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ABSTRACT

An essential goal of artificial intelligence is to support the knowledge discovery

process from data to the knowledge that is useful in decision making. The challenges in

the knowledge discovery process are typically due to the following reasons: First, the real-

world data are typically noise, sparse, or derived from heterogeneous sources. Second, it

is neither easy to build robust predictive models nor to validate them with such real-world

data. Third, the ‘black-box’ approach to deep learning models makes it hard to interpret

what they produce. It is essential to bridge the gap between the models and their support

in decisions with something potentially understandable and interpretable. To address the

gap, we focus on designing critical representatives of the discovery process from data to

the knowledge that can be used to perform reasoning.

In this dissertation, a novel model named Class Representative Learning (CRL)

is proposed, a class-based classifier designed with the following unique contributions in

machine learning, specifically for image and text classification, i) The unique design of

a latent feature vector, i.e., class representative, represents the abstract embedding space
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projects with the features extracted from a deep neural network learned from either im-

ages or text, ii) Parallel ZSL algorithms with class representative learning; iii) A novel

projection-based inferencing method uses the vector space model to reconcile the domi-

nant difference between the seen classes and unseen classes; iv) The relationships between

CRs (Class Representatives) are represented as a CR Graph where a node represents a CR,

and an edge represents the similarity between two CRs.

Furthermore, we designed the CR-Graph model that aims to make the models ex-

plainable that is crucial for decision-making. Although this CR-Graph does not have full

reasoning capability, it is equipped with the class representatives and their inter-dependent

network formed through similar neighboring classes. Additionally, semantic information

and external information are added to CR-Graph to make the decision more capable of

dealing with real-world data. The automated semantic information’s ability to the graph

is illustrated with a case study of biomedical research through the ontology generation

from text and ontology-to-ontology mapping.
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CHAPTER 1

INTRODUCTION

The era of artificial intelligence (AI) and machine learning has bought sophisti-

cated AI-systems in all walks of human life (as in medicine, defense, or education). With

movement in AI towards deep learning, inherently encourages black-box machine learn-

ing. The increase in the use of black-box machine learning and deep learning models in

critical context demands transparency of these decisions [1]. The need for transparency

introduces the particular interest in the need for machine learning systems that can explain

their rationale, characterize their strengths and weaknesses, and also convey an under-

standing of how they will behave in the future [2]. In the last few years, the need for ex-

plainable AI has increased drastically, and commendable research has been done towards

this big goal. Explainable AI can be achieved through deep explanation, interpretable

models, or model induction. This dissertation focuses on using data representations and

graphs to aid explainable machine learning models.

The performance of machine learning is heavily dependent on the choice of data

representation. For that reason, much of the actual effort in deploying machine learning

algorithms go into the design of pre-processing pipelines and data transformations that

result in a representation of the data that can support effective machine learning. A good

representation is often one that captures the posterior distribution of the underlying ex-

planatory factors of the observed input [3]. Good data representation gives us explanatory
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information about the data it represents, making representations an essential piece towards

explainable AI. The data representations of a given data provide an intricate knowledge

of the structure of the data and the valuable information from a large amount of data.

Data representations have been present for a long time since dimensionality reduction,

feature extraction techniques; from there, it has come to the new world with intensive

and beautifully designed deep learning techniques. The data representations have feature-

level information about the data. They need to be coupled with the auxiliary data like

semantics, attributes, and textual information to improve the reasoning. This information

is typically inter-dependent and intertwined and needs a good knowledge representation.

Graphs have become an essential part of developing useful data exploration tools, espe-

cially knowledge graphs.

Most available knowledge graphs are synthetic, seeding real-world properties into

generation routines. Others are laboriously curated from source materials or manually

created by domain experts. This process is time-consuming. So this dissertation presents

a path: dynamically deriving the graph from real-world data sources. This dynamic graph

generation process is used for creating data representation graphs. A larger corpus can

be automatically processed with greater confidence by adequately grounding the tools in

a small collection of curated datasets. The end system leverages the machine learning

model’s knowledge and reasoning, reducing the amount of time for human intervention

through automation.

This dissertation’s objectives can be split into two parts: class representative learn-

ing for images and class representative learning for text.
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1.1 Class Representative Learning for Image

The Class Representative Learning for Image is done through three different goals.

The first goal aims at designing class representatives for visual data for image classifica-

tion settings, i.e., seen data. The next step is creating class representatives for unseen

data with no learning, also known as the zero-shot image classification setting. The third

goal is to create a discriminant distribution of classes based on the misclassification score.

The discriminant distribution essentially groups heterogeneous classes or non-confusing

classes to increase overall accuracy. Figure 1 shows the gist of each goal represented

as a chapter and how chapters are interlinked in the dissertation. As discussed earlier,

the whole architecture em-composes the steps involved in the transformation of data into

knowledge. We take the data to create data representations (also known as class represen-

tations) and create knowledge graphs.

A brief abstract of each chapter is as follows:

Chapter 2: CRL: Class Representative Learning for Image Classification

Recent advances in deep learning (DL) have improved the state-of-the-art results of the

data-driven approaches and applications in a wide range of domains. However, building

robust and real-time classifiers with diverse datasets is one of the most significant chal-

lenges to deep learning researchers. It is because there is a considerable gap between

a model built with training (seen) data and real (unseen) data in applications [4, 5, 6].

The current deep learning research assumes firm boundaries between data, between data

and models, and between models in deep learning. There is no attempt to deal with this

problem of breaking the boundaries or dynamically building a model. Consequently, the
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Figure 1: Class Representative Learning for Image
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new paradigm focusing on the universal representation of diverse datasets and dynamic

modeling depending upon users’ contexts appears to be of great importance. There has

been increasing attention on Zero-Shot Learning [4] and one-shot/few-shot learning [7,

8]. These efforts aim to build the ability to learn from a few examples or even without

seeing them. Alternatively, it is required to represent and match new instances on a se-

mantic space, minimizing training efforts and maximizing learning outcomes. They focus

on active transfer learning by fully leveraging information from pre-trained models. The

seamless integration of unlabeled data from the seen/unseen classes is possible through

the artistic representations of multi-model embeddings, including semantic, word, visual

embeddings.

Chapter 3: Class Representatives for Zero-shot Learning using Purely Visual Data

The building of robust classifiers with high precision is an important goal. In reality, it

is quite challenging to achieve such a goal with the data that are typically noise, sparse,

or derived from heterogeneous sources. Thus, a considerable gap exists between a model

built with training (seen) data and testing (unseen) data in applications. Recent works,

including zero-shot learning (ZSL) and generalized zero-short learning (G-ZSL), have

attempted to overcome the apparent gap through transfer learning. However, most of

these works are required to build a model using visual input with associated data like

semantics, attributes, and textual information. Furthermore, models are made with all of

the training data. Thus, these models apply to more generic contexts but do not apply to

the specific settings that will eventually be required for real-world applications. In this
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chapter, we propose a novel model named Class Representative Learning (CRL), a class-

based classifier designed with the following unique contributions in machine learning:

i) The unique design of a latent feature vector, i.e., class representative, represents the

abstract embedding space projects with the features extracted from a deep neural network

learned only from input images. ii) Parallel ZSL algorithms with class representative

learning; iii) A novel projection-based inferencing method uses the vector space model to

reconcile the dominant difference between the seen classes and unseen classes. This study

demonstrates the benefit of using the class-based approach with CRs for ZSL and G-ZSL

on eight benchmark datasets. Extensive experimental results suggest that our proposed

CRL model significantly outperforms the state-of-the-art methods in ZSL/G-ZSL based

image classification.

Chapter 4: MCDD - Multi-class Distribution Model for Large Scale Classification

We need a parallel and distributed machine learning framework to deal with a large

amount of data. We have seen unsatisfactory classification performance, especially with

an increasing number of classes. In this chapter, we propose a distributed deep learn-

ing framework, called Multi-Class Discriminative Distribution (MCDD) that aims to dis-

tribute classes while improving the accuracy of deep learning with large-scale datasets.

The MCDD framework is based on an evidence-based learning model for the optimal dis-

tribution of classes by computing a misclassification cost (i.e., confusion factor). These

observations about learning attempts have been used to extend a classifier into a classi-

fication model hierarchy by learning an optimal distribution of classes. As a result, a

distributed deep neural network model with multi-class classifiers (MCDDNet) was built
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to optimize the learning process’s accuracy and performance. The MCDD model has

been implemented in parallel environments, Apache Spark, and Tensor Flow using large

real-world datasets (Caltech-101, CIFAR-100, ImageNet-1K). MCDD can build a class

distribution model with higher accuracy compared to existing models.

Chapter 5: Zero-shot Learning for Text Classification using CRL

Zero-Shot Learning (ZSL) has been a very active research area over recent years. How-

ever, the ZSL algorithms for text classification remains very limited despite considerable

research efforts in NLP. In this chapter, we proposed a novel Class Representative Learn-

ing (CRL) framework for ZSL-based text classification that was designed using sentence-

level word embeddings and deep neural network features. The experiments show that

CRL achieved the highest overall accuracy compared with the state-of-the-art research in

Zero-Shot Learning and Generalized Zero-Shot Learning (GZSL).

1.2 Class Representative Learning for Text

Figure 2 shows the gist of each goal for text data are represented as chapters and

how text-based chapters are interlinked in the dissertation. Each chapter in the disserta-

tion describes a specific problem that contributes to the entire architecture. As discussed

earlier, the whole architecture em-composes the steps involved in the transformation of

data into knowledge. We take the data to create data representations (also known as class

representations) and create ontologies.

A brief abstract of each chapter is as follows:
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Figure 2: Class Representative Learning for Text
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Chapter 5: Zero-Shot Learning for Text Classification using Class Representative

Learning

With significant advances in supervised machine learning and enormous benefits from

deep learning for a range of diverse applications. Despite the success of deep learning,

in reality, very few works have shown progress in text classification. Transfer learning,

known as the zero-shot learning (ZSL)or generalized zero-short learning (G-ZSL), is re-

ceiving much attention due to its ability to transfer knowledge learned from a known

domain to unknown domains. Nevertheless, most of the ZSL works are relying on large

training corpus and external semantic knowledge. Thus, there are very few studies that

have investigated the improvement of text classification performance in sorely text-based

ZSL/G-ZSL. In this chapter, we propose a class-based framework for zero-shot classifi-

cation effectively that is based on a three-step approach consisting of: (1) sentence-based

embeddings, (2) deep neural networks, and (3) class-based representative classifiers. Ex-

perimental results show that the proposed framework achieves the best classification re-

sults in text-based ZSL/G-ZSL compared with the state-of-the-art approaches investigated

with three text benchmark datasets.

Chapter 6: Visual Context Learning with Big Data Analytics

Understanding contextual information composed of both text and images is beneficial for

multimedia information processing. However, Capturing such contexts is not trivial, es-

pecially while dealing with real datasets. Existing solutions such as using ontologies (e.g.,

WordNet) are mainly interested in individual terms. Still, they do not support identifying

a group of words that describe a specific context available at runtime. There are minimal
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solutions regarding the integration of contextual information from both images and text

within our knowledge. Furthermore, existing solutions are not scalable due to the compu-

tationally intensive tasks and are prone to data sparsity. In this chapter, we propose a se-

mantic framework, called VisContext, based on a contextual model combined with images

and text. The VisContext framework is based on the scalable pipeline that is composed of

the primary components as follows: (i) Natural Language Processing (NLP); (ii) Feature

extraction using Term Frequency-Inverse Document Frequency (TF-IDF); (iii) Feature

association using unsupervised learning algorithms including K-Means clustering (KM)

and Expectation-Maximization (EM) algorithms; iv) Validation of visual context models

using supervised learning algorithms (Naı̈ve Bayes, Decision Trees, Random Forests).

The proposed VisContext framework has been implemented with the Spark MLlib and

CoreNLP. We have evaluated the effectiveness of the framework in visual understanding

with three large datasets (IAPR, Flick3k, SBU) containing more than one million images

and their annotations. The results are reported in the discovery of the contextual associa-

tion of terms and images, image context visualization, and image classification based on

contexts.

Chapter 7: Transformation from Publications to Diabetes Ontology using Topic-

based Assertion Discovery

During the last decade, we have seen explosive growth in the number of biomedical pub-

lications. In this chapter, we present an Assertion Discovery framework that aims to

transform from PubMed publications (diabetes domain) to an ontology, called Diabetes
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Publication Ontology (DPO). The assertions in the DPO ontology were mapped and in-

tegrated with ones in existing diabetes ontologies. The Assertion Discovery framework

consists of three main components: (i) Assertion Discovery, (ii) Assertion Alignment, and

(iii) Assertion Integration. The proposed approach for ontology generation was based on

Stanford CoreNLP for Natural Language Processing, OpenIE (Open Information Extrac-

tion) for relation extraction, LDA (Latent Dirichlet Allocation) for topic modeling, and

OWL API for ontology generation on the Spark parallel engine. We presented a web-

based application for searching diabetes publications and retrieving the assertions from

the diabetes publications through the DPO ontology.

Chapter 8: Ontology Mapping Framework with Feature Extraction and Semantic

Embeddings

During the last decade, we have seen an increasing interest in biomedical ontologies.

In this chapter, we proposed a semantic framework for an automatic ontology mapping

through ontology search, feature extraction, and word embeddings. This framework is

a new way to discover semantic mapping between the concepts across multiple ontolo-

gies. The ontologies were mapped to semantic features extracted from various ontologies

selected from the NCBO BioPortal. We confirmed that the OMF framework effectively

enhances the existing ontologies mapping and discovers new relations across ontologies

beyond the boundary of ontologies.
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CHAPTER 2

CRL: CLASS REPRESENTATIVE LEARNING FOR IMAGE CLASSIFICATION

Recent advances in deep learning (DL) have improved the state-of-the-art results

of the data-driven approaches and applications in a wide range of domains. However,

building robust and real-time classifiers with diverse datasets is one of the most significant

challenges to deep learning researchers. It is because there is a considerable gap between

a model built with training (seen) data and real (unseen) data in applications [4, 5, 6]. The

current deep learning research assumes strong boundaries between data, between data and

models, and between models in deep learning. There is no attempt made to deal with this

problem of breaking the boundaries or dynamically building a model. Consequently, the

new paradigm focusing on the universal representation of diverse datasets and dynamic

modeling depending upon the user’s context appear of great importance.

There has been increasing attention on Zero-Shot Learning [4] and one-shot/few-

shot learning [7, 8]. These efforts aim to build the ability to learn from a few examples

or even without seeing them. Alternatively, it is required to represent and match new in-

stances on a semantic space, which results in minimizing training efforts and maximizing

learning outcomes. They focus on active transfer learning by fully leveraging information

from pre-trained models. The seamless integration of unlabeled data from the seen/unseen

classes is possible through the expressive representations of multi-model embeddings, in-

cluding semantic, word, visual embeddings. However, there are the notable limitations of
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these Zero/Few-Shot Learning works: Many of them are relying on semantic embeddings

in a common semantic space having a generative model [9, 10, 11].

The current works of Zero-Shot Learning demonstrated their effectiveness in trans-

ferred from prior experiences to new classes, which is a form of transfer learning. The

most used semantic space in the Zero-Shot Learning model is supported by a joint em-

bedding framework called Label-Embedding Space [4, 12]. This semantic space contains

a combination of visual embeddings and word embeddings. The other popular semantic

space is Engineering Semantic Space called Attribute Space, which uses attribute anno-

tations for the ZSL model [13]. In contrast to prior work, we mainly extract the deep

neural network features learned from visual inputs of seen classes creating image repre-

sentatives, and we do not rely on any other features such as attribute annotations or word

embeddings.

Similar to our approach in the feature extraction, there are active efforts [14, 15]

for extracting important features from Convolutional Neural Networks such as Inception

or ResNet. Mahendran et al. [14] analyzed the preserved deep features through inverting

the fully-connected layers. Zhou et al. [15] built the class activation map using CNN

features for the localization of the objects in the images for the discriminative image

regions. Unlike [14] and [15], we are interested in generating class-specific markers using

CNN features.

Our goal is to propose an innovate model, called Class Representative Learning

(CRL), for image classification for seen and unseen data. In this model, the focus is on
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creating a universal representation called the class representatives using the source envi-

ronment, which is typically pre-trained deep learning models. Given this goal, architec-

tural improvements are not our purpose; instead, we explore the potential and impact the

universal representation can make. It is desired to enable the universal representation to

be trained from any existing architectures or datasets with reduced efforts and resources.

The minimum requirement for the CRL model is to secure a suitable source (pre-trained)

environment for a given dataset.

The CRL model can be classified as transfer learning, called meta-learning [16,

17]. The basic idea behind transfer learning is to use previously learned knowledge on

different domains or tasks. The CRL model is based on the transductive approach that

aims to project the target data onto a source environment for the extraction of features

by mapping to unify the input spaces. The transductive property in transfer learning is to

derive the values of the unknown function for points of interest (class-based or instance-

based) from the given data (source environment or source domain) [4, 18].

The CRL model poses the property of being selective during inferencing. In other

words, the CRL model can classify an input image to either source labels or target labels

or both. Due to this property, the CRL model can behave like a traditional classification

model. The Convolution Neural Network-based Classification models tend to be high

in parameter requirements to achieve state-of-the-art accuracy [19, 20]. To show the

superiority of the CRL model developed in this study, we have compared our CRL model

against other state-of-the-art deep learning models.

The contributions of this chapter can be summarized as follows:

14



• The key contribution of our work is an effective way of building zero-shot classi-

fiers. Classifiers are built by dynamically aggregating Class Representatives (CRs)

depending upon the context in which it appears.

• The proposed modeling approach is also flexible enough to allow breaking down

boundaries between datasets and building a model across domains through effective

transferring knowledge from one domain to another.

• The unique contribution is that we can dynamically generate classifiers for image

classification problems. The dynamic model in the CRL model was possible due

to its ability to generate the Class Representatives (CRs) one by one through the

aggregation of CNN activation features.

• Furthermore, we can represent the relationships of the CRs as a graph form. The CR

Graph can be used for interpreting a model performance by identifying the accuracy

of CRs as well as the similarity between CRs.

• A comprehensive evaluation of the proposed model has been conducted using the

four benchmark datasets. The CRL model outperforms state-of-the-art Zero-Shot

Learning (ZSL) in terms of learning time and accuracy. CRL also shows improved

performance compared to the existing MobileNet models [21, 21, 22] for image

classification.
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2.1 Related Work

2.1.1 Dynamic Modeling for Classifiers

Chang et al. [23] presented a dynamic composition approach for discovering the

optimal weights of different concept classifiers by aggregating the individual concept pre-

diction scores. This technique is inspired by zero-shot learning frameworks [6, 24]. Aydin

et al. [25] proposed dynamic Bayesian networks by sparsifying their parameters for pro-

tein secondary structure prediction. Some machine learning approaches were improved

their accuracy by aggregating complementary features of data such as coding [26, 27] and

dynamic pooling [28]. Among dynamic pooling works in deep learning for image anal-

ysis, [29] is limited due to their assumption of fixed regions while dynamic pooling with

content-based regions [28]. Li and Vasconcelos [28] proposed a binary dynamic system

for characterizing the action attributes, representation of human activity in attribute space

[30], and a bag of words for attribute dynamics ( [31]. These works were mainly concen-

trated on the attributes or features that would be used for classifiers. However, none of

these works consider building a classifier dynamically for a specific context.

2.1.2 Transfer Learning

Recent studies have indicated the importance of transfer learning (TL) [32, 33]

that aims to maximize the learning outcome by transferring a model developed for a task

for building a model on another task. NASNet [22] explored the possibility of transferring

from what learned from a small dataset (e.g., CIFAR-10) to a larger dataset (ImageNet-

1K) through searching and utilizing a core architectural building block from the small
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dataset.

He et al. [34] have shown that pre-trained models with an extensive data set like

ImageNet-1K or with a small dataset like a subset of MS COCO have incredible influence

in computer vision. Initialization with pre-trained models or evaluating with pre-trained

features (e.g., unsupervised learning [35]) can reduce efforts and produce better results in

Deep Learning (DL). It is possible because pre-training models are widely available, and

learning from the models is faster than building from scratch.

The DL community has extensively studied transfer Learning [32, 33]. The trans-

fer learning from ImageNet-1K in Decaf [36] showed substantial improvements compared

to learning from image features. Ravi et al. [16] also presented a meta-learner model that

supported the quick convergence of training with a new task using few-shot learning.

Pan et al. [37] defined an inductive transfer learning as cross-domain learning

where the target task is different from the source task. The data in the target domain are

required to induce a predictive model that can be transferred from the source domain to

the target domain. Our model is similar to the Feature-representation-transfer defined by

Pan et al. However, the difference is that our model was encoded based on the aggregation

of the high-level features extracted from Convolutional Neural Networks.

In our chapter, we used a pre-trained model only for feature extraction, but training

is not required with new data. After the fully connected layers are removed from the entire

network, the rest will be mainly used for feature extraction for new data. Thus, the use

of the pre-trained model in our study is different from others since we only use it as a

reference model for extracting features for new data.
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2.1.3 Universal Representation

Ubernet [38] is a universal CNN that allows solving multiple tasks in a unified

architecture efficiently. It is through the end-to-end network training with a single training

set for diverse datasets and low memory complexity. Universal representations [39, 40]

perform well for visual domains in a uniform manner and have proven to be efficient for

multiple domain learning in relatively small neural networks.

Rebuff et al. [41] demonstrated that universal parametric families of networks

could share parameters among multiple domains using parallel residual adapter modules.

Similar to our work, all these works presented universal representations for multiple do-

mains or multiple tasks. However, unlike CRL, none of them focus on dynamically gen-

erating a model for multiple domains.

In this chapter, we define Source Environment for providing a basis for feature

selection as well as a uniform representation of a set of heterogeneous data sources for

effective deep learning. Feature selection is a crucial step in machine learning since it

directly influences the performance of machine learning. (e.g., as the right choice of

features drives the classifier to perform well). However, Kapoor et al. [42] observed that

finding useful features for multi-class classification is not trivial due to the volume in the

high-dimensional feature space as well as the sparseness over the search space.

Dictionary learning [43] was presented to determine the subspaces and build dic-

tionaries by efficiently reducing dimensionality for efficient representations of classes of

images. The critical contribution of the work is the reduction of sparsity constraints and

the improvement of accuracy by identification of the essential components of the observed
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data. From the extracted set of relevant features from images and quantizing them with

these bags of visual words, we will further build up a visual CR vector for each class by

combining these primitive features. The visual CRs will be used for efficient learning as

well as recognition with large scale multi-class datasets.

2.1.4 Lightweight Deep Learning

Recently, there has been an increasing demand for mobile applications for small

networks or dynamic networks in deep learning. There have been several deep neu-

ral architectures to strike an optimal balance between accuracy and performance. The

lightweight deep learning was achieved using three types of layer compression tech-

niques, namely: weight compression, convolution compression, and adding a single layer

[44]. Weight compression is the primitive technique used to create a lightweight model.

MobileNet-V1 [45] and Shufflenet [46] used a convolution compression technique in its

architecture, specifically depth-wise separable convolutions and point-wise group convo-

lution, respectively.

As an extension of the previous works, MobileNet-v2 [21] added a new layer,

namely an inverted residual layer, with a narrow bottleneck to create a lightweight model.

In NasNet Mobile [22], a new paradigm, called Neural Architecture Search (NAS), was

proposed with reinforcement learning for knowledge transfer. In general, architectural

changes are typically considered to achieve a lightweight model. In the CRL model, we

have obtained a lightweight model through the flexibility of representation concerning the

class.

19



2.1.5 Matching Networks

Few-shot classification [7, 8] is to label new classes which are not seen in training,

but through matching with only a few examples of each of these classes. The matching

networks are similar to a weighted nearest-neighbor classifier in an embedding space. The

embedding in the matching networks was built as a form of sampled mini-batches, called

episodes, during training. Notably, matching networks [8] is similar to our work in terms

of mapping an attention-based embedding to a query set for predicting classes. However,

our model is different from these works since we can build a dynamic model for multiple

classes by assembling a set of a single class classifier, called Class Representative, built

one by one independently.

A meta-learning approach [16] aims to build a custom model for each episode

based on LSTM, unlike others building each episode over multiple episodes. The pro-

totypical networks built a class prototype by computing the mean of the training set in

the embedding space. The inferring step was achieved by finding the nearest class pro-

totype for a query set. This approach is very similar to our work in terms of building

the classâs prototype as a class abstraction in shared embedding space [47]. Recently,

Wang et al. [48] extended the performance of Zero-Shot Learning and Few-Shot Learn-

ing using latent-space distributions of discriminative feature representations. Similar to

our approach, they used only the feature extractor of the CNN model. However, they

are different from our work in terms of the following aspects: (1) they used variational

autoencoder (VAE) while we are using a vector space model with a cosine similarity mea-

surement, (2) they built a model for all classes in any given dataset while we are building
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a model class by class. They focused on learning an embedding of the meta-data into a

shared space. However, in our work, we build CRs class by class. Thus, once the CR is

generated, there is no dependence between CRs. Due to the independence between CRs,

we can build multi-class models dynamically.

2.1.6 Zero-Shot Learning

Zero-Shot Learning (ZSL) defined a semantic encoding for predicting new classes

by using a standard feature set derived from a semantic knowledge base [24]. All well-

known works have worked on learning and understanding explicit and external attributes.

Much of the early work adapted from the original definition of the semantic knowledge

base in Zero-Shot Learning [24], focused on attributes solely based on visual feature

learning. Some of the works in the feature learning include boosting techniques [49],

object detection [50], chopping algorithm [51], feature adaption [52], and linear classifiers

[53].

