Southern Illinois University Carbondale
OpenSIUC

Theses

Theses and Dissertations

5-1-2020

ON SCALING OF BRAKE TEST SAE J2522

David Sean McKavanagh Southern Illinois University Carbondale, david.s.mckavanagh@siu.edu

Follow this and additional works at: https://opensiuc.lib.siu.edu/theses

Recommended Citation

McKavanagh, David Sean, "ON SCALING OF BRAKE TEST SAE J2522" (2020). *Theses*. 2710. https://opensiuc.lib.siu.edu/theses/2710

This Open Access Thesis is brought to you for free and open access by the Theses and Dissertations at OpenSIUC. It has been accepted for inclusion in Theses by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

ON SCALING OF BRAKE TEST SAE J2522

By

David S. McKavanagh

B.S., Southern Illinois University, 2017

A Thesis

Submitted in Partial Fulfillment of the Requirements for the

Master of Science Degree

Department of Mechanical Engineering and Energy Processes

in the Graduate School

Southern Illinois University Carbondale

May 2020

THESIS APPROVAL

ON SCALING OF BRAKE TEST SAE J2522

By

David S. McKavanagh

A Thesis Submitted in Partial

Fulfillment of the Requirements

for the Degree of

Master of Science

in the field of Mechanical Engineering

Approved by:

Dr. Peter Filip, Chair

Dr. Rasit Koc

Dr. Farhan Chowdhury

Graduate School

Southern Illinois University Carbondale

December 13, 2019

AN ABSTRACT OF THE THESIS OF

David S. McKavanagh, for the Master of Science degree in Mechanical Engineering and Energy Processes, presented on December 13, 2019, at Southern Illinois University Carbondale.

TITLE: On Scaling of Brake Test SAE J 2522

MAJOR PROFESSOR: Dr. Peter Filip

Friction brakes represent the most important safety feature literally in all vehicles and their rigorous "friction testing" is usually performed on several platforms/scales and completed with field tests. Since friction and wear are system properties, it is not trivial to design "small scale" tests and to correlate data generated at different levels of testing complexity. Nevertheless, the economy of the brake materials development process could be improved, when interpretation of friction and wear test data is based on a deeper/proper understanding of physics and chemistry of ongoing friction phenomena. This contribution follows the two series previously presented at SAE Brake Colloquia and compares the data generated in the full-scale brake dynamometer SAE J 2522 performance test (Link Engineering 2800M dynamometer) with data generated in bench-top (small scale) friction tester (Bruker UMT) equipped with environmental chamber controlling temperature. Scaling laws of physics were adopted for design of the small-scale testing procedure, however, a different scaling philosophy as well as different friction materials were used when compared to the previously reported findings. Identical commercial OEM brake pad samples containing biodegradable environmentally friendly fibers and commercial OEM cast iron rotors were used in both dynamometer and scaled-down bench-top friction tests. Friction and wear surfaces/mechanisms were studied by using scanning electron microscopy (Quanta

FEG 450 by FEI) equipped with the energy dispersive X-ray microanalysis (Inca System), and 3D optical microscope (NPFLEX by Bruker). Major conclusions proposed for this study can be summarized as follows: 1) Proper scaling by using physics principles allows for reasonable correlation of dynamometer and bench-top test data, although the results differentiate, particularly during fade and high temperature tests. These findings further support the previously published data and indicate that differences in scaling philosophy neither the types of tested materials have considerable impact on the generated data. 2) It is very important to properly select representative pad samples, as their size is considerably smaller compared to full pads. When the identical rotor materials are used, the repeatability of data is excellent and the sensitivity to typical differences of the bulk microstructure of cast iron is minimal. 3) When the testing results generated on dynamometer and bench tester matched well. the friction surfaces of full pads tested in dynamometer and the friction surfaces of small pad samples exhibited identical topography and chemistry.

AKNOWLEDGEMENTS

I would like to express my most sincere gratitude to my wife for supporting me through the process of researching, writing, editing and presenting my thesis. I would also like to thank Dr. Peter Filip for suggesting this topic for my thesis as it has been an amazing learning experience learning from one of the leading researchers in the field of friction science. I would like to thank him for his guidance, mentoring, patience and support during this research. I would like to thank Dr. Rasit Koc and Dr. Farhan Chowdhury for their time serving on my thesis committee, and for their advice and comments on my research. Tim Attig also deserves a monumental amount of thanks for all the time that he put in helping me when something went wrong, mostly because of user error. I would also like to thank Dr. Steven Shaffer and Dr. Khorameh Farokhadeh for their help trouble shooting any of the problems that I encountered during this research and also with helping me understand how the machine works and what was needed to be done to work with brake materials. I would also like to thank Rohit Jogineedi and Sai Kancharla for their help throughout the process of testing and writing and for helping me understand what was going on with the experimentation. Lastly, I would like to thank my sons Jayden and Nicholas, for their patience with their father throughout the process of my research.

iii

<u>CHAPTER</u> <u>PAGE</u>
ABSTRACTi
ACKNOWLEDGMENTSiii
LIST OF TABLESvi
LIST OF FIGURESvii
CHAPTERS
CHAPTER 1 – INTRODUCTION 1
CHAPTER 2 – METHODS AND MATERIALS 4
2.1 OVERVIEW
2.2 SCALING STANDARD
CHAPTER 3 – PROCESSES 10
3.1 SCALING 10
3.2 UMT SCRIPT 13
CHAPTER 4 – RESULTS
4.1 COEFFICIENT OF FRICTION
4.2 SCANNING ELECTRON MICROSCOPY
4.3 FUTURE WORK 32
CHAPTER 5 – CONCLUSION
REFERENCES
APPENDICES
APPENDIX A – SCALING CALCULATIONS
APPENDIX B – SECOND SCALING 55

TABLE OF CONTENTS

	APPENDIX C – TORQUE CALCULATIONS	73
	APPENDIX D – LINEAR VELOCITY VS. ANGULAR VELOCITY	75
VITA		76

LIST OF TABLES

TABLE	<u>PAGE</u>
Table 1: Scaling Factors of Selected Forces	5
Table 2: Scaling Exponents	7
Table 3: Scaling Exponents for Parameters Used Within SAE J2522 Test	8
Table 4: SAE J2522 Velocity and Pressure Requirements	10
Table 5: Important Parameters and Accompanying Scaling Factors from Mu Gree	n
Section	12
Table 6: Results From Preliminary Test Runs	23

LIST OF FIGURES

FIGURE	<u>PAGE</u>
Figure 1: Akebono ACT-1222 ProACT Ultra-Premium Ceramic Brake Pads	4
Figure 2: depiction of rolling radius vs effective radius	8
Figure 3: Apparent contact area of one Akebono brake pad (there are 2 used in the	ıe
full scale dynamometer)	11
Figure 4: Contact area for the samples	12
Figure 5: Script interface after creating all of the sections of the SAE J2522	13
Figure 6: The First step is to ensure that the data is being saved	14
Figure 7: Setting the Engagement parameters	15
Figure 8: Fixing the Test Parameters	16
Figure 9: Setting the time for individual steps	17
Figure 10: Normal Force acting on the rotating caliper	18
Figure 11: Changing the Normal Force	19
Figure 12: The required Velocity of the rotor	20
Figure 13:Change in step and Velocity	21
Figure 14: Setting the Temperature	22
Figure 15: Comparison of the Average Coefficient of friction to the individual sam	ples.24
Figure 16: Sample from test done on full scale dynamometer	25
Figure 17: Backscattered SEM taken of the dynamometer sample	25
Figure 18: Backscattered SEM taken of a sample from the UMT	27
Figure 19: Backscattered SEM from a different sample	28
Figure 20: Same sample but at a different location	29

Figure 21: Backscattered SEM of the sample from Fig. 17	0
Figure 22: Backscattered SEM of the sample from the full-scale dynamometer	0
Figure 23: Topographical SEM of the samples from the dynamometer	1
Figure 24: Topographical SEM of the sample from the UMT	2
Figure 25: Given Data for use in the SAE J25224	1
Figure 26: Area calculations of samples4	1
Figure 27: Scaling Factors for a perfect sample42	2
Figure 28: Green Mu section of calculations between Dyno and UMT43	3
Figure 29: Burnish section of calculations between Dyno and UMT44	4
Figure 30: Characteristic Value section of calculations between Dyno and UMT4	5
Figure 31: Pressure Series 1 section of calculations between Dyno and UMT4	5
Figure 32: Pressure Series 2 section of calculations between Dyno and UMT40	6
Figure 33: Pressure Series 3 section of calculations between Dyno and UMT40	6
Figure 34: Pressure Series 4 section of calculations between Dyno and UMT4	7
Figure 35: Pressure Series 5 section of calculations between Dyno and UMT4	7
Figure 36: Characteristic Value 2 section of calculations between Dyno and UMT48	8
Figure 37: Cold Application section of calculations between Dyno and UMT48	8
Figure 38: Motorway Snub and Stop section of calculations between Dyno and UMT49	9
Figure 39: Characteristic Value 3 section of calculations between Dyno and UMT4	9
Figure 40: Fade 1 section of calculations between Dyno and UMT50	0
Figure 41: Recovery 1 section of calculations between Dyno and UMT50	0
Figure 42: Temperature/Pressure Sensitivity section of calculations between Dyno	
and UMT	1

Figure 43: Increasing Temperature 500°C section of calculations between Dyno
and UMT51
Figure 44: Pressure Line at 500° section of calculations between Dyno and UMT52
Figure 45: Recovery 2 section of calculations between Dyno and UMT52
Figure 46: Fade 2 section of calculations between Dyno and UMT53
Figure 47: Recovery 3 section of calculations between Dyno and UMT53
Figure 48: Time and Force Calculations for each section54
Figure 49: Pad area and Scaling exponents73
Figure 50: Forces being applied to the contact area73
Figure 51: Torque required for the different forces and μ 74
Figure 52: Graph of required torque74

ix

CHAPTER 1

INTRODUCTION

With those in the field of friction science understanding that friction is not a material property but rather it is the system reacting to the forces that are acting upon the system. The idea that friction is not a material property seems to be a little counterproductive when it comes to the idea of friction materials being a thing. That there is an entire category of materials that focuses on the field of friction and how it manifests would make it seem as though it should be a property of a material. In fact, according to Bharat Bhushan, in his book Introduction to Tribology, friction is the resistance of at least one body to motion as the body slides or rolls tangentially over a second body with which it is in contact [1]. Though most brake friction material is not composed of a single substance, it is usually a formulation of binders, reinforcements, fillers and possibly friction modifiers [2-4]. These formulations being what is used for modern day automotive braking, this was not always the case of brake materials and friction. The early forerunners of brakes were used by Phoenicians for slowing their war chariots, later evolving to something that was slipped under the wheels of coaches to stop them, with the first automobiles having a manual brake consisting of cranks, levers, rods or cables, though these were ideas just carried over from horse-drawn carriages [5]. These first brakes were blocks covered with leather, and would usually have to be replaced often; one such example is of Bertha Benz's 100-kilometer first ever longdistance drive in August 1888, where the saddlers of the towns and villages where need to replace the leather coverings of the brake blocks several times during her journey [5]. Today's automobiles have brakes systems that can last nearly 500 times that distance

1

before needing to replace the brake pads of the vehicle.

The study of brakes and friction science has come a long way from a block covered in leather, today there are so many differing formulations and compositions for brake pads that they have been broken down into certain groups, such as, Non-Asbestos Organic (NAO), Low-Metallic, Non-Metallic, Ceramic, and Semi-Metallic pads, these 5 different types of pads make up the type of pads that are on most passenger vehicles, they might also be on larger vehicles such as semi-trucks as well, but those are classified as being heavy-duty brakes and have a higher metal content [6]. With all these different types of brake pads there have been many different attempts to test all of them on different types of machines to determine the brake material's properties. The chosen brakes being those of a Toyota Camry as it could be considered a typical vehicle that could be owned by an average family in the United States, with the specific type of brake being tested as a high-end performance brake. Using a full-scale inertia dynamometer seems to have been the long-standing practice of testing for the materials coefficient of friction [7-17]. As time has passed researchers have been using either a scaled dynamometer or creating smaller rigs with which to test brake materials on [18-26]. These two areas seem to be where most researchers focus their test on, as these appear to be what most researchers have access to, or they feel like their created testers will provide the best results for their materials. More recently with the ability to create smaller testing machines and even smaller sensors, research has progressed into the use of bench-top tribology testers, such as the Bruker Universal Mechanical Tester (UMT), to test the properties of their friction materials [27-33]. Each of these groups are different as they are informative, they each research different aspects of

2

friction materials or formulations but with those that actually used standards there seemed to be two that stood out, one was a Chinese standard and the other was one from the Society of Automotive Engineers (SAE)[9, 13-16, 33-36]. This standard was used because of its almost seeming universal acceptance and the amount of data points that it tries to achieve throughout the testing procedure. This standard is the SAE J 2522 test procedure, with many of the researchers calling it the A.K. Master test procedure, but as it is this is a mistake on their parts as these are two different but very similar tests, the A.K. Master is widely accepted within the European Union (E.U.) while the SAE J 2522 is seemingly accepted in more places than that [37]. The researchers using sub-scale and bench top testers seem to be using certain data points to test their materials, points such as: Temperature, Applied Pressure, Velocity, acceleration, and similar points that are contained within many standards. Using those points without using a standard to test the properties of the friction material. Would it be possible to scale down the J2522 for use in a bench top tester? Finding material on scaling led to many differing takes on scaling laws. Finding a scaling procedure that would fit was rather difficult but through the use of previous work a few laws of scaling were found and then applied for use [38, 39]. Since the completion of testing there has been a change in how and why the lab is conduction scaling of velocity. As stated in Appendix D, the change is due to there being a problem with doing a straight scaling of the RPM of the velocity, due to the velocity being that of linear velocity of the vehicle and not the velocity of sliding that is being done on the brake materials. This new scaling type is that of scaling the linear velocity as it effects the brake and scaling that speed then taking the radius of the UMT's rotor into account.

