
 

DATA MINING STUDENT ACTIVITY PATTERNS 

IN AN INTERACTIVE ACTIVITY-BASED  

STEM LEARNING ENVIRONMENT 

 

A Thesis 

presented to 

the Faculty of the Graduate School 

at the University of Missouri-Columbia 

 

In Partial Fulfillment 

of the Requirements for the Degree of 

Master of Science 

 

by  

SUSAN E. BROWNAWELL 

Dr. Grant Scott, Thesis Supervisor 

May 2020 



The undersigned, appointed by the dean of the Graduate School, have examined the  

thesis entitled  

DATA MINING STUDENT ACTIVITY PATTERNS  
IN AN INTERACTIVE ACTIVITY-BASED  

STEM LEARNING ENVIRONMENT 
 

presented by Susan E Brownawell, 

a candidate for the degree of master of science, 

and hereby certify that, in their opinion, it is worthy of acceptance.  

 

 

Professor Grant Scott 

 

Professor Curt Davis 

 

Professor Tim Matisziw  



ii 
 
 

ACKNOWLEDGEMENTS 

First, I would like to express my appreciation to Dr. Grant Scott, my thesis advisor, for his support 

and encouragement during my master’s studies, for suggesting this topic of research, and for his 

constant availability and feedback as I completed this work.  I also would like to thank the other 

members of my thesis committee, Dr. Curt Davis and Dr. Tim Matisziw, for their support and insightful 

suggestions and comments. 

I would also like to recognize and thank the technical team supporting the PSDS program who 

helped me get oriented and provided technical tools and access used in the completion of this thesis. 

Andrew Craighead developed the grapi library and introduced me to the Graylog system. Alex Lasley 

was always ready and willing to solve my permissions and other issues and to answer my questions 

about the systems installation and configuration. Will Starms wrote the patch for the T R A K  custom 

log messages and introduced me to the ZeroMQ library for messaging in Jupyter, a major puzzle piece 

for understanding the most efficient way to develop learning analytics for Jupyter.  



iii 
 
 

TABLE OF CONTENTS 

Acknowledgements .......................................................................................................................................................................ii 

Illustrations ....................................................................................................................................................................................... v 

Figures .................................................................................................................................................................................v 

Tables ................................................................................................................................................................................. vi 

Table of Terms .............................................................................................................................................................................. vii 

Abstract ............................................................................................................................................................................................... x 

 
Chapter 1: Introduction ...............................................................................................................................................................1 

1.1. Active Learning with Jupyter Notebook...................................................................................................... 1 

1.2. Learning Analytics ................................................................................................................................................ 2 

1.3. Program of Study in Data Science (PSDS) Program ............................................................................... 4 

 
Chapter 2: Log Collection with Jupyter and Graylog .......................................................................................................8 

2.1. Logging and Messaging in Jupyter ................................................................................................................. 8 

2.2. Graylog and Elasticsearch ................................................................................................................................. 9 

 
Chapter 3: PSDS IT System Design ....................................................................................................................................... 12 

 
Chapter 4: Data Collection & Ingestion Methods ........................................................................................................... 14 

4.1. Data Acquisition Challenges ........................................................................................................................... 14 

4.1.1. Log Purges ........................................................................................................................................... 14 

4.1.2. Graylog Outages ................................................................................................................................ 15 

4.1.3. Custom Graylog Extractors .......................................................................................................... 15 

4.1.4. TRAK Messages (Custom Jupyter Logging) .......................................................................... 16 

4.2. Data Ingestion and Database Loading ....................................................................................................... 18 



iv 
 
 

4.2.1. Querying Graylog ....................................................................................................................................... 20 

4.2.2. Feature Extraction ..................................................................................................................................... 23 

4.2.3. Kernel to Notebook Mapping ................................................................................................................ 26 

 
Chapter 5: PSDS Case Study .................................................................................................................................................... 30 

5.1. Selected Courses .................................................................................................................................................. 30 

5.2. Use Case Descriptions ....................................................................................................................................... 31 

5.3. Data Preparation for Reporting and Visualization ............................................................................... 32 

5.4. Use Case Visualizations .................................................................................................................................... 35 

5.4.1. Routing and Contracted Instruction Hours .......................................................................... 35 

5.4.2. Student Engagement - Daily Hours........................................................................................... 39 

5.4.3. Class Engagement by Activity Type .......................................................................................... 41 

5.4.4. Class Engagement by Activity Type Within a Module ...................................................... 42 

5.4.5. Class Engagement by Module/Notebook ............................................................................... 43 

5.4.6. Student Engagement by Module/Notebook ......................................................................... 49 

5.4.7. Practice vs Lab Balance .................................................................................................................. 52 

 
Chapter 6: Recommendations and Further Research ................................................................................................. 53 

6.1. A Comprehensive Jupyter Learning Analytics System ....................................................................... 53 

6.2. Additional Descriptive Analysis ................................................................................................................... 54 

6.2.1. New Features...................................................................................................................................... 54 

6.2.2. Additional Visualizations .............................................................................................................. 55 

6.3. Predictive Analytics ........................................................................................................................................... 55 

6.4. Prescriptive Analytics ....................................................................................................................................... 56 

 
Conclusion ...................................................................................................................................................................................... 57 

References ...................................................................................................................................................................................... 58 



v 
 
 

ILLUSTRATIONS 

Figures 

 1. The PSDS course roadmap for both the Graduate Certificate and the MS degree. ..................................... 5 

 2. Data science collaborative workflow from PSDS course material. .................................................................... 6 

 3. Jupyter messaging between a front end and the kernel. ........................................................................................ 9 

 4. Jupyter custom logging patch. ............................................................................................................................................ 9 

 5. Graylog architecture for a minimal setup. .................................................................................................................. 10 

 6. PSDS & DSA cyberinfrastructure. ................................................................................................................................... 12 

 7. PSDS Jupyter log storage and reporting using Graylog. ....................................................................................... 13 

 8. Graylog schema change apparent in September 2019.......................................................................................... 16 

 9. High level view of the query, parse, and load cycle. ............................................................................................... 19 

 10. Using the grapi library to query Graylog from Python. ...................................................................................... 20 

 11. The JSON content of the API response. ...................................................................................................................... 22 

 12. The JSON format of the messages portion of the Graylog API response. ................................................... 22 

 13. Parsing the messages from the API response. ....................................................................................................... 23 

 14. The kernel to notebook matching process. ............................................................................................................. 27 

 15. Matching earliest notebook load to earliest timestamp for kernel_id......................................................... 28 

 16. Ambiguous matches and orphan notebooks. ......................................................................................................... 29 

 17. Data preparation for reporting and visualizations. ............................................................................................. 33 

 18. Calculating the time difference between events in df_join. .............................................................................. 34 

 19. Routing Report - Ranked user hours for PSDS2100OP3-3. .............................................................................. 36 

 20. Routing Report - Ranked user hours combined for two class instances of PSDS2120. ....................... 38 

 21. Routing Report - Ranked user hours combined for three class instances of PSDS2110..................... 38 

 22. The daily hours of the student hourly-ranked 14 in PDSS2100OP3-3. ...................................................... 39 

 23. The daily hours of the student hourly-ranked 10 in PDSS2100OP3-3. ...................................................... 40 



vi 
 
 

 24. The daily hours of the student hourly-ranked 1 in PDSS2100OP3-3.3. ..................................................... 40 

 25. The daily hours of the student hourly-ranked 21 in PDSS2100OP3-3.3. ................................................... 41 

 26. PSDS2100OP3-3 class engagement by activity type. .......................................................................................... 42 

 27. PSDS2100OP3-3 class engagement by module and activity type. ................................................................ 43 

 28. PSDS2100OP3-3 class engagement for Day 1 notebooks - hours. ................................................................ 44 

 29. PSDS2100OP3-3 class engagement for Day 1 notebooks – cell executions. ............................................. 45 

 30. PSDS2100OP3-3 class engagement for Day 2 notebooks - hours. ................................................................ 46 

 31. PSDS2100OP3-3 class engagement for Day 3 notebooks - hours. ................................................................ 47 

 32. PSDS2100OP3-3 class engagement for Day 4 notebooks - hours. ................................................................ 48 

 33. PSDS2100OP3-3 class engagement for Day 5 notebooks - hours. ................................................................ 48 

 34. PSDS2100OP3-3 Day 4 notebook hours for Student 1. ...................................................................................... 49 

 35. PSDS2100OP3-3 Day 4 notebook hours for Student 2. ...................................................................................... 50 

 36. PSDS2100OP3-3 Day 3 notebook hours for Student 7. ...................................................................................... 51 

 37. PSDS2100OP3-3 Day 4 notebook hours for Student 7. ...................................................................................... 51 

 38. PSDS2100OP3-3 practice vs lab cumulative hours and cell executions for all students. ................... 52 

 
Tables 

 1. Time discrepancies in using TRAK vs kernelmanager execute messages. ................................................... 17 

 2. Features extracted from the log message. .................................................................................................................. 23 

 3: Data dictionary for the table psds.log_entry in the analytics database. ........................................................ 25 

 4. Routing Report – Table of ranked user hours for PSDS2100OP3-3. ............................................................... 37 

 

  



vii 
 
 

TABLE OF TERMS 

Category Term Definition 

PSDS 
Activity 

Type 

LAB A Jupyter notebook which leads the students interactively 
through concepts and skills. 

PRACTICE A Jupyter notebook where students must supply code 
themselves, but which provides instructor guidance. 

EXERCISE A Jupyter notebook in which students apply what they have 
learned previously by writing independent code. 

FINAL PROJECT A Jupyter notebook in which students synthesize and apply 
what they have learned in previous modules of a course. 

Message 
Features 

user The person executing the notebook. Student usernames 
follow the pattern aaa.####. 

notebook_path 
The full path of a notebook, which can be decomposed into 
class, user, notebook_type, and notebook. Example: 
“PSDS2200OP3-2_aaa.1234/Day4/labs/Chi-Squared.ipynb” 

class 

An instance of a course, specified by the course name, the 
contract period, and the number of the instance for that 
contract period. For example: PSDS 3300 OP3-2 written as 
PSDS3300OP3-2. Found in the notebook_path. 

day The PSDS instructional module a notebook is in, extracted 
from the notebook_path. 

notebook_type 

The activity type of the notebook found in the 
notebook_path at the next level up from the notebook. 
Example: in “PSDS2200OP3-2_aaa.1234/Day4/labs/Chi-
Squared.ipynb”, the notebook_type is “labs”. 

notebook The name of the Jupyter notebook with the extension .ipynb, 
which can be extracted from the notebook_path. 

timestamp The date and time of a log message 

code 
The code within a code cell that is executed in an 
E X E C U T E _ I N P U T  event_type but only logged in a 
T R A K  message, and not extracted as a feature at this time. 

kernel_id The unique identifier for a kernel, found in a path after 
"kernels/”,  

log_type A higher-level type assigned to a message based on labels or 
keywords found in the message. 

event_type A sub-type of message based on keywords found in the 
message or an interpretation of the message. 



viii 
 
 

Category Term Definition 

Jupyter Log 
log_type 

K E R N E L M A N A G E R  
 A tag appearing in some log messages, marking a class in the 
Jupyter client that manages a single kernel. Log entries tagged 
with K E R N E L M A N A G E R  include "execute", "status", and 
"error" event_types. 