The recent works of Zero-Shot Learning can be categorized into Engineered Se-

mantic Spaces (ESS) and Learned Semantic Spaces (LSS) according to the semantic space

type and ZSL methods in Wang et al. [4]. ESS can be further sub-categorized into At-

tribute Space, Lexical Space, and Text-Keyword Space; and LSS into Label-Embedding

Space, Text-Embedding Space, and Image-Representation Space. The Zero-Shot Learn-

ing method is classified into Classifier-based Methods and Instance-Based Methods. Ac-

cording to this categorization, the CRL model can be classified as Image Representation
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Semantic Space and Instance-Based Method, specifically Projection Method (see Fig-

ure 3). The Projection method provides insights for labeled instances from an unseen

class by projecting both the instance’s feature space and the semantic space prototype to

a shared space [4].

Most of the recent work includes two kinds of semantic spaces, namely Label-

Embedding Spaces [4, 12] and Attribute Spaces [4] (also known as Probability Predic-

tion Strategy [12]). Label-Embedding Spaces focuses on learning a projection strategy

that connects image semantic features to labels, in which labels are represented a high

dimensional embedding using Word2Vec [54] or Glove [55]. Image Features in Label-

Embedding Spaces are typically learned from Convolutional Neural Networks [13, 56,

57, 58, 59, 60]. Attribution Spaces or Probability Prediction initially focuses on pre-

training attribute classifiers based on source data [12], where an attribute is defined as a

list of terms describing various properties of given a class [4]. Each attribute forms the

dimensions of class; value is typical given if a class contains the attribute or not [61, 62,

17].

Pure Image Representation Space-based ZSL is rarely observed, one of the very

first works was to use Image Deep Representation and Fisher Vector for the ZSL Project

method [63] and an extension of this approach was used to create unsupervised domain

adaptation [64]. Zhu et al. used the partial image representation method to achieve a

universal representation for action recognition [65].
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Figure 3: Types of Semantic Space and Zero-shot Learning Methods

* The CRL model belongs to the highlighted types.

2.2 Dynamic Model Building

The CRL framework supports dynamic modeling that can generate a deep learning

model on the fly. The models generated by the deep learning community are mostly static.

Our dynamic modeling is different from existing dynamic modeling supported by online

learning researchers. We typically define that a static model is trained offline and no more

updated. In contrast, a dynamic model is trained online with updated continuously by

incorporating new data into the model. The dynamic model is created by selecting the

Class Representatives of a set of classes. The subset of classes can be done through any

given criteria, namely context-based selection criteria, random selection criteria, or asso-

ciation based. As the Class Representatives are independent of each other, the creation

of a dynamic model is done by mere selection, so there is no additional cost associated

with the model generation. The dynamic model generation is technique is similar to the

ensemble model with no learning component and no additional cost with a changing set
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Figure 4: Class Representative Learning Architecture

of chosen classes. Source S provides the environment to understand the Target T

2.3 Class Representative Learning Model

The significance of the Class Representative Learning (CRL) model is its com-

petence to project the input data to a global space that is specified by the activation of

neurons in the pre-trained model such as CNN. The space of the CRL model is similar to

the universal representation proposed by Tamaazousti et al. [66], where visual elements

in the configuration (e.g., scale, context) can be encoded universally for transfer learning.

The fundamental concept of the CRL model is its ability to represent the representatives

of class in parallel and independently without depending on other classes. Also, universal

representation allows us to integrate heterogeneous data from diverse domains or multiple

modalities to generate a model dynamically. Thus, the CRs are a basis for generating a
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new model by integrating data from different sources, platforms, and modalities.

As shown in Figure 4, the CRL model is composed of two primary components,

namely: CR Generation and CR-based Inferencing. The model used to evaluate the CRL

model is the Inception-V3 model that was pre-trained with ImageNet-1K [67]. The pre-

trained model is the Source environment for the CRL model where no learning is happen-

ing, but the Source environment was mainly used as a reference standard for producing a

feature vector of the input data in space. Figure 4a shows the Source environment (i.e.,

Pre-trained model), and Figure 4b shows the inferencing process with CRs on how a new

image is projected on the Source environment and is mapped it on to the CRs for classifi-

cation.

2.3.1 Problem Setup

Assume the given source data Ds = {xn, yn}ms
n=1 of m labeled points with a label

from the source class 1, . . . , S, where xn ∈ R is the feature of the nth image in the source

data and yn ∈ S where S = {1, . . . , Cs} is the number of source classes. The target

data Dt = {xn, yn}mt
n=1 classes where yn ∈ T. The target classes T are represented as

{Cs + 1, Cs + 2, . . . , Ct} where C total number of classes is C = S ∪ T. For each class

c ∈ S ∪ T, has a Class Representative CR(c), which is the semantic representative of

class c. Furthermore, the source label S and the target label T are considered such that

S ∩ T = ∅. [Note: For simplicity, the source and target datasets have overlapped labels,

but these overlapped classes are considered distinct.] In the CRL model, the source data

are considered as seen, and the target data are unseen. In other words, the target data are
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not used in the learning process. Table 1 summarizes all the symbols and notations used

in the CRL model.

The goal of the CRL model is that given a new test data x∗, the model will classify

it into one of the classes y∗ where y∗ ∈ C. The CRL model defines a universal problem for

a classification approach as well as a traditional Zero-Shot Learning approach as follows:

• Classification (CL) Approach : y∗ ∈ S

• Zero-Shot Learning (ZSL) Approach: y∗ ∈ S ∪ T

In both models, there are no dependencies among CRs. The difference between

these two models is in the properties of the inference. If the CR of the target set was

introduced, then it would be CL, and if both CRs of the source set and the target set are

introduced, then it would be ZSL.

2.3.2 CR Definition and Property

Definition 1: Activation Feature

Activation Feature is a feature value generated from a source model kernel for a given

input data, as shown in Equation 2.1.

a(j)nj=1 = (I ∗K)(i)

=
∑
d

I(i− d)K(d)
(2.1)

The feature value a(j) is generated from the convolution of a two-dimensional
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Table 1: Formal Symbol and Notations in the CRL model

Notation Description
Ds&Dt Source and Target Domain
ms&mt #Data Points from Source and Target, respectively
Cs&Ct #Classes from Source and Target, respectively
S&T Source and Target Label Set
C #Classes
x Feature Vector of Labeled Data Point
y Label of Data Point
j #Neurons in a Given Activation Layer

AFMs Activation Feature Map {b1, b2, . . . , bj}
CR(c) Class Representative of Class c where c ∈ C
CR(c) Class Representative Set {CR1

c , CR
2
c , . . . , CR

n
c }

x∗ Unlabeled Data Point
CRC Class Representative Classifier
CRFSn Class Representative Feature Space

n Dimensions of the CRFS

input image I with dimensions d and two-dimensional kernel K as shown in Equation 2.1

[68]. The Activation Feature is the element (also known as a single neuron) within the

resultant matrix generated from Equation 2.1. The kernelK is the combination of weights

and biases, where each matrix element in the two-dimensional has a weight w and bias

b. The activation feature value j in n dimensions can be represented as a vector like the

Activation Feature Map.

Definition 2: Activation Feature Map

Activation Feature Map (AFM) is a vector of features extracted from a base model that

will be defined by a pre-trained model for any given instance. For a given input, AFM

represents the features that are defined by the activation of neurons in the base model. The

AFM dimensionality is the number of neurons in the selected layer of the base model. In
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other words, it is the number of distinct neuron activating neurons occurring in the corpus.

The n dimensional AFM forms the basis for the Semantic Space that is defined in Zero-

Shot Learning (ZSL).

Definition 3: Class Representative

Class Representative (CR) is a representative of K instances in a single class. The Acti-

vation Feature Map of the CR is a unique characteristic pattern of visual expression that

occurs as a result of the deep learning process in Convolutional Neural Networks (CNN).

Thus, CR is an abstraction of instances of a class by computing an aggregation of the

average mean vectors of the AFM for the K instances. The CR characterizes a class and

differentiates one class against another. The Class Representatives CR(c) for Class c is

represented as {CR1
c , CR

2
c , . . . , CR

n
c } with n dimensions. Each dimension corresponds

to a separate feature. If a feature occurs in CR, its value in the vector is non-zero.

Definition 4: Class Representative Classifier

A Class Representative Classifier CRC : Id → C maps an input image space Id of

the dimension d to the Class Representative Feature Space CRFSn of the dimension n to

classify it to Class C. (CRFS is defined in Definition 5). CRC is defined as a composition

of two functions as shown in Equation 2.2.

CRC = L(S(.))

S : Id → CRFSn

L : CRFSn → C

(2.2)
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The CRC model first maps the Input Space Id to Class Representative Feature

Space CRFSn with n dimensions. CRFSn further maps into Class C. The mapping

function S represents the source environment, which aids the transformation of the in-

put data into the Feature Space. (The source environment is further discussed in Sec-

tion 2.3.2). For example, the input of a dog image with dimensions [299x299x3] is

mapped into Class Representative Space (as defined in Definition 4). Then, the CRFS

will be labeled with the class dog through the classification process [24, 69, 70].

Definition 5: Class Representative Feature Space

Class Representative Feature Space (CRFS) is a n dimensional semantic feature map

in which each of the n dimensions represents the value of a semantic property. These

properties may be categorical and contain real-valued data or models from deep learning

methods [24]. The Class Representative Feature Space represents n dimensional repre-

sentative features as a form of the Activation Feature Map (AFM).

The design of the CRFS is based on the equations defines in [71]. Given an data

point {x(1), . . . , x(k)} with each x(i) ∈ R where C is the number of classes. A set of the

mean of the base features is defined as y(i) ∈ C = S∪T. The labeled target data points can

be defined as Dt = {(x(1), y(1)), (x(2), y(2)), ..., (x(mt), y(mt))} as in Equation 2.4 where

mt is the number of data points. Note that the data points can also be defined in Ds,

that will be used in CRFS to understand both source and target domains (refer to Sec-

tion 2.3.4).
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Dt = {x(i), y(i)}mt
i=1

â(x(i)) = argmina(i)||x(i) −
∑
j

a
(i)
j bj||22 + β||a(i)||1

(2.3)

D̂t = {(â(x(i)), y(i)}mt
i=1 (2.4)

CRFS is created based on the base vectors b = {b1, b2, . . . , bs} with each bj ∈

Rn. The base vector b is generated in the source environment using Ds. The activation

a = {a(1), ..., a(k)} with each a(i) ∈ Rs forms the semantic property of CRFS. Each

dimension of an activation vector a(i)j is the transformation of input x(i)u using the base bj .

The number of bases s can be much larger than the input dimension n. The transformed

target data points D̂t will be input for the Class Representative Generation.

Since each pair of (x(i), y(i)) is independent of each other, our algorithm was de-

signed with the CRCW (Concurrent Read Concurrent Write) model which allows parallel

computing, including I/O, with the shared memory and processors. The CRL’s operation

time is proportional to the number of the selected CRs across all processors. The CR Gen-

eration will be proportional to the input set per CR independent of the number of classes

in a given dataset. The CR-based inferencing will be proportional to the number of CRs

in a given model.

2.3.3 CR Generation

Class Representatives (CR) are generated using the nearest prototype strategy by

aggregating feature vectors. The nearest mean feature vector with instances of the given

class, i.e., Class Representatives, is computed for each class. Specifically, the average
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feature mean operation was used to summarize the instances of classes. For each class, the

instances of each feature in the feature maps (e.g., 12K for a CNN layer) are aggregated

into a simple mean feature in order to create its CR. The CR is an aggregated vector of

the mean features for all the features in the feature maps.

For the Class Representative Generation, we considered the transformed Target

Dataset D̂t as the input (as shown in Equation 2.3). As we emphasis on the parallelism

and independence, we considered the individual activation vector â(x(i)) such that yi = c,

that will be used in formulating the CR as shown in Equation 2.5.

CR(c) = {CR1, CR2, ..., CRn}

CRj =
1

Nc

Nc∑
j=1

â(x(i))
(2.5)

where j ranges from 1 to n representing the feature dimensions, c is the class of

the input image, and Nc is the number of data points for the class c. Class Representa-

tive of the given class c is represented as the group of CR features values CRj where j

ranges from 1 to n feature dimensions. CRj is generated from the mean of AFM (refer

to Equation 2.3) of every input image in a given class c as shown in Equation 2.5. The

CR Generation can be conducted in parallel so that each CR of class independently can

be generated. The parallel algorithm with CRCW (as explained in Section 2.3.2) was

implemented with Spark’s broadcast variables for the CR Generation.
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2.3.4 CR Feature Space: Source and Target Mapping

The Class Representative (CR) mapping is a variation of Multi-Discriminative

Problem network [66]. This method is attempting to universalize a method that combines

different but complementary features learned on different problems. The source domain

problem is defined as the DP s in the class when the Convolution Neural Network as-

signs to the input image the label corresponding to the classes provided by the source

domain D. Similar to what is described in Pan et al. [37], we define our source and tar-

get domain based two aspects, namely Class Representative Feature Space (CRFS) and

Marginal Distribution.

Ds = CRFSs, P (CRs)

Dt = CRFSt, P (CRt)

(2.6)

As shown in Equation 2.6, the CR source domain Ds is a two-element tuple con-

sisting of Source CR Feature Space CRFSs and Probability Distribution of CR P (CRs),

where CRs is Class Representatives from the source domain. The CR target domain Dt

is also defined as a two-element tuple consisting of Target CR Feature Space CRFSt and
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Probability Distribution of CR, P (CRt), where CRt Class Representatives were gener-

ated from the target domain.

Fs(x) = P [CRs]∀CRs ∈ CRFSs

Ft(x) = P [CRt]∀CRt ∈ CRFSt

D∗ = max
x
|Fs(x)− Ft(x)|

(2.7)

As shown in Equation 2.7, Fs(x) and Ft(x) are the distribution functions based

on the probability distribution (P (CRs) and P (CRt)) for the source and target domain

CRs respectively. D∗ shows the Kolmogorov-Smirnov distance between the source CR

distribution and target CR distribution, i.e., it is computed as the max of distance between

Fs(x) and Ft(x).

We use Two-Sample Kolmogorov-Smirnov Test (KS-Test) as a simple test for

measuring the differences of the distributions of two sets, such as a sample and a reference

probability distributions. Equation 2.7 computes the distance D∗ between the medians

of the Source Distribution Fs(x) and Target Distribution Ft(x). The distance D∗ is the

indicator that would be used to measure the CR similarity between Fs(x) and Ft(x). A

larger distance D∗ yields less accurate transfer learning for the target domain.

2.3.5 CR-based Inferencing

The CR-based inferencing is a mapping between the input and Class Representa-

tives (CRs) and label it with a class. The CR-based inferencing can be done in parallel

since the CRs are independent of each other.
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cos(CR(c), NI) =
CR(c) ·NI
‖CR(c)‖ ‖NI‖

=

∑N
i=1 xi,cxi,ni√∑N

i=1 x
2
i,c

√∑N
i=1 x

2
i,ni

(2.8)

Here are the steps for the CR-based inferencing. Given a new input is vectorized in the

source environment to the Class Representative Feature Space (CRFS), NI = â(x(i)),

as shown in Equation 2.3. The cosine similarity between the new input (NI) and Class

Representatives for class c (CR(c)), where c ∈ C can be computed using Equation 2.8.

The CRL Model assigns the new input with the label associated with Class c that has the

highest cosine similarity score. The higher cosine similarity score indicates the closeness

between the Class Representative CR(c) and the new input (NI) in the Class Represen-

tative Feature Space (CRFS).

ĉ = argmax
c∈C
{cos(CR(c), NI)} (2.9)

As shown in Equation 2.9, the label for the new input from CRL Model ĉ is pre-

dicted by selecting the class from all classes C that has the highest cosine similarity to the

new input. The CRL model will conduct inferencing by matching the new input against

the available CRs and label it with a class having the highest cosine similarity score.

2.4 CR Graph: Relationships between Class Representatives

The Class Representative Graph is a Graphical Representation of the Domain-

based on CR-to-CR Similarity. The CR Graph is introduced to demonstrate the ability of
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Figure 5: CR-Graph in CIFAR-100

Table 2: Class Representative Relationships in CIFAR-100

Baby Boy Girl Man Woman CSg Ac

Baby 1 0.95 0.95 0.91 0.92 0.918 46.5%
Boy 0.95 1 0.98 0.96 0.95 0.938 36.9%
Girl 0.95 0.98 1 0.95 0.97 0.94 25.7%
Man 0.91 0.96 0.95 1 0.95 0.754 51.6%

Woman 0.92 0.95 0.97 0.95 1 0.758 51%

the CRL model to understand the Target Domain’s Semantics. The CR Graph showcases

excellent performing classes as well as wrong performing classes. In recent years, graph

representation for image data has been used to identify mislabeled data [72], to create

a community to improve classification [73] or to create a state-based ZSL Model [58].

Visual Trees are also used for hierarchical classification [74]. In this work, the goal of

CR-Graph brings insights within domain-based individually as well as a group.
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Definition 6: CR Graph

Class Representative Graph is defined as a graph CR Graph formed with nodes are classes

(hosting Class Representatives with them), and the association between the Classes form

the edges. A CR Graph Gc is defined as a set of vertex V and edges E, i.e., Gc(V , E).

The vertex V in Gc represents a class that is highly similar to other classes (thus, it is

called confusion class), and the accuracy of the confusion class is lower than the overall

accuracy of the model. The percentage of P in red is the classification accuracy of each

class atGc. The edge E represents the cosine similarity CS between two classes (Ci, Cj).

Definition 7: CR Community

Class Representative Community is defined as the neighborhood CRCom in CR Graph

of a given class c. CRCom is a set of CRs containing the members (i.e. classes) that are

similar to each other forming a community. The community can be represented in the CR

Graph that was introduced in our previous work [75]. In addition, the measurement degree

of similarity is extended to find the relationships between CRs within the community or

across the communities and estimate the accuracy performance of the CRL model.

The cosine similarity CSi of all edges E in the CR Graph Gc is bigger than the

threshold (δ), i.e., CS(Ci, Cj) > δ. Figure 5 shows the CR Graph Gc with the threshold δ

= 0.85. Each edge E is bi-directed since the cosine similarity between any two confusion

classes is symmetric, CS (Ci, Cj) = CS(Cj , Ci). Figure 5 shows a CR Graph, which

represents a CR Community including baby, boy, girl, man, and woman that are confusion

classes randomly selected from the CIFAR-100 dataset.
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The group cosine similarity of class C is computed as follows:

GCS(C) =

∑
iCS(Ci)

K
(2.10)

where K is the number of the confusion classes excluding self in the CR Graph Gc. In

Figure 5, the total number of confusion classes is 6 and the number of the neighbor-

hood classes for girl K = 6 - 1 = 5. The group cosine similarity of girl is CSg(girl)

= (0.95+0.98+0.95+0.97+0.85)
5

= 0.94. The accuracy of the girl class (Agirl = 25.7%). The

CSg(girl) is the highest similarity while its accuracy Agirl is the lowest accuracy. The

group cosine similarity of baby is CSg(baby) = (0.95+0.95+0.91+0.92+0.86)
5

= 0.91846 while

the accuracy is Ababy = 46.5%.

Definition 8: Class Representative Superstar

Class Representative Superstar (CR-SS) is a class with the CR having a high individual

accuracy as well as being less confused with other classes. CR-SS contributes to high

performance in classification; unlike Troublemaker, especially they are less similar to

other CRs in the CR Graph.

CR− SS(ci) = CSg(ci) ≤ αg & A(ci) ≥ δd (2.11)

Definition 9: Class Representative Troublemaker

Class Representative Troublemaker (CR-TM) is a class with the CR having a low individ-

ual accuracy as well as being highly confused with other classes. Troublemaker causes

low performance in classification, especially due to the high similarity with other CRs in
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the CR Graph. Let us define ci ∈ C, αg is the threshold of cosine similarity of the group

(g), and δd is an average accuracy of the domain (d).

CR− TM(ci) = CSg(ci) > αg & A(ci) < δd (2.12)

The accuracy of these classes in this CR Graph is lower than the overall accuracy

of the dataset (for example, CIFAR-100, 58%). The group cosine similarity of class

CSg(C) is inversely related to its accuracy (Ac). As shown in Table 2, the candidates

for the confusion classes include boy, girl, man, and woman. They meet the condition for

confusion classes. Thus, the confusion classes of baby include boy, girl, man, and woman.

The CS threshold (αg) is set as αg (for example, αg is defined 0.9 through experiments).

2.5 Implementation and Experimental Design

The experiments on the Class Representative Learning (CRL) model have been

conducted on ImageNet-1K as a source domain and CIFAR-100, CalTech-101, and CalTech-

256 as a target domain. The source environment, i.e. the pre-trained model from the

source dataset (ImageNet-1K), with three different deep learning networks, such as Inception-

V3 [76], ResNet-101 [77], and VGG-19 [78].
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2.5.1 Implementation

2.5.1.1 System and Library Specifications

The Feature extraction was implemented on a single GPU, which is Nvidia GeForce

GTX 1080 (with 12GB GDDR5X RAM) on MATLAB 2018b version. The CR Gener-

ation and CR-based Inferencing were implemented using Spark 2.4.3 version [79]. The

parallel and batch process was conducted through RDD based parallelism on a single

CPU with 4GHz Intel Core i7-6700K (quad-core, 8MB cache, up to 4.2GHz with Turbo

Boost) and 32GB DDR4 RAM (2,133MHz) (i.e., local parallelism of 4 cores).

2.5.1.2 Models Specification

As described in Section 2.3.2, the source environment provides the feature space

for the CRL model. The Inception-V3 model was predominantly used as the source en-

vironment (pre-trained with ImageNet-1K) for the CRL experiments. The Inception-V3

model was obtained from MATLAB’s Pre-trained Deep Neural Networks [80]. The layer

information of the Inception-V3 model is shown in Figure 6. The feature extraction has

been conducted class by class as a form of parallel processing to build a CR for each

class. For some experiments, ResNet-101 and VGG-19 extracted from MATLAB were

also used as our source environments. The last convolution layer from the source envi-

ronments was considered for Feature Extraction. The CR Generation was implemented

in parallel with Spark’s Resilient Distributed Datasets (RDDs), which is a collection of

features partitioned across the nodes of the cluster. The batch in this context was de-

fined while keeping CR independence of each class for the CR Generation and CR-based
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Inference.
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2.5.2 Datasets

We have conducted the experiments with the CRL model using four datasets ac-

cording to the three transfer learning types defined in Day et al. [81], i.e., Homoge-

neous Transfer Learning (HOTL), Heterogeneous Transfer Learning (HETL), and Neg-

ative Transfer Learning (NTL). The four datasets include ImageNet-1K, CalTech-101,

CalTech-256, and CIFAR-100 (as shown in Table 3). Figure 7 shows the four datasets

that were used for the CRL’s transfer learning [82].

The source environment is built on the ImageNet-1K dataset that is the Homo-

geneous Transfer Learning (HOTL) type (the same label set and the same attributes).

The transfer learning with CalTech-101 and CalTech-256 are the Heterogeneous Transfer

Learning (HETL) type, which was projected on the semantic space of the source domain

with minimal distinction classes. The transfer learning with CIFAR-100 is the Negative

Transfer Learning (NTL) type since the target domain data are projected on the semantic

space that is quite distinct from the source domain. Although the CIFAR-100 is semanti-

cally relevant to other datasets, the CRL space of CIFAR-100 is divergent from the source

space in terms of image modality, such as image quality and image size. The size of

CIFAR-100 images is [32x32] while one of the source domain ImageNet-1K [400x400].

More specifically, the dimension of the source environment of Inception-V3 is [299x299].

In the experiment section, the details on the performance of these different transfer learn-

ing types will be discussed.
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Figure 7: t-SNE Visualization of Class Representatives[82]

Table 3: Benchmark Datasets

Domain Dataset #Class #Image Image Size
Source ImageNet-1K 1000 1,281,167 400x400

Target
CalTech-101 101 8,677 300x300
CalTech-256 256 30,608 300x300
CIFAR-100 100 59,917 32x32

2.5.3 Experiments for Transfer Learning Performance

Transfer Learning Performance in terms of Accuracy and Time or Space Re-

quirements: state-of-the-art Transfer Learning vs. CR-based Classification with different

datasets (CalTech-101, CalTech-256, ImageNet-1K, ImageNet-20K, CIFAR-100).
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CalTech-101 CalTech-256

CIFAR-100 ImageNet-1K

Figure 8: Benchmark Datasets: CalTech-101 & CalTech-256 & CIFAR-100 & ImageNet-
1K
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• Case 1: Source Domain (S): ImageNet-1K, Target Domain (T): CalTech-101 or

CalTech-256: The distance between the medians of both domains, SD and TD, is

very small (i.e., D∗ ≤ 0.05). In this case, the classification with the class represen-

tatives (CV), which are generated from the pre-trained model in SD with small data

in TD, are as effective as the state-of-the-art models.

• Case 2: Source Domain (S): ImageNet-1K, Target Domain (T): CIFAR-100: The

distance between the medians of both domains,S and TD, is very big (i.e., D∗ ≥

0.3) as well as the size of the data in TD is small.

Two-Sample Kolmogorov-Smirnov Test is used to determine whether the instances of any

given class are distributed within a class. The class distribution would also be applied to

determine if there are any data issues such as data labeling errors or noise data. Thus,

we could estimate the class accuracy using the class distribution model even before the

training. Figure 9 and Table 4 shows the KS-Test results between the distribution of the

source and target datasets. If the KS-Test value is high, then the source model may not be

suitable for the target domain.

Figure 9 demonstrates the similarity distribution in the feature space of the source

and target datasets as well as their accuracy distributions. Accuracy distribution repre-

sents the histogram of class accuracy in a given dataset while using CR based classifi-

cation. Cosine similarity distribution represents the cosine similarity between a CR Pair.

Higher cosine similarity means the similarity between CRs is high. The cosine similarity

distribution is using to compare the source dataset to the target dataset. The compari-

son between CIFAR-100 and ImageNet-1K has the highest KS-Test value among the four
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different datasets.

