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ABSTRACT 

State transportation agencies regularly collect and store various types of data for different 

uses such as planning, traffic operations, design, and construction. These large datasets 

contain treasure troves of information that could be fused and mined, but the size and 

complexity of data mining require the use of advanced tools such as big data analytics, 

machine learning, and cluster computing. TITAN (Transportation data InTegration and 

ANalytics) is an initial prototype of an interactive web-based platform that demonstrates 

the possibilities of such big data software. The current study succeeded in showing a 

user-friendly front end, graphical in nature, and a scalable back end capable of integrating 

multiple big databases with minimal latencies. This thesis documents how the key 

components of TITAN were designed. Several applications, including mobility, safety, 

transit performance, and predictive crash analytics, are used to explore the strengths and 

limitations of the platform. A comparative analysis of the current TITAN platform with 

traditional database systems such as Oracle and Tableau is also conducted to explain who 

needs to use the platform and when to use which platform. As TITAN was shown to be 

feasible and efficient, the future research direction should aim to add more types of data 

and deploy TITAN in various data-driven decision-making processes. 

 



  

1 

 

CHAPTER 1: INTRODUCTION 

In recent years, with the development of technology and rapid popularization and 

application of the Internet, we have entered the era of big data. The development of the 

Internet has brought us great convenience. Currently, all aspects of our lives are 

inextricably linked to the Internet. We are now in an era of data explosion. Various types 

of data are flooding our lives, and the widespread use of the Internet combines them to 

form big data. A more optimized system is needed to analyze, process, and store such big 

data. Big data analytics refer to a new model that can quickly organize and process a 

large amount of information and data in a short time. It surpasses the earlier backward 

model, which is a more optimized data processing model. Data adds immense 

convenience to our lives. The Internet has entered various aspects of our lives in a step-

by-step manner. Our study, work, and life are all served by the Internet. 

Furthermore, the temporality and convenience brought by big data are 

accompanied by more challenges. Moreover, under the influence of big data, the 

transportation system has been greatly affected. It is becoming increasingly larger and 

more complex, meaning that the information and data in the transportation system must 

be processed more than before and in a better and faster manner. In the past, the 

processing speed of traffic information was very slow, requiring more manual integration 

and analytics and excessive time. Additionally, manual processing has a serious 

disadvantage; it is highly error-prone, and the error rate is very high. At this time, the 

advantages of big data are reflected. Big data of transportation can be integrated and 

analyzed by a machine that can quickly draw conclusions. 

Big data integration and analytics is an advanced analytic technique that handles 
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large and diverse datasets. Big data has three common characteristics called 3Vs: high 

volume, high variety, and high variety. As big data has very high volume, complex data 

structure, and various data sources, an effective platform for data integration and 

analytics is necessary. In the transportation field, big data analytics techniques also keep 

developing. 

Recent advances in big data analytics are enabling organizations to digest 

humongous amounts of data and transform them into actionable insights (Adu-Gyamfi et 

al. 2016; Kluger and Smith 2013). This innovation is being fueled by massive open data 

platforms, driven by machine-learning and empowered by low-cost cloud computing. The 

open data platform is primarily designed to create Hadoop-powered big data applications 

on a common platform, which provides big data developers a basic model to build 

applications and services that can be interoperable on different platforms. This new wave 

of invention could be leveraged to enable transportation agencies to identify the 

usefulness of their diverse datasets and explore previously untapped applications. 

1.1 Data Integration and Analytics 

1.1.1 Data Integration 

Big data integration is the process of conflating different sources and format data 

into a single, unified view. Due to different development times or departments, there are 

often multiple heterogeneous information systems running simultaneously on different 

software and hardware platforms. The data sources of these systems are independent and 

closed from each other, making it difficult to store data in communication, sharing, and 

integration phases between the systems; therefore, an “information isolated island” is 

formed. With the continuous in-depth application of information technology, it is urgent 

to integrate the existing information and connect with “information isolated islands” to 
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share information. In recent decades, with the rapid development of science and 

technology, human society has gathered a huge amount of data; moreover, the instances 

of data collection, storage, processing, and dissemination have increased. Data sharing 

can enable more people to make fuller use of existing data resources and reduce repeated 

labor and corresponding costs in data collection. However, in the process of 

implementing data sharing, as the data provided by different users may come from 

different paths and sources, the data content, format, and quality are very different. 

Furthermore, the data format cannot be conflated, or the information is lost after data 

conflation, which seriously damages the flow and sharing of data in various departments 

and software systems. Therefore, how to effectively integrate data management is an 

urgent issue that needs to be solved. Nowadays, big data integration still faces challenges 

such as uncertainty of data, syncing across data sources, slow integration speed, etc.  

1.1.2 Big Data Analytics 

Big data is a collection of data that cannot be captured, managed, and processed 

with regular software tools on a commodity computer in a reasonable time period. The 

process of collecting, organizing, visualizing, and analyzing large size datasets to get 

more hidden and useful information from data is called big data analytics. There are five 

common big data analytic methods. The first is visualization analytics. Users of big data 

analytics include experts and ordinary users, but its most basic requirement is 

visualization analytics because they can intuitively present the characteristics of big data 

and be easily accepted by the audience, which is just like watching simple pictures. The 

second method is data mining algorithms, which is the core of the big data analytics 

theory. Various data mining algorithms can scientifically present the characteristics of the 
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data itself according to different data types and formats.  On the other hand, data mining 

algorithms can process big data faster. If an algorithm takes years to get results, the value 

of big data cannot be shown. The third way is predictive analytics, which is one of the 

ultimate application areas of big data analytics. Mining features from big data include 

building a model and then introducing new data through the model to predict future data. 

The fourth method is the semantic engine. The diversification of unstructured data brings 

new challenges to data analytics. A set of tools is needed to analyze and improve the data. 

Enough artificial intelligence is needed to design the semantic engine to proactively 

extract information from the data. The last approach is data quality and management. Big 

data analytics is inextricably linked to data quality and management. Whether in 

academic research or commercial applications, high-quality data and effective data 

management can ensure the authenticity and value of analysis results. The 

aforementioned five aspects form the basis of big data analytics. For deeper big data 

analysis, more professional and deeper methods are available. This research mainly 

focuses on two methods: visualization analytics and predictive analytics. 

1.2 Problem Statement 
 

The recent surge in the use of community-based sensing such as Waze, ubiquitous 

mobile computing, automatic vehicle location equipped fleets, surveillance cameras, etc. 

has exponentially increased the rate of data collection for most transportation agencies. 

