-the-fly 

probing or querying techniques utilized by other peer selection strategies to benchmark 

prospective peers. With such on-the-fly knowledge about a peer’s current bandwidth 

availability, this new enhanced strategy quickly replaced poor performers without waiting 

for downloads to be performed and subsequently benchmarked, resulting in reduced 

overall peer-to-peer download times. 

The results of adding this pre-download peer switching enhancement demonstrated 

improved download performance, particularly in early file transfer runs. However, as 

more runs occurred and the benefits of the original strategy’s historical knowledge 

became more pronounced, the time savings gained from this new enhancement 

diminished. 
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Chapter 1 

Introduction 

Reducing the impact of poor-performing peers can result in faster peer-to-peer file 

downloads (Ren, Liu, Zhou, Tang, Ci & Wang, 2013). The recently developed Hays & 

Simco (2017) hybrid peer selection and peer switching strategy demonstrated shorter 

download times compared to other prior works by coupling advanced knowledge, used to 

avoid selecting potential poor-performers, with a choke, used to limit the impact of actual 

poor-performers selected. 

This work details the creation and subsequent testing of a new peer-switching 

enhancement that, when coupled with Hays & Simco’s strategy, further reduced overall 

BitTorrent download times. It accomplished this by providing the client with on-the-fly 

bandwidth performance data about peers, without incurring the additional network 

overhead typically inherent to the gathering of such information for other peer selection 

(Hsiao et al., 2011; Li, 2012; Ying & Basu, 2006) or peer switching strategies (Chiu & 

Eun, 2008; Lehrfeld & Simco, 2010). In so doing, the added download efficiency 

achieved from this work can save more time for consumers and cut more costs for both 

consumers and ISPs alike. 

The remainder of this chapter provides background regarding this paper’s 

research, as well as describes the problems that this work attempted to solve and the 

issues that it had to contend with. Chapter 2 provides a review of literature that covers 

Hays & Simco’s work, as well as other relevant prior techniques researched. Chapter 3 

describes the premise and methodology this research used for augmenting Hays & 
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Simco’s strategy. It also outlines the simulation environment used to conduct 

experiments, as well as success criteria. Chapter 4 provides the test results that both 

validated the simulation environment and affirmed this work’s goal of having its new 

enhanced strategy achieve reduced overall download times compared to Hays & Simco’s 

original approach. Based on these observed results, Chapter 5 details the conclusions 

drawn from this paper’s research, including the strengths and weaknesses of the enhanced 

Hays & Simco strategy. Chapter 5 also discusses what other peer-to-peer strategies could 

benefit more from this work’s enhancement than Hays & Simco’s hybrid strategy. 

Background 

With the scalability, redundancy, and failover that it provided, peer-to-peer 

networking became a popular distributed application architecture, used for such purposes 

as file-sharing, instant messaging, content delivery, and even digital crypto-currencies. A 

significant portion of internet traffic has been attributed to peer-to-peer communications, 

with file-sharing via the BitTorrent protocol making up a majority of this activity 

(Schulze & Mochalski, 2009). 

Unlike the traditional client-server networking model, which consists of clients 

communicating solely with a central server, peer-to-peer networking is comprised of 

peers that can share their resources directly with each other. A peer can act as both client 

and server simultaneously, requesting resources from others while offering out what 

resources it has at the same time (He, Dong, Zhao, Wang & Qiang, 2016).  

Peer-to-peer has 2 major advantages over traditional client-server: scalability and 

robustness. In the client-server model, adding more clients causes resource contention by 
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dividing up the server’s network bandwidth, thus making each client’s download time 

longer. But peer-to-peer networking can overcome said bottleneck, having the client 

download different pieces of the desired fire from various peers simultaneously and 

assemble them together. This allows a client to aggregate, to the limits of its own 

download capabilities, the service capacities of the various peers it communicates with 

(Lua, Crowcroft, Pias, Sharma & Lim, 2005), rather than strictly compete with others 

clients for a single server’s resources (Chiu, 2010). As such, so long as the client has not 

saturated it download bandwidth, adding more peers that can contribute their respective 

upload bandwidths in order to utilize the client’s available download bandwidth can 

actually improve file transfer performance (Qiu & Srikant, 2004).  

For example, in the traditional client-server model where the client has a 50 Mbps 

connection and the server has a 20 Mbps connection, at best the download rate the client 

can achieve would be 20 Mbps, less so if said server is sharing its bandwidth with other 

clients. However, in the peer-to-peer model, a client could, for example, download from 

100 peers simultaneously, each with a 1 Mbps connection. Even if only half of each 

peer’s bandwidth is available, this would allow the client to achieve an aggregate 

download rate of 50 Mbps and take full advantage of its download bandwidth. 

Peer-to-peer network performance, typically measured from the client’s 

perspective by how long it takes to download a file, is impacted by various factors, 

including the service capacities of both client and peer’s respective internet connections, 

the number of network hops between client and peer, physical distance, contention for a 

peer’s bandwidth by other clients, even peer-to-peer specific bandwidth throttling 

enforced by either the ISP or the peer itself.  



 

4 
 

A peer suffering from a slow internet connection, high latency, or heavy network 

contention may be a poor-performer to download from (Xie, Yang, Krishnamurthy, Liu 

& Silberschatz, 2008). Unfortunately, peer-to-peer systems are prone to poor peer 

selection, since they operate at the application layer (Hays & Simco, 2017), constructing 

overlaying network topology instead of having the underlying network topology 

information available. Poor peer selection can make peer-to-peer networks less efficient 

(Magharei, Rejaie, Rimac, Hilt & Hofmann, 2014), hampering clients with longer 

download times (Ren, Liu, Zhou, Tang, Ci & Wang, 2013).  As such, significant research 

has gone into trying to reduce the impact of poor-performing peers and improve peer 

selection.  

Some performance-improving techniques researched, described in the next 

chapter,  probed peers to gauge their data transfer performance or performed queries that 

measure the latency between client and peer in order to prune potential poor-performers 

that demonstrated low available bandwidth or high network latency (Li, 2012; Hsiao, Hsu 

& Miao, 2011), Such techniques helped clients make better-informed decisions regarding 

which peers to select, though at the cost of introducing additional network overhead in 

performing such on-the-fly probes or queries on top of the time spent establishing a peer-

to-peer connection and performing the download. As such, on-the-fly intelligence-

gathering approaches involved a trade-off, ideally cutting more download time by 

providing better-performing peers than the cost added in collecting said information.   

The work of Hays and Simco (2017) explored using prior knowledge for selecting 

peers. In this strategy, historical service capacity and network locality data, collected in 

advance and stored locally to the client so as to avoid the additional on-the-fly network 
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overhead associated with peer-probes or infrastructure-queries that could eat into 

performance, were used to make better-informed decisions in selecting peers, while a 

peer switching technique was employed to limit the impact of poor-performers that got 

through peer-selection by replacing them after observing their download performance 

firsthand. 

Problem Statement 

Hays and Simco’s advanced knowledge-based peer selection strategy attempted to 

predict the service capacity and locality of peers by using historical information collected 

in advance and stored locally to the client. However, this approach still suffered from 

poor peer selection caused by incomplete or out-of-date information that no longer 

reflected the current state of a peer’s performance, resulting in longer download times. 

  

Figure 1: (a) Example of SpeedTest detecting upload speed of almost 20 Mbps.   

 (b) Almost 11 Mbps upload from same PC with BitTorrent running. 

The upload speed data gathered by OOKLA’s web-based SpeedTest utility did 

not reflect any peer-to-peer specific bandwidth throttling limits that were configured on a 

peer itself. For example, in Figure 1a, the home cable modem connection for a user 
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supported upload speeds of about 20 Mbps, as measured by SpeedTest. However, as 

illustrated in Figure 2, the user could have configured his or her Vuze BitTorrent 

application to limit uploads to only 50 Kbps. In this example, the 20 Mbps service 

capacity as detected by SpeedTest could have led advanced knowledge peer selection to 

conclude that this node was likely a good candidate, whereas in reality the 50 Kbps 

throttling limit set on the BitTorrent application might have made this one a poor choice. 

 

Figure 2: Example of PC from Figure 1 with 50 Kbps BitTorrent upload throttle. 

Since a peer’s available bandwidth depends on the utilization demands of all the 

other applications that share its network connection, changes in these demands may not 

be reflected in historical knowledge. For example, SpeedTest data regarding a node’s 

bandwidth capacity could have been gathered when there were no other networking 

demands made on it (see Figure 1a), yet at the moment a client wanted to select said node 

as a peer for downloading, it could have already been uploading to multiple other 

BitTorrent clients (see Figure 1b). Even a peer with high service capacity when under no 

load could end up being a poor-performer if it was already under heavy network 

contention (Bolliger, Gross, & Hengartner, 1999). 

Chunk-based peer switching, discussed in the next chapter, helped reduce the 

impact of poor-performing peers by limiting the amount of time a client spent with any 
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poor-performing peers that might have been picked by whatever peer-selection strategy 

was leveraged, rather than having the client maintain slow download connections with 

poor-performers until the entire file was transferred (Lehrfeld & Simco, 2010). Chunk-

based switching built on top of time-based switching’s practice of replacing selected peer 

every 5 minutes regardless of performance by adding bandwidth benchmarking and 

replacement of selected peers that did not meet some threshold transfer rate that occurred 

every minute. As such, choke-based switching retained the benefits of time-based 

switching, but achieved performance gains by potentially identifying selected poor-

performing peers and replacing them after only 1 to 4 minutes instead of replacing all 

peers after 5 minutes (Chiu & Eun, 2008; Lehrfeld & Simco, 2010). 

However, peer-switching strategies still entailed potentially spending time 

downloading from poor-performers prior to their replacement. Furthermore, it was 

possible for a replacement peer to be a worse performer than the one switched out, as this 

depended on the peer-selection strategy used to select said replacement. In the case of 

Hays & Simco’s approach (2017), given that the historical knowledge it drew upon for 

initial peer selection was, as mentioned above, susceptible to out-of-date or incorrect 

intelligence, so too was subsequent peer selection invoked in replacing poor-performers. 

For example, a prospective peer’s network load could have increased due to higher 

demand from other clients, or its throttling settings could have been enabled or changed. 