The CRL model is used to understand the distribution of datasets and their per-

formance. It also showcased the overall group cosine similarity (refer to Section 2.4 and

Equation 2.10). Table 5 shows the CR distribution statistics for the source and target do-

mains in terms of their accuracy and group cosine similarity (GCS). The results based on

the CR-Inception-V3 as seen from Table 5 are consistent with Figure 7, t-SNE Visualiza-

tion shows that CalTech-101 and CalTech-256 are overlapped with ImageNet-1K (source

domain), while CIFAR-100 is in a long distance from the source domain. The CalTech-

101 shows the best mean accuracy and low cosine similarity. However, CIFAR-100 is

limited by low mean accuracy and high cosine similarity. For the CIFAR-100 dataset,

the accuracy of 57.9% is the least, and the group cosine similarity of 0.74 is the highest

compared to the ones for all other datasets. The salient reason for the low accuracy of the

CIFAR-100 dataset is mainly due to high cosine similarity and a huge distance from the

source domain. In summary, among the four datasets, CIFAR-100 performs the worst,

and CalTech-101 performs the best.

2.5.4 Classification Performance with Benchmark Datasets

In this chapter, the CRL model has been validated in terms of CR Feature Exaction

and CR Generation as follows: i) Feature extraction in terms of CNN Network models

(Inception-V3, ResNet-101) and CNN layers, ii) Feature representation and optimization

such as (12K vs. 3K feature vector) and the number of training images (20, 30, 60, 100,

and All). For most of the evaluation, CR-Inception-V3 version was considered.
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2.5.4.1 Results for Architecture Selection in Feature Extraction

The CRs are mainly dependent on the quality of the features extracted from the

pre-trained CNN model. The two popular pre-trained models such as Inception-V3 [76]

and ResNet-101 [77] were used as the CR source environments and their performance

was compared in Table 6. We also evaluated to select the most suitable layer in these

pre-trained models. For both the pre-trained models, we compared CRL with the original

accuracy, as shown in the state-of-the-art approaches [76, 77, 83, 84, 85].

The accuracy for the datasets reported here is for the Top-1 accuracy of the model.

Comparing the CRL model to the original model, it was observed that CalTech-101 has an

increase of 1.56% in both the models. There was a significant decrease in the accuracy of

The CIFAR-100 for both the models. This is likely due to the greater distance in a seman-

tic space between the source domain (ImageNet-1K) and the target domain (CIFAR-100),

as discussed in Section2.5.2. In the end, for the overall comparison of the models, the

accuracies of the Homogeneous Transfer Learning (HTL) in Inception-V3 are better than

the ones in ResNet-101. This comparison leads to the use of Inception-V3 as the source

environment of the CRL model.
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Figure 9: Accuracy Distribution and Cosine Similarity Distribution
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2.5.4.2 Results for Layer Selection in Feature Extraction

From Inception-V3, the most suitable layer for the Feature Extraction was iden-

tified by the layer-wise experiment. As shown in Table 7, the accuracy evaluation was

conducted with the models built using the features from the selected layer. For this com-

parison, the twelve layers (including ten different convolution layers, final concatenated

convolution layer, and final average pooling layer) were considered. These layers are

indexed, as shown in Figure 6.

The best layer was determined in terms of the feature size and the accuracy of

the model. Table 7 shows the feature size, flatten feature size, and accuracy. For this

evaluation, comparable datasets are considered to evaluate the effectiveness of the CR-

based classification. The Homogeneous Transfer Learning (HTL) was used to conduct

non-biased feature analysis and layer selection. Layer 10 (conv2d-94) shows the best

accuracy in CalTech-101, while Layer 12 (AvgPool) shows the best accuracy in CalTech-

256. For the flatten feature size, the feature set of Layer 10 shows the highest accuracy

compare to other layers.

2.5.4.3 Results from Feature Reduction

Once the CR feature map is generated, the CRL model might be required to com-

press it for mobile deployment. In this chapter, we have applied three different sampling

techniques for the model compression: (1) Max Pooling, (2) Average Pooling, and (3)

Min Pooling. The Max Pooling is a sample-based discretization technique that is widely

used in Deep Learning. The objective of the Max Pooling is to reduce the feature map’s
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dimensionality by applying the max operation to features contained in the sub-regions of

the feature map. The initial input of the CR feature map, such asX ∗X matrix (e.g., 8*8),

will produce to Y ∗ Y matrix (e.g., 4*4) using a Z*Z filter (e.g., 2*2). A stride of S (e.g.,

2) controls how the filter operates around the input matrix by shifting S units at a time

without any overlap regions.

For each of the regions represented by the filter, the max of that region is computed

to create the output feature map, in which each element is the max of a region in the

original input. The Average Pooling and Min Pooling are very similar to the Max Pooling;

the only difference is to utilize a different operation such as average and min operations

for the feature map reduction.

Table 7: Inception-V3 Layerwise Accuracy on Similar Domain Datasets

Num Layer Filter Size Activation
Shape

Activation
Size

CalTech-
101

CalTech-
256

1 conv2d 10 3x3x64 35x35x96 117601 59.9% 24.0%
2 conv2d 20 1x1x288 35x35x64 78401 52.7% 23.7%
3 conv2d 30 3x3x96 17x17x96 27745 71.3% 32.0%
4 conv2d 40 1x1x768 17x17x192 55489 79.0% 44.1%
5 conv2d 50 1x1x768 17x17x192 55489 79.7% 47.1%
6 conv2d 60 1x1x768 17x17x192 55489 83.8% 52.2%
7 conv2d 70 1x1x768 17x17x192 55489 81.1% 49.5%
8 conv2d 80 3x1x384 8x8x384 24577 93.3% 74.2%
9 conv2d 90 1x1x2048 8x8x448 28673 85.3% 62.1%

10 conv2d 94 1x1x2048 8x8x192 12289 94.4% 78.2%
11 mixed10 - 8x8x2048 131073 91.9% 77.9%
12 avg-pool 8x8 [pool-

ing]
1x1x2048 2049 90.0% 79.1%
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Considering the feature size of the Layer 10 in Inception-V3, we evaluate by re-

ducing the dimensions using standard reduction techniques, namely minimum pooling

(MinPool), maximum pooling (MaxPool), and average pooling (AvgPool). The pooling

in CBL was implemented on the [8x8,192] feature vector (Layer 10) with the filter size

of 2x2 transforming into [4x4,192]. In CR-Inception-V3C, we applied AvgPool with a

filter size [2x2] to the feature map of [8x8x192] extracted from Layer 10 and obtained

the reduced feature map of [4x4x192]. As shown in Figure 14, the average pooling layer

reduction is applied to the post-processing of CR-Generation. The same filter size was

used for MaxPool and MinPool.

Table 8 shows the accuracy for CR-Inception-V3C by using the filter size based

on the three pooling techniques. Based on the analysis with all of the datasets, CR-

Inception-AvgPool showed the accuracy drop with an average of 1% in Top-1 accuracy

when comparing with 12K or the original Layer 10 Accuracy. The interesting observation

through this evaluation was the 12K CRL model’s Top-5 Accuracy outperformed on all

datasets compared with other available models.
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CalTech-101: Images, Accuracy, CR Graph

CalTech-256: Images, Accuracy, CR Graph

Figure 10: Dynamic Models: CalTech-101 & CalTech-256
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CIFAR-100: Images, Accuracy, CR Graph

ImageNet: Images, Accuracy, CR Graph

Figure 11: Dynamic Models: CIFAR-100 and ImageNet-1K
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Figure 12: Dynamic Model: Mixed 4 Datasets - ImageNet, CalTech-101, CalTech-256,
CIFAR-100
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Figure 13: Accuracy with Increasing Class# in Dynamic Models

Figure 14: Reduction using Average Pooling
8X8 sized 192 channels [8x8x192] are reduced to 4x4 sized 192 channels [4x4x192]
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2.5.4.4 Results from Data Imbalance Experiments

Most of the deep learning suffered from the data imbalance problem. Our exper-

iments show that CRL is not sensitive to the data imbalance issue. Since CalTech-101

and CalTech-256 are imbalanced datasets, we have conducted experiments to show their

classification performance is independent of the number of input.

In order to analyze the imbalanced data issue in the CRL model, we have evaluated

the CR Generation with a varying number of images and accuracy. Table 9 shows the CR

Generation accuracy for the image sets of 20, 30, 60, 100, and all. All represented in

the training dataset (i.e., 70%) for any given class. The results show that the accuracy of

CR-based classification does not vary significantly for a varying number of images. This

effect is clearly shown with the imbalanced datasets such as CalTech-101 and CalTech-

256. For example, CalTech-101, Class airplanes have 560 images with a class accuracy

of 97.9% while camera has 35 images with a class accuracy of 96.8%. This indicates

that the image imbalance problem does not affect the classification accuracy in the CRL

model.

Table 9: Image Classification Accuracy for an Increasing Image#

Dataset Image Count & Accuracy
20 30 60 100 All

ImageNet-1K 69.5% 70.9% 72.5% 73.0% 73.9%
CalTech-101 91.9% 93.5% 93.6% 93.8% 93.9%
CalTech-256 74.4% 75.8% 77.3% 77.8% 77.9%
CIFAR-100 50.9% 53.4% 55.9% 56.8% 57.9%
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2.5.5 Dynamic Models

For evaluating the functionality of dynamic modeling that is capable of the class

representative is demonstrated by a random selection of 10 classes from the four datasets

separately, and 10 classes selection from four datasets combined, as shown in Figure 10-

13 (refer to Section 2.2). Table 10 shows the random selection of classes from 10 to 100

from different individual datasets and all together.

Table 10: Dynamic Model Accuracy (Random Generation)

#Class CIFAR-100 CalTech-101 CalTech-256 ImageNet-1K Mixed Models
(4 Datasets)

10 79.3% 99.7% 93.6% 95.8% 95.9%
20 79.7% 97.9% 90.0% 95.9% 96.3%
30 74.1% 95.9% 90.9% 94.6% 96.1%
40 63.9% 95.3% 90.6% 93.6% 89.6%
50 69.5% 95.6% 84.3% 91.3% 92.7%
60 66.2% 95.9% 87.7% 91.9% 91.0%
70 61.5% 95.4% 87.8% 92.7% 91.1%
80 60.9% 94.1% 87.0% 91.3% 92.1%
90 58.1% 94.0% 84.1% 92.0% 91.2%

100 58.0% 93.4% 85.4% 87.6% 90.1%

2.5.6 Model Performance Comparison

The CRL model’s performance is evaluated by comparing with Inception-V3 pre-

trained model retrained with the target domain. The CRL model’s performance is calcu-

lated based on AFM Generation Time (refer to Section 2.3.2), CR-based Inference Time

(refer to Section 2.3.5) and CR Model Generation Time (refer to Section 2.3.3).

Table 11 shows the comparison of the CRL model’s overall time vs. the time
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taken for retraining the dataset using the Inception-V3 pre-trained model. The pre-trained

model was run on the same system specification as the CRL model. Pre-training of the

Inception-V3 Model was stopped at a reported number of epochs as the time taken was

significantly higher than that of the CRL model. The CRL model with three datasets,

(CalTech-101, CalTech-256, and CIFAR-100) have an average of 99% time reduction that

is a significantly reduced time compared with that for the original Inception-V3 model.

Within the same time window and based on the same pre-trained model, the Inception-V3

model performance has not reached the accuracy published in [33]. The CRL model’s

overall time shows genuinely outstanding performances in the target domains, even if the

models never learned from the target domain.
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2.5.7 Comparison with Lightweight Classification Models

The two CRL models, namely CR-Inception-V3 [based on 12K Layer 10] (refer to

Figure 6) and CR-Inception-V3C [based on AvgPool] (refer to Figure 14) were considered

for evaluation. The CRL models are compared with the state-of-the-art mobile Deep

Learning models such as Mobile-Net-v1 [45], Mobile-Net-v2 [21] and NasNet-Mobile

[22]. The Inception-V3 Model accuracy is also compared as the CRL model is based on

Inception-V3 (refer to Section 2.5.4). The state-of-the-art accuracies shown in 12 were

based on the work by Kornblith et al. [33]. Another work by Kornblith et al. [86] was

based on the performance of checkpoints from TensorFlow-Slim repository.

The following a brief review of Light-Weight Classification models that are com-

pared with CRL.

• MobileNet-v1 MobileNet-v1 is one of pioneer work in light-weight convolution

neural network. An efficient low latency model is achieved using Depthwise Con-

volution Filters [45]

• MobileNet-v2 MobileNet-v2 is extention of MobileNet-v1, they improve light-

weight model using inverted residual module with linear bottleneck. MobielNet-v2

1.4 is a version with neural network image input size of 224x224 and multipliers

set to 1.4 [21].

• NASNet-A-Mobile NASNet is Convolution Neural Network where the Semantic

Space is transfered from smaller dataset to bigger dataset using a Reinforcement

Learning Search Method called Neural Architecture Search (NAS) [22].
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The comparison between the mobile models and CRL is conducted in terms of the

computational cost, model size, and accuracy. The computation cost is usually defined

based on floating-point operations (FLOPs) and parameters. The FLOPs of the CRL

model are less than the one for prediction with the base model, i.e., Inception-V3. As

shown in Table 12, the number of parameters for the CRL model is Nil as there is no

traditional learning component in the CRL model. The CRL model’s computational cost

outperforms all the other models.

The CRL model’s size is given based on the size of each CRL of class. The

significant difference between the traditional deep learning model and the CRL model

is that the model size is dependent on the number of classes rather than the number of

layers or size of the layer. The size as listed in Table 12, includes two parts the size of the

pre-trained model plus the per CR per class size, i.e., 0.15MB for CR-Inception-V3 and

0.06MB for CR-Inception-V3C.

In Table 12, the two CRL models were compared with other mobile models. These

models outperform the existing mobile models. Also, these models perform better than

the original Inception model with CalTech-101 and CalTech-256 datasets. Their perfor-

mances are reasonably comparable to the original ones with ImageNet-1K Dataset. How-

ever, the CRL models do not perform well on the CIFAR-100 Dataset. Overall, the CRL

models are better than state-of-the-art mobile models if the target domains are similar to

the source models. Otherwise, as seen from the CIFAR-100 model, the performance did

not meet expectations. It is because there is a considerable gap between the source and

target domains, and this gap may result from the lack of learning in the target domain.
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This result confirms that the CRL model can be used to validate the distribution

of data in terms of dissimilarities and similarities of CRs. The classification accuracy can

be estimated based on the CR distribution model. Furthermore, outliers of data can be

normalized, or mislabeled images can be detected with a CR.
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2.5.8 Comparison with Zero-Shot Learning Algorithms

In this section, we evaluate the CRL model using three different evaluations;

Recognition Task-based Accuracy, Accuracy with an increasing number of instances of

the unseen dataset, and comparison with state-of-the-art Zero-Shot Learning (ZSL) ap-

proach. For this section, we consider two versions of the CRL model; (i) Inception-

V3 based and (ii) VGG-19 based model. In Table 13, the performance of Inception-V3

model-based CRL (CR-Inception-V3) in the ZSL perspectives was presented.

The CRL model is capable of recognizing the target labels (unseen data) without

having the source labels (seen data) as an option. This shows the advantage and ability as

a classification model (see Section 2.5.7). Table 14 shows two versions of the recognition

tasks with testing data from target set (T); T ⇒ T when the testing label could be only

from the target set y∗ ∈ T and T ⇒ S ∪ T when the testing label could be from both

the source set and target set y∗ ∈ S ∪ T. For this experiment, we consider all instances

(70% of the dataset) from the dataset to generate CRs. The increase in the number of

labels in the dataset was compared with the accuracy. There were significant drops when

the source set was also considered. The interesting observation is that the Heterogeneous

Domain (HD) such as CIFAR-100 does not have a significant drop in accuracy, which

makes sense, as CIFAR-100’s CR space does not overlap with ImageNet-1K’s CR space

(see Figure 7).

Table 13 shows the performance of CR-Inception-V3 with one image from each

class to ten images from each class. For this experiment, we considered only (T ⇒ T)

setting. The interesting to see that the CRL model with just ten images from each class all
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the dataset Top-1 accuracy reach more than 75% of accuracy achieved when all instances

are used.

Table 13: CR-Inception-V3 Accuracy with
Increasing Target Instances (#Ins.)

#Ins.
CalTech-101 CalTech-256 CIFAR-100 ImageNet-1K
T-1 T-5 T-1 T-5 T-1 T-5 T-1 T-5

1 70.2 83.4 41.4 54.8 20 38 32.5 50.1
2 79.2 92.3 51.7 66.7 25.5 52.2 44 64.9
3 85.3 95.2 56.5 72.1 30.3 56.9 50.9 72.3
4 85.6 96.7 61.5 77.1 36 62.9 54.9 76.2
5 86.8 97 63.6 78 38 66.7 58.1 79
6 87 97.6 65.1 79.4 40.9 69.5 60.3 81.2
7 89.4 97.7 67.2 82.2 42.4 70.8 61.3 82.2
8 90.7 98 68.2 82.4 44.6 73.6 63.4 83.6
9 90.8 97.9 69.8 83.8 44.8 74.1 64.6 84.6

10 91.2 98.2 70 84.4 45.8 75.4 65.4 85.2
all 93.9 99.1 77.8 92.4 57.9 90.5 73.9 93.3

2.5.9 Results for Class Representative Graphs

Figure 15 shows the CR Graphs that are composed of class representatives (CRs)

as well as their relationships in a given domain. In these CR Graphs, the nodes represent

CRs, and the edges (CR-to-CR) are the relationship between two CR. The CR graph is

undirected, as there is a symmetric relation between the source and target CRs that the

similarity from the source CR to the target CR is equal to one from the target CR to the

source CR. The attributes of the class are represented in the following manner; the node

size indicates the number of images, and the node color indicates the CR accuracy. The
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Table 14: Accuracy for CR-Inception-V3
Zero-Shot Learning Tasks

Dataset
Recognition Task Accuracy

Accuracy T⇒ T T⇒ S ∪ T

CalTech-101
Top 1 93.9% 87.4%
Top 5 99.1% 97.5%

CalTech-256
Top 1 77.8% 40.9%
Top 5 92.4% 54.9%

CIFAR-100
Top 1 57.9% 57.4%
Top 5 90.5% 83.4%

color schema for nodes is relatively simple: red is bad, white is marginal, green is super

high. The CR-to-CR similarity is represented as the edge color and Silhouette Width.

Similar to the node color, the edge color represents the CR-to-CR similarity; brown is

similar while white is not similar.

Through the CR Graph, we now explain the reason why the target domain, i.e.,

ImageNet-1K, does not perform well even if it is the same with the source domain ImageNet-

1K Pre-trained Inception-V3, compared to the state-of-the-art accuracy (as shown in Ta-

ble 12). As mentioned previously, the red nodes are the troublemaker, and the green nodes

are the Superstar (see Section 2.4). The Superstars and Troublemakers show a visible pat-

tern on their edge density. Troublemakers show very high edge density while Superstars

show lower edge density in the CR Graph of ImageNet-1K.

Silhouette Width (SW) was used to validate the consistency within clusters of data.

Specifically, the SW measurement was useful in the CR validation in terms of two aspects:

(i) how well each CR is modeled within a domain (dataset) or (ii) how well each instance
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is labeled within a CR (class). The SW value is a measure to check how similar an object

is grouped to its own CR (cohesion) against other CRs (separation). The computation is

based on Euclidean distance, and the range of these SW values is from −1 to +1. A high

value indicates that the CR is well defined. In other words, the members are well-matched

together while they are not matched to the ones in neighboring CRs.

Tables 15- 16 shows the statistics of the four CR Graphs showing in Figure 15. The

Troublemakers’ SW mean for all the datasets have a negative value. This indicates that

there are significant similarities between the instances of the Troublemakers. Similarly,

the Superstars show the positive SW value means, and this signifies how well the data fit

the CR model.
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(a) CalTech-101 (b) CalTech-256

(c) CIFAR-100 (d) ImageNet-1K

Figure 15: Class Representative Graphs

2.6 Discussion

The limitations of the CRL model are that a source environment (except the fully

connect layers) is still required for generating a feature map for any input in the testing.

The size of the source environment may be too big to fit in low-end devices like a mobile

devices. In our research, we can provide a cloud service for the feature map generation

as a basic interface, such as Application Programming Interfaces (APIs) for lightweight

mobile applications.
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The Class Representative (CR) generation was obtained by extracting the abstrac-

tion of the distribution of each feature in the Class Representative Feature Space (CRFS)

of an input image. For the purpose, we used a simple average mean approach. Thus, a CR

can be sensitive to outliers and sample size bias of the CRFS. The CRL model was ex-

tremely strong at the Top-5 inferencing compared to Top-1 inferencing (see Table 8). The

CR computation might not be accurate due to bias or unexpected outliers. This indicates

that the high similarity between some CRs can lead to misclassification. To overcome

the limitation of the CR Generation, We will explore an advanced optical model such as

Fisher Vector and Gaussian-Mixture-Model. We also can use unsupervised deep learning

techniques such as the autoencoder in learning efficient data codings to reduce the CR’s

Feature Space to a more optimal representation. We can further extend it to determine the

common and unique features of the CR vectors and find the weights that maximize the

uniqueness between CRs.

The CRL inferences based on the simple similarity matching are subject to some

limitations. We are currently using cosine similarity between CRs and an input image

vector. It is possible that further fine tuning of the CRL inferencing for complex classi-

fiers (e.g., very large CRs or multi-domain/modality CRs) could have improved predictive

performance. The CR space could be simplified by applying reduction techniques (PCA

or t-SNE). The improvements are to develop attention vectors or semantic CR model such

as a hierarchy of CRs. The CR Graph possess an ability to help an inference process by

using the CR Community.

The CRL model has a potential extension to have the open set recognition with
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T >> S, in this chapter, we show dataset with 0.278 openness factor [88]. The potential

extension includes validating the CRL model using the metric for Generalised Zero-Shot

Learning proposed in Xian et al. [89].

2.7 Conclusion

We presented the Class Representative Learning (CRL) model that is composed

of class-level classifiers built by utilizing activation features of Convolutional Neural Net-

work for classification problems. The CRL model has the ability to generate the CRs one

by one through the aggregation of CNN activation features and inference by matching a

new input to the CRs. Due to the independence of CRs, we could dynamically gener-

ate and utilize classifiers for image classification problems. We also represented the CR

Graph with the CR accuracy and the relationships of CRs and interpreted a model perfor-

mance by identifying good and bad performers correspond to classification performance

as well as the similarity between CRs. We have conducted a comprehensive evaluation of

the CRL model using the four benchmark datasets. We have shown the capacity of the pro-

posed algorithm for the model generation by dynamically composing selected CRs. The

accuracy of the classes in these models are significantly improved compared to ones in

their original model. Excellent scalability of our dynamic models is shown for a increas-

ing class# in a model.The CRL model outperformed state-of-the-art Zero-Shot Learning

(ZSL) in terms of learning time and accuracy. It also showed improved performance com-

pared to the existing MobileNet models for image classification. The work presented in

this chapter was published as part of Chandrashekar et al.[90].
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CHAPTER 3

CLASS REPRESENTATIVES FOR ZERO-SHOT LEARNING USING PURELY

VISUAL DATA

3.1 Introduction

Deep learning technologies have received significant attention for large-scale im-

age classification in the area of computer vision. The substantial requirements for such

image classification tasks are the availability of a large amount of labeled data. Besides

the limited amount of labeled data for supervised learning, we face severe challenges in

applying image classification models to real-world problems, such as a lack of effectively

transferring knowledge from one domain to another, or the effective adaption for newly

generated data daily. There is a strong need for systematic image classification that sup-

ports active transfer learning and scalable solutions for real-world applications.

Recent efforts are focused on developing zero-shot learning (ZSL) or few-shot

learning (FSL) that aims to handle the challenges of the real-world applications of image

classification. ZSL aims to recognize instances from unseen or unknown (target) cat-

egories by using external linguistic or semantic information through intermediate-level

semantic representations from seen or known (source) categories [61, 91, 62]. Rapid

growth in recent years leads to the development of innovative methods in ZSL [4] and

FSL [7, 8]. These studies focus on effective transfer learning by fully leveraging informa-

tion from pre-trained models. The central idea behind these studies is to link known and
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unknown classes through auxiliary information and visually distinguish them [89, 92]. It

will allow them to learn from a few examples or even without seeing them. Alternatively,

it is required to represent each of the new instances to match them on a semantic space,

which minimizes training efforts and maximizes learning outcomes [9, 10, 11].

The ZSL works demonstrated their effectiveness in transferring from prior expe-

riences to new classes. The semantic space model used in one of the most popular ZSL

approaches is a joint embedding framework, called label-embedding space [4, 12], or

based on attribute space [13]. Label-embedding space is based on a combination of visual

embeddings and word embeddings, while attribute space is based on attribute annotations

for the ZSL model. Such external or auxiliary information is used as a form of combining

two or more sources of data, e.g., image features + word embedding, image features +

attribute information, or image features + ontologies.

This chapter proposes a novel zero-shot learning model, called class representa-

tive learning (CRL), which builds class prototypes from image instances for each class

and defines them as class representatives (CRs). The class prototypes for source and tar-

get domains will be generated using the features extracted using a projection function

with typically a convolution neural network trained in the source (seen) domain. CRs are

a universal representative of the classes in the source and target domains that aims for

the effective transfer learning from the source domain to the target domain. This study

demonstrates the usefulness of the CRL novel approach based on the universal representa-

tives for transfer learning in image classification, with significantly improved performance

for ZSL and G-ZSL problems.
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The class representative learning (CRL) model can be categorized as a Class-

Inductive Instance-Inductive projection method (as defined in [4]). In the training phase

for the seen classes, the feature learning model is built from the training instances. Dur-

ing the testing phase for the unseen classes, both unseen and seen prototypes are projected

into the same space, based on learned models. This study adopts the evaluation methods

defined in Xian et al. [92, 89], but extends it to the seen classes built from the fea-

ture extraction learning from ImageNet dataset [67]. The performance of the generalized

zero-shot learning (G-ZSL) algorithm was validated with the harmonic mean of seen and

unseen classification performance [89, 92].