3

CHAPTER 2

METHODS AND MATERIALS

2.1 OVERVIEW

In this study, we are planning to develop a scaling routine that will allow for a fullsize dynamometer standard to be used on a bench-top tribometer. The first step in this process was to determine the type of vehicle we wanted to use as a model for the testing process, ultimately settling upon a Toyota Camry as the model vehicle that would be the basis for our testing. The reason for this choice is that it is a common family car that is reasonably priced. After choosing a vehicle to be the base for our testing, we had to then decide upon a brake to be used as the basis for our samples, with there being a plethora of pads to choose from, we decided to look at brakes that were environmentally friendly and of a higher quality than the standard brake pad, thus we decided to go with Akebono ACT-1222 ProACT Ultra-Premium Ceramic brake pads, as shown in fig. 1.

Figure 1: Akebono ACT-1222 ProACT Ultra-Premium Ceramic Brake Pads

With the three major items being chosen for the test, the vehicle, the brake pads, and the industry standard, we could begin the process of scaling the inertia dynamometer's tests down for use on our bench-top tester.

2.2 SCALING STANDARD

When trying to develop a strategy for scaling of the full-scale test down to the bench-top, there were a few different theories that could be used to scale the test down, but the theory that had been used within other research done previously, within our lab, was that of scaling the apparent contact areas of the brake pads to down to our required sample sizes. The reason for scaling the apparent contact areas is that if the use of just contact area is used the sample size would become too small to still be considered a homogeneous compound. The general rule of this theory is called the "Square Law" which takes the lengths into account are as follows:

$$(ratio of areas) = (ratio of lengths)^2$$
 Equation 1

$$(ratio of volumes) = (ratio of lengths)^3$$
 Equation 2

It follows that these two equations can be expressed thusly:

 $(ratio \ of \ volumes)^{(1/3)} = (ratio \ of \ areas)^{(1/2)} = (ratio \ of \ lengths)^1$ Equation 3 With these three equations figured into the scaling, a scaling standard can then be developed for different forces, such as: Table 1: scaling factors of selected forces

Force	Scaling
Surface Tension	l ¹
Fluid Force/ Electrostatic Force	²
Weight/ Inertia Force/ Electromagnetic	l ³
Electromagnetic Force (Constant Current Density)	l ⁴

Now that the scaling factors have been shown and how they can be found there are certain physical qualities that need to have a scaling factor found for. Once these have been found the data can be scaled from the large-scale tester (Dynamometer) to the small-scale tester (Universal Mechanical Tester). The following table is are the physical qualities and their corresponding scaling factors:

Table 2: Scaling Exponents

Physical Quality	Scaling Exponent
Bending Stiffness	1
Shear Stiffness	1
Surface Tension	1
Strength to Weight Ratio	1
Van der Waals Force	1
Strength	2
Elastic Potential Energy	2
Mass	3
Inertia Force	3,4
Kinetic Energy	4
Potential Energy	4
Second Moment of Inertia	4
Mass Moment of Inertia	5

Some of these qualities are not going to be used within the testing, and others

will be used, so these other qualities will also need to have scaling exponents.

Specifically, the following are some of the needed Scaling Exponents:

Parameter	Scaling Exponents
Angular Velocity (RPM)	-0.5
Velocity (m/s)	0.5
Area (m ²)	2
Force (N)	3
Time (s)	0.5

Table 3: Scaling Exponents for parameters used within SAE J2522 test

With these five parameters the scaling from the large-scale test to the smallscale test and start to develop the scaling strategy with which to scale down and conduct the test on the small scale. Calculating the linear velocity of the brake is an important part of the testing process, this is because the velocity that is given in the standard is the velocity of the tire and not that of the brake. The calculation to find the linear velocity acting on the brakes is as follows:

r_R-rolling radius

r_E-effective radius

Figure 2: depiction of rolling radius vs effective radius

vV-Velocity of vehicle

 ω = angular velocity of wheel

	$v_V = r_R \omega$
	$\omega = \frac{v_V}{r_R}$
Friction or Sliding Velocity	$v_S = r_e \omega$
	$\omega = \frac{v_S}{r_e}$
Hence,	$\frac{v_S}{r_e} = \frac{v_V}{r_R}$
	$\frac{v_S}{v_v} = \frac{r_e}{r_R}$
	$v_S = v_V \frac{r_e}{r_R}$

Equation 4: equation set for figuring out the sliding velocity of the brake pad

 V_{SUMT} is the sliding speed of the UMT and it is to be the scaled down vs. This is how the scaling for the linear velocity is supposed to be performed, this was not how it was performed with in the testing done in this thesis but is how it will be done moving forward with this experiment in the future.

CHAPTER 3

PROCESSES

3.1 SCALING

As can be seen above, once a scaling procedure has been selected, we can then proceed to scale the SAE J 2522 from the full-scale dynamometer, down to the UMT benchtop tester.

Table 4: SAE J2522 Veloci	y and Pressure	Requirements
---------------------------	----------------	--------------

Step Number	Name	Engagements	Initial	Final Velocity	Pressure
			Velocity	(km/h)	(bar)
			(km/h)		
1	Mu Green	30	80	30	30
2	Burnish	64	80	30	Variable
3	Characteristic Value	6	80	30	30
4.1	Pressure Sensitivity	8	40	5	10-80
4.2	Pressure Sensitivity	8	80	40	10-80
4.3	Pressure Sensitivity	8	120	80	10-80
4.4	Pressure Sensitivity	8	160	130	10-80
4.5	Pressure Sensitivity	8	200	170	10-80
5	Characteristic Value	6	80	30	30
6	Cold	1	40	5	30
7.1	Motorway	1	100	5	
7.2	Motorway	1	90% Max	50% Max	
8	Characteristic Value	18	80	30	30
9	Fade	15	100	5	160
10	Recovery	18	80	30	30
11	Pressure Sensitivity	8	80	30	10-80

12.1	Temp./Pressure Sens.	9	80	30	30
12.2	Temp./Pressure Sens.	8	80	30	10-80
13	Recovery	18	80	30	30
14	Fade	15	100	5	160
15	Recovery	18	80	30	30

Measuring the apparent contact area of the Akebono ACT-1222 ProACT Ultra-Premium Ceramic brake pads to be our Area 1, and the three square sample pads as being our Area 2, we can then take the square root of A1 over A2 to get our lambda value so that we have our scaling value, λ .

$$\lambda = \sqrt{\frac{A_1}{A_2}}$$

Equation 5

Figure 3: Apparent contact area of one Akebono brake pad (there are 2 used in the full scale dynamometer)

Figure 4: Contact area for the samples

Using these two sets of contact areas of 4050 mm² and 300 mm², respectively, to find the λ value for our scaling, we get a λ value of 5.20. With this value figured out we can then start to populate our scaling exponents so that we can calculate the scaled values of our parameters from the SAE J 2522 standard.

Table 5: Important parameters and accompanying scaling factors from Mu Green Section

Parameters	Dynamometer	Scaling Factor	UMT
Force (N)	129600	λ ³ =140.3	923.76
Initial Velocity (m/s)	27.8	λ ^{0.5} =2.28	12.2
Final Velocity (m/s)	1.39	λ ^{0.5} =2.28	0.61
Initial Angular Velocity (RPM)	826.35	λ ^{-0.5} =0.44	1883.67
Final Angular Velocity (RPM)	41.32	λ ^{-0.5} =0.44	94.18
Time (sec)	6.73	λ ^{0.5} =2.28	2.95

The full calculations for a perfect world can be seen in the appendix following the proposal. Once all of the parameters and their corresponding values have been found the scripts for running the test can begin. The parameters for all sections of the have been shown within the appendix A.

3.2 UMT SCRIPT

With a stated goal of creating a script that would allow for the complete SAE J2522 and having scaled the parameters down so that the full scale values will now correspond to the size difference between the machines, a script needs to be written that would allow for each section of the test to begin when the initiation criteria are met.

Figure 5: Script interface after creating all of the sections of the SAE J2522.

Once the script has been created, a sequence will need to be created for each of the sections of the SAE J2522, as can be seen within Fig. 4, with the exception of the Heat Ramp section which is being used to heat the heating chamber to 99°C as the test on the UMT is to be done as close to the standard as possible. The next step is to input the parameters into the appropriate sections of the sequences.

Figure 6: The First step is to ensure that the data is being saved.

Within the data file tab of the sequence, the "create data file" button needs to be checked and the location of the file needs to be placed within the box, as well as under "Channels" ensuring that each of the data sources is checked so that the data will be saved within the file. In this case the data from Fz, Tx, Ts, Fx-T, Lower Drive Speed, and TR have all been checked so this that the data from those channels will be saved. Those channels being the normal force, torque, Sample Temperature, Force in the X-axis, RPM of the lower drive, and the Temperature of the heating chamber, respectively.

Figure 7: Setting the Engagement parameters.

Once the data file has been set up the next step is to set the engagement

parameters for the sequence, these being the touch force(N) and the Deceleration time,

which is different for each sequence of the script.

Figure 8: Fixing the Test Parameters.

The next tab, being the Test tab, is where the repeat current sequence and the break conditions need to be set, for the repeat current sequence this will come from the number of runs that need to be completed, be it once, six times, or eighteen times, depending upon which test section is being done. The break conditions are also different depending on the section, most of the conditions will be Ts<100, this being that the test will skip the current step once the sample is at less than 100°C, or other temperature as required by the SAE J2522.

Figure 9: Setting the time for individual steps

Now the problem with the setup of the individual steps is that the data that is needed is what is recorded from in between the actual steps. What this means is that between steps 2 and 3 is the data that is needed so the two steps do not have to be very long as the deceleration that is taking place once step 2 has finished is the point at which the calculated deceleration time kicks in and once it has decelerated to the second RPM of the 3rd step that steps time is then engaged. What this means is that the data needed is from between steps 2 and 3, 4 and 5, and so on until the sequence is complete.

Figure 10: Normal Force acting on the rotating caliper.

During the first step of the sequences there is no normal force being exerted on

the brake rotor as the first step is the heating phase of the sequence and thus no force

needs to be used.

Figure 11: Changing the Normal Force.

Once the heating chamber and the sample have reached the target temperature, the UMT will then proceed to apply a normal force upon the rotating brake rotor, in this case a normal force of 325 Newtons. This force is found by taking the required pressure from the standard and using the contact area of the brake pad to turn it into the amount of force acting upon that pad then using the scaling factor to go from a full size brake pad down to the sample size used inside the UMT. In the case of the first Fade section it is a force of 650 Newtons. The reason that it is half of that is that the UMT is unable to apply 650 Newtons on the rotor as it is going at the required speed. So, a "safety factor" was used to reduce everything within the Fade sections by 1/2.

Figure 12: The required Velocity of the rotor.

The initial velocity it set at the required rpm and is set to run for a second which is the shortest amount of time that the UMT will allow a step to take but will continue to record the data through to the next step. The important part of this is that having set the deceleration time previously that when the next step engages that it will decelerate for the set amount of time so that the data is done during the correct amount of time.

Figure 13: Change in step and Velocity.

With the final velocity set to the required rpm and set to the shortest time so that

there is a minimal amount of data collected, as stated above the actual step is not

where the data needed comes from.

Figure 14: Setting the Temperature.

While the temperatures needed in most of the sequences is 100°C there are a few different temperatures that are required, the highest being 500°C and the lowest being 40°C. While the heating chamber takes time to heat to the required temps, there are two choice to choose from, either heating in test time, meaning it will take all the set time to heat to the target time, this is a bad choice as one of the advantages of the UMT is shorter running times. The other option is to heat without ramping, which will make the heating chamber heat as quickly as possible, and with a break condition set to cause the step to end when the temperature is reach, the next step can begin.

CHAPTER 4

RESULTS

4.1 COEFFICIENT OF FRICTION

Table 6: Results from preliminary test runs

	Section				
Characteristic Values	Number	Mu desc.	Dynamo	UMT	Difference
			AVG	AVG	
Characteristic Value	3	OP6	0.45	0.31	0.14
Speed/Pressure	4.3	v120	0.44	0.32	0.12
Speed/Pressure	4.5	vmax	0.3	0.31	-0.01
Characteristic Value	5	OP6	0.3	0.33	-0.03
Cold	6	T40	0.31	0.25	0.06
Motorway Appl 2	7	MW2	0.28	0.24	0.04
Characteristic Value	8	OP18	0.35	0.32	0.03
Fade 1	9	F1	0.26	0.34	-0.08
Recovery	10	OP18	0.36	0.39	-0.03
Temperature	12	T500	0.35	0.41	-0.06
Recovery	13	OP18	0.31	0.40	-0.09
Fade 2	14	F2	0.38	0.36	0.02
Recovery	15	OP18	0.36	0.37	-0.01

Table 6 shows the results from the first few applications of the scaled tests as compared to the results from the full-scale Inertia Dynamometer.