Increased monitoring of transportation networks, however, will only be fruitful if timely 

analysis can be conducted to provide actionable insights needed for the day-to-day 

management of the transportation system. 

Although agencies such as the State Departments of Transportation have 

transportation data management systems for storing and processing data streams, they are 
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not uniquely designed to handle such large, heterogeneous, and multi-resolution data 

streams. They have limited analytical capabilities that will enable them to integrate, mine, 

visualize, and predict large, multivariate datasets at reasonable speeds (Amin-Naseri et al. 

2018; Richardson et al. 2014). Traditional data warehouses are stretched to the limit due 

to the enormous size and speed and significant variety of datasets across different 

vendors in terms of collection method, data quality, availability (daily, monthly, or 

quarterly), and format (shapefiles, documents, table, videos, etc.). The need for 

frameworks or platforms that can quickly integrate, digest, and extract actionable insights 

from these datasets is therefore crucial. In the above context, the primary goal of this 

research is to deliver a prototype design and deployment of TITAN, an interactive web-

based framework for storing, retrieving, integrating, analyzing, and visualizing big 

transportation datasets. The prototype platform is designed to be significantly faster and 

cheaper (by using open-sourced software solutions for development) compared to 

conventional data warehouses, heavily reliant on relational databases housed in big, 

costly enterprise machines. 

1.3 Objectives of the Study 
 

The objectives of this study can be summarized as follows: 

• Leverage state-of-the-art big data frameworks to develop a platform that is fast 

and scalable for data analytics, unlike traditional data warehouses commonly 

used by transportation agencies. 

• Offer a low-cost but effective data integration and analytics platform by 

leveraging open-source software for designing, developing, and deploying 

TITAN. 
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• Develop a scalable architecture for data storage and processing and leverage 

parallel processing to analyze data at fast speeds. 

• Leverage GPUs (Graphical Processing Units) for data visualization.  

• Provide user-centered, web-based data visualization to enable easy interaction 

with the platform and provide users with quick access to the integrated datasets 

via a user-friendly, interactive web interface. 
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CHAPTER 2: LITERATURE REVIEW 

Before beginning the proposed methodology section, the literature review has 

been conducted on the interactive web-based platform for transportation data integration 

and analytics. The literature review helps to understand the growth of this research area 

and identify the challenges or issues are faced by other researchers.  

In general, data integration should be conducted before data analysis. Data 

integration is a complex challenge for organizations that deploy big data architecture due 

to the heterogeneous nature of data used by them (Kadadi et al. 2014). Despite the 

insurmountable growth of data in big data scenarios, users usually look for a unified view 

of the data available from heterogeneous data sources; therefore, integration issues are 

increasingly garnering attention (Abbes and Gargouri 2016). Data integration is 

concerned with unifying data that shares common semantics but originates from 

unrelated sources, referring to combining data such that a uniform view is available to 

users (Abbes and Gargouri 2016). While working on data integration, it is essential to 

deal with heterogeneity, as it creates an interoperability problem when distributed 

systems need to cooperate. In order to solve this problem, both structural and semantic 

heterogeneities must be dealt with (Malucelli and Oliveira 2003; Abbes and Gargouri 

2016). According to Dong and Srivastava (2013), big data integration differs from 

traditional data integration in many dimensions: (i) the number of data sources, even for a 

single domain, has grown to tens of thousands, (ii) many data sources are highly dynamic, 

as a huge amount of newly collected data is continuously made available, (iii) the data 

sources are extremely heterogeneous in their structure, with considerable variety even for 

substantially similar entities, and (iv) the data sources are of widely differing qualities, 
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with significant differences in the coverage, accuracy, and timeliness of data. However, 

the authors only explored the progress made by the data integration community in 

schema mapping, record linkage, and data fusion and not how to deal with big data 

integration based on the aforementioned four dimensions.  

Big data is becoming a research focus in intelligent transportation systems (ITS), 

as seen in many projects around the world (Zhu et al. 2018). Besides ITS, big data 

analytics is used in many areas such as machine learning, computer vision, and web 

statistics (Ayed et al. 2015). Today, many big data analytic solutions are available, but 

the most used is the open-source Apache Hadoop framework. Hadoop uses a distributed 

storage and parallel computation model over a cluster of many commodity machines to 

easily handle big data (Ayed et al. 2015). According to Vlahogianni (2015), traditionally, 

turning data into knowledge relies on classical statistical analysis and interpretation; this 

fundamentally requires analysts to become intimately familiar with the data and serve as 

an interface between the data and users. With the recent availability of very large data 

sets (big data), this form of manual probing becomes slow, expensive, and frequently 

unfeasible (Vlahogianni 2015). Therefore, the authors think new approaches are needed 

to efficiently deal with some of the challenging issues related to big data such as the data 

size, high dimensionality, and overfitting. Finding more efficient big data analytical 

approaches is necessary, as big data can be generated anywhere using any digital device. 

It can be produced by cell phones, social media, sensors, transactional systems, vehicles, 

industrial machines, PCs, satellites, and cameras that monitor traffic (Guido et al. 2017). 

In their work, the authors introduced the capillary diffusion of wireless technologies and 

the entire network infrastructure, which allow to detect and collect large amounts of 
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spatio-temporal data that can be used to understand patterns and innovative interpretative 

models that, in the specific field of mobility, can direct urban planning, sustainable 

mobility, and transport engineering. To improve decision-making capacity and problem-

solving ability reliably and in real time, their study aimed to present a Decision Support 

System (DSS) framework aimed at proposing travel strategies alternative to individual 

modes by elaborating a large amount of transportation systems data coming from 

different devices. The proposed DSS framework tends to fill the gap and create 

preconditions necessary to improve the modal split in favor of public transport, which has 

not yet implemented all its functions by the Centrale Operativa Regionale (C.O.RE.). 

Their research focuses on how to build the public transport system, but it is not very user-

friendly. The authors did not discuss and provide more details about big data 

visualization that is necessary to help users better understand the data and results.  

Big data visualization has proven to be effective for not only presenting essential 

information as vast amounts of data but also driving complex analyses (Keim et al. 2013). 