CRL is similar to the generative model in building a prototype class by class,

using a class representative criterion [93, 48]. However, they are different since the CR

generation is not based on probabilistic, but based on the generalized mean of aggregated

features. For the classification step, a standard projection approach is used to compare the

prototypes with each other. Compared to existing ZSL algorithms, CRL is required sorely

visual data, rather than both visual data and auxiliary information. Still, higher accuracy

can be achieved compared to the state-of-the-art research in ZSL and G-ZSL.

The contributions of this chapter can be summarized as follows:

• Proposing the CRL model as an efficient way of building class-level classifiers by

fully utilizing the features from a pre-trained Convolutional Neural Network (CNN)

with purely visual data;

• Designing a universal representation, called class representative feature space (CRFS),

for source and target classes that can be applied to multiple cross domains;
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• Applying the CRL model to ZSL and G-ZSL problems;

• Designing the parallel ZSL and G-ZSL algorithms based on CRL;

• Through extensive evaluations, the proposed CRL model shows significant perfor-

mance gain compared to the state-of-the-art research in ZSL and G-ZSL.

3.2 Related Work

3.2.1 Universal Representation

Ubernet [38] is a universal CNN that allows solving multiple tasks efficiently in

a unified architecture. It provides a simple end-to-end network architecture for diverse

datasets, and scalable and efficient low memory processing. Also, universal representa-

tions [39, 40] have been shown to work well in a uniform manner for visual domains.

They have proven to be efficient for multiple domain learning in relatively small neural

networks. Rebuff et al. [41] presented that universal parametric families of networks

could share parameters among multiple domains using parallel residual adapter modules.

Similar to our work, all these works presented universal representations for various do-

mains or various tasks. However, unlike CRL, their model cannot adequately support

effective transfer learning in multiple domains.

Feature selection is a crucial step in machine learning since it directly influences

the performance of machine learning. The right choice of features drives the classifier to

perform well. However, Kapoor et al. [42] observed that finding useful features for multi-

class classification is not trivial. It is because of the volume in the high-dimensional
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feature space and the sparseness over the search space. Dictionary learning [43] was

presented to determine the subspaces and build dictionaries by efficiently reducing di-

mensionality for efficient representations of classes in the domain. They overcame the

sparsity constraints and improved the accuracy by identifying essential components of

the observed data. In CRL, the class representative feature space CRFS provides a basis

for building the prototypes, i.e., CRs, using the features from the CNN network that are a

uniform representation of the images.

In the context of zero-shot learning and few-shot learning, the representatives are

known as a class prototype, which is defined as vector representation in semantic space

corresponding to each class [4]. In EXEM, a similar concept, class exemplar, was in-

troduced as the center of visual feature vectors that are used in prediction and label em-

bedding [94]. A hierarchical super prototype was proposed based on a combination of

semantic prototype and visual data for seen and unseen classes [95]. Fu et al. proposed

a prototype graph where each prototype is a node in the graph, and the semantic relation-

ship between classes is an edge for their connectivity [96]. The prototype is also used in

FSL, as demonstrated by Snell et al. [47].

In the class representative learning (CRL) model, the class prototype is part of

the predictive step, unlike the previous work defined as an intermediate step towards a

learning model. The class prototype (i.e., class representatives) can be built independently

class by class to be self-contained and not dependent on other classes. For example, a

class representative (CR) for dog class is built using the data only from one class (i.e.,

dog) without considering other classes, such as horse or cat.
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3.2.2 Zero-Shot Learning

Zero-shot learning (ZSL) uses a semantic encoding in predicting new classes that

were derived from a semantic knowledge base [24]. Besides the knowledge bases, explicit

and external attributes are considered for visual learning [24]. In addition to standard

image feature extraction techniques, other feature learning techniques such as boosting

techniques [49], object detection [50], chopping algorithm [51], feature adaption [52],

and linear classifiers [53] are used to enhance the accuracy of unseen classes.

Wang et al. [4] categorized zero-shot learning based on feature requirement into

engineered semantic space and learned semantic space, as shown in Figure 16. Engi-

neered semantic space is further sub-categorized into attribute space, lexical space, and

text-keyword space. Learned semantic space is categorized into label-embedding space,

text-embedding space, and image-representation space.

Table 17 shows the proposed method and the existing ZSL models compared in

the evaluation section. Recent ZSL works mostly include two kinds of semantic spaces,

namely label-embedding spaces [4, 12] and attribute spaces [4] (also known as probabil-

ity prediction strategy [12]). The image representative space is present in all the zero-shot

learning works but typically coupled with additional semantic space. The ZSL approaches

based on the label-embedding space focus on learning a projection strategy. This strategy

maps semantic features extracted from the image representative space to the labels that

are represented in a high dimensional embedding such as Word2Vec [54] or Glove [55].

Image representative space are typically learned from convolutional neural networks [13,

56, 57, 58, 59, 60]. Attribute space or Probability prediction strategy pre-trains attribute
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Figure 16: Zero-shot Learning and Semantic Spaces [4]

classifiers based on the source data [12], where an attribute is defined as a set of terms

having the properties for a given class [4]. A class has distinguishing attributes, the em-

bedding of visual features for the defining characteristics of the class, and assignment

of the label to a class based on these features and attributes [61, 62, 17]. Unlike these

works, CRL focuses on uses a mono-modal, specifically just the image representative se-

mantic space. Using only the image representative gives CRL the advantage in terms of

classification performance comparing to using a multi-modal semantic space approach.

Pure image representation space-based ZSL approaches are rarely observed. One

of the few works was to use image deep representation (i.e., neural network-based) and

fisher vector for the inference [63], and an extension of this approach was used to create

an unsupervised domain adaptation [64]. Zhu et al. use a partial image representation

method to achieve a universal representation for action recognition [65]. Like the above
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approaches, CRL uses only image representative semantic space but with a unique method

of creating class prototypes and perform inference all within the space.

3.2.3 ZSL Projection Methods

The ZSL approaches can be categorized into classifier-based and instance-based

methods. Based on the categorization, the CRL model is defined as a zero-shot learn-

ing model that uses image representation semantic space and employs an instance-based

projection method for model building and inference. The projection method provides in-

sights on the labeled instances of an unseen class by projecting them onto the common

feature space or the semantic space where instances and prototypes are compared [4].

We consider four different zero-shot learning inference methods, namely classifier-based

correspondence method, classifier-based relationship method, instance-based projection

method, and it instance-based synthesizing method.

Table 17: Related Work: Zero-Shot Learning Methods

Zero-Shot Learning Method
Instance-based Classifier-based

Projection
Method

Synthesizing Method Relationship
Method

Correspon-
dence Method

CRL Model(ours)
DWV[69]
Deep-SVR[61, 97]
ConSE[62]
CMT[98]
SAE[99]
Embed[100]

GAN+ALE[101]
GAN+Softmax[101]
CADA-VAE[102]
cycle-GAN[103]
BPL+LR[104]

SSE [105]
AMP [58]
SynC [106]

SJE [56]
LATEM [60]
ALE [91]
DeViSE[57]
ESZSL[59]
SP-AEN [107]

Classifier-Based Correspondence Method constructs a correspondence between binary
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one-vs-rest classifier and unseen class prototypes to classify unseen classes. The compat-

ibility function is a key part of the correspondence method. It takes instances and proto-

types as an input to compute a compatibility score denoting the probability of instances

to classes [108, 89, 4]. A bilinear function is a widely used compatibility function includ-

ing DeViSE [57], ALE[108], SJE [56], and ESZSL [59]. The other widely used method

is the projection functions such as linear projection [109, 110]. Even though the corre-

spondence method uses classifier and prototype method, no explicit relationships between

classes are modeled due to one vs. all strategy. As the class relationship plays a vital role

in understanding ZSL performance, the CRL model uses a pure-prototype approach that

helps to discover the class relationship to increase the model’s interpretability.

Classifier-Based Relationship Method constructs classifiers for the unseen classes based

on the relationships among classes [4]. SSE [105] uses binary one-vs-rest classifiers for

seen classes, and unseen class prototypes establish their relationship with seen classes.

AMP [58] uses a directed k-nearest neighbor graph where each edge establishes the re-

lationship between the classes. The relationship method focuses on creating a classifier

by creating a class-to-class relationship; this inter-class dependency creates scalability is-

sues. To handle scalability issues, CRL focuses on inter-class independence during model

building, and the relationship between class is determined using their prototypes.

Instance-Based Projection Method ’s insight to classify is by obtaining labeled in-

stances for the unseen classes by projecting both the feature space instances and the

semantic space prototypes into a shared space [4]. The projection space is defined as

a space where the classification is performed. The approaches using projection methods
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are further categorized according to the projection space: Semantic Space as Projection

Space, Visual Space as Projection Space, and Transductive Projection Strategy.

Semantic Space as Projection Space: Projection function is learned to project the

visual feature space to semantic space with a linear model or non-linear model. Cross-

modal transfer (CMT) was proposed based on semantic word vector representations and

Bayesian framework to differentiate the semantic manifold of seen classes for transfer

learning of unseen classes [98]. CMT and few other works use regression function as

the projection method and softmax classifier on the semantic space [98, 24, 111]. ConSE

uses a projection method achieved from a convex combination of seen class prototypes

(ConSE) [62]. ConSE has an n-way classifier built on seen data and is used to predict

probabilities on the unseen instances. The projection function of Deep-SVR consists of

classifiers for attributes. The probabilities from attribute classifiers are coordinates with

projected instances in semantic space using 1-NN classification [61, 97].

Visual Space as Projection Space: Projection Function is learned to project the

semantic space to visual feature space. Linear regression projection approach was used

to mapping from the target space to the source space [112]. However, this approach is

based on a strong assumption like a multivariate normal distribution of data and also

lacks advanced similarity measures like cosine similarity or multi-modal data distribu-

tions. Non-linear regression (DEM) uses the visual space as the embedding space, re-

sulting in fewer hubness problems than other ZSL approaches [100]. Unseen visual data

synthesis (UVDS) introduced a latent embedding space that takes into account seman-

tic space and visual feature space [113]. Jiang et al. Multiple projection spaces, such
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as semantic auto-encoder (SAE), were designed to learn a more generalized projection

function [99].

Transductive Projection Strategy Manifold regularization was used together with

data augmentation strategies to enhance the semantic space, resulting in easy access to

testing data in the training phase [114]. Matrix factorization with testing instances and

unseen class prototypes was designed for unsupervised domain adaptation to overcome

the projection domain shift problem [115]. The self-training strategy aims to adjust the

prototypes of unseen classes with the testing instances when performing 1-NN classifi-

cation. For an unseen class, the prototype is adjusted as the mean value of the k nearest

testing instances [116, 70, 117, 118, 119]. This unseen prototype creation is also used in a

few-shot learning settings [47]. Markov chain process-based projection method was pro-

posed to compute semantic manifold distance in embedding space as a seamless fusion of

the semantic relatedness and embedding based methods for ZSL [58]. Fu et al. presented

a unified framework based on vocabulary-informed learning. It incorporates distance con-

straints from vocabulary atoms for projecting closer to their correct prototypes in semantic

manifold-based recognition [69].

As mentioned earlier, the CRL model can be categorized as a projection method.

Unlike most of the existing work, CRL uses the visual feature space created using projec-

tion function to inference without depending on classifiers. Class representative genera-

tion is similar to prototype creation by self-training strategy. The zero-shot learning ap-

proaches using self-training uses the visual feature and some additional semantic space for

creating the prototype. The few-shot learning approach uses a massive network classifier
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model post prototype generation. The unique feature of class representative generation is

the sole usage of visual feature space.

Instance-Based Synthesizing Method based zero-shot learning has been prevalent last

year with the use of a generative neural network to create additional data points, especially

for unseen classes, to handle the problem pertinent to data imbalance issues. GAN+ALE

[101], GAN+Softmax [101], and cycle-GAN [103] uses various types of (GAN). The

GAN-based model typically samples a random vector and combines that with the unseen

class prototype to form the input to the generator, whereas CADA-VAE [102] uses vari-

ational auto-encoder for data synthesizing. BPL[104] uses semantic feature synthesis by

perturbation approach, which incorporates by directly perturbing the seen class samples to

unseen class prototypes. In the context of the projection method, BPL [104] uses bidirec-

tional projection learning as part of a competitive learning strategy between seen samples

and unseen prototypes. Even though synthesizing methods differ in architectural sense

from CRL Model, we consider them as some of the top-performing models in Zero-Shot

Learning.

3.3 Class Representative Learning Model

In this chapter, we present the class representative learning (CRL) model designed

to project the input data onto a global space and generate a universal representation for

domains and use it for inference in zero-shot learning. The space of the CRL model

is similar to the universal representation proposed by Tamaazousti et al. [66], where

visual elements in the configuration (e.g., scale, context) can be encoded universally for
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the transfer learning. Unlike their work, our CRL representation is defined based on the

aggregation patterns from the activation of neurons of the projection function (typically a

pre-trained model, such as CNN). The CRL model’s fundamental concept is its ability to

create the representatives of class independently from other classes for a given domain.

Figure 17 shows the conventional label-embedding based zero-shot learning model,

and Figure 18 shows the class-representative model in a similar setting. As shown in Fig-

ure 17, Nourouzi et al. introduced zero-shot learning two-step mapping function [62],

where the first step is the projection function, and the second step is inference function in

the label-space. As shown in Figure 18, the two-step mapping stays in place.However, the

second mapping becomes non-essential because the class representatives (image feature

prototypes) have the label as tagged information. In the label-based embedding model

(Figure 17), the second mapping plays an essential role where the image feature space

maps into the label space. In most of the existing works, the classification happens in the

label space, wherein CRL’s classification happens in image feature space, also known as

class representative feature space (CRFS) [90].

3.3.1 Problem Setup

Assume the given source data Ds = {xi, yi}ms
i=1 of ms labeled points with a label

from the source class S, where xi ∈ R is the feature of the ith image in the source data, and

yi ∈ S, S is the set of source classes. The target data is represented as Dt = {xi, yi}mt
i=1

classes where yi ∈ T. For each class c ∈ S ∪ T, has a class representative CR(c) which

is the semantic representative of class c. Furthermore, the source label S and the target

88



Figure 17: Label Embedding Based Zero-Shot Learning

label T are considered such that S ∩ T = ∅. For simplicity, the source and target datasets

have overlapped labels, but these overlapped classes are considered distinct. In the CRL

model, the source data are considered as seen, and the target data are unseen. In other

words, the target data are not used in the learning process. Table 18 summarizes all the

symbols and notations used in the CRL model.

The goal of the CRL model is that given a new test data x∗, the model will classify

it into one of the classes y∗, where y∗ ∈ C. The CRL model defines a universal problem

for a ZSL approach as well as G-ZSL as follows:

• Zero-Shot Learning (ZSL): y∗ ∈ T

• Generalized Zero-shot Learning (G-ZSL): y∗ ∈ {S ∪ T}
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Figure 18: Class Representative Based Zero-Shot Learning

There are no dependencies among CRs in any of the models. The difference be-

tween these two models is in the properties of the inference. If the CR of the target set

was introduced, then it would be ZSL, and if both CRs of the source set and the target set

are introduced, then it would be G-ZSL.

Definition: Class representative (CR) is a representative ofK instances in a single class.

The activation feature map of the CR is a unique characteristic pattern of visual expression

using the projection function; for example, the feature map generated through the deep

learning process using convolutional neural networks as the projection function (CNN).

Activation feature map (AFM) is a vector of features extracted from a base model, which

is learned from the source dataset. Thus, CR is an abstraction of instances of a class by
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computing an aggregation of the average mean vectors of the AFM for the K instances.

The CR characterizes a class and differentiates one class against another. The class repre-

sentatives CR(c) for Class c is represented as {CR1
c , CR

2
c , . . . , CR

n
c } with n dimensions.

Each dimension corresponds to a separate feature. If a feature occurs in CR, its value in

the vector is non-zero.

Table 18: Formal Symbol and Notations in the CRL model

Notation Description

Ds&Dt Source and Target Domain
ms&mt #Data Points from Source and Target, respectively
S&T Source and Target Label Set
C #Classes
x Feature Vector of Labeled Data Point
y Label of Data Point
j #Neurons in a Given Activation Layer
b Base vector learned in P (.) {b1, b2, . . . , bj}

CR(c) Class Representative of Class c where c ∈ C
x∗ Unlabeled Data Point
y∗ Predicated Label for x∗

CRC(.) Class Representative Classifier
P (.) Projection Function
L(.) Inference Function

CRFSn Class Representative Feature Space
n Dimensions of the CRFSn

3.3.2 Class Representative Classifier

We introduce a class representative classifier CRC : Id → c that maps an input

image space Id of the dimension d and c ∈ S ∪ T. Classifier has two essential functions,

namely the projection function P (.) and inference function L(.). The projection function
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takes the input images and learns feature space for class representatives through source

dataDs. The inference function uses the class representative feature space CRFSn of the

dimension n to classify it to class c. CRC is defined as a composition of two functions,

as shown in Equation 3.1.

CRC = L(P (.))

P : Id → CRFSn

L : CRFSn → c

(3.1)

The CRC model first learns a projection function S using the seen data, which aids

the mapping of the input images Id into class representative feature space CRFSn with n

dimensions. T the inference function L creates class representatives CR in the CRFSn

of either seen data or unseen data depending on the setting. The L maps any new images

from CRFSn to Label c where c ∈ T or c ∈ S ∪ T.

3.3.3 Projection Function

In the class representative learning method, we use a projection mechanism that

primarily uses only visual feature space. The visual feature space in the CRL method

is known as the class representative feature space. The projection function is prevalent

as part of the class representative classifier in two ways. First, learning the projection

method using seen data and building the class representative feature space CRFSn. Sec-

ond, applying the pre-learned projection mapping mechanism to seen data or unseen data
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depending on the setting for inference.

Class representative feature space (CRFS) is defined as a n dimensional semantic

feature map in which each of the n dimensions represents the value of a semantic prop-

erty. These properties may be categorical and contain real-valued data or models from

deep learning methods [24]. Class representative feature space is the projection space.

The class representative feature space represents n dimensional representative features

is a form of the activation feature map (AFM). The design of the CRFS is based on the

equations defines in [71]. The data points from Dt {(x(1), y(1), . . . , (x(mt), y(mt)} with

each x(i) ∈ R and y(i) ∈ T (as shown in Equation 3.3). A set of the mean of the base

features is defined as x(i) Note that the data points can also be defined in Ds that will be

used in CRFS to understand both source and target domains (refer to Section 3.4.4).

â(xi) = P (xi)

â(xi) = argmina(i)||xi −
∑
j

a
(i)
j bj||22 + β||a(i)||1

(3.2)

where

Ds = {xi, yi}ms
i=1

Ds −→
Pb

D̂s

D̂s = {(â(xi), yi}ms
i=1

(3.3)

Class representative feature space is created based on the base vector bwhich has j

dimensions with each bj ∈ Rn. The base vector b is generated with the projection function

using Ds using optimization function such as stochastic gradient descent. Equation 3.2
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points out the self-training based on unsupervised data. The activation â(xi) consists

of {â(x1i ), ..., â(xni )} with each â(xi) ∈ R forms the semantic property of CRFS. Each

dimension of an activation vector â(xi) is the transformation of input xi using the base

bj , note that j is independent of size of input xi. The base b is learnt through smooth

approximation with L1 sparsity penalty a(i). Even though approximation does not lead to

sparse features, Raina et al. reports using re-calibrated β value before computing labeled

data representation improve the classification accuracy [71].

Projection function P (.) can potentially be a convolution network layer or a resid-

ual network layer. The advantage of having a projection function purely for mapping; any

pre-trained models can be used in it is place. The pre-trained model’s availability to clas-

sify the source classes does not influence projection function mapping, instead of changes

on how the base vector is optimized. By having projection function, being independently

learned from the source classes gives the ability to use any advanced pre-trained model

available as part of the class representative learning model.

3.3.4 Class Representative Generation

Class representatives (CR) are generated using the nearest prototype strategy by

aggregating feature vectors. As the name specifies, class representatives create represen-

tatives from the instances projected in class representative feature space CRFSn using

Projection Function P (.). Class representatives (CR) and the instances share the same

feature space CRFSn. The nearest mean feature vector with instances of the given class,

i.e., class representatives, is computed for every class. Correctly, the average feature mean
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operation was used to summarize the instances of classes. The CR is an aggregated vector

of the mean features for all the elements in the feature maps.

For the class representative generation, we considered the transformed source

dataset D̂s as the input (as shown in Equation 3.2). As we emphasize the parallelism

and independence, we considered the individual activation vector â(xi) such that yi = c

where c ∈ S, that will be used in formulating the CR as shown in Equation 3.4.

D̂s = {(â(xi), yi}ms
i=1

CR(c) =



CR1 =
1

ms

ms∑
i=1

â(x1i ), if yi = c

CR2 =
1

ms

ms∑
i=1

â(x2i ), if yi = c

...

CRn =
1

ms

ms∑
i=1

â(xni ), if yi = c

CR(c) = {CR1, CR2, ..., CRn}, ∀c ∈ S

(3.4)

Equation 3.4 shows the feature-wise class representative generation in the class

representative feature space. For the CR generation, the projected source data D̂s is con-

sidered. For each class c ∈ S, the projected source data {(â(xi), yi} is considered were

yi = c. Each feature is considered based on the CRFSn dimension ranged 1 to n, the

average is considered to represent the corresponding dimension for CR(c).
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3.4 Class Representative Inference

3.4.1 Zero-Shot Learning Setting

Algorithm 1: CRC-Inference: Zero-Shot Learning Setting
Input: Dt = {xi, yi}mt

i=1 ; x∗

Output: y∗

ZSL Setting: y∗ ∈ T
1 Projection Function Pb(x):

/* Base Vector b was learnt from Ds, Based on Equation 3.2 */

2 â(x) = P (x)

3 return â(x)
4 Inference Function L(CR(c)∀c ∈ T , â(x∗)):
5

y∗ = argmax
c∈T
{cos(CR(c), â(x∗))} (3.5)

where

cos(CR(c), â(x∗)) =
CR(c) · â(x∗)
‖CR(c)‖ ‖â(x∗)‖

(3.6)

=

∑n
j=1{CRj(c) ∗ â(xj∗)}√∑n

j=1(CR
j(c))2

√∑n
j=1 â(x

j∗)2

return y∗

6 CR-Classifier Function CRC(Dt , x∗):
/* Projection of Unseen Data Dt into CRFSn Similar to

Equation 3.3 */

7 Dt −→
Pb

D̂t for i ∈ 1→ mt do

8 â(xi) = Pb(xi)

9 end
10 D̂t = {(â(xi), yi}mt

i=1

/* Projection of New Data Point x∗ into CRFSn
*/

11 â(x∗) = Pb(x
∗) /* CR Generation: Based on Equation 3.4 */

12 for c ∈ T do

13 CR(c)j =
1

mt

∑mt

i=1 â(x
j
i ), if yi = c & ∀j ∈ (1, n)

14 end
/* Classifier Function */

15 y∗ = L(CR(c) ∀ c ∈ T , â(x∗)) 96



The zero-shot learning setting for the class representative classifier (CRC), would

involve using the pre-learned projection function P using source or seen datasetDs on the

unseen or target dataset Dt. The CR-based classifier involves three steps, namely projec-

tion function (as describes in Section 3.3.3), class representative generation (as described

in Section 3.3.4) and finally the inference function L. Algorithm 1 presents the projection

function Pb pre-trained on the source dataset Dsis used to map the target Dt instances and

the test data point x∗ to class representative feature space CRFSn. Note that as recorded

in all existing projection methods, each unseen class needs at least one labeled instance

to create a prototype, i.e., class representative [4]. The class representative creation is

independent of the number of instances per class, with the only requirement of having at

least one labeled instance per class.

The aggregation of projected unseen dataset D̂t creates the class representative

for all classes c ∈ T. As shown in Equation 3.4, the dimensions of the projected are

maintained for the class representative as well. The class representatives CR(c)∀c ∈ T

and the new data point â(x∗) reside the same feature space i.e., the class representative

feature space CRFSn.

For the inference, the cosine similarity between each class representative in T

and projected new data point â(x∗) is calculated. The label information is retained and

coupled with each class representative. For the final inference step, the label of the class

representative with the highest cosine similarity is returned as the predicted class y∗ for

the new data point x∗.

The CRC classifier uses an instance-based projection method and inference method
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with no learning for unseen data or any new data as an ideal zero-shot learning setting.

3.4.2 Generalized Zero-Shot Learning

Algorithm 2: CR-Inference: Generalized ZSL Setting
Input: Ds = {xi, yi}ms

i=1 ; Dt = {xi, yi}mt
i=1 ; x∗

Output: y∗

G-ZSL Setting: y∗ ∈ {S ∪ T}
1 CR-Classifier Function CRC(Ds , Dt , x∗):

/* Projection of Unseen Data Dt into CRFSn Similar to

Equation 3.3 */

2 Dt −→
Pb

D̂t

/* Projection of Seen Data Ds into CRFSn Similar to

Equation 3.3 */

3 Ds −→
Pb

D̂s

/* Projection of New Data Point x∗ into CRFSn
*/

4 â(x∗) = Pb(x
∗)

// CR Generation: Based on Equation 3.4

5 for c ∈ {S ∪ T} do

6 CR(c)j =
1

mt

∑mt

i=1 â(x
j
i ),

7 if yi = c & ∀j ∈ (1, n)

8 end
// Classifier Function

9 y∗ = L(CR(c) ∀ c ∈ {S ∪ T} , â(x∗))

Algorithm 2 shows the variation of Algorithm 1, incorporating generalized zero-

shot learning(G-ZSL) setting. In the G-ZSL setting, the source dataset, target dataset,

and new data point are projected into the feature space during the projection function.