T R A K  
A label for PSDS custom logging for E X E C U T E _ I N P U T  log 
events. As currently configured, the log message will contain 
the user (who), the code (what), the notebook_path 
(where), and the timestamp (when). 

P R O X Y  W E B  
Some log messages tagged "ConfigProxy" contain the words 
"P R O X Y  W E B ". event_types associated with these 
messages include "load", "kernels", "checkpoint", "terminals", 
"save", and "error". 

P R O X Y  W S  
Some log messages tagged "ConfigProxy" contain the words 
"P R O X Y  W S ". event_types associated with these 
messages include "kernels" and "terminals". 

Jupyter Log 
event_type 

S A V E  
A P R O X Y  W E B  event recorded when the contents of a 
notebook are saved. These messages contain a 
notebook_path followed by "?content=0&_=". 

L O A D  
A P R O X Y  W E B  event recorded when a notebook is opened 
in the browser. These messages contain a notebook_path 
followed by "to http". 

E X E C U T E _ I N P U T  
Some log messages of log_type K E R N E L M A N A G E R  
contain "execute_input".  These are included in the EXECUTE 
event_type. 

E X E C U T E _ R E S U L T  
Some log messages of log_type K E R N E L M A N A G E R  
contain "execute_result".  These are included in the EXECUTE 
event_type. 

E X E C U T E  An event_type to include messages containing either 
“execute_input" or "execute_result" 

Graylog 
Extractors 

execute_user Extracts the user from certain Jupyter messages. 

execute_course Extracts the class from certain Jupyter messages. 

execute_notebook Extracts the notebook from certain Jupyter messages. 

Graylog API 
Request 

Arguments 

query The query sent to Graylog, expressed in Lucene syntax. 

f ields The fields to be returned from Graylog. 

from The starting time of the time window to search Graylog. 

to The ending time of the time window to search Graylog. 

l imit The maximum number of results to return from Graylog. 



ix 
 
 

Category Term Definition 

Graylog API 
Response 

Keys 

q u e r y  The query that was sent to Graylog in the request. 

b u i l t _ q u e r y  The Elasticsearch query that Graylog built from the request 
query. 

u s e d _ i n d i c e s  The indices used that contain the results for the query. 

m e s s a g e s  The collection of messages returned by Graylog. The number of 
messages returned is capped by the limit. 

f i e l d s  The fields returned for the query results. 

t i m e  The date and time of the request. 

t o t a l _ r e s u l t s  The total number of log messages found for the time frame of 
the query (not the number returned.) 

f r o m  The starting time of the time window for the Graylog search. 

t o  The ending time of the time window for the Graylog search. 

d e c o r a t i o n _ s t a t s  
Decorators allow you to alter message fields during search time 
automatically. If decorators are configured for a stream, this 
key will return stats for those used in the search. 

  



x 
 
 

ABSTRACT 

Jupyter Notebook is gaining in popularity for STEM instruction and activity-based learning. This 

platform for sharing interactive documents via a web interface allows instructors to combine a variety 

of media together with interactive and editable code, providing rich opportunities for an active 

learning pedagogy. Other online learning environments, such as Canvas and Moodle, provide or 

integrate learning analytics for the use of administrators, educators, and students to improve learning 

outcomes; however, these platforms lack the rich learning environment of Jupyter Notebook. Also, 

with increasing interest in online learning, research communities have arisen for Learning Analytics 

and Educational Data Mining. Unfortunately, these research communities have not yet begun to 

address the Jupyter Notebook learning environment. 

The University of Missouri College of Engineering offers a Program of Study in Data Science 

(PSDS) under contract with the National Geospatial Intelligence Agency (NGA.) This program is 

delivered online, making heavy use of Jupyter notebooks served by JupyterHub for active engagement 

with course content. The PSDS infrastructure uses the Graylog log management program to collect 

Jupyter logs, which are stored in an integrated Elasticsearch document store for a period of months. 

The PSDS program provides an excellent case study for a proof-of-concept in applying learning 

analytics to the Jupyter learning environment. 

This thesis consists of two major parts. (1) Mining the Graylog system to extract useful log 

messages, transformation of those messages into student-activities features, and loading the data into 

a PostgreSQL database for long-term storage. (2) Developing a variety of visualizations of student 

activity for administrators, instructors and students. The pedological structure of PSDS courses allows 

unique insights into student engagement with the course material. Finally, recommendations are made 

for the development of a more comprehensive logging system and additional analyses that could be 

performed.



1 
 
 

Chapter 1: Introduction 

Professors and instructors carefully prepare educational materials with a view toward building 

student understanding and skill proficiency. But how do students make use of those materials? Do they 

engage thoughtfully with the assignments, or do they skip over ungraded tasks and take shortcuts with 

evaluated work? Does engagement with preparatory assignments enable success on subsequent 

exercises, or is the material too hard or too easy? Does skipping preparatory assignments lead to 

students beating their heads against subsequent exercises with little progress for the time invested? 

Are students focusing most of their time on the most important learning objectives, or are they 

sidelined by less important objectives or technological impediments? 

These questions apply for any course delivery system, but activity-based, technology-mediated 

learning allows new ways of measuring student engagement with the material, providing insights 

previously hidden to instructors. 

1.1. Active Learning with Jupyter Notebook 

Active learning is a process where students are not passive receivers of knowledge, but active 

participants discovering and constructing knowledge by engaging in thinking and questioning, 

problem solving, and higher order tasks such as analysis, synthesis, and evaluation [1], [2]. A large 

meta-analysis of active learning in higher education STEM courses showed that active learning 

methods increase student performance on assessments, especially on concept inventories, and result 

in lower course failure rates [2].  

In an online environment, active learning can be accomplished via interactive media that 

intersperse expository material with student activities designed to discover knowledge, forming a 

dialog between instructor and student. Jupyter Notebook is such an environment, allowing the sharing 

of interactive documents via a web interface. These notebooks are composed of cells that can contain 

code, code output, explanatory text, links to further (and deeper) information, visualizations, static 

images, and equations [3].  



2 
 
 

Educators find the ability to combine code and text in an interactive environment invaluable in 

STEM education. For instance, engineering and architecture students experiment with provided code, 

seeing for themselves the effect changing the value of different parameters has on a model [4]. The 

professors of a computer science high performance computing course appreciated the ability of 

students to try out examples and develop a deep understanding of their code, as well as the ability for 

both the instructor and student to integrate different materials into one document for flexibility in 

learning and review [4]. A mechanical engineering professor finds that students can tackle open-ended 

design problems using active learning in Jupyter notebooks and enter the Analyze, Synthesize, and 

Evaluate stages of Bloom's taxonomy, moving beyond the Remember, Comprehend, and Apply stages 

[5].  

Jupyter Notebook is particularly popular in data science and data science education [6]. Lorena 

Barba, a mechanical and aeronautical engineer at George Washington University, praises the ability to 

document the interactive nature of data exploration as a type of conversation. She states “IPython 

notebooks (a precursor to Jupyter notebooks) are really a killer app for teaching computing in science 

and engineering” [6]. Jupyter Notebook can be served to multiple concurrent users via JupyterHub, 

making it an ideal activity-based learning solution. 

1.2. Learning Analytics 

With increasing interest in data analytics in all fields, it is no surprise that research communities 

devoted to applying analytics to education and learning have emerged. The International Educational 

Data Mining Society defines Educational Data Mining (EDM) as: “... an emerging discipline, concerned 

with developing methods for exploring the unique types of data that come from educational settings, 

and using those methods to better understand students, and the settings which they learn in.” The 

Society for Learning Analytics Research defines learning analytics (LA) to be “… the measurement, 

collection, analysis and reporting of data about learners and their contexts, for purposes of 

understanding and optimizing learning and the environments in which it occurs.” These two 



3 
 
 

communities have significant overlap, but the LA community perhaps has more of a focus on informing 

instructors and learners [7]. 

Use cases for learning analytics include improving the quality of teaching, increasing student 

retention, and informing students of their progress to enable them to adapt and improve. Other 

possible use cases include identifying differential outcomes among sub-groups of students in order to 

improve student success, as well as enabling adaptive, personalized learning [8]. 

Online learning naturally lends itself to data collection through logging of activity. Third-party or 

integrated tools for data mining and analytics presentation are available for many, if not most, learning 

management systems (LMS) and virtual learning environments (VLE). Canvas, for example, offers an 

analytics dashboard for viewing account or course activity. For courses, plots are available for 

aggregated activity by date, the percentage of on-time, late or missing submissions for each 

assignment, and the grade distribution for all assignments. Plots are also available for an individual 

student's page views, participation, assignments, and current score [9]. This is typical of the high-level 

view usually offered, providing little insight into the learning that is occurring, the understanding 

attained on particular concepts, or where difficulties lie [10].  

There is research in the literature that strives to illuminate online behaviors in LMS and VLE that 

are associated with learning outcomes by analyzing log data. For instance, in Jo et al., certain time 

management conceptual constructs, well-established as factors in student performance, are mapped 

to proxy variables (total login time, login frequency, and regularity of login interval) to predict student 

performance in a commercial e-learning course [11].  Nguyen et al. analyze log data in Moodle to 

investigate how student timing of engagement aligns with the instructors' learning design and how 

levels of performance and learning design relate to different study patterns for one, largely online 

module in a distance-learning course [12]. Yu and Jo use multiple linear regression analysis to develop 

a model for predicting students' academic achievement for an undergraduate, face-to-face course 

utilizing Moodle. Their six-predictor model is based on total logged time, number of logins, regularity 

of learning interval in the LMS (i.e., the standard deviation of the average login time), number of posts 

responding to the instructor, number of posts responding to peers, and downloads of content [13]. 



4 
 
 

However, a literature search for “Jupyter learning analytics” and similar search terms in Google 

scholar and other journal search providers failed to uncover learning analytics research applied to the 

Jupyter environment. Results that seemed relevant turned out to use Jupyter notebooks to perform 

analysis on LMS systems such as Moodle. This absence in the literature provides a great opportunity, 

because unlike students using LMS systems, students using Jupyter notebooks are engaging in active 

learning. In an LMS, students read or download documents, videos, and slideshows, engage in on-line 

discussions, read and send private messages, and upload work completed off-line, as well as view 

administrative information such as deadlines, grades and syllabi. The nature of analytics with an LMS 

is necessarily high-level, because these activities do not lend themselves to deeper insights. A student 

participated in an activity or not; they made a certain number of posts, they spent a certain amount of 

time online, etc. Logs from Jupyter notebooks can provide deeper insights into student activity 

patterns. Did they run instructor code or just read the content? Did they experiment with the material 

themselves? Did they spend little time in a notebook, hurrying through, or did they engage more 

thoughtfully? Jupyter notebooks are rising in importance and popularity in STEM education due to the 

interactive, active learning environment they provide. LA and EDM applied to Jupyter logs have the 

potential to increase the learning advantage of Jupyter even more, by providing insights on the 

effectiveness of instructors' lesson and course design and providing feedback to both instructors and 

students on the effectiveness of students' learning approaches.  