Big data analytics and discovery present new research opportunities to the computer 

graphics and visualization community (Keim et al. 2013). Effective data visualization is 

the bridge between the quantitative content of the data and human intuition and thus an 

essential component of the scientific path from data into knowledge and understanding 

(Donalek et al. 2014). Moreover, visualization is essential in the data mining process, 

directing the choice of the applicable algorithms, and in helping to identify and remove 

bad data from the analysis (Donalek et al. 2014). In their work, the authors try to explore 

the use of immersive virtual reality platforms for scientific data visualization, both as 

software and inexpensive commodity hardware. Although their platform is not used for 



  

10 

 

the transportation of big data visualization specifically, exploring techniques and 

methodology such as the application, some software libraries, and building tools in their 

research are still worthy to learn. According to Ali et al. (2016), big data visualization has 

become the topic of interest for all industries but faces quite a few challenges; for 

instance, big data visualization tool must be able to deal with semi-structured and 

unstructured data because big data usually has this type of format. Their work also 

proposed several visualization tools such as Tableau, Microsoft Power BI, Plotly, Gephi, 

etc.  

Several studies are related to big data visualization, integration, and analytics but 

not many on building an interactive web-based platform for combining all the 

transportation big data integration, visualization, and analytics works. Researchers are 

still working on it. During the past decade, various web-based archived data user service 

systems/platforms have been developed in attempts to increase the exchangeability and 

usability of data (Ma et al. 2011). For instance, Li et al. (2018) combined the existing 

LiDAR processing tools with Hadoop to handle the high computational intensity of 

LiDAR data. Their framework can conduct data processing in parallel with high-scalable 

distributed computing speed. Prasad and Agarwal (2014), on the other hand, introduced a 

framework called SAMOA (Scalable Advanced Massive Online Analysis), which is an 

open-source framework based on JAVA and supports several distributed processing 

platforms plugging into it. SAMOA allows users to use the existing machine learning 

directly or developers can develop their new algorithms rapidly. As mentioned above, the 

three challenges of big data while conducting stream mining are volume, velocity, and 

variety. The authors supposed that most solutions existing today solve at most two 
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challenges. Their platform SAMOA is a recent and open-source framework for 

distributed machine learning that addresses all three challenges while conducting big data 

stream mining (Prasad and Agarwal 2014). Another framework worth mentioning is 

MapReduce, a new parallel processing framework based on open-source Hadoop. 

Compared with the existing parallel processing data analysis tools, according to 

Mohammed et al. (2014), it has two advantages: 1. fault-tolerant storage resulting in 

reliable data processing by replicating computing tasks and cloning data chunks on 

different computing nodes across the computing cluster and 2. high-throughput data 

processing via a batch processing framework and Hadoop distributed file system (HDFS). 

Data is stored in HDFS and made available to slave nodes for computation. Like other 

researchers, this project aims to create an interactive and multi-functional system but 

aims to focus more on developing a framework for storing, retrieving, integrating, 

analyzing, and visualizing big transportation datasets. 

The content of the paper is mainly divided into three chapters: Chapter 3 

discusses the proposed methodologies. This chapter discusses the design of the TITAN 

framework, the main structure of the TITAN platform, and the five main TITAN 

applications. Chapter 4 discusses the performance evaluation of the platform, comparing 

TITAN with other data processing platforms such as Oracle and Tableau. Chapter 5 

discusses the conclusions of this project and the prospects for future research. Finally, 

Chapter 6 demonstrates some sample applications of TITAN. 
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CHAPTER 3: PROPOSED METHODOLOGY 

The methodology is developed to analyze the TITAN’s design approaches and 

main applications. TITAN has four main components, which have been discussed in 

detail in the subsequent paragraphs: Back End, Front End, Data Center, and 

APPCENTER.  

3.1 TITAN Design Approach 
 

TITAN’s design architecture seeks to address key technological gaps in data 

handling, archiving, and analysis for decision support. The following section provides a 

detailed overview of its components. Figure 1 illustrates the design framework that 

enables TITAN to handle fast, disparate, noisy data streams in a seamless manner. It 

comprises two key modules: first, a user-centered, interactive, web-based front end where 

TITAN’s users can interface and interact with the platform and, second, a big-data-

enabled back end, which stores data and provides a computational framework for 

retrieving, processing, and visualizing large datasets. 

 

 

Figure 1. Schematic of TITAN’s Key Components 
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3.1.1 Back-End Design 

The primary goal of TITAN’s back end is to provide computational resources that 

could be used to speed up responses to user queries from the front end. The types of 

analytics carried out on TITAN’s front end can be computationally expensive. For 

example, a user may request to calculate the average travel time during PM peak hours on 

all major arterials in St. Louis over a period of five years. It is expected that the back end 

can sift through approximately 100 gigabytes of data and provide a response to the user 

without any significant latencies. To enable TITAN to carry out such highly complex 

analytics from the front end, we designed a scalable, cloud-based back end based on 

recent advances in big data analytics. In addition to providing computational resources, 

the back end is also used for archiving large datasets and managing functions such as user 

authentication, data security, etc. The structure of the back end and how it integrates into 

the overall TITAN framework is shown in Figure 2. At the core of the back end is an 

HDFS (Shvachko et al. 2010), which enables the networking of a series of computers into 

clusters. Using the HDFS enables maintaining the processing speed of TITAN even as 

the size of the data grows. On top of the Hadoop framework are three different databases: 

Firebase (Tanna and Singh 2018), MongoDB (Chodorow 2013), and a GPU database. 

Their roles are defined as follows.  
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Figure 2. Back-End Design Framework 

3.1.1.1 Firebase DB 

Firebase is a NOSQL database for storing datasets that are not structured. The 

NOSQL means non-relational in contrast to traditional Structured Query Language (SQL) 

databases. Moreover, NOSQL differs in how it is scaled by increasing the database server 

pool as opposed to increasing the horsepower of the hardware. 

Firebase serves two functions in the TITAN framework: user authentication and 

temporary data storage. Before a user can use an app, they must be authenticated. 

Firebase authenticates users via email/password, phone number, or Facebook, Google, 

Twitter, and GitHub accounts. To simplify TITAN’s development, users are 

authenticated only by email and password. Further, Firebase is used to temporarily store 

all user-uploaded datasets. As Firebase is a NOSQL database, it can consume all types of 

data formats: Shapefiles, CSVs, XML, Video, Images, etc. In contrast, an SQL database 

requires a predefined format or schema. It is, however, not designed for storing very large 

datasets. Firebase, therefore, redirects significantly large files (30GB or more) to HDFS 

and MongoDB depending on the use of the data. 
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3.1.1.2 Mongo DB 

Mongo DB is also a NoSQL database. Compared to Firebase, Mongo is highly 

scalable and, as such, can handle much larger files. TITAN uses Mongo primarily for 

managing data queries at the Data Center. Figure 3 provides an example of how data is 

stored in Mongo. Each row of data is stored uniquely with an identifier (_id). As data is 

stored by rows and not as one big table, Mongo can store files with an uneven number of 

columns. This is a relevant property for handling unstructured datasets such as texts, 

images, videos, etc. 