As such, under Hays & Simco, a poor-performing peer could become switched out for a 

false positive, a peer that historical knowledge suggested was a high-capacity peer, but 

was currently a poor-performer. 
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Furthermore, since the SpeedTest data did not reflect a peer’s current bandwidth 

utilization or throttling settings, Hays and Simco’s approach (2017) suffered from some 

of its initial selection and replacement peers being unwitting poor-performers, with 

realized transfer rates differing significantly from what prior knowledge suggested. In 

such a scenario, while prior knowledge was useful in identifying past poor performers to 

consider avoiding, the list of peers initially thought to be good performers could have 

actually contained a number of false positives.  

Research Goal 

This research set out to improve upon the hybrid advanced knowledge-based peer 

selection and choke-based peer-switching strategy researched by Hays and Simco (2017). 

Like the original, this new approach collected and locally-stored prior knowledge about 

peer service capacity and network locality from such historical data sources as OOKLA’s 

SpeedTest and MaxMind’s GeoLite ISP-mapping databases. This intelligence was 

gathered in order to reduce and sort the list of available peers down to a ranked list of 

potential good performers for selection, establish connections to and download from 

selected peers, and update its prior service capacity knowledge with observed download 

performance for subsequent re-ranking. Periodic replacement of the worst-performing 

peers with potentially better ones was also conducted (see Figure 3 below). 
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Figure 3: Lifecycle of a peer-to-peer connection using Hays & Simco’s strategy. 

However, unlike the original, this new strategy incorporated on-the-fly 

performance information about candidate peers to further prune those deemed likely 

poor-performers. As such, it gained the benefits of peer-probing, accounting for such peer 

service capacity factors as current network load and bandwidth throttling limits that 

would otherwise not have been accounted for by advanced knowledge historical data 

alone.  

  
Figure 4: Lifecycle of a peer-to-peer connection using proposed strategy. 

Furthermore, as shown in Figure 4, said information was provided by the peer to 

the client during the connection-establishment or handshaking phase of the client-peer 

connection lifecycle, rather than after the connection was already established and some 

amount of downloading was performed, as was the case with both peer-switching 

strategies and bandwidth-benchmarking peer-probing strategies. 
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In keeping with the goals of the original work, this research avoided adding 

additional network overhead in gathering the on-the-fly performance information by 

leveraging BitTorrent network activity already inherent to Hays and Simco’s approach. 

By adding the benefits of peer-probing to Hays and Simco’s strategy at an earlier 

stage in the peer connection lifecycle, this research aimed to further reduce the peer-to-

peer download times yielded by its predecessor by facilitating the pruning of poor-

performers without waiting for downloads to be subsequently performed and 

benchmarked. 

Relevance and Significance 

 Taking up over 20% of the world’s network utilization (Bindal, Cao, Chan, 

Medved, Suwala, Bates & Zhang, 2006), BitTorrent became a leading consumer of 

internet traffic (Schulze et al., 2009). With people sharing files that easily hit gigabyte 

sizes and BitTorrent having such a large audience (“BitTorrent and µTorrent”, 2012), 

improving peer selection could make downloads more efficient by having clients connect 

to peers that would reduce cross-ISP traffic and provide higher data transfer rates, thus 

reducing costs for ISPs while saving time for consumers. 

 Peer probing-based selection likely provided the most accurate information about 

a peer’s immediate performance. By establishing a download connection and transferring 

some probing data from the peer, whether it was generic benchmarking packets whose 

intervening time gaps were measured (Hsiao et al., 2011) or a chunk of the desired file 

itself whose download completion time was denoted, (Li, 2012), the client could gauge 

the peer’s current transfer rate. This measurement specified the probe’s immediate 
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download performance, which reflected ISP line capacity, distance and latency, 

utilization, and throttling. However, since a probe was itself a data download, its 

completion time was also subject to the transfer performance between client and peer. As 

such, probing a poor-performing peer to gauge its download performance would take 

longer to complete than for a high-performing one. 

Hays & Simco’s (2017) advanced knowledge peer selection strategy avoided 

adding on-the-fly network overhead by relying on locally-stored historical information. 

While such data could account for locality and past service capacity, it failed to consider 

such transient factors as current peer network contention, where the peer could, for 

example,  have much more of its present upload capacity allocated to other clients 

compared to when the historical data from SpeedTest’s assessment or the client’s 

previous observation was recorded, and user-configured throttling, where SpeedTest’s 

benchmarking was not hampered by bandwidth-limits set on BitTorrent-specific network 

traffic, which could result in poor peer selection. 

By taking advantage of current peer download performance information provided 

during the handshake phase of the connection lifecycle, the client did not need to wait for 

downloads to be performed in order to benchmark and subsequently prune poor-

performing peers, resulting in faster downloads 

Barriers and Issues 

Knowledge acquisition about peers has typically incurred a cost, generally in the 

form of additional network overhead. This overhead could take the form of pings, 

traceroutes, peers probes, and network infrastructure lookups. Despite providing 
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intelligence that could improve peer selection and decrease download times, such 

overhead could cut into some of this time savings. 

Hays & Simco’s strategy addressed this overhead issue by moving the 

intelligence-gathering cost from when a peer-to-peer download actually occurred to a 

point in time beforehand and stored this information locally. However, mistakes could 

arise as such advanced knowledge failed to account for the here and now. 

As Hays & Simco (2017) noted, it was difficult, if not impossible, to test peer 

selection strategies in the real world. Either a BitTorrent application needed to be 

modified or a new one created that utilized the proposed strategy. It then needed to be 

deployed to multiple computers across the internet. Files-sharing performance needed to 

be tested, yet the system had to be isolated to avoid contamination of experiments from 

the outside. A consistent environment was important for scientific testing and evaluation, 

making the internet a difficult setting to conduct experiments in (Hays & Simco, 2017).  

As such, a simulation environment was needed, capable of representing peers 

with diverse conditions, such as varying ISP service capacities, network utilization loads, 

and possible network throttling. 

Summary 

This research set out to improve upon the hybrid advanced knowledge-based peer 

selection and choke-based peer switching strategy developed by Hays & Simco (2017), 

with the end goal of further reduced download times in peer-to-peer networks. It 

accomplished this by pruning selected poor-performing peers before downloading even 

commenced. By taking advantage of network activity that was already inherent in 
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BitTorrent using the original Hays & Simco strategy in order to gain on-the-fly peer 

performance information, this research’s enhanced version avoided overhead costs that 

could have otherwise cut into any time savings gained.
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Chapter 2 

Brief Review of the Literature 

Introduction 

 Since 1999, when Napster first popularized their use, peer-to-peer networks have 

become one of the most prominent ways of sharing content across the internet (Grizzard 

et al., 2007), accounting for 43% to 70% of world-wide network traffic, depending on the 

location. Of this activity, BitTorrent has been the most popular protocol (Schulze et al., 

2009), ranging between 15 million and 27 million active nodes daily (Wang & 

Kangasharju, 2013) and over 150 million users each month (“BitTorrent and µTorrent”, 

2012). Even Microsoft integrated into Windows 10 a peer-to-peer client for receiving and 

sharing operating system updates and software patches (Newman, 2015), thus increasing 

the use of peer-to-peer technology by another 500 million active devices (Bott, 2017). 

Considering the prevalence of peer-to-peer applications, it is no surprise that 

much research has gone into improving and mitigating peer selection, as even a single 

peer could influence the overall performance of a file-share, ultimately impacting the 

client’s time spent waiting for a download to complete (Ren et al., 2013).  

Random-Based Peer Selection 

In random peer selection, the client would indiscriminately choose a peer to 

connect to from a list of those available that host the desired file, handshake with said 

chosen peer to establish a connection, and download the file, as depicted in Figure 5. 
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Since this approach was robust and simple to implement (Traverso et al, 2015), it became 

the most commonly-used selection strategy (Sherman, Nieh & Sten, 2009).   

 
Figure 5: Lifecycle of a peer-to-peer connection using random-based peer selection 

However, since the random selection strategy did not do anything to reduce the 

chance of picking poor-performing peers, using said approach often resulted in slow 

downloads. Because of this, most peer-to-peer applications using random selection 

improved on their performance by complementing the strategy with such techniques as 

parallel downloading or peer-switching in order to reduce the time spent downloading 

from poor-performing peers (Magharei, Rejaie, Rimac, Hilt & Hofmann, 2014).  

Parallel Downloads 

Parallel downloading entailed the client connecting to multiple peers 

simultaneously in order to download a file, thereby aggregating the collective available 

upload bandwidths of each connected peer to the limit of what the client’s own download 

bandwidth was able to accommodate. Said file was divided into chunks, one equally-

sized chunk per connected peer. 

For example, in the case of five connected peers each chosen by random peer 

selection, a 1000 MB file was divided into five 200 MB chunks that the client 

downloaded from each peer simultaneously. As such, how long the overall download 

took to complete was determined by the time spent retrieving a chunk from the slowest 

connected peer (Chiu & Eun, 2008). 
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Peer-Switching Strategies 

Peer switching, on the other hand, involved the replacement of a peer after it was 

already selected, a connection was established, and some amount of file transfer was 

performed. The selection of a replacement peer generally called for the same strategy 

used in the initial peer selection to be leveraged again.  

Furthermore, peer switching strategies could be performed in conjunction with 

parallel downloading. As such, a client could, for example, initially have selected 10 

peers to download from simultaneously, and replaced one or more of those peers along 

the way, depending on criteria that was set by the peer switching strategy used. 

Random Chunk-Based Switching 

Like parallel downloading, the random chunk based-switching strategy divided a 

file into equally-sized chunks. In this case, however, numerous small chunks were 

produced. The client downloaded each chunk individually and sequentially, with each 

chunk assigned to a randomly-selected peer (Chiu & Eun, 2008). As illustrated in Figure 

6, the cycle of peer selection, handshaking, chunk downloading, and peer switching was 

repeated until the entire file was downloaded. 

 
Figure 6: Lifecycle of a peer-to-peer connection using chunk-based peer switching 

 Since chunks were intentionally small in size, the time spent with a particular 

peer was limited, hopefully keeping the impact of poor-performing peers to a minimum. 
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However, a particularly poor-performing peer could still result in a chunk taking a long 

time to download (Chiu & Eun, 2008). 

