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POPULAR  SCIENCE  SUMMARY  OF  THE  THESIS  
Everything, we do in our daily life from speaking Latin, to playing curling or diving with the 
sharks and also eating, walking, sleeping involves the activity of our brain cells. Our brain is 
composed of billions of neurons which form connections and communicate between 
themselves. These connections form specific circuits which are involved in all our behaviors. 
Along with neurons, the brain is also composed of another cell type called the glial cells. 
Studies have indicated that a type of glial cells called the “astrocytes” are also involved in 
modulating this neuronal communication and they have been found to be affected in disease 
conditions.  

A large number of people are affected by mental disorders such as Alzheimer’s disease (AD) 
and depression. Most of the available treatments designed for these diseases have met with 
limited success making it hard for the patients and their families. One of the reasons can be that 
these treatments have been designed with neurons as the central targets and by not considering 
astrocytic involvement in neuronal communication we might be missing the other half of the 
picture. Hence understanding the role of astrocytes in these diseases and developing treatments 
with astrocytes as pharmacological targets may be the answer. However, our understanding of 
the role of astrocytes in disease conditions is still very limited and it therefore becomes 
extremely important to investigate the communication between astrocytes and neurons in 
health and disease. 

In this thesis, we investigated how the astrocyte-neuronal communication is affected in AD and 
depression. We found that indeed astrocytes are impaired both morphologically and 
functionally in these diseases which in turn affects the neuronal activity. In one of the studies 
(Paper II) we found that restoring the astrocytic function improves the impaired neuronal 
activity seen in depression. In summary, we found that astrocyte functions are impaired in 
diseased conditions and propose that pharmacological targeting of astrocytes aimed to restore 
their functions can help in improving the disease conditions.  

 

 

   



ABSTRACT  
Synaptic transmission forms the basis of neuronal activity and astrocytes play an integral part 
in this process. Glutamate is the major excitatory neurotransmitter in the brain and an 
important function of astrocyte during excitatory synaptic activity involves the uptake of 
glutamate through astrocyte glutamate transporters (EAATs) and hence shaping the 
excitatory neurotransmission. Recently astrocytes have also been shown to affect a sustained 
form of inhibition. In this thesis, we study these aspects of astrocyte functions and their role 
in affecting the excitatory synapse. In addition, using animal models of diseases we describe 
how the astrocyte synapse interaction is affected in diseased conditions.  
In the Paper I, we confirmed previous studies showing that astrocytes respond by a long-
lasting depolarization upon synaptic stimulation, mediated by an increase in extracellular 
potassium ions. We found that this long-lasting depolarization is enhanced when astrocytic 
glutamate transporters are blocked, whereas the neuronal EPSC is reduced under these 
conditions. Blocking the glutamate transporters reduces the AMPA receptor response 
whereas the NMDA receptor activation is increased, causing the enhancement seen in the 
astrocytic long-lasting depolarization. Since astrocyte glutamate transporters are impaired in 
many neurodegenerative diseases, this study gives us an idea about how the impairment of 
astrocytic glutamate transporters can influence synapse activity. 
In the Paper II and III we used animal models of depression and AD respectively to 
understand the role of astrocytes in affecting synaptic transmission.  
In Paper II we used the well characterized FSL rat model of depression and investigated 
how reactive astrocytes affect inhibition by producing and releasing GABA. We found that 
tonic inhibition of pyramidal neurons is increased in the FSL rat while the synaptic plasticity 
is impaired. We also found that this tonic inhibition was reduced by blocking the astrocytic 
GABA synthesis or by chelating intracellular Ca2+ in astrocytes in slices from the FSL rat, 
giving evidence for increased astrocytic involvement in tonic inhibition in an animal model 
of depression. Furthermore, blocking of astrocytic GABA synthesis restored the impaired 
synaptic plasticity seen in FSL rats. 

In the Paper III, we explored the astrocyte mediated glutamate uptake in Alzheimer’s disease 
model using a knock in AD mouse model AppNL-G-F. Astrocytes displayed a reactive 
morphology, with swollen cell bodies and increased number of processes. We found that 
though there was an increase in the protein expression levels of astrocytic glutamate 
transporters (EAATs), they were functionally impaired as reflected by the glutamate 
transporter current recordings. 
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1   INTRODUCTION  

1.1   ASTROCYTES:  STARS  IN  THE  BRAIN-­VERSE  

Stars have been fundamental in shaping the universe as we see it today. Life on earth would 
not have been possible without a star (Sun) and they play a pivotal role in the functioning of 
the universe. As much as the stars are important for the outside universe, equally fascinating 
and important is the role of non-neuronal star like cells called astrocytes inside our brain. In the 
human brain, neurons communicate with each other through synapses which forms the basis 
of all brain functions, and a specific type of glial cells called astrocytes have been found to be 
extremely important in maintaining this synaptic transmission. Since the early nineteenth 
century many neuroscientists including Michael von Lenhossék, Fernando De Castro and Carl 
Ludwig Schleich expressed the idea of glial involvement in brain functions1. Santiago Ramón 
y Cajal developed a staining method for astrocytes and his sketches showed astrocytes in close 
contact with the neurons2, laying the ground for the idea that astrocytes might play a role in 
synaptic transmission. We now know that astrocytes perform numerous functions in the brain 
ranging from maintaining the ionic homeostasis, blood brain barrier, energy metabolism, 
protection against insults and inflammation and hence can affect synaptic activity3. Recent 
studies have shown them to be actively involved in modulating synaptic transmission as well 
as behavior4, 5.  In this thesis, we investigate the interaction of astrocytes with synapses and 
their role in affecting the synaptic transmission in health and disease. 
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2   LITERATURE  REVIEW  