These results show promising results as the differences between the dynamometer and the UMT are not of by much of a significant value. With further testing and applications of these tests there might be a possibility of showing that a small-scale bench top tester can replicate the results of the full-scale Inertia Dynamometer.

While all of the samples that were run used the full script that was developed for use with this research, not all samples completed the full test, some of the samples could not sustain cohesion and turned to dust, what caused this is unknown but their data still added to the overall experiment.

4.2 SCANNING ELECTRON MICROSCOPY

Through the use of a scanning Electron Microscope (SEM) the samples from the UMT and the Dynamometer can be compared to see if their wear patterns are similar, this can give better insight into what is happening to the materials in contact. If the track patterns are similar this means that what is happening on the full-scale dynamometer is also being replicated within the heating chamber of the UMT.

Figure 16: Sample from test done on full scale dynamometer.

Figure 17: Backscattered SEM taken of the dynamometer sample.

These two images taken using the SEM allow for a visual comparison of the samples that were run on the full-scale brake dynamometer and the small-scale samples that were run on the UMT to see if there are similar phenomena going on in both sets of samples. This is needed since the data seems to suggest that the UMT can emulate the full-scale brake dynamometer, even with a second scaling done on the samples and in two tests a "safety factor" was used. Using the backscattered and topographical SEM images taken from the full-scale dynamometer and comparing them to backscattered and topographical SEM images from the UMT samples will give a better understanding of the results and the actual phenomena that are affecting the surface of the brake material that is being used.

Figure 18: Backscattered SEM taken of a sample from the UMT.

The heavier elements within the brake pad appear as lighter colors on the image while the black/darker colored areas are the coke used in the creation of the brake pads. The friction layer above marked in green is one of the areas that when compared should show similar wear patterns if the data is correct and similar phenomena is taking place at the point of contact. As can be seen in Fig. 16 there seems to be a much more expansive area of the friction layer, this may be due to the fact that the brake pads have a larger area in contact with the brake rotor, but the fact that there are some large areas in both samples give a good indication that the entire surface is in contact with the rotor. Along with the friction layer, both samples have areas of coke buildup as well as areas where the filler is being stripped from the surface to help create that friction layer.

Figure 19: Backscattered SEM from a different sample.

Figure 18 shows a backscattered SEM from a different set of samples then those in Figure 17. This sample has few more heavy elements in its sample than the first one, while these are from the same type of brakes from the same set it was not taken from the same spot within the brakes. This speaks to the fact that the brakes are not homogeneous throughout their makeup and can have different ratios of elements throughout the pad.

Figure 20: Same sample but at a different location.

Figure 19 shows the same sample as figure 18 but at a different location on the sample.

Figure 21: Backscattered SEM of the sample from Fig. 17.

Figure 22: Backscattered SEM of the sample from the full-scale dynamometer.

Figures 20 & 21 are taken at a higher magnification to show a closer view of the surface of the brake samples from the UMT and the Dynamometer, respectively.

Figure 23: Topographical SEM of the samples from the dynamometer.

Figure 24: Topographical SEM of the sample from the UMT.

The differences between figure 22 and 23 are rather staggering in that, the dark areas that appear on the full-scale dynamometer are not present in the UMT samples, this may be due to the different conditions that the samples are being subjected to. While these differences were reduced since previous work done in the lab, some are still present [38,39]. While the data would suggest that the dynamometer and the UMT are similar in their results the images that were taken using the SEM show that this is not the case, that the two machines subject the material to two separate types of friction and wear.

4.3 FUTURE WORK

Future work with the UMT is strongly suggested with fresh brake pads, rotors, and different types of brake pads. If research could be done quickly on a single vehicle with multiple pads could be shown to be able to emulate the full test regime and give similar results to a full-scale dynamometers results this would show that if scaled properly that it can give an idea of the coefficient of friction that the brakes could give. While reducing the number of differences in the tests seems to have given better results to the tests, there are still some areas that are different between the two testing machines. One thing that could lead to a reduction in differences would be to take the reading of the rotor instead of the sample this would give a more accurate temperature reading that the test regime requires.

If the machine could work under the required forces of a single scaling, then this would give a more accurate idea of what the brakes are being subjected to. If there was a way to get the friction surfaces to become similar and the data to be similar, then this would be ideal. Since friction and wear are system properties this task is made more difficult for researchers to test on the small scale and have the same results be emulated at the full-scale.

CHAPTER 5

CONCLUSION

Throughout this research there were three main goals that were trying to be achieved, they were: can a benchtop tester emulate the results from a full-scale brake dynamometer, can a script be written to allow for a full run of the entire testing procedure, and to examine if there are similarities or differences in the friction and wear detected in both the dynamometer and the UMT. After using proper physics scaling the values that were achieved, which can be found in Appendix A, were too much for the UMT to be able to handle. To try and fix this problem, a second scaling was applied to the values where force was the value used in place of the apparent contact area finding the contact area. In the case of the Fade section of the test, these values still proved to be too much for the UMT to handle so a "safety factor" of 2 was applied to all of the parameters that had been scaled, to halve the forces acting on the system.

A full running script was able to be created for the UMT that would allow for a continuous run of the machine through a complete run of the SAE J2522 testing standard. Due to the forces acting on the machine though, it could not be run in one sitting without the machine seizing during use. As a requirement for a course the required torque that would be required to be provided by a motor in order to run the machine with only one scaling done was calculated, the torque required is at a minimum of 25 N*m, with 30 N*m being ideal for most applications.

The comparison of the two tests shows that even with a second scaling that the phenomena are having similar effects on the brake materials that comprise the brakes. This shows that even with the differences between the two testing machines in the

34

conditions applied when the amount of differences is reduced that there are similarities in the wear patterns that appear on the brake materials. Within a brake dynamometer a set of brake pads are tested while in the UMT the test is done using smaller samples, for these reasons a dynamometer will show the friction behavior of the whole pad while the UMT can show the friction behavior of the composition used in the brake materials. This can allow for basic or fundamental research into different formulations of brake pads, thus allowing for many different new iterations of materials to be tested quickly and would be using the UMT to its strengths.

REFERENCES

- B. Bhushan, *Introduction to Tribology*, 2nd ed. The Atrium, Southern Gate,
 Chichester, West Sussex, PO19 8SQ, United Kingdom: John Wiley & Sons, Ltd,
 2013, p. 721.
- [2] R. Alfani *et al.*, "Friction material for brake pads and related brake pads," 2017.
- [3] A.-L. Becquet and W. Shindo, "Composition for friction material," 2017.
- [4] H. Kienleitner *et al.*, "Fiber for tribological applications," 2018.
- B. B. a. K. H. Bill, B. B. a. K. H. Bill, Ed. *Brake Technology Handbook*, 1st ed.
 Warrendale, PA.: Society of Automotive Engineers, Inc., 2008, p. 544.
- [6] (2018). 5 Different Types of Brake Pads and 6 Different Types of Brakes.
- P. Cong, H. Wang, X. Wu, G. Zhou, X. Liu, and T. Li, "Braking Performance of an Organic Brake Pad Based on a Chemically Modified Phenolic Resin Binder," *Journal of Macromolecular Science: Pure & Applied Chemistry,* Article vol. 49, no. 6, pp. 518-527, 2012.
- [8] N. Aranganathan and J. Bijwe, "Comparative performance evaluation of NAO friction materials containing natural graphite and thermo-graphite," *Wear*, vol. 358, pp. 17-22, 2016.
- [9] A. Demir, R. Samur, and I. Kiliçaslan, "Investigation of the coatings applied onto brake discs on disc-brake pad pair," *Metalurgija-Zagreb*, vol. 48, no. 3, p. 161, 2009.
- [10] D. B. Antanaitis and H. Lee, "Methodology for Sizing and Validating Life of Brake Pads Analytically," SAE International Journal of Passenger Cars-Mechanical Systems, vol. 7, no. 2014-01-2495, pp. 1295-1303, 2014.

- [11] D. B. Antanaitis, "Methods for sizing brake pads for high performance brakes,"
 SAE International Journal of Materials and Manufacturing, vol. 9, no. 1, pp. 171-180, 2016.
- [12] M. Kumar and J. Bijwe, "NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer," *Wear,* vol. 269, no. 11-12, pp. 826-837, 2010.
- [13] M. Kumar and J. Bijwe, "Non-asbestos organic (NAO) friction composites: role of copper; its shape and amount," *Wear*, vol. 270, no. 3-4, pp. 269-280, 2011.
- [14] M. Krygel, M. Vaculik, J. Kukutschova, and P. Filip, "PREPARATION, TESTING AND COMPARISON OF FRICTION COMPOSITES," 2014.
- [15] D. A. S. Razo, J. Decrock, A. Opsommer, M. Fabré, and F. Persoon,
 "Promaxon® D in NAO Non Steel Disc Pad Formulations: the Importance in the Third Body Layer and its Effect on Brake Noise," *SAE International Journal of Materials and Manufacturing*, vol. 9, no. 1, pp. 158-170, 2016.
- [16] K. H. Bode and G. P. Ostermeyer, "Simulations and tests of innovative friction laws in brake systems," in *PAMM: Proceedings in Applied Mathematics and Mechanics*, 2009, vol. 9, no. 1, pp. 63-66: Wiley Online Library.
- [17] J. Kukutschová *et al.*, "Wear performance and wear debris of semimetallic automotive brake materials," *Wear,* vol. 268, no. 1-2, pp. 86-93, 2010.
- [18] S. S. Kim, H. J. Hwang, M. W. Shin, and H. Jang, "Friction and vibration of automotive brake pads containing different abrasive particles," *Wear*, vol. 271, no. 7-8, pp. 1194-1202, 2011.

- [19] Z. Wang *et al.*, "Influence of slag weight fraction on mechanical, thermal and tribological properties of polymer based friction materials," *Materials & Design*, vol. 90, pp. 76-83, 2016.
- [20] Y. Ma, G. S. Martynková, M. Valášková, V. Matějka, and Y. Lu, "Effects of ZrSiO4 in non-metallic brake friction materials on friction performance," *Tribology International*, vol. 41, no. 3, pp. 166-174, 2008.
- [21] R. Ertan and N. Yavuz, "An experimental study on the effects of manufacturing parameters on the tribological properties of brake lining materials," *Wear,* vol. 268, no. 11-12, pp. 1524-1532, 2010.
- [22] B. Öztürk, F. Arslan, and S. Öztürk, "Effects of different kinds of fibers on mechanical and tribological properties of brake friction materials," *Tribology Transactions*, vol. 56, no. 4, pp. 536-545, 2013.
- [23] G. Zhao, I. Hussainova, M. Antonov, Q. Wang, and T. Wang, "Friction and wear of fiber reinforced polyimide composites," *Wear,* vol. 301, no. 1-2, pp. 122-129, 2013.
- [24] M. Boz and A. Kurt, "The effect of Al2O3 on the friction performance of automotive brake friction materials," *Tribology International*, vol. 40, no. 7, pp. 1161-1169, 2007.
- [25] V. Matějka, Y. Lu, L. Jiao, L. Huang, G. S. Martynková, and V. Tomášek, "Effects of silicon carbide particle sizes on friction-wear properties of friction composites designed for car brake lining applications," *Tribology international*, vol. 43, no. 1-2, pp. 144-151, 2010.

- [26] S. J. Kim, M. H. Cho, K. H. Cho, and H. Jang, "Complementary effects of solid lubricants in the automotive brake lining," *Tribology International*, vol. 40, no. 1, pp. 15-20, 2007.
- [27] B. N. S. Division, "UMT TriboLab Brake Material Screening Tester," B. Corporation, Ed., ed. San Jose, CA, 2017.
- [28] M. Baklouti, A.-L. Cristol, Y. Desplanques, and R. Elleuch, "Impact of the glass fibers addition on tribological behavior and braking performances of organic matrix composites for brake lining," *Wear*, vol. 330, pp. 507-514, 2015.
- [29] M. Cho, K. Cho, S. Kim, D. Kim, and H. Jang, "The role of transfer layers on friction characteristics in the sliding interface between friction materials against gray iron brake disks," *Tribology Letters*, vol. 20, no. 2, pp. 101-108, 2005.
- [30] M. H. Cho, S. J. Kim, D. Kim, and H. Jang, "Effects of ingredients on tribological characteristics of a brake lining: an experimental case study," *Wear*, vol. 258, no. 11-12, pp. 1682-1687, 2005.
- [31] M. A. Hamid, G. Stachowiak, and S. Syahrullail, "The effect of external grit particle size on friction coefficients and grit embedment of brake friction material," *Procedia Engineering*, vol. 68, pp. 7-11, 2013.
- [32] M. Kumar, X. Boidin, Y. Desplanques, and J. Bijwe, "Influence of various metallic fillers in friction materials on hot-spot appearance during stop braking," *Wear,* vol. 270, no. 5-6, pp. 371-381, 2011.
- P. Neis, N. Ferreira, and F. Lorini, "Contribution to perform high temperature tests (fading) on a laboratory-scale tribometer," *Wear*, vol. 271, no. 9-10, pp. 2660-2664, 2011.