Time-Based Switching 

Time-based switching used the time spent downloading from a selected peer 

rather than the completion of a chunk download as the basis for a peer switching strategy 

(Chiu & Eun, 2008). As show in Figure 7, the client selected a peer to download from 

and established a download connection. After retrieving as much of the desired file as 

possible within a five minute span of time, the client dropped the peer and selected a new 

one to continue downloading from. This process was repeated until the entire file was 

retrieved.  

  

Figure 7: Lifecycle of a peer-to-peer connection using time-based peer switching 

Compared to chunk-based switching, time-based switching reduces the effect of a 

poor-performing peer by limiting its impact to a 5 minute download window instead of 

waiting for a chunk to complete, which could take longer. As such, time-based switching 

has demonstrated shorter download times (Chiu & Eun, 2008). However, it is still 

possible for a selected peer to transfer very little data during its allotted five minute 

connection. 
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Choke-Based Switching 

Choke-based switching (see Figure 8 below) took the time-based switching 

strategy a step further by allowing peer connections to be dropped ahead of their 

allocated durations. The realized rate of transfer between client and peer was compared to 

some calculated choking threshold value. Every minute, download rates were checked. 

Peers that did not meet said threshold were subsequently dropped and replaced with 

newly-selected ones (Lehrfeld & Simco, 2010).  

 
Figure 8: Lifecycle of a peer-to-peer connection using choke-based peer switching 

By further reducing the time spent with poor-performing peers, the time-based 

switching strategy augmented with choke-based switching demonstrated faster 

downloads than time-based switching alone (Lehrfeld & Simco, 2010). A slow peer’s 

individual impact could be confined to a single minute rather than five, though the 

selection strategy used could still end up replacing a peer with another poor-performer. 

Other Peer Selection Strategies 

Various types of peer selection strategies have been developed, intent on 

outperforming the download performance of random selection. Parallel downloading 

became a mainstay for any peer-to-peer application. Some selection strategies benefitted 

from peer-switching, either by working in conjunction with a replacement strategy or by 

incorporating some aspect of peer-switching into their peer selection behavior. Still other 
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selection strategies relied on using historical knowledge or other intelligence-gathering 

methodologies in order to weed out poor-performing peers or limit their impact. 

Peer Probing-Based Selection 

Selection strategies that performed bandwidth-benchmarking downloads or 

probes on candidate peers for on-the-fly performance information could help clients 

make better informed decisions regarding which peers to share from, resulting in faster 

downloads.  

HP Algorithm 

 
Figure 9: Lifecycle of a peer-to-peer connection using HP probe-based peer selection 

The High-capacity Peer (HP) algorithm was an example of a peer probing-based 

peer strategy that combined peer selection with a form of chunk-based switching (Li, 

2012). HP probed available peers to determine their respective throughputs. It 

accomplished this by establishing a download connection and requesting a file chunk 

from each available peer in order to gauge transfer performance. Once these probes were 

completed and high-capacity peers were identified, the remaining chunks were 

downloaded from the selected good-performing peers while poor-performing peers were 

pruned, as shown in Figure 9.  

HP did not guarantee reduced download times compared to random selection. 

Case in point, a file could be so small that there are as many available peers as there are 
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chunks, resulting in all file chunks being received during the probing process (Li, 2012). 

HP was arguably more a peer switching algorithm rather than a peer selecting one, since 

a peer was dropped from further use only after a chunk of the desired file had already 

been downloaded from it. No peer pruning was conducted prior to initiating chunk 

downloads from each peer due to probes. Additionally, on its own, HP did not account 

for any drop in a selected peer’s download performance that could occur after the probing 

phase was completed, meaning that a client could have end up spending much of its time 

downloading from poor-performing peers without a switching strategy accompanying it. 

Query-Based Selection 

 Various selection strategies leveraged on-the-fly queries to peers or networking 

infrastructure in order to ascertain such download performance characteristics as locality 

and latency for selecting peers. 

Ying & Basu’s Traceroute-Based Strategy 

 
Figure 10: Lifecycle of a peer-to-peer connection using Ying & Basu’s peer selection 

Researchers from the University of Alberta proposed a query-based peer selection 

algorithm that leveraged traceroute, a popular tool used to map out network topology, 

detect and diagnose routing problems, and describe the path, the number of hops, and the 

round-trip time (RTT) for each hop between two devices on the internet (Mao, Rexford, 

Wang & Katz, 2003). In this approach, the client coordinated with a tracker to obtain a 

list of peers to connect from. Using traceroute information collected from every peer, 
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candidates with RTTs and hop counts larger than some maximal threshold value were 

removed from the list (Ying & Basu, 2006).  

This traceroute query phase helped the selection phase of the lifecycle (see Figure 

10) prune peers that had high latency or were located far away from the client prior to 

establishing download connections with them. However, this strategy could still select 

poor-performing local, low-latency peers with low bandwidth availability, as well as 

introduce additional network overhead in conducting traceroute queries to candidate 

peers, which could become appreciable when the list of available peers was large. 

Historical Knowledge-Based Selection 

 While probe and query-based peer selection strategies attempted to gain on-the-

fly knowledge about peers in order to weed out and replace selected poor-performers, 

some strategies leveraged prior knowledge in order to eliminate peers before any 

connection attempt to them was even initiated. 

Varvello and Steiner’s Traffic-Localizing Selection 

 
Figure 11: Lifecycle of a peer-to-peer connection using Varvello & Steiner’s peer selection 

Bell Labs’ Varvello and Steiner (2011) explored a historical-knowledge-based 

traffic-localizing strategy using MaxMind’s GeoLite database for peer selection (see 

Figure 11). The benefit of having the client identify and download from localized peers 
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(peers that share the same ISP as the client) was that there was no cross-ISP traffic 

involved in their interaction, which generally resulted in fewer network hops, less 

latency, and avoidance of inter-ISP throttling (Pacifici, Lehrieder & Dán, 2016). As such, 

localized peers were likely better performers for the client and a cheaper cost to the ISPs.  

In their approach, a single client created 256 distinct logical entities that joined a 

peer-to-peer network. Called sybils, these entities were assigned node IDs close in 

proximity to the desired file’s info hash. By taking advantage of BitTorrent’s distributed 

hash table (DHT) network topology, sybils were always made aware of those peers 

hosting the file, as well as any requesting it. Using the GeoLite data to look up ISPs from 

IP addresses, sybils could choose to work only with localized peer-sets. If too few 

existed, external peers could also be included (Varvello & Steiner, 2011).  

While the prior knowledge used by this strategy could ensure that localized peers 

were prioritized for selection by the client, it did not guarantee that selected peers were 

good-performers. On its own, the strategy did not account for the latency or available 

upload bandwidth of those selected peers. 

Hybrid Strategies 

 Some peer selection strategies utilized multiple features from the approaches 

mentioned earlier, combining their respective benefits to improve download performance. 

Adaptive and Efficient Peer Selection 

Adaptive and Efficient Peer Selection (AEPS) used a query-rank-then-probe 

model (Hsiao et al., 2011). The client sent a query to each of the candidate peers and 
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waited for their reply, measuring the round-trip time for each. Peers were rank based on 

those results, giving priority to candidates with the smallest RTT values. Priority 

candidates were then probed for their available bandwidth (ABW) verification by having 

each send some number of generic data packets to the client. The client measured the 

time gaps between the probe packets it received from a peer and used that to calculate its 

available bandwidth. AEPS selected those peers that meet a certain threshold (see Figure 

12).  

 
Figure 12: Lifecycle of a peer-to-peer connection using AEPS 

Though AEPS outperformed methods that were solely random-based, RTT-based, 

or ABW-based (Hsiao et al., 2011), it did introduce additional network overhead by 

measuring RTT from a large list of initial peer candidates and by performing ABW 

verification probes. Since every available peer was queried for their RTT in order to 

prune candidates, a candidate-rich environment resulted in the client sending messages to 

and waiting for responses from numerous peers. Furthermore, ABW verification probes 

could run slowly, particularly when gauging peers with good round-trip times but little 

available bandwidth throughput. And, like the HP Algorithm, on its own, AEPS did not 

account for changes in download performance. Should a selected peer’s transfer rate 

decline after the probing phase, the client could end up being stuck connected to poor-

performer. 
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Hays and Simco’s Peer Selection 

 
Figure 13: Lifecycle of a peer-to-peer connection using Hays & Simco’s strategy. 

Like Varvello & Steiner’s historical knowledge-based strategy, the research by 

Hays and Simco (2017) used MaxMind’s GeoLite database, as well as OOKLA’s 

Speedtest data, thus gaining locality and bandwidth service capacity information in order 

to make informed peer selection decisions. Such knowledge was acquired ahead of time 

and stored locally, thereby avoiding additional on-the-fly network overhead associated 

with queries or probes being introduced during the actual peer selection or file download 

processes.  

Using the GeoLite data, the algorithm divided the list of available peers into 2 

smaller lists, one containing those peers sharing the same ISP locality as the client, the 

other containing the rest (Figure 14, steps 5 & 6). The peers on both lists were sorted 

based on historic service capacity, either from the initial OOKLA data acquired or from 

first-hand downloading experience subsequently observed and saved by the client (Figure 

14, step 7).  
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Beforehand… 

Step 1:  If prior peer-to-peer downloads were performed  

then  go to Step 4 

else  go to Step 2 

Step 2:  Retrieve GeoLite and SpeedTest data and store them locally 

Step 3:  Set peer’s historical performance value to its SpeedTest value 

When ready to start peer-to-peer downloading… 

Step 4:  Retrieve list of available peers hosting desired file 

Step 5:  Use GeoLite data to determine the ISP of available peers from their IP addresses 

Step 6:  If available peer shares same ISP as client  

then  add to List A 

else  add to List B 

Step 7:  Sort peers in List A and in List B by their SpeedTest value in descending order 

Let a = size of List A, b = size of List B, and n = number of allowed parallel downloads 

Step 8:  If n <= a  

then  selected peers = first n peers in List A 

else  selected peers = all the peers in List A plus the first (n – a) peers in List B 

Let counter c = 0, incrementing by 1 every second 

Let z = 300, representing the 5 minutes allocated for time-based peer switching in seconds  

Let threshold = choke-based switching threshold 

Step 9: Handshake with selected peers to establish download connection 

Step 10:  Start downloading a file chunk from each selected peer 

Step 11: While c < z 

Step 11a:  If c is a multiple of 60 and peer’s observed performance < threshold  

then  update peer’s historical performance value with its observed performance 

 re-sort List A and List B rankings 

switch peer with highest ranked peer available 

handshake with replacement peer to establish download connection 

download remaining part of file chunk from replacement peer 

Step 11b: If peer’s file chunk finished downloading 

  then update peer’s historical performance value with its observed performance 

re-sort List A and List B rankings 

switch peer with highest ranked peer available 

handshake with replacement peer to establish download connection 

   retrieve another chunk from the highest ranked peer available (can be same peer) 

 End while 

Step 12: Update selected peers’ historical performance with their observed performances 

Step 13: Re-sort List A and List B rankings 

Step 14: Replace selected peers with the n highest ranked peers available (can be same peers) 

Step 15: If all file chunks are completely downloaded 

 then DONE 

 else go to Step 8 

Figure 14: Hays & Simco’s Advanced Knowledge-Based Peer Selection Strategy 

Peer selection first pulled from the shared-ISP list. If said list had fewer peers 

than the number of parallel downloads allowed, the other list was also utilized (Figure 14, 

step 8). The performance of parallel downloads from selected peers was monitored, the 
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locally stored service capacity information about those peers was revised (Figure 14, step 

12), and both list rankings were updated (Figure 14, step 13). Time-based and choke-

based peer switching were employed to prune worst performers in hopes of finding better 

performing replacements (see Figure 13). As such, this made Hays & Simco’s approach 

an integrated peer selection, peer replacement, and parallel download strategy. 