2.1   DYNAMIC  AND  DIVERSE    

Most of the initial attempts on astrocyte classification were based on morphological studies. 
Astrocytes express glial fibrillary acidic protein (GFAP) and immunohistochemical staining of 
this protein has been the main method to visualize astrocytes in different anatomical regions of 
the human brain. Astrocytes have been characterized depending on their location in the grey 
matter as protoplasmic astrocytes and in the white mater as fibrous astrocytes6. Astrocytes tile 
the entire nervous system and in mature astrocytes this tiling follows a non-overlapping pattern 
giving astrocyte its domain specific arrangement which defines the territory of a particular 
astrocyte7. 

 

Physiological studies have revealed that astrocytes show a high expression of potassium 
channels along with the calcium activated BEST-1 ion channels and hemichannels8, 9. The high 
expression of potassium channels set up the hyperpolarized resting membrane potential of 
astrocytes10 and contributes to the low input resistance11, 12. Astrocytes are generally considered 
electrically passive due to the absence of action potential firing however they do depolarize in 
response to glutamate application13, 14. Though morphology and physiology gives us an idea 
about the basic characteristics of astrocytes, the multiple functions performed by them in the 
brain makes the astrocyte population functionally heterogeneous15. Astrocytes are dynamic and 
adapt constantly to the changing synaptic microenvironment around them. As the astrocytes 
play many roles to ensure proper functioning of synaptic activity, they show differences in 
aspects ranging from circuit specificity4, gene expression profiles16, ion channel and transporter 
expression, gap junction connectivity17 as well as in their calcium activity18 making functional 
classification  complex.  

2.2   THE  POTASSIUM  HOMEOSTASIS  MANAGER    

Potassium released as a result of neuronal activity needs to be taken up in order to maintain the 
ionic homeostasis. Astrocytes with their high potassium permeability and gap junction 
connectivity are ideally suited for this job. Studies in the amphibian astrocytes first showed 
slow depolarization following nerve stimulation. The explanation for this depolarization was 
that the K+ ions accumulate in the extracellular space as a result of neuronal activity and are 

Figure 1: (a)Astrocyte seen by 
GFAP immunostaining (red) in 
the stratum radiatum of the 
mouse hippocampus (scale 
bar: 20µM) (b) enlarged view 
(scale bar: 10µM) (paper III) 
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taken up through the astrocytic potassium channels. The excess potassium is then redistributed 
through the glial syncytium restoring the ionic homeostasis and was proposed as the spatial 
potassium buffering hypothesis19-21. In the retinal Müller cells a specialized form of this 
potassium buffering has been suggested, called potassium siphoning, where K+ ions enter the 
astrocyte at the region of higher concentration of K+ and is expelled at another region in the 
same cell22. One of the major contributors in maintaining this potassium homeostasis have been 
the glial inward rectifier potassium channels (Kir). Among different glial inward rectifiers, 
Kir4.1 has been shown to be abundantly expressed in astrocytes and has been found to be 
located in the astrocytic processes surrounding the synapses and blood vessels, highlighting its 
importance in maintaining the synaptic micro environment23, 24. Several studies using knock 
out models or downregulating Kir4.1 channels have shown to affect the glia mediated 
potassium uptake and hence affect overall neuronal activity25-27. Apart from the inward rectifier 
potassium channels astrocytes also have two pore K+ channels and voltage dependent 
potassium channels28, 29. 

 

2.3   THE  THIRD  PARTNER    

Classically astrocytes were not considered to be involved in synaptic transmission and 
supposed to play supportive role for neurons. However, studies in the early 90s aimed to 
understand the role of astrocytes in synaptic transmission showed that astrocyte cultures had 
calcium activity in response to glutamate30. Studies using electron microscopy revealed that 
astrocytic processes ensheath the synapses31. This morphological proximity of the astrocytic 
process to the synapse gives the astrocyte access to closely monitor the synaptic activity. These 
studies suggested that there may be a bidirectional communication between the astrocytes and 
neurons which gave birth to the concept of the tripartite synapse in which astrocytes are active 
partners in synaptic activity32, 33. Recent studies have shed more light on the tripartite synapse 
as a morphological and functional unit. STED microscopy revealed the proposed morphology 
of the tripartite synapse comprising of a presynaptic axonal bouton, a post synaptic dendritic 
spine and an astrocyte process where astrocyte processes show close contacts with dendritic 
spines sometimes forming an `O´ ring structure34. Astrocytes as a part of the tripartite system 
have been shown to modulate basal synaptic transmission35 and in basal ganglia have even 
been shown to participate in signaling specific to distinct neural circuits4 establishing the idea 
of astrocyte-neuronal crosstalk proposed in the tripartite synapse model. 