- [34] P. D. Neis, N. F. Ferreira, and F. P. da Silva, "Comparison between methods for measuring wear in brake friction materials," *Wear*, vol. 319, no. 1, pp. 191-199, 2014/11/15/ 2014.
- [35] W. Österle, H. Kloß, I. Urban, and A. I. Dmitriev, "Towards a better understanding of brake friction materials," *Wear*, vol. 263, no. 7, pp. 1189-1201, 2007/09/10/2007.
- [36] M. Sriwiboon, S. Rhee, K. Kaewlob, N. Tiempan, and R. Samankitesakul, A Study of Pad Properties vs. Friction, Wear and Brake Squeal: Processing/Porosity Effects. 2017, pp. 26-33.
- [37] Dynamometer Global Brake Effectiveness, 2014.
- [38] H. Athari, "Friction material downscaling and its effect on brake system performance," ed, 2017.
- [39] R. Redda Boyna, "Impact of friction test scale on brake friction performance," ed, 2016.

APPENDIX A:

SCALING CALCULATIONS

UMT					
Effective Braking Radiu	38	mm			
Sample Holder Diamet	102	mm	Unless otherwise noted		
Sample Holder Thickne	12	mm	deceleration is taken as		
Relative Humidity	46%		0.2G:	1.962	m/s ²
			0.4G	3.924	m/s ²
Dynomometer			0.6G	5.886	m/s²
Dynamic Rolling Radius	321	mm	V _{max}	218	m/s
Effective Radius	129	mm			
Disc	314*25	mm			
Inertia	87.3	kg*m ²			
Pressure	3	N/mm ²			
Area of Brake Pad	4050	mm ²			
Force acting on 1 Pad	12150	Ν			
Force acting on System	24300	Ν			
Gravity (G)	9.81	m/s ²			

Figure 25: Given Data for use in the SAE J2522

Sample	Length	Width
1	10.00	10.00
2	10.00	10.00
3	10.00	10.00

A1	100.00	
A2	100.00	
A3	100.00	

DAVG (mm)	100.0	
Apparent Contact		
Area (mm2)	300.00	

Figure 26: Area calculations of samples

Sample 1			
4050			
300.00			
5.20			
tors for Sar	nple:		
onent (n)	One		
.5	0.44		
	1.00		
5	2.28		
	5.20		
	27.00		
3			
	729.00		
	3788.00		
	Sample 1 4050 300.00 5.20 tors for Sar onent (n) 5		

Figure 27: Scaling Factors for a perfect sample

Green Mu Characterist	ics	Conversion	<u>ו</u>		
Engagements	30		Dyno	UMT	
Initial Velocity (km/h)	80	to m/s	22.24	9.76	
Final Velocity (km/h)	30	to m/s	8.34	3.66	

Sample 1:			
Parameter	Dynomometer	Parameter	UMT
Number of Engagements per		Number of Engagements per	
Cycle	30	Cycle	30
Brake Speed (RPM)	661.08	Brake Speed (RPM)	1506.94
Release Speed (RPM)	247.90	Release Speed (RPM)	565.10
Pressure (kPa)	3000	Pressure (N/mm2)	3
Initial Brake Temperature (°C)	<= 100	Initial Brake Temperature (°C)	<= 100
Final Brake Temperature (°C)	Open	Final Brake Temperature (°C)	Open
Number of Cycles	1	Number of Cycles	1
total pads in system	2	total pads in system	3
Deceleration (0.2g)	1.962	Deceleration (0.2g)	1.962
Area (mm2)	4050	Area (mm2)	300.00
Force (N)	24300	Force (N)	173.21
Time (s)	7.08	Time (s)	3.11

Figure 28: Green Mu section of calculations between Dyno and UMT

Burnish Ch	naracteristivs						Conversion		
Engageme	ents					192		Dyno	UMT
Initial Vel	ocity (km/h)					80	to m/s	22.24	9.76
Final Velo	city (km/h)					30	to m/s	8.34	3.66
Sample 1:									
Parameter	r		Dync	mometer	Paramete	r			UMT
Number o	f Engagements per (Cycle		32	Number o	of Engagem	ents per Cycle		32
Brake Spe	ed (RPM)			661.08	Brake Spe	ed (RPM)			1506.94
Release Sp	peed (RPM)			247.90	Release S	peed (RPM	I)		565.10
Initial Bra	ke Temperature (°C)			<= 100	Initial Bra	ke Temper	ature (°C)		<= 100
Final Brak	e Temperature (°C)			Open	Final Brak	e Tempera	ture (°C)		Open
Number o	f Cycles			6	Number o	of Cycles			6
Decelerati	ion (0.2g)			1.962	Decelerat	ion (0.2g)			1.962
Time (s)				7.08	Time (s)				3.11
Area (mm	2)		ļ	4050					
	Dynomo	1	UMT						
Snub	Pressure (N/mm2)	Force (N)	Force (N)						
1	1.5	12150	86.60						
2	3.0	24300	173.21						
3	1.5	12150	86.60						
4	1.8	14580	103.92						
5	2.2	17820	127.02						
6	3.8	30780	219.39						
7	1.5	12150	86.60						
8	2.6	21060	150.11						
9	1.8	14580	103.92						
10	3.4	27540	196.30						
11	1.5	12150	86.60						
12	2.6	21060	150.11						
13	1.5	12150	86.60						
14	2.2	1/820	127.02						
15	3.0	24300	265 58						
17	4.0	21060	205.58						
10	2.0 E 1	Z1000 21210	20/ 12						
10	3.1	17820	127 02						
20	1 0	1/520	103 02						
20	1.8	34020	242 49						
21	1 5	12150	86.60						
22	1.5	14580	103,92						
24	4.6	37260	265.58						
25	2.6	21060	150.11						
26	1.5	12150	86.60						
27	3.4	27540	196.30						
28	2.2	17820	127.02						
29	1.8	14580	103.92						
30	3.0	24300	173.21						
31	1.8	14580	103.92						
32	3.8	30780	219.39						

Figure 29: Burnish section of calculations between Dyno and UMT

Characteristic Value 1				Conversion			
Engagements				Dyno	UMT		
Initial Velocity (km/h)			80	to m/s	22.24	9.76	
Final Velocity (km/h)			30	to m/s	8.34	3.66	
Sample 1:							
Parameter		Dynomometer	Parameter			UMT	
Number of Engagements pe	r Cycle	6	Number of Engagem	nents per Cycle		6	
Brake Speed (RPM)		661.08	Brake Speed (RPM)		1506		
Release Speed (RPM)		247.90	Release Speed (RPM)			565.10	
Initial Brake Temperature (°	C)	<= 100	Initial Brake Temperature (°C)			<= 100	
Final Brake Temperature (°C	C)	Open	Final Brake Temperature (°C)			Open	
Number of Cycles		1	Number of Cycles	1			
Deceleration (0.2g)		1.962	1.962 Deceleration (0.2g)			1.962	
Time (s)		7.08	Time (s)			3.11	
Pressure (kPa)	(kPa) 3000		Pressure (N/mm2)			3.00	
Area (mm2)		4050					
Force (N)		24300	Force (N)			173.21	

Figure 30: Characteristic Value section of calculations between Dyno and UMT

Pressure Series 1					Conversion	-			
Engagements		8					Dyno	UMT	
Initial Velocity (km/h)					40	to m/s	11.12	4.88	
Final Velocity (km/h)					5	to m/s	1.39	0.61	
Sample 1:							·		
Parameter		Dynon	nometer	Parameter	-			UMT	
Number of Engagements per (Cycle		8	Number of	f Engagem	ents per Cycle		8	
Brake Speed (RPM)			330.54	Brake Spee	ed (RPM)			753.47	
Release Speed (RPM)			41.32	Release Sp	beed (RPN	1)		94.18	
Initial Brake Temperature (°C)			<= 100	Initial Brak	Initial Brake Temperature (°C)			<= 100	
Final Brake Temperature (°C)			Open	Final Brake Temperature (°C)				Open	
Number of Cycles			1	Number of Cycles				1	
Stop		N/mm2 Force (N			N) (Dyno)	UMT Fo	orce (N)		
Pressure Stop 1			1	8100				57.74	
Pressure Stop 2		2 16200			115.47				
Pressure Stop 3		3 24300					173.21		
Pressure Stop 4			4	1 32400				230.94	
Pressure Stop 5		5 40500					288.68		
Pressure Stop 6	Pressure Stop 6		6	48600			346.41		
Pressure Stop 7	essure Stop 7 7		56700				404.15		
Pressure Stop 8		8		64800				461.88	
Deceleration (0.2g)	Deceleration (0.2g) 1.962		Deceleration (0.2g)				1.962		
Time (s)			4.96	Time (s)				2.18	
Area (mm2)			4050						

Figure 31: Pressure Series 1 section of calculations between Dyno and UMT

Pressure Series 2					Conversion				
Engagements		8					Dyno	UMT	
Initial Velocity (km/h)					80	to m/s	22.24	9.76	
Final Velocity (km/h)					40	to m/s	11.12	4.88	
Sample 1:							·		
Parameter		Dync	mometer	Paramete	er			UMT	
Number of Engagements per	Cycle		8	Number o	of Engagem	ents per Cycle		8	
Brake Speed (RPM)			661.08	Brake Spe	ed (RPM)			1506.94	
Release Speed (RPM)			330.54	Release S	peed (RPN	1)		753.47	
Initial Brake Temperature (°C))		<= 100	Initial Bra	ke Temper	ature (°C)		<= 100	
Final Brake Temperature (°C)			Open	Final Brake Temperature (°C)				Open	
Number of Cycles			1	Number of Cycles					
Stop		N/m	ım2	Force (N) (Dyno)			UMT Fo	UMT Force (N)	
Pressure Stop 1			1	8100				57.74	
Pressure Stop 2			2	2 16200				115.47	
Pressure Stop 3			3	24300				173.21	
Pressure Stop 4			4	32400				230.94	
Pressure Stop 5			5 40500					288.68	
Pressure Stop 6			6	48600				346.41	
Pressure Stop 7	Stop 7 7		56700			404.15			
Pressure Stop 8		8		64800				461.88	
Deceleration (0.2g)	eceleration (0.2g) 1.962		Deceleration (0.2g)			1.962			
Time (s)			5.67 Time		Time (s)			2.49	
Area (mm2)			4050)					

Figure 32: Pressure Series 2 section of calculations between Dyno and UMT

Pressure Series 3					Conversion				
Engagements		8					Dyno	UMT	
Initial Velocity (km/h)					120	to m/s	33.36	14.63	
Final Velocity (km/h)					80	to m/s	22.24	9.76	
Sample 1:									
Parameter		Dyno	mometer	Paramete	r			UMT	
Number of Engagements per O	Cycle		8	Number o	f Engagem	ients per Cycle		8	
Brake Speed (RPM)			991.62	Brake Spe	ed (RPM)			2260.40	
Release Speed (RPM)			661.08	Release S	peed (RPN	1)		1506.94	
Initial Brake Temperature (°C)			<= 100	Initial Bra	ke Temper	ature (°C)		<= 100	
Final Brake Temperature (°C)			Open	Final Brake Temperature (°C)				Open	
Number of Cycles			1	Number of Cycles				1	
Stop		N/m	ım2	Force (N) (Dyno)			UMT Fo	UMT Force (N)	
Pressure Stop 1			1	8100				57.74	
Pressure Stop 2			2	. 16200				115.47	
Pressure Stop 3			3	24300				173.21	
Pressure Stop 4			4	32400			230.94		
Pressure Stop 5		5		40500				288.68	
Pressure Stop 6	Pressure Stop 6		6	48600				346.41	
Pressure Stop 7	essure Stop 7 7		56700			404.15			
Pressure Stop 8		8		64800				461.88	
Deceleration (0.2g)	Deceleration (0.2g) 1.962		Deceleration (0.2g)			1.962			
Time (s)			5.67	Time (s)				2.49	
Area (mm2)			4050						

Figure 33: Pressure Series 3 section of calculations between Dyno and UMT

Pressure Series 4							Conversion			
Engagements						8		Dyno	UMT	
Initial Velocity (km/	'n)					160	to m/s	44.48	19.51	
Final Velocity (km/h	ı)					130 to m/s		36.14	15.85	
Sample 1:										
Parameter Dynomon		omometer	Paramete	er			UMT			
Number of Engagem	nents per (Cycle		8	Number	of Engagem	ents per Cycle		8	
Brake Speed (RPM)				1322.16	Brake Spe	ed (RPM)			3013.87	
Release Speed (RPN	/1)			1074.25	Release S	peed (RPN	1)		2448.77	
Initial Brake Temper	rature (°C)			<= 100	Initial Brake Temperature (°C)			<= 100		
Final Brake Tempera	ature (°C)		Open F		Final Brak	Final Brake Temperature (°C)		Open		
Number of Cycles				1	Number	mber of Cycles			1	
St	ор		N/r	nm2	Force (N) (Dyno)			UMT Fo	UMT Force (N)	
Pressure Stop 1				1	8100				57.74	
Pressure Stop 2				2	2 16200			115.47		
Pressure Stop 3				3	24300				173.21	
Pressure Stop 4				4	32400				230.94	
Pressure Stop 5				5	40500				288.68	
Pressure Stop 6				6	48600				346.41	
Pressure Stop 7				7	56700			404.15		
Pressure Stop 8				8	64800			461.88		
Deceleration (0.2g)				1.962	Deceleration (0.2g)				1.962	
Time (s)				4.25	Time (s)		1.86			
Area (mm2)				4050)					