1.3. Program of Study in Data Science (PSDS) Program 

In the summer of 2016, the University of Missouri College of Engineering was awarded a five-year 

contract to deliver a data science education program for the National Geospatial-Intelligence Agency 

(NGA). The Program of Study in Data Science (PSDS) is a collaboration between the Data Science and 

Analytics online master’s degree program (DSA) from the MU Institute for Data Science and 

Informatics, and the Center for Geospatial Intelligence (CGI) [14]. The PSDS program is an adaptation 

of the DSA program. The PSDS program consists of 16 courses (see Figure 1), ranging from 

introductory boot camps for basic skills in programming, database access, and statistics; through 



5 
 
 

intermediate courses in applied statistics, and computational methods; to advanced courses in 

visualization, machine learning, data mining, cloud computing and more.  

 
Figure 1. The PSDS course roadmap for both the Graduate Certificate and the MS degree. 
Figure provided by the PSDS program. 

 

In both the DSA master's program and the PSDS professional development program, data science 

is presented as a collaborative, iterative process. This process is depicted in Figure 2 where diverse 

data repositories feed into a collaborative data science workflow that feeds back into the data 

repositories, as well as forward into analytical and predictive modeling; all towards building decision 

making products.  Both programs employ best practices in adult-learning pedagogies and repeatable 

science [14]. Jupyter notebooks are particularly well-suited to this philosophy and approach and are 

employed for most courses.   



6 
 
 

 
Figure 2. Data science collaborative workflow from PSDS course material. 
Figure provided by the PSDS program. 

 

A PSDS course is an adaptation of a DSA course. A typical DSA course is divided into eight single-

week modules, progressing through three sets of notebooks in each of the first seven modules. A 

module begins with readings or video lectures and LAB notebooks which lead the students 

interactively through the concepts and skills of the module. This is followed by PRACTICE notebooks, 

in which students must supply code themselves but which provide instructor guidance. The module 

ends with EXERCISE notebooks in which the students apply what they have learned in the previous 

LAB and PRACTICE notebooks (as well as prior modules and courses) by writing independent code. The 

course is capped in module 8 by a FINAL PROJECT where students synthesize and apply what they have 

learned in the previous modules. Introductory boot camp courses are a little different; they typically 

exclude the EXERCISE notebooks, having only readings, videos, LAB and PRACTICE notebooks, and a 

FINAL PROJECT presented as a PRACTICE. 



7 
 
 

In contrast to an 8-week DSA course, a PSDS course is typically delivered over five instruction 

days of concentrated coursework and a FINAL PROJECT, spread out across two and a half to four weeks’ 

time. Most courses are taught entirely remotely, but some courses are blended, with a few days led by 

an instructor at an NGA site. Each day corresponds generally to two modules of a DSA course, with the 

FINAL PROJECT assigned on the fifth day. PSDS students are expected to work on the course during 

their professional workday, when faculty and staff are contracted to be available for questions and 

support. Students have the option to apply for university credit for PSDS courses they enrolled in. The 

accelerated nature of the program presents logistical issues for accurate and timely university 

enrollment, relying on students performing enrollment steps in a timely manner after the course has 

started. In the case of PSDS, the enrollment sequence is usually “NGA enroll” → attend → assess → “MU 

enroll” → pay. 

The PSDS Program provides an excellent case study for applying learning analytics to the Jupyter 

learning environment. Not only can we monitor the time spent in active learning in the notebooks, we 

can use the pedagogical structure provided by the LAB, PRACTICE, EXERCISE, and FINAL PROJECT 

notebooks to gain insights into students’ study habits and the effectiveness of the learning materials. 

  



8 
 
 

Chapter 2: Log Collection with Jupyter and Graylog 

2.1. Logging and Messaging in Jupyter 

Log entries are created for web proxy events, user-server events, and JupyterHub events such as 

user authentication and stopping and starting user servers [15]. Understanding messaging between 

the Jupyter front end and kernel opens the possibility of custom logging of user actions. 

A Jupyter front end communicates with the kernel using the ZeroMQ library for messaging, 

through modern WebSockets (instead of traditional HTTP/HTTPS). As depicted in Figure 3, the kernel 

contains separate sockets (or channels) for different functions: the Shell socket handles most requests 

from the front ends; stdin allows the kernel to request input from the front end; the Control socket 

handles requests for shutdown and restart as well as debugging messages, and messages on the 

Heartbeat socket ensure the front end and kernel are still connected. The kernel also has a broadcast 

channel that publishes side effects (stdout, stderr, and debugging events) and requests from the Shell, 

stdin, and Control sockets to allow coordination between all clients [16]. 

A ZeroMQ message is a dictionary of five dictionaries: the message header, the parent header (for 

when a message is the result of another message), metadata, content, and buffers. The message header 

contains fields for the message id, the session, the username, the date, the message type, and the 

message protocol version. A session id may refer to a client session or a kernel session, depending on 

where the message originates. The client session id will be unique for each client connected to a kernel. 

If a client reconnects, it will use the same client session id. If the client restarts, it will generate a new 

session id. Similarly, a new kernel session id will be generated if the kernel is restarted. 

A variety of message types are described for each channel. Additionally, custom message types 

can be specified for extending Jupyter functionality. Any of these messages can be tapped for logging 

by modifying class ZMQChannelsHandler in the Jupyter Notebook open source code. For instance, the 

code patch to method _on_zmq_reply() shown in Figure 4 logs E X E C U T E _ I N P U T  messages in the PSDS 

Jupyter Notebook installation. 



9 
 
 

 
Figure 3. Jupyter messaging between a front end and the kernel. 
Unconnected arrows show direction of request. Diagram adapted from [16]. 

 

 
 
Figure 4. Jupyter custom logging patch. 
This patch is installed on method _on_zmq_reply() in class ZMQChannelsHandler in the file 
notebook/notebook/services/kernels/handlers.py. This patch is used by the PSDS system. 

 

2.2. Graylog and Elasticsearch 

Graylog is an open-source and open-standard log management platform for collecting, enhancing, 

storing, and analyzing log messages from sources throughout the enterprise [17]. A variety of message 



10 
 
 

transport standards are supported for collecting log messages. As a message is received, it is parsed 

into defined fields by Graylog. Rules within Graylog determine what is done with a given message, 

allow custom extraction and enrichment of the message data, and the removal of unneeded data. After 

this processing, the data is stored in an Elasticsearch document store [18]. Elasticsearch is a 

distributed document store, where the documents are serialized JSON and text fields are indexed with 

an inverted index. This allows fast full-text searches [19]. Using the Graylog REST API to access 

Elasticsearch, this stored data can be searched by fields, alerts can be activated, and the log data 

visualized in dashboards [18]. Configuration data for Graylog is stored in MongoDB [20]. The 

architecture for a minimal setup with collocated services is shown in Figure 5. 

 
 
Figure 5. Graylog architecture for a minimal setup. 
Services are collocated on the same server. Diagram adapted from [20]. 

 

Custom extractors are provided by Graylog to overcome a challenge. Although the specification 

for the syslog standard should make it easy to parse syslog messages, many devices that claim to follow 

syslog do not follow the RFCs. Other devices intentionally follow their own format. To accommodate 

the non-standard nature of all these devices, Graylog allows the user to specify how to extract 

https://www.zotero.org/google-docs/?SAhavC


11 
 
 

important fields from any text in the received message. Extracting these custom fields allows Graylog 

to index them, proving efficient search capabilities [20]. 

An important limitation of Graylog is that once a message is stored in Elasticsearch, alterations to 

the schema are not available. Unlike adding a field to a RDBMS table, new fields cannot be extracted 

from persisted messages and added to the document. However, the pipeline for processing messages 

can be changed. If such changes are made, newly stored documents may have a different schema than 

older documents, possibly affecting search results. 

  



12 
 
 

Chapter 3: PSDS IT System Design 

The data science cyberinfrastructure used by both the MU DSA program and PSDS is depicted in 

Figure 6. The Jupyter environment is central to the interaction with a variety of ancillary systems that 

enable data science learning with diverse types of data and technologies. While some courses use 

Jupyter to launch other systems such as deploying code to Shiny Server or cloud instances, for many 

courses most or all work is done in the Jupyter notebook itself, allowing detailed monitoring of student 

interaction.  

 
 
Figure 6. PSDS & DSA cyberinfrastructure. 
Figure provided by the PSDS program. 

 

The PSDS logging system is depicted in Figure 7. The log messages collected from JupyterHub are 

sent to the Graylog server. The Graylog configuration is stored on MongoDB, while the log messages 

are stored in Elasticsearch (as detailed in Section 2.2). A Jupyter notebook is used to query the Graylog 

REST API for direct reporting. Since older records in the Elasticsearch document store are pruned 

periodically for space considerations, the messages are also ingested into a PostgreSQL database for 

more persistent storage and historical reporting. During this study, Graylog 3.1.4 and Elasticsearch 

6.8.6 were used. 



13 
 
 

 
 
Figure 7. PSDS Jupyter log storage and reporting using Graylog. 
Jupyter notebooks are used to query the Graylog REST API for reporting and loading a 
PostgreSQL relational database for permanent storage and historical reporting. Diagram 
adapted from [20]. 

 

  

https://www.zotero.org/google-docs/?SAhavC


14 
 
 

Chapter 4: Data Collection & Ingestion Methods 

Jupyter notebooks written in Python are used to query Graylog, extract features, persist the data 

in PostgreSQL, and visualize and report on student activity patterns. 

4.1. Data Acquisition Challenges 

With any complex system of systems such as the PSDS and DSA infrastructure, there are many 

potential challenges to overcome when developing a new, integrated capability such as logging 

analytics. A necessary condition of developing analytics is that robust and reliable access to the log 

messages is in place. However, despite the promise and potential of the Graylog system, a few hurdles 

had to be overcome to have reliable and repeatable techniques for querying Graylog and 

understanding the log messages. The challenges that were encountered and overcome included log 

purging, system outages, extractor issues, and logging patch adaptations; each of which is detailed in 

the subsections below.  

4.1.1. Log Purges 

During investigation of the data availability, it became apparent that data were disappearing from 

the Graylog system. The system administrator confirmed this was a space management design setting. 

At the time of this study, Graylog was configured to keep 150 indices of 20 million messages. With the 

rate of usage for all systems monitored by our Graylog instance, the logs consumed about 1 TB and 

were retained about five months. To have data available for historical reporting, it was determined 

that Graylog messages need to be loaded into a more persistent data storage platform. For this 

research, PostgreSQL database was chosen for permanent storage of the data from the Jupyter system, 

beginning with the relevant log messages with timestamps beginning May 23, 2019 at 18:40. The 

details of the persistent Jupyter log message storage in PostgreSQL is detailed in Section 4.2. 



15 
 
 

4.1.2. Graylog Outages 

An additional consideration regarding the completeness of log acquisition was the possibility of 

Graylog outages, where the Graylog system being offline causes missing data in the logging streams. 

The system administrator clarified that outages are typically limited to an hour or less for server 

patches, which occur about once a month. Additionally, there was a one to two-day outage in 

September 2019. If an outage occurred during scheduled instruction time or when students were 

putting in extra work, less student engagement would be reported for students working at that time.  

For finer-grained analytics that look at student engagement per notebook this missing data could be 

significant. The longer September outage will skew student engagement results for any course that 

was running during that time.  