 

2.4   GLIOTRANSMISSION,  LANGUAGE  OF  THE  ASTROCYTES  

Extensive research in the last decade has focused on understanding if there is an active 
bidirectional signaling between the astrocytes and the neurons. Astrocytes respond to neuronal 
activity through calcium activity and calcium waves were recorded in astrocytes in response to 
neuronal glutamate release30. In vivo calcium imaging of astrocytes has revealed the 
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complexity of astrocytic calcium activity as it shows a difference in specific microdomains in 
the astrocytic processes as well as in the soma36.  Astrocytic calcium activity has also been 
shown to be involved in basal synaptic transmission35.  

To have an active signaling from the astrocytes to the neurons there should be an active 
machinery involved. Astrocytic calcium activity has been suggested to trigger an active release 
of signaling molecules from the astrocytes, called gliotransmission37. Calcium activity in 
astrocytes have been shown to release these active compounds called gliotransmitter through 
exocytosis38. Immunogold labelling had shown presence of vesicular glutamate transporters in 
astrocytes39 however vesicular release is still debatable. Activation of endocannabinoid 
receptors on astrocytes lead to release of glutamate from the astrocytes which in turn affect the 
NMDA receptors on neurons40 and have been shown to control synaptic strength41. Astrocytes 
have been shown to release D-Serine which has been shown to control NMDA receptor 
dependent long term plasticity42. Astrocytes have also been shown to express proBDNF43 and 
release ATP35. Astrocytes have also been shown to synthesize as well as release GABA and 
affect LTP44. 

Another important challenge is to investigate if there is an astrocytic specificity for release of 
a particular gliotransmitter45. One study has shown that a single astrocyte can release glutamate 
and ATP in different temporal pattern which cause an initial glutamate mediated potentiation 
followed by ATP mediated depression46. However, to understand this temporal difference in 
gliotransmitter release from a single astrocyte, we need to study and interpret the complexities 
and regional compartmentalization of the astrocytic calcium activity47, 48. 

2.5   THE  GLUTAMATE  CARETAKERS  

Glutamate is the main neurotransmitter in the CNS involved in excitatory neurotransmission 
and astrocytes play an important role to take up glutamate from the synaptic cleft to tune 
synaptic transmission and prevent excitotoxicity. Astrocytes take up glutamate through 
glutamate transporters called the excitatory amino acid transporters (EAATs). Among five 
different types of EAATs, EAAT-1 and EAAT-2 are expressed on astrocytes49-51. Glutamate 
uptake through the EAATs is electrogenic involving inward movement of one glutamate along 
with 3 Na+ ions and 1Cl- ion with 1K+ moving outside and this net ionic movement allows to 
record EAAT current from these transporters52. In adult animals, the majority of glutamate is 
taken up by EAAT-253, 54 that is expressed mainly in astrocytic processes. The localization of 
EAAT-2 on astrocytic processes has been shown to be dynamic and the transporters form stable 
clusters which disperse upon glutamate treatment55. This EAAT-2 surface mobility is 
pronounced in regions of increased synaptic activity thus allowing for activity dependent 
modulation. Impairing EAAT-2 surface mobility affects the kinetics of neuronal EPSC56. 
Reduction in glutamate uptake has been shown to affect synaptic transmission by enhanced 
activation of the extra synaptic NMDA receptors and presynaptic mGlu receptor activation57. 
Blockage of glutamate transporters have also been shown to potentiate postsynaptic 
excitation58  and prevent remodeling of dendritic spine head protrusions59.  
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2.6   THE  INHIBITORY  ASPECT  

Inhibition shapes neural circuit activity. Along with interneurons, astrocytes have also been 
shown to play an important role in inhibitory synaptic transmission. Astrocytes take up GABA 
through the astrocyte GABA transporter GAT-360. GAT-3 is expressed in the astrocytic process 
and have been shown to affect excitatory61 synaptic transmission. In addition, astrocytes have 
also been shown to synthesize GABA. In a mouse model of Alzheimer’s disease (AD), the 
mechanisms of astrocyte GABA synthesis involves the putrescine dependent pathway and the 
MAO-B enzyme44. This astrocytic GABA has been shown to be released by the specific anion 
channels called Best-1and contributes to tonic inhibition which is a form of persistent inhibition 
affecting the extra synaptic GABAA receptors and is distinct from the phasic inhibition62.  
GABA synthesis and its subsequent release have been shown to be feature of astrocytes in 
animal models of AD44, stab wound injury43 and depression63 and have been shown to affect 
long term potentiation (LTP)63. Astrocytes have also been shown to express ionotropic GABAA 

receptors and metabotropic GABAB receptors64. Recently it has been shown that astrocytes 
respond differentially to specific interneuron subtypes affecting synaptic activity65. These 
studies give us an idea about the extremely intricate machinery through which astrocytes can 
affect inhibition and hence synaptic transmission. 