The projection method used here is based on pre-trained base vectors b learned from the

source or seen dataset. Having projected both seen and unseen dataset onto the class
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representative feature space CRFSn, we can generate class representatives for all class

c ∈ S ∪ T as shown in Equation 3.4. The class representative CR(c)∀c ∈ S ∪ T and

the projected data point â(x∗) reside in the same feature space CRFSn for the inference

step. The inference step involves getting c, where the class representative CR(c) has the

highest cosine similarity with the data point, leading to the conclusion that data point is

predicted with the label c.
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3.4.3 Model Parallelism

Algorithm 3: CRC-Inference: ZSL Setting [Parallel Mode]
Input: Dt = {xi, yi}mt

i=1 ; x∗

Output: y∗
ZSL Setting: y∗ ∈ T

1 Inference Function L(CR(c)∀c ∈ Cp , â(x∗)):
2

yp = argmax
c∈Cp

{cos(CR(c), â(x∗))} (3.7)

/* scorep is the cosine similarity between CR(yp) and x∗ */

3 return (yp,scorep)
4 CR-Classifier Function CRC(Dt , x∗):
5 Broadcast:
6 Pre-trained base vectors b and new data point x∗

/* Cp represents subset of classes split based on distribute
function. Dp is data point for Cp with size of mp */

7 Dp,Cp = distribute(Dt,T)
8 Y, SCORE = {empty}
9 PARALLEL MODE

10 in parallel do
/* Projection of Distributed Data Dcs into CRFSn Similar to

Equation 3.3 */

11 Dp −→
Pb

D̂p

/* Projection of New Data Point x∗ into CRFSn
*/

12 â(x∗) = Pb(x
∗)

/* CR Generation: Based on Equation 3.4 */

13 for c ∈ Cp do

14 CR(c)j =
1

mp

∑mp

i=1 â(x
j
i ),

15 if yi = c & ∀j ∈ (1, n)

16 end
/* Classifier Function */

17 (yp, scorep) = L(CR(c) ∀ c ∈ Cp , â(x∗))
18 Y , SCORE ←− yp , scorep
19 end
20 REDUCTION STEP

/* Reduction Step combines results generated from each Cp */

21

y∗ = argmax
Y
{SCORE} (3.8)
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Algorithm 3 showcases the parallelized zero-shot learning inference for the class

representative classifier. As there is no learning for target classes, CRC can support

parallel processing for even larger datasets. The algorithm is designed with the CRCW

(concurrent read concurrent write) model, which allows parallel computing, including

I/O, with the shared memory and processors. The parallelized class representative clas-

sifier function CRC has two major steps, first involves in the declaration of the global

variables, broadcasting certain inputs, and distribution of other inputs. Global variables

are the variables that can be accessed and updated across the parallel process. Algorithm 3

declares predicted label set Y and corresponding cosine similarity score set SCORE as

global variables. The broadcast variables are the ones that represent the new projected

data point â(x∗) and pre-trained base vectors b for the projection function P (.). Next,

the target data points Dt and target domain T gets distributed into smaller sets of classes

using distribute(.) function. The distribute function splits the target classes T and the

corresponding data points Dt into smaller sets of classes Cp and their corresponding data

points Dp. The distribution can be aligned according to the parallelization capacity of our

method. The class set Cp can be as small as a single class due to the complete indepen-

dence for every class in target classes c ∈ T. Each parallel processor works with each

set data points Dp and classes Cp to create class representatives CR(c) for all classes in

Cp and compare with the new data point â(x∗). At the end of each parallel execution,

a predicted label yp and the cosine similarity scorep between CR(yp) and â(x∗) is re-

turned. The predicted label and score are accumulated onto the global variables, Y , and

SCORE. The final resultant label y is obtained using a reduction step where the label
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with the highest cosine similarity in Y, SCORE, is returned (refer to Equation 21).

3.4.4 Validation using Domain Adaptation

We validate domain compatibility by checking the compatibility between source

(seen) domain and target (unseen) domain inspired from existing domain adaptation tech-

niques. The domain adaptation problem arises when the source domain data distribution

is different from target domain data distribution. Domain adaptation aims to learn a pre-

dictor function in given a feature space using the source domain and apply it to the target

domain. The hypothesis of domain adaptation is verified by measuring the distance be-

tween using the probability distribution obtained as a resultant of the predictor function

between source and target [120, 121].

Figure 19: Source Domain - Cosine Similarity Distribution

We use domain adaptation to validate the class representative distribution of source
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and target domains. The standard way of domain adaptation uses the predictor function

and the instance distribution of source and target to measure the divergence. Unlike the

conventional way, we formalize domain distribution through the cosine similarity be-

tween class representatives of all the sources classes and the cosine similarity between

class representatives of the target classes. The domain distribution using cosine similar-

ity between class representatives showcases the confusion between the classes, i.e., if the

current feature space is favorable for the discrimination of classes within the source and

target domain. The goal is to see if the target domain has the same CR-to-CR cosine

similarity distribution as the source domain.

Figure 19 shows an abstract three dimensional (X,Y,Z) vector space model of CR

cosine similarity distribution. Note that the dimensions of vector space model corre-

sponds the n dimensions of CRFS. We consider three classes (i,j,k) from source do-

main and their corresponding class representatives (CRi, CRj, CRk). We also consider

three classes (i’,j’,k’) from target domain and their corresponding class representatives

(CRi′ , CRj′ , CRk′). The cosine similarity between each pair of class representative is

calculated to each domain distribution in the class representative feature space (refer to

Equation 3.9).
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f(S) = {θi,j, θi,k, θk,j}

f(T) = {θi′,j′ , θi′,k′ , θk′,j′}

where

θi,j = cos(CRi, CRj)

(3.9)

The domain adaptation’s hypothesis typically uses the distribution over the in-

stances in a given domain (i.e., either source or target)[120, 121]. Usually, this distribution

is the probability distribution over the prediction function; instead, we use the distribution

of cosine similarity. ESZSL was the first to introduce zero-shot learning as a domain adap-

tation problem based on the probability distributions over the instances [59]. Romera et

al. presented the theoretical model using A-distance as the measurement between source

and target distributions. The A-distance is defined as the total variation or the L1 norm

between the distribution within a given measurable subset A with the domains [122].

Intuitively, A-distance shows the most substantial change in the similarity of a

given set. The set can be considered based on manual choice or conditional filtering,

and we show a conditional filtering set in Table 20. The first conditional set is obtained

by filtering higher cosine similarity ∀(0.5 ≤ θ) to understand the highly similar class

representatives showcasing the potential confusion between classes. Similarly, the second

conditional set is generated by filtering lower cosine similarity (0 < θ < 0.5), which

points of the class representative pair with the least similarity.
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Vks = sup |f(S)− f(T)|

VA = 2 sup
A
|f(SA)− f(TA)|

(3.10)

The Kolmogorov-Smirnov (KS) test is used to measure variation across the entire dis-

tribution, whereas A-distance is used to measure variation across a subset obtained from

both the distribution for a given condition. As shown in Equation 3.10, f(S) and f(T) are

the distribution functions based on the cosine similarity distribution for the source and tar-

get domain, respectively. Vks shows the Kolmogorov-Smirnov distance between the entire

source CR distribution and target CR distribution. VA shows the A-distance between the

source and target domain on a given subset of data. For VA and Vks, a lower score means

the target is closer to the source, and the higher score means the targets are further away

from the source. The higher score indirectly indicates incompatibility between target and

source, and the target might perform poorly because of the far distance, i.e., with lower

accuracy.

3.5 Experiments

3.5.1 Datasets

The CRL model was evaluated using six different targets (unseen) datasets in two

different settings. For our experiments, ImageNet-1K (2015), with 1000 classes [67], was

used as the source dataset. The target dataset info is shown in Table 19. We consid-

ered four standard zero-shot learning (ZSL) datasets and two classification datasets for
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the target dataset. The four ZSL datasets include Animals with Attributes-2 (AWA2),

Caltech-UCSD Birds-200 (CUB200), Scene Attribute dataset (SUN A), and ImageNet-

360 (IN360). IN360 includes 360 unique classes present in ImageNet-1K (2010) version,

which is different from the source domain dataset, ImageNet-1K (2015) [70, 69, 104].

The two classification datasets are Caltech-101 (C-101), Caltech-256 (C-256).

Table 19: Benchmark Dataset: Seen and Unseen Classes

Dataset #Class #Image Setting-1 Setting-2
Seen Unseen Seen Unseen

C-101 [123] 101 8,677 - 1000 101

C-256 [124] 256 30,608 - 1000 256

AWA2 [92] 50 30,475 40 10 1000 50

CUB200 [125] 200 11,788 150 50 1000 200

IN360 [67] 360 2,44,800 1000 360 1000 360

SUN A [126] 806 14,340 697 109 1000 806

Setting-1: We investigated the effects of the seen and unseen split for Setting-1,

similar to work presented by Xian et al. [92]. The seen and unseen data in Setting-1

are prepared for a fair comparison with the state-of-the-art ZSL models. It is noted that

the seen and unseen split is mainly for evaluation purposes. We want to highlight that

there is no training activity happening with the unseen data in the CRL model since the

ImageNet-1K pre-trained models are used as projection function as the default method

(refer to Section 3.5.2). The ImageNet-1K pre-trained model should be sufficient for

inference with the seen and unseen data for this setting.

Setting-2: The Setting-2 is a unique setup for CRL, where the source domain
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Figure 20: t-SNE Visualization for Class Representatives of Benchmark Datasets [82]

(ImageNet-1K) included in the pre-trained model are considered as seen classes. Typi-

cally, the generalized zero-shot learning setting consists of both source and target classes

as a class set during inference. For this G-ZSL setting, we argue that ImageNet-1K should

be included with the given dataset in the class set as it is present during the learning of

projection function (as we are using a pre-trained model). As CRL focuses on no learning

for unseen classes, Table 19 Setting-2 shows the ImageNet-1K as seen classes (source

domain) and each dataset’s categories as the unseen classes (target domain).
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3.5.2 Pre-trained Model as Projection Function

As described in Section 3.3.3, the projection function P (.) mapping the input im-

ages into the class representative feature space. For the experiments, we use widely avail-

able image classification models pre-trained using ImageNet-1k (2015). MATLAB’s pre-

trained deep neural networks [80] were used as projection functions, namely Inception-V3

[76], ResNet101 [77], VGG-19 [78] and GoogleLeNet [127]. One of the CNN models

were defined as the projection function (pre-trained with ImageNet-1K) for the CRL ex-

periments. The last convolution layer from the CNN model was considered as the base

vector b. The j dimensions are based on the input size of the layer, and the layer’s output

dimensions become n dimensions of class representative feature space CRFS.

3.5.3 Evaluation Metrics

For zero-shot learning setting (Section 3.3.1), we use the average of class-wise

accuracy AccT and flat-hit@k is reported. Equation 3.11 shows that class-wise accu-

racy is calculated by the average of correct predictions for each class. This evaluation

was used to interpret the accuracy of the best performing class and the worst-performing

class. flat-hit@k evaluation is defined as the percentage of the test images for which the

model returns the matched label in its top k predictions. It is useful to determine whether

the CRFS is facilitating enough to get better accuracy by considering k nearest class

representatives to a given instance.

AccT =
1

‖T‖

‖T‖∑
c=1

# correct predictions in c
#samples in c

(3.11)
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For the generalized zero-shot learning setting, the harmonic mean (H) of the

source dataset accuracy (Acc′S) and the target dataset accuracy (Acc′T ) are reported [89,

92]. Acc′S is calculated by considering correct predictions source instances by consider-

ing the label space to be both source and target (S ∪ T). Similarly, Acc′T is calculated by

considering correct predictions of target instances (Equation 3.12).

H =
2 ∗ Acc′S ∗ Acc′T
Acc′S + Acc′T

Acc′S : S⇒ S ∪ T

Acc′T : T⇒ S ∪ T

(3.12)

3.5.4 Model Parallelism and System Specifications

The feature extraction has been conducted class by class as a form of parallel

processing to build a CR for each category (Section 3.4.3). The CR generation was im-

plemented parallel with Spark’s resilient distributed datasets (RDDs), a collection of data

points partitioned across the nodes of the cluster. The distribute function was imple-

mented as the RDD partition with the condition that all data points of a given class are

present in the same partition. The CR generation was performed in the map stage, where

each partition is independent of each other.

The projection of the data through the pre-trained projection method was imple-

mented on a single GPU, which is Nvidia GeForce GTX 1080 (with 12GB GDDR5X

RAM) on MATLAB 2018b version. The CR generation and CR-based inference were
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implemented using Spark 2.4.3 version [79]. The parallel and batch process was con-

ducted through the RDD based parallelism on a single CPU with 4GHz Intel Core i7-

6700K (quad-core, 8MB cache, up to 4.2GHz with Turbo Boost) and 32GB DDR4 RAM

(2,133MHz) (i.e., local parallelism of 4 cores).

3.6 Results and Discussion

3.6.1 Domain Adaptation

Table 20: Source Domain and Target Domain: Accuracy, Kolmogorov-Smirnov Test
Scores, A-distance

1

Target Domain Source & Target Comparison

Dataset AccT Vks
VA

∀θ(0.5 ≤ θ)
VA

∀θ(0 < θ < 0.5)

ImageNet-1K 73.7% 0 0 0

C-256 70.5% 0.0921 0.0908 0.1132

C-101 91.2% 0.1570 0.1350 0.2767

SUN A 31.9% 0.3560 0.1398 0.6205

AWA2 76.8% 0.4120 0.2848 0.7228

IN360 38.1% 0.4580 0.5877 0.9009

CUB200 40.1% 0.4740 0.9737 0.2450

CIFAR-100 57.9% 0.9125 1.6429 1.3115

The Kolmogorov-Smirnov Test and A-distance are used to identify the type of

transfer learning [81] that happened when during the zero-shot learning process from a

given source dataset and target dataset. For this experiment, Inception-V3 based class rep-

resentatives were considered. Each class representative was generated using ten labeled

instances. Homogeneous transfer learning happens when the source and target feature

110



spaces have the same attributes, labels, and dimensions. In this experiment, ImageNet-1K

is identified as homogeneous transfer learning with Vks and VA scores as zero. Note that

source to source mapping is not typically considered as transfer learning. The CRL model

takes just feature space established based on a pre-trained projection method and uses a

different inference method. Thus, the CRL model in ImageNet-1K is identified as homo-

geneous transfer learning. Heterogeneous transfer learning happens when the source and

target domains share limited or no features or labels, and dimensions of the feature space

differ as well. All the target domains can be considered heterogeneous transfer learning

when no or little label overlaps with the source domain, i.e., ImageNet-1K. The critical

observation is if the heterogeneous transfer learning negatively impacts the target domain

performance, that brings the issue of negative transfer. Negative transfer learning happens

when the target domain’s performance has negative implications on knowledge transfer

from the source domain. The negative transfer learning is generally found when the source

domain has minimal similarity with the target domain. The KS test andA-distance is used

to identify if the target domain has a negative transfer.

With the highest score in all variations, i.e., Vks and both VA, the dataset CIFAR-

100 has the negative transfer. Figure 20 shows the target domain data are projected on

the semantic space that is quite distinct from the source domain. Although the CIFAR-

100 is semantically relevant to other datasets, the CRL space of CIFAR-100 is divergent

from the source space in terms of image modality, such as image quality and image size.

The size of CIFAR-100 images is [32x32] while one of the source domain ImageNet-1K

[400x400]. More specifically, the dimension of the projection method Inception-V3 is
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Figure 21: t-SNE Visualization of Class Representatives [82]

[299x299].

Figure 22 demonstrates the similarity distribution in the feature space of the source

and target datasets. This figure further confirms the existence of negative transfer. The

next dataset, which might have negative performance, is CUB200, which a score of 0.9737

on cosine similarity greater than 0.5. This indicates that the distribution created by higher

similar class representatives in CUB200 is very different from ImageNet-1K. This distri-

bution disparity can also be observed in Figure 21, where CUB200 forms a highly dense

cluster in all the figures. It supports the nature of the dataset as CUB200 is specific to bird

categories, whereas ImageNet-1K has a variety of animate and inanimate objects.

Table 20 shows that the accuracy of datasets does not perfectly correlate with the

scores Vks and VA. This lack of correlation is due to the size of the dataset, i.e., several

classes. Figure 23 shows the class-wise distribution of the dataset, and the star marker in-

dicates the number of classes. The SUN A dataset’s performance is dependent on multiple

factors such as the size of the dataset, the standard deviation of the class-wise accuracy,

and the domain compatibility score. The standard deviation is class-wise accuracy, and
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Figure 22: Cosine Similarity Distribution of 8 Benchmark Datasets

the significant difference between two VA can be correlated. This inconsistency is due

to a lack of quality images for certain classes. Figure 24 shows an example of two best

performing and two worst-performing classes.

3.6.2 Comparison with ZSL Algorithms

We have evaluated the CRL model in terms of the three perspectives, such as ZSL

performances with the six different benchmark datasets, ZSL performance with an in-

creasing number of instances, and comparison with the state-of-the-art ZSL algorithms.

The two types of CRL models (the projection methods) was included Inception-V3 based

model and VGG-19 based model. Table 21 and Figure 25 show the CRL’s ZSL perfor-

mance with flat-hit@k using Inception-V3 projection with the dataset under Setting-2.

Table 22 shows the comparison of the state-of-the-art zero-shot learning algorithms using
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Figure 23: Accuracy Distribution of 8 Benchmark Datasets

the VGG-19 model, considering just the IN360 dataset under Setting-2.

The experiments show the CRL model’s performance for the ZSL task that recog-

nizes the target (unseen) labels without having the source (source) labels. Table 21 shows

two versions of the recognition tasks with the testing data from the target set (T); T⇒ T

when the testing label could be only from the target set y∗ ∈ T and T⇒ S ∪ T when the

testing label could be from both the source set and target set y∗ ∈ S ∪ T. For this exper-

iment, we consider all instances (70%) from the dataset to generate class representatives.

The results show the influence of an increasing number of labels in the dataset to the ZSL

accuracy similar observation was made from Figure 23. When comparing the Flat-hit@k

with k = 1 (Top-1) and k = 2 (Top-2), we can see an average of 21% increase from
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Figure 24: Inference Performance for Two Best and Two Worst Cases

Top-1 accuracy to Top-2 to accuracy. This increase signifies that CRFS provides a well-

formed neighborhood, with a 21% increase chance of getting the correct prediction at the

second nearest class representative. Comparing the two different recognition tasks, we

note the significant drop in efficiency is shown when the source set was also considered.

Note that these results were based on Setting-2, source set is ImageNet-1K. The number

of classes in S∪T would be a minimum of 1050 (case of AWA2 dataset) and a maximum

of 1806(case of SUN A dataset). A negative correlation between the number of classes

and accuracy was observed.

Figure 25 shows the performance of CR-Inception-V3 with the images at a speci-

fied number ranged from one to ten from each class. For this experiment, we considered
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Table 21: Accuracy for Zero-Shot Learning Tasks (Setting-2)

Dataset
Recognition Task Accuracy

Flat-hit@K T⇒ T T⇒ S ∪ T

C-101
1 91.2% 86.4%
2 97.4% 93.5%
5 98.5% 97.0%

C-256
1 70.5% 55.6%
2 78.3% 69.2%
5 84.7% 78.7%

AWA2
1 76.8% 48.6%
2 87.9% 72.9%
5 95.5% 86.5%

CUB200
1 40.1% 38.4%
2 53.9% 52.5%
5 71.0% 69.9%

SUN A
1 31.9% 28.5%
2 43.3% 40.4%
5 58.7% 56.3%

IN360
1 38.1% 28.3%
2 47.6% 40.1%
5 59.7% 54.3%

only (T ⇒ T) setting. Interestingly, the Top-1 accuracy with just ten images reaches

higher than 75% accuracy compared to the accuracy reported in Table 21, which consid-

ers 70% of the data.

Table 22 shows the state-of-the-art zero-shot learning (ZSL) algorithms to be com-

pared with CRL in Table 17. This experiment considered the class representative model

built using pre-trained VGG-19 as a projection method with ImageNet-1K as a source and

IN360 as the target. Table 22 shows that the performance of the CRL model is superior
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Figure 25: Accuracy on CRL Model based on Increasing Instances in Setting-2 (S ⇒
S and T⇒ T)

in both cases of 3000 instances and all instances. In the 3000 instance case, the CRL

model’s Top-1 shows a 27% increase compared to the top performer, Deep WMM-Voc.

In all cases, the CRL model’s Top-1 accuracy is significantly higher than the others; on

average, the CRL model’s Top-1 accuracy is considerably higher than Deep WMM-Voc’s.
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Table 22: Comparison between the CRL model with VGG-19 Model for IN360 (Setting-
1)

ZSL Type Methods
3000 Instances All Instances
Top-1 Top-5 Top-1 Top-5

CRL (ours) 11.78% 25.52% 31.6% 55.1%
Projection DWV [69, 70] 9.26% 21.99% 10.29% 23.12%
Method SAE [99] 5.11% 12.26% 9.32% 21.04%

Deep-SVR [61] 5.29% 13.32% 5.7% 14.12%
Embed [100] - - 11.0% 25.7%
ConSE [62] 5.5% 13.1% 7.8% 15.5%

Correspon- ESZSL [59] 5.86% 13.71% 8.3% 18.2%
dence DeViSE [57] 3.7% 11.8% 5.2% 12.8%

Relationship AMP [58] 3.5% 10.5% 6.1% 13.1%
*Results reported for SOTA Models are from Fu et al.[69]. The CRL model is configured with the same

settings such as VGG-19 with 3000 instances, i.e., 3 images per class and all 50000 instances, i.e., 50
images per class
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3.6.3 Generalized Zero-Shot Learning

Table 23 shows the performance of the generalized zero-shot learning (G-ZSL)

model comparing CRL (built on Inception-v3) to the four state-of-the-art G-ZSL models.

The SOTA models for AWA2, CUB200, and SUN A were built on ResNet-101, and the

SOTA model for IN360 was built on Google-LeNet. The number of images for the G-

ZSL model datasets is as follows: 600 images per class for AWA2, 50 images per class

for CUB200, 20 images per class for SUN A, and 180 images per class for IN360. The

number of images is the same as the setting specified by Guan et al., for fair evaluation

[104].

Table 23 also shows the accuracy of the target (unseen) and harmonic mean of the

CRL model outperforms the other SOTA models, including the BPL+LR model, which

includes synthesized data. On average, the accuracy of CRL was 20% better than the

other SOTA models. Compared to a fine-grained dataset, the CRL model performs better

in the coarse datasets, such as SUN A with only 40.5% of the Harmonic Mean Accuracy.

The CRL accuracies for the seen classes have been improved with all datasets excluding

IN360. For the IN360 dataset, BPL+LR shows the highest accuracy of 95.5%, and CRL

shows the second-highest accuracy of 89.4%. The pattern of source accuracy being bet-

ter than target accuracy can be observed in works in instance-based projection method,

classifier-based correspondence method, and classifier-based relationship method. Re-

portedly difference in accuracy between source and target domain is around 60% in those

three types except CRL. CRL Model is an instance-based projection method that still re-

ports an accuracy equivalent to the instance-based synthesizing method. In most cases,
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the CRL model outperforms the Synthesizing Methods. The most significant advantage

of CRL compared to the synthesizing method is that it does not use any complex and time

consuming generative or auto-encoder models.

3.6.4 Time Performance

The CRL model’s performance is evaluated by comparing it with the Inception-

V3 pre-trained model retrained with the target domain. The CRL model’s performance

is calculated according to the projection time (Section 3.3.3), CR model generation time

(refer to Section 3.3.4) and CR-based inference time (refer to Section 3.4). For this exper-

iment, we use Inception-V3 as our pre-trained projection. The class representative for this

experiment was built with 70% of the given dataset. Note that since most of the zero-shot

learning methods do not report time performance, image classification setting was consid-

ered. The CRL image classification setting is the same as the CRL ZSL setting (T ⇒ T)

since no learning happens for either of them. Our previous work [90] reports more details

on the comparative evaluation of the CRL model with others. The comparison is with

the Inception-V3 pre-trained model from MATLAB (same as CRL’s projection method),

where the last layer of softmax is retrained with the new dataset.

Table 24 shows the comparison of the CRL model’s overall time vs. the time taken

for retraining the dataset using the Inception-V3 pre-trained model. Both pre-trained mod-

els were run on the same system specification. Pre-training of the Inception-V3 Model

was stopped at a reported number of epochs as the time taken was significantly higher

than the CRL models. The CRL model with three datasets (CalTech-101, CalTech-256,
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and CIFAR-100) has an average of 99% time reduction that is a significantly reduced

compared with that for the original Inception-V3 model. Within the same time window

and based on the same pre-trained model, the Inception-V3 model performance has not

reached the accuracy published in [33]. The CRL model’s overall time would show gen-

uinely outstanding achievements in the target domains, even if the models were never

learned from the target domain.

Table 24: Transfer Learning Performance Analysis: CRL vs. Inception-V3 [80]
Pre-trained Model: Inception-V3 with ImageNet-1K

Target CRL Inception-V3 [80]
Step Time (minutes) AccT Time (minutes) Epoch AccT

Projection 5.35
94.4% 40 88.7%C-101 CR Generation 1.51 7.2 4257.91

Inference 0.33
Projection 10.23

78.2% 14 59.3%C-256 CR Generation 1.9 13.88 14193.96
Inference 1.75
Projection 13.2

57.9% 10 50.3%CIFAR-100 CR Generation 0.93 15.73 26941.85
Inference 1.6

3.7 Discussion

The class representative generation was obtained by extracting the abstraction of

each feature’s distribution in the class representative feature space CRFS for the target

domain. For the purpose, we used a straight-forward aggregation approach. Thus, the

class representative learning model might be susceptible to outliers, sample size bias, and

hubness. The CRL model was extremely strong at the flat-hit@k with k = 2 & k = 5
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compared to k = 1 (Table 21). This indicates that the high similarity between some

CRs might lead to misclassification. To overcome the limitation of the CR generation, an

advanced optical model such as the fisher vector and gaussian mixture model might be in-

corporated in the future. We will consider unsupervised deep learning techniques to learn

efficient data codings and reduce the CR’s feature space to a more optimal representation.