Figure 34: Pressure Series 4 section of calculations between Dyno and UMT

Pressure Series 5				Conversion			
Engagements			5	3	Dyno	UMT	
Initial Velocity (km/h)			200) to m/s	55.6	24.39	
Final Velocity (km/h)			170) to m/s	47.26	20.73	
Sample 1:							
Parameter		Dynomometer	Parameter			UMT	
Number of Engagements per (Cycle	8	Number of Engager	nents per Cycle		8	
Brake Speed (RPM)		1652.70	Brake Speed (RPM)			3767.34	
Release Speed (RPM)		1404.79	Release Speed (RPI	Л)		3202.24	
Initial Brake Temperature (°C)		<= 100	Initial Brake Tempe	<= 100			
Final Brake Temperature (°C)		Open	Final Brake Temper		Open		
Number of Cycles		1	Number of Cycles			1	
Stop		N/mm2	Force (UMT Fo	orce (N)		
Pressure Stop 1		1	8100	57.74			
Pressure Stop 2		2	16200		115.47		
Pressure Stop 3		3	24300			173.21	
Pressure Stop 4		4	32400			230.94	
Pressure Stop 5		5	40500			288.68	
Pressure Stop 6		6	48600			346.41	
Pressure Stop 7	ssure Stop 7 7		56700			404.15	
Pressure Stop 8		8	8 64800			461.88	
Deceleration (0.2g)	eceleration (0.2g) 1.962		Deceleration (0.2g)			1.962	
Time (s)	ime (s) 4.25		Time (s)	1.86			
Area (mm2)		4050	50				

Figure 35: Pressure Series 5 section of calculations between Dyno and UMT

Characteristic Value 2				Conversion	Conversion			
Engagements			6	5	Dyno	UMT		
Initial Velocity (km/h)			80) to m/s	22.24	9.76		
Final Velocity (km/h)			30) to m/s	8.34	3.66		
Sample 1:								
Parameter		Dynomometer	eter Parameter			UMT		
Number of Engagements per (Cycle	6	Number of Engagements per Cycle		6			
Brake Speed (RPM)		661.08	Brake Speed (RPM)		1506.94			
Release Speed (RPM)		247.90	Release Speed (RPN		565.10			
Initial Brake Temperature (°C)		<= 100	Initial Brake Temperature (°C)			<= 100		
Final Brake Temperature (°C)		Open	Final Brake Tempera		Open			
Number of Cycles		1	Number of Cycles			1		
Deceleration (0.2g)		1.962	Deceleration (0.2g)	Deceleration (0.2g)		1.962		
Time (s)	7.08 Time (s)			3.11				
Pressure (kPa)		3000	3000 Pressure (N/mm2)		3.00			
Area (mm2)		4050						
Force (N)	24300 Force (N)				173.21			

Figure 36: Characteristic Value 2 section of calculations between Dyno and UMT

Cold Application				Conversion			
Engagements			1	-	Dyno	UMT	
Initial Velocity (km/h)			40	to m/s	11.12	4.88	
Final Velocity (km/h)			5	to m/s	1.39	0.61	
Sample 1:					-		
Parameter		Dynomometer	r Parameter		UMT		
Number of Engagements per	Cycle	1	Number of Engagements per Cycle			1	
Brake Speed (RPM)		330.54	54 Brake Speed (RPM)			753.47	
Release Speed (RPM)		41.32	Release Speed (RPN	Release Speed (RPM)		94.18	
Initial Brake Temperature (°C)	<= 40	Initial Brake Temperature (°C)		<= 40		
Final Brake Temperature (°C)		Open	Final Brake Temperature (°C)		Open		
Number of Cycles		1	Number of Cycles			1	
Deceleration (0.2g)		1.962	Deceleration (0.2g)			1.962	
Time (s)		4.96 Time (s)				2.18	
Pressure (kPa)		3000	Pressure (N/mm2)		3.00		
Area (mm2)	Area (mm2) 4050						
Force (N)		24300	Force (N)			173.21	

Figure 37: Cold Application section of calculations between Dyno and UMT

Motorway Application	lotorway Application			Conversion			
Engagements	2		Dyno	UMT			
Initial Velocity (km/h) Stop 1	100	to m/s	27.8	12.20			
Final Velocity (km/h) Stop 1	5	to m/s	1.39	0.61			
Initial Velocity (km/h) Snub 2	196	to m/s	54.5436	23.93			
Final Velocity (km/h) Snub 2	109	to m/s	30.302	13.29			

Sample 1:			
Parameter	Dynomometer	Parameter	UMT
Number of Engagements per Cycle	2	Number of Engagements per Cycle	2
Brake Speed (RPM) Stop 1	826.35	Brake Speed (RPM) Stop 1	1883.67
Release Speed (RPM) Stop 1	41.32	Release Speed (RPM) Stop 1	94.18
Brake Speed (RPM) Snub 2	1621.30	Brake Speed (RPM) Snub 2	3695.76
Release Speed (RPM) Snub 2	900.72	Release Speed (RPM) Snub 2	2053.20
Deceleration Level (g)	0.6	Deceleration Level (g)	0.6
Initial Brake Temperature (°C)	≤50	Initial Brake Temperature (°C)	≤50
Final Brake Temperature (°C)	Open	Final Brake Temperature (°C)	Open
Deceleration (m/s2)	5.886	Deceleration (m/s2)	5.886
Time (s) Stop 1	4.49	Time (s) Stop 1	1.97
Time (s) Snub 2	4.12	Time (s) Snub 2	1.81
Number of Cycles	1	Number of Cycles	1
Pressure (N/mm2)	3	Pressure (N/mm2)	3
Area (mm2)	4050		
Force (N)	24300	Force (N)	173.21

Figure 38: Motorway Snub and Stop section of calculations between Dyno and UMT

Characteristic Value 3					Conversion			
Engagements				18		Dyno	UMT	
Initial Velocity (km/h)				80	to m/s	22.24	9.76	
Final Velocity (km/h)		30 to n			to m/s	8.34	3.66	
Sample 1:								
Parameter	Parameter Dynomometer Para		Parameter			UMT		
Number of Engagements per (Cycle	18	Number of Engagements per Cycle		18			
Brake Speed (RPM)	Brake Speed (RPM)		Brake Speed (RPM)			1506.94		
Release Speed (RPM)		247.90	Release Speed (RPM)			565.10		
Initial Brake Temperature (°C)		<= 100	Initial Brake Temperature (°C)			<= 100		
Final Brake Temperature (°C)		Open	Final Brake Temperature (°C)			Open		
Number of Cycles		1	Number of Cycles				1	
Deceleration (0.2g)		1.962	962 Deceleration (0.2g)				1.962	
Time (s)		7.08	Time (s)				3.11	
Pressure (kPa)	ressure (kPa) 3000		Pressure (N/mm2)			3.00		
Area (mm2)	Area (mm2) 4050							
Force (N)		24300	Force (N)			173.21		

Figure 39: Characteristic Value 3 section of calculations between Dyno and UMT

Fade 1	ade 1					Conversion			
Engagements				15		Dyno	UMT		
Initial Velocity (km/h)				100	to m/s	27.8	12.20		
Final Velocity (km/h)				5	to m/s	1.39	0.61		
Sample 1:									
Parameter	Dyn	omometer	Paramete	r			UMT		
Number of Engagements per Cycle		15	Number of Engagements per Cycle				15		
Brake Speed (RPM)	Brake Speed (RPM) 826.3		Brake Spe	ed (RPM)			1883.67		
Release Speed (RPM)		41.32	Release S	peed (RPIV	1)		94.18		
Deceleration Level (g)		0.40	Decelerat	ion Level (g)		0.40		
Deceleration (0.4g)		3.924	Decelerat	ion (0.4g)			3.924		
Pressure (kPa)		16000	Pressure	N/mm2)			16.00		
Area (mm2)		4050							
Force (N)		129600	Force (N)			923.76			
Time (s)	Time (s)		Time (s)				2.95		
Initial Temperature 1 (°C)		≤100	Initial Ter	nperature	1 (°C)		≤ 100		
Initial Temperature 2 (°C)		≤215	Initial Ter	nperature	2 (°C)		≤ 215		
Initial Temperature 3 (°C)		≤283	33 Initial Temperature 3 (°C)			≤ 283			
Initial Temperature 4 (°C)		≤330	Initial Temperature 4 (°C)			≤ 330			
Initial Temperature 5 (°C)		≤367	Initial Ter	nperature	5 (°C)		≤ 367		
Initial Temperature 6 (°C)		≤ 398	Initial Temperature 6 (°C)				≤ 398		
Initial Temperature 7 (°C)		≤423	Initial Temperature 7 (°C)				≤ 423		
Initial Temperature 8 (°C)		≤446	Initial Ter	Initial Temperature 8 (°C)			≤ 446		
Initial Temperature 9 (°C)		≤465	Initial Ter	nperature	9 (°C)		≤ 465		
Initial Temperature 10 (°C)		≤483	Initial Ten	nperature	10 (°C)		≤ 483		
Initial Temperature 11 (°C)		≤498	Initial Ter	nperature	11 (°C)		≤ 498		
Initial Temperature 12 (°C)	nitial Temperature 12 (°C) ≤ 51		Initial Temperature 12 (°C)				≤ 513		
Initial Temperature 13 (°C)		≤526	Initial Temperature 13 (°C)				≤ 526		
Initial Temperature 14 (°C)		≤539	Initial Temperature 14 (°C)				≤ 539		
Initial Temperature 15 (°C)		≤550	Initial Temperature 15 (°C)			≤ 55			
Final Brake Temperature (°C) Open		Final Brake Temperature (°C)				Open			
Number of Cycles		1	Number c	f Cycles			1		

Figure 40: Fade 1 section of calculations between Dyno and UMT

Recovery 1				Conversion		
Engagements			18			
Initial Velocity (km/h)			80)	Dyno	UMT
Final Velocity (km/h)			30	to m/s	22.24	9.76
Pressure (kPa)			3000	to m/s	8.34	3.66
Sample 1:						
Parameter	neter Dynomometer Parameter			UMT		
Number of Engagements pe	er Cycle	Cycle 18 Number of Engagements per Cycle		18		
Brake Speed (RPM)	Brake Speed (RPM)		Brake Speed (RPM)	1506.94		
Release Speed (RPM)	Release Speed (RPM)		Release Speed (RPN		565.10	
Deceleration Level (g)		0.20	Deceleration Level (0.20		
Deceleration (0.2g)		1.962	Deceleration (0.2g)	1.962		
Pressure (kPa)		3000	Pressure (N/mm2)	3.00		
Area (mm2)		4050				
Force (N)		24300) Force (N)			173.21
Time (s)	ime (s) 7.0		Time (s)			3.11
Initial Temperature 1 (°C)	Initial Temperature 1 (°C) ≤ :		Initial Temperature	≤ 100		
Final Brake Temperature (°C)		Open	Final Brake Temperature (°C)		Open	
Number of Cycles		1	Number of Cycles		1	

Figure 41: Recovery 1 section of calculations between Dyno and UMT

Temperature/Pressure Sensit	ivity 100°C			Conversion			
Engagements				8	Dyno	UMT	
Initial Velocity (km/h)			8	0 to m/s	22.24	9.76	
Final Velocity (km/h)			(1)	0 to m/s	8.34	3.66	
Sample 1:							
Parameter		Dynomometer	Parameter			UMT	
Number of Engagements per	Cycle	8	Number of Engage	ments per Cycle		8	
Brake Speed (RPM)		661.08	Brake Speed (RPM			1506.94	
Release Speed (RPM)		247.90	Release Speed (RP	M)		565.10	
Initial Brake Temperature (°C)	Initial Brake Temperature (°C)		Initial Brake Temp		<= 100		
Final Brake Temperature (°C)		Open	Final Brake Tempe		Open		
Number of Cycles	lumber of Cycles		Number of Cycles		1		
Stop		N/mm2	Force	UMT Fo	orce (N)		
Pressure Stop 1		1	8100			57.74	
Pressure Stop 2		2	16200			115.47	
Pressure Stop 3		3	24300			173.21	
Pressure Stop 4		4	32400			230.94	
Pressure Stop 5		5	40500			288.68	
Pressure Stop 6		6	48600			346.41	
Pressure Stop 7	ssure Stop 7		56700			404.15	
Pressure Stop 8	8 64800			461.88			
Deceleration (0.2g)	eceleration (0.2g) 1.962		Deceleration (0.2g		1.962		
Time (s)	7.0		Time (s)	3.11			
Area (mm2)	4050						

Figure 42: Temperature/Pressure Sensitivity section of calculations between Dyno and

UMT

Increasing Temperature 500°	ncreasing Temperature 500°C				Conversion			
Engagements				9		Dyno	UMT	
Initial Velocity (km/h)				80	to m/s	22.24	9.76	
Final Velocity (km/h)				30	to m/s	8.34	3.66	
Sample 1:								
Parameter	Parameter Dynomometer		Parameter				UMT	
Number of Engagements per	Cycle	9	Number of	Engagem	ents per Cycle		9	
Brake Speed (RPM)		661.08	Brake Speed	d (RPM)			1506.94	
Release Speed (RPM)		247.90	7.90 Release Speed (RPM)			565.10		
Pressure (kPa)	(Pa) 3000 Pressure (N/mm2)				3			
Initial Temp 1	nitial Temp 1		Initial Temp	1			100	
Initial Temp 2	Initial Temp 2		Initial Temp	2			150	
Initial Temp 3		200	Initial Temp 3			200		
Initial Temp 4		250) Initial Temp 4			250		
Initial Temp 5		300	Initial Temp 5			300		
Initial Temp 6		350	Initial Temp 6				350	
Initial Temp 7		400	Initial Temp) 7			400	
Initial Temp 8		450	Initial Temp 8			450		
Initial Temp 9		500	Initial Temp	Initial Temp 9			500	
Final Brake Temperature (°C)	al Brake Temperature (°C) Open		Final Brake Temperature (°C)				Open	
Force (N)	rce (N) 24300		Force (N)			173.21		
Time (s)	me (s) 7.08		Time (s)			3.1		
Area (mm2)		4050	Deceleration (0.2g)			1.96		
Number of Cycles		1	Number of	Cycles			1	