 

2.7   FROM  SYNAPSE  TO  BEHAVIOR  

As astrocytes affect the synaptic activity, memory and are part of specific brain circuits it 
becomes extremely interesting to dissect the role of astrocytes in different behaviors. Recent 
application of optogentic tools to manipulate astrocytes have helped us in answering these 
questions. Optogentic manipulation of astrocytes in the hypothalamus and cortex have shown 
to affect feeding and sleep behavior respectively66, 67. Recent studies manipulating the G-
protein coupled receptors have revealed multiple pathway through which astrocytes affect 

Figure 2: A tripartite synapse model with 
a presynaptic and a post synaptic neuron 
and an astrocyte process. Glutamate 
released by the presynaptic neuron is 
uptaken by the post synaptic glutamate 
receptors and the remaining glutamate is 
uptaken by the astrocyte glutamate 
transporters (EAATs).  

 



 

 7 

different aspects of memory. Selective activation of astrocytic Gq proteins in mice have been 
shown to increase spontaneous synaptic activity and enhance learning and memory in fear 
conditioning68 whereas Gs protein activation coupled to astrocytic A2A receptors have shown 
to reduce long term memory69. Similarly, activation of Gi protein affected the remote memory 
with no effect on recent memory70. These studies point towards the extremely complex yet 
distinct mechanisms between astrocytes and neural circuits to regulate different aspects of the 
same behavior.  

 

2.8   THE  REACTIVE  ONES    

Astrocytes in many neurodegenerative diseases undergo changes in their morphology and 
domain specific arrangement, as well as in their protein expression profiles, including an 
increased GFAP expression71, 72. These astrocytes, termed reactive, show atrophy and changes 
in their volume and processes affecting the ensheathing of the synaptic terminals73. Apart from 
the morphological changes, recent experiments have highlighted the functional implications of 
these reactive astrocytes on the overall synaptic activity suggesting that astrocytes undergo a 
gain or loss of function under this condition71, 74.   

Glutamate uptake is one of the most important functions of astrocytes and functional changes 
have been shown in glial glutamate transporter, EAAT-2 in reactive astrocytes during 
ischemia75. This astrocyte mediated glutamate transport is also affected in cases of epilepsy76 
and amyotrophic lateral sclerosis77 Astrocyte glutamate transporter genes are dysregulated in 
MDD78 and glutamate transport have been shown to be impaired in mouse model of AD79 
These change in functions are not limited to affect synaptic transmission by glutamate uptake 
but also astrocyte mediated tonic inhibition. Reactive astrocytes show an increase in astrocyte 
specific tonic GABA current mediated hippocampal memory impairment in AD mouse 
model44 as well as in cases of animal model of depression, astrocyte mediated increase in 
GABA release has been found to affect the LTP in prefrontal cortex63. Increased GABA release 
through astrocytes have also been seen in stab wound injury model43. Thus, reactive astrocytes 
affect the excitatory as well as the inhibitory aspects of synaptic activity.  

Though the phenomena of reactive astrocytes have been popularly painted as being detrimental 
for the neurons, this does not represent a complete picture. Recent studies show that astrocyte 
react differently to different insults as LPS injection and ischemia in mice led to the appearance 
of two distinct populations of reactive astrocytes called A1 and A2 through the activation of 
different molecular pathways with the A1 reactive astrocytes being neurotoxic whereas the A2 
astrocytes showing neuroprotective properties80, 81. This underscores the fact that astrocyte 
reactivity is not a single phenomenon, in addition to reactivity induced by inflammatory signals 
or trauma, reactivity can also be a finely tuned process which is governed by specific changes 
in the synaptic microenvironment. Astrocytic reactivity can thus be assumed as a response of 
these cells sensing major deflections from control conditions, leading to changes in their 
functional properties through triggering of different molecular pathways which can be 
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beneficial or detrimental for the adjacent synapse. As astrocyte activation involves microglia80, 
studies aimed to understand reactive astrocytes in light of different types of microglial 
activation might make the picture clearer.  

 

2.9   THE  NOVEL  TARGETS  

Most of the treatments for neurological diseases have been designed to target neurons and have 
met with limited success. Recent studies emphasize the importance of astrocytic dysfunction 
in these diseases and suggest that attempts to restore them may help to improve disease 
conditions. In animal model of depression, astrocyte specific Kir4.1 channels responsible for 
maintaining potassium homeostasis has been shown to be upregulated and involved in neuronal 
bursting82. Inhibition of these Kir4.1 channels in astrocytic cultures have shown to increase 
BDNF expression which may be linked to the development of epilepsy83 and have been 
suggested as a therapeutic target84. In AD mice models, reactive astrocytes secrete GABA 
which impairs memory in hippocampus and inhibiting the astrocytic GABA synthesis using 
selegiline restores memory44. Similarly, in animal model of depression, inhibition of astrocytic 
GABA improves LTP in the prefrontal cortex63. Glutamate uptake through astrocytic glutamate 
transporters have been shown to be affected in animal models of depression85. In case of 
Alzheimer’s disease, glutamate uptake by astrocytes is impaired and upregulation of glial 
glutamate transporter EAAT-2 using ceftriaxone and other drugs improves cognition86-88. Thus, 
astrocytic channels and transporters involved in specific aspects of astrocytic function provide 
us with many novel pharmacological targets which can be useful while designing the treatment 
for these diseases89.  
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3   RESEARCH  AIMS  
 

Astrocytes undergo functional changes in diseases which affect the astrocyte synapse crosstalk. 
The overall theme of this thesis is to study the interaction of astrocytes and excitatory synapses 
under control conditions and how it is affected in diseases.  