 

Figure 3. Data Storage in Mongo DB 
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3.1.1.3 Graphical Processing Unit (GPU) DB 

All front-end visualizations are carried out by using an open-source GPU 

database. GPUs have tremendous processing capabilities compared to CPUs. For 

example, a single NVIDIA Geoforce 1080ti GPU card has over 4000 processing cores, 

meaning 1 GPU is capable of processing information at a rate comparable to using a 

cluster of 500 8-core computers. The GPU database is the reason TITAN is highly fast on 

the front end. A SQL database is used on top of this database to process data in the 

memory of the GPU. 

3.1.2 Data Integration Layer 

The problem of data inconsistencies both in the spatial and attribute domains 

presents obstacles in using data for analysis, overlays, and mapping. As a result, 

developing efficient tools for automating data harmonization and conflation has become a 

necessity. TITAN’s data integration applications enable transportation agencies to fuse 

multiple data sources from disparate sources at a fast rate. The main steps for integrating 

multiple geographic layers are shown in Figure 4. After the data undergoes initial pre-

processing, tables can be joined by matching unique field identifiers, i.e., different 

databases are linked together via fields that are common to each. In cases where a unique 

field identifier does not exist, a GIS-based, spatial data conflation model is used to merge 

respective tables based on latitude/longitude. 
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Figure 4. Automated Spatial Data Conflation Process 

3.1.2.1 Data Pre-Processing and Attribute Matching 

This step conditions the data for further analysis. It includes validating data 

geometry and topology, selecting relevant attribute features (e.g., road names, segment 

ids, counties, etc.) for processing and using consistent map projections to ensure that the 

two data layers are projected on the same geographic coordinate system. Next, attributes 

in both datasets describing the same features are matched. For example, some attributes 

that can be matched are County, Road Name, and Road Directionality. 

3.1.2.2 Detect Feature Changes 

Feature change detection is the second step of the conflation process. Knowing 

where and what the changes are between the two datasets helps to assess how significant 

they are and whether to proceed with attribute transfer. To detect feature changes in two 

datasets, the Detect Feature Change (DFC) tool in ESRIs ArcGIS was used. This tool 

identifies spatial feature differences and outputs the type of change detected for each 

feature. Ideally, four possible conditions could occur: spatial change (topological 

difference), attribute change, no change (1:1 match without any spatial or attribute 

changes), or new feature (unmatched feature). For features where a spatial change was 

detected, the following workflow is used to unify and consequently conflate into the base 
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data. 

3.1.2.3 Feature Matching 

The goal of feature matching is to map features in source datasets, which may 

have experienced a spatial change to its corresponding target features (base layer). In this 

study, we mainly used two types of data: MO-DOT Linear Referencing System (LRS) 

data and INRIX road data. The ESRI’s ArcGIS feature matching tools were used in this 

project. They match distorted features based on proximity, topology, pattern and 

similarity analysis, and other optional attributes. An output of this step is a table storing 

match information. The specific tool used in the current study is the “Generate 

Rubbersheet Tool” shown in Figure 5. It generates links between matched features or 

points where the source and target locations are identical. In Figure 5, the gaps in the 

rubber sheet results frame (green layer) shown represents regions where road segments 

were not matched. The conflation rate does fluctuate depending on the type, geometry, 

and length of the road segment.  
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Figure 5. ArcGIS Rubbersheet Tool and Results of Conflation. Gaps Indicate Road 

Sections Missed 

3.1.2.4 Transfer Attributes 

Finally, once the features between the two geographic data layers have been 

matched, specific feature attributes from the source layer are transferred to the matching 

target features. Table 1 shows an example of a transfer attribute output table for 

conflating statewide crash and probe data. The conflated database then allows a user to 

easily locate applicable data that originated from multiple databases. 
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Table 1. Transfer Attribute Output Table 

 

3.1.3 Conflation 

 Conflation found its first application around the mid-1930s, but it was not popular 

among researchers until the late of 1980s. Conflation is often a term used to describe the 

integration or alignment of different geospatial datasets (Chen et al. 2006). Conflation is 

the process of combining the information from two (or more) geodata sets to make a 

master data set that is superior to either source data set in either spatial or attribute aspect 

(Yuan and Tao 1999). Initially, the primary goal of conflation was to eliminate any sort 

of spatial inconsistency from the various vector maps to achieve a desirable accuracy.    

For this study, data available from free sources as well as State DOT’s data were 

used for the analysis. There were primary four types of data: INRIX (probe data), crash 

data, transit data, and detectors data. They contain different information. Conflating each 

of them can lead to more and accurate results.  
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3.1.3.1 Link Four Types of Data 

Conflate probe data and crash data: Probe data provides information on travel time 

and speed, and crash data can tell us about congestion. Linking both gives two results. 

The first is whether the crash creates congestion. If there is only crash data without travel 

speed and time, we cannot judge whether there is congestion. Secondly, it can help us to 

tell whether congestion causes the rear-end crash. For example, if there is a queue about 

which the driver does not know, then he would come and hit the back because of the 

sudden speed differentials. Therefore, congestion happens before the crash, meaning that 

the congestion causes the rear-end crash.  

Conflate crash and detector data: Detector data provides information about the 

volume, occupancy, and speed at a point. When volume and speed are linked with the 

crash, it can inform how many people are affected by the crash. When the crash occurs, 

the number of people who passed by after the crash are those affected by it.  

Conflate detector and probe data: Probe data provides information on travel time and 

speed but not volume. If only probe data is available, one cannot tell whether there is 

congestion. For instance, if we only know that the travel speed is 20 miles/hour but don’t 

know the number of vehicles, we cannot tell whether there is congestion. If the speed is 

20 miles/hour, it could be of just one car driving on the road that is driving very slowly, 

which does not mean there is congestion. However, on linking the volume information 

the volume reveals that there are 200 cars on the road and all are driving slowly; we can 

then conclude that there is congestion. Tying in volume and speed can lead to knowing 

whether congestion occurs.  

