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ABSTRACT 

With information explosion occurring in past decades, the rapid growth of papers 

published results in the rapid change of hot topics, especially in the biomedical domain. It 

turns out very hard for researchers who are interested in biomedical domain to track hot 

topics over time, as well as to predict the trends of them in the near future. Based on the 

above demand, it is important to have a model which is able to follow and predict the 

trend of hot topics continuously. Deep learning has been proven to be an efficient method 

to extract information from texts and use the information to predict the future trends. 

Under the thriving background of Deep Learning, Graph Neural Network (GNN) is able 

to capture the information from graph structures. There are various applications using 

GNN models, such as traffic flow prediction, chemical structure discovering, etc. In this 

research project, a dynamic spatio-temporal graph neural network is presented to keep 

track of the selected hot keywords and topics in the biomedical domain and predict the 

possible frequencies in the near future. The input of the model is obtained by extracting 

the monthly frequency information of selected keywords and topics from paper abstracts 

in PubMed, the largest biomedical literature collection. After training with data over a 

decade, the model is able to predict trends of selected hot keywords and topics in next 5 

months. Thus, the presented model can help follow the trend of hot topics in the 

biomedical domain.
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Chapter 1 Introduction 

1.1  Background 

As human beings entered Information Age, the rapid growth of computing 

technology induced the generation of manifold data, as well as the ability to process data 

with high speed, both resulting in information explosion in all domains. Obviously, 

biomedical domain cannot be an exception. In fact, biomedical structures, such as genes 

and proteins, carry huge biomedical information inside the structures of themselves, and 

that is exactly the reason why study of biomedical information raised researchers’ 

interests first.  

With the emergence of numerous kinds of models entailed by the development of 

computing technology, the research passion has been rising fast among biomedical 

researchers in different subdomains of biomedicine. Thus, papers related to biomedical 

researches have been growing dramatically in past decades. Due to the tremendous 

amounts of papers in biomedical domain, the research topics inside biomedical domain 

may shift quickly and sometimes are not easy to follow. Fortunately, this change can be 

reflected by abstracts of published papers in time-series. It is vital to keep tracking trends 

of hot research topics for every biomedical researcher during their research careers. Also, 

it can help new biomedical researchers or people who are simply interested in this area 

take a general look at possible variation of hot research points in the near future within 

biomedical domain, which might give them suggestions of the topic(s) they would like to 

follow from now on. It is always a good way to take a look at how hot keywords and 

topics vary from time to time in biomedical domain, and learn about the possible future 
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trend, before one starts to do research or project related to a certain topic. 

 

1.1.1 Brief Introduction of Data Preprocessing 

With papers published in recent years, it is possible for us to find out the research 

topic variation and give predictions appropriately. In this project, we retrieved published 

biomedical papers from PubMed [1], the largest collection of biomedical literature, and 

preprocessed the papers by extracting the information from each paper of title, keyword, 

abstract and publication date. Hot keywords and hot topics are determined from the 

extracted paper information, along with the monthly frequency of each hot keyword/topic 

as temporal information. The trends of hot keywords and topics can be reflected by the 

times of occurrence in the next several months. To utilize the spatial information of hot 

keywords or topics, a graph consisting of the co-occurrence information is constructed 

among these keywords and topics in each month. Eventually, there are 3 datasets of hot 

keywords and topics, each consisting of corresponding frequencies and co-occurrence 

matrices. The details of data preprocessing and dataset construction are available in 

Chapter 2. 

 

1.1.2 Brief Introduction of Model and Result 

Deep Learning is a subdomain of Machine Learning, and it has raised a lot of 

attentions due to the explosive developments in recent years. Inspired by human brains, 

Deep Learning simulates the structures and functions as large neural networks with 

numbers of layers and multiple different activation functions inside each hidden neuron. 
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There are various types of Deep Learning structures which can be fit into various tasks, 

such as supervised learning [2], unsupervised learning [3], reinforcement learning [4], 

etc. Also, there exist multiple kinds of activation functions, such as sigmoid [5] and 

ReLU [6]. With training of large datasets, it has been proven that Deep Learning is an 

efficient method and has achieved a lot of success in plenty of different applications 

within different domains, such as speech recognition [7], natural language processing[8], 

etc.  

Among all the Deep Learning applications, Convolutional Neural Networks (CNN) 

can be considered as a very popular architecture. There are numerous applications 

utilizing CNN architectures, which are served for different purposes, such as human 

action recognition [9], image recognition [10], etc. Apart from the above applications, 

CNN is also able to collect temporal information, which is called causal convolution (the 

detailed explanation can be found in Section 3.1.2). The causal convolution in this paper 

is able to acquire temporal information for every hot keyword and topic. After obtaining 

the temporal information, the spatial information can be obtained with the help of Graph 

Neural Networks. 

Based on the boom of Deep Learning, the research related to Graph Neural 

Networks, a branch of Deep Learning, has been growing fast as well. Unlike traditional 

data inside Euclidean domain, GNN focuses on acquiring information from data inside 

non-Euclidean domain, i.e. graph structure. With the pattern extraction from self-node 

and neighbor nodes within several hops, a specially designed graph convolution can 

integrate information from a node itself and neighbors of that certain node, which is 

called Graph Convolution Network (GCN). With the characteristics of GCN, we can 
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obtain the spatial information of hot keywords/topics. After integrating the spatial 

information into the temporal information, we are able to predict the possible trends of 

hot keywords and topics. It is also a novel trial to use GNN as part of a model to predict 

hot topic trends in biomedical domain. The detailed explanations of GCN and the model 

we used are available in Chapter 3. 

With historical frequencies of hot keywords and topics in past 15 months as the input 

of model, the experiments are conducted based on 3 datasets. The results of predicted 

frequencies in next 5 months of hot keywords and topics are demonstrated based on 

Pearson correlation coefficient and the hit accuracy in top fluctuated keywords/topics. 

The predictions are compared with direct copy of corresponding keyword/topic 

frequencies in last one month from historical 15 months, which is considered as the 

benchmark of result evaluation. After comparison, the average results of predictions on 

each dataset outperforms the defined benchmark. Besides the results of all hot 

keywords/topics, some predictions of specific keywords/topics are analyzed in a 

continuous time series as well. All of the results and associated analysis are available in 

Chapter 4. 

 

1.2  Literature Review 

Under the prosperity of Deep Learning, Graph Neural Networks have been utilized in 

various disciplinary researches, such as chemistry [11], biology [12], etc. A 

comprehensive survey conducted by IEEE Fellow [13] classifies GNN into 5 different 

categories based on the neural network structures – Graph Convolution Networks, Graph 

Attention Networks [14], Graph Auto-encoders [15], Graph Generative Networks [16] 
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and Graph Spatial-temporal Networks [17]. The last 4 categories are all intersected with 

Graph Convolution Networks, which indicates GCN is the core of GNN. From 

Background section above, it can be inferred that this research project takes advantages 

of both temporal and spatial information, therefore, a Graph Spatial-temporal Network is 

adopted to achieve the goal.  

Graph Spatial-temporal Networks are utilized in many applications, such as traffic 

forecasting, action recognition, etc. For example, Shi et al. [18] proposed a directed graph 

neural network to recognize human actions based on the skeleton data of human body 

formed as directed acyclic graph (DAG), while utilizing CNN to capture the temporal 

information. Yan et al. [19] also presented a model to recognize human action, called 

Spatial-Temporal Graph Convolutional Networks (ST-GCN), based on dynamic 

skeletons. Li et al. [20] presented a Diffusion Convolutional Recurrent Neural Network 

(DCRNN) to forecast traffic flow with Recurrent Neural Networks (RNN) to collect 

traffic temporal information. Yu et al. [21] also proposed a model for traffic forecasting 

purpose, named Spatio-Temporal Graph Convolutional Network (STGCN), but 

leveraging CNN to acquire traffic temporal information. Based on the above research 

works, it can be confirmed that GCN is always leveraged to collect spatial information, 

accompanying with CNN/RNN to collect temporal information in Graph Spatial-

temporal Networks.  