We can further extend it to determine the CR vectors’ common and unique features and

find the weights that maximize the uniqueness between CRs. Currently, CRL is mainly

based on the use of visual data only for zero-shot learning. We will extend the CRL model

to handle multi-modal data distributions such as text data in the future. The CRL model

has a potential extension to have the open set recognition with T >> S. Currently, CRL

has an openness factor of 0.278 [88].

3.8 Conclusion

This chapter proposes the class representative learning (CRL) that projects the ab-

stract features extracted from a deep learning environment to the high-dimensional visual

space. In the CRL model, class representatives (CRs) are designed to represent potential

features for given data from the abstract embedding space. A projection-based inferencing

method is intended to reconcile the dominant difference between the seen classes and un-

seen classes. The CRL model has three distinct advantages than existing ZSL approaches.

(1) There is no dependence among CRs to be built in parallel and used freely, depending

upon the context. (2) Unlike other ZSL approaches, the CRs can be generated only using
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the abstract visual space by eliminating the need for semantic spaces or auxiliary infor-

mation. (3) The abstract embedding space of the source (seen classes) is solely used to

project the instances of the target (unseen classes) without any learning involved. The

current research demonstrated the benefit of using the class-based approach with class

representatives for ZSL and G-ZSL on eight benchmark datasets. Extensive experimental

results confirm that the proposed CRL model significantly outperforms the state-of-the-

art methods in both ZSL and G-ZSL settings. The CRL model is presented herein as an

instance-based projection-method zero-shot learning method, but surprisingly this outper-

forms complex state-of-the-art instance-based synthesizing methods. The work presented

in this chapter was published as part of Chandrashekar et al.[128].
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CHAPTER 4

MCDD: MULTI-CLASS DISTRIBUTION MODEL FOR LARGE SCALE

CLASSIFICATION

Data level parallelization or distribution has become the new normal among the

proposed machine learning or deep learning algorithms. The model built from a large

amount of data is singular but not decomposed. One of the significant problems in ma-

chine learning and deep learning with big data is that it is becoming a complex and big-

ger model. As shown [19], an increase in either the number of layers or the number of

parameters in a deep learning model leads to better accuracy. The well-known deep neu-

ral network models include AlexNet [129], VGG [78], GooGleNet [127], ResNet [77],

and Inception-Resnet [130]. They mainly focus on large and very complex networks to

improve accuracy by adding additional layers or combining other networks to existing

network models.

As evaluated in [131], ensemble learners could be an effective mechanism to com-

bine and scale the deep learning classification model as a base learner. Some ensemble

learners, such as Random Forest [132] and Ada Boost [133], showed improvement in

classification accuracy compared to using a single classifier in terms of data distribution

and model distribution. Ju et al., [131] introduced advanced ensemble learners, including

Base Learner, Super Learner, Bayes Optimal Classifier, Unweighted Average, and Ma-

jority Voting in the Deep Neural Network setting. Considering Random Forest, Multiple
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Models (trees) are built based on randomly distributed data and a simple voting paradigm

as a decision making process.

Here is the limitation of these algorithms: (1) the randomness in the data distri-

bution; (2) the model has no structure; (3) there is no distributed decision making on the

classification (i.e., if there are ten classes, they still decide on ten classes). Due to these

issues, the computation cost is quite expensive. There is no significant improvement as

there are still a large number of classes to be classified.

This chapter proposes a distributed classification model called multi-class discrim-

inative and distribution (MCDD), focusing on building multiple models in a distribution

and parallel manner. The motivation of this work is how a model can be partitioned into

several various sub-models. Depending upon the need, a more prominent model can be

composed. The smaller models can be organized in a hierarchical manner (divide-and-

conquer) to produce the most optimal recognition for any given input.The effectiveness of

the MCDD model was shown with the CNN based image classification and segmentation

on multiple large datasets, Caltech-101 [123], CIFAR-100 [134], ImageNet-1K [135].

The MCDD-based distribution model shows a better performance than the state-of-the-

art performance.

Our primary contributions in this chapter are as follows.

• We define a measurement called confusion factor that computes a misclassification

cost and detects communities with high classification errors and build a deep CNN

model to over the limitations.
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Figure 26: MCDD Deep Learning Networks

• We develop a hierarchical clustering algorithm to break the ”confusing” communi-

ties down into smaller communities. This clustering will result in minimizing the

confusion factor of the communities and maximize the classification accuracy.

The MCDD networks are designed as a hierarchical deep learning network that is

composed of multiple AlexNets [129] as shown in Figure 26 and it is also evaluated with

multiple datasets, Caltech-101 [123], CIFAR-100 [134], and ImageNet-1K [135].
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4.1 Related Work

4.1.1 Classification Measurements

A distance metric [136] was proposed to find the most influential neighbors and

approximate their influence on classification. However, they cannot detect the classes of

the misclassification. The visualization methods for representing models of misclassi-

fied cases were developed in [137] and [138]. A method for improving the performance

of classification in small datasets such as MNIST in [139]. Recently, the accuracy im-

provement in large-scale classification using CIFAR-100 [134] and ImageNet [135] using

a graph-based tool in [72]. Even if this work presented community detection based on

the confusion graph [72], they are limited to finding an optimal solution for significant

improvement in the classification.

4.1.2 Hierarchical Classification

The hierarchical structure was proved to be useful in the multi-class classification

problem. In the works [140, 141, 142], similarity priors were analyzed to determine if

the nodes in classifiers are too close to nearby nodes. Similar to our work, a dissimilarity

constraint was used to differentiate nodes from their ancestors [143, 144]. The weighted

classification error model was proposed to assign different nodes according to the hierar-

chical loss of model learning [145, 146, 147].

Hierarchical class structures were introduced to improve the performance of deep

networks. In [148], similar classes were grouped and classified with an augmented deep

network. In [149], a hierarchical convolutional neural network (HD-CNN) was designed
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based on the two-level organization of coarse and fine-grained categories by sharing com-

mon layers. In [135], common and discriminative features were analyzed across classes

and learned for representing the feature in pooling layers of a hierarchical structure.

4.1.3 Classifier Structure

Hierarchical models have been built for multi-class classification based on con-

fusion matrices obtained from SVM classifiers [150, 151, 152], constructed as a binary

branch tree in [151], a label-embedding tree in [150], and a probabilistic label tree in

[152]. Furthermore, a relaxed hierarchical structure was introduced in [153] for allowing

the confusion classes to belong to more than one node in the hierarchy. In contrast, vi-

sual trees were constructed by clustering techniques [154, 155, 156, 157], AP clustering

by [157], and Spectral clustering by [155]. Clustering methods are intuitive and efficient.

However, they may not provide a higher classification accuracy compared to classification

methods.

The greedy learning method is typically utilized for class prediction. Most hi-

erarchical classification approaches [157, 158, 159, 43] are greedy learning by making

predictions in each layer for maximizing the classification probability. However, greedy

learning-based inferences may produce propagated errors at consequent layers (i.e., a pre-

diction error at the lower level will provide ones at a higher level).

These works mainly focus on the similar or the same features that are shared by

all classes. On the contrary, our proposed MCDDNet enforces to group classes that have

various features instead of having a similar feature. Recently, SplitNet [160] addressed
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Figure 27: Example of the MCDD Distribution and Classification

the problem of splitting classes or features for sharing common features within a group of

related classes and results in reducing the number of parameters and computation cost for

large-scale problems. In SplitNet, the networks are partition into subnetworks according

to the semantic taxonomy, and they are assigned and trained for groups. On the other

hand, semantic knowledge of class relatedness is not well-fitted for a distributed machine

learning setting to learn a network structure that is well-fitted for a distributed machine

learning setting.
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4.2 Multi-Class Discriminative Distribution Model

We design a new model, called the Multi-Class Discriminative Distribution Model

(MCDD), for maximizing the classification accuracy in large scale multi-class classifica-

tion. For the purpose, classes will be clustered based on the baseline levels of confusion

factors among multiple classes, as shown in Figure 27. In the MCDD framework, the

following properties are satisfied:

• The confusion matrix should present the representative confusion between the classes

in the classification.

• The members of a community (classifier) should be as diverse as possible.

• The average accuracy of the child-level classifiers should be higher than the parent-

level classifier’s accuracy.

• The singleton community (the size of the community is one) is prohibited. Thus,

during the clustering, singletons are forced to team up with others.

• The communities should be mutually exclusive and collectively exhaustive.

• The confusion between classes within a community during the multi-class classifi-

cation should be minimized so that the classification accuracy could be maximized.

Unlike the recent work [72], we propose a novel concept of a diversity community

detection and a community clustering model. The MCDD framework will minimize the

confusing factors among classes using a deep learning hierarchical model and improve
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the overall and community-wide classification accuracy using a hierarchical deep learning

model (shown in Figure 26).

4.2.1 Confusion Measures

The confusion factor (β) measures the degree of confusion among the classes that

are misclassified by the classifier. The confusing factor of classes is determined with

false-positive instances and false-negative instances of the confusion matrix. We assume

that if two classes are similar, then their confusion factor is high. Also, if there are high

instances of false-positive as well as false-negative, the confusion factor is high.

The confusion factor is defined by a harmonic and integrated model of the false-

positive factor and the false-negative factor for a given confusion matrix. The confusion

matrix (CM) is an n by nmatrixCM , where the each entry, CMij , where 1 <= i, j <= n

has the percentage of correctly or incorrectly classified cases (i.e., true-positive, false-

positive, false-negative, true-negative) as follows:

• true-positive (TP): Mij is correctly classified of class i which is classified as class j

(i = j)

• false-positive (FP): Mij is misclassified of class i which is actually a class j.

• false-negative (FN): Mij is misclassified of class j which is actually a class i.

• true-negative (TN): Mij is correctly classified of class j which is actually a class j

(i 6= j)
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We design a probabilistic matrix called the confusion factor (CF) that will be used

to detect a homogeneous community (i.e., high confusion factors among classes in the

community) and partition such a community into smaller ones. The CF matrix is gener-

ated by computing the confusion factor using

• Confusion factor between false-negative (FN) and true-positive (TP)

• Confusion factor between false-positive (FP) and true-positive (TP) for a given con-

fusion matrix CM.

More specifically, the false-negative Confusion Factor (FN − CFij) between classes ci

and cj in CM (CFij) is the confusion factor of classes ci and cj . The false-positive confu-

sion factor (FP − CFij) between classes cj and ci in CM (CFji) is the confusion factor

of classes ci and cj .

The Confusion Factor (CF) represents the confusion measure between classes ci

and cj in the CM matrix computed by the following formula:

CFij =
√

(CMij − CMjj)2 + (CMji − CMjj)2 (4.1)

where 1 <= i, j <= n. In Equation 4.1, CMij is a false-negative (FN) case, CMjj is a

true-positive (TP) case, and CMji is a false-positive (FP) case.
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The CF matrix is represented where m = n as follows:

CMm,n =



m1,1 m1,2 · · · m1,n

m2,1 m2,2 · · · m2,n

...
... . . . ...

mm,1 mm,2 · · · mm,n


Table 25 and Table 26 show an example of confusion matrix with five classes and

their confusion factor matrix, respectively. The number of total instances in the matrix is

25. In Table 26, the confusion factor for two classes, Beaver (Be) and Airplanes (Ai) is

computed as follows: CFAi,Be = CFBe,Ai
=√

(CMBe,Ai
− CMAi,Ai

)2 + (CMAi,Be − CMAi,Ai
)2 =

√
(0− 1)2 + (4− 1)2 = 3.16.

Table 25: Example of Confusion Matrix

Ac Ai An Ca Be
Ac 4 0 0 0 1
Ai 0 1 0 0 4
An 0 1 2 1 1
Ca 0 1 1 2 1
Be 0 0 1 0 4

Table 26: Example of Confusion Factor Matrix

Ac Ai An Ca Be
Ac 0 4.12 5.66 5.66 5
Ai 4.12 0 1 1 3.16
An 5.66 1 0 1.41 1.41
Ca 5.66 1 1.41 0 2.83
Be 5 3.16 1.41 2.83 0
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Table 27: Example of Normalized Confusion Factor Matrix

Ac Ai An Ca Be
Ac 100% 67% 100% 100% 86%
Ai 67% 100% 0% 0% 46%
An 100% 0% 100% 45% 9%
Ca 100% 0% 45% 100% 39%
Be 86% 46% 9% 39% 100%

The Normalized Confusion Factor (NCF) matrix is the normalization of the Con-

fusion Factor (CF) using Equation 4.2.

NCFij =
CFij −Minij
Maxij −Minij

(4.2)

where Minij = min1≤i≤n,1≤j≤n, Maxij = max1≤i≤n,1≤j≤n, 1 <= i, j <= n.

In Table 27, the normalized confusion factor (NCFBe,Ai
) for two classes, Beaver

(Be) and Airplanes (Ai) is computed as follows: NCFAi,Be =
3.16−1
5.66−1 = 46%.

In Confusion Factor Matrix Computation, Ac: Accordion, Ai: Airplane, An: Ant,

Ca: Cannon, Be: Beaver

4.2.2 Community Detection

In this chapter, we design our community detection algorithm to find out the com-

munity having a high number of confusing classes from the classification. A community

having such classes will be detected by an unbalanced distribution factor in the confusion

space. Several primary parameters (including the community classification performance,

the size of the community (δ), and the confusion factors (β) of the classes in the com-

munity) need to be determined for the partitioning of the community into smaller diverse
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communities.

We used the standard deviation as a measurement to check how the members are

spread out in the community distribution. Each of the confusion factor values in the dis-

tribution deviates from the center of the community. We first compute (1) the subtract

the center’s confusion factor from each number’s, (2) square the results (the squared dif-

ferences), (3) compute the average of those squared differences (variance), (4) take the

square root of the variance (standard deviation). We utilize simple statistic testing such

as analysis of variance (ANOVA) to validate ”variation” among and between communi-

ties by comparing means of communities for statistical significance. Precisely, we first

compute the confusion factor for a given community. Then we use the p-th percentile

(0 < p < 100) as the cutting point to detect the large confusing community. Any com-

munity whose confusion factor is less than the p-th percentile will be partitioned. From

this analysis, we will find significant differences in the members’ performance between

the best and worst communities.

We define two distinguished classes that influence the classification accuracy of a

community: Trouble maker and Superstar.

• Trouble maker (TM) is a class that causes difficulty or problems in classification,

especially that results into degrading the classification performance of the commu-

nity. It can also be considered as class which has lower individual accuracy and is

also highly confused with other classes.

TM(C) = ci > 75% ∗ Avg(C) where c1 ∈ C (4.3)
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• Superstar (SS) is a class that contributes to increase the community-wise classifi-

cation accuracy. It is class which mostly best performers of the group, projecting

and increasing community accuracy. This doesn’t affect or contribute to individual

accuracy of other classes. The Superstar will be detected based on formula below:

SS(C) =



Max(C)−Avg(C)
2

Avg(C) > 90

75% of Avg(C) Avg(C) < 50%

Avg(C) + SS thr(C) otherwise

(4.4)

The Superstar (a higher performer with a high classification accuracy) and the Trouble

maker (a poor performer with a low classification accuracy) will be recognized and uti-

lized in the community’s partition. The three superstar and three trouble maker commu-

nities are shown in Figure 28 and Figure 29, respectively

Figure 28: ImageNet Communities 1 - 6: Superstars

4.2.3 Community Reconstruction

We propose a noble clustering algorithm to construct communities in the MCDD

framework. The MCDD model aims to improve classification performance. The MCDD
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Figure 29: ImageNet Communities 1 - 6: Trouble Makers

classifier is a hierarchical assembled one, which is different from the existing assembled

classifier [132]. We are given a Confusion Factor (CF) matrix from the classification.

The MCDD clustering algorithm partitions the set of classes into smaller sets where sim-

ilar classes are to be spatially separated in the Euclidean distance space. We used two

clustering techniques (K-Means and EM) and compared their performances in terms of

an optimal distribution of classes. For the K-Means clustering, we used a heuristic ap-

proach to determine K using Silhouette width. This optimal method determines that a

higher number of clusters does not always improve the learning. The optimal heteroge-

neous clustering method supports the improvement based on how to distribute classes for

a given dataset. In this chapter, we have hierarchically extended the clustering algorithm

by designing optimization strategies using the accuracy performance of communities or

sizes of communities.

4.2.3.1 Hierarchical K-Means Clustering

For constructing the MCDD model, the Hierarchical K-Means clustering (HKM)

algorithm is designed to group visual entities together based on their confusion factors

to discover an ideal distribution of categories that results in high classification accuracy.
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The purpose of the clustering in MCDD is quite different from other clustering methods.

We are clustering classes in terms of diversity between them. In other words, the classes

in a community formed after the cluster have classes that differ so that the confusion that

existed during the classification.

Each model in MCDD will show the minimum confusion factor so that MCDD

supports the high learning performance for both the community-based classification and

the overall classification. The HKM supports the hierarchical distribution of multiple

categories according to the MCDD model for the multi-class classification problem.

The HKM algorithm aims to minimize a confusion factor between categories and

to find an optimal distribution of these categories. The HKM algorithm was designed by

extending the KM algorithm for the construction of classification models in a hierarchi-

cal manner. The HKM algorithm is an unsupervised learning technique for partitioning

entities (annotated terms extracted from images) into K different contexts by clustering

them with the nearest mean. For our purpose, we applied it using the Confusion Factor

(CF) matrix. The condition for clustering the CF matrix into a set of smaller CF matrices

(smaller communities) will be defined based on the threshold (α) of the community-wide

accuracy. The number K can be determined in a heuristic manner. We have applied a

simple rule (k =
√
n, where n is the number of classes in the community for the shake of

simplicity) level-by-level during the clustering.

k∑
i=1

∑
x∈Si

‖x− µi‖2 (4.5)

where µi is the mean of points in Si.
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Figure 30: ImageNet Community Size: Confusion Graph vs. MCDDNet

The HKM algorithm is an excellent way to discover the optimal distribution of cat-

egories by minimizing the confusion factor between classes and hierarchically organizing

them.

4.2.3.2 Distribution Algorithm and Strategies

The Distribution algorithm of the MCDD is intended to group the categories into

communities such that the community achieves better accuracy compared to belonging to

the global community.

4.3 Experimental Results

In this section, we evaluate the performance of MCDD on three datasets: Caltech-

101 [123], CIFAR-100 [134], ImageNet-1K [135]. First, we verify the effectiveness of

MCDD in accuracy and efficiency by comparing it with other works. We investigate the

effect of level-by-level clustering so that the community will be organized for distributed
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Algorithm 4: Class Distribution using Confusion Factor

1 Input: Data set d with n number of categories, α represents the minimum

accuracy threshold for community splits, t represents the minimum possible size

Output: k communities with dissimilar categories sets

2 WHILE noChange is true

3 FMij = ClassificationAlgorithm(d)

4 EDij =
√
(FMij − avgij)2 + (FMji − avgij)2

5 k′ = 0

6 k =
√
n/2− k′

7 CommunityModel = Clustering..

8 Algorithm(ED, k)

9 for i ∈ n do

10 CommunitySet[i] = Community..

11 Model.predict(ED[i])

12 end

13 for i = 1 to CommunitySet.length do

14 if CommunitySet[i].accuracy > α then

15 noChange = false

16 end

17 if CommunitySet[i].size < t then

18 k′ = k′ + 1

19 end

20 end
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Figure 31: ImageNet Community and Classification Accuracy

classification hierarchically. We also examine the impact of distributed classification on

large-scale multi-class classification and learning on several communities and hierarchical

levels. Finally, we validate the proposed MCDD model in terms of the accuracy analysis

for the optimal distribution. It has been conducted using the combination (the order does

not matter and repetition is not allowed) where n is the number of classes to choose from,

and we choose k from them. The number of ways to distribute n classes into k learners

(communities), each community will have δ ≤
√
n classes.

We validate the proposed MCDD method for image classification tasks using three

benchmark datasets. As shown in Table reftable:datasets, the CIFAR-100 dataset [134]

contains 32 X 32 pixel images from 100 generic object classes. For each class, there are

500 images for training and 100 images for the test. We set aside 50 images for each class
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Table 28: Community-Based Classification: Confusion Graph [72] vs. MCDDNet on
AlexNet with ImageNet

Model Confusion Graph MCDD
Type Best Worst Best Worst
Size 3 3 25 41

Comm. 352, 353, 354 651, 829, 856 Community 1 Community 4
Error% 28% 65.71% 4.9% 54.6%

Size 3 3 37 62
Comm. 231, 232, 233 589, 791, 792 Community 2 Community 5
Error% 42.66% 51% 8.1% 50.1%

Size 3 3 47 69
Comm. 409, 587, 848 571, 692, 797 Community 3 Community 6
Error% 44.82% 50.35% 9.4% 40.6%

from the training dataset as a validation set for cross-validation.

Secondly, the ImageNet-1K dataset [161] that consists of 1.2 million images from

1,000 generic object classes. For each class, there are 1K-1.3K images for training and

50 images for validation, which we use for the test, following the standard procedure.

• Baselines. To compare different ways to obtain grouping, we test multiple variants

of our MCDDNet and baselines.

• Base Network. Base networks with full network weights. We use AlexNet [129],

VGG [78] and GoogLeNet [127] variants as the base network for the ImageNet-1K

[135].

• Semantic. We use a semantic taxonomy model (6 top-level Caltech-101 semantic

categories) in [162] and 18 CIFAR-100 semantic categories in [72].

The communities detected by MCDDNet are much larger than ones from the con-

fusion graph, as shown in Figure 30 and Figure 31. Thus, the number and the size of
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communities are more significant than ones from the confusion graph. Also, the overall

accuracy of the community-based classification in MCDDNet is significantly improved

compared to the accuracy of the detecting communities in the confusion graph.

Figure 32 and Figure 33 confirm that the community classification performance

is strongly related to the following two factors: the number of trouble makers and the

accuracy distribution among the members in each community. In the best communities

Figures 32a- 32c shows very few trouble makers and Figures 33a- 33c shows a distri-

bution pattern (a high mean value (m) and a low standard deviation (sd)) in members’

classification performance (similar font sizes). For example, Community 1: mean = 0.95

and sd = 0.0391. In the worst communities Figures 32d- 32f shows many trouble makers

(red color) and Figures 33d- 33f shows a high distribution pattern (a low mean value (m)

and a high standard deviation (sd) of the community classification accuracy. For example,

Community 4: mean = 0.49 sd= 0.16.

4.3.1 Evaluation for Community-based Classification

Table 28 shows the accuracy improvement (error rate in %) in the experiments for

two models (Confusion Graph [72] and our MCDDNet). We tested each refined model

using images from the ImageNet validation set.

Table 29 shows the comparison of the MCDDNet and SplitNet in terms of three

datasets, CIFAR-100, ImageNet, and Caltech-101 on AlexNet and VGG Network. MCDDNet

shows a significant improvement in the classification errors by community detection and
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(a) Community 1 (b) Community 2 (c) Community 3

(d) Community 4 (e) Community 5 (f) Community 6

Figure 32: ImageNet Communities: 3 Best and 3 Worst Communities

(a) Community 1 (b) Community 2 (c) Community 3

(d) Community 4 (e) Community 5 (f) Community 6

Figure 33: ImageNet Communities: Accuracy Distribution
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Table 29: Comparison: SplitNet vs. MCDDNet

Method Dataset Network Depth Group Baseline Error(%) Reduced(%) Semantic
SplitNet CIFAR-100 AlexNet 6 2 24.28% 23.96% 0.32% 24.46%

ImageNet AlexNet 3 1-1-3 41.72% 42.07% -0.35% N/A
ResNet 3 1-1-3 25.58% 24.90% 0.68% N/A

MCDDNet CIFAR-100 AlexNet 3 10 55.3% 19% 36.3% N/A
18 55.3% 12% 43.3% 33.6%

VGG 2 5 64% 34% 30% N/A
ImageNet AlexNet 2 16 58.3% 27% 31.3% N/A

Caltech-101 AlexNet 3 8 21.1% 6% 15.1% 12.6%
VGG 3 8 23% 5% 18% N/A

Table 30: MCDD Hierarchical Classification Model Results on AlexNet

Dataset Level Error% Comm# Size of
Community

CIFAR-100 1 55% 1 100
2 25% 5 20
3 19% 10 10

Caltech-101 1 21% 1 101
2 9% 5 20
3 6% 8 13

ImageNet-1K 1 58% 1 1000
2 27% 16 63
3 17% 43 23
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construction steps. Table 30 shows the effective of the hierarchical community construc-

tion using the MCDD model. This table clearly shows the significant improvement in the

accuracy of going deeper and smaller communities. Table 31 shows the effectiveness of

the classification for varying sizes of images in the CIFAR-100 dataset for training. We

have found that the classification performance with 200 images is still excellent compared

to other cases.

The tag clouds of the best 3 communities and worst 3 communities are shown in

Figure 32a- 32c and Figure 32d- 32f, respectively. The tag cloud is a visual represen-

tation of the community, specifically used to depict classes in the community. Tags are

class names of the ImageNet data, and the accuracy contribution of each class is shown

with font size or color. The green color and red color are used to represent the superstars

and trouble makers. The font size is representing the accuracy of each class in their com-

munity. We can easily find out that the font sizes of classes in the best three communities

are similar, while the worst three communities have quite diverse classes (some are big,

and some are small).