4.1.3. Custom Graylog Extractors 

As explained in Section 2.2, custom Graylog extractors are useful to extract and index domain 

relevant information from the torrent of incoming Graylog messages. Jupyter specific extractors were 

previously configured for extracting the user, the notebook, and the class from certain messages, 

although there was a period of a few weeks in September 2019 that they were not operational. This 

was discovered when queries returning all fields showed different schemas in May and September (see 

Figure 8.) As the data were explored, these extractors were suspected to not be pulling the relevant 

values from all messages of interest. Because of both the time the extractors were not available, and 

the desire for confirmable reliability, regex patterns were used to extract these values, as well as 

others, in Jupyter notebook python code. This will be explained more fully in Section 4.2.2.  For future 

work, rewriting the extractors and confirming they work as intended should be considered.  



16 
 
 

 
Figure 8. Graylog schema change apparent in September 2019. 
The extractors execute_notebook, execute_user, and execute_course are present  
in May 2019 but missing in September 2019.This was rectified September 30, 2019. 

 

4.1.4. TRAK Messages (Custom Jupyter Logging) 

A custom logging patch for Jupyter E X E C U T E _ I N P U T  messages (labeled as T R A K  messages) 

was installed on the PSDS JupyterHub server from the earliest log record obtained, but the data logged 

was minimal, including only the user and the timestamp.  On October 5, 2019 at approximately 15:30 

the patch in Figure 4 was installed, providing a richer T R A K  log message including the user, the 

notebook, the timestamp, and the code executed. These enhancements to Jupyter logging improved 

T R A K  messages greatly for usability.  However, in order to have a larger amount of data to analyze, 

K E R N E L M A N A G E R  messages for E X E C U T E _ I N P U T  and E X E C U T E _ R E S U L T  were used as a 

substitute. This was a critical learning event in the progress of this project. 

Once the Jupyter messages are appropriately tracked and processed, a measure of student 

engagement can be approximated by the cumulative time between notebook S A V E  events and/or cell 

E X E C U T E  events, which will be discussed in more detail in Section 5.3.  



17 
 
 

 Two courses were explored by generating preliminary reports using S A V E  messages and either 

TRAK or K E R N E L M A N A G E R  E X E C U T E  messages to test if using the different message types was 

comparable. For the most part, the times were close (within a rounded minute over a user-day), but 

there were two user-day instances where the accumulated time was off significantly, and a few 

instances where the two methods differed by a few minutes. These larger discrepancies are shown in 

Table 1. If the number is negative there is more time in the K E R N E L M A N A G E R  E X E C U T E  report, 

if they are positive, there is more time in the T R A K  report. 

 

Interestingly, there was not a one-to-one correspondence between T R A K  messages and 

K E R N E L M A N A G E R  E X E C U T E  messages. However, this is not because E X E C U T E  messages include 

both E X E C U T E _ I N P U T  and E X E C U T E _ R E S U L T  - sometimes there are multiple E X E C U T E _ I N P U T  

messages for one T R A K  message. There are also cases where there are T R A K  messages and no 

K E R N E L M A N A G E R  messages. 

Table 1. Time discrepancies in using TRAK vs kernelmanager execute messages. 
Negative times indicate more time is in the K E R N E L M A N A G E R  E X E C U T E  report;  
positive times indicate more time is in the T R A K  report. Student engagement times  
for all other student-days in these two courses were within a rounded minute over a day. 

PSDS3300OP3-2_Final 

 

PSDS2100OP3-3_Final 

User Date Hours Rounded 
Minutes User Date Hours Rounded 

Minutes 

user1 10/13/2019 -1.084 -65 user7 10/22/2019 0.0118 1 

user2 10/15/2019 -0.137 -8 user8 10/22/2019 -1.4531 -87 

user3 10/20/2019 0.0126 1 user9 10/30/2019 0.0155 1 

user4 10/13/2019 -0.032 -2 user10 10/15/2019 -0.0097 -1 

user4 10/14/2019 -0.096 -6 user10 10/16/2019 -0.0094 -1 

user5 10/14/2019 -0.03 -2 user10 10/18/2019 0.0107 1 

user6 10/14/2019 -0.017 -1 user10 10/20/2019 0.0539 3 

    user10 10/26/2019 -0.0192 -1 

    user11 10/22/2019 0.0101 1 

    user12 10/15/2019 -0.1803 -11 

    user12 10/16/2019 -0.1113 -7 
 



18 
 
 

These discrepancies warrant further investigation, but for the purposes of this study, using 

K E R N E L M A N A G E R  E X E C U T E  messages for all reporting was deemed acceptable for providing a 

proof of concept.  

Unlike the richer T R A K  messages, K E R N E L M A N A G E R  E X E C U T E  messages contain a 

kernel_id, but do not have the notebook_path. Because of this, kernel_ids are matched with 

notebook_paths using an algorithm described in Section 4.2.3. 

4.2. Data Ingestion and Database Loading 

Graylog caps the number of results returned with no way to paginate or automatically window 

the results. Therefore, querying Graylog is done in a loop with the time window for the query 

determined dynamically. For each batch of results, features are extracted, and the records are loaded 

into the database. The loop continues to query Graylog, extract features, and load records until all 

messages up to the current time are loaded.  

Figure 9 depicts the query, parse, and load cycle. A step_size of 60 minutes is used for the first 

time frame. The number of results found for the query  determines if the step is adjusted up or down. 

If more than 10,000 results are found (the size of the limit), the step size is reduced proportionally to 

the number of results divided by the l imit  and the query  is tried again with the new, smaller step_size 

(a smaller time frame.). 

If the query  finds fewer results than the l imit , the messages are parsed from the results, features 

are extracted, and the records are loaded into the database. If there are fewer results than half the 

l imit , the step size is increased by 5 minutes for the next query, so we have a larger time frame. The 

new start time is the previous end time.  



19 
 
 

 
 
Figure 9. High level view of the query, parse, and load cycle. 
The time window size for the query is determined dynamically. 



20 
 
 

4.2.1. Querying Graylog 

Grapi Request 

The grapi library is used to query Graylog from Python code [21] as displayed in Figure 10. The 

grapi object is instantiated with the full URL of the Graylog REST API function and a Graylog access 

token. Many functions are available in the REST API, which are viewable in the REST API browser [22]. 

We are using absolute search (search with an absolute time range.) 

 The grapi send method makes the request, by specifying the request method (such as GET) and 

the request arguments. Required fields for the request arguments are the query  (a string using Lucene 

syntax), f ields  (the fields you wish Graylog to return), from  (the starting time), and to  (the ending 

time). The number of results to return is specified by l imit , which is optional. 

 
 
Figure 10. Using the grapi library to query Graylog from Python. 

 



21 
 
 

A simple query  is used in order to return all log messages for possible future reporting. Only the 

server name and application_name (jupyterhub) are specified in the query  string. The asterisk for 

f ields  means all fields are returned from Graylog. The from  and to  timestamps are determined 

dynamically as discussed in the previous slide and queries are performed in a loop until all messages 

are processed. 

The default number of messages returned by a Graylog query is 150; for more results you must 

specify a l imit . The maximum possible l imit  is 10,000, so that is what is used. No matter the number 

of results returned, the query results also return the number of actual records found for that time 

frame. 

The start time is determined by querying the maximum message timestamp already loaded in 

the database. The timestamp returned, when assigned to a variable, is a pandas Timestamp with a 

local offset; this must be converted to Zulu time without an offset, and then converted to a string 

correctly formatted for querying Graylog. (For example: '2020-03-03T14:23:05.778Z'.) 

Parsing the Response 

The contents of the response are accessed by response.json() or response.text. The response 

contains the q u e r y  as specified in the request; the b u i l t _ q u e r y  - the Elasticsearch query built by 

Graylog; the collection of u s e d _ i n d i c e s ; the collection of m e s s a g e s ; the f i e l d s  returned; the 

amount of t i m e  taken by the request; the t o t a l _ r e s u l t s ; the f r o m  and t o  times; and 

d e c o r a t i o n _ s t a t s  (see Figure 11.) 

Figure 12 shows an example of the contents of messages , including the first m e s s a g e . The 

m e s s a g e s  can be retrieved from the response by normalizing the JSON, converting m e s s a g e s  to a 

dictionary where messages[0] is the key and the collection of m e s s a g e s  is the value, and appending 

each m e s s a g e  in messages[0] to a list. The list can then be converted to a Pandas DataFrame (see 

Figure 13.) 



22 
 
 

 

 
Figure 11. The JSON content of the API response. 

 

 

 
Figure 12. The JSON format of the messages portion of the Graylog API response. 
This m e s s a g e  is missing the extractors execute_user, execute_course, and  
execute_notebook because they are not applicable to this m e s s a g e .  
M e s s a g e s  also contain metadata in addition to the fields in the schema. 

 



23 
 
 

 
Figure 13. Parsing the messages from the API response. 

 
4.2.2. Feature Extraction  

Various features are extracted from the message using regex pattern matching. Because we are 

returning the widest variety of messages (all JupyterHub messages from the specified server), not all 

features are present for all messages. An overview of these features is presented in Table 2. 

 

Student user ids follow the pattern of three characters, a dot, and four digits, i.e., abc.####. TA or 

instructor user ids will not follow this pattern. When a TA is running a student notebook, a web proxy 

message will contain both user ids. Two regex patterns are extracted: one for the specific student 

pattern and a second for the more general pattern. If they don't match, we know a TA or instructor is 

Table 2. Features extracted from the log message. 

Feature Description 

user The student username extracted from the message. 

class The specific instance of a course extracted from the message. 

day The PSDS instructional module a notebook is in, extracted from the message. 

notebook The notebook name extracted from the message. 

kernel_id The unique identifier for the kernel as extracted from a path 

log_type Values: "kernelmanager", "proxy web", "proxy ws", "trak", nan. Extracted from the message. 

event_type Values: "checkpoint", "error", "execute", "kernels", "load", "save", "status", "terminals", nan. Extracted 
or determined from the message. 

notebook_type Values: "answers", "challenges", "exercises", "finalproject", "labs", "practices", "readings", "resources", 
"solutions and "other." Extracted or determined from the message. 



24 
 
 

running the notebook and the user will be replaced with nan. Otherwise, the student user id is the user 

if present.  

PSDS course content is organized in a manner that facilitates decomposition of a notebook_path 

into information about the class, the day the notebook_type (LAB, PRACTICE, or EXERCISE, etc.), and 

the specific notebook. Take the following notebook_path as an example:  

“PSDS2200OP3-2_aaa.1234/Day4/labs/Chi-Squared.ipynb”  

The class is “PSDS2200OP3-2”, which is a specific instance of the course PSDS2200. The course 

day is “4”, the notebook_type is “labs”, and the notebook is “Chi-Squared.ipynb". 

Possible values for notebook_type are "answers", "challenges", "exercises", "finalproject", "labs", 

"practices", "readings", "resources", and "solutions." The type is assigned as “other” if there is a 

notebook that doesn’t match these expected types. 