Apart from GCN, trend prediction analysis is also a focus which needs to be 

addressed. Trend prediction analysis has been prevailing in a long time, as well as in 

many domains. First, there is plenty of research trying to predict stock trends. Naeini et 

al. proposed models using Multi Layer Perceptron and Elman recurrent neural network to 
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predict stock market [22]. Fung et al. predicted stock market by proposing a model 

combining event-knowledge and neural networks [23]. Hong and Han proposed a neural 

network model with cognitive maps to predict stock [24]. Other than stock prediction, 

there is also research related to crime trend prediction, such as predictions of crime 

hotspot. Many different techniques are applied to predict crime trend. For example, 

Kianmehr and Alhajj proposed a model employed Support Vector Machine (SVM) [25], 

while Liao et al. utilized Bayesian network [26]. Also, Corcoran et al. presented a neural 

network model to predict geographical crime [27]. In medical domain, virus trends can be 

analyzed based on statistical methods [28]. Besides the above categories of trend 

predictions, there are also trend predictions of cyber security incidents, with the help of 

Machine Learning methods [29]. Similar to this paper, topic trend prediction becomes 

more important with the prevalence of social media, especially microblogging system 

like Twitter. Based on text contents inside social media, public opinion analysis can be 

conducted with the help of topic trend prediction. There are many research papers related 

to public opinion analysis. Chen et al. proposed a model based on contents and social 

connections [30], while Wang et al. proposed a model based on Grey Verhulst Model 

[31]. Also, a collaborative filtering based topic trend prediction model is presented by 

Chen et al. [32].  

 

1.3  Goal of the Study 

Due to the copious keywords of PubMed Literature, it is quite difficult to come up 

with a method to determine hot keywords/topics. This is the first addressed problem in 

this project. After comparing several different methods, mean and standard deviation are 
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adopted to filter out the plain keywords while keeping the hot ones, i.e. select keywords 

satisfying the higher values of certain mean and standard deviation. Then further 

selection steps based on standard deviations from window slicing through time series are 

applied to obtain final datasets. Meanwhile, the hot topics are clustered from selected hot 

keywords based on proper topic clustering model. Appropriate data preprocessing method 

is able to provide with appropriate input data, but in order to predict the trends of them, 

the model is rather more important.  

Since both temporal and spatial information of hot keywords/topics are utilized in 

this project, a model is needed to complete the above task. After investigating the state-

of-art Graph Spatial-temporal Network models, the last model mentioned in Literature 

Review section named Spatio-Temporal Graph Neural Networks [21] is selected as the 

final model. The original STGCN model is used to predict traffic flow, which collects 

spatial information from road routes as a static graph. However, the graphs used in this 

project are various from one month to another, which means the spatial information is 

dynamic. Therefore, instead of utilizing the exact same model, we modified the static 

GCN in this model into a dynamic one, in order to address this problem better, which can 

also achieve the goal of this research project. 

The hot keywords and topics are selected based on appropriate methods. After 

finalizing the appropriate input datasets, the proper model is also selected based on ability 

of integrating temporal and spatial information of each dataset. Among all hot keywords 

and topics, temporal information can be collected easily by counting occurrence of each 

hot keyword/topic in each month, while the spatial information can be underlined by co-

occurrence of these keywords/topics in each month. The model which takes full 
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advantage of these 2 kinds of information is adopted from state-of-art models as well. 

After addressing the above 2 main problems, with the input from large literature 

collection in PubMed, the modified model is able to predict trends of hot keywords/topics 

in the next few months. 
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Chapter 2 Data Preprocessing 

2.1 Data Source 

PubMed [1] is a website consisting of the largest literature of biomedical and life 

sciences. Because of such abundance of biomedical data, this project eventually adopted 

to collect biomedical papers from PubMed. Papers can be retrieved from the access link 

(ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_bulk/) provided by PubMed. The papers used in 

this project are published from January 1997 to December 2016, 240 months in total, as 

the whole dataset, while there are some datasets only utilize part of the whole dataset. 

There are 989,067 papers in total. Inside each downloaded paper, 4 sections were 

extracted – title, keyword, abstract and publication date. After obtaining the above 4 

sections, title, keyword and abstract are integrated as the new paper content for each 

paper. 

 

2.2 Data Formation and Preprocessing 

After collecting all of the keywords in each paper’s keyword section, the final 

keyword set contains 549,619 keywords in total, as the whole vocabulary list. It is 

important to keep in mind that not all keywords are consisting of single word, most of 

them are phrases, such as clinical cancer research, protein structure, etc. In the final 

prediction, normalized word frequencies for each keyword/topic of the next 5 months are 

the actual predictions which can reflect the trends of hot keywords or topics. Word 

frequency is acquired monthly for all 549,619 keywords by counting how many times a 

certain keyword appears in all paper contents of that month. Thus, every keyword 
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contains 240 frequency points. 

 

 

 Figure 1Published paper amounts in each month from May 2005 to December 2016, 140 months in total. 

 

Among all the keywords, those with low occurrence and/or low fluctuation are not 

considered as the hot keywords, since it is meaningless to predict the trends of keywords 

which appear only once or twice in the whole dataset. For each keyword, the frequency in 

each month is increasing due to the increasement of published papers. The increasement 

of published papers in each month is shown clearly in Figure 1. Because of the great 

difference of paper amounts from month to month, keyword frequencies grow 

dramatically as well. It turns out that simple keyword frequency may not be competent to 

be the feature of each keyword, instead, the proportion of each keyword frequency over 

all keyword frequencies in each month is a better way to represent the corresponding 

“frequency”. The newly-defined “frequency” is named as keyword frequency proportion. 
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The keyword frequency proportion of keyword index j, 𝑃𝑖,𝑗 in a certain month i, 𝑖 ∈

{1,2, … ,240}, 𝑗 ∈ {1,2, … ,549619} , can be defined as, 

𝑃𝑖,𝑗 =  
𝑂𝑖,𝑗

∑ 𝑂𝑖,𝑗𝑗
                                                             (1) 

where Oi,j is the frequency of keyword index j in month i. After calculating the mean and 

standard deviation of each keyword frequency proportion throughout the 240 months, 

keywords with lower mean and/or lower standard deviation were removed. As a result, 

the final size of vocabulary list becomes 301,363.  

The purpose of this project is to predict trends of hot keywords/topics in biomedical 

domain, where hot keywords or topics are defined as keywords/topics with high 

fluctuation through the time series. The keyword frequencies of whole 240 months can be 

represented as a matrix of 240 months * 301,363 keywords, with row as month, column 

as keywords, see Figure 2 for illustration. In order to obtain hot keywords/topics from 

final vocabulary list, it is necessary to split the dataset represented as 240 months * 

301,363 keywords into 211 different keyword frequency chunks by applying a 30-

months-high window slicing through the whole time series, shown in Figure 2. There are 

T rows (240 months) in total and N columns (301,363 keywords) in total. For example, 

O3,2 means the keyword frequency of 2nd word in 3rd month. After window slicing, there 

are 211 chunks of datasets, with each chunk of dataset as a 30 months * 301,363 keyword 

frequency matrix. 
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Figure 2 Window slicing through whole 240 months keyword occurrences. There are T rows (240 months) and N 

columns (301,363 keywords) in total. After window slicing, there will be 211 chunks of datasets, each as a 30*301,363 

matrix. 

 

Inside each chunk of dataset, standard deviations of each keyword are calculated 

based on each keyword frequency proportion within 30 continuing months, then there are 

211 standard deviations for each keyword in total. Among 211 standard deviations of 

each keyword, the largest one is selected to be the representative standard deviation for 

each keyword, with the descending order applied afterwards. After selecting the 

keywords with highest 116 and highest 642 standard deviations, 2 different keyword 

datasets are formed by these keywords. Due to the small paper amounts in previous 100 

months (only several hundred each month), only papers in last 140 months (from May 

2005 to December 2016) are adopted to be the final data source. Thus, the keyword 

frequency proportions of the last 140 months are considered to be included in 2 keyword 

datasets. The 2 datasets are labeled as Keywords(S) and Keywords(L), according to the 
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small/large size of each dataset. There is another Topic dataset used in the project, which 

is introduced below in section 2.2.2. 