Both Hays & Simco’s (2017) and Varvello & Steiner’s (2011) approaches drew 

on prior knowledge in order to identify peers that were located in the same ISP as the 

client. Fortunately, the mapping between IP address and ISP rarely changed over time, 

making the knowledge gained from MaxMind data consistently useful in referencing 

peers. 

The peer’s current available service capacity, on the other hand, could change 

from one moment to the next as demand on the peer’s resources by other clients changed. 

Prior knowledge did not reflect a peer’s current bandwidth utilization. A peer capable of 

20 Mbps uploads could experience heavy load, thus having little of its bandwidth 

available for a new client. Even a peer with a high SpeedTest transfer rate could end up 

being a poor-performer if it was experiencing heavy network contention. 

Furthermore, bandwidth rates recorded by SpeedTest did not reflect throttle 

settings configured on a peer, since the web-based data transferred between a PC and 

SpeedTest to gauge performance would not restricted by a throttle setting configured on 

that PC’s BitTorrent application. For example, a peer’s network connection could have 

been rated at 20 Mbps uploads according to SpeedTest. However, current throttle settings 

could have limited BitTorrent uploads to just 50 Kbps. In this scenario, the 20 Mbps 
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value reported by SpeedTest could have resulted in advanced knowledge-based peer 

selection to incorrectly presume that a peer was a good performer, when in fact the 50 

Kbps throttle setting could have made it a poor one  

As such, Hays & Simco’s strategy, in using past historical bandwidth availability 

data for peer selection, lacked current, up-to-date service capacity information that on-

the-fly probing techniques could provide to help prune poor performing peer. Instead, it 

relied on choke-based peer switching’s one minute benchmarking interval to deal with 

poor-performers that were selected. 

Summary 

This literature review denoted several different strategies developed to improve 

the download performance of peer-to-peer networks above that of using mere random 

selection, with each approach having its own set of advantages and disadvantages.  

Some selection strategies performed benchmarking download probes to assess a 

peer’s current bandwidth availability (Li, 2012), while others relied on queries or past 

knowledge to make assumptions about a peer’s current desirability (Ying & Basu, 2006; 

Varvello & Steiner, 2011). Switching strategies, on the other hand, attempted to reduce 

the impact of poor-performing peers that made it through the selection process by 

curtailing the amount of time spent downloading from them (Chiu & Eun, 2008; Lehrfeld 

& Simco, 2010). And hybrid strategies emerged that combined aspects of other strategies 

in order to further reduce download times (Hsiao et al., 2011; Hays & Simco, 2017). 

However, despite these improvements over random selection, lack of accurate, 

up-to-date bandwidth information have led selection strategies that rely on queries or 
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historical knowledge to inadvertently choose poor-performers, while probing and peer-

switching techniques have themselves been fettered by slow peers. 

The new strategy described in this research built on the work of Hays & Simco 

(2017), adding on-the-fly intelligence regarding a peer’s current bandwidth availability in 

order to facilitate the replacement of poor-performers without waiting for the requisite 

downloads inherent to conventional peer-switching techniques, and without introducing a 

separate query or probe phase to the connection lifecycle.



 

29 
 

Chapter 3 

Methodology 

Introduction 

The goal of this research was to introduce a new strategy that could complement 

other strategies to further reduce the average peer-to-peer download completion time of a 

file for a BitTorrent client. To accomplish this goal, this research endeavored to improve 

upon the approach of Hays & Simco (2017).  

Hays & Simco’s (2017) work was chosen as a basis to complement as it was a 

recently-developed strategy that already demonstrated reduced download times over prior 

works by taking advantage of historical knowledge-based selection to both localize peers 

and rank them based on past performance, and choke-based switching to limit the amount 

of time spent with a selected poor-performing peer. As such, being able to further 

improve upon Hays & Simco’s (2017) download performance was a challenge that, if this 

research’s strategy was successful, would not only make the Hays & Simco’s (2017) 

work even more cost-efficient for ISPs and convenient for consumers, but could also 

result in similar or even greater reductions in download times when complemented with 

less-advanced strategies. 

The remainder of this chapter makes note of the premise upon which this paper’s 

research was based upon, discusses how on-the-fly bandwidth availability intelligence 

was gained and leveraged to quickly replace peers, how its integration into the hybrid 

work of Hays & Simco (2017) produced a faster-downloading strategy, how a simulation 
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environment was used to conduct the study, and how data produced in said experiment 

was analyzed and download performance was measured. 

Premise 

In reviewing the literature, this paper observed that having peer-switching 

strategies further limit the amount of time a client spent downloading from a newly 

selected poor-performing peer (going from the time spent downloading a complete 

chunk, as in the case for chunk-based switching, down to a 5 minute interval, as in the 

case for time-based switching (Chiu & Eun, 2008), and likewise from a 5 minute interval 

down to a 1 minute benchmarking interval in going from time-based to choke-based 

switching strategies (Chiu & Eun, 2008; Lehrfeld & Simco, 2010)) resulted in further 

reduced overall download completion times.  

As such, this research operated on the premise that overall download completion 

times could be further reduced if the length of time the client spent downloading from 

newly selected poor-performing peers could be cut down to zero. In other words, if poor-

performing peers that made it through the selection phase could be quickly replaced 

without waiting for some amount of downloading from them to occur (as in the case with 

past peer-switching strategies (Chiu & Eun, 2008; Lehrfeld & Simco, 2010)), then this 

could further reduce the negative impact of poor-performing peers on BitTorrent peer-to-

peer downloads and improve the overall download performance experienced by the 

client. 

If this research was to be capable of immediately replacing newly-selected peers 

that were poor-performers without waiting for benchmarking downloads to be performed, 
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as in the case of choke-based switching (Lehrfeld & Simco, 2010), then this new strategy 

needed to provide the client with on-the-fly intelligence regarding a selected peer’s 

current available bandwidth in order to be able to make such determinations, which past 

strategies were only able to typically garner through probing downloads (Li, 2012; Hsiao 

et al., 2011) or by making less accurate assumptions about through historical knowledge 

(Varvello & Steiner, 2011) or round-trip latency measurement (Ying & Basu, 2006; 

Hsiao et al., 2011).  

However, this paper’s research introduced a new form of peer-switching that 

gained probe-like intelligence regarding a peer’s currently available bandwidth without 

the inclusion of a separate benchmarking download phase, provided the client with said 

intelligence in a query-like manner from the peer without the addition of separate query 

networking traffic to BitTorrent normal functionality, and allowed the client to replace 

selected poor-performing peers prior to ever downloading from them, thereby further 

limiting interactions with poor performers and reducing overall download times.  

Handshake-Based Peer Switching 

To facilitate the acquisition of on-the-fly intelligence regarding a peer’s available 

bandwidth, which could have been be used by a BitTorrent client to assess and replace 

newly-selected peers that were poor-performers prior to downloading from them, this 

paper’s research introduced the concept of handshake-based switching.  

If a normal BitTorrent client wanted to download a file from a peer, a TCP 

connection would first be established. Via this connection, the client would send a 

handshake message to the peer, which would then reply with its own handshake message 
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(Erman, Ilie & Popescu, 2005). If the client received this response and the peer ID and 

info hash embedded within the handshake message were what the client expected, then 

the connection would stay open and the actual file download would begin. Otherwise, the 

client would drop the connection (“Bittorrent Protocol Specification”, 2017). 

Note that the BitTorrent handshake message, besides containing a peer id and info 

hash, has 8 reserved and unused bytes, all set to zero after the fixed headers (“The 

BitTorrent Protocol”, 2017). Bram Cohen, designer of BitTorrent, indicated that these 

reserved bytes could be used to change the protocol’s behavior (“Bittorrent Protocol 

Specification”, 2017).  

As such, this paper’s research took advantage of these reserved and unused bytes 

by having peers encode their currently available bandwidth estimate into their handshake 

message response to the client. This allowed the client to gauge a newly-selected client’s 

available bandwidth without needing to wait for some amount of benchmarking 

download to be performed between the client and peer, as in the case with probes or 

choke-based switching, and immediately replaced poor-performers that did not meet a 

chosen bandwidth threshold (see Figure 15).  

Additionally, since this intelligence regarding a peer’s available bandwidth was 

encoded into the handshake message, network traffic which was already inherent to both 

standard BitTorrent and BitTorrent using Hays & Simco’s (2017) hybrid strategy, this 

new enhancement did not introduce additional wait time for the client that would 

otherwise have been created by the addition of a separate peer-querying or peer-probing 

phase in order to gain information regarding a peer’s available bandwidth. 
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Figure 15: Lifecycle of a peer-to-peer connection using Handshake-based peer switching 

A modified BitTorrent application was needed in order for a peer to estimate its 

current bandwidth availability to be able to send to the client via its handshaking message 

response.  