 

The specific aims: 

 

•   To study the astrocyte-neuron interaction in conditions of reduced glutamate uptake as 
astrocyte mediated glutamate uptake is impaired in mental diseases  
(Paper I). 
 
 

•   To study the role of astrocytes in inhibition and how the inhibition by astrocytes affect 
synapse activity in an animal model of depression (Paper II). 
 

 
•   To study the astrocyte glutamate transporters in neurodegenerative disease using a 

knock in AD mouse model (Paper III). 
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4   MATERIALS  AND  METHODS  

This section includes brief explanations of the main techniques used in the thesis. Kindly refer 
to the respective papers for a more detailed specification of the methods.  

4.1   ANIMAL  MODELS  

In order to study the changes in astrocyte synapse interaction in case of depression and AD, we 
have used animal models of these diseases. Animal models though with their limitations and 
not being identical replicates of the human disease conditions, have been very helpful to 
understand specific aspects of different diseases. Here we have studied astrocyte neuronal 
interaction using two different animal models.  

4.1.1   Flinders  sensitive  line  (FSL)  

In the Paper II to understand how astrocyte synapse interaction is affected in depression, we 
used an animal model of depression called the Flinders sensitive line (FSL). FSL is a selectively 
bred rat model of depression and it mimics behavioral alterations seen in depressed humans 
such as changes in sleeping behavior, social behavior and psychomotor retardation. It is a well 
validated rat model of depression and has been used to understand the underlying mechanisms 
of depression90-92.   

4.1.2   AppNL-­G-­F    

In the Paper III we wanted to understand the role of astrocytes in Alzheimer’s disease (AD). 
Most of the animal models of AD show an overexpression of APP which may have 
overexpression artifacts. For this study, we used a knock in mice model called the AppNL-G-F 
where the Swedish, Beyreuther/Iberian and Arctic mutation has been introduced in the APP 
gene. The mice display robust Aβ pathology and behavioral deficits as seen in human AD 
patients93-95.  

4.2   SLICE  ELECTROPHYSIOLOGY  

Electrophysiological recordings is an important method used in this thesis in order to 
understand the functional interaction of synapses and astrocytes. It provides a valuable tool to 
record the electrical activities of the cells. As we were interested in studying the interaction 
between neurons and astrocytes we need to keep the neural circuitry intact. Hence, we 
performed slice electrophysiology in acute brain slices obtained from the region of interest in 
the brain. We performed field recordings and whole cell patch clamp electrophysiology 
depending on our questions.   
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4.2.1   Field  recordings  

Field excitatory post synaptic potentials (fEPSPs) give us an idea about the activity of the 
population of neurons. Using 400 µM brain slices field recordings were performed in the 
hippocampus (Paper I) by stimulating the Schaffer collateral using a bipolar electrode and 
response was recorded using an Ag/AgCl electrode. Similarly, fEPSPs were recorded in the 
PFC by stimulating the layer two/three of the prelimbic cortex and recording from layer five 
(Paper II).  

4.2.2   Whole  cell  path  clamp  electrophysiology    

Whole cell patch clamp is one of the main methods which has been used to understand the 
astrocytic as well as neuronal responses in this thesis. Ervin Neher and Bert Sakmann96, 97 
developed this technique which allows us to record electrical activity of a single cell with an 
Ag/AgCl electrode and control and manipulate its electrical activity. It has helped 
neuroscientists enormously in understanding the synaptic and neuronal physiology, the 
function of ion channels, and the regulation of neural circuit activity98.  This technique has also 
been extended to understand the physiology of the astrocytes. The fact that astrocytes can be 
patched allows for manipulation of astrocytic activity through clamping the astrocyte at specific 
potentials as well as by introducing specific drugs through the patch-pipette. This has helped 
us to understand more about the astrocytic contribution to different aspects of synaptic activity 
such as Ca2+ dependent D-serine release from astrocyte affecting LTP42. Due to the low 
membrane resistance of the astrocytes patch-clamp recordings of astrocytes can be used to 
record the field excitatory potential (a-fEPSP)99. Hence extending the patch clamp 
electrophysiology technique to dissect out the role of astrocytes in modulation of synaptic 
activity has enhanced our knowledge about astrocyte-synapse interaction. One of the main part 
of the thesis focuses on understanding the functional changes in astrocyte mediate glutamate 
uptake. As the glutamate transport is electrogenic it can be recorded through a patched 
astrocyte100 and this method has been used in the Paper I and Paper III of the thesis. Similarly, 
we patched astrocytes to understand their membrane response in conditions of reduced 
glutamate uptake by blocking glutamate transporters (Paper I). In neurons, whole cell patch 
clamp has been used to record both the excitatory and inhibitory post synaptic currents.  