 

2.2.1 Keyword Dataset Formation and Preprocessing 

After finalizing hot keywords and associated keyword frequency proportions, it is 

important to form the temporal and spatial information of these hot keywords in each 

month and append the information to both Keywords(S) and Keywords(L). In each 

dataset, keyword frequency proportions of 15 continuing months are used as historical 

data to predict frequency proportions in next 5 months separately. To be more specific, 

there are keyword frequency proportions of 20 continuing months in every input 

example, with first 15 months as historical data, last 5 months as ground truth of 

predictions. To satisfy the requirement of 20 continuing months, a 20-months-high 

window is slicing through the whole dataset (140 months), similar to Figure 2, and 121 

examples are acquired after window slicing. In both Keywords(S) and Keywords(L), the 

training, validation and testing datasets are formed by randomly selecting the examples 

from 121 examples, with no overlapping. Historical data (15 months) in every example is 

normalized by Z-score method. 

Unlike the temporal features of each hot keyword, spatial information relies on the 

graph constructed by these selected keywords. Each hot keyword can be regarded as a 

node in graph, with keyword frequency proportion as its sole feature. Since the standard 

deviations of all selected keywords are pretty high, it results in isolation of nodes in the 

graph, see left part of Figure 3. In order to better extract the spatial information from 

these standalone nodes, some add-on nodes are integrated into the graph, in order to 
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contribute more connections among these hot keywords, i.e. add more edges into the 

graph, see Figure 3. Therefore, 1500 other add-on keywords from final vocabulary list 

(selection criteria are introduced in next paragraph) have been chosen to enrich the spatial 

information of selected 116/642 hot keywords. Different datasets have different selected 

add-on keywords, so each dataset is accompanied with other different 1500 add-on 

keywords to form the graph. However, the trends of these add-on keywords are not 

expected to be predicted, while they only provide with the add-on spatial information to 

hot keywords. 

 

 

Figure 3 Graph structure change after adding 1500 other keywords. 

 

In order to select 1500 add-on keywords with the greatest contributions to 116/642 

hot keywords, graph edge connections with hot keywords inside the whole 140 months 

are adopted as the criteria, i.e. the degree of each add-on keywords with 116/642 hot 

keywords. After obtaining all 1500 add-on nodes with highest degrees, the weights of 

edge between two nodes are defined as the co-occurrence times in all the papers within a 

certain month. Eventually, different graphs of 1616/2142 nodes (keywords) can be 
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acquired in different months. 

 

2.2.2 Topic Dataset Formation and Preprocessing 

The Topic dataset is formed by Keywords(L) with 642 keywords. The reason why 

only Keywords(L) is chosen is that Keywords(S) contains only 116 keywords, which is 

too small to be clustered as multiple topics.  

Latent Dirichlet Allocation (LDA) model [33] is applied to form 25 topics from 642 

keywords. LDA model is well known for its topic modelling over a set of documents, 

while it can also be applied to a set of words. As for the procedure, LDA supposes there 

are a fixed amount of topic(s), and it assigns words to each topic during the model 

training process. After completing the training process, every topic is represented by a list 

of all input words, along with a probability distribution over all words, where the 

probability distribution indicates the probability that a certain word is assigned to a 

certain topic.  

When it comes to Keywords(L) dataset, there is a probability distribution over 642 

keywords along with each topic after applying LDA model. By selecting the keywords 

with top 25 probabilities inside each topic, a total vocabulary list of 524 keywords can be 

generated by removing duplicated keywords in 625 keywords obtained from 25 topics * 

25 top probability keywords.  Thus, for each topic, there is a probability list of 524 

keywords. After collecting the keyword frequencies of each keyword inside 524 

keywords for each month, each keyword frequency is multiplied by the corresponding 

probability, then a vector with length of 524 is aligned to each topic as topic vector for 

each month. 
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Similar to calculation of keyword frequency proportion in Keywords(S) and 

Keywords(L), we define topic frequency 𝑇𝑖, 𝑖 ∈ {1,2, … ,25}, in a certain month as 

summation of the topic vector in that month, calculated as, 

𝑇𝑖 =  ∑ 𝐹𝑖,𝑗𝑃𝑖,𝑗𝑗 , 𝑗 ∈ {1,2, … ,524}                                             (2) 

where 𝐹𝑖,𝑗 and 𝑃𝑖,𝑗  are the keyword frequencies and corresponding probabilities under a 

certain topic i in each month, respectively. Therefore, considering 25 topics as 25 nodes 

in the graph, the topic frequency defined above is treated as the sole feature of each topic 

in each month. 

As for graph construction for Topic dataset, the 25 nodes are considered fully 

connected with each other, i.e. all 15 nodes are formed as a connected graph. The weight 

of each edge between 2 nodes (indexed as i and j) is defined as the Euclidean distance of 

2 topic vectors, written as, 

𝑊𝑖,𝑗 =  √∑ (𝑉𝑖,𝑘  − 𝑉𝑗,𝑘)2
𝑘                                                    (3) 

where k is the element index in each topic vector, 𝑘 ∈ {1,2, … ,524}. 

 

2.3 Data Preprocessing Architecture 

From above introduction of 3 datasets, an architecture diagram is attached below to 

illustrate the process in a more straightforward way, see Figure 4.  
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Figure 4 The complete architecture of data preprocessing. 

 

2.4 Data Aggregation Input Pipeline 

In each dataset, the data inside can be divided into training set, validation set and 

testing set, where each example in each set consists of 3 sections – 15 continuous months 

historical keywords/topics frequency (proportion), accompanying with the graph of last 

month in 15 months, as well as a certain prediction month. For instance, a training 

example in Keywords(S) or Keywords(L) dataset consists of 3 parts: 

1. Hot keyword frequency proportions from 1st to 15th months, a 15 * 116(642) 

matrix, as historical data 

2. Co-occurrence matrix (adjacency matrix) of all keywords in 15th month, a 

1616(2142) * 1616(2142) matrix 

3. Hot keyword frequency proportions of 16th (17th, 18th, 19th, 20th) month, a 1 * 

116(642) vector, as ground truth 
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a training example in Topic dataset also consists of 3 parts: 

1. Hot topic frequency from 1st to 15th months, a 15 * 25 matrix, as historical data 

2. Co-occurrence matrix (adjacency matrix) of topics in 15th month, a 25 * 25 matrix 

3. Hot keyword frequency proportions of 16th (17th, 18th, 19th, 20th) month, a 1 * 

25 vector, as ground truth 

 

With the explicit explanation of example contents above, the example structure in 

each dataset becomes clearer. After introducing the generation of each dataset, it comes to 

the program of data aggregation pipeline. The most popular python framework 

TensorFlow [34] is adopted to achieve the goal. 

 

2.4.1 TensorFlow Brief Introduction 

TensorFlow is an open source python Machine Learning framework serving the 

model building and deployment purpose, which was first proposed by Google Research 

in 2016 [34]. TensorFlow provides with various APIs to employ many Machine Learning 

or Deep Learning algorithms, such as CNN and RNN, and it continues to feed new 

algorithms in. Also, with the help of its estimators, the training and evaluation process 

can become easier. Besides the employment of algorithms and estimators, it also offers 

APIs to build data input pipeline, which is able to handle large amounts of data. Based on 

the robust framework design, it can also speed up the data loading process during model 

training, as well as generating batch dataset. 
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2.4.2 TensorFlow Input Pipeline 

An API named tf.data in TensorFlow enables programmers to create input pipelines 

under TensorFlow framework. It introduces tf.data.Dataset, which can aggregate one or 

more components in each dataset into a sequence of elements. Taking Keywords(L) 

dataset for example, an element might be an example in the dataset. Inside each element, 

there are 3 tensor components representing the hot keyword frequency proportions of 15 

months, adjacency matrix of all keywords of 15th month and ground truth of 16th month, 

respectively. 

This input pipeline can aggregate all training examples, validation examples and 

testing examples into 3 separate files, with file type using a recommended TFRecord 

format. Every part in each example of different sets is encapsulated into data stream of 

tensor components as a certain type. The available data stream tensor types are byte, int 

and float. After defining the tensor type in encoding program file, the decoding program 

file is capable of restoring the original examples after specifying the data type and data 

shape in the program.  