Figure 43: Increasing Temperature 500°C section of calculations between Dyno and

UMT

Pressure	Line 500°C						Conversion			
Engagem	ents					8		Dyno	UMT	
Initial Ve	locity (km/h)					80	to m/s	22.24	9.76	
Final Velo	ocity (km/h)					30	to m/s	8.34	3.66	
Sample 1										
Paramete	Parameter Dynomometer		Paramete	Parameter			UMT			
Number o	of Engagements per (Cycle		8	8 Number of Engageme		ents per Cycle		8	
Brake Spe	ed (RPM)			661.08	Brake Spe	ed (RPM)			1506.94	
Release S	peed (RPM)			247.90	Release S	peed (RPN	1)	565.10		
Initial Bra	nitial Brake Temperature (°C) <= 500			<= 500	Initial Brake Temperature (°C)				<= 500	
Final Brak	nal Brake Temperature (°C) Ope		Open	Final Brak	e Tempera	ture (°C)		Open		
Number o	of Cycles			1	Number o	Number of Cycles			1	
	Stop		N/r	nm2	Force (N) (Dyno)			UMT Fo	orce (N)	
Pressure	Stop 1			1	1 8100			57.74		
Pressure	Stop 2			2	16200			115.47		
Pressure	Stop 3			3	24300				173.21	
Pressure	Stop 4			4	32400				230.94	
Pressure	Stop 5			5	40500			288.68		
Pressure	Stop 6			6	48600				346.41	
Pressure	Stop 7			7	56700				404.15	
Pressure	Stop 8		8		64800				461.88	
Decelerat	tion (0.2g)			1.962	Deceleration (0.2g)				1.962	
Time (s)				7.08 Time (s)					3.11	
Area (mm	12)			4050						

Figure 44: Pressure Line at 500° section of calculations between Dyno and UMT

Recovery 2					Conversion					
Engagements					18					
Initial Velocity (km/h)				80			Dyno	UMT		
Final Velocity (km/h)				30 to m/s			22.24	9.76		
Pressure (kPa)					3000	to m/s	8.34	3.66		
Sample 1:										
Parameter		Dyne	omometer	Paramete	r			UMT		
Number of Engagements pe	er Cycle		18 Number of Engagements per Cycle					18		
Brake Speed (RPM)			661.08	Brake Spe	ed (RPM)			1506.94		
Release Speed (RPM)			247.90 Release Speed (RPM)					565.10		
Deceleration Level (g)		0.20 Deceleration Level (g)				0.2				
Deceleration (0.2g)			1.962 Deceleration (0.2g)				1.9			
Pressure (kPa)		3000 Pressure (N/mm						3.00		
Area (mm2)			4050							
Force (N)			24300	Force (N)				173.21		
Time (s)			7.08	Time (s)				3.11		
Initial Temperature 1 (°C)		≤100	Initial Ten	nperature :	1 (°C)		≤ 100			
Final Brake Temperature (°0		Open	Final Brak	e Tempera	ture (°C)	Ope				
Number of Cycles			1	Number o	f Cycles			1		

Figure 45: Recovery 2 section of calculations between Dyno and UMT

Fade 2				Conversion				
Engagements					15		Dyno	UMT
Initial Velocity (km/h)					100	to m/s	27.8	12.20
Final Velocity (km/h)					5	to m/s	1.39	0.61
Sample 1:				-				
Parameter		Dyno	omometer		UMT			
Number of Engagements per C	Cycle		15		15			
Brake Speed (RPM)			826.35	Brake Spe	ed (RPM)			1883.67
Release Speed (RPM)			41.32	Release S	peed (RPM)		94.18
Deceleration Level (g)			0.40	Decelerat	ion Level (g)		0.40
Deceleration (0.4g)			3.924	Decelerat	ion (0.4g)			3.924
Pressure (kPa)			16000	Pressure (N/mm2)			16.00
Area (mm2)			4050					
Force (N)			129600	Force (N)		923.76		
Time (s)			6.73	Time (s)				2.95
Initial Temperature 1 (°C)			≤ 100	Initial Ten	nperature 2	1 (°C)		≤ 100
Initial Temperature 2 (°C)			≤215	Initial Ten	nperature 2	2 (°C)		≤ 215
Initial Temperature 3 (°C)			≤283	Initial Ten	nperature		≤ 283	
Initial Temperature 4 (°C)			≤ 330	Initial Ten	nperature 4		≤ 330	
Initial Temperature 5 (°C)			≤367	Initial Ten	nperature S	5 (°C)		≤ 367
Initial Temperature 6 (°C)			≤ 398	Initial Ten	nperature 6	5 (°C)		≤ 398
Initial Temperature 7 (°C)			≤423	Initial Ten	nperature	7 (°C)		≤ 423
Initial Temperature 8 (°C)			≤446	Initial Ten	nperature 8	8 (°C)		≤ 446
Initial Temperature 9 (°C)			≤465	Initial Ten	nperature 9	∋(°C)		≤ 465
Initial Temperature 10 (°C)			≤483	Initial Ten	nperature 2	10 (°C)		≤ 483
Initial Temperature 11 (°C)			≤498	Initial Ten	nperature 2	11 (°C)		≤ 498
Initial Temperature 12 (°C)			≤513	Initial Ten	nperature 2	12 (°C)		≤ 513
Initial Temperature 13 (°C)		≤526	Initial Ten	nperature 2		≤ 526		
Initial Temperature 14 (°C)		≤ 539	Initial Ten	nperature 2	≤5			
Initial Temperature 15 (°C)			≤550	Initial Ten	nperature		≤ 550	
Final Brake Temperature (°C)			Open	Final Brak	e Tempera		Open	
Number of Cycles		1			1			

Figure 46: Fade 2 section of calculations between Dyno and UMT

Recovery 3						Conversion			
Engagements					18				
Initial Velocity (km/h)					80		Dyno	UMT	
Final Velocity (km/h)					30	to m/s	22.24	9.76	
Pressure (kPa)					3000	to m/s	8.34	3.66	
Sample 1:									
Parameter		Dyn	omometer	Paramete	r			UMT	
Number of Engagements p		18	Number o	f Engagem	18				
Brake Speed (RPM)			661.08	Brake Spe	ed (RPM)			1506.94	
Release Speed (RPM)			247.90	Release S	oeed (RPN	1)		565.10	
Deceleration Level (g)			0.20	Decelerat	ion Level (0.			
Deceleration (0.2g)			1.962	Decelerat	ion (0.2g)	1.9			
Pressure (kPa)			3000	00 Pressure (N/mm2)			3.		
Area (mm2)			4050						
Force (N)			24300	Force (N)				173.21	
Time (s)			7.08	Time (s)					
Initial Temperature 1 (°C)		≤ 100	Initial Ten	nperature	1 (°C))			
Final Brake Temperature (°		Open Final Brake Tempera			ture (°C)		Open		
Number of Cycles		1	Number o	f Cycles			1		

Figure 47: Recovery 3 section of calculations between Dyno and UMT

SAE J2522								Dyno	UMT
Sequence	Sequence Name	Vi	Vf	Deceleration	Time	Area	Pressure	Force (N)	Force (N)
1	Green Mu	22.24	8.34	1.962	3.11	4050	1	8100	57.74
2	Burnish	22.24	8.34	1.962	3.11	4050	1.5	12150	86.60
3	Characteristic Value 1	22.24	8.34	1.962	3.11	4050	1.8	14580	103.92
4.1	Pressure Series 1	11.12	1.39	1.962	2.18	4050	2	16200	115.47
4.2	Pressure Series 2	22.24	11.12	1.962	2.49	4050	2.2	17820	127.02
4.3	Pressure Series 3	33.36	22.24	1.962	2.49	4050	2.6	21060	150.11
4.4	Pressure Series 4	44.48	36.14	1.962	1.86	4050	3	24300	173.21
4.5	Pressure Series 5	55.6	47.26	1.962	1.86	4050	3.4	27540	196.30
5	Characteristic Value 2	22.24	8.34	1.962	3.11	4050	3.8	30780	219.39
6	Cold	11.12	1.39	1.962	2.18	4050	4	32400	230.94
7.1	Motorway Stop	27.8	1.39	5.886	1.97	4050	4.2	34020	242.49
7.2	Motorway Snub	54.488	30.302	5.886	1.80	4050	4.6	37260	265.58
8	Characteristic Value 3	22.24	8.34	1.962	3.11	4050	5	40500	288.68
9	Fade 1	27.8	1.39	3.924	2.95	4050	5.1	41310	294.45
10	Recovery 1	22.24	8.34	1.962	3.11	4050	6	48600	346.41
11	Pressure Series 6	22.24	8.34	1.962	3.11	4050	7	56700	404.15
12.1	Temp Inc	22.24	8.34	1.962	3.11	4050	8	64800	461.88
12.2	Pressure Line	22.24	8.34	1.962	3.11	4050	16	129600	923.76
13	Recovery 2	22.24	8.34	1.962	3.11				
14	Fade 2	27.8	1.39	3.924	2.95				
15	Recovery 3	22.24	8.34	1.962	3.11				

Figure 48: Time and Force Calculations for each section

APPENDIX B:

SECOND SCALING

UMT Max	imum Fo	rce	650	Ν	G=	9.81	m/s		
Area of th	ne Pad		4050	mm²	V _{max}	218	m/s²		
Max Press	sure		16	Bar	n	λ ⁿ			
Area of sa	mples		305.660	mm²	-0.5	0.94			
Dynamic I	Rolling R	adius	321	m	0	1.00			
Maximum	n Force o	n UMT	950.02	N	0.5	1.07			
Lambda			1.13		1	1.13			
Decelerat	tion 0.2G		1.962	m/s	2	1.29			
Decelerat	tion 0.4G		3.924	m/s	3	1.46			
Decelerat	ion 0.6G		5.886	m/s	4	1.66			
Vmax	218	m/s	5	1.88					
UN	1T	UMT 2.0			Dyn	amorr	neter	UMT	
Pressure	F			V	elocit	y			
N/mm ²	N	N		Km/h	m/s	rpm	m/s	rpm	
1.0	56	39		5	1	94	1	100	
1.5	89	61		30	4	562	3	599	
1.8	107	73		40	5	750	5	799	
2.0	119	81		80	10	1500	9	1598	
2.2	131	89		100	12	1875	11	1997	
2.6	154	106		109	13	2044	13	2177	
3.0	178	122		120	15	2250	14	2397	
3.4	202	138		130	16	2437	15	2597	
3.8	226	154		160	20	3000	18	3196	
4.0	238	162		170	21	3187	20	3395	
4.2	249	171		196	24	3679	23	3919	
4.6	273	187		200	25	3750	23	3995	
5.0	297	203							
5.1	303	207							
6.0	356	244							
7.0	416	284							
8.0	475	325							
16.0	950	650							

Green Mu	Green Mu Characteristic			otal Snubs	30					n	λ ⁿ
				UN	ΛT			UMT		-0.5	0.94
Snubs per	cycle		30					30		0	1.00
Brake Speed (km/h)		80	(m/s)	10	(rpm)	1500	1598	rpm	0.5	1.07	
Release Speed (km/h)		30	(m/s)	4	(rpm)	562	599	rpm	1	1.13	
Pressure (kPa)		3000	(N/mm ²)	3	(Bar)	30			2	1.29
Initial Brak	ke Tempera	ature (°C)	≤ 100					≤ 100	°C	3	1.46
Final Brake	e Tempera	ture (°C)	Open	\mathbf{A}	(Open		4	1.66
Number o	f Cycles		1	43				1		5	1.88
Force (N)				178.13				121.876	N		
Decelerati	on (m/s²)			1.962							
Time (s)				3.12				2.93	s		
Area of Pa	Area of Pad (mm ²)			4050							
Dynamic R	Oynamic Rolling Radius (mm)			321							