Conflate crash and transit data: Transit data can give us information about the bus 
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route and travel time. Linking both data helps to know whether there is a crash and how 

they can route their buses. If a crash occurs, we know what crash occurs and which buses 

are affected; we can then rearrange the bus routes. Additionally, it can help us to know 

the risk of a bus route. If too many accidents happen on a route, then it means the risk on 

this route is high.  

After all conflations, they are tied into the LRS system. The LRS is the map of all 

the routes in the State, so we need to know how the probe and crash connect to LRS. 

Most agencies such as DOT and people use LRS shapefile rather than INRIX. What they 

want to know is where the crash happens on the LRS rather than where the crash happens 

on your probe segments. This is why we conflate them to the LRS system. The LRS is 

like a base map and everything in on top of it.  

3.1.3.2 Three Types of Conflation 

Conflation can be divided into three types. The first is point to line, the second is 

line to line, and the last is milepost to line.  

3.1.3.2.1 Conflate Point to Line 

Conflation point to line was used for transit application. Points represent the bus 

stops and lines represent the road segments from probe data. Generate Near Table, which 

is a tool of ESRI’s ArcGIS Proximity toolset, was used for conflation. INRIX data is the 

input feature, and LRS data is the nearest feature. We used it to find three nearest 

segments to the stop within 100 feet and then conflate the nearest line to the stop. The 

output table contains the proximity and other attributes. 

 

3.1.3.2.2 Conflate Line to Line 

For safety and mobility application in TITAN, we conflated data line to line. The 
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first step of conflation is road conflation. At first, we only used the SequenceMatcher 

function, with only 350 pairs of output. Following this, the similarity function was added 

to increase the output of the matched pairs. The similarity function has been provided as 

follows: Value = () * sequence + () * numberCheck + () exDirection. The front 

coefficient number can be adjusted to achieve the goal wherein more correct pairs and 

fewer wrong pairs can be the output. The final one used in this research was Value = 0.1 

* sequence + 0.75 * numberCheck + 0.15 exDirection, which output 1296 pairs road.  

The next step after road conflation is segment conflation. Generate Near Table 

was used in this step to find the number of near features reported for each input feature 

within a limited radius. In this research, for segment-to-segment conflation, we found 

three nearest segments in 100 feet. For segments to stops, we found 1000 nearest stops in 

100 feet. Both INRIX and LRS provide information on the quadrant, which is used to 

check the direction. Moreover, a bearing check can be used to check the road direction. 

The final step of conflation is to input both the paired and unpaired segments into the 

ArcGIS to get the ArcMap. The ArcMap is shown in Figure 6. The grey layer shows the 

paired segments and the red shows the unpaired segments.  
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Figure 6. ArcMap of Paired and Unpaired segments 

3.1.3.2.3 Conflate Milepost to Line 

Milepost-to-line conflation is used for TITAN crash data. The detector data has 

no information on the coordinates of points. Therefore, to know the location of the points, 

we need to conflate milepost to line. First, as segments of probe data provide information 

on the coordinates, join all probe segments together as one line in one layer in the 

ArcGIS. Divide the line into miles with mile markers on it. Then convert everything to 

miles and transfer the coordinates to one whole route that comprises only miles. The next 

step is to locate each segment, i.e., its start and end latitudes, and then locate where the 

mile markers close. A point on the line can be found between the start and end latitudes 

of one segment, and then, the point and the segment can be mapped together. For 

example, there is a point on mile marker 15 between the start and end latitudes of 

segment 123. Then mile marker 15 would be mapped to segment 123.  

In a peculiar circumstance, when a point is exactly on the breakpoint of two 
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segments, it is mapped twice. On conflation, if it has two segments, both segments are 

used.  

3.1.4 Front-End Design  

To be user-friendly, the front end of TITAN helps to mask software specifications 

and requirements by using a variety of layouts and user interface (UI) elements. This 

enables users to interact with applications directly on any computer, with any browser 

and from any location with Internet access. The main challenge associated with front-end 

module designs is that the tools and frameworks used to create them keep changing 

constantly. Thus, a key consideration for selecting a front-end development framework 

includes both the number of developers contributing to the development of libraries and 

its popularity among developers. Table 2 lists the most popular front-end development 

frameworks, the number of contributors, and their popularity among developers using the 

GitHub popularity metric. GitHub is a web-based computer code hosting service that is 

especially popular with open-source software projects. 

Table 2. Choosing a Front-End Library for TITAN’s Development  

 

TITAN was developed with React (Abel 2016), a JavaScript library developed by 

Front-End Library Number of Contributors GitHub Popularity 

React  1285 124,747 

Aurelia 97 10,873 

Angular 1596 59,434 

Ember  753 20,772 

Vue 268 131,290 
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Facebook for building interactive user interfaces. React is the second most popular front-

end development framework with about 125,000 stars on GitHub. With 1285 active 

contributors and the number increasing, the library is able to catch up with the constantly 

changing requirements for front-end development. Although Vue is the most popular 

framework, it was not used because it is relatively new and has fewer developers 

contributing to its libraries.  

3.1.5 Data Center 

In the Data Center, TITAN provides users a user-friendly non-programmatic 

interface for querying and uploading data from multiple sources at a fast rate. The design 

components of the Data Center are shown in Figure 7. The main resources used include a 

Hadoop cluster, which stores all different datasets in different formats. MongoDB is used 

to restructure and simplify each data type so that it can be made available in formats such 

as CSVs and XMLs. Firebase is used as an initial storage engine when files are uploaded 

before being pushed to the cluster.  

 
 

 

Figure 7. Design Components of Data Center 
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In its current state, the TITAN Data Center provides access to three different 

databases: a statewide crash, probe, and traffic detector databases. Moreover, it hosts a 

single application for uploading different types of data into TITAN’s databases. Figure 8 

shows all the applications deployed in the Data Center.  

 
Figure 8. An Interactive Dashboard of Data Center  

3.1.5.1 Data Upload 

Sharing data on TITAN is a straightforward process. A layout of the form for 

uploading data into TITAN is shown in Figure 9. The information requested helps to 

build applications driven by user or agency input. Users are required to provide the name 

of the agency sharing the data, its type of data, possible uses, and limitations. Once the 

data is submitted, it is manually reviewed and a ticket is sent for application development. 