Since the model used in this project is written with TensorFlow framework, then it is 

easy to integrate TensorFlow input pipeline into the model. When training the model, the 

input pipeline is able to generate batches of training data into the model with the designed 

batch size, as well as batches of validation data to validate the training performance. 

While in testing stage, this input pipeline is also able to provide with batches of the 

testing examples. The whole process is illustrated below, see Figure 5. 
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Figure 5 The process of TensorFlow input pipeline. 
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Chapter 3 Methods 

3.1 Graph Neural Network Introduction 

Graph Neural Network was first proposed by Marco Gori in 2005 [35], and the 

improvement of its theoretical foundation was made by Franco Scarselli in 2009 [36]. In 

the early studies of GNN, researchers fall into the category of recurrent graph neural 

networks (RecGNNs). They learn a target node’s representation by propagating neighbor 

information in an iterative manner until a stable fixed point is reached [13]. This process 

is computationally expensive, so other researchers are devoting themselves to 

overcoming the challenges. Meanwhile, with the fast development of CNN in Euclidean 

domain, some researchers are trying to re-define the convolution operation on graph 

structured data.  

Unlike traditional neural networks taking data from Euclidean domain as input, such 

as audios and images, GNN takes graphs as input, which comes from non-Euclidean 

domain. To be more specific, traditional neural networks take grid-structured data as 

input, while GNN takes irregular graph-structured data as input, see the comparison in 

Figure 6. At first, GNN takes only proper graph-structured data as input, such as 

molecular structure, however, many scenarios in the real world can be converted to 

graphs, such as road maps. Based on the above generalization of graphs, GNN could be 

widely applied to many different academic domains. 
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Figure 6 Comparison between Euclidean (grid-structured) data and non-Euclidean (graph-structured) data, and 

the difference of conducting convolutions. 

 

Each node in grid-structured data has fixed-size of neighbors and the neighbors are 

arranged in the similar orders, while nodes in graphs are connected with different size of 

neighbors and the neighbors are arranged in diverse orders. It is easier to collect neighbor 

information from data in Euclidean domain based on the same kernel structure during 

convolution, while it is hard to collect neighbor information in non-Euclidean domain, 

due to the various size of neighbors connected with each node in the graph, see the 

different convolution process in Figure 6. Thus, the research related to graph convolution 

aims to solve the above problem, where Graph Convolution Networks are proposed. 

 

3.1.1 Graph Convolution Networks Theory 

In 2013, Bruna et al. [37] proposed a graph convolution method based on the 

research of graph signal processing, conducted by Shuman et al. [38]. In Bruna’s paper, 

he proposed 2 ways to conduct graph convolution – one is from spatial domain and the 

other one is from spectral domain. Convolution on spatial domain is a quite 
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straightforward method, it takes all the neighbors of each node based on a certain 

algorithm and processes the neighbor information accordingly, which is much more 

similar to conducting convolution in Euclidean domain. Since convolution on spatial 

domain is not the core foundation of model used in this paper, there is no further 

elaboration. If interested, the detailed explanation can be found in paper proposed by 

Niepert et al. [39].  

Convolution on spectral domain is based on spectral decomposition (eigen 

decomposition) of Laplacian matrix. Laplacian matrix L is defined as, 

𝐿 = 𝐷 − 𝐴     (4) 

where D and A are the degree matrix and adjacency matrix of an undirected graph, 

respectively. See Figure 7 for detailed illustration. 

 

 

Figure 7 Laplacian matrix of a labelled, undirected graph [40]. 

 

There are 3 different forms of Laplacian matrix, and Equation (4) is called 

combinatorial Laplacian matrix, which is for simple graphs like Figure 7. The second 

form is called random walk normalized Laplacian matrix, which is defined as, 

𝐿𝑟𝑤 =  𝐷−1𝐿      (5) 

where D is still the degree matrix of Laplacian matrix.  
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The third form, symmetric normalized Laplacian matrix, is the form used in eigen 

decomposition of Laplacian matrix, defined as, 

𝐿𝑠𝑦𝑠 =  𝐷−
1

2𝐿𝐷−
1

2 =  𝐼𝑛 − 𝐷−
1

2𝐴𝐷−
1

2     (6) 

where D and A are still the degree matrix and adjacency matrix of an undirected graph, 

respectively. Laplacian matrix is Semi-Positive Definite Symmetric Matrix, so there are 3 

properties which are useful in graph convolution: 

 

1. Laplacian matrix as a symmetric matrix has n linearly independent eigenvectors 

2. Laplacian matrix as Semi-Positive Definite Matrix has non-negative eigenvalues 

3. Laplacian matrix as a symmetric matrix has orthogonal eigenvectors, which means 

the matrix formed by eigenvectors is an orthogonal matrix 

 

Not all matrices can do eigen decomposition, but only nth order square matrices with 

n linearly independent eigenvectors. Based on the above properties, Laplacian matrix is 

able to perform eigen decomposition as, 

𝐿 = 𝑈Λ𝑈−1     (7) 

where U is the matrix of eigenvectors of L, Λ is the diagonal degree matrix of 

eigenvalues of Laplacian matrix. Due to U is an orthogonal matrix, then 𝑈𝑈𝑇 = 𝐸. With 

definition of inverse matrix, it is proven 𝑈𝑈−1 = 𝐸. Therefore, 𝑈−1 = 𝑈𝑇 in Laplacian 

matrix, then Equation (7) can be re-written as, 

𝐿 = 𝑈Λ𝑈𝑇     (8) 

Since the graph convolution is conducted in spectral domain, it is necessary to 
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transform input of the graph convolution layer into spectral domain. Thus, Fourier 

transform is needed to be applied. The details of why Fourier transform is able to be 

extended into graph structures is available in paper proposed by Shuman et al. [38]. 

Based on the research from Shuman’s paper, the linearly independent orthogonal vectors 

of Laplacian matrix can be regarded as Fourier base, while the eigenvalues can be 

regarded as corresponding frequencies. Therefore, the input of the graph convolution 

layer is able to be transformed into spectral domain. After transforming into spectral 

domain, graph convolution is able to be employed on the input based on Laplacian 

matrix.  

Considering x as the input of graph convolution layer, then Fourier transform is 

conducted on x by 𝑈𝑇𝑥. The diagonal eigenvalue matrix Λ of Laplacian matrix can be 

written as, 

(
𝜆1 . .
. ⋱ .
. . 𝜆𝑛

) 

where 𝜆1 to 𝜆𝑛 are n eigenvalues of Laplacian matrix. A convolution kernel ℎ is designed 

based on eigenvalue matrix Λ, and Fourier transformed version ℎ̂(𝜆𝑙), 𝑙 ∈ {1, … , 𝑛} , is 

defined here, written as, 

(
ℎ̂(𝜆1) . .

. ⋱ .

. . ℎ̂(𝜆𝑛)
) 

then the Fourier transformed product between convolution kernel ℎ̂ and input x becomes 

ℎ̂𝑈𝑇𝑥. After applying the inverse transformation 𝑈 on Fourier transformed product, the 

graph convolution can be described as 𝑈ℎ̂𝑈𝑇𝑥. In a more general way, the equation is 
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written as, 

(𝑥 ∗ ℎ)𝐺 = 𝑈((𝑈𝑇ℎ) ⨀ (𝑈𝑇𝑥))     (9) 

where x is the input of graph convolution layer, h is the graph convolution kernel, ⨀ 

indicates Hadamard product, and 𝑈𝑇 is the Fourier base.  

Graph convolution collects neighbor information based on hops. For example, a node 

itself is the first hop, which denotes the information of the node itself, then all the direct 

neighbors connected with this node is the second hop (see nodes colored shallow orange 

in Figure 7 on the right), etc. When mapping hop definition to graph convolution kernel, 

eigenvalues of Laplacian matrix is considered as the designed hops to collect neighbor 

information of a certain node within the number of hops. 