4.3   IMMUNOHISTOCHEMISTRY  

Morphological studies of astrocytes have played a major role in shaping our understanding of 
astrocytes as it revealed that astrocytes show morphological changes in disease conditions. The 
astrocyte proximity to neurons seen by Cajal with his own specific staining technique made 
him speculate about astrocyte synapse interaction2 and hence morphological analysis gives us 
the first indications about the state of astrocytes in control and disease conditions. We 
performed morphological analysis as a part of the studies in Paper II and III. Using antibodies 
to stain astrocyte intermediate filaments called Glial fibrillary acidic protein (GFAP) and 
astrocyte cell body using s100ß, morphological differences were found between wild type 
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controls and the diseases models. Analysis of the stained astrocytes gave us an idea about 
morphological characteristics such as the soma size and process thickness. 
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5   RESULTS  

5.1   PAPER  I:  REDUCING  GLUTAMATE  UPTAKE  IN  RAT  HIPPOCAMPAL  
SLICES  ENHANCES  ASTROCYTIC  MEMBRANE  DEPOLARIZATION  
WHILE  DOWN-­REGULATING  CA3-­CA1  SYNAPTIC  RESPONSE  

A functional synaptic-astrocytic interaction would involve bidirectional communication 
between astrocytes and neurons. One of the ways to understand this astrocyte-synapse 
interaction is to study these responses during synaptic activity and how they are affected when 
an astrocytic function is impaired. Astrocytes have been shown to depolarize during synaptic 
stimulation. In this study, we aim to understand the underlying mechanisms involved in the 
astrocytic membrane response during excitatory synaptic transmission in control and under 
conditions of reduced glutamate uptake. 

We performed whole cell patch clamp recordings on astrocytes in the stratum radiatum of the 
rat hippocampus while stimulating the Schaffer collaterals (SC) to mimic synaptic activity. 
Astrocyte responded to SC stimulation by a long-lasting depolarization. This astrocytic long-
lasting depolarization was mediated by an increase in extracellular levels of potassium as it was 
reduced when astrocytic inward rectifier potassium channels were blocked. 

  

To study the response of astrocytes and neurons in conditions of reduced glutamate uptake, the 
glutamate uptake was reduced using a pharmacological glutamate transporter blocker DL-
TBOA. DL-TBOA application reduced evoked neuronal EPSCs on SC stimulation, however 
we found an increase in the astrocytic long lasting depolarization.  Since astrocytic long lasting 
depolarization is dependent on the increase in potassium levels, the overall reduction in 
neuronal activity could not explain this response. To understand this response, we further 
dissected the AMPA vs NMDA receptor mediated neuronal response and found out that under 
control conditions the long -lasting astrocytic depolarization is governed mostly by AMPA 
receptors.  However, in conditions of reduced glutamate uptake the activity of NMDA receptors 
is enhanced, generating an increase in extracellular potassium levels resulting in the 
enhancement of the astrocytic long-lasting membrane depolarization.  

Figure 3 (a, b) Astrocyte response to SC 
stimulation. Astrocytes respond by a long-
lasting depolarization on SC stimulation. This 
astrocytic depolarization is enhanced upon DL-
TBOA application. (c, d) In the neurons, DL-
TBOA application decreases the peak 
amplitude of the evoked neuronal EPSC. 
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In summary, our findings show that astrocytes respond to synaptic stimulation with a long-
lasting depolarization, which is enhanced in case of reduced glutamate uptake, and this 
enhanced astrocytic depolarization is mediated by the NMDA receptor activation. 

 

 

 

5.2   PAPER  II:  BLOCKING  ASTROCYTIC  GABA  RESTORES  SYNAPTIC  
PLASTICITY  IN  PREFRONTAL  CORTEX  OF  RAT  MODEL  OF  
DEPRESSION  

Recent studies have shown that astrocytes in an animal model of Alzheimer’s disease actively 
release GABA and hence assert a tonic inhibition on neurons44. We started this study by asking 
the question if this aspect of astrocyte function is affected in other diseases, such as depression, 
since astrocytes have been shown to be affected in depression. Thus, we investigated the role 
of astrocytes in tonic inhibition and its effect on the overall synaptic activity in the medial 

Figure 4: (a,b) Astrocyte show a long-lasting 
depolarization upon DL-TBOA application. This 
enhancement in astrocytic depolarization is 
restored by blocking NMDAR with AP5. (c,d) 
AP5 alone do not change the long lasting 
depolarization compared to control. (e,f) Evoked 
EPSC recorded in neurons in the AMPR blocker 
NBQX. This evoked EPSC is increased in 
presence of DL-TBOA.  