The kernel_id is extracted for matching to a notebook_path later if it occurs in a path after 

“kernels/”, such as shown in red in the following message: 

"21:33:40.783 [ConfigProxy] #033[34mdebug#033[39m: PROXY 
WEB /user/aaa.1234/api/kernels/53fe6569-ae4d-47d7-bf68-

96df0dd5b6ee/restart to http://127.0.0.1:32783." 

Two additional fields are extracted or labeled to help sort through different message types. This 

was useful for data exploration, and most of these values are not used. A log_type may have the values 

of "kernelmanager", "proxy web", "proxy ws", "trak", or none of these. These are Jupyter components 

with the addition of our custom T R A K  log message. These values are extracted from the message.  

An event_type may have the value of "checkpoint", "error", "execute", "kernels", "load", "save", 

"status", "terminals", or none of these. Most of these values are extracted from the message, but some 

may be not as intended. For instance, since a T R A K  message includes the code that was executed, if 

there is a comment including the word "error", this will be extracted. Therefore, using an event_type 

(other than “save” or “load”) in a WHERE clause should always include a log_type.   

 



25 
 
 

 

The event_types L O A D  and S A V E  are not directly extracted. If the message includes a 

notebook_path followed by "to http" this is interpreted as loading the notebook in the browser and 

labeled as L O A D . If the message includes a notebook_path followed by "?content=0&_=", this is 

labeled as a S A V E  event. 

Table 3: Data dictionary for the table psds.log_entry in the analytics database. 

Column Name Nullable Data Type Max 
Length Notes 

_id NO character varying  PK; Graylog message id. Returned by Graylog. 

gl2_message_id YES character varying  Returned by Graylog for some messages. 

message NO character varying  Returned by Graylog. 

application_name NO character varying 20 Example: jupyterhub. Returned by Graylog. 

facility NO character varying 50 Example: system daemon. Returned by Graylog. 

timestamp NO timestamp with 
time zone  Timestamp of message. Returned by Graylog as UTC, 

converted to local time. 

execute_course YES character varying 20 Graylog custom extractor for course. Returned by Graylog for 
some messages. 

execute_notebook YES character varying  Graylog custom extractor for notebook. Returned by Graylog 
for some messages. 

execute_user YES character varying 20 Graylog custom extractor for username. Returned by Graylog 
for some messages. 

psds_user YES character varying 20 Student username. Extracted from the message if present. 

class_code YES character varying  Specific instance of a course. Extracted from the message if 
present. 

day YES smallint  The PDSD instructional module a notebook is in. Extracted 
from the message if present. 

notebook YES character varying  The notebook name. Extracted from the message if present. 

kernel_id YES character varying  Unique identifier for the kernel, extracted from a path in the 
message containing /kernels/ if present. 

log_type YES character varying  Values: "kernelmanager", "proxy web", "proxy ws", "trak", 
null. Extracted from the message. 

event_type YES character varying  
Values: "checkpoint", "error", "execute", "kernels", "load", 
"save", "status", "terminals", null. Extracted or determined 
from the message. 

notebook_type YES text  
Values: "answers", "challenges", "exercises", "finalproject", 
"labs", "practices", "readings", "resources", "solutions and 
"other." Extracted or determined from the message. 

new_log_type YES character varying  For experimenting with additional types. 

new_event_type YES character varying  For experimenting with additional types. 

load_time YES timestamp without 
time zone  The time when this record batch was loaded in the database. 

 



26 
 
 

The message timestamp is converted to pandas datetime, localized to UTC, and converted to our 

local time zone.  

Finally, nans are replaced by None for database compatibility and only messages with either a 

user or a kernel_id are loaded into the database as relevant to mining student activity patterns. The 

data dictionary for the table psds.log_entry in the analytics database is shown in Table 3. 

For future work, Jupyter custom logging is recommended for all messages of interest for clear 

identification and unambiguous values.  

4.2.3. Kernel to Notebook Mapping 

When visualizing student or class engagement patterns related to individual notebooks or 

notebook_types, we are hampered by the limited timeframe for which the richer version of T R A K  

messages has been available. The K E R N E L M A N A G E R  E X E C U T E  messages used in place of T R A K  

only have kernel_ids. Therefore, a method of mapping notebooks information to kernel_ids was 

developed using a combination of database scripts and a Jupyter notebook.  

The kernel matching process is depicted in Figure 14. Two tables were created in the analytics 

database to assist with this mapping - psds.kernel and psds.nb_load. In Step 1, a SQL script load table 

psds.kernels with the records with the earliest timestamp for each kernel_id, ordered by user and 

timestamp. In Step 2, table psds.nb_load is loaded with records with event_type L O A D  where user is 

not null, also ordered by user and timestamp. In Steps 3 and 4, a Jupyter notebook loads these two 

tables into Data Frames df_kernel and df_load, with df_kernels in descending order by timestamp.  In 

Step 5, for each student in df_kernels, we loop through the kernel_ids for that student, selecting the 

records from df_loads for the same user that have not yet been matched to a kernel_id, and that have 

a timestamp less than or equal to the timestamp of the kernel event. These records are loaded into 

DataFrame df_cadidate_matches. In Step 6 we find the max index in df_candidate_matches. This is the 

latest unmatched notebook L O A D  event that occurred before or at the same timestamp as the kernel 

event. The notebook information (class, day, notebook, notebook_type) is copied to df_load. The 

record in df_load that was matched is set to matched, and the loop continues until all kernel_ids for 



27 
 
 

every student are matched to a notebook. Finally, in Steps 7 and 8, the database tables are updated 

and in Step 9 a SQL script is used to update the psds.log_entry table with the notebook data for records 

that match the kernel_ids in psds.kernel. 

 
 
Figure 14. The kernel to notebook matching process. 
SQL scripts are used to load the two worktables psds.kernel and psds.nb_load from 
psds.log_entry. A Jupyter notebook is used for the matching process and the worktables are 
updated. Yellow fields in the worktables are filled during matching. Finally, the user, class, 
day, notebook, and notebook_type are copied to records matching the kernel_id in 
psds.log_entry from psds.kernel. 

 

The kernel_ids are ordered in descending timestamp order because the kernel event occurs after 

the L O A D  event. Figure 15 shows a spreadsheet with kernel events and L O A D  events in ascending 

timestamp order. As we process the kernel events from the bottom up, the last L O A D  event from the 

top down contains the notebook to match.  

 



28 
 
 

 
 
Figure 15. Matching earliest notebook load to earliest timestamp for kernel_id. 
Yellow rows and red text show earliest notebook L O A D  events. Gray rows and purple text 
show the earliest timestamp for each kernel_id. In this spreadsheet, records are in ascending 
timestamp order. 

 

The matching process is not perfect. In Figure 16, the green rows are ambiguous matches, with 

the same timestamp. The row in with bold black text is an orphan notebook that has no matching 

kernel_id.   

As mentioned in Section 4.1.4, comparing reports generated using T R A K  messages and 

K E R N E L M A N A G E R  E X E C U T E  messages showed that the times were within a rounded minute 

over a user-day in most cases. This made it feasible to use K E R N E L M A N A G E R  E X E C U T E  log 

records to analyze courses from before October 5. 



29 
 
 

 
 
Figure 16. Ambiguous matches and orphan notebooks. 
The matching process is not perfect. The green rows are ambiguous matches, with the same 
timestamp. The row in with bold black text is an orphan notebook with no matching 
kernel_id. 

  



30 
 
 

Chapter 5: PSDS Case Study 

5.1. Selected Courses 

For our case study of applying learning analytics to the Jupyter environment in the University of 

Missouri’s PSDS, several class instances of Boot Camp courses were selected on the recommendation 

of Dr. Grant Scott, the MU Program Manager of PSDS. Course instances are named for the contract 

period they occur in (in this case, OP3) followed by an instance number. Complete log data are available 

beginning May 24, 2019, so only courses offered after that date were selected. Not all analyses are 

presented for each course, but example visualizations are selected to show interesting data or to 

contrast patterns of activity between different classes or students. 

Courses and classes selected for analysis include: 

● Python Boot Camp - PSDS 2100 

○ OP3-3 Beginning Oct 15 

○ OP3-4 Beginning Oct 28 

● DB/SQL Boot Camp - PSDS 2110 

○ OP3-1 Beginning June 3 

○ OP3-2 Beginning June 17 

○ OP3-3 Beginning Sep 16 *  

● R Programming Boot Camp - PSDS 2120 

○ OP3-1 Beginning July 1  

○ OP3-2 Beginning July 8 

○ OP3-3 Beginning Nov 12 

Note that PSDS 2110 OP3-3 occurred in September, which had a one to two-day Graylog outage 

at some point during the month. This could affect analysis on that course, as discussed previously in 

Section 4.1.2. 



31 
 
 

5.2. Use Case Descriptions 

The PSDS learning analytics use cases explored include administrative, class level, and high-level 

student views of the data, in line with what is often provided in an LMS. Additionally, finer-grained 

analysis of student engagement at both the class and student level shows the potential for what can be 

achieved using Jupyter learning analytics with a carefully structured course and in-depth logging 

mechanisms. 

Two use cases were developed initially to meet pressing administrative needs. As mentioned in 

Section 1.3, the accelerated nature of the program presents logistical issues for accurate and timely 

university enrollment. Because the sequence follows “NGA enroll” → attend → assess → “MU enroll” 

→ pay; it is useful to evaluate the participation of students who have indicated they intend to apply 

for university credit, to see if they are following through with their plans and should have their 

paperwork routed to MU enrollment. If their engagement with the course material falls below a 

minimum level of interactive participation, it is assumed they have decided to not complete the course 

and therefore not enroll for MU credit. This is the Routing Use Case, discussed in Section 5.4.1. 

The second administrative use case focuses on the instruction hours contracted between PSDS 

and NGA. PSDS faculty and staff provide support during the NGA professional workday, and PSDS 

students are expected to do all or most of the work during that time. A class view of whether students 

are completing their course work during or outside instruction hours is informative to both PSDS and 

NGA administrators to know whether complaints about lack of support are warranted and whether 

adjustments should be made to the contract. The Contracted Instruction Use Case is also discussed in 

Section 5.4.1. 

A high-level view of individual student engagement was developed next, useful for the instructor, 

program administrator, and the students. This plots daily instruction and non-instruction hours for an 

individual student to provide insights as to how much time a student is investing in course activities 

and whether the time spent falls outside the hours of support. The instructor can see whether a student 

who is struggling is spending a reasonable amount of time engaged with the material, and whether 

they are working during support hours. This visualization can also be provided to the student to enable 



32 
 
 

them to track how much time they are investing in the course. PSDS and NGA administrators can check 

an individual’s engagement patterns to see if perhaps the student’s workplace manager is providing 

time for study during the working day, as is expected. The Student Engagement - Daily Hours Use Case 

is found in Section 5.4.2. 

Three views of aggregated student engagement begin to dive into student activity patterns 

related to course design and pedagogy. Section 5.4.3 shows Class Engagement by Activity Type Use Case 

(i.e., whether the notebook is a LAB, PRACTICE, resource, solution, etc.), Section 5.4.4 shows Class 

Engagement by Activity Type Within a Module Use Case, and Section 5.4.5 shows Class Engagement by 

Module/Notebook Use Case (that is, the notebooks within a given module.) Instructors will find these 

views enlightening, with the possibility of highlighting notebooks that are too hard or too easy, and 

whether the students are following the course design. 