While applying convolution inside neural networks, the trainable kernels are 

required, which can also be locally shared. The most straightforward method is to turn 

ℎ̂(𝜆𝑙), 𝑙 ∈ {1, … , 𝑛} as convolution kernel 𝜃(Λ), then the output of graph convolution can 

be written as, 

𝑦𝑜𝑢𝑡𝑝𝑢𝑡 =  𝜎 (𝑈𝜃(Λ)𝑈𝑇𝑥)     (10) 

where 𝜎 is the activation function, and x is the input. However, the computation cost is 

too expensive when utilizing the forward propagation, and in this way, the convolution 

kernel 𝜃(Λ) is not capable of sharing locally. 

Based on the above consideration, Chebyshev Polynomials Approximation is 

introduced to reduce the computational cost [41]. ℎ̂(𝜆𝑙), 𝑙 ∈ {1, … , 𝑛} can be well-

approximated by a truncated expansion in terms of Chebyshev polynomials up to Kth 

order, with products between trainable parameters {𝛼1, 𝛼2, … , 𝛼𝑘} and eigenvalues. The 
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trainable parameters can be initialized randomly and adjusted during backpropagation. 

Also, after introducing the above trainable parameters, the eigen decomposition of 

Laplacian matrix is not necessary during forward propagation. Instead, the Laplacian 

matrices of each hop is calculated. Thus, the output of graph convolution can be written 

as, 

𝑦𝑜𝑢𝑡𝑝𝑢𝑡 =  𝜎 (∑ 𝛼𝑖𝐿
𝑖𝑥𝐾

𝑖=0 )     (11) 

where 𝜎 is the activation function, 𝛼𝑖 is the ith trainable parameter, 𝐿𝑖 is Laplacian matrix 

for i-hop neighbors of a certain node and x is the input from last layer. If Chebyshev 

Polynomials Approximation is restricted to 2nd order, it becomes the form in the paper 

proposed by Kipf and Welling [42]. 

Based on the above modification, the current graph convolution kernel has good 

spatial localization, and K is the receptive field of graph convolution kernel. During each 

convolution, the weighted sum of K-hop neighbors is calculated for every node to 

aggregate the neighbors feature. 

 

3.1.2 Spatio-Temporal Graph Network Introduction 

Just as mentioned in Introduction section of this paper, we adopted the spatial 

temporal graph neural network to be our model. The model used in this paper is inspired 

by the model proposed by Yu et al. [21]. They proposed a spatio-temporal graph 

convolution networks, named STGCN. There are 2 main parts of STGCN – spatio-

temporal convolutional block (ST-conv Block) and output layer.  

Inside ST-conv Block, there is a “sandwich” structure to capture temporal and spatial 
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information, which is described as one temporal convolution layer + one spatial 

convolution layer + another temporal convolution layer. Temporal information is captured 

by 1-d causal convolution, followed by Gated Linear Units in order to add non-linearity. 

Causal convolution is a variety of CNN, which is dealing with sequential data, such as 

the time-series frequencies of a certain node in our dataset. The feature of 1-d causal 

convolution is that it takes time series into consideration, therefore, at time t, only input 

before time t can be seen in the model training process. The mechanism is illustrated in 

Figure 8 below. Gated Linear Unit (GLU) [43] introduces gate mechanism into traditional 

CNN, which can reduce the problem of gradients vanishing while keeping non-linearity. 

GLU is defined as, 

ℎ𝑙(𝑋) = (𝑋 ∗ 𝑊 + 𝑏) ⊗ 𝜎(𝑋 ∗ 𝑉 + 𝑐)     (12) 

where X is the input of layer ℎ𝑙, W, V, b and c are learned parameters, 𝜎 is sigmoid 

function, and ⊗ is element-wise product between matrices. Spatial information is 

captured by Graph Convolution Network, and the theory of GCN is introduced in section 

3.1.1. 

Between 2 ST-conv Blocks, there is an operation called Layer Normalization [44]. 

Literally, Layer Normalization is normalizing the neurons inside a certain layer. It takes 

all input dimensions inside the corresponding layer, and normalize the inputs based on 

their mean and standard deviation, calculated as, 

𝜇 =  ∑ 𝑥𝑖𝑖  , 𝜎 =  √∑ (𝑥𝑖 −  𝜇)2
𝑖 +  𝜀     (13) 

where 𝜇 is mean of all neurons, 𝜎 is standard deviation, 𝑥𝑖 means ith neuron inside the 

layer, and 𝜀 is a very small number to avoid the divisor to be 0. The above calculation is 

based on all neurons inside the layer, with no relations to the batch examples fed into the 
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layer. After obtaining the mean and standard deviation of all inputs, the normalization is 

calculated as,  

𝑦𝑖 =  
𝑥𝑖− 𝜇

𝜎2         (14) 

where 𝑦𝑖 is output of the layer, other parameters have same meanings as Equation (13). 

 

 

Figure 8 Illustration of the mechanism in causal convolution [45]. 

 

 

Figure 9 STGCN model architecture. 
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Inside the output layer, there are another 2 temporal layers to capture the temporal 

feature, with sigmoid function as activation function, then integrate features to be the 

prediction output. The architecture of STGCN is illustrated in Figure 9 above, with ST-

conv Block used twice in their paper. 

 

3.2 Dynamic Spatio-Temporal Graph Network Model 

Inspired by STGCN model introduced above, we modified the spatial convolution 

layer inside ST-conv Block. STGCN model only takes static graph as input to spatial 

convolution layer, i.e. there is only one graph loaded into the model. However, the model 

cannot be tailored to fit into the datasets in this project. In each dataset of this project, the 

graphs vary from month to month. Based on the above demand, we modified the static 

spatial convolution layer into a dynamic one. The comparison shown in ST-conv Block 

between the spatial convolution layers is demonstrated in Figure 11 (original static 

model) and Figure 12 (modified dynamic model) below. 

From Figure 11 and Figure 12, it is quite clear that our modified model can take 

dynamic graphs as input and combine each graph information into corresponding 

temporal information from different input examples. Inside the modified model, each 

GCN element is grouped with an adjacency matrix of a graph. The Laplacian matrix is 

different in every GCN element, which means GCN layer can collect different graph 

information from different input examples. Therefore, more dynamic graph information 

can be fed during model training. 
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Figure 10 Demonstration of fully connected layer. 

 

 

Figure 11 Original static model. 
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Figure 12 Modified dynamic model. 

 

Other than the modification in GCN layer, a fully connected layer is added after 

output layer of the original model. Therefore, more feature representations can be 

integrated from all nodes in the model. See Figure 10 for demonstration of fully 

connected layer. In addition, since there is longer temporal input data in our dataset, then 

one more ST-conv Block is employed in our final model, to collect more higher-level 

temporal information. See Figure 13 for the whole modified model. 
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Figure 13 Whole modified model. 

 

3.3 Model Implementation 

TensorFlow is also adopted for the model implementation. TensorFlow is able to 

utilize GPU as an accelerating option, so all the experiments are run on a server with 

GPU. The detailed experiment settings are available in Chapter 4. In every program 

constructed with TensorFlow, it always contains 2 parts – one is building the computation 

graph, the other one is executing the graph inside a session. The computation graph 

consists of Tensor and Operation – Tensor can be considered as a vector or a multi-

dimensional matrix based on the data assigned, and Operation literally means an 

operation conducted among different data, such as addition and multiplication. The 

construction of computation graph is executed before feeding the input data, so it is 
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necessary to pre-define a placeholder of the data shape. 

In this project, the model implementation is completely based on the above 

procedure. The construction of computation graph follows the model presented in Figure 

13, with the APIs provided in tf.nn module, such as tf.nn.conv2d and tf.nn.sigmoid, etc. 

The input data is constructed with TensorFlow data input pipelines, which is introduced 

in Chapter 2. 
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Chapter 4 Experiment Results  

4.1 Experiment Settings 

All the experiments are conducted on a Linux server – CPU: Intel(R) Core(TM) i7-

8700K CPU @ 3.70GHz, GPU: NVIDIA GeForce GTX 1080. In all test datasets, the 

historical data is formed by 15 months, then used to predict data in the next 5 months 

with separate models, i.e. data of first 15 months in each example is used to predict 

keyword/topic frequency (proportions) of 16th, 17th, 18th, 19th, 20th month with different 

models. 