Burnish		Tota	l Snubs	192						n	λ ⁿ	
				Dyna	mom	eter		UMT			-0.5	0.94
Snubs	per cycle		32	Snub/c	ycle			32	Snub/	cycle	0	1.00
Brake	Speed (km	ı/h)	80	(m/s)	10	(rpm)	1500	1598	rpm	-	0.5	1.07
Relea	se Speed (km/h)	30	(m/s)	4	(rpm)	562	599	rpm		1	1.13
Initial	Brake Tem	perature	≤ 100					≤ 100	°C		2	1.29
Final I	Brake Tem	perature	Open					Open	°C		3	1.46
Numb	er of Cycle	s	6					6			4	1.66
Time	(s)			3.12				2.93	s		5	1.88
Decel	eration (m,	/s²)		1.962				1.962	m/s ²			
Area o	of Pad (mm	²)		4050								
Dynar	nic Rolling	, Radius (mm)	321								
Snub	Pressure											
	kPa	N/mm ²	F (N)				Snub	F (N)				
1	1500	1.5	89				1	61				
2	3000	3.0	178				2	122				
3	1500	1.5	89				3	61				
4	1800	1.8	107				4	73				
5	2200	2.2	131				5	89				
6	3800	3.8	226				6	154				
7	1500	1.5	89				7	_ 61				
8	2600	2.6	154				8	106				
9	1800	1.8	107	- (1		9	73				
10	3400	3.4	138		1		10	95				
11	1500	1.5	89				11	61				
12	2600	2.6	154				12	106				
13	1500	1.5	89				13	61				
14	2200	2.2	131				14	89				
15	3000	3.0	178				15	122				
16	4600	4.6	273				16	187				
17	2600	2.6	154				17	106				
18	5100	5.1	303				18	207				
19	2200	2.2	131				19	89				
20	1800	1.8	107				20	73				
21	4200	4.2	249				21	171				
22	1500	1.5	89				22	61				
23	1800	1.8	107				23	73				
24	4600	4.6	273				24	187				
25	2600	2.6	154				25	106				
26	1500	1.5	89				26	61				
27	3400	3.4	202				27	138				
28	2200	2.2	131				28	89				
29	1800	1.8	107				29	73				
30	3000	3.0	1/8				30	122				
31	1800	1.8	107				31	73				
32	3800	3.8	226				32	154				

Characteristic Value 1	Total Snubs							n	λ ⁿ
		Dynam	om	eter		UMT		-0.5	0.9
Snubs per cycle	6					6		0	1.0
Brake Speed (km/h)	80	(m/s)	10	(rpm)	1500	1598	rpm	0.5	1.0
Release Speed (km/h)	30	(m/s)	4	(rpm)	562	599	rpm	1	1.1
Pressure (kPa)	3000	(N/mm ²)	3	(Bar)	30			2	1.2
Initial Brake Temperature (°C)	≤ 100					≤ 100	°C	3	1.4
Final Brake Temperature (°C)	Open					Open		4	1.6
Number of Cycles	1	~3				1		5	1.8
Force (N)		178.13				121.876	N		
Deceleration (m/s ²)		1.962							
Time (s)		3.12				2.93	s		
Area of Pad (mm ²)		4050							
Dynamic Rolling Radius (mm)		321							

Pressu	ure Series 1		Tota	l Snubs	8								
				Dynam	nom	neter	_	UMT			n	λ ⁿ	
Snubs	per cycle		8	Snub/cy	ycle			8	Snub/	cycle	-0.5		0.94
Brake	Brake Speed (km/h) 40		40	(m/s)	5	(rpm)	750	799	rpm		0		1.00
Relea	se Speed (k	(m/h)	5	(m/s)	1	(rpm)	94	100	rpm		0.5		1.07
Initial	Brake Tem	nperature	≤ 100					≤ 100	°C		1		1.13
Final E	Brake Tem	perature	Open					Open	°C		2		1.29
Numb	er of Cycle	es	1					1			3		1.46
Time ((s)			2.19				2.05	s		4		1.66
Decel	eration (m	/s²)		1.962				1.962	m/s ²		5		1.88
Area o	of Pad (mm	1 ²)		4050				1					
Dynar	nic Rolling	Radius (n	nm)	321									
						3		-					
Snub	Pressure												
	kPa	N/mm ²	F (N)				Snub	F (N)					
1	1000	1.0	56.38				1	38.575					
2	2000	2.0	118.8				2	81.248					
3	3000	3.0	178.1				3	121.876					
4	4000	4.0	237.5				4	162.497					
5	5000	5.0	296.9				5	203.124					
6	6000	6.0	356.3				6	243.752					
7	7000	7.0	415.6				7	284.372					
8	8000	8.0	475				8	325.000					

Press	ure Series	2	Tota	l Snubs	8								
				Dynam	nom	eter		UMT			n	λ ⁿ	
Snubs	per cycle		8	Snub/cycle				8	Snub	/cycle	-0.5		0.94
Brake	Speed (km	n/h)	80	(m/s)	10	(rpm)	1500	1598	rpm		0		1.00
Release Speed (km/h) 40		40	(m/s)	5	(rpm)	750	799	rpm		0.5		1.07	
Initial	Brake Tem	perature	≤100					≤ 100	°C		1		1.13
Final E	Brake Tem	perature	Open					Open	°C		2		1.29
Numb	er of Cycle	s	1					1			3		1.46
Time ((s)			2.50				2.34	S		4		1.66
Decel	eration (m	/s²)		1.962				1.962	m/s ²		5		1.88
Area o	of Pad (mm	1 ²)		4050				1					
Dynar	nic Rolling	Radius (r	nm)	321									
						3		-					
Snub	Pressure												
	kPa	N/mm ²	F (N)				Snub	F (N)					
1	1000	1.0	56				1	38.575					
2	2000	2.0	119				2	81.248					
3	3000	3.0	178				3	121.876					
4	4000	4.0	238				4	162.497					
5	5000	5.0	297				5	203.124					
6	6000	6.0	356				6	243.752					
7	7000	7.0	416				7	284.372					
8	8000	8.0	475				8	325.000					
Press	ure Series	3	Tota	l Snubs	8								
---------	--	-------------------	-------	---------	------	-------	------	---------	------	---------	------	----------------	------
				Dynam	nom	eter		UMT			n	λ ⁿ	
Snubs	per cycle		8	Snub/cy	/cle			8	Snul	b/cycle	-0.5		0.94
Brake	Speed (km	n/h)	120	(m/s)	15	(rpm)	2250	2397	rpm		0		1.00
Releas	se Speed (k	(m/h)	80	(m/s)	10	(rpm)	1500	1598	rpm		0.5		1.07
Initial	Brake Tem	nperature	≤100					≤ 100	°C		1		1.13
Final E	Brake Tem	perature	Open					Open	°C		2		1.29
Numb	er of Cycle	s	1					1			3		1.46
Time (s)			2.50				2.34	S		4		1.66
Decele	eration (m	/s²)		1.962				1.962	m/s	2	5		1.88
Area o	Area of Pad (mm ²)			4050				1					
Dynar	Area of Pad (mm ²) Dynamic Rolling Radius (mn		nm)	321									
						3		-					
Snub	Pressure												
	kPa	N/mm ²	F (N)				Snub	F (N)					
1	1000	1.0	56				1	38.575					
2	2000	2.0	119				2	81.248					
3	3000	3.0	178				3	121.876					
4	4000	4.0	238				4	162.497					
5	5000	5.0	297				5	203.124					
6	6000	6.0	356				6	243.752					
7	7000	7.0	416				7	284.372					
8	8000	8.0	475				8	325.000					

Press	ure Series 4	4	Tota	l Snubs	8								
				Dynam	nom	eter		UMT			n	λ ⁿ	
Snubs	per cycle		8	Snub/cy	ycle			8	Snub	/cycle	-0.5		0.94
Brake	Speed (km	n/h)	160	(m/s)	20	(rpm)	3000	3196	rpm		0		1.00
Releas	se Speed (k	(m/h)	130	(m/s)	16	(rpm)	2437	2597	rpm		0.5		1.07
Initial	Brake Tem	perature	≤100					≤ 100	°C		1		1.13
Final E	Brake Temp	perature	Open					Open	°C		2		1.29
Numb	er of Cycle	s	1					1			3		1.46
Time (s)			1.87				1.76	S		4		1.66
Decel	eration (m	/s²)		1.962				1.962	m/s ²		5		1.88
Area o	Area of Pad (mm ²)			4050				1					
Dynar	nic Rolling	Radius (r	nm)	321									
						3		-					
Snub	Pressure												
	kPa	N/mm ²	F (N)				Snub	F (N)					
1	1000	1.0	56				1	38.575					
2	2000	2.0	119				2	81.248					
3	3000	3.0	178				3	121.876					
4	4000	4.0	238				4	162.497					
5	5000	5.0	297				5	203.124					
6	6000	6.0	356				6	243.752					
7	7000	7.0	416				7	284.372					
8	8000	8.0	475				8	325.000					

Pressi	ure Series	5	Tota	l Snubs	8								
				Dynan	nom	neter		UMT			n	λ ⁿ	
Snubs	per cycle		8	Snub/c	ycle	•		8	Snub,	/cycle	-0.5	(0.94
Brake	Speed (kn	n/h)	200	(m/s)	25	(rpm)	3750	3995	rpm		0		1.00
Relea	se Speed (km/h)	170	(m/s)	21	(rpm)	3187	3395	rpm		0.5	:	1.07
Initial	Brake Ten	nperatur	≤ 100					≤ 100	°C		1		1.13
Final I	Brake Tem	perature	Open					Open	°C		2		1.29
Numb	er of Cycl	es	1					1			3	:	1.46
Time	(s)			1.88				1.76	s		4	:	1.66
Decel	eration (m	/s²)		1.962				1.962	m/s ²		5		1.88
Area (of Pad (mn	n ²)		4050				1					
Dynar	nic Rolling	Radius (mm)	321	1								
						J							
Snub	Pressure												
	kPa	N/mm ²	F (N)				Snub	F (N)					
1	1000	1.0	56				1	38.575					
2	2000	2.0	119				2	81.248					
3	3000	3.0	178				3	121.876					
4	4000	4.0	238				4	162.497					
5	5000	5.0	297				5	203.124					
6	6000	6.0	356				6	243.752					
7	7000	7.0	416				7	284.372					
8	8000	8.0	475				8	325.000					

Characteristic Value 2	Тс	otal Snubs	6					n	λ ⁿ
		Dynam	ome	eter	-	UMT		-0.5	0.94
Snubs per cycle	6					6		0	1.00
Brake Speed (km/h)	80	(m/s)	10	(rpm)	1500	1598	rpm	0.5	1.07
Release Speed (km/h)	30	(m/s)	4	(rpm)	562	599	rpm	1	1.13
Pressure (kPa)	3000	(N/mm ²)	3	(Bar)	30			2	1.29
Initial Brake Temperature (°C)	≤ 100					<u>≤</u> 100	°C	3	1.46
Final Brake Temperature (°C)	Open	$\mathbf{A}(0)$				Open		4	1.66
Number of Cycles	1	~ 3				1		5	1.88
Force (N)		178.13				121.876	N		
Deceleration (m/s ²)		1.962							
Time (s)		3.12				2.93	S		
Area of Pad (mm ²)		4050							
Dynamic Rolling Radius (mm)		321							

Cold	Т	otal Snubs	1							
		Dynamo	me	ter		UMT		n	λ ⁿ	
Snubs per cycle	1					1		-0.5	(0.94
Brake Speed (km/h)	40	(m/s)	5	(rpm)	750	799	rpm	0	:	1.00
Release Speed (km/h)	5	(m/s)	1	(rpm)	94	100	rpm	0.5	-	1.07
Pressure (kPa)	3000	(N/mm ²)	3	(Bar)	30			1		1.13
Initial Brake Temperature (°C)	≤ 40					≤ 40	°C	2	:	1.29
Final Brake Temperature (°C)	Open	20	F			Open		3	:	1.46
Number of Cycles	1	~3				1		4	:	1.66
								5		1.88
Force (N)		178.13				122	N			
Deceleration (m/s ²)		1.962								
Time (s)		2.19				2.05	s			
Area of Pad (mm ²)		4050								
Dynamic Rolling Radius (mm)		321								

Motorway		Total Snubs	2							
		Dynamor	nete	er		UMT		n	λ ⁿ	
Snubs per cycle	2	Snub/Cycle				2	Snub/Cycle	-0.5		0.94
Brake Speed Stop (km/h)	100	(m/s)	12	(rpm)	1875	1997	rpm	0		1.00
Brake Speed Snub (km/h)	196	(m/s)	24	(rpm)	3679	3919	rpm	0.5		1.07
Release Speed Stop (km/h)	5	(m/s)	1	(rpm)	94	100	rpm	1		1.13
Release Speed Snub (km/h)	109	(m/s)	13	(rpm)	2044	2177	rpm	2		1.29
Pressure (kPa)	3000	(N/mm ²)	3	(Bar)	30			3		1.46
Initial Brake Temperature (°C)	<mark>≤</mark> 40					<u>≤</u> 40	°C	4		1.66
Final Brake Temperature (°C)	Open	' A(\mathbf{P}		Open	°C	5		1.88
Number of Cycles	1	U,	1			1				
Force (N)	178.1					121.876	N			
Deceleration (m/s ²)	5.886									
Time Stop (s)	1.98					1.86	s			
Time Snub (s)	1.81					1.70	s			
Area of Pad (mm ²)	4050									
Dynamic Rolling Radius (mm)	321									
V _{max} (m/s)	218									

Characteristic Value 3	Тс	otal Snubs	6					n	λ ⁿ
		Dynam	ome	eter		UMT		-0.5	0.94
Snubs per cycle	6					6		0	1.00
Brake Speed (km/h)	80	(m/s)	10	(rpm)	1500	1598	rpm	0.5	1.07
Release Speed (km/h)	30	(m/s)	4	(rpm)	562	599	rpm	1	1.13
Pressure (kPa)	3000	(N/mm ²)	3	(Bar)	30			2	1.29
Initial Brake Temperature (°C)	≤ 100					≤ 100	°C	3	1.46
Final Brake Temperature (°C)	Open	20				Open		4	1.66
Number of Cycles	1	~3				1		5	1.88
Force (N)		178.13				121.876	N		
Deceleration (m/s ²)		1.962							
Time (s)		3.12				2.93	s		
Area of Pad (mm ²)		4050							
Dynamic Rolling Radius (mm)		321							