4.4 Conclusion

In this chapter, we presented Multi-Class Discriminative Distribution (MCDD) for

effective deep learning with large scale datasets. In the MCDD framework, we presented

an optimal distribution of classes by computing a misclassification cost (i.e., confusion

factor). The classification hierarchical deep neural network model was built by learning
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Table 31: Performance with CIFAR-100 Image# on AlexNet

Image# Level Accuracy Comm.#
100 1 41% 1

2 72% 5
3 75% 9

200 1 45% 1
2 75% 5
3 81% 10

300 1 46% 1
2 75% 5
3 78% 9

400 1 50% 1
2 76% 5
3 81% 9

500 1 49% 1
2 74% 5
3 81% 11

an optimal allocation of classes with a higher accuracy performance of the learning pro-

cess. The MCDD framework was validated using large real-world datasets (Caltech-101,

CIFAR-100, ImageNet-1K) with higher accuracy than existing models. The work pre-

sented in this chapter was published as part of Chandrashekar et al.[75]. Zhao et al. [163]

and Vaka et al. [164] are a few application papers based on fundamental machine learning

ideas.
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CHAPTER 5

ZERO SHOT LEARNING FOR TEXT CLASSIFICATION USING CLASS

REPRESENTATIVE LEARNING

5.1 Introduction

Zero-Shot Learning (ZSL) has been a very active research area in the field of

image processing. However, ZSL in text classification has attracted very little attention

despite the increasing interest in the research of NLP and text classification. ZSL is clas-

sically defined as the classification of unknown or unseen (target) categories by using

external linguistic or semantic information through intermediate-level semantic represen-

tations from seen or known (source) categories [61, 91, 62].

With the rapid growth in topics in social media and having fewer and fewer labeled

training data, Zero-Shot Learning-based Text Classification has become an essential re-

search problem. The recent ZSL works demonstrated their effectiveness in transferring

from prior experiences to new classes, a form of transfer learning. The most used seman-

tic space in the ZSL model is supported by a joint embedding framework called Label-

Embedding Space containing a combination of visual embeddings and word embeddings

[4, 12, 165]. In this work, we attempt to take advantage of already well-established Label

Embedding Space and use it for text classification.

With the prevalence of word embeddings, more and more work adopts pre-trained

word embeddings to represent the meaning of words, to provide the models with the
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knowledge of labels through Generative Models [166], External Knowledge Graph [167]

or Class Descriptions [167, 168]. In contrast to prior works, we mainly extract the deep

neural network features learned from text inputs of seen classes creating image represen-

tatives. We do not rely on any other features such as attribute annotations or external infor-

mation. The goal is to propose an innovative model called Class Representative Learning

(CRL) for zero-shot learning-based text classification for seen and unseen data. In this

model, the focus is on creating a universal representation called the class representatives,

which is typically based on Seen Classes based pre-trained deep learning models. Given

this goal, architectural improvements are not our purpose; instead, we explore universal

representatives that could be used for classification. It is desired to enable the universal

representation to be trained from any existing architectures or datasets with reduced ef-

forts and resources. The minimum requirement for the CRL model is to have a suitable

seen (pre-trained) model that can be mapped to the given datasets (unseen).

The contributions of our work can be summarised as follows:

• We propose a new framework for Zero-Shot text classification, a framework for

the design of abstract representatives as classifiers, and suggest innovation in ZSL

research. Unlike previous ZSL works [61, 91, 62] in which they require extra infor-

mation besides text data, our framework does not require any external or auxiliary

information.

• We create prototypes for each class as classifiers, called Class Representatives, in-

dependent of other classes.

• We evaluate the Class Representative Learning (CRL) framework using metrics
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Figure 34: Class Representative - Text Classification

established by Xian et al. [92].

5.2 Related Work

In [169], a method for word embedding with LSTM network and aspect-based

LSTM was proposed for Zero-Shot multiclass classification by learning the relationship

between a sentence and embedding of sentence’s tags and applying it for inferencing

with unseen sentences and tags into the same embedding space. In [166], a Discrimi-

native and Generative LSTM model was proposed for ZSL with label-embedding space

as an auxiliary task. In [168], a neural architecture was proposed for handling few-shot

and zero-shot labels in the multi-label setting in the form of a DAG for labels with their

natural language descriptor In [167], a zero-shot text classification framework was de-

signed using data augmentation and feature augmentation. For an efficient ZSL, semantic

knowledge, including word embeddings, class descriptions, class hierarchy, and a gen-

eral knowledge graph, were incorporated into the proposed framework. In [170], natural

language descriptions were mapped to probabilistic assertions grounded in latent class
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labels. A classifier was trained with quantitative constraints for guiding predictions from

the learned models.

A ZSL method was proposed for semantic utterance classification (SUC) by link-

ing categories and utterances through a semantic space [171]. The discriminative seman-

tic features were learned without supervision and will guide the learning of the semantic

features. A latent feature generation framework was proposed for generalized zero-shot

learning (GZSL) that aims at improving the prediction on codes for the diagnoses of dis-

eases [172]. For improved semantic consistency between the generated features and real

features of the International Classification of Diseases (ICD), an adversarial generative

model was designed for the GZSL on multi-label text classification.

A joint space of embedding documents and labels was designed for multi-label

text and ZSL classification [173]. The zero-shot learning algorithm has been applied to

the multi-label classification task in Medical Subject Headings (MeSH) assignment for

biomedical publications.

5.3 Text-based Class Representative Learning

Class Representative Learning (CRL) Framework consists of two main steps (as

shown in Figure 34), namely: the first step is Projection Function and Inference Function.

In this chapter, three different variations of the the projection function P (.). The first

variation is a combination of sentence encoder and two-layer feed-forward network. The

second and third variation is sentence encoder based on universal sentence encoder(USE)

152



and sentence bidirectional encoder representations from transformers (S-BERT). Equa-

tion 5.1 shows the first variation of P (.), which has a sentence encoder and two-layer

feed-forward network.Sentence Encoder (SE)transforms given documents to feature ma-

trix. The Learner Network (LN) learns better intermediate feature vectors by taking the

document feature matrix from SE as the input and mapping them to seen classes S. The

third step is Class Representative Generation (CRG), which takes both the seen S and

unseen U classes through the pre-trained SE and LN and extracts an intermediate feature

vector to create Class Representatives CR.

Projection Function P (.) : Di
k = LN(SE(Ti))

Inference Function I(.) : y∗ = I(x̂∗, Di
k)

(5.1)

Table 32: Notations for Text-based Zero-Shot Learning

Notation Description
(T i, yi) Input Documents , (T 1, y1), (T 2, y2), .., (T n, yn) where i ∈

(1, n)
S & U Seen Classes & Unseen Classes respectively

Di
k Document Feature Matrix for the Text Document T i with k

dimensions
P (.) LN(SE(.)) Combination of Sentence Encoder and Learner

Network are used as Projection Function
SE(.) Sentence Encoder takes a input of T i and produces output

of Di
k

LN(.) Learner Network takes a input of Di
k and produces output

of D̂i
k

I(.) Inference Function
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5.3.1 Projection Function

5.3.1.1 Sentence Encoder

Sentence Encoder (SE) is the first step of our framework, which focuses on con-

verting sentences to encoded vectors. We consider a set of n text documents T =

T 1, T 2, .., T n as an input set, and convert the text document T into Document Feature

Matrix Dk Equation 5.2 shows the transformation of each text T i, where i ∈ n to Docu-

ment Feature Vector Di
k through Sentence Encoder Function SE(.)

Di
k = SE(T i) (5.2)

The Document Feature Matrix Dk consists of n Document Feature Vector Di
k,

where i ∈ n with the corresponding class label yi where yi ∈ S. The dimension of

the Document Feature Matrix k is dependent on which a sentence encoder is used for

transformation.

In this chapter, we consider the existing framework, Universal Sentence Encoder

(USE), as the sentence encoding. USE encodes text into high-dimensional vectors, where

the model is trained and optimized for sentences, phrases, and short paragraphs. The

USE’s deep averaging network model is used as part of our CRL Model [174].

As shown in Figure 36, deep averaging network (DAN) averages the input em-

bedding of the words and bi-grams together and then the average embedding is passed

through a feed-forward network [175].
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Figure 35: Overview of Universal Sentence Encoder using Deep Averaging Network

avi =

j∑
i=1

(
vi
j
)

h1 = f(W1 · av + b1)

h2 = f(W2 · h1 + b2)

(5.3)

Figure 36: Universal Sentence Encoder based Deep Averaging Network
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f1 = max{0,W T
1 · avi + b1}

f2 = max{0,W T
2 · f1 + b2}

p(.) = SoftMax(f2(.))

min
W

n∑
i=1

L(f2, y
i
e)

L(f2, y
i
e) =

C′=2∑
i=1

yielog(p(f2))

(5.4)

Figure 37: Two-layer feed-forward Network

5.3.1.2 Learner Network

Learner Network (LN) can be based on any neural network model that aims to

build a ZSL model with the seen classes S for predicting class labels of the documents

for unseen classes U . In this chapter, for the learner network, we introduce a Three-Layer

Deep Neural Network(DNN), as shown in Figure 34. The DNN consists of two dense

layers coupled with the rectified linear unit (ReLU) activation function and the final layer

for the seen classes.

Two dense layers are based on the non-linear activation function. Equation 5.4

shows the non-linear mapping function DL(.), which incorporates both the dense layers.

The ReLU activation function was implemented element-wise over each feature vector

Di
k in Document Feature Matrix Dk. The weights and biases of the dense layer 1 & 2 are

represented as (W1, b1) & (W2, b2), respectively.

The final layer is a multi-class probabilistic classifier that produces a S-dimensional
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vector of probabilities p for each feature vector Di
k from Document Feature Matrix Dk,

where i ∈ n, as shown in Equation 5.4.

The layer of SoftMax is calculated for the seen classes S. During the training of

the Learner Network, the model is building based on the seen classes’ data. The prob-

ability calculated in Equation 5.4 is used just to facilitate the binary cross-entropy loss

function. Unlike the general neural network model, in the CRL framework, the CRs play

class-base discriminant roles in the final classification instead of the Softmax regression.

As shown in Equation 5.4, we aim at learning the non-linear mapping DL(.), i.e.,

obtaining network weights W1 and W2 using Binary Cross-Entropy Loss. Binary Cross-

Entropy Loss (L(.)) sets up a binary classification problem between C ′
= 2 classes for

every class in Seen Class Set S. Equation 5.4 shows the minimization function across the

weights W1 and W2 (shown as W ) with the Loss function, which takes each Document

Feature Vector Di
k with the corresponding label yi as the input. (Note: yie is the one-hot

encoded version of the label.)

5.3.2 CR Generation

Class Representatives (CRs) are generated using the nearest prototype strategy by

aggregating feature vectors and is independent of the Learner Network. The closest mean

feature vector with instances of the given class (i.e., CRs) is computed class by class.

In order to generate CRs, an average mean operation with the feature maps was used

to summarize the instances of classes. For each class, the instances of each feature in

the feature maps are aggregated into an abstract mean feature. The CR is an aggregated
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CR(c) = {CR1, CR2, ..., CRk}

T i ==⇒
P (.)

Di
k

CR(c)j =
1

n

n∑
i=1

Di
k

if yi = c & ∀j ∈ S
(5.5)

Figure 38: Class Representative Generation

vector of the mean features for all the elements in the feature maps. The feature maps are

generated from a dense layer of the DNN network.

The Class Representative is generated for both Seen S and Unseen U classes using

the pre-trained Sentence Encoder (SE) and pre-trained Learner Network (LN) from the

previous steps.

Figure 38 shows the class representative generation. The equation 5.5 shows the

aggregation formula where j ranges from 1 to l representing the feature dimensions, c is

the class of the input text and c ∈ S ∪U , and Nc is the number of data points for the class

c. Class Representative of the given class c is represented as the group of CR features

values CRj where j ranges from 1 to l feature dimensions. CRj is generated from the

mean of DL(.) with pre-trained weights of every input document Di
k in a given class c

as shown in Equation 5.5. Each class c in Seen and Unseen Classes (S ∪ U ) has a CR
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generated at this stage.

5.3.3 CR-based Inference

The CR-based inference is matching the input data into the Class Representatives

(CRs) and classifying with the best matched CR to the input.The CR-based inference can

be done in parallel since the CRs are independent of each other.

Here are the steps for the CR-based inference. The input is vectorized using Equa-

tion 5.4: â(x∗)) = DL(Di
k). The cosine similarity between the new text document (NI)

and Class Representatives for class c (CR(c)), where c ∈ C is computed using Equa-

tion 5.7. The CRL Model assigns the new input with the label associated with Class c that

has the highest cosine similarity score. The higher cosine similarity score indicates the

closeness between the Class Representative CR(c) and the new input (NI) in the Class

Representative Feature Space (CRFS).

y∗ = argmax
c∈U
{cos(CR(c), â(x∗))} (5.6)

where

cos(CR(c), â(x∗)) =
CR(c) · â(x∗)
‖CR(c)‖ ‖â(x∗)‖

=

∑k
j=1{CRj(c) ∗ â(xj∗)}√∑k

j=1(CR
j(c))2

√∑k
j=1 â(x

j∗)2
(5.7)

As shown in Equation 5.7, the label for the input from CRL Model ĉ is predicted

by selecting the class from all seen (source) classes S or all unseen (target) classes T that

has the highest cosine similarity to the new input. The CRL model will conduct inferring
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by matching the new input against the available CRs and label it with a class having the

highest cosine similarity score.

5.4 CRL Experiments and Evaluations

We have conducted a set of extensive experiments for text classification and Zero-

Shot Learning (ZSL) with three datasets. For the text classification experiment, we have

built and evaluated four different CRL models with various embeddings methods. For the

ZSL evaluation, we have built three CRL models and compared the results with several

state-of-the-art ZSL methods.

5.4.1 Datasets

IMDB Movie Dataset: It is a large dataset representing a binary (positive or negative)

sentiment for each of the movie review. The IMDB[176] sentiment analysis dataset con-

sists of 100,000 movie reviews taken from the IMDB large movie rating and review site.

One key aspect of this dataset is that each movie review has several sentences.

The 100,000 movie reviews are divided into 25,000 reviews for labeled training

and testing, and 50,000 unlabeled instances. There are two types of labels: Positive and

Negative, and these labels are balanced in both the training and the test sets. The dataset

can be downloaded at [177]. This data is already preprocessed with NLP techniques,

including lemmatization and stemming, segmentation, stop-word removal.

20 Newsgroup Dataset: It is a collection of approximately 20,000 newsgroup docu-

ments, partitioned (nearly) evenly across 20 different newsgroups. These 20 different
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newsgroups are organized according to their topic so that each group corresponds to

a specific topic. Some of them are very closely related to each other, for example,

comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, while others are highly unrelated,

for example, misc.forsalem, soc.religion.christian. The dataset is divided into 11,314

training samples and 7,352 testing samples.

DBPedia Dataset: The DBPedia dataset contains hierarchical classes representing the

structured information from Wikipedia [178]. The DBPedia dataset is constructed by

picking 14 non-overlapping classes[179] from DBPedia 2014. From each of these 14

classes, the fields we used for this dataset contain the title and abstract of each Wikipedia

article.

5.4.2 CRL Experiments for Classification

We have conducted experiments with four widely used embeddings in Table 34,

to know which embedding techniques are useful in building competent Class Represen-

tatives (CRs). In this experiment, we have used both sentence-level embedding (e.g.,

USE) and word-level embedding (e.g., GloVe [55], Word2Vec [180], NNLM) techniques

to see how the model might have to perform in the novel method for class representa-

tions. As seen from Table 34, USE outperforms the word embedding techniques (GloVe

or Word2Vec) for the Class Representation Learning.

For this experiment (as shown in Table 33), the IMDB dataset was used as the base

model. The two benchmark datasets, 20Newsgroup, and IMDB, are used for training and

testing. Class Representatives (CRs) were generated for positive and negative categories
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for the IMDB movie reviews.

In this experiment, the four kinds of the CRL model have been built and evaluated.

Word2Vec+CRL: Word2Vec [180] compute high dimensional word vectors from a very

large corpus. High-quality word vectors were trained using model architectures with the

CBOW and Skip-gram models. This model has been efficiently encoded in embedding

space to improve the semantic and syntactic generalizations by increasing the volume of

training data.

NNLM+CRL: A model architecture, called neural network language model (NNLM)

[181], was designed to learn both the word vector representation and a statistical language

model. The NNLM architecture is composed of a feed-forward neural network with a

linear projection layer and a non-linear hidden layer.

USE+CRL: Universal Sentence Encoder (USE)+CRL Universal Sentence Encoder [174]

provided sentence level embeddings for transfer learning in a deep averaging network

for NLP tasks. USE showed a better performance in transfer learning with NLP tasks

compared to word-level embeddings alone. In the text classification, the CRL with USE

embeddings showed the best performance among the four different CRL models.

USE+DNN+CRL For this experiment, we have also built a Deep neural network (DNN)

that is composed of two hidden units with dimensions as [500, 100] along with the input

and output layer. In this architecture (USE+DNN+CRL), (1) words classes were embed-

ded using USE, (2) they were learned in the DNN network for the conditional probability

of levels and words, (3) CR feature vectors were generated with the features extracted

from DNN, and (4) CRL was used to estimate the class-based model. For the DNN
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Figure 39: T-SNE Visualization for 20 Newsgroup Instances (USE+DNN+CRL)

training, 1000 epochs, i.e., 128,000 iterations with a batch size of 5 with 25000 training

samples.

5.4.3 CRL Experiment for Zero-Shot Learning

The second set of experiments focuses on applying the class representation tech-

nique for Zero-shot learning. For these experiments, we divide our dataset into seen and

unseen classes. Two different rates of unseen classes, 50%, and 25%, were chosen, and

the corresponding sizes of a set of the seen classes and unseen classes are shown in Ta-

ble 35.

5.4.3.1 Comparison based on Learner Network

For evaluating CRL in Zero-Shot Learning Setting, we use Convolution Neural

Network and Deep Neural Network as Learner Network to validate.

USE+DNN+CRL: This model is what we proposed for Zero-Shot learning in this chapter.

The framework of USE+DNN+CRL, as described in Section 5.3.1.2. Figure 39 shows the
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t-SNE visualization of the 20Newsgroup dataset for the first, second, third layers of the

CRL-ZSL architecture (USE+DNN+CRL) architecture, respectively. TSNE Visualization

shows the clarity obtained through instance grouping, which corresponds to the accuracy

shown for each layer in Figure 40.

GloVe+CNN+CRL: GloVe [55] is an unsupervised learning approach for word represen-

tations in a large corpus, rather than representing the entire sparse matrix or individual

context windows. GloVe leverages a word-word co-occurrence matrix using a global log-

bilinear regression model and outperforms other models on word similarity and named

entity detection. The CRL has conducted with CRs generated from the model architec-

ture of GloVe embedding and Convolution Neural Network (CNN). The first convolution

is built on GloVe. We have used Glove embedding here since the sentence level embed-

ding doesn’t support convolution. As shown in Figure 40, USE+DNN+CRL model clears

out-performs GloVe+CNN+CRL Model on both the datasets. Interestingly, in classifica-

tion accuracy, we noted that USE+CRL performs better USE+DNN+CRL (See Table 34).

Whereas in Zero-Shot Learning USE+CRL i.e., Layer 1 in USE+DNN+CRL Model has

atleast 5-10% less accuracy compared than other layers on both the datasets.

5.4.3.2 Comparison with SOTA ZSL Model

The USE+DNN+CRL Model is compared to the four state-of-art models, as shown

in Table 36.

Label Similarity: The label similarity model was previously introduced for predicting

unseen documents with labels using a semantic similarity between the label and the corpus
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Figure 40: CNN/DNN Layer-based CRL Performance for ZSL with 20NG/DBP Datasets

[182]. For the class prediction, the cosine similarity measure was used to compute the

similarity between class-based word embeddings and N-gram based word embeddings.

The multi-label ZSL model [182] was revised to a single-label ZSL model and the revised

model was used in comparative evaluation in [167].

LSTM+FC LSTM+FC predicts unseen sentences by learning the relationship between

the sentences and embedding of their tags using the LSTM networks [169]. The LSTM

network is designed 512 hidden units together with two dense layers, having 400 and 100

units, respectively. This model is generalized to predict if a given sentence is related to a

tag or not, rather than classifying the sentence with a label.

CNN+FC: CNN+FC is revised in [167] by replacing the LSTM in the LSTMFC model

with a CNN for building the zero-shot classifier.
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CNN+ZSL: CNN+ZSL is a CNN-based two-phase framework using data augmentation

and feature augmentation [167]. For ZSL, semantic knowledge, including word embed-

dings, class hierarchy, class descriptions, and a knowledge graph, are incorporated into

the proposed framework.

As shown in Table 37, for comparison between SOTA Models, we report Seen

Accuracy i.e., (S → S), Unseen Accuracy i.e., (U → U ) and Overall Accuracy. The Un-

seen Accuracy of USE+DNN+CRL clearly outperforms with a minimum of 40% increase

comparing to any other SOTA Model. The Seen Accuracy still lacks especially comparing

to CNN+FC and CNN+ZSL models, but with only a maximum of 7% accuracy drop.
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Algorithm 5: CRC-Inference: Zero-Shot Learning Setting
Input: Dt = {xi, yi}mt

i=1 ; x∗

Output: y∗

ZSL Setting: y∗ ∈ U
1 Projection Function P(x):

/* Projection Function as shown in Figure 36 & Figure 37 */

2 â(x) = P (x)

3 return â(x)

4 Inference Function I(CR(c)∀c ∈ U , â(x∗)):
5

y∗ = argmax
c∈U
{cos(CR(c), â(x∗))} (5.8)

6 return y∗

7 CR-Classifier Function CRC(Dt , x∗):
8 Dt −→

P
D̂t

9 for i ∈ 1→ mt do
10 â(xi) = P (xi)

11 end
12 D̂t = {(â(xi), yi}mt

i=1

13 â(x∗) = P (x∗)

/* CR Generation: Based on Equation 5.5 */

14 for c ∈ U do

15 CR(c)j =
1

mt

∑mt

i=1 â(x
j
i ),

16 if yi = c & ∀j ∈ (1, n)

17 end
/* Classifier Function */

18 y∗ = I(CR(c) ∀ c ∈ U , â(x∗))

Table 33: Class Representative Text Classification Setting

Dataset #Class Base Embedding
20NG 20 IMDB USE, NNLM,
IMDB 2 Word2Vec
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Table 34: Class Representative Learning Text Classification- Testing Accuracy

Model IMDB 20NG
Word2Vec + CRL 64.9% 54%
NNLM + CRL 68.6% 58%
USE + CRL 79.3% 65%
USE + DNN + CRL 76% 64.2%

Table 35: Dataset for Zero-Shot Learning Evaluation

Dataset Unseen Split #Seen #Unseen
20NG 25% 15 5

50% 10 10
DBPedia 25% 11 3

50% 7 7

Table 36: State-of-Art Zero-Shot Learning Model

Approach Model Pre-trained Semantic Knowledge
Label Similarity Unsupervised
LSTM+FC LSTM Google

News
Semantic Emeddings for Tags, Word Em-
beddings (Word2Vec)

CNN+FC CNN
CNN+ZSL CNN Word Embeddings, Class Descriptions,

Class Hierarchy, ConceptNet (Knowl-
edge Graph)

CRL+ZSL (ours) DNN None Embeddings (USE)
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Table 38: Class-wise Accuracy for Class Representative Learning in Zero-shot Learning
setting

20NG 50% Seen (10 classes) 50% Unseen (10 classes)
Class F1-Score Avg Class F1-Score Avg
alt.atheism 0.53 0.646 rec.sport.hockey 0.81 0.629
comp.graphics 0.63 sci.crypt 0.59
comp.os.ms-windows.misc 0.54 sci.electronics 0.61
comp.sys.ibm.pc.hardware 0.57 sci.med 0.82
comp.sys.mac.hardware 0.55 sci.space 0.82
comp.windows.x 0.57 soc.religion.christian 0.67
misc.forsale 0.70 talk.politics.guns 0.63
rec.autos 0.75 talk.politics.mideast 0.55
rec.motorcycles 0.72 talk.politics.misc 0.45
rec.sport.baseball 0.90 talk.religion.misc 0.34

DBPedia 50% Seen (7 classes) 50% Unseen (7 classes)
Class F1-Score Avg Class F1-Score Avg
Company 0.93 0.944 Natural Place 0.90 0.878
Educational Institution 0.91 Village 0.89
Artist 0.97 Animal 0.85
Athlete 0.98 Plant 0.86
Office Holder 0.90 Album 0.79
Mean of Transportation 0.95 Film 0.91
Building 0.96 Written Work 0.95

Class-wise Accuracy: The class-wise accuracy for USE+DNN+CRL is shown Table 38.

For understanding accuracy for seen and unseen classes, we consider 50-50 split of 20New-

group and DBPedia Datasets. The Advantage of Class Representative can be effectively

showcased that the average accuracy of unseen classes is almost as high as the average

accuracy of seen classes.

5.5 Conclusions

In this chapter, we proposed a novel class representative framework learned from

deep neural network features and sentence level word embeddings. The experiments
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show that CRL+CL improved the accuracy using Universal Sentence Encoder in clas-

sification instances for text classification, while CRL+ZSL improved the overall accuracy

for zero-shot learning in transferring knowledge from seen to unseen classes. From the

experiments on three benchmark datasets across various domains, we achieved the high-

est overall accuracy compared with the state-of-the-art works in Zero-Shot Learning. As

future work, we will extend our CRL framework to perform Zero-Shot Learning for multi-

modal classification with a more substantial amount of mixed text and image data. The

work presented in this chapter was published as part of Chandrashekar et al.[183].
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CHAPTER 6

VISUAL CONTEXT LEARNING WITH BIG DATA ANALYTICS

6.1 Introduction

Understanding contextual information composed of both text and images is benefi-

cial for multimedia information processing. We face challenges in dynamically capturing

such contexts from real datasets. This challenge of capturing context is strongly related

to big-data issues (i.e., volume, variety, velocity). Existing models such as ontologies

and dictionary (e.g., WordNet) are mainly interested in individual terms/concepts. Still,

they do not support identifying a group of words that describe a specific context. We as-

sume that the association will define the relationship’s consistent context among entities

in the images. In our contextual model, the association among entities in visual settings

(i.e., images) will be dynamically computed as relations in such contexts are extracted

atomically from their annotated text. These are used to generate a contextual graph that

describes a specific context of images.