The Individual Student Engagement by Module/Notebook Use Case is discussed in Section 5.4.6, 

allowing the instructor or students to clearly see where individual students are spending their time. 

Plotting time spent in LABS versus time spent in PRACTICES provides a different view into how 

students are engaging with the pedagogical design of the course. The Practice vs Lab Balance Use Case 

is shown in Section 5.4.7. The selected courses are all boot camps, which only have LABS and 

PRACTICES; other courses also have EXERCISES. Similar plots could be constructed for the relationship 

between LABS plus PRACTICES compared to EXERCISES in future analysis.  

5.3. Data Preparation for Reporting and Visualization 

The log records previously ingested into the database as described in Section 4.2 are selected and 

prepared for reporting and visualization using Python in Jupyter notebooks. This process is depicted 

in  Figure 17 and described below. 

Instruction dates and times, as well as the time zone of the course, are also stored in the database 

and retrieved for reporting (represented by the brown DataFrame). Records from the psds.log_entry 

table are retrieved if they fall within the time period for the report, if they have a user, and if they are 



33 
 
 

event_type E X E C U T E , or  log_type P R O X Y _ W E B  and event_type S A V E  (shown as the green 

DataFrame.)  

 

 

 
 
Figure 17. Data preparation for reporting and visualizations. 



34 
 
 

The beginning time of the report is the start of the business day in the class location on the first 

day of class; the end time for most reports is the deadline for collecting work, which is 12:00 am of the 

fifth business day after the last day of instruction in the class location. The Routing Report discussed 

in Section 5.2, has an earlier end time - the close of business on the 5th business day of the course. 

Restricting log records to the course time frame eliminates counting interactions when students refer 

to course material after completing the course.  

Some general preparation is done: all times are converted to the MU time zone for consistent 

calculation; notebook_types are ordered for later visualization using the pandas.series.map function; 

and the DataFrame is ordered and re-indexed by user, timestamp, and message id (depicted as the 

purple DataFrame.) 

To determine elapsed time between student interactions, a deep copy of the DataFrame is made 

(depicted as the aqua DataFrame). The copy is named df_right, and the original DataFrame is df_left. 

The index of df_left is incremented by 1. The two DataFrames are joined on the index, and then joined 

to a DataFrame of instruction dates on the date. This means each log record is paired with the 

subsequent record in the same DataFrame row, with information about instruction times for that date. 

A spreadsheet view of selected columns from this large DataFrame is seen in Figure 18. 

 
 
Figure 18. Calculating the time difference between events in df_join. 
Selected columns from df_join showing the timestamp from df_right and df_left, start and end 
times from df_instruction_hours, and the calculated fields. The record on the top row from 
df_right is the same record as the record in the second row from df_left. This allows us to 
calculate the time difference between each interaction and sum the times for the same user. 



35 
 
 

Additional columns are added to this large DataFrame (represented in orange). A Boolean column 

‘same_user’ is marked true if the two joined log records are from the same user. For each row that has 

the same user, the time difference between the log entries on that row is calculated. If the log record 

on the left is within the instruction day, a Boolean field instruction_day is marked true. 

Because students could leave the computer with the notebook open and running, time differences 

over 20 minutes are set to zero (in a new column, time_diff_adj_20) to not count idle time as activity. 

For some visualizations we count the number of cell E X E C U T E S , so a Boolean column indicates a 

log entry for an execution (as opposed to a S A V E ). 

For the various reports and visualizations, the relevant columns are selected and aggregated as 

appropriate, using the log information on the left as the notebook engaged with. For per-notebook 

reports, it should be recognized that students may have different notebooks open at the same time and 

switch between them. The time between interactions will be counted as activity in the notebook from 

the first interaction. 

5.4. Use Case Visualizations 

5.4.1. Routing and Contracted Instruction Hours 

This use case answers the question, “Which students are investing enough time in the course to 

confirm their intention to complete the course, warranting their routing to MU enrollment? The total 

hours per student are summed up and the students are ranked in order from the most time spent to 

the least and plotted by rank on the x-axis. Student names can be associated with plot points for ease 

of instructor interpretation, but that has been left off these plots for privacy. On the fifth business day 

of the course, the students have had three days with contracted instruction hours, totaling 24 hours of 

supported class time. This line is marked in red on the plots in Figure 19. 1 

All time spent by students will not be counted, as there is time spent reading or viewing materials 

outside of the notebooks. Also, with only selecting E X E C U T E  and S A V E  log messages, we do not know 

 

1 Visualizations use matplotlib.pyplot and associated libraries. 



36 
 
 

when the notebook was opened, so notebooks that are only read or with reading at the beginning will 

not contribute the time spent reading to our total. Some courses have a significant portion of work 

done outside of Jupyter notebooks. For instance, in the case of the DB/SQL Boot Camp - PSDS 2110, 

work is done in the terminal. Because of the unique nature of each course, the patterns of expected 

time spent engaged with a notebook will vary. 

Figure 19 shows the line plot of Ranked User Hours and the associated stacked bar chart for one 

class of the Python Boot Camp - PSDS 2100 OP3-3, and Table 4 presents the same data in table form. 

There is one overachiever and a fairly steady decrease in time spent from student to student. There is 

a drop from around 10.5 hours to around 8 hours at rank 17. Ten hours is the cutoff used for routing 

students to MU enrollment for this course. 

In this class, only two students worked entirely within instructional hours during the first five 

business days of class. Many students are spending similar amounts of time at work and at home, with 

one (Rank 2) spending significantly more time at home than at work.  

 
Figure 19. Routing Report - Ranked user hours for PSDS2100OP3-3. 
The ranked hours for one Python Boot Camp class are presented as a line plot and a stacked bar 
chart of instruction and non-instruction hours for quick visual interpretation. 

 

 

 



37 
 
 

 

It was thought that by combining multiple classes (instances) of one course, a clearer cutoff would 

be seen for future routing of classes of the same course. This is not the case. Figure 20 combines two 

classes of the R Boot Camp. Again, we see one overachiever, and a fairly steady decrease in the amount 

of time spent from student to student, with the last student being the only one to show a significant 

drop from the next highest ranked student. 

Figure 21 combines three classes of the DB/SQL Boot Camp. The pattern here is flatter, except for 

four students putting in much more time than their peers. There is a small dip around 10 hours, and a 

steeper slope beginning around 7 hours and a steep drop at around 5 hours. Since students in the 

DB/SQL Bootcamp spend time in the terminal as well as Jupyter, a lower cutoff around 7 or 5 hours is 

reasonable for this course. 

Table 4. Routing Report – Table of ranked user hours for PSDS2100OP3-3. 
Ranked user hours for one Python Boot Camp class, presented as a table for precision. 

 



38 
 
 

 
Figure 20. Routing Report - Ranked user hours combined for two class instances of PSDS2120. 
Rank of the times for all students in two classes of the R Boot Camp during the first five 
business days of each class. A clear cutoff for Routing is not seen, but around 5 hours might be 
appropriate. 

 

 
Figure 21. Routing Report - Ranked user hours combined for three class instances of 
PSDS2110. 
Ranking the times for all students in three classes of the DB/SQL Boot Camp during the first 
five business days of each class. A cutoff for Routing at around 5 hours seems appropriate. 



39 
 
 

5.4.2. Student Engagement - Daily Hours 

How is an individual student spending their time throughout the course? Examining the hours a 

student spends each day of the course and whether those hours are during instruction time can 

provide more detailed information regarding the effort put forth and whether instruction hours are 

utilized. For these plots, the hours are summed for each student-day and plotted as a stacked bar chart 

of instruction and non-instruction hours and a line chart of the cumulative total. 

The charts for four students in Python Boot Camp - PSDS 2100 OP3-3 are provided for 

comparison. The students are identified by their time rank, ranked by the time spent for the entire 

course (not just the routing period). For the bar chart, a red line at 8 hours marks the maximum 

instruction hours possible on a day of instruction. For the cumulative line chart, the reference line is 

at 40 hours for five days of instruction.  

The daily hours of the student ranked 14 are shown in Figure 22. This student worked entirely 

within the five instruction days, putting in around 4 hours a day. We must remember however, that 

not all time spent is captured by our methods.  

 
 
Figure 22. The daily hours of the student hourly-ranked 14 in PDSS2100OP3-3. 
This student worked entirely within the five instruction days. 

 

The daily hours of the student ranked 10 are shown in Figure 23. This student worked mostly 

outside of instruction hours and put in hours at a fairly steady pace, although not every day. 



40 
 
 

 
 
Figure 23. The daily hours of the student hourly-ranked 10 in PDSS2100OP3-3. 
This student worked mostly outside of instruction hours and put in hours at a fairly steady 
pace throughout the course, although not every day. 

 

The daily hours of the student ranked 1 are shown in Figure 24. This student worked both during 

and outside of instruction hours at a fairly steady pace throughout the first 12 days of the course, 

finishing early and accumulating about 46 hours. 

 
 
Figure 24. The daily hours of the student hourly-ranked 1 in PDSS2100OP3-3.3. 
This student worked both during and outside of instruction hours at a fairly steady pace 
throughout the first 12 days of the course, finishing early and accumulating about 46 hours. 

 



41 
 
 

The daily hours of the student ranked 21 out of 24 are shown in Figure 25. This student put in 

little time, working less than four hours on the first day, less than two on the second day, and one or 

less on six other days for a cumulative total of about 9 hours. 

 
 
Figure 25. The daily hours of the student hourly-ranked 21 in PDSS2100OP3-3.3. 
This student put in little time, working less than four hours on the first day, less than two on 
the second day, and one or less on six other days for a cumulative total of about 9 hours. 

 

5.4.3. Class Engagement by Activity Type 

Which activities (notebook_types) is the class spending its time on? How often are they 

executing code? For these visualizations, the time differences and cell executions are summed, 

aggregated by notebook_type and visualized with a notched box and whisker plot showing outliers 

(see Figure 26.) Outliers are outside 1.5 times the Interquartile Range (IRQ), and the notch represents 

the 95% confidence interval for the median. For our example course, PSDS2100 OP3-3, a few students 

spend a little time with resources, solutions, or other notebooks (such as FAQ notebooks). Again, we 

must remember that we are only recording time between E X E C U T E S  and S A V E S , so not all time is 

getting logged. Most students are recorded as spending less than an hour on LABS, with outliers 

ranging up to three hours. More time is spent on the PRACTICES but still 75% of the values fall around 

an hour or less. The largest number of hours spent on PRACTICES for students not considered outliers 



42 
 
 

is less than 3 hours, and outliers have a great range with the majority from 3 to 7 hours, and one almost 

at about 10.5 hours. A similar pattern is seen for the number of cell executions. 

Both the hours spent and cell executions are heavily skewed toward low values, creating an 

interquartile range that is very small. This results in many outliers. Especially for the PRACTICES, the 

outliers have a large range. This indicates some students are spending much more time on the 

PRACTICES than many students. Perhaps these students are skipping LABS, making the PRACTICES 

harder for them to complete, or perhaps this pattern is due to there being students of widely varying 

abilities in the course. As a boot camp, this course is offered for students to both learn Python or brush 

up their skills if they have not used the language in a while. The skew toward low amounts of time and 

fewer executions are suspected to be students that are brushing up, and the large range for the top half 

of the box-and-whisker is thought to represent students new to Python. We will look at the balance of 

time spent between PRACTICES and LABS in Section 5.4.7 to see if some students are skimping on time 

spent in the LABS. 