 

4.2 Result Evaluation Benchmark 

Results in each dataset are illustrated as 3 parts with comparison to the direct copy of 

corresponding keyword/topic frequency (proportion) in last one month (15th month) of 

historical 15 months, as evaluation benchmark. For example, if keyword/topic 

frequencies in 17th month are predicted, then data in 15th month ground truth is serving as 

evaluation benchmark. The 3 parts of results are: 

 

1. Pearson correlation coefficient between prediction and ground truth, indicating the 

linear relationship between prediction and ground truth 

2. Hit accuracy of top fluctuated keywords/topics, indicating how many fluctuated 

keywords/topics are able to be predicted in top 5, top 10 and top 20 of prediction 

results 

3. Prediction in continuous time series, indicating the trend of specific hot 
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keywords/topics 

 

See paragraphs below for the explanation of Pearson correlation coefficient, top 

fluctuated keywords/topics, hit accuracy, and prediction in continuous time series, where 

hit accuracy is calculated based on the definition of top fluctuated keywords/topics. 

Pearson correlation coefficient is a statistical linear correlation measurement of 2 

variables (prediction or ground truth vectors in this paper), with the value between -1 and 

1. -1 and 1 mean negative linear correlation and positive correlation, respectively, while 0 

means there is no linear correlation between 2 variables. Pearson correlation coefficient 

𝜌𝑋,𝑌 is defined as the covariance between 2 variables divided by the standard deviations, 

calculated as, 

𝜌𝑋,𝑌 =  
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
      (15) 

where 𝑐𝑜𝑣(𝑋, 𝑌) is covariance between X and Y, 𝜎𝑋 and 𝜎𝑌 are the standard deviations of 

X and Y, respectively. There is no difference if 2 variables change the position during the 

calculation, which means 𝜌𝑋,𝑌 and 𝜌𝑌,𝑋 are the same. In each dataset result, the prediction 

or ground truth of all hot keywords/topics can be treated as a vector. Pearson correlation 

coefficient is calculated in each testing example between prediction vector and 

corresponding ground truth vector, as well as the ground truth vector of prediction month 

and ground truth vector of last month in historical data, serving for evaluation 

benchmark. For example, if keyword/topic frequencies in 17th month are predicted, then 

Pearson correlation coefficient between 17th month prediction and 17th month ground 

truth is calculated, as well as 17th month ground truth and 15th month ground truth, with 
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latter serving as evaluation benchmark. In section 4.3 and 4.4, all results of Pearson 

correlation coefficient are illustrated in 11 testing examples, indexed from 0 to 10, along 

with an average calculated based on 11 examples. Also, all the results are sorted based on 

Pearson correlation coefficients of ith month ground truth and 15th month ground truth 

(benchmark), where i is selected from {16, 17, 18, 19, 20}. 

The top 5/10/20 fluctuated keywords/topics in each testing example are selected 

based on the top 5/10/20 highest ratio inside vector r defined as, 

𝑟 =  
(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

 𝑖𝑡ℎ 𝑚𝑜𝑛𝑡ℎ
− 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 15𝑡ℎ)

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 15𝑡ℎ

   (16) 

where 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦𝑔𝑟𝑜𝑢𝑛𝑑 𝑡𝑟𝑢𝑡ℎ 15𝑡ℎ is the vector of all hot keyword/topic frequency 

(proportion) of 15th month in historical data, and 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑡ℎ 𝑚𝑜𝑛𝑡ℎ is the vector of 

ground truth or prediction frequency in the prediction month (16th, 17th, 18th, 19th or 20th 

month).  

Hit accuracy is defined based on fluctuated keywords/topics. Similar to evaluations 

on Pearson correlation coefficient, hit accuracy is also compared between hot 

keyword/topic frequency of last month in historical data and in prediction month. The hit 

accuracy in each dataset is illustrated as a table (see results in section 4.3, 4.4), similar to 

confusion matrix. Prediction top 5/10/20 means the top 5/10/20 fluctuated 

keywords/topics in prediction vector, with prediction vector selected as 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑡ℎ 𝑚𝑜𝑛𝑡ℎ to calculate r in Equation 16, while Ground Truth top 5/10/20 

means the top 5/10/20 fluctuated keywords/topics in ground truth vector of prediction 

month, with ground truth vector in prediction month selected as 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑡ℎ 𝑚𝑜𝑛𝑡ℎ to 

calculate r in Equation 16. The value in each table is considered as the intersection 
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between Prediction top 5/10/20 and Ground Truth top 5/10/20. For example, the value in 

row Ground Truth top 5 and column Prediction top 10 means how many keywords/topics 

are both in Ground Truth top 5 and Prediction top 10, which indicates the how many top 

5 fluctuated keywords/topics are able to be predicted in prediction top 10 fluctuated 

keywords/topics. There are 3 tables selected in each dataset, with best, worst and average 

hit accuracy, respectively. 

Prediction in continuous time series is performing in the same datasets, but without 

random sample. Therefore, no matter training set, validation set, or testing set in each 

dataset is formed in time series. Utilizing the model trained with 15 months historical 

data to predict data in 16th month, the outcome of all testing examples can form the 

predictions in continuous time series of every hot keyword/topic. The figures listed in 

section 4.3 and 4.4 are randomly selected. The x axis indicates the month in time series, 

while y axis indicates the normalized word frequency (proportion). The number listed on 

the top of each figure is the index of the selected keyword/topic, and ground truth is listed 

with red line, while prediction is listed with blue line. 

 

4.3 Keyword Dataset Result 

4.3.1 Keywords(S) Dataset 

Pearson correlation coefficient 

1. 16th month 

Table 1 Keywords(S) Dataset 16th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

16th Ground Truth & 15th Ground Truth 16th Ground Truth & 16th Prediction 
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0 0.672 0.844 

1 0.732 0.881 

2 0.733 0.797 

3 0.821 0.878 

4 0.884 0.80 

5 0.889 0.874 

6 0.911 0.915 

7 0.944 0.963 

8 0.945 0.835 

9 0.949 0.953 

10 0.962 0.964 

Average 0.859 0.882 

 

2. 17th month 

Table 2 Keywords(S) Dataset 17th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

17th Ground Truth & 15th Ground Truth 17th Ground Truth & 17th Prediction 

0 0.638 0.874 

1 0.762 0.800 

2 0.782 0.898 

3 0.846 0.916 

4 0.865 0.945 

5 0.884 0.899 

6 0.914 0.914 

7 0.945 0.916 

8 0.955 0.938 

9 0.958 0.962 

10 0.966 0.933 

Average 0.865 0.909 

 

3. 18th month 
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Table 3 Keywords(S) Dataset 18th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

18th Ground Truth & 15th Ground Truth 18th Ground Truth & 18th Prediction 

0 0.783 0.837 

1 0.848 0.893 

2 0.856 0.843 

3 0.858 0.864 

4 0.892 0.915 

5 0.934 0.920 

6 0.935 0.941 

7 0.946 0.942 

8 0.952 0.924 

9 0.956 0.932 

10 0.970 0.941 

Average 0.903 0.905 

 

4. 19th month 

Table 4 Keywords(S) Dataset 19th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

19th Ground Truth & 15th Ground Truth 19th Ground Truth & 19th Prediction 

0 0.731 0.850 

1 0.814 0.944 

2 0.845 0.901 

3 0.876 0.894 

4 0.878 0.855 

5 0.880 0.914 

6 0.898 0.915 

7 0.908 0.900 

8 0.916 0.903 

9 0.946 0.931 

10 0.958 0.927 

Average 0.877 0.902 
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5. 20th month 

Table 5 Keywords(S) Dataset 20th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

20th Ground Truth & 15th Ground Truth 20th Ground Truth & 20th Prediction 

0 0.701 0.892 

1 0.725 0.836 

2 0.740 0.685 

3 0.836 0.906 

4 0.856 0.886 

5 0.897 0.859 

6 0.903 0.917 

7 0.924 0.932 

8 0.940 0.924 

9 0.948 0.942 

10 0.957 0.929 

Average 0.857 0.883 

 

Hit Accuracy 

1. 16th month 

Table 6 Keywords(S) Dataset 16th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 4 5 5 

Ground Truth top 10 5 9 10 

Ground Truth top 20 5 10 18 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 1 1 