The interface accepts all types of data, including Shapefiles, CSVs, Excel, API links, etc. 
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Figure 9. Uploading Data to TITAN 

3.1.5.2 Data Query 

Moreover, the Data Center permits users to query data from different sources such 

as crash, detector, and probe data. The non-programmatic interface is enabled with 

functions that help users select and filter their respective areas of interest. The output of 

each query is a downloadable comma-delimited (CSV) file containing all the information 

requested by the user. The simplicity of the CSV file allows data to be inputted into a 

wide range of software such as spreadsheets and database clients. Figure 10 provides an 

example of an interface for querying crash data. Due to the scalable design architecture 

used to develop the Data Center, there are no restrictions on the amount of data that can 

be queried from the databases. The time needed to respond to a submitted query, however, 

depends on the amount of data requested. Figure 11 shows query response times for 
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different types of crash data requests. The main factors marginally affecting query 

response times are the aggregation interval and the total length of data requested. Similar 

charts for detector and probe data query interfaces are shown in Figures 12–15.  

 

Figure 10. Crash Data Query Interface 



  

30 

 

 

Figure 11. Crash Database Query Times: Road Types – Freeways (1), Interstates 

(2), All Road Types (3). Accident Severity – Fatal (1), Disabling Injury (2), Minor 

Injury (3), Property Damage (4) 
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Figure 12. Detector Data Query Interface 
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Figure 13. Detector Database Query Times: Road Types – Freeways (1), Interstates 

(2), All Road Types (3) 
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Figure 14. Probe Data Query Interface 
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Figure 15. Probe Database Query Times: Aggregation Interval in Minutes 
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3.2 TITAN Application 
 

The APPCENTER is the heart of TITAN. It provides a non-programmatic GUI 

access to underlying algorithms of the platform while guiding users to derive powerful 

analytical insights from their collated datasets. The design framework of the 

APPCENTER, as shown in Figure 16, follows a big data architecture, which 

synergistically utilizes the power of distributed computing on the server-side and GPU 

strengths of data rendering on the client end. The simultaneous use of GPU data frames 

and SQL enables fast and interactive queries on the front end. Cluster resources are used 

for filtering, aggregating, and integrating large datasets. Layout designs such as grid and 

list views are used to improve the user-friendliness of each application within the 

APPCENTER. In its current state, the APPCENTER can be used for two main activities: 

Performance Measurement and Predictive Analytics. Figure 17 shows different 

applications that have been developed in the APPCENTER. In this research, four 

application examples are shown: Mobility, Transit, Safety and Mobility, and Predictive 

Analytics. 



  

36 

 

 

Figure 16. APPCENTER Design Framework 

 

 

Figure 17. Applications Center – APPCENTER 
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3.2.1 Mobility 

Big data is often defined in terms of large Vs: volume, variety, and velocity. 

Table 3 shows the volume, variety, and velocity of datasets currently stored in TITAN’s 

Data Center. Statewide probe data, which constitutes the largest share, had about 80GB 

generated annually. TITAN currently has two years of probe data stored. At an 

aggregation interval of five minutes, a single year of detector data for St. Louis and 

Kansas City resulted in about 18 GB of data. Statewide crash data between 2009 and 

2012 constitutes about 10% of the data stored in TITAN.  

Table 3. Volume, Velocity, and Variety of Datasets Archived on the TITAN 

Platform 

Dataset Size Rate Period 

Probe 80GB 5 minutes 2017 - 2018 

Detector 18GB 1 minute 2017 - 2018 

Crash 16GB N/A 2009 - 2012 

Images 45GB Hourly 2018 

TOTAL 160 GB 

 

 

 

Although the data is very large, the TITAN platform can handle this big data 

quickly. Mobility application relies on probe data for approximately 30,000 road 

segments in the state of Missouri. The size of the probe data generated from these 

segments is approximately 18 GB. APPCENTER can visualize and perform queries on 

this data without latencies in the web browser. Users can use this dashboard to get travel 

time and congestion hours.  
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In addition, TITAN dashboards support user-friendly interactive operations for 

users. Users can zoom in, zoom out or use a circular and lasso filter to select regions of 

interest from the map chart. And the accompanying charts could be used to filter and 

select various areas of interest. Figure 18 shows the statewide travel time map chart and 

several accompanying charts in interactive mobility dashboard. The map chart shows 

travel time of segments colored by speed and the size of the dots represents the segment 

travel time. In this figure, the area near to St. louis was selected, then, the accompanying 

charts refreshed to show relevant information in this area. The travel time chart shows the 

average travel time of this segment is 22.48 minutes per 10 miles of this area. The hourly 

travel time chart indicates how travel time changes as time pass. The travel time index 

chart displays the ratio of the travel time during the peak period to the time required to 

make the same trip at free-flow speeds which provides users the peak hour information.  

 

Figure 18. An Interactive Dashboard for Exploring Statewide Mobility Trends 
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3.2.2 Transit 

Transit is another important application of TITAN. The transit dashboard is 

designed for assessing the performance of transit systems such as bus lines or evaluating 

accessibility issues related to transit. The transit application required conflation of both 

transit and mobility data. That enables the system to compute the reliability of bus routes 

based on traffic conditions. The conflated data had around 98 million rows. Figure 19 

shows three charts from transit visualization dashboard. From the figure, it can be seen 

that in the bottom left average duration chart, the top three bus lines were chosen. Other 

accompanying charts and the map chart were refreshed for the top three bus lines. The 

bus location map in this interactive dashboard shows the trajectories of these 3 bus lines 

colored by trip duration and sized by delay. Another average delay chart indicates that the 

average delay of these three bus lines has a sudden increase in peak hours. 
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Figure 19. An Interactive Dashboard for Exploring Transit Dashboard 

 

3.2.3 Safety and Mobility 

The impact of road crashes on mobility or vice versa is very important for 

estimating the cost of a crash or the benefits of mobility improvements. The safety and 

mobility application required conflation of both crash data and mobility data and the 

result is a mapping between probe segments and accident locations. The conflation of 

both datasets resulted in a unified data with 246 million rows which were consumed by 

the framework for visualization.  

The interactive operations are similar with the other two application dashboards. 

For example, there are three charts from the safety and mobility dashboard shown in 

figure 20. The chart at the top right represents the number of crashes of each crash type. 
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The top three crash types were filtered. The map chart displays the locations of crashes 

associated with road segments for these top three crash types. The size of the dots 

represents the number of vehicles and the color represents the number of killed. And 

another chart represents the number of crashes of each crash severity of these three crash 

types.