 
 
Figure 26. PSDS2100OP3-3 class engagement by activity type. 

 

5.4.4. Class Engagement by Activity Type Within a Module 

Because the Interquartile range is so tight for Class Engagement by Activity Type, more 

information may be apparent by drilling down into a module to get a finer-grained view. Figure 27 



43 
 
 

shows student engagement by Activity Type for Module 1 in our example course, PSDS2100 OP3-3. As 

expected from the previous chart, there is little engagement measured with the resources, solutions, 

or other notebooks. Also as expected, there is more time spent on PRACTICES than LABS. The 

distribution of the time spent on LABS is tight, with 75% of students spending less than a half hour on 

the LABS and the largest outlier only reaching 1.5 hours. There is a greater range for the PRACTICES, 

especially in the top 50% which ranges from about 0.75 hours to 3.5 hours, with two outliers around 

4 hours. 

Cell executions are a bit different, with the number of cell executions having a higher median, 3rd 

quartile value, and upper whisker. It could be however, that there are more cells to execute in the LAB 

notebooks. 

 
 
Figure 27. PSDS2100OP3-3 class engagement by module and activity type. 

 

5.4.5. Class Engagement by Module/Notebook 

More informative still, is to drill down another level to view Class Engagement by 

Module/Notebook. 

For Day 1, in the plot for Notebook Hours shown in Figure 28 we can see six LAB notebooks 

(shown in green) were provided and two PRACTICES (displayed in orange.) The first PRACTICE listed 



44 
 
 

occupied most of the students’ time and had a large range of time spent. The LAB notebooks have a 

pretty tight range. 

The IQR for the first PRACTICE notebook extends from 1.75 to 2.6 hours, with the total range 

extending from almost zero to a bit over four.  

The cell executions for Day 1 in Figure 29 show more variability between Lab notebooks, although 

the time range remains tight for each LAB notebook. The same PRACTICE notebook has a higher range 

for the number of cell executions, with half the class tight in the lower range and half the class in the 

upper range more spread out, with two outliers. The extensions at the bottom of the box represent a 

95% confidence interval for the median that extends below the 25th percentile. 

An instructor viewing these plots might ask themselves, “Does the range of time spent and 

number of executions seem reasonable for the course design and the known characteristics of the 

student cohort, or does more preparation or scaffolding need to be provided for the first PRACTICE 

notebook?”  

 
 
Figure 28. PSDS2100OP3-3 class engagement for Day 1 notebooks - hours. 

 



45 
 
 

 
 
Figure 29. PSDS2100OP3-3 class engagement for Day 1 notebooks – cell executions.  

 

The next four figures show the Notebook Hours for All Students for the remaining modules 

(days.) Figure 30 shows the hours for Day 2. Notice that there are two PRACTICES with one dot. These 

are student-created copies of the PRACTICE notebook. A canonical list of the notebooks could prevent 

these from showing up, but they do preserve some information on student engagement. If many 

students adopted this practice and named their copies differently it would clutter the plot too much. 

The third PRACTICE (other than the copies) is optional and may have a tight range due to low 

participation. 

The first two PRACTICES have similar means, but different ranges. The first PRACTICE is very tight 

between the 25th percentile and the median, with a larger range between the median and the 75th 

percentile. Compared to the second notebook, this first notebook took more time for students between 

the median and 75th percentile.  



46 
 
 

 
 
Figure 30. PSDS2100OP3-3 class engagement for Day 2 notebooks - hours. 

 

Figure 31 shows the hours for Day 3. The second PRACTICE is optional. We can see that a lot of 

preparation for the PRACTICE for this module occurs with many LABS. The IQR for this notebook is 

about 0.5 to 1.5, with the range between whiskers going from 0 to about 2.5. This is not as severe as 

our example from Module 1, and there are only two outliers. More students seem well prepared for 

this PRACTICE.  Also, the instructor may have considered the many LABS to be worked on in planning 

the expected time for students to invest in the PRACTICE. 



47 
 
 

 
 
Figure 31. PSDS2100OP3-3 class engagement for Day 3 notebooks - hours. 

 

Figure 32 shows the hours for Day 4. There is one PRACTICE copy in this plot. The first PRACTICE 

clearly takes less time, while the next two take similar time for the first 50% of the class. The second 

50% find the third PRACTICE notebook to take more time (except for one student.) The top of the 

whisker is around 6.5 hours, which is the most time we’ve seen spent on a PRACTICE so far. 

Figure 33 shows the hours for Day 5. There are three LABS and the FINAL PROJECT PRACTICE. The 

FINAL PROJECT does not take as much time as the third PRACTICE in the previous module. Only the 

instructor can answer if this fits the instructor's intent. 



48 
 
 

 
 
Figure 32. PSDS2100OP3-3 class engagement for Day 4 notebooks - hours. 

 

 
Figure 33. PSDS2100OP3-3 class engagement for Day 5 notebooks - hours. 

 



49 
 
 

5.4.6. Student Engagement by Module/Notebook 

We saw in the Class Engagement by Module/Notebook plots that the LABS typically took little 

time and the range was tight. The PRACTICES showed greater variability, but often had a tight range 

for the bottom 50%, and a much higher range, sometimes with outliers, for the upper 50%. What can 

we learn by looking at Individual Student Engagement by Module/Notebook?  

Figure 34 shows the hours spent by Student 1 (our overachiever) in each notebook for Day 4.  

This student is spending time in the LABS, especially one LAB, but a lot of time in the PRACTICES. This 

plot is for the entire timespan of the course -visualizing when the materials were accessed (using a 

pattern for early, on-time, or late) could be informative. For instance, the brown bars are for the 

solutions, which were visited after the material was due while working on the next module. Are 

students visiting other notebooks in earlier modules when working on later ones? 

 
 
Figure 34. PSDS2100OP3-3 Day 4 notebook hours for Student 1. 

 



50 
 
 

Figure 35 shows the hours spent by Student 2 in each notebook for Day 4. For the same day as 

the previous example, Student 2 is spending most of their time in the PRACTICES without much time 

in the LAB and did not visit the solutions at all. This is a poor use of time. 

 
 
Figure 35. PSDS2100OP3-3 Day 4 notebook hours for Student 2. 

 

Figure 36 shows that on Day 3, Student 7 spent a lot of time in the LABS. But we see in Figure 37 

that for the next module, Day 4, the same student spent almost no time in the LABS, so this student’s 

work pattern was not consistent. 



51 
 
 

 
 
Figure 36. PSDS2100OP3-3 Day 3 notebook hours for Student 7. 

 

 
 
Figure 37. PSDS2100OP3-3 Day 4 notebook hours for Student 7. 

 



52 
 
 

5.4.7. Practice vs Lab Balance 

In Section 5.4.3 where we visualized Class Engagement by Activity Type, we noted that for the 

PRACTICES, the outliers had a large range of time spent and we considered whether these outlier 

students were skipping LABS, making the PRACTICES more difficult. This last chart provides a 

perspective on that question by plotting engagement in the LABS vs engagement in the PRACTICES, for 

both hours and number of executions (see Figure 38.) 

For the most part, students spend comparable time and effort in the PRACTICES and LABS 

compared to their peers with a few exceptions, indicated in red. Student 1 spent more time and 

interacted more in the LABS, than any other student. Students 2 and 3 spent more time and performed 

more executions in the PRACTICES than in the LABS, although the effort spent in the LABS was similar 

to their peers. Perhaps these students are new to Python. Student 14 performed many executions in 

the PRACTICES, but the hours spent was similar to their peers. This student could be characterized as 

more interactive than their peers for the time spent. 

How do the grades for these students compare to their peers? This plot could be color-coded by 

grade. 

 
 
Figure 38. PSDS2100OP3-3 practice vs lab cumulative hours and cell executions for all 
students. 

 

  



53 
 
 

Chapter 6: Recommendations and Further Research 

This thesis has barely scratched the surface of what is available to achieve and the benefits that 

could be gained from analyzing student activity in Jupyter Notebook. 

6.1. A Comprehensive Jupyter Learning Analytics System 

The T R A K  custom Jupyter logs for E X E C U T E _ I N P U T  messages capture additional features such 

as the notebook_path and the executed code that are not captured in the regular E X E C U T E _ I N P U T  

logs, allowing a detailed, efficient, and accurate analysis of E X E C U T E _ I N P U T  actions. Custom logging 

with rich data capture could be extended to other types of messages, to capture a complete picture of 

student interaction from page load, through code cell edits, cell additions and subtractions, every type 

of execute, and closing the page. This data could then be mined for more detailed analysis. 

Among these custom messages, capturing a cell identifier for activities within a specific cell could 

provide a very detailed view of executions, errors, and code edits, allowing instructors to fine-tune 

their materials based on student interactions. 

However, as exciting as the potential for rich data capture is, the amount of logging would need 

to be carefully balanced with performance requirements. 

In combination with Jupyter custom logging, configuring additional Graylog extractors for key 

features on all relevant messages would provide indexing on those features, allowing for efficient, real-

time searches for those messages in the Graylog browser as well as more efficient data ingestion for 

the reports. 

The sister program to PSDS, MU’s Master’s Program in Data Science and Analytics, would benefit 

greatly from the application of these analyses. An ambitious vision would be to provide a structure for 

organizing course materials and their timing, tied to custom logging and analytics features, to allow 

generalizing to other programs as an open source project integrating with Jupyter Notebook and 

JupyterHub.  



54 
 
 

Instructor, student, and administrator dashboards would provide easy access to relevant 

analytics on demand. 

6.2. Additional Descriptive Analysis 

6.2.1. New Features 

The number of executions varies quite a bit between notebooks. Normalizing the number of 

executions per notebook would allow us to see how repetitively a student executes the cells in a 

notebook.  

There is a command to run all cells in a notebook. This type of engagement is different from 

working through cell by cell and thinking about the content. This difference could be captured by 

custom logging the “run all” command and/or calculating the average time between executions. 

Tracking the type and number of errors per notebook or cell would give information on common 

errors, students that are having difficulty, and notebooks or cells that are particularly difficult. 

Three other features were found in the literature for learning analytics applied to LMS logs. 

Timing of engagement is whether the work is early, on-time or late compared to the course design. 

Nguyen et al. showed that different patterns in this feature were associated with student performance 

as well as engagement with different types of activities [12]. Login frequency (how many separate 

logins there are) and regularity of learning interval, (the standard deviation of the average login time) 

were used in [11] and [13] to identify different time management strategies. These may be less 

applicable to the PSDS program due to its accelerated pace but would be useful features in other 

programs. 

A PSDS course lead has suggested other features such as whether a course is blended or entirely 

online; which instructor is assigned to the class instance; and what the NGA location of the class is. 

These could identify learning environment features affecting student activity patterns or performance. 

https://www.zotero.org/google-docs/?7TiMmy
https://www.zotero.org/google-docs/?leYSzC
https://www.zotero.org/google-docs/?OEDEnk


55 
 
 

6.2.2. Additional Visualizations 

New features mentioned above would all call for new visualizations, designed to highlight the 

relevant insights. 