On a peer, this modified application performed network benchmarking at startup 

to measure its maximum realized upload throughput, prior to accepting request from 

others and thus before other nodes began contending for its resources. Such an upload 

benchmarking feature already existed in Vuze, a popular BitTorrent application, which 

served as a similar basis for this paper’s research. Vuze’s benchmarking test entailed the 

client interacting with auto-speed servers to gauge the median transmission rate of a 

torrent file over the course of 20 seconds after a few seconds of ramp up to full speed, 

with results that varied from the actual rates by about 10 percent (“Speed Test FAQ”, 

2010). 

This startup measurement was then used as the basis for the peer’s maximum 

service capacity value. Then, by monitoring its current bandwidth usage during 

BitTorrent file-sharing, the application running on a peer estimated its available service 

capacity on-the-fly by subtracting its current upload utilization from its maximum 

throughput value. The peer could update its maximum service capacity value on 

occasion, such as when its current file-shares were uploading at a higher rate than said 
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value, or by performing additional benchmarks when utilization appeared to be low. The 

peer’s modified BitTorrent application was also tasked with encoding its current 

available bandwidth estimate into its handshaking message response to any clients 

attempting to initiate a peer-to-peer connection with it. This maximum service capacity 

value was utilized and updated over the course of a BitTorrent application instance’s 

entire runtime, providing available bandwidth estimates in servicing multiple different 

torrents either simultaneously or in tandem. 

On a client, the modified application was tasked with checking the 

aforementioned reserved bytes for an estimated available bandwidth encoding within 

handshake message responses from peers and immediately terminated connections with 

those peers whose estimates fell below a chosen threshold in order to prevent their 

respective content downloads from initiating. As such, the client then leveraged whatever 

peer-selection strategy it relied on in order to replace those dropped peers until it had 

achieved its configured simultaneous number of peers setting value. Similarly, the client 

also took advantage of any other peer-switching strategy or strategies to address 

slowdowns in peer performance that occurred after content downloads had begun. 

Since this handshake-based peer-switching strategy eliminated a poor-performing 

peer immediately before content transfer began, it applied not only to initial peer 

selection, but also to any subsequent selection of peers that took place because of peer-

switching that was invoked by this handshake-based strategy or any other peer-switching 

strategy it was complemented with. 
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Another benefit of embedding estimated available bandwidth into the BitTorrent 

handshake message response was that modified applications would still work normally 

with standard BitTorrent. A client running regular BitTorrent could still download from a 

peer running a modified version, as the client could simply disregard the peer’s 

bandwidth embedding in its normally reserved and unused bytes of the handshake 

message response, thus interacting with the peer per the standard BitTorrent protocol. 

Similarly, a modified client could still download from a standard peer by not utilizing 

handshake-based switching when the bandwidth estimate embedding was absent. 

Handshake Switching-Enhanced Hays & Simco 

While the handshake-based approach described above could merely be 

complemented with Hays & Simco’s hybrid strategy to perform faster peer-switching of 

newly-selected peers, it should be reiterated that Hays & Simco’s (2017) strategy also 

took advantage of locally-stored bandwidth data, collected either from SpeedTest or 

subsequently updated through first-hand download performance observations, to help 

rank peers for possible selection. As such, in order to gain the most benefit from this 

research’s handshake-based peer-switching strategy, the handshake-embedded bandwidth 

estimates were also integrated with Hays & Simco’s strategy to update its locally-stored 

historical data, so that not only was peer-switching performance improved, but also the 

peer-selection process as well. 

As in Hays & Simco’s (2017) strategy, MaxMind data was used by this 

handshake-enhanced integration to separate the available peers list into 2 sub-lists, those 

that shared the same ISP as the client and those that did not. Both sub-lists were then 
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initially sorted and ranked based on the OOKLA SpeedTest data. Once an initial set of 

peers was selected, the client went through the process of BitTorrent handshaking in 

order to establish connections with those selected peers.  

Similar to how choke-based switching replaced connected peers not meeting some 

calculated threshold, handshake-based switching also replaced poor-performers. But, 

while a client with choke spent time slowly downloading from a poor performing peer 

before switching, a minute in the case of Hays and Simco’s experiments (Hays & Simco, 

2017), handshake-based selection immediately replaced a poor-performing peer that 

made it through the selection process based on its provided bandwidth availability 

estimate and immediately updated the client’s locally-stored historical knowledge 

regarding a peer’s service capacity accordingly, as shown in Figure 16, so that those 

poor-performers could be re-sorted for future selection. If this updating of the locally-

stored data with the handshake-encoded bandwidth estimates was not performed, then 

this would have ran the risk of having the client immediately reselecting the poor-

performing peer since its ranking would have been unchanged. 

 

Figure 16: Lifecycle of Handshake-Enhanced Hays & Simco peer-to-peer connection. 
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Beforehand… 

Step 1:  If prior peer-to-peer downloads were performed  

then  go to Step 4 

else  go to Step 2 

Step 2:  Retrieve GeoLite and SpeedTest data and store them locally 

Step 3:  Set peer’s historical performance value to its SpeedTest value 

When ready to start peer-to-peer downloading… 

Step 4:  Retrieve list of available peers hosting desired file 

Step 5:  Use GeoLite data to determine the ISP of available peers from their IP addresses 

Step 6:  If available peer shares same ISP as client  

then  add to List A 

else  add to List B 

Step 7:  Sort peers in List A and in List B by their SpeedTest value in descending order 

Let a = size of List A, b = size of List B, and n = number of allowed parallel downloads 

Step 8:  If n <= a  

then  selected peers = first n peers in List A 

else  selected peers = all the peers in List A plus the first (n – a) peers in List B 

Let counter c = 0, incrementing by 1 every second 

Let z = 300, representing the 5 minutes allocated for time-based peer switching in seconds  

Let threshold = choke-based switching threshold 

Step 9: Handshake with selected peers to establish download connection 

Step 9a: If peer’s handshake-embedded estimated performance < threshold 

 then update peer’s historical performance value with its handshake-embedded estimate 

  re-sort List A and List B rankings 

  switch peer with highest ranked peer available 

  handshake with selected peer 

  repeat Step 9a 

 else go to Step 10 

Step 10:  Start downloading a file chunk from each selected peer 

Step 11: While c < z 

Step 11a:  If c is a multiple of 60 and peer’s observed performance < threshold  

then  update peer’s historical performance value with its observed performance 

 re-sort List A and List B rankings 

switch peer with highest ranked peer available 

handshake with replacement peer to establish download connection 

download remaining part of file chunk from replacement peer 

Step 11b: If peer’s file chunk finished downloading 

  then update peer’s historical performance value with its observed performance 

re-sort List A and List B rankings 

switch peer with highest ranked peer available 

handshake with replacement peer to establish download connection 

   retrieve another chunk from the highest ranked peer available (can be same peer) 

 End while 

Step 12: Update selected peers’ historical performance with their observed performances 

Step 13: Re-sort List A and List B rankings 

Step 14: Replace selected peers with the n highest ranked peers available (can be same peers) 

Step 15: If all file chunks are completely downloaded 

 then DONE 

 else go to Step 8  

Figure 17: Handshake-enhanced Hays & Simco Strategy 
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All other aspects of the proposed strategy mirrored Hays & Simco’s original work 

(see Figure 17). Both utilized parallel downloads. To address drops in transfer 

performance after handshaking had been performed and downloading had commenced, 

time-based peer switching, running at 5 minute intervals,  replaced the worst performing 

peer connection with the highest ranked available peer. Hays & Simco’s research tested 

the inclusion and exclusion of choke-based switching running at 1 minute intervals, so 

this paper did so as well for comparison. The client’s locally-stored prior knowledge was 

updated with the observed transfer rates from selected peers that made it past handshake-

based switching, and used for subsequent peer selections.  

Simulation Environment 

Real-world testing of peer-to-peer strategies was difficult given the logistical 

challenges and uncontrollable nature of the internet (Hays & Simco, 2017). Indeed, 

various prior works, including those of Chiu & Eun (2008), Lehrfeld & Simco (2010) and 

Hays & Simco (2017) all utilized simulation environments in order to assess their 

respective strategies.  

In order to evaluate the addition of handshake-based peer switching in reducing 

download times, particularly of those achieved by Hays & Simco’s hybrid strategy, a 

simulation environment was created that accounted for such file transfer performance 

factors as locality, ISP service capacity, bandwidth throttling, and network utilization. 

The simulation environment tested and compared the overall BitTorrent download 

performance when the following strategies were utilized: random selection with time-

based switching, random selection with choke-based switching, Hays & Simco’s 

advanced knowledge-based selection with time-based switching, Hays & Simco with 
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choke-based switching, and handshake-enhanced Hays & Simco with choke-based 

switching. 

Simulated Download 

 Like Hays & Simco’s (2017) single client experiments, this research simulated a 

BitTorrent client downloading a 150 MB file from a population of peers. For this 

implementation, the client allowed simultaneous parallel downloads from up to 4 selected 

peers. Additionally, the 150 MB file was divided into 20 evenly-sized chunks of 7.5 MB 

each. As such, at the start of a simulation run, before any downloading had commenced, 

the client had 20 inactive and incomplete (empty, in this case) chunks it needed to 

populate.  

After a simulation run had commenced, as many as 4 chunks were actively 

downloading at any particular moment in time, with each chunk keeping track of which 

selected peer it had been assigned to, what the file transfer rate of its assigned peer was, 

and based on said rate and the amount of time spent transferring from the peer, how much 

of its 7.5 MB capacity had been filled. 

To accommodate time and choke-based peer-switching strategies, a chunk did not 

have to be completed by a single peer. Rather, while a chunk could only be active with 

and assigned to one peer at a time, it could end up being active and inactive multiple 

times, accruing its content across multiple peers until completion. As such, each chunk 

maintained Boolean flags that denoted if it was active, in order to prevent accidental 

assignment to more than 1 peer at a time, and if it was complete, so as to prevent 

completed chunks from occupying one of the 4 selected peers. Thus, at the end of a 
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simulation run, all 20 chunks were in an inactive and complete state, representing a 

completed 150 MB file download with no active downloads from selected peers 

occurring.  

Simulated Peers 

 At the start of the experiment, a population of 1000 peers were generated, of 

which only a maximum of 4 were selected by the client and downloaded from at any 

particular point in time. For ease of identification and tracking purposes, each peer was 

assigned a unique ID. In order to represent the various real world factors that could 

impact a peer’s download performance, each peer was assigned a variety of attributes, 

including locality, maximum network upload capacity, and availability. 