 

Figure 20. Statewide Safety-Mobility Dashboard 

 

3.2.4 Prediction Analysis 

Moreover, TITAN has the capability to learn from historical datasets and predict 

the future. Three different predictive models were developed in the current project: (1) 

crash risk prediction model, (2) traffic anomaly detection model, and (3) predictive model 

for automatic CCTV surveillance. These prototype models serve to illustrate the potential 

of TITAN for big data analytics and are described in more detail as follows.  
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3.2.4.1 Crash Risk Prediction 

The crash risk prediction model follows the national trend of leveraging a large 

database to improve safety decision-making, much like the Highway Safety Manual 

(HSM). However, unlike the use of the Empirical Bayes method in the HSM, TITAN 

uses machine learning to automate prediction using big data. The risk of a crash on a road 

segment within a specific time is predicted based on factors such as road segment speed 

differentials, weather conditions (dry, wet, snow, ice), light condition (daylight, night, 

cloudy), and historical crash trends. The current model was trained with statewide crash, 

probe, and weather data from 2009 to 2011 and tested on data from 2012. Visualization 

of predicted crashes and related accuracies is shown in Figure 21. Due to limited training 

data, the models’ confidence in predictions is very low, especially in locations outside the 

major cities in Missouri. As the size of the data used to train models increases, the 

uncertainties for crash prediction reduce accordingly. 
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Figure 21. Daily Predictions More Accurate than Hourly 

 

3.2.4.2 Automated CCTV Surveillance System 

Traffic surveillance is mostly manually driven. Depending on the extent of 

coverage, traffic management personnel are tasked to constantly monitor a wide array of 

cameras for events such as congestion, accidents, stranded vehicles, etc. The goal of this 

application is to provide a quick and automated approach for scanning CCTV cameras for 

traffic incidents. This will enable traffic management personnel to survey multiple 

cameras quickly, increasing incident detection rate and response time, and reducing 

operator fatigue. The application is developed based on a computer vision system, which 

is trained to detect and track various traffic incidents. This approach using computer 
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vision differs from the traditional ways of incident detection using speeds, volumes, and 

occupancies. Examples of outputs from the vision system include vehicle counts, 

occupancy, start and end time of queues, stranded vehicle duration, and snow extent. 

Figure 22 shows a graphical user interface, designed for the traffic management 

personnel to interact with the system. Users can search for different types of incidents, 

limit the number of cameras they want to see, and sort based on the severity or duration 

of the incident. 

 

Figure 22. Traffic Surveillance System: Searching for Camera with Congested 

Scenes, Results Sorted by Camera Name 
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CHAPTER 4: PERFORMANCE EVALUATION 

4.1 Compare with Oracle 
 

TITAN brings together multiple databases to enable a seamless integration of a 

variety of transportation datasets. In this section, we compare TITAN with the most 

common traditional relational database systems used for managing transportation data: 

Oracle. The authors compare both platforms based on expected costs and capabilities, as 

shown in Table 4. 

Table 4. Comparing TITAN with Traditional Data Warehouses 

 TITAN Oracle 

 

Costs 

Software Costs ↓ (low) ↑ (high) 
Development Costs ↑ (high) ↓ (medium-low) 
Cloud Deployment Costs ↑ (high) ↑ (high) 
In-house Deployment Costs ↓ (medium - low) ↓ (medium-low) 
Administration Costs → (variable) ↑ (high) 
 

Capabilities 
Interactive Visualizations √ √ 
Data Integration √ → 
Platform Speed ↑ ↓ 
Geospatial √ × 
Flexibility ↑ ↓ 
Predictive Analytics √ × 
 

TITAN was developed with open-source software tools. Hence, the software costs 

are relatively low compared to any enterprise platform. The downside of relying heavily 
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on open-source software is that considerable effort has to be expended in the 

development of the platform. Developers are required to spend more time on integrating 

all the bits and pieces of the code. This increases the development cost of TITAN 

compared to Oracle-based applications. Cloud costs for TITAN are expected to be 

slightly higher than those for Oracle because of the use of GPUs and computer clusters. 

TITAN will require at least two GPUs (that cost about $0.5 an hour) and five servers in a 

cluster (costing about $0.35 an hour). Oracle does not need GPUs and clusters and is thus 

cheaper in terms of cloud costs. Administration costs mostly depend on where the 

platform is deployed. On the cloud, server administration is usually done by the cloud 

service provider. Hence, both platforms save money. If the server is built in-house, a 

relational database service such as Oracle costs significantly higher. Most of the 

processes and applications deployed on TITAN are automated. What needs to change is 

the data; once the data is updated, all the apps are updated automatically. Hence, the role 

of an administrator for TITAN is significantly reduced. For Oracle, as data changes, the 

administrator must rewrite queries, keep track of tables, and redo models, increasing the 

responsibilities of the administrator, which is a relatively high cost.  

Regarding capabilities, TITAN offers much more. Although interactive 

visualizations can be carried out on Oracle, the size of data that can be visualized is 

limited (not more than 2 GB). TITAN is able to visualize up to about 80 GB of data 

interactively without any significant latencies on the front end. Moreover, TITAN has 

modules for automatically integrating data from multiple sources. Data integration on 

platforms such as Oracle is heavily manually driven and depends on the size of the 

datasets involved. Due to the lack of GPUs and clusters, the speed of data query response 
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and visualizations are orders of magnitudes higher for Oracle-based applications. 

Furthermore, TITAN offers geospatial capabilities to help users deal with geographical 

datasets. Advanced predictive analytics on big datasets usually require the use of high 

computing resources such as GPUs and clusters, all available on TITAN. Oracle-based 

platforms are not designed for predictive analytics. 

4.2 Compare with Tableau 
 

Tableau is another interactive data visualization platform, as well as MapD. While 

Tableau is a CPU data frame, MapD is a GPU data frame like TITAN. Both platforms are 

used to process the same SQL dataset and then compare their performance, as shown in 

Table 5. Figure 23 shows the data visualization results by Tableau.  

Table 5. Comparison of MapD and Tableau 

 MAPD TABLEAU 

Speed High Low 

Convenience Easy Complicated 

Data size limit 40 million rows 1 million rows 

Cluster Compute Yes No 
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Figure 23. Data Visualization by Tableau 

In this section, Tableau is compared with TITAN in four aspects, as shown in 

Table 6. As both TITAN and MapD use the GPU data frame, the comparison results are 

similar. 

Table 6. Comparing TITAN with Tableau 

 TITAN Tableau 

Time Costs Short time  Long time  

Predictive Analysis  Yes No 

Software Costs Low High 

Programming Need for 

users 

No No 

 

TITAN is built based on several programming languages such as Java, React, etc. 