 

Figure 5: Tripartite synapse function under control and 
DL-TBOA application. Under control conditions the 
extra glutamate as well as the potassium released due 
to neuronal activity is taken up by the astrocyte 
glutamate transporters (EAATs) and potassium 
channels respectively. This potassium uptake by 
astrocytes leads to a long-lasting depolarization in the 
astrocyte (b) Upon DL-TBOA application, glutamate 
cannot be removed by the EAATs causing an over 
activation of NMDA receptors releasing more 
potassium and hence an enhancement of astrocyte 
long –lasting depolarization.  
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prefrontal cortex (mPFC) of a well validated rat model of depression the Flinders sensitive line 
(FSL). Firstly, using whole cell patch clamp recordings of neurons from the prelimbic area of 
mPFC in the FSL rats, we found an increase in the tonic current compared to control Sprague 
Dawley (SD) rats. Astrocytes have previously been reported to synthesize GABA through the 
MAO-B enzyme44, and GABA is subsequently released through the Ca2+ activated Best-1 
channels62. Using the MAO-B inhibitor Selegiline, we compared the tonic current between FSL 
and FSL brain slices incubated with Selegiline. The tonic current was found to be reduced in 
Selegiline treated slices from FSL rats. Similarly, calcium clamping the astrocytes in the FSL 
rat also reduced the tonic current. These finding showed that astrocytes in the PFC in FSL rat 
produce and release GABA contributing to the tonic inhibition.  

 

 

Our next approach was to see if this increased tonic inhibition affects synaptic plasticity. FSL 
animals showed impaired synaptic plasticity in the PFC compared to SD as seen in LTP 
recordings. In order to understand if the increased astrocyte mediated tonic inhibition 
contributed to this LTP impairment seen in FSL, we pretreated slices from the FSL rat with 
Selegiline and found that it restored the impaired LTP. 

 

 

In summary, these findings show that astrocytes in rat model of depression have an increased 
level of GABA compared to healthy SD rats, which contributes to the increased tonic current 
and can impair synaptic plasticity. Moreover, blocking GABA synthesis in astrocytes restores 
the impaired synaptic plasticity. 

Figure 6: Tonic GABA current 
recordings in the presence of picrotoxin 
from pyramidal neurons in the layer V 
of the prelimbic cortex. Tonic current is 
significantly increased in FSL compared 
to SD controls. FSL show reduction in 
tonic current when FSL astrocytes are 
Ca2+ clamping using BAPTA. MAO-B 
inhibitor Selegiline also reduced the 
tonic current in FSL.  

 

Figure 7: LTP recording from PFC. 
FSL show impaired LTP compared to 
SD. This impaired LTP in FSL is 
restored when astrocyte GABA 
producing enzyme MAO-B is blocked 
using selegiline 
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5.3   PAPER  III:  INCREASED  LEVELS  BUT  REDUCED  FUNCTION  OF  
ASTROCYTIC  GLUTAMATE  TRANSPORTERS  IN  THE  HIPPOCAMPUS  OF  
THE  APPNL-­G-­F  MICE.  

One of the most important aspects involved in maintaining excitatory neurotransmission is the 
proper uptake of glutamate by astrocytes and this glutamate uptake has been shown to be 
impaired in case of neurodegenerative diseases101, 102. Thus, we studied this aspect of astrocyte 
function using a knock-in AD mice model App NL-G-F.93 

To characterize the astrocyte morphologically in the hippocampus of the App NL-G-F mice, 
immunostaining was performed for GFAP and s100β which stained the astrocytic intermediate 
filaments and the cell body respectively. Astrocytes in the App NL-G-F mice showed 
morphological changes with increased number of processes and increased soma size, 
characterizing them as reactive astrocytes.  

 

 

Figure 8: Role of astrocytic GABA in LTP 
in the FSL rat model of depression (a) The 
astrocyte release GABA which causes a 
tonic inhibition preventing the synapses to 
undergo LTP. (b) when the astrocytic 
GABA synthesis is blocked using 
selegiline, this leads to decrease in the 
tonic inhibition allowing LTP. 

 

Figure 9: Immunostaing of astrocyte 
process and cell body with antibodies 
against GFAP(red) and s100β (green) 
respectively. Scholl analysis of GFAP 
positive processes at different distances 
from the astrocyte soma show AppNL-G-F 
mice have significantly increased number 
of GFAP processes.  Also astrocytes in 
AppNL-G-F mice have bigger soma size 
compared to WT calculated as s100β 
positive area.  
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Glutamate is taken up by the astrocytic glutamate transporters EAATs103. Western blot analysis 
to estimate the expression levels of the astrocyte glutamate transporters showed an increase in 
the expression levels of astrocyte specific glutamate transporter EAAT-2 also referred as GLT-
1 in the hippocampus of App NL-G-F mice. Considering that the astrocytes are reactive, an 
increase in EAAT-2 levels can be interpreted as an adaptive response in these animals. We 
wanted to understand if this increase in EAAT-2 protein levels is also accompanied by an 
increase in EAAT-2 function. The analysis of the synaptically activated transporter mediated 
current (STC) from astrocytic patch-clamp recordings will provide direct information on 
transporter function and glutamate clearance 53, 104. We found that the glutamate transporter 
function is severely impaired in the AppNL-G-F mice as reflected by the decreased amplitude and 
increase in decay time constant of STC in the AppNL-G-F mice. Hence, though there is an increase 
in EAAT-2 protein levels, they are functionally impaired in the App NL-G-F mice.  

   

 

In summary, this study explores astrocytes in an animal model of AD, and shows that glutamate 

uptake is reduced in this model, which may contribute to the pathology of the disease. It also 

highlights the importance to consider astrocyte glutamate transporters as potential drug targets 

for AD treatment88, 101. 