 In order to accommodate Hays & Simco’s (2017) strategy, which divides the list 

of available peers into 2 smaller lists based on ISP locality, each peer was randomly 

assigned a locality attribute value, designating whether it shared the same ISP locality as 

the client or not. Whereas Hays & Simco’s experiments randomly assigned IP addresses 

to simulated peers, which were then subsequently looked up to determine respective ISP 

associations, this simulation environment simplified the process by skipping IP address 

assignment and instead assigned ISP locality directly. Such a simplification was viable 

since ISP lookup and localization of peers in Hays & Simco’s strategy were advanced 

knowledge tasks performed well ahead of the peer-to-peer selection process and whose 

time spent were not factored into the download performance measurement of the strategy. 

 Each peer was randomly assigned a maximum capacity value, which represented 

what the peer’s maximum upload rate was, not factoring in any throttling or network 
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contention caused by other nodes that attempted to download from it. Since throttling 

could curtail how much of a peer’s maximum upload rate could actually be leveraged in a 

real-world scenario, a Boolean throttling enabled attribute was also randomly assigned, 

designating whether a peer was throttled. Similarly, a throttling capacity value was 

randomly assigned to each throttled peer, denoting said peer’s maximum upload 

bandwidth capacity. 

 Since a peer on the internet could use some of its upload capacity for sharing with 

other clients, a percent available attribute was randomly assigned to each peer, signifying 

what percentage of its upload capacity was not being used. As such, the amount of upload 

bandwidth available for a peer was calculated by multiplying the percentage available 

attribute with the peer’s upload capacity (either the maximum capacity or the throttling 

capacity if throttling was enabled). For convenience, this calculated value was also stored 

into a peer’s actual performance attribute. 

 Each peer also had a known performance attribute associated with it. This was 

used to represent the locally-stored historical knowledge leveraged by the Hays & Simco 

(2017) strategy that was either initially based on SpeedTest data or subsequently from 

observed download performance measurement. This known performance attribute was 

then used by the simulation environment as a basis for re-sorting the 2 ranked peer sub-

lists (those that were ISP local and those that were not) for subsequent peer selection.  

However, for handshake-enhanced Hays & Simco simulations, selected peers that 

were pruned because they had available bandwidth estimates that fell below the threshold 

did not get the opportunity to have their download connection performance observed by 
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the client for subsequent updating of the locally-stored historical knowledge as per 

original Hays & Simco (2017). Therefore, the available bandwidth estimate embedded in 

a peer’s handshake message response was also used to update the local-stored historical 

knowledge for subsequent peer ranking and selection, so as to prevent a pruned peer from 

being immediately re-selected. 

Simulated Client 

The simulated BitTorrent client was tasked with dividing the list of available 

peers based on their ISP locality into 2 smaller lists and then sorted said lists based on 

their known performance attribute, as per the original Hays & Simco (2017) strategy. The 

client selected 4 of the available peers to download from, choosing the highest ranked 

peers from the list of local peers first.  

Since all BitTorrent connection attempts entailed a handshaking exchange to be 

performed between client and peer, whether or not available bandwidth estimates were 

embedded into the handshake message (Erman, Ilie & Popescu, 2005), this experiment 

arbitrarily assumed every newly selected peer incurred a 1 second overhead, to account 

for the handshake protocol’s round-trip time cost.  

Given that simulations running a strategy complemented with handshake-based 

peer-switching could result in more frequent peer replacements compared to a strategy 

without handshake-based switching, thus incurring more handshaking overhead costs, 

this research acknowledged that using such handshaking overhead cost in the 

experiment’s overall download time calculations could put the new handshake-based 

switching strategy at a disadvantage. However, this research took the position that it was 
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better to underestimate the download speed improvement of the handshake-enhanced 

Hays & Simco strategy, rather than overestimate its performance benefits. 

At one second intervals, the client was tasked with updating the active chunks’ 

respective download progress status, based on their associated selected peer’s actual 

upload rate. This was performed for each active chunk until its associated selected peer 

was dropped due to either time-based or choke-based peer switching, in which case the 

chunk was marked as inactive and kept in its incomplete state, or when the chunk in 

question was fully downloaded, at which point the chunk was denoted as being both 

inactive and complete. 

Simulation Trials 

This research defined a trial as a set of 10 simulated file download executions 

performed in tandem. Each run, like in Hays & Simco’s research, simulated the peer-to-

peer downloading of a 150 MB file, divided into 20 equally-sized 7.5 MB chunks, with 

each chunk keeping track of how much of its 7.5 MB content had been transferred.  

At the start of a trial, a list of 1000 peers was randomly generated, with each peer 

being assigned an ISP locality, a maximum service capacity ranging from 25 Kbps to 375 

Kbps that was used to represent the peer’s initial known capacity value, whether 

bandwidth throttling was currently being used, and if so, what the bandwidth throttle was 

set to, and how much of the bandwidth capacity was currently available.  

In the first simulated one-second interval of an execution run using random 

selection, the available peer list was shuffled, whereas it was sorted when using the other 
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selection strategies. Four available file chunks were then selected to simulate parallel 

downloads and assigned to the top four peers from the list.  

For the handshake-based switching strategy, the handshake threshold was set to 

200 Kbps, the midpoint of the maximum service capacity range. If a selected peer’s 

estimated available bandwidth exceeded this handshake threshold, its chunk remained 

assigned to it. Otherwise, the chunk was unassigned from its peer, the peer’s known 

capacity was updated with its estimated availability, and the peer list was re-sorted. 

Each chunk assigned to a selected peer incremented its download progress by how 

much data would be transferred in 1 second based on said peer’s available bandwidth 

value. When the chunk’s progress hit 7.5 MB, the chunk was marked as complete, no 

longer available nor active, and unassigned from its peer. 

In each subsequent simulated one-second interval, when there were fewer than 4 

chunks actively downloading and other unfinished chunks remained, incomplete chunks 

were assigned to available peers from the top of the list until 4 chunks were actively 

downloading again. For the proposed strategy, handshake threshold checking was 

performed on new connections. Chunk progress was incremented and monitored for 

download completion. 

The above simulated one-second interval process was repeated until all the 

chunks completed downloading, with a few caveats. At simulated 300-second intervals, 

time-based switching of the worst performing peer selected was performed, with the 

peer’s known capacity value updated with its observed download performance.  
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At simulated 60-second intervals for those strategies using choke-based 

switching, selected peers performing below the 200 Kbps threshold had their chunks 

unassigned from them and their known available capacity updated with their observed 

download performance. Said underperforming peers were then subsequently replaced 

with the highest ranked available candidates. 

 In between each of the 10 runs within a trial, the 20 file chunks were reset, but 

the available peer list was not. This was performed in order to represent locally-stored 

prior knowledge persisting between executions for both Hays & Simco’s approach and 

the new strategy. However, the available bandwidth value for each peer in the list was 

given a new value, reflecting transient changes to a peer’s network contention and 

utilization.  

Performance Evaluation 

 At the end of a simulated run, the total number of 1-second intervals required by 

the tested strategy to have all 20 chunks marked as both inactive and complete were 

measured. This represented the overall download time it took for BitTorrent to transfer 

the 150 MB file. 10 simulation runs were performed one after the other to form a single 

trial, so that later simulation runs in the trial using either Hays & Simco (2017) or 

handshake-enhanced Hays & Simco could benefit from knowledge gained in earlier runs 

within said trial.  

The simulation code printed to the console the observed download times for each 

of the 10 runs for a simulated trial, which were subsequently recorded. Each simulated 
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trial was performed 100 times, in order to average out any random fluctuations observed 

and to calculate the expected download time for each of the 10 simulation runs. 

Simulation Validation 

In order to validate the simulation environment created for this paper’s research, 

the cost-averaged download times for each simulation run for strategies using random 

selection with time-based switching, Hays & Simco with time-based switching, and Hays 

& Simco with choke-based switching, were examined.  

Cost-averaged download times for random selection with time-based switching 

were considered to be consistent with Hays & Simco’s (2017) own reported results if said 

times performed consistently across all simulation runs. In other words, this research 

expected that a graph charting average download times vs. simulation runs generally 

remained flat, not trending upward or downward over the course of each simulated run 

interval. 

Thanks to its use of prior knowledge for peer selection, Hays & Simco’s (2017) 

strategy using time-based switching was expected to exhibit decreasing average 

download times across successive simulation runs in order to be consistent with reported 

results and validate this portion of the simulation environment.  

Likewise, Hays & Simco with choke-based switching was also expected to trend 

towards decreasing download times. However, said average download times were also 

generally expected to be smaller than those of Hays & Simco employing time-based 

switching at any particular simulation run, due to the use of choke. 
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Results 

In order to help determine if this research’s proposed handshake enhancement 

could improve upon Hays & Simco’s download performance, the aforementioned 

download time averages for each simulated run were graphed. Said graph plotted average 

download time vs. simulation run for Hays & Simco’s strategy with time-based 

switching, Hays & Simco’s strategy with choke-based switching, and handshake-

enhanced Hays & Simco with choke-based switching.  

This research considered the enhancement strategy a success if the cost-averaged 

download times observed for handshake-enhanced Hays & Simco with choke-based 

switching were smaller than those of Hays & Simco’s original strategy with choke-based 

switching at each simulated run interval. 

Conclusion 

Through the use of the aforementioned simulation environment running 

executions of both Hays & Simco’s original advanced knowledge-based peer selection 

strategy and the handshake-enhanced version, this research hoped to see the new 

approach demonstrate smaller simulated download times than those seen from Hays & 

Simco alone, both with and without the use of choke, due to the pre-emptive pruning of 

poor-performing selected peers prior to initiating chunk download and the avoidance of 

non-inherent network activity for conveying performance information. The successful 

simulated demonstration of this research would justify the development, deployment, and 

real-world testing of a BitTorrent application that leverages this handshake-based peer 

switching. 
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Chapter 4 

Results 

Introduction 

This research investigated the use of BitTorrent’s handshake protocol as a conduit 

for peers to send estimated available service capacities to clients as a means of improving 

download times in Nicolas Hays & Gregory Simco’s original research, both in regards to 

initial peer selection, as well as subsequent selection incurred during peer switching.  