Ground Truth top 10 1 1 1 

Ground Truth top 20 1 1 2 
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Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 2 5 

Ground Truth top 10 3 4 7 

Ground Truth top 20 3 4 8 

 

2. 17th month 

Table 7 Keywords(S) Dataset 17th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 2 3 4 

Ground Truth top 10 4 7 8 

Ground Truth top 20 5 8 13 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 0 1 

Ground Truth top 10 0 0 1 

Ground Truth top 20 0 0 2 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 2 3 

Ground Truth top 10 1 4 5 

Ground Truth top 20 1 5 7 

 

3. 18th month 

Table 8 Keywords(S) Dataset 18th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 4 5 5 

Ground Truth top 10 5 7 10 
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Ground Truth top 20 5 8 15 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 1 1 

Ground Truth top 10 0 2 3 

Ground Truth top 20 0 2 4 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 1 2 

Ground Truth top 10 2 3 4 

Ground Truth top 20 4 7 9 

 

4. 19th month 

Table 9 Keywords(S) Dataset 19th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 2 4 

Ground Truth top 10 3 4 8 

Ground Truth top 20 5 9 16 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 0 0 

Ground Truth top 10 0 0 1 

Ground Truth top 20 0 1 2 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 4 4 5 
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Ground Truth top 10 4 8 9 

Ground Truth top 20 4 9 12 

 

5. 20th month 

Table 10 Keywords(S) Dataset 20th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 2 3 3 

Ground Truth top 10 3 5 8 

Ground Truth top 20 4 9 16 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 1 1 

Ground Truth top 10 1 2 2 

Ground Truth top 20 2 3 3 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 2 3 5 

Ground Truth top 10 3 5 8 

Ground Truth top 20 4 7 11 

 

Prediction of Specific Keywords in Time series 

Ground truth: red line, Prediction: blue line 
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Figure 14 Keywords(S) Dataset predictions of specific keywords – keyword index 44 

 

 

Figure 15 Keywords(S) Dataset predictions of specific keywords – keyword index 50 
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Figure 16 Keywords(S) Dataset predictions of specific keywords – keyword index 106 

 

4.3.2 Keywords(L) Dataset 

Pearson correlation coefficient 

1. 16th month 

Table 11 Keywords(L) Dataset 16th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

16th Ground Truth & 15th Ground Truth 16th Ground Truth & 16th Prediction 

0 0.959 0.970 

1 0.978 0.980 

2 0.979 0.979 

3 0.984 0.987 

4 0.984 0.986 

5 0.985 0.988 

6 0.995 0.993 

7 0.996 0.993 

8 0.996 0.995 

9 0.996 0.993 
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10 0.996 0.996 

Average 0.986 0.987 

 

2. 17th month 

Table 12 Keywords(L) Dataset 17th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

17th Ground Truth & 15th Ground Truth 17th Ground Truth & 17th Prediction 

0 0.903 0.960 

1 0.964 0.965 

2 0.988 0.987 

3 0.988 0.990 

4 0.989 0.986 

5 0.990 0.987 

6 0.994 0.993 

7 0.994 0.994 

8 0.994 0.996 

9 0.995 0.994 

10 0.997 0.995 

Average 0.981 0.986 

 

3. 18th month 

Table 13 Keywords(L) Dataset 18th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

18th Ground Truth & 15th Ground Truth 18th Ground Truth & 18th Prediction 

0 0.913 0.945 

1 0.957 0.957 

2 0.966 0.960 

3 0.970 0.985 

4 0.979 0.976 

5 0.984 0.990 

6 0.987 0.990 

7 0.992 0.992 
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8 0.995 0.991 

9 0.995 0.988 

10 0.997 0.992 

Average 0.976 0.979 

 

4. 19th month 

Table 14 Keywords(L) Dataset 19th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

19th Ground Truth & 15th Ground Truth 19th Ground Truth & 19th Prediction 

0 0.981 0.988 

1 0.985 0.991 

2 0.985 0.988 

3 0.987 0.990 

4 0.992 0.995 

5 0.992 0.994 

6 0.994 0.994 

7 0.995 0.993 

8 0.996 0.998 

9 0.997 0.991 

10 0.997 0.996 

Average 0.991 0.992 

 

5. 20th month 

Table 15 Keywords(L) Dataset 20th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

20th Ground Truth & 15th Ground Truth 20th Ground Truth & 20th Prediction 

0 0.960 0.971 

1 0.983 0.988 

2 0.985 0.981 

3 0.987 0.986 

4 0.987 0.990 

5 0.989 0.994 
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6 0.992 0.991 

7 0.996 0.989 

8 0.996 0.995 

9 0.996 0.984 

10 0.996 0.987 

Average 0.987 0.987 

 

Hit Accuracy 

1. 16th month 

Table 16 Keywords(L) Dataset 16th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 3 4 5 

Ground Truth top 10 5 8 9 

Ground Truth top 20 5 10 16 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 1 1 

Ground Truth top 10 0 1 1 

Ground Truth top 20 0 1 1 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 3 5 

Ground Truth top 10 1 5 10 

Ground Truth top 20 1 5 10 

 

2. 17th month 
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Table 17 Keywords(L) Dataset 17th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 2 5 5 

Ground Truth top 10 5 9 10 

Ground Truth top 20 5 10 16 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 1 1 

Ground Truth top 10 1 2 3 

Ground Truth top 20 1 3 5 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 1 4 

Ground Truth top 10 1 3 7 

Ground Truth top 20 2 4 9 

 

3. 18th month 

Table 18 Keywords(L) Dataset 18th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 3 4 5 

Ground Truth top 10 5 7 10 

Ground Truth top 20 5 10 17 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 0 0 

Ground Truth top 10 0 0 0 

Ground Truth top 20 1 1 2 
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Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 4 4 4 

Ground Truth top 10 4 4 4 

Ground Truth top 20 4 5 6 

 

4. 19th month 

Table 19 Keywords(L) Dataset 19th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 3 5 5 

Ground Truth top 10 5 8 9 

Ground Truth top 20 5 10 18 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 3 3 3 

Ground Truth top 10 3 3 3 

Ground Truth top 20 3 3 3 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 2 4 5 

Ground Truth top 10 2 6 8 

Ground Truth top 20 2 6 10 

 

5. 20th month 

Table 20 Keywords(L) Dataset 20th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 
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Ground Truth top 5 4 5 5 

Ground Truth top 10 5 7 10 

Ground Truth top 20 5 10 13 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 0 2 

Ground Truth top 10 0 0 2 

Ground Truth top 20 0 0 2 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 1 1 

Ground Truth top 10 1 1 3 

Ground Truth top 20 3 5 11 

 

Prediction of Specific Keywords in Time series 

Ground truth: red line, Prediction: blue line 
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Figure 17 Keywords(L) Dataset predictions of specific keywords – keyword index 111 

 

 

Figure 18 Keywords(L) Dataset predictions of specific keywords – keyword index 413 
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Figure 19 Keywords(L) Dataset predictions of specific keywords – keyword index 517 

 

4.4 Topic Dataset Result 

Pearson correlation coefficient 

1. 16th month 

Table 21 Topic Dataset 16th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

16th Ground Truth & 15th Ground Truth 16th Ground Truth & 16th Prediction 

0 0.834 0.913 

1 0.983 0.993 

2 0.991 0.962 

3 0.995 0.998 

4 0.995 0.998 

5 0.997 0.997 

6 0.997 0.994 

7 0.998 0.999 

8 0.998 0.999 

9 0.999 0.999 
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10 0.999 0.999 

Average 0.980 0.986 

 

2. 17th month 

Table 22 Topic Dataset 17th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

17th Ground Truth & 15th Ground Truth 17th Ground Truth & 17th Prediction 

0 0.894 0.993 

1 0.945 0.991 

2 0.965 0.989 

3 0.980 0.985 

4 0.988 0.992 

5 0.989 0.990 

6 0.990 0.983 

7 0.993 0.996 

8 0.993 0.998 

9 0.998 0.997 

10 0.999 0.999 

Average 0.976 0.992 

 