Fade 1	Т	otal Snubs	15				n	λ ⁿ		
		Dynamo	ome	eter		UMT	-0.5	0.94	S.F.	0.50
Snubs per cycle	15					15	0	1.00	15	
Brake Speed (km/h)	100	(m/s)	12	(rpm)	1875	1997	0.5	1.07	999	
Release Speed (km/h)	5	(m/s)	1	(rpm)	94	100	1	1.13	50	
Pressure (kPa)	16000	(N/mm ²)	16	(Bar)	160		2	1.29		
Number of Cycles	1					1	3	1.46		
							4	1.66		
Force (N)		950.02				650.0	5	1.88	325	
Deceleration (m/s ²)		3.924								
Time (s)		2.97				2.78	1		1.39	
Area of Pad (mm ²)		4050								
Dynamic Rolling Radius (mm)		321								
Initial Temperature 1 (°C)		≤100	2			≤100				
Initial Temperature 2 (°C)		≤215				≤ 215	_			
Initial Temperature 3 (°C)		≤283				≤283				
Initial Temperature 4 (°C)		≤ 330				≤ 330				
Initial Temperature 5 (°C)		≤ 367				≤367				
Initial Temperature 6 (°C)		≤ 398				≤ 398				
Initial Temperature 7 (°C)		≤423				≤423				
Initial Temperature 8 (°C)		≤446				≤446				
Initial Temperature 9 (°C)		≤ 465				≤465				
Initial Temperature 10 (°C)		≤ 483				≤483				
Initial Temperature 11 (°C)		≤ 498				≤498				
Initial Temperature 12 (°C)		≤513				≤513				
Initial Temperature 13 (°C)		≤ 526				≤ 526				
Initial Temperature 14 (°C)		≤ 539				≤539				
Initial Temperature 15 (°C)		≤ 550				≤ 550				
Final Brake Temperature (°C)		Open				Open				

Recovery 1	Total S	Snub	18				n	λ ⁿ
		Dynam	ome	eter		UMT	-0.5	0.94
Snubs per cycle	18					18	0	1.00
Brake Speed (km/h)	80	(m/s)	10	(rpm)	1500	1598	0.5	1.07
Release Speed (km/h)	30	(m/s)	4	(rpm)	562	599	1	1.13
Pressure (kPa)	3000	(N/mm ²)	3	(Bar)	30		2	1.29
Initial Brake Temperature (°C) 🦳	≤ 100			1		≤ 100	3	1.46
Final Brake Temperature (°C)	Open	\mathbf{OE}				Open	4	1.66
Number of Cycles	-	30				1	5	1.88
Force (N)		178.13				121.876		
Deceleration (m/s ²)		1.962						
Time (s)		3.12				2.93		
Area of Pad (mm ²)		4050						
Dynamic Rolling Radius (mm)		321						

Pressu	ure Series	6	Tota	l Snubs	8							
				Dynan	nom	neter		UMT			n	λ ⁿ
Snubs	per cycle		8	Snub/c	ycle			8	Snub	/cycle	-0.5	0.94
Brake	Speed (kn	n /h)	80	(m/s)	10	(rpm)	1500	1598	rpm		0	1.00
Relea	se Speed (km/h)	30	(m/s)	4	(rpm)	562	599	rpm		0.5	1.07
Initial	Brake Ter	nperatur	≤ 100					≤ 100	°C		1	1.13
Final I	Brake Tem	perature	Open					Open	°C		2	1.29
Numb	er of Cycl	es	1					1			3	1.46
Time	(s)			3.12				2.93	s		4	1.66
Decel	eration (m	/s²)		1.962				1.962	m/s ²	2	5	1.88
Area o	of Pad (mn	n ²)		4050								
Dynar	nic Rolling	Radius (mm)	321	L	IE						
Snub	Pressure											
	kPa	N/mm ²	F (N)				Snub	F (N)				
1	1000	1.0	56				1	39				
2	2000	2.0	119				2	81				
3	3000	3.0	178				3	122				
4	4000	4.0	238				4	162				
5	5000	5.0	297				5	203				
6	6000	6.0	356				6	244				
7	7000	7.0	416				7	284				
8	8000	8.0	475				8	325				

Increasing Temperatu	ure 500°C							n	λ ⁿ
			Dynam	om	eter		UMT	-0.5	0.94
Snubs per cycle		9					9	0	1.00
Brake Speed (km/h)		80	(m/s)	10	(rpm)	1500	1598	0.5	1.07
Release Speed (km/h)	30	(m/s)	4	(rpm)	562	599	1	1.13
Pressure (kPa)		3000	(N/mm ²)	3	(Bar)	30		2	1.29
Number of Cycles		1					1	3	1.46
								4	1.66
Force (N)			178.13				121.9	5	1.88
Deceleration (m/s ²)			1.962						
Time (s)			3.12				2.93		
Area of Pad (mm ²)	ŀ	22	4050		1				
Dynamic Rolling Radi	ius (mm)	Ć	321		i.				
Initial Temperature 1	(°C)		≤ 100				≤ 100		
Initial Temperature 2	(°C)		≤ 150				≤ 150		
Initial Temperature 3	(°C)		≤ 200				≤ 200		
Initial Temperature 4	(°C)		≤ 250				≤ 250		
Initial Temperature 5	(°C)		≤ 300				≤ 300		
Initial Temperature 6	(°C)		≤ 350				≤ 350		
Initial Temperature 7	(°C)		≤ 400				≤ 400		
Initial Temperature 8	(°C)		≤ 450				≤ 450		
Initial Temperature 9	(°C)		≤ 500				≤ 500		

Pressu	ure Line 50	0°C	Tota	l Snubs	8							
				Dynan	nom	eter		UMT		n	λ ⁿ	
Snubs	per cycle		8	Snub/c	ycle			8	Snub/cycle	-0.5		0.94
Brake	Speed (kn	n/h)	80	(m/s)	10	(rpm)	1500	1598	rpm	0		1.00
Releas	se Speed (km/h)	30	(m/s)	4	(rpm)	562	599	rpm	0.5		1.07
Initial	Brake Ter	nperatur	≤ 500					≤ 500	°C	1		1.13
Final E	Brake Tem	perature	Open					Open	°C	2		1.29
Numb	er of Cycl	es	1					1		3		1.46
Time ((s)			3.12				2.93	S	4		1.66
Decel	Deceleration (m/s ²) Area of Pad (mm ²)			1.962				1.962	m/s ²	5		1.88
Area o	Area of Pad (mm ²)		- I	4050				1				
Dynan	Area of Pad (mm ²) Dynamic Rolling Radius (n		mm)	321								
					1	3		-				
Snub	Pressure											
	kPa	N/mm ²	F (N)				Snub	F (N)				
1	1000	1.0	56				1	38.575				
2	2000	2.0	119				2	81.248				
3	3000	3.0	178				3	121.876				
4	4000	4.0	238				4	162.497				
5	5000	5.0	297				5	203.124				
6	6000	6.0	356				6	243.752				
7	7000	7.0	416				7	284.372				
8	8000	8.0	475				8	325.000				

Recovery 2							n	λ ⁿ
		Dynam	ome	eter		UMT	-0.5	0.94
Snubs per cycle	18					18	0	1.00
Brake Speed (km/h)	80	(m/s)	10	(rpm)	1500	1598	0.5	1.07
Release Speed (km/h)	30	(m/s)	4	(rpm)	562	599	1	1.13
Pressure (kPa)	3000	(N/mm ²)	3	(Bar)	30		2	1.29
Initial Brake Temperature (°C)	≤ 1 00					≤ 100	3	1.46
Final Brake Temperature (°C)	Open	- 1 6				Open	4	1.66
Number of Cycles	1	~3				1	5	1.88
Force (N)		178.13				121.876		
Deceleration (m/s ²)		1.962						
Time (s)		3.12				2.93		
Area of Pad (mm ²)		4050						
Dynamic Rolling Radius (mm)		321						

Fade 2							n	λ ⁿ			
		Dynamo	ome	eter		UMT	-0.5	0.94	5	S.F.	0.50
Snubs per cycle	15					15	0	1.00		15	
Brake Speed (km/h)	100	(m/s)	12	(rpm)	1875	1997	0.5	1.07		999	
Release Speed (km/h)	5	(m/s)	1	(rpm)	94	100	1	1.13		50	
Pressure (kPa)	16000	(N/mm ²)	16	(Bar)	160		2	1.29			
Number of Cycles	1					1	3	1.46			
							4	1.66			
Force (N)		950.02				650.0	5	1.88		325	
Deceleration (m/s ²)		3.924									
Time (s)		2.97				2.78				1.39	
Area of Pad (mm ²)		4050									
Dynamic Rolling Radius (mm)		321									
Initial Temperature 1 (°C)		≤100			T	≤ 1 00					
Initial Temperature 2 (°C)		≤215				≤ 215	_				
Initial Temperature 3 (°C)		≤283				≤ 283					
Initial Temperature 4 (°C)		≤ 330				≤ 330					
Initial Temperature 5 (°C)		≤367				≤367					
Initial Temperature 6 (°C)		≤ 398				≤ 398					
Initial Temperature 7 (°C)		≤ 423				≤423					
Initial Temperature 8 (°C)		≤ 446				≤446					
Initial Temperature 9 (°C)		≤ 465				≤465					
Initial Temperature 10 (°C)		≤ 483				≤483					
Initial Temperature 11 (°C)		≤ 498				≤498					
Initial Temperature 12 (°C)		≤513				≤513					
Initial Temperature 13 (°C)		≤ 526				≤ 526					
Initial Temperature 14 (°C)		≤ 539				≤ 539					
Initial Temperature 15 (°C)		≤ 550				≤ 550					
Final Brake Temperature (°C)		Open				Open					

Recovery 3							n	λ ⁿ
		Dynam	ome	eter		UMT	-0.5	0.94
Snubs per cycle	18					18	0	1.00
Brake Speed (km/h)	80	(m/s)	10	(rpm)	1500	1598	0.5	1.07
Release Speed (km/h)	30	(m/s)	4	(rpm)	562	599	1	1.13
Pressure (kPa)	3000	(N/mm ²)	3	(Bar)	30		2	1.29
Initial Brake Temperature (°C)	≤ 100					≤ 100	3	1.46
Final Brake Temperature (°C) 📗	Open	- 11				Open	4	1.66
Number of Cycles	1	19				1	5	1.88
Force (N)		178.13				121.876		
Deceleration (m/s ²)		1.962						
Time (s)		3.12				2.93		
Area of Pad (mm ²)		4050						
Dynamic Rolling Radius (mm)		321						

APPENDIX C:

TORQUE CALCULATIONS

	Pad Area	System
Camry	4050	8100
F-150	7140	14280

Scaling Exponent (n)	Camry	F-150
-0.5	0.44	0.38
0	1.00	1.00
0.5	2.28	2.62
1	5.20	6.89
2	27.00	47.47
3	140.30	327.03
4	729.00	2253.08
5	3788.00	15522.86
λ	5.20	6.89

Figure 49: Pad area and Scaling exponents.

Force (N)						
Pressure	Camry	F-150				
1	57.74	43.67				
2	115.47	87.33				
3	173.21	131.00				
4	230.94	174.66				
5	288.68	218.33				
6	346.41	262.00				
7	404.15	305.66				
8	461.88	349.33				
16	923.76	698.66				

Figure 50: Forces being applied to the contact area.

Torque Calculations

Given a	radius of	f 38.1	mm
---------	-----------	--------	----

 $Torque = Force * \mu * radius$

Form			ı	
Force	0.1	0.35	0.62	0.75
5	0.02	0.07	0.12	0.14
10	0.04	0.13	0.24	0.29
25	0.10	0.33	0.59	0.71
50	0.19	0.67	1.18	1.43
100	0.38	1.33	2.36	2.86
250	0.95	3.33	5.91	7.14
500	1.91	6.67	11.81	14.29
699	2.66	9.32	16.51	19.97
750	2.86	10.00	17.72	21.43
924	3.52	12.32	21.83	26.40
1000	3.81	13.34	23.62	28.58

Figure 52: Graph of required torque.

APPENDIX D:

LINEAR VELOCITY VS. ANGULAR VELOCITY

After the completion of the research, it was brought to the attention of the research lab that there was an issue with directly scaling angular velocity (RPM) and that instead the Linear velocity should be scaled then used to determine the angular velocity. The lab has since started to scale using linear velocity for determining angular velocity instead of the previous method.

Linear Velocity =
$$2 * \pi * radius * \frac{RPM}{60}$$

Equation 6: New formula to be used to calculate the angular velocity.

So, to scale rpm, the radius needs to be scaled as well, but with a fixed radius of 38.1mm, this radius must be used for the calculations. So instead of making it worse, the lab is now scaling using linear velocity then calculating the RPM using the radius of 38.1 mm.

VITA

Graduate School Southern Illinois University

David S. McKavanagh

david.s.mckavanagh.civ@mail.mil

Southern Illinois University Carbondale Bachelor of Science, Mechanical Engineering and Energy Processes, May 2017

Thesis Paper Title:

On Scaling of Brake Test SAE J2522

Major Professor: Peter Filip, Ph.D.