Prior works, like those mentioned in Chapter 2, have shown that lessening the 

time spent downloading from a poor-performing peer can reduce the overall peer-to-peer 

download time for a client (Chui & Eun, 2008; Lehrfeld & Simco, 2010; Wilkins & 

Simco, 2013). As such, one goal of this paper’s research was to provide the client with 

on-the-fly intelligence regarding its selected peers’ current estimated upload bandwidth 

availability, so that said client could completely avoid downloading from those peers 

whose estimates fell below its threshold by immediately pruning them.  

One of Hays & Simco’s design goals was to avoid introducing additional network 

overhead in gaining intelligence about peers. As such, their approach leveraged historical 

knowledge, gained ahead of time, so as to avoid additional on-the-fly overhead that could 

cut into the client’s download performance (Hays & Simco, 2017). In keeping with this 

sentiment, another goal of this paper’s research was to provide the aforementioned 

bandwidth availability estimates from selected peers to the client without incurring the 

additional on-the-fly network overhead typically associated with other intelligence 
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gathering approaches downloads (Li, 2012; Hsiao et al., 2011; Ying & Basu, 2006) by 

leveraging the network traffic already inherent in BitTorrent.  

Chapter 3 described the new handshake-based enhancement to Hays & Simco’s 

hybrid peer selection and peer switching strategy that was conceived during this paper’s 

research in order to further improve upon the overall peer-to-peer download times 

achieved by Hays & Simco’s original work. Chapter 3 also described the simulation 

environment that was created and used by this paper’s research to evaluate the new 

handshake-enhanced Hays & Simco strategy and compare its overall download times 

with those of the original Hays & Simco work.  

This chapter reviews the download times observed when recreating the strategies 

of prior works in order to demonstrate the validity of the simulation environment, as well 

as presents the results of the new strategy combining Hays & Simco’s approach with 

handshake-based selection. A summary of the results concludes this chapter. 

Simulation Validation 

 The console output for 10 simulation runs, measured in seconds, of a trial of 

random selection with time-based switching is shown in Figure 18.  

Random Selection with Time-Based Switching 
3978 
3822 
4701 
3650 
4080 
3812 
4264 
4435 
5143 
4267 

Figure 18: Console output for a random selection w/ time-based switching trial 
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From this console output and others like it, a large table was generated, which 

recorded the observed download times for each of the 10 simulated runs across  the 100 

trials using random selection with time-based switching. 

Table 1, a subset of the aforementioned large table, shows the download times for 

the 10 simulation runs that were performed during the first 10 of the 100 trials conducted 

using random selection with time-based switching. For example, in the first trial column, 

the download times for the 10 simulation runs using random peer selection with time-

based peer switching were 3978, 3822, 4701, 3650, 4080, 3812, 4264, 4435, 5143, and 

4267 seconds, respectively.  

 
TRIAL 1 2 3 4 5 6 7 8 9 10 

RUN 
           1 
 

3978 3956 4017 4076 5200 4079 5186 3956 5402 5460 

2 
 

3822 4705 4292 4035 4608 4372 4529 4656 4528 6414 

3 
 

4701 4319 6127 3937 4781 3164 4760 5552 5223 4483 

4 
 

3650 5156 3361 5203 4727 5437 4483 3727 3903 3690 

5 
 

4080 4872 3670 4517 3277 4238 4402 4515 5515 4607 

6 
 

3812 4965 4356 5991 5485 4287 4027 4216 4428 5165 

7 
 

4264 4027 4668 3803 5603 3947 3922 4997 4760 4360 

8 
 

4435 5139 4485 4401 4940 4570 4953 4049 5529 5162 

9 
 

5143 4165 4277 4623 4344 4032 5159 3753 3421 4869 

10 
 

4267 3938 5222 4810 5867 3711 6071 3807 3708 3896 
Table 1: Random selection w/ time-based switching DL times for first 10 trials 

Similar to Table 1, the corresponding download times results when the simulation 

environment was using random selection with time and choke-based switching, Hays & 

Simco’s advanced knowledge-based selection with time-based switching, and Hays & 

Simco’s advanced knowledge-based selection with time and choke-based switching are 

portrayed in Tables 2, 3, and 4, respectively. 
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TRIAL 1 2 3 4 5 6 7 8 9 10 

RUN 
           1 
 

3165 3066 2920 3037 2619 2672 2564 2604 3207 2685 

2 
 

2941 2454 2703 3124 2790 3288 2738 3054 2656 2601 

3 
 

3449 3504 2868 2864 2737 2635 3008 2872 2966 2686 

4 
 

3017 2534 2783 2490 3059 2708 3263 3032 3064 2161 

5 
 

2770 3048 2851 3062 3186 2809 2591 2802 3087 2972 

6 
 

3507 3089 2793 2524 3132 2684 2221 2594 2925 2854 

7 
 

2692 2619 2617 3680 3170 2241 2590 2962 3218 3090 

8 
 

2914 2856 3199 2913 2195 2828 3398 2882 2866 2786 

9 
 

2976 2735 2806 2637 2323 2444 2368 2895 2852 3012 

10 
 

2391 2549 2735 2386 2695 2550 2045 2606 2686 2349 
Table 2: Random selection w/ choke-based switching DL times for first 10 trials 

 
TRIAL 1 2 3 4 5 6 7 8 9 10 

RUN 
           1 
 

2108 1817 1762 1692 1644 1752 1325 2636 1873 2520 

2 
 

1762 1072 1531 1345 1636 2367 1253 1106 1224 1602 

3 
 

1529 1224 1279 1255 1349 2422 1826 1502 1026 2087 

4 
 

1019 1249 1141 1888 1213 1878 1708 1364 1221 1537 

5 
 

1032 1345 941 1234 1336 1288 2749 2283 1601 1635 

6 
 

1505 1376 1110 1182 964 1296 1288 1875 1929 1569 

7 
 

1569 1280 1519 1260 1246 1274 1561 1148 960 1095 

8 
 

1247 1204 1032 1053 1416 1125 1151 1279 960 1136 

9 
 

1648 961 1000 1032 1031 973 1009 1290 1024 1095 

10 
 

1569 966 989 1438 1239 1095 1045 1290 1018 1491 
Table 3: Hays & Simco w/ time-based switching DL times for first 10 trials 

 
TRIAL 1 2 3 4 5 6 7 8 9 10 

RUN 
           1 
 

1462 1052 1355 1238 1325 1183 1270 1204 1188 1226 

2 
 

986 984 960 1033 1211 998 1250 1051 1044 1035 

3 
 

1295 1108 975 960 1014 922 1032 1158 1032 1139 

4 
 

1130 1234 960 960 1059 1032 1004 1110 1116 1110 

   5 
 

1326 1254 1110 1067 1032 1029 960 1052 1113 1010 

6 
 

1246 1110 1004 1188 1112 1032 1032 1095 1002 1031 

7 
 

1110 1122 960 1166 1032 1122 1054 1095 1025 1162 

8 
 

1125 1204 1180 1184 1032 1238 1032 1165 988 1000 

9 
 

1220 1155 1058 1095 974 1280 1037 1095 1015 986 

10 
 

1268 1176 960 1100 1033 1214 1143 1095 1074 1039 
Table 4: Hays & Simco w/ choke-based switching DL times for first 10 trials 



 

52 
 

Table 5 shows what the average download time is for each of the 10 simulation 

runs across their respective experiment’s 100 simulation trials, while Figure 19 presents 

these download time averages as a graph.  

As was expected, the inclusion of choke-based peer switching, here set to 200 

Kbps and at 1 minute intervals, substantially limited the impact of poor-performing peers, 

compared to time-based switching, set to 5 minute intervals. This was particularly evident 

in the case of random peer selection, where the use of choke-based peer switching 

reduced the download times achieved by time-based peer switching by 36.7%.  

 

STRATEGY Random 
w/ Time-based 
Switching 

Random w/ 
Choke-based 
Switching 

Hays & Simco w/ 
Time-based 
Switching 

Hays & Simco w/ 
Choke-based 
Switching 

RUN  

    1  4496.17 2801.53 1942.21 1241.75 

2  4475.29 2847.43 1564.83 1085.16 

3  4367.06 2813.79 1454.57 1062.12 

4  4564.89 2814.07 1352.06 1065.9 

   5  4332.08 2843.01 1309.04 1070.79 

6  4462.12 2817.88 1277.02 1072.32 

7  4397.87 2841.81 1257.43 1072.66 

8  4458.99 2806.39 1206.49 1086.41 

9  4556.21 2807.48 1198.63 1077.76 

10  4302.24 2742.1 1202.99 1082.1 
Table 5: Random selection and Hays & Simco w/ time, choke-based switching average DL time 
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Figure 19: Random Selection and Hays & Simco w/ Time or Choke Switching DL Times 

 

Hays & Simco’s hybrid strategy also behaved as expected. Its use of advanced 

knowledge helped it avoid some poor performing peers that random selection could have 

otherwise hit, which accounted for a significant reduction in download times over 

random selection. Furthermore, Hays & Simco’s download times generally improved 

over the course of a trial as the locally-stored prior knowledge regarding peers’ service 

capacities got updated from one run to the next, which was also expected behavior. 

As was the case in random selection, the addition of choke-based peer switching 

to Hays & Simco’s strategy reduced download times over time-based switching alone. 

The average download time improved by 36.1% for the first run, 30.7% for the second, 

27.0% for the third, and progressively tapered down to 10.0% by the tenth run, as the 

growing impact of prior knowledge updates reduced the effectiveness of the choke. 
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Based on these observed results adhering to expected behavior, this paper 

concluded that the simulation environment developed for this research was sufficiently 

validated and could be properly utilized for conducting experiments on the new 

handshake-enhanced Hays & Simco strategy. 

Findings  

Table 6 lists the observed download times for the first 10 trials’ respective 

sequence of 10 simulation runs conducted using the new handshake-enhanced strategy. 

Table 7 presents the average download time across all 100 trials for the proposed 

methodology, while Figure 20 displays them as a line graph, as well as provides the 

corresponding download times for the two non-handshake-enhanced Hays & Simco 

approaches.  