But for users, users can use both of these two platforms in non-programmatic 

environment. TITAN, as a CPU–GPU framework, uses scalable architecture for data 

storage and processing, leverage parallel processing for analyzing data, and leverage 

GPUs for data visualization and therefore requires less time for data management and 



  

49 

 

analysis than Tableau. Additionally, as mentioned above, TITAN was developed with 

open-source software tools, so it is cheaper than developing Tableau. Tableau is not 

designed for predictive analysis, but TITAN has the function of that.   
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CHAPTER 5: SAMPLE APPLICATIONS 

The following are examples of applications that utilize TITAN. They illustrate the 

capabilities of TITAN and serve to explain how it could be incorporated into a person’s 

regular workflow. Figure 24 shows an example of a query of fatal right-angle crashes. 

The type of crash, right angle, is easily queried by clicking on the particular crash type. 

Once the crash type is selected, all other statistics, shown in the top row, are 

automatically updated. Here, the top row shows there were 23 right-angle crashes, 26 

fatalities resulted from those serious crashes, 51 injuries were caused, and 50 vehicles 

were involved. 

 

Figure 24. Query – Number of Fatalities in 2012 Resulting from Right-Angled 

Crashes 

 

Figure 25 provides another safety example. The query is narrowed by severity 
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(disabling injury), route (I–70), and time (2009–2012). The top row statics are once again 

automatically updated to reflect the narrowed selection; 173 crashes resulted in disabling 

injuries on I–70 from 2009 through 2012. The number of injuries (minor and disabling) 

resulting from the 173 crashes 39 is 281, and 300 vehicles were involved. Any of the 

narrowing factors can be selected easily by clicking on the corresponding label. 

 

Figure 25. Query – Number of Disabling Injuries on Interstate 70 Between 2009 and 

2012 

 

Figure 26 illustrates an example of mobility. MoDOT often publishes regional 

mobility in reports such as the MoDOT Tracker. Here, the relevant mobility indices are 

shown for St. Louis County. The indices include average conditions, travel time 

reliability (e.g., planning time index), rankings of congested routes, and congestion by 

road type. 
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Figure 26. Query – Mobility trends in St Louis County 

 
Figure 27 shows how the previous query of St. Louis County could be narrowed 

by time or locations. For example, daytime periods of 8 am to 7 pm or only state routes.  
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Figure 27. Query – Mobility Trends in St Louis County between 8 am and 7 pm on 

State Routes 

 
Figure 28 shows a query on the opposite side of the state, in Jackson County, 

Kansas City. The query is of the am period only. 
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Figure 28. Query – Crash Prediction in Jackson County between 6 am and 12 pm 

Figure 29 shows a query of multiple counties, i.e., Clay and Platte. The query also 

illustrates the display of weekdays only. 

 

Figure 29. Query – Crash Prediction in Clay and Platte County during Weekday 
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Figure 30 displays traffic detector data such as speed, occupancy, and volume. All 

three measures are displayed graphically on top of each other so that they can be easily 

compared. 

 

Figure 30. Query – Traffic Speed, Occupancy and Volume for Interstate – 70 West 

 

Figure 31 illustrates the machine learning (artificial intelligence) capabilities of 

TITAN. All camera views were processed with machine learning, and the roads with 

snow accumulation were automatically displayed. Such a query could be useful in winter 

weather to optimize response and improve traveler information. 
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Figure 31. Query - Camera Locations with Snow on Ground 

 

Figure 32 again illustrates TITAN’s machine learning capabilities, but this time 

concerning incident management. Camera views were analyzed using machine learning 

and instances of stranded vehicles were highlighted. A quick response to such incidents 

can help prevent secondary crashes and improve traffic congestion due to rubbernecking. 

 
Figure 32. Query - Camera Locations with Stranded Vehicles 
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CHAPTER 6: CONCLUSION AND FUTURE RESEARCH 

The current project successfully designed and deployed TITAN, a fully-

functional, interactive web application for storing, retrieving, integrating, and visualizing 

a variety of large transportation datasets. By leveraging recent advances in big data, 

TITAN was developed with the future in mind. As data grows exponentially, TITAN 

scales along with it, making it an extremely fast tool for data analytics and visualization. 

Relying heavily on open-source tools for development resulted in a significantly cheaper, 

dynamic, and easily customizable platform compared to enterprise software solutions 

(e.g., Oracle) currently used by most transportation agencies. 

A modular design approach was used to develop TITAN. It consists of a front-end 

and a back-end module. A user makes requests and updates by connecting to the front-

end user interface. All actions from the user are subsequently passed on to the back end, 

which sends an appropriate response back to the user on the front end. TITAN’s design 

framework seeks to minimize the latency in communication between the front and back 

ends. To achieve this, data visualization on the front end was carried out by using GPUs, 

on the back end, a distributed cluster powered by Hadoop and Mongo DB. 

TITAN has two main components: Data Center and Application Center. The Data 

Center stores different streams of datasets and provides a user-friendly, non-

programmatic interface for querying the different databases. By leveraging cluster 

computing and recent advances in big data analytics, TITAN is able to generate responses 

to different forms of user queries at a much faster rate compared to traditional data 

warehouses. The second component is APPCENTER (application center), which hosts a 

variety of applications for performance monitoring, data integration, and predictive 
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analytics. The APPCENTER is powered with fast, interactive visualizations that enable 

users to identify trends and discover insights quickly for decision-making. It was 

developed on top of a GPU database, which enables it to perform computations on large 

datasets within fractions of a second. Examples of applications in the APPCENTER 

include crash risk prediction app, safety mobility performance measures app, traffic 

surveillance app, etc. 

For state DOT, TITAN has some practical advantages. First, the enormous 

amount of data being collected by DOT has great potential for improving data-driving 

decisions. However, such big data needs to be made accessible to various DOT staff who 

do not have the time and resources to dig into these massive databases. TITAN provides 

the tools to shrink down the effort required for data integration and analysis. Second, it 

provides graphical tools that simplify data querying and analysis. Querying involves 

simple steps such as drawing a circle around a region of interest, and then, it 

automatically produces related performance measures in various formats. Third, it takes 

advantage of modern computer cluster technology to reduce and eliminate latencies in 

software response. TITAN’s speed is a factor in making the software user-friendly so that 

its use can be incorporated into the regular workflow of DOT employees. 

Future updates and developments of TITAN will include data from other areas 

such as freight, pavement and bridge monitoring, pedestrians, and transportation 

performance evaluation. 
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