Stacked bar charts used to visualize instruction and non-instruction hours for all the students in 

a class could also be used to visualize other breakdowns: whether the hours spent were early, on-time, 

or late for the assignment; the hours logged for each type of notebook; and the hours spent in each 

module. 

Student final grades added as color codes to the line chart for Ranked Student Hours and the 

scatter plot for PRACTICE vs LAB Balance (or LAB/PRACTICE vs EXERCISE) would allow patterns that 

affect performance to be discerned visually. 

A Probability Mass Function plot of the average time per student in each type of notebook across 

all instances of a course would be useful to course leads as another perspective informing course 

design. A similar plot of the average time per module would likewise be useful. 

6.3. Predictive Analytics 

Predicting student outcome as shown by final score or even pass/fail, is a natural goal for 

predictive learning analytics. Calculating correlation coefficients between different features and 

outcomes would identify which features are independently the most influential. 

Unsupervised learning using cluster analysis could identify types of students based on multiple 

features, which could be useful in describing groups of students which could then be targeted in course 

design. But clustering could also include outcomes to predict student performance. 

Clustering algorithms could be applied to identify patterns of student activity among identified 

features at different levels of granularity, including time, executions, and outcomes, whether the 

outcome is final grade or pass/fail. A few examples are: 

• Total time, normalized average executions, and outcome. 

• Instruction time, non-instruction time, normalized average executions, and outcome. 



56 
 
 

• Early hours, on-time hours, and late hours spent, normalized average executions, and 

outcome. 

• Early hours, on-time hours, and late hours in LABS, PRACTICES, and EXERCISES, normalized 

average executions for LABS, PRACTICES, and EXERCISES, and outcome. 

6.4. Prescriptive Analytics 

Descriptive and predictive analytics form the basis for prescriptive analytics, leading to 

interventions.  

Alerts provide the opportunity to make timely interventions. A notification that a given notebook 

or module is taking too much time on average, or students in a given notebook are having a lot of errors 

on average would give the instructor an opportunity to provide additional explanation through a video 

or other supplemental material, rather than waiting for the next instance of the course to make 

changes.  

Identifying an individual student fitting a pattern or student “type” associated with a poor 

outcome would give the instructor an opportunity to reach out to the student to provide counsel to 

help correct their course trajectory. 

Retrospectively, poor outcomes that are linked to engagement patterns with certain notebooks 

or modules, or with student types as determined by clustering could indicate design changes are 

warranted. 

  



57 
 
 

CONCLUSION 

Jupyter Notebook is particularly well-suited for STEM instruction and activity-based learning, 

providing a superior environment for building skills and developing a deep understanding of course 

material. The logs generated in Jupyter provide a window to view student activity patterns that have 

previously been hidden in offline courses and courses utilizing traditional LMS systems. 

The PSDS program offered by the University of Missouri for NGA is an ideal program for a case 

study in applying learning analytics to the Jupyter environment. The Jupyter-centered delivery of 

course material and the design and organization of PSDS courses allow insights into students’ active-

learning patterns and how interactions with preparatory material influence interactions with 

subsequent material.  

For this thesis, log messages originating in Jupyter were extracted from the Graylog log 

management system, transformed into useful student-activity features, and loaded into a PostgreSQL 

database for long-term storage and historical reporting. A variety of visualizations of student activity 

useful for administrators, instructors, and students have been produced.  

New insights have been demonstrated and recommendations made for building a richer and more 

utilitarian logging and analytics system, with an expansive vision for what can be achieved mining 

Jupyter logs for learning analytics.  



58 
 
 

REFERENCES 

[1] C. C. Bonwell and J. A. Eison, “Active Learning: Creating Excitement in the Classroom. ERIC 
Digest,” ASHE-ERIC Higher Education Reports, The George Washington University, One Dupont 
Circle, Suite 630, Washington, DC 20036-1183, Sep. 1991. Accessed: Apr. 09, 2020. [Online]. 
Available: https://eric.ed.gov/?id=ED340272. 

[2] S. Freeman et al., “Active learning increases student performance in science, engineering, and 
mathematics,” Proceedings of the National Academy of Sciences, vol. 111, no. 23, pp. 8410–8415, 
Jun. 2014, doi: 10.1073/pnas.1319030111. 

[3] “Project Jupyter.” https://www.jupyter.org (accessed Jan. 15, 2020). 

[4] C. Rizo Maestre, F. Aznar Gregori, M. Pujol López, and R. Rizo Aldeguer, “Jupyter Notebook: 
Theory and Practice of Mathematical Models in Engineering and Architecture,” in Proceedings of 
ICERI2016 Conference, Seville, Spain, Nov. 2016, pp. 6523–6530, doi: 10.21125/iceri.2016.0492. 

[5] B. W. Weber, “Climbing Bloom’s Taxonomy With Jupyter Notebooks: Experiences in Mechanical 
Engineering,” in Proceedings of the ASME International Mechanical Engineering Congress and 
Exposition, Salt Lake City, UT, USA, Nov. 2019, vol. 59421, p. V005T07A022. 

[6] J. M. Perkel, “Why Jupyter is data scientists’ computational notebook of choice,” Nature, vol. 563, 
no. 7729, pp. 145–146, Oct. 2018, doi: 10.1038/d41586-018-07196-1. 

[7] G. Siemens, “Learning analytics and educational data mining: towards communication and 
collaboration,” in Proceedings of the 2nd international conference on learning analytics and 
knowledge, Vancouver, BC, Canada, May 2012, pp. 252–254, doi: 10.1145/2330601.2330661. 

[8] N. Sclater, A. Peasgood, and J. Mullan, “Learning analytics in higher education: a review of UK and 
international practice,” Jisc, London, United Kingdom, Apr. 2016. 

[9] “What are Analytics? | Canvas Basics Guide | Canvas Guides (en).” 
https://guides.instructure.com/m/67952/l/724559-what-are-analytics (accessed Apr. 10, 
2020). 

[10] R. Mazza and V. Dimitrova, “CourseVis: A graphical student monitoring tool for supporting 
instructors in web-based distance courses,” International Journal of Human-Computer Studies, 
vol. 65, no. 2, pp. 125–139, Feb. 2007, doi: 10.1016/j.ijhcs.2006.08.008. 

[11] I.-H. Jo, D. Kim, and M. Yoon, “Analyzing the log patterns of adult learners in LMS using learning 
analytics,” in Proceedings of the Fourth International Conference on Learning Analytics And 
Knowledge, Indianapolis, Indiana, USA, Mar. 2014, pp. 183–187, doi: 
10.1145/2567574.2567616. 

[12] Q. Nguyen, M. Huptych, and B. Rienties, “Linking students’ timing of engagement to learning 
design and academic performance,” in Proceedings of the 8th International Conference on 
Learning Analytics and Knowledge - LAK ’18, Sydney, New South Wales, Australia, 2018, pp. 141–
150, doi: 10.1145/3170358.3170398. 

 



59 
 
 

[13] T. Yu and I.-H. Jo, “Educational technology approach toward learning analytics: relationship 
between student online behavior and learning performance in higher education,” in Proceedings 
of the Fourth International Conference on Learning Analytics And Knowledge, Indianapolis, 
Indiana, USA, Mar. 2014, pp. 269–270, doi: 10.1145/2567574.2567594. 

[14] “$12 Million Federal Contract to MU Will Establish Education Program for National Intelligence 
Agency | News Bureau, University of Missouri.” https://munewsarchives.missouri.edu/news-
releases/2016/0831-12-million-federal-contract-to-mu-will-establish-education-program-for-
national-intelligence-agency/ (accessed Apr. 13, 2020). 

[15] “Looking at Logs — The Littlest JupyterHub v0.1 documentation.” 
http://tljh.jupyter.org/en/latest/troubleshooting/logs.html#journalctl-tips (accessed Apr. 25, 
2020). 

[16] “Messaging in Jupyter — jupyter_client 6.1.3 documentation.” https://jupyter-
client.readthedocs.io/en/stable/messaging.html (accessed Apr. 25, 2020). 

[17] “Open Source Log Management for All | Graylog.” https://www.graylog.org/products/open-
source (accessed Mar. 03, 2020). 

[18] “Managing Centralized Data with Graylog | The Graylog Blog.” 
https://www.graylog.org/post/managing-centralized-data-with-graylog (accessed Mar. 03, 
2020). 

[19] “Elasticsearch Reference [6.8] | Elastic.” 
https://www.elastic.co/guide/en/elasticsearch/reference/6.8/index.html (accessed Apr. 13, 
2020). 

[20] “Welcome to the Graylog documentation — Graylog 3.2.0 documentation.” 
http://docs.graylog.org/en/3.2/index.html (accessed Mar. 03, 2020). 

[21] A. Craighead, “interputed/grapi,” Jan. 14, 2020. https://github.com/interputed/grapi (accessed 
Apr. 28, 2020). 

[22] “Graylog REST API — Graylog 3.2.0 documentation.” 
https://docs.graylog.org/en/3.2/pages/configuration/rest_api.html (accessed Apr. 28, 2020). 

 


	1_TitlePage
	Data Mining Student Activity Patterns in an Interactive Activity-based  STEM Learning Environment

	2_Approval_Esignature_INSERT
	3_Data Mining Student Activity Patterns
	Acknowledgements
	Table of Contents
	Illustrations
	Figures
	Tables

	Table of Terms
	Abstract
	Chapter 1: Introduction
	1.1. Active Learning with Jupyter Notebook
	1.2. Learning Analytics
	1.3. Program of Study in Data Science (PSDS) Program

	Chapter 2: Log Collection with Jupyter and Graylog
	2.1. Logging and Messaging in Jupyter
	2.2. Graylog and Elasticsearch

	Chapter 3: PSDS IT System Design
	Chapter 4: Data Collection & Ingestion Methods
	4.1. Data Acquisition Challenges
	4.1.1. Log Purges
	4.1.2. Graylog Outages
	4.1.3. Custom Graylog Extractors
	4.1.4. TRAK Messages (Custom Jupyter Logging)

	4.2. Data Ingestion and Database Loading
	4.2.1. Querying Graylog
	Grapi Request
	Parsing the Response

	4.2.2. Feature Extraction
	4.2.3. Kernel to Notebook Mapping


	Chapter 5: PSDS Case Study
	5.1. Selected Courses
	5.2. Use Case Descriptions
	5.3. Data Preparation for Reporting and Visualization
	5.4. Use Case Visualizations
	5.4.1. Routing and Contracted Instruction Hours
	5.4.2. Student Engagement - Daily Hours
	5.4.3. Class Engagement by Activity Type
	5.4.4. Class Engagement by Activity Type Within a Module
	5.4.5. Class Engagement by Module/Notebook
	5.4.6. Student Engagement by Module/Notebook
	5.4.7. Practice vs Lab Balance


	Chapter 6: Recommendations and Further Research
	6.1. A Comprehensive Jupyter Learning Analytics System
	6.2. Additional Descriptive Analysis
	6.2.1. New Features
	6.2.2. Additional Visualizations

	6.3. Predictive Analytics
	6.4. Prescriptive Analytics

	Conclusion
	References