 
TRIAL 1 2 3 4 5 6 7 8 9 10 

RUN 
           1 
 

1070 994 1097 1049 938 960 885 981 1045 964 

2 
 

926 952 1062 981 860 909 1171 974 860 989 

3 
 

1006 938 960 1063 947 865 962 1026 1032 953 

4 
 

1032 922 960 1000 996 961 955 1010 1115 986 

5 
 

1027 922 1025 1045 921 1001 960 1032 1189 938 

6 
 

1146 935 1035 1134 860 1000 922 986 1093 1070 

7 
 

1078 1039 984 1144 1014 1000 922 1032 1077 998 

8 
 

1120 1056 1166 1032 960 998 946 1050 1038 1034 

9 
 

1178 966 1015 1201 960 980 1014 1110 1144 1033 

10 
 

1092 960 1050 1105 966 1120 986 1095 1130 1032 
Table 6: Handshake-enhanced Hays & Simco DL times for first 10 trials 

The download times observed for run #1 for the handshake-enhanced strategy 

were 15.8% smaller than that of Hays & Simco’s strategy using choke-based peer 

switching. An 8.5% improvement in download times was observed in run #2, 5.7% in run 
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#3, and 4.7% in run #4. The difference in download times between the new handshake-

enhanced strategy and Hays & Simco’s original strategy with choke-based switching 

progressively decreased in successive simulated runs. While the handshake-enhanced 

strategy consistently outperformed its predecessor, its advantage diminished down to just 

1.8% by the 10
th

 and final run.  

 

STRATEGY Hays & Simco w/ 
Time-based 
Switching 

Hays & Simco w/ 
Choke-based 
Switching 

Handshake-enhanced 
Hays & Simco 

RUN  

  

 

1  1942.21 1241.75 1045.02 

2  1564.83 1085.16 993.03 

3  1454.57 1062.12 1001.76 

4  1352.06 1065.9 1015.29 

   5  1309.04 1070.79 1025.36 

6  1277.02 1072.32 1040.6 

7  1257.43 1072.66 1043.81 

8  1206.49 1086.41 1056.76 

9  1198.63 1077.76 1061.86 

10  1202.99 1082.1 1062.11 
Table 7: Hays & Simco w/ time, choke, and handshake-based switching average DL times 
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Figure 20: Results for Hays & Simco w/ Time, Choke, and Handshake-based Switching 

Summary of Results 

 The results observed from the simulation environment experiments 

conducted showed that adding handshake-based peer selection to an approach that 

already leveraged Hays & Simco’s advanced knowledge-based peer selection further 

decreased peer-to-peer file download times.  

This performance improvement was particularly apparent when comparing the 

new strategy to Hays & Simco’s approach without choke, as handshake-based selection 

effectively acted as an almost immediate and pre-emptive choke prior to fully 

establishing a download stream with a peer. On the other hand, Hays & Simco’s approach 

using just time-based switching suffered from connections to peer-performers that could 

last as long as 5 minutes before switching peers. 
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Hays & Simco’s approach using choke-based switching partially bridged the gap 

in performance. The use of choke-based switching reduced Hays & Simco’s time with a 

selected poor-performing peer from 5 minutes down to potentially 1 minute. 

Furthermore, this reduced time with poor performing peers resulted in more frequent peer 

switches. Hence, the locally-stored prior service capacity knowledge used to select peers 

was updated more frequently, increasing the effectiveness of Hays & Simco’s advanced 

knowledge strategy. As such, with each successive run within a trial, the combination of 

both choke-based switching and progressively-improving prior knowledge-based 

selection appeared to have worn away at the advantage gained from adding handshake-

based selection, until after just 4 simulation runs the difference in download times 

between Hays & Simco’s strategy with choke-based switching and its handshake-

enhanced counterpart was less than 5 percent. 
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Chapter 5 

Conclusions 

Conclusions 

The results obtained over the course of this paper’s research supported the 

hypothesis that, without introducing any additional network overhead in the process, the 

overall download times achieved in the Hays & Simco (2017) advanced knowledge-

based peer selection and choke-based peer-switching hybrid strategy could be further 

reduced by leveraging the reserved and unused bytes contained within the BitTorrent 

protocol’s handshake message (“The BitTorrent Protocol”, 2017) as a conduit for passing 

along a selected peer’s estimated available service capacity to the client and using said 

information as a means of immediately replacing those peers whose estimates deemed 

them to be poor-performers. 

As demonstrated by both time-based and choke-based peer switching strategies, 

reducing the amount of time the client spends downloading from a selected poor-

performing peer, from the completion of a chunk down to a 5 minutes, and from 5 

minutes down to as little as 1 minute, respectively, can reduce overall peer-to-peer 

download times (Chiu & Eun, 2008; Lehrfeld & Simco, 2010). The handshake-based 

peer switching strategy researched in this paper successfully reduced a BitTorrent client’s 

overall download times even further by decreasing the time spent downloading from 

selected poor-performers to effectively zero, thus nearly mitigating their negative 

performance impact. 



 

59 
 

The new handshake-enhanced approach’s download performance consistently 

exceeded those of its predecessor, Hays & Simco’s hybrid historical knowledge-based 

peer selection and choke-based peer switching strategy, particularly in early file 

download runs when a client’s locally-stored knowledge regarding the service capacities 

of peers was mostly derived from initial third-party data rather than more recently-

acquired, first-hand experience (Hays & Simco, 2017).  

However, as the client’s first-hand experience updated the locally-stored data in 

subsequent runs, prior knowledge-based peer selection became more effective. As such, 

the client’s selection of poor-performing peers became less frequent, thus diminishing the 

beneficial impact of faster peer switching.  

Despite handshake-enhanced Hays & Simco’s advantage over the original Hays & 

Simco strategy with choke-based switching becoming more and more negligible in latter 

experiment runs, the early run benefits leads this paper to conclude that the new approach 

serves as a suitable improvement to Hays & Simco’s original research. 

Implications 

BitTorrent file transfers make up a substantial portion of the internet’s overall 

usage (Bindal, Cao, Chan, Medved, Suwala, Bates & Zhang, 2006; Schulze et al., 2009). 

With its ability to make downloads more efficient, the research conducted in this paper 

has wide-ranging implications to the field of peer-to-peer networking. 

Faster BitTorrent downloads not only can be more convenient for the client’s user 

in regards to time spent waiting for a file transfer to complete, but can also save the 

client’s user money, particularly for those clients hosted on metered networks. Since the 
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handshake message leveraged by this paper’s new switching strategy for gathering 

intelligence about peers is network activity already inherent to BitTorrent, this research’s 

enhancement does not introduce additional network overhead, thus avoiding increased 

delays and financial costs for the client. 

This paper’s research could also reduce the strain on peers. By having clients 

refrain from downloading from them, peers already contending with high demand and 

little available upload bandwidth remaining need not have to take on even more network 

load, particularly a load that would not be particularly satisfying for the client anyways. 

. Given handshake-enhanced Hays & Simco’s performance improvement was 

greatest during early simulation runs, this approach would be particularly effective for 

those who perform large BitTorrent downloads on occasion, rather than for prolific 

downloaders of smaller files. 

Future Work 

Though the addition of handshake-based peer switching was able to successfully 

demonstrate improved download performance over the original Hays & Simco strategy, 

this paper’s new handshake enhancement may be better served as a complement to 

strategies that do not rely on locally-stored advanced knowledge, where successive 

downloads do not strengthen such strategies’ peer selection performance that would 

otherwise cut into the benefits of service capacity-encoded handshaking. For example, 

handshake-based peer switching would likely work well paired with random peer 

selection. As such, a possible line of research would be to conduct similar simulation 
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experiments that couple handshake-based peer switching with existing peer-selection 

strategies. 

A second avenue for future work could explore whether handshake-based peer 

switching could outright replace probe-based peer selection, given that both approaches 

help the client determine whether a peer has service capacity is sufficient to download 

from (Li, 2002; Hsiao et al., 2011). However, considering that handshake-based peer-

switching does not need to perform an actual download to gauge a peer’s performance, a 

download that could in and of itself be hampered by low bandwidth, it is possible that 

this paper’s handshake-based enhancement could not only replace peer probing, but 

outperform it as well. 

Another area of research could investigate using the BitTorrent protocol’s 

handshake message not only as a conduit for embedding a peer’s estimated available 

bandwidth, but also as means of gauging a peer’s network latency. By having the client 

measure the length of time between when it sends its handshake message to a peer and 

when the peer’s handshake response is received, the client could effectively perform an 

RTT query similar to that performed by AEPS (Hsaio et al., 2011) or traceroute-based 

peer selection (Yang & Basu, 2006), without introducing a separate query that would add 

network overhead. This could make the handshake-based enhancement even more useful 

to those strategies that lack some form of peer localization. 

Summary 

Since its introduction over twenty years ago, peer-to-peer networking has become 

a popular methodology for sharing files, streaming videos, delivering operating system 
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updates, and facilitating crypto-currencies. In particular, peer-to-peer file sharing 

constitutes a significant percentage of the internet’s overall bandwidth usage. Given this 

prevalence of peer-to-peer file sharing and the negative impact that poor performing 

peers can have on such usage, finding ways of improving these peer-to-peer downloads 

has become an important area of research for both network providers and their 

consumers.  

Work recently conducted by Nicolas Hays and Gregory Simco advanced this field 

of scientific research, having explored combining historical knowledge regarding peer 

performance and localization with choke-based peer switching as a means of both gaining 

intelligence for improved peer selection without incurring additional on-the-fly network 

overhead and further limiting the negative impact of those poor-performing peers that 

were selected. 

This paper’s research examined such prior works as time-based and choke-based 

peer switching, and extended their shared premise of reducing the amount of time spent 

downloading from poor-performing peers in order to create a new switching strategy. 

This new approach was used to complement Hays & Simco’s hybrid strategy, imbuing it 

with the benefits of past probe-based peer selection strategies, while retaining the original 

work’s goal of avoiding additional network overhead. 

While this handshake-based peer switching enhancement was successful in 

reducing overall completion times for BitTorrent downloads using Hays & Simco’s 

strategy, there is always room for improvement. The use of historical knowledge for peer 

selection, as demonstrated in Hays & Simco’s approach, proves to be a powerful 
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performance enhancer that, once it is given the chance to learn and develop from recent 

first-hand experience, can quickly compete with this research’s capabilities. As such, 

while handshake-based peer switching can improve Hays & Simco’s download 

performance, it shows the most promise when combined with those strategies that do not 

benefit from prior knowledge. 
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