Figure 10 : Increased EAAT-2 protien levels in AppNL-G-F mice. Astrocyte current response to SC stimulation 

(red) is reduced in the presence of glutamate receptor blocker TFB-TBOA (blue). Synaptically activated 

glutamate transporter current (STC) is obtained by subtracting the TFB-TBOA insensitive current (blue) from 

total astrocytic current (red). STC decay time constant obtained after best fitting to a single exponential 

function (black line) is increased in AppNL-G-F mice compared to WT mice indicating impaired glutamate 

uptake. Bars show mean and SEM. 
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Figure11: The tripartite synapse in wild type and 

AppNL-G-F mice. (a) Under normal conditions glutamate 

released by the presynaptic terminals binds to the 

postsynaptic receptors and the remaining glutamate is 

taken up by the astrocyte glutamate transporters 

(EAATs). (b) In case of the AD mice, though we see 

that glutamate transporter protein expression is 

increased they are functionally impaired as the EAAT 

current recordings show that glutamate transport by 

astrocytes in AppNL-G-F mice is impaired compared to 

WT mice.  
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6   DISCUSSION  
Astrocytes as a part of tripartite synapse perform numerous functions contributing to the 
physiology of the synapse12, 32. One of the important challenges is to understand how the 
specific astrocytic functions can affect synaptic transmission12. Another challenge is to 
understand how this astrocyte synapse interaction is affected in disease conditions. Recent 
studies have shown astrocytes contributing to both the excitatory and inhibitory aspects of 
synaptic transmission. In this thesis, we investigated the role of astrocytes in the excitatory 
aspects of synapse activity in health and disease.  

In the Paper I, we show that astrocytes upon synaptic stimulation, respond by a long- lasting 
depolarization and this response is enhanced when the glutamate uptake by astrocytes is 
pharmacologically impaired. We also observed changes in neuronal glutamate receptor 
responses under these conditions, thus giving us an idea about how impairment in a specific 
astrocyte function is capable of modulating the astrocyte-synapse crosstalk. One of the 
questions raised by the results in Paper I is to understand the functional significance of this 
astrocytic depolarization and the mechanisms through which astrocytic depolarization can 
affect synaptic activity. Extending the application of optogentic tools to manipulate astrocyte 
membrane responses while simultaneously monitoring synapse activity may be helpful in 
answering such questions.  

Astrocytic loss of function has been suggested to be involved in the underlying mechanism of 
depression and AD85, 105, 106 and hence in Paper II and III, we studied aspects of astrocytic 
function in animal models of these disorders. In Paper II, we studied the astrocytic contribution 
to tonic inhibition in the FSL animal model of depression. FSL astrocytes in the prefrontal 
cortex were shown to impair synaptic plasticity by releasing GABA and hence contributing to 
the tonic inhibition. Pharmacological blocking of the astrocytic GABA release restored LTP in 
the FSL rat. In Paper III, we studied how astrocytes are affected in an AD mouse model AppNL-

G-F. Astrocytes in the AppNL-G-F were found to display a reactive morphology and astrocyte 
mediated glutamate uptake was found to be impaired. Taken together the results from Paper 
II and III highlight the functional impairment of astrocytes in disease conditions and their 
effect on the synaptic activity. Studying astrocyte morphology gives an idea about their 
condition in disease state. In the FSL animals we found the astrocytes in the PFC to be atrophic 
whereas in the AD model we found them to be hypertrophic. It will be interesting to understand 
how the morphological changes translates to functional changes, and if the different 
morphology of astrocytes in different brain regions18 leads to difference in their reaction to 
insult or injury. Also as astrocyte ensheathing influences the synapse physiology3, 107, it will be 
interesting to understand if the different reactive profiles affect synapse activity differently. 
Overall these data suggest that restoring astrocyte functions can be helpful in improving the 
impaired synaptic activity and in turn disease conditions however in order to be able to target 
astrocytes we first need to understand different aspects of a dysfunctional astrocyte.  
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7   CONCLUSIONS  
The field of astrocyte research has come a long way from considering astrocytes as supporting 
cells to understanding their role in modulating synaptic activity4, 32, 35. However, it is still not 
completely understood how the astrocyte synapse interaction is affected in cases of diseases 
that affects the brain108, 109. This thesis is an attempt to understand the mechanisms through 
which astrocytes can affect synaptic transmission and indicates that pharmacological 
manipulation of the astrocytes can help in recovery from disease conditions, presenting 
astrocytes as potential drug targets. It has been shown that astrocytes exhibit different reaction 
profiles81 and understanding their functional impact on synapse activity will give us a better 
idea of the disease state. Recent studies have explored the role of astrocytes in behavior68. 
Extending these findings to study the behavioral changes observed in disease models110 will 
help us to connect the dots starting from the impairment seen in astrocyte at the synapse level 
and its impact on the behavioral changes in these disease. Future work related to the 
identification of specific astrocytic targets causing the changes from synapse to behavior and 
an attempt to restore their function may be a step in developing the treatment.  
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