3. 18th month 

Table 23 Topic Dataset 18th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

18th Ground Truth & 15th Ground Truth 18th Ground Truth & 18th Prediction 

0 0.863 0.989 

1 0.907 0.991 

2 0.937 0.910 

3 0.987 0.981 

4 0.991 0.984 

5 0.991 0.988 

6 0.995 0.995 

7 0.996 0.985 
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8 0.997 0.998 

9 0.998 0.990 

10 0.999 0.994 

Average 0.969 0.982 

 

4. 19th month 

Table 24 Topic Dataset 19th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

19th Ground Truth & 15th Ground Truth 19th Ground Truth & 19th Prediction 

0 0.888 0.974 

1 0.968 0.965 

2 0.977 0.976 

3 0.987 0.996 

4 0.992 0.996 

5 0.996 0.998 

6 0.997 0.981 

7 0.997 0.993 

8 0.997 0.995 

9 0.998 0.999 

10 0.999 0.999 

Average 0.981 0.988 

 

5. 20th month 

Table 25 Topic Dataset 20th month Pearson correlation coefficient 

Testing Example 

Index 

Pearson correlation coefficient 

20th Ground Truth & 15th Ground Truth 20th Ground Truth & 20th Prediction 

0 0.895 0.978 

1 0.934 0.942 

2 0.964 0.984 

3 0.974 0.976 

4 0.981 0.983 

5 0.990 0.997 
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6 0.993 0.984 

7 0.997 0.993 

8 0.997 0.998 

9 0.999 0.999 

10 0.999 0.999 

Average 0.975 0.985 

 

Hit Accuracy 

1. 16th month 

Table 26 Topic Dataset 16th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 4 5 5 

Ground Truth top 10 4 9 10 

Ground Truth top 20 5 10 20 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 2 3 

Ground Truth top 10 1 3 8 

Ground Truth top 20 3 8 15 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 4 4 4 

Ground Truth top 10 5 5 7 

Ground Truth top 20 5 9 17 

 

2. 17th month 
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Table 27 Topic Dataset 17th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 4 5 5 

Ground Truth top 10 5 9 10 

Ground Truth top 20 5 10 20 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 1 2 

Ground Truth top 10 2 3 6 

Ground Truth top 20 4 8 15 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 2 2 4 

Ground Truth top 10 3 5 9 

Ground Truth top 20 4 9 18 

 

3. 18th month 

Table 28 Topic Dataset 18th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 5 5 5 

Ground Truth top 10 5 9 10 

Ground Truth top 20 5 10 20 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 2 3 

Ground Truth top 10 1 4 6 

Ground Truth top 20 2 7 15 
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Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 3 4 5 

Ground Truth top 10 4 7 9 

Ground Truth top 20 4 9 18 

 

4. 19th month 

Table 29 Topic Dataset 19th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 5 5 5 

Ground Truth top 10 5 8 10 

Ground Truth top 20 5 10 19 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 0 1 3 

Ground Truth top 10 3 4 7 

Ground Truth top 15 4 7 15 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 5 5 5 

Ground Truth top 10 5 8 10 

Ground Truth top 20 5 9 18 

 

5. 20th month 

Table 30 Topic Dataset 20th month Hit accuracy 

Best hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 
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Ground Truth top 5 5 5 5 

Ground Truth top 10 5 7 10 

Ground Truth top 20 5 10 20 

 

Worst hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 3 3 3 

Ground Truth top 10 4 5 6 

Ground Truth top 20 4 8 15 

 

Average hit accuracy Prediction top 5 Prediction top 10 Prediction top 20 

Ground Truth top 5 1 2 5 

Ground Truth top 10 3 5 10 

Ground Truth top 20 4 8 18 

 

Prediction of Specific Topics in Time series 

Ground truth: red line, Prediction: blue line 
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Figure 20 Topic Dataset predictions of specific topics – topic index 2 

 

 

Figure 21 Topic Dataset predictions of specific topics – topic index 15 
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Figure 22 Topic Dataset predictions of specific topics – topic index 111 

 

4.5 Result Analysis 

There are 3 result illustrations in section 4.3 and 4.4, so the result analysis is also 

formed by 3 parts, as below. 

For each dataset above, Pearson correlation coefficient of every testing example 

between prediction and its corresponding ground truth (rightmost column) is higher than 

the benchmark (middle column) on average. Pearson correlation coefficient of prediction 

is not always higher than benchmark for each example, especially when the value of 

benchmark is pretty high, such as 0.999, 0.997, etc. However, for those lower Pearson 

correlation coefficient value inside benchmark, such as 0.638, 0.731, etc., the Pearson 

correlation coefficient value of prediction is higher than its benchmark for most of the 

time. Thus, no matter how Pearson correlation coefficients vary from example to 

example, or from dataset to dataset, the prediction value is always more stable than the 
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benchmark. 

As for Hit Accuracy of each dataset, although Ground Truth top 20 cannot always be 

predicted in Prediction top 20, Ground Truth top 5 and top 10 can be predicted in 

Prediction top 20 for most of the examples. Also, in most of the Best Hit Accuracy 

conditions, Hit Accuracy value between Ground Truth top 20 and Prediction top 20 can 

always become 15 to 20, which is actually pretty high. Even in worst cases, there is no 

circumstance that no fluctuated keyword/topic is predicted. 

For each dataset, it can be shown from the figures in section 4.3 and 4.4, that 

prediction trend of each keyword/topic does not completely coincide with ground truth 

trend. However, in most cases, comparing to the ground truth trend, the prediction trend 

can indicate whether the specific keyword/topic becomes hot or less hot in next month, 

which is exactly the purpose of this project. 
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Chapter 5 Conclusion 

This project aims to predict the trends of hot keywords and hot topics in biomedical 

domain with the model based on spatio-temporal graph neural networks, with large 

amounts of biomedical papers obtained from PubMed, the largest collection of 

biomedical literature.  

First, titles, keywords and abstracts are extracted from each paper, together as paper 

contents, where hot keywords and hot topics are obtained from keyword section. Graphs 

of hot keywords are formed based on other 1500 add-on keywords and co-occurrence 

times of all hot keywords in paper contents in each month, while graphs of hot topics are 

formed directly from hot topics with no add-on nodes. After that, 3 datasets are acquired 

– Keywords(S), Keywords(L) and Topic. Then our modified model – dynamic spatio-

temporal graph neural network is conducted based on hot keyword/topic frequencies 

(proportions) of 15 months historical data, to predict frequency of next 5 months with 

separate models. 

The experimental results show that our modified model performs better than the 

benchmark evaluated on Pearson correlation coefficient in each prediction month. Also, 

fluctuated hot keywords/topics are able to be predicted with at least half correctness of 

top 20 hit accuracy of ground truth benchmark, on average, while the best top 20 hit 

accuracy can reach up to 20. As for the trend analysis of specific hot keywords/topics, the 

prediction trend of selected keywords/topics can accord with the ground truth trend 

mostly from the result figures.  

Based on the above results, the dynamic spatio-temporal graph neural network 
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introduced in this project is able to collect both temporal and spatial information from 

historical keyword/topic frequency data. With the extracted hybrid information, the 

model is able to predict frequency data in next 5 months. 
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Chapter 6 Future Work 

There are many attempts we would like to conduct in the future. First, the Pearson 

correlation coefficients are pretty high between ground truth of prediction month and last 

month in historical data of all 3 datasets, which indicates there are not much fluctuation 

between historical data and prediction data. Thus, we would like to try other methods to 

form new datasets with smaller Pearson correlation coefficient between historical data 

and prediction data.  

Also, the dataset we currently used is papers published from year 1997 to 2016, but 

more recent papers, such as papers published from 2017 to 2020, would be applied in the 

future. Similarly, we would consider enlarging our hot keywords/topics lists, in order to 

generalize the model and provide with more choices. 

Moreover, we would like to further modify our model. The current model conducts 

GCN by transforming graph data into spectral domain, which might not be compatible to 

larger graphs. However, as our dataset grows, the graph must grow larger. Therefore, we 

would like to try GCN model conducted with spatial domain mentioned in Chapter 3, 

which may support graph convolution on larger graphs better. 

Our current predictions of next 5 months are based on separate models, which is a 

little redundant. In the future, we would continue to modify our model in order to predict 

trends of multiple months with one model. 
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