We have relatively limited capacities to support for processing big data for extract-

ing contextual information from heterogeneous sources and building contextual models

for such big data. Furthermore, existing solutions are not scalable due to the computa-

tionally intensive tasks and prone to data sparsity.

Big data analytics have made significant progress in analyzing heterogeneous,
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more massive datasets using big data processing frameworks like Hadoop and Spark. Pro-

cessing, mapping, and integrating different data from multiple sources can be efficiently

conducted for data-processing for real-world applications.

Our work is inspired by the concept of end-to-end machine learning pipelines

in Spark MLlib that was proposed for scalable and efficient large-scale data processing

in big data applications [184]. They have demonstrated the improvement of the speed,

scalability, and continuous extension in Spark MLlib. Specifically, Spark provides a new

computational paradigm for parallel and pipeline programming for big data analytics.

Although Spark has shown the improvement of high performance in data analytics with

big data compared to Hadoop [184], some challenges should be overcome for big data

analytics. Specifically, there is still much room for improvement in the learning context

from big data. Understanding the nature of what is required to build a context model is

imperative. Providing context models for data processing is extremely time-consuming

and complex but often highly demanding.

In this chapter, we have presented a novel framework based on a parallel and

pipeline architecture that will support big data analytics for context learning from large

scale images and their annotations. We present the VisContext framework (shown in

Figure 41) that aims to support contextual learning from multiple sources by constructing

clusters of contexts in multimedia. In the clusters, contexts are analyzed for preserving

neighboring information that is relevant in a given context. The context models based

on the associated entities and their neighbors are defined as context graphs in clusters of

associated features. Effectiveness in the discovery of the contextual association of terms
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Figure 41: VisContext Framework on Apache Spark

and images, visual context symmetrization, and image classification based on context,

have been evaluated using various well-known datasets.

We first rationalize the Visual Context Model (VisContext) that specifies contex-

tual association for visual context learning from heterogeneous sources. Second, we de-

fine the association measurement between features and their clustering. Third, we eval-

uate the robust context learning approaches using state-of-the-art clustering and classifi-

cation techniques for recognizing the most suitable method for building the VisContext

model.

6.2 Related Work

There are ongoing efforts in annotating the contents of images. Correctly, for

automatic annotation of images, a corresponding mapping schema between words and
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images [185] and the spatial mapping between scene type and objects [186, 187] were

presented. These works focus on correct image classification in terms of correctly labeling

scenes or objects with a fixed set of categories. However, our work is different as we are

interested in extracting contextual information from a collection of images and building a

contextual model based on evidence from the derived contexts.

The following are some works that explore the description generation for images:

Machine learning algorithms were applied to generate the most compatible annotation

models [188], braking annotations into smaller pieces and binding them together into new

annotations [189], image caption generation based on predefined templates for the context

[190], generative grammars [191], and a fixed window context [192]. Recurrent Neural

Networks [193] were used to generate image descriptions depending upon the probabil-

ity distribution over the next word [194], but they suffered in performance. Our work

is different from these works since we focus on building context models and collecting

contexts extracted from images for these context models.

Image annotation and description datasets [195] and sentence description for se-

mantically similar images [196] establish image description generation through semantic

scene understanding. Semantic tagging focuses on recognizing words of semantic im-

portance and on a contextual understanding of a natural language description or query.

Common approaches in semantic taggers include recurrent neural networks [193], senti-

ment analysis [197], named entity recognition [198], entity-relation extraction [199], and

supervised word learning with word2vec [200].

These works depend on large amounts of manually annotated data or well defined
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categorized data to achieve excellent performance. Besides, they are limited in terms

of the context learning with associated conditions and presenting the semantic relations

of these contextual terms. In [201], the visual context the structure was constructed by

analyzing visual link graphs and latent semantics using Singular Value Decomposition

(SVD), which is not applicable for a large number of images due to computational com-

plexity.

Unlike these works, we focus on a pipeline approach that started from unstructured

data to contextual knowledge using natural language processing, information retrieval

technologies, and unsupervised learning approaches. Finally, the context models will be

evaluated using supervised learning algorithms. This approach supports understanding

the semantics of context models built from evidence extracted from images by analyzing

the association of features (their concurrence and frequency in specific contexts) and their

attributes.

6.3 Visual Context Model

Zitnick et al., [202] described the semantic meaning of images that can be captured

through the presence of objects, their attributes, and their relations to other objects. It is

not easy to extract such complex visual information from a group of images. In this

chapter, we propose a new approach to building a model for a visual context model that

depicts the visual contexts and the semantic information of images.

Definition 1: Visual Context - The visual context describes bounded contexts through

the association of entities and their relations in a visual context. Different settings may
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have completely different associations among any everyday objects and their relationships

in multimedia domains. It is extended by the collaboration of entities with each other

through contextual association model.

Definition 2: Visual Context Graph - The visual context graph describes bounded con-

texts through contextual association model. A visual context is represented by the context

graph representing an association of entities (features) and their relations. Different enti-

ties may have different associations dependent upon a specific context.

Definition 3: Context Boundary - The context boundary defines the scope of context

in which the information can be associated, related, and connected in a visual context

graph. The association of data is given by boundary on the context graph based on terms

described as sets of entities and relations

Various factors can determine boundaries between contexts. Usually, the dom-

inant one is strongly associated with others so that this can be measured by high in-

degree/out-degree and distance in a visual context graph. This boundary can be set differ-

ently depending on the context. Multiple contexts can be found within the same domain.

Similarly, a single context can be found across various domains.

The visual context clusters are discovered with the bounded contexts that are a

central concept in visual context learning. The clustering technique is applied to partition

a large and complex context graph into multiple smaller settings. The bounded contexts

are specifically tailored for a set of visual contexts. The boundary B is determined based

on the distance L (without considering direction) between any two contextual features

from different images. In this framework, the context boundary will be determined using
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clustering techniques. The distance L can be measured differently depending upon the

clustering techniques used. For example, the Euclidean distance was used for K-Means

clustering and maximum likelihood estimation for Expectation Maximization clustering.

Definition 4: Degree of Association - The degree of association is defined to measure the

degree of the association between features from different sets of images. The associate

degree is determined with a weight assigned to links between contextual features from

different categories.

The weight will be computed to measure the degree of the association between

contextual features from different categories. In this chapter, TF-IDF was used to cal-

culate the degree of associated visual contexts using Equation 6.1 for TF, Equation 6.2

for IDF and Equation 6.3 for TF-IDF . The rationale is to capture association relations

between contextual features from multiple images by giving a higher weight to the ties

for frequent evidence and contextual information distribution.

6.4 VisContext Framework: Image Context

The visual context model is a graph with the vertex set that corresponds to the

features and the association among the features. In our context learning model, the as-

sociation among features in images will be identified to describe a specific context. We

assume that the association among features in the images will be defined in a consistent

context for the relationship to hold. The proposed VisContext framework for building the

visual context model is composed of (i) Natural Language Processing, (ii) Feature Ex-

traction using TF-IDF, (iii) Visual Context Learning using clustering techniques, and (iv)
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Validation using classification techniques.

6.4.1 Pruning of Annotation Terms using NLP

The first part of the VisContext framework is to prune annotation terms using

Natural Language Processing composed of two primary operations: (i) Lemmatization. It

is the algorithmic process of determining the base form by grouping together the various

forms for a given word. It is required to understand the context of associated words and

identify the part of speech of a word in a sentence. For example, ’run’, ’ran’, ’runs’,

’running’ will be mapped to the base form, ’run’. (ii) Stop Word Detection - It is the

algorithmic process of filtering out some of the most commonly chosen stop words to

improve the performance of pruning the annotation terms. For example, some of the most

common and function words include ’the’, ’is’, ’with’, ’that’, and on.

6.4.1.1 Feature Extraction using TF-IDF

Each image consists of several annotated terms that can be used as features. This

is used to identify the critical features implemented by each of the images. The input for

this technique could be the annotated terms detected from the images. Visual features

of images are identified by applying Term Frequency-Inverse Document Frequency (TF-

IDF) [203] to their annotated terms. The high-level flow of feature extraction from the

images is shown in Figure 41.

The feature extraction has the following four steps. In the first step, the features

from the images are aggregated to form the feature matrix. The representative terms for
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feature extraction are selected using TF-IDF, which is the product of term frequency and

inverse document frequency. The term frequency is the number of annotated terms that

appear in a specific image. Document frequency is the frequency of the terms in all the

images. The Inverse Document Frequency intends to reduce the word’s importance that

occurs most frequently in all the images. It is mainly used to eliminate the common terms

across all the images. The IDF value is computed by dividing the number of images with

the number of images containing the given term t and then applying a logarithm to the

resultant value. If the term appears in more images, it is more likely to be a common term

that is not specific to any given image. Hence, the log value of the word reduces to zero,

ensuring that the IDF value and thereby the TF-IDF value, is less for this term.

TF (t, d) = 1 + log(ft,d) (6.1)

IDF (t,D) = log
N

1 + |{d ∈ D : t ∈ d}|
(6.2)

where N is the total number of images in the corpus, i.e., N = |D| and |{d ∈ D :

t ∈ d}| is the number of images where the term t appears (i.e., TF (t, d) 6= 0).

TF-IDF value is high if the term has high term frequency and a low document

frequency in the whole collection of images. Hence by considering the TF-IDF value, we

can eliminate the common terms in determining features.

TF − IDF (t,D) = TF (t, d) · IDF (t,D) (6.3)
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A feature may be implemented in different images. The feature variants imple-

mented by different images could be different. Hence, we need to aggregate the (feature,

<List of feature variants>) tuples generated from all the images to obtain the final feature

to feature variant mapping.

6.4.2 Feature Association using Clustering Techniques

A context association model can be created for any given list of contextual features

concerning any collection of any image corpus. Contextual sets of features can be called

’neighbors’, and these often group into ’neighborhoods’ based on their similarity or co-

occurrence (interconnections) in images. Individual features may have several neighbors.

Neighborhoods may relate to one another through at least one unique feature or may

remain unrelated.

We designed the context association model using two different clustering algo-

rithms: K-Means and EM.

6.4.2.1 K-Means Clustering for Associating Contexts

For constructing the visual context model, the K-Means clustering (KM) algo-

rithm was used to group visible entities based on their contextual closeness properties to

discover contextual information in images. In this chapter, we designed the KM algorithm

for the discovery of relevant contexts from integrated multiple sources to form a context

graph. The KM algorithm is an unsupervised learning technique for partitioning entities

(annotated terms extracted from images) into K different contexts by clustering them with
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the nearest mean.

Given a set of visual annotated terms (T1, T2, . . . , Tn), where each image can be

represented as a vector, KM clustering aims to partition the n terms into K, which is

≤ n sets C = C1, C2, . . . , Ck to minimize the within-cluster sum of squares (amount of

distance functions of each point in the cluster to the K center).

[argmin
S

k∑
i=1

∑
x∈Si

‖x− µi‖2] (6.4)

where µi is the mean of points in Si.

The KMeans algorithm is an excellent way to discover contexts with multiple

features from images and summarize with an integrated view of the provided features.

6.4.2.2 EM Clustering for Associating Contexts

We also used an Expectation-Maximization (EM) algorithm [204] for building a

visual context model. EM is an iterative method that aims to create a model for maximum

likelihood of the features by exploring unobserved latent variables. The EM algorithm

iteratively performs two steps: (1) Expectation step (E) creates the expectation function

of the log-likelihood evaluated by using the current estimate of the parameters (2) Max-

imization step (M) computes parameters maximizing the expected log-likelihood com-

puted from the E step (i.e., by determining the distribution of the latent variables in the

next E step).

The EM algorithm seeks to find the maximum likelihood estimate (MLE) of the

marginal likelihood by iteratively applying the steps. Given the statistical model which
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generates a set X of observed data, a set of unobserved latent data Z, and a vector of

unknown parameters θ, along with a likelihood function L(θ;X,Z) = p(X,Z|θ), the MLE

of the unknown parameters is determined by the marginal likelihood of the observed data

L(θ;X) = p(X|θ) =
∑
Z

p(X,Z|θ)

Expectation step (E step): Calculates the expected value of the log-likelihood

function, concerning the conditional distribution of Z given X under the current estimate

of the parameters θ(t):

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ;X,Z)]

Maximization step (M step): Finds the parameter that maximizes this quantity:

θ(t+1) = argmax
θ
Q(θ|θ(t))

6.4.3 Validation using Supervised Learning Algorithms

To validate the visual context models constructed from the clustering, we have

utilized supervised learning algorithms (i.e., Naive Bayes, Decision Tree, and Random

Forest) using Spark MLlib.

6.4.3.1 Naive Bayes classifier

It is a probabilistic classification algorithm based on applying Bayes’ theorem

with naive independence assumptions between the features. Given a problem instance to
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be classified, represented by a vector x = (x1, . . . , xn) that represents some n features, it

assigns to this instance probabilities p(Ck|x1, . . . , xn), for each of K possible classes Ck.

The probability can be formulated as follows:

p(Ck|x) =
p(Ck) p(x|Ck)

p(x)

6.4.3.2 Decision Tree

A predictive model that maps observations about an item to build a model is called

the decision tree. Tree models, where the target variable can take a finite set of values,

are called classification trees. The decision tree is composed of nodes representing the

features and edges representing the feature valuesâtraversing the tree to reach a leaf node

representing a class label by matching branches representing the conjunctions of features.

In a decision tree, information gain is the measure used for selecting features in the con-

struction of a tree by computing information entropy H for the given information T . The

information gain for an attribute a is defined in entropy H() as follows:

IG(T, a) = H(T )−H(T |a) =

H(T )−
∑

v∈vals(a)

|{x ∈ T |xa = v}|
|T |

·H({x ∈ T |xa = v})
(6.5)

where T denotes a set of data, each of the forms (x, y) = (x1, x2, x3, ..., xk, y)

where xa ∈ vals(a) is the value of the ath feature of x and y is the corresponding class

label.
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6.4.3.3 Random Forest

Random Forest is an ensemble learning method that constructs a multitude of de-

cision trees and classifies the input data by taking the majority voting within the individual

trees. The training learner of random forests applies bootstrap aggregating. Given a train-

ing set X = x1, . . . , xn with responses Y = y1, . . . , yn, bagging by repeatedly selecting

a random data with the replacement of the training set and fits trees to these data. Af-

ter training, predictions for unseen samples x′ can be made by averaging the individual

regression trees’ predictions on x′.

For this validation, with the above three algorithms (Naıve Bayes Classifier, Deci-

sion Tree, Random Forest), the datasets are randomly divided into 60% training and 40%

testing datasets. The validation is designed as part of the VisContext framework. The ac-

curacy performance of these three different algorithms (Naıve Bayes Classifier, Decision

Tree, Random Forest) are reported in Section 6.5.3.5.

6.5 Results & Evaluation

6.5.1 Datasets

We used three different datasets for validating our approach. All the datasets are

of image annotations or images with captions. Table 39 shows the datasets used for eval-

uating our framework: SAIAPR TC-12 Benchmark(IAPR) [205], 1 million captioned

images from Stony Brook University (SBU) [206], and Flickr30k dataset collected from

Flickr (social media data) (Flickr30k) [207]

The SAIAPR TC-12 Benchmark(IAPR) describes the segmented and annotated
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Table 39: Dataset Description

#images #terms #terms
after NLP

#unique
terms

IAPR 20000 99527 99527 261
Flickr30k 158915 2127783 2124534 13273

SBU 1000000 13319299 13128289 177921

IAPR-TC12 benchmark designed for multimedia information retrieval. The IAPR TC-12

collection includes (i) Segmentation masks and segmented images for the 20,000 pictures,

(ii) Features extracted from the regions and labels assigned to them, (iii) Region-level

annotations according to an annotation hierarchy, (iv) Spatial relationship information.

The SBU dataset and Flickr30k consist of Flickr images shared by different users on

social media. Flickr is a hosting service for more than 6 billion images in blogs and social

media, and the number of images is continuously growing. SBU is a pruned dataset

compared to Flickr30k, as discussed in [206].

6.5.2 Implementation

The implementation was based on a 12 GB Ubuntu 14.04 operating system and

was implemented using parallel processing based on Apache Spark. The Apache Spark

is scalable and can be extended to larger sized datasets. For the VisContext framework’s

scalability, all of the algorithms and implementation discussed in this chapter are entirely

implemented in Spark. The algorithms were performed with the Spark MLlib, Spark NLP,

and CoreNLP libraries.
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Figure 42: Evaluation: Effectiveness of NLP with RMSE

6.5.3 Evaluations

6.5.3.1 Effectiveness of Natural Language Processing

The Natural Language Processing (NLP), i.e., Lemmatization, Stop Word Detec-

tion, were conducted in the process of context discovery. We measured the effective-

ness of NLP in context learning using Root Mean Square Error for two clustering groups

(K = 5 with NLP and K = 5 without NLP, where K is the number of clusters). The

effectiveness of the NLP based clustering (the error rates decreased after applying NLP

to the data in the clustering case, K = 5 with NLP) is shown in Figure 42. The other

advantage is the reduction in the number of terms, as shown in Table 39. We observed

that the number of words after the NLP operations was lesser than the number of original

words in all three datasets.
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6.5.3.2 K-Means Clustering Validation: K Value vs. RMSE

We used Root-Mean-Square Error (RMSE) to validate cluster outcomes by min-

imizing the forecasting errors computed by the standard deviation of the differences be-

tween predicted and observed values. The RMSE of predicted values x̂t for times t of a

regression’s dependent variable xt is computed for n different predictions as the square

root of the mean of the squares of the deviations as follows:

RMSE =

√∑n
t=1(x̂t − xt)2

n
.

For the K-Means clustering algorithm, three different values of K (K=5, 10, 20)

were considered for comparison, as shown in Figure 43. We observed that the best value

was at k=20. Another observation was that the RMSE value was higher for social network

data such as Flickr30k and SBU compared to the IAPR human-defined annotation data,

with a limited vocabulary.

6.5.3.3 TF-IDF Validation: Vector Size and Accuracy

The comparison of TF-IDF vector sizes (50, 100, 150, 200) was performed to ob-

serve the influence of the scale over the clusters formed. The Naıve Bayes classification

algorithm was run for validating the clusters. Figures 44 - 46 shows the Precision, Re-

call, and F-Measure, respectively. The highest Precision was 85% for vector size=100 in

Flickr30K, and the lowest one was 75% for vector size = 150 for IAPR. The highest recall

was 82% for vector size = 50 in Flickr30K, and the lowest one was 68% for vector size

=150 for IAPR. The highest F-Measure was 82% for vector size=100 in Flickr30K, and
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Figure 43: Evaluation: Root Mean Square Error(RMSE) vs. K Value

Figure 44: Evaluation: Feature Vector Size vs Precision
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Figure 45: Evaluation: Feature Vector Size vs Recall

Figure 46: Evaluation: Feature Vector Size vs F-Measure

the lowest one was 68% for vector size = 150 for IAPR.

6.5.3.4 Latent Dirichlet Allocation on Datasets

Our context association model is different from Latent Dirichlet Allocation (LDA),

a generative statistical model in which each document is a mixture of a small number of

topics. Each word’s creation is attributable to one of the document’s topics. In our ex-

periments, the LDA performed poorly on the three different datasets compared to our
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Figure 47: Evaluation: Average Log Likelihood of LDA Models

clustering-based approach against the LDA topic discovery model. Figure 47 shows the

average log-likelihood for each dataset presented. One of the disadvantages of using these

datasets for LDA is that there is no distribution available for the datasets in general, which

makes the likelihood much lower.

6.5.3.5 Comparison of Clustering and Classification Algorithms

The two clustering algorithms, EM and K-Means, were compared with two differ-

ent vector sizes (50, 100). Figure 48 shows the comparison using Precision. The obser-

vation from this comparison is that EM performed very well and formed unique clusters.

The contexts discovered were verified using the three classification algorithms; Naıve

Bayes, Decision Tree, and Random Forest. Figures 49a- 49c shows the Precision, Recall,

and F-Measure for different datasets and algorithms. Observation of these figures was

that the overall performance was better with Naıve Bayes. The highest F-Measures (by
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Figure 48: Comparison between EM and K-Means

Naıve Bayes) were 72%, 83%, 69% for IAPR, Flickr30K, SBU, respectively. The low-

est F-Measures (by Random Forests) were 67%, 22%, 24% for IAPR, Flickr30K, SBU,

respectively.

6.5.3.6 Visual Context Model

The top five words representing each cluster for 20 clusters in the IAPR dataset

and Flickr dataset are shown in Figures 50- 51, respectively. The images grouped under

four unique contexts for IAPR and Flickr30k domains gives a visual perspective to the

context-based clusters formed through the process. The contexts discovered are from a

vector size of 100 with K = 20 with the K-Means clustering algorithm. The framework

based images are shown in Figures 52- 53.
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Figure 49: Classification Algorithms: (a) Precision (b) Recall (c) F-Measure
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Figure 50: 20 Context Clusters of IAPR Dataset

Figure 51: 20 Context Clusters of Flickr30K Dataset

Figure 52: Image Context Clusters of IAPR Dataset
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Figure 53: Image Context Clusters of Flickr30K Dataset

6.6 Conclusion

In this chapter, we presented the VisContext framework for context learning from

large scale multimedia data. The implementation of the VisContext framework was intro-

duced. The evaluation of the framework was conducted with three large datasets (IAPR,

Flick30k, SBU) in the effectiveness of visual understanding in terms of accuracy. The

results confirm the effectiveness in discovering the contextual association of terms and

images, visual context clustering, and image classification based on context. The work

presented in this chapter was published as part of Chandrashekar et al.[208].
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CHAPTER 7

TRANSFORMATION FROM PUBLICATIONS TO ONTOLOGY USING

TOPIC-BASED ASSERTION DISCOVERY

7.1 Introduction

In recent years, there has been an explosive growth in the amount of biomedical

data being generated, with the majority being unstructured. The majority of this growth

can be observed and tracked using the publication databases. These publications represent

the novel findings and hypotheses from the research. The dissemination and sharing of

biomedical findings to translational medicine are slow, even though most of them are

open-source and available to all through publications. The most up-to-date findings of

the diagnosis, interventions, and treatments would be critically important. They can be

life-changing when used to back critical decisions for their patients by physicians and

researchers in health care.

Topic modeling is a frequently used technique to discover latent topics and topical

structures in document collections. Latent Dirichlet Allocation (LDA) [209] that is widely

used allows documents to have a mixture of topics. We will explore the patterns in the

diabetes publication and identify assertions by mapping the topical probability. In this

study, we will demonstrate the effectiveness of the ontology generation by integrating

topic distribution and assertion discovery.
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There is an increasing demand for ontologies that will contribute most to expe-

diting the discovery of new diagnostic treatments and interventions for medical applica-

tions such as knowledge retrieval, summarization, medical question answering system.

Dynamic and relevant ontologies will be more useful for evidence-based medicine or per-

sonalized treatment than general ontologies and significant ontologies.

Most of the existing ontologies are designed extensively by domain experts. Some

domain expert generated ontologies are OntoDiabetic [210], Diabetes Diagnosis Ontol-

ogy (DDO) [211] and Diabetes Mellitus Treatment Ontology(DMTO) [212]. Most of

these ontologies are proposed in general domains, with different techniques to automate

the extraction tasks. These studies have shown promising results. Nevertheless, experts

are always needed because ontology construction and enrichment require a considerable

amount of domain knowledge. Text2Onto [213], OntoLearn [214], and Sprat [215] are

semi-automatic methods for ontology construction from textual data.

Unlike these ontologies, we may need an automatic approach that can generate an

ontology by discovering assertions from free-text sources, such as scientific publications

in PubMed. To determine ontological assertions from a free-text corpus, Lossio-Ventura

et al.,[216] detected subject or object from a sentence using named-entity recognition

(NER), PoS tagging, or Information Extraction techniques. The relationship between

subject and object was also detected and classified.

In this chapter, we proposed the Assertion Discovery framework (as shown in Fig-

ure 54) that aims to discover bio-medical assertions from free-text sources (like PubMed

publications), mapped them to the existing diabetes ontologies, and integrated them with

197



Figure 54: Assertion Discovery Framework

newly found assertions from diabetes publication. We designed a pipeline approach of

(i) Natural Language Processing (NLP) [217], (ii) Information Extraction (IE) [218], (iii)

Topic Discovery using Latent Dirichlet allocation (LDA) [209] and (iv) Ontology Gener-

ation using OWL API [219].

In this chapter, we choose diabetes as a case study and use diabetes publications

as datasets for topic discovery and assertion refinement. As shown in Table 40, we com-

pared our ontology, Diabetes Publication Ontology (DPO) against the existing diabetes

ontologies including Ontology for Genetic Disease Investigations(OGDI) [220], Ontol-

ogy of Glucose Metabolism Disorder (OGMD) [221], BioMedBridges Diabetes Ontology

(DIAB) [222], Diabetes Mellitus Diagnosis Ontology (DDO) [211] and Diabetes Mellitus

Treatment Ontology (DMTO) [212].

198



7.2 Related Work

Many projects [223] have been proposed to process natural language data and

create a meaningful ontology that can be used in an information retrieval system. In

BioBroker [224], Shen and Lee clustered entities to facilitate the process of biomedical

knowledge discovery. A work by Omura [225] is similar to our approach in which the

focus is on finding the disease similarity by constructing a graph representing anatomical

features. However, the work does not focus on those features that are unique to a disease.

In our work, we are fetching the common topics and relationships among ontologies and

extracting the unique topics and relationships. Ma et al., [226] aimed to classify the

diseases based on their related term. This work is similar to our approach, where the

relationships are extracted between three categories of diseases.

Another similar work, Lossio-Ventura [216], focused on automatic knowledge

base construction from heterogeneous information sources on Obesity. In this work, they

used biomedical entity detection, which is very useful to determine the meaning of the

various medical terms present in the chapter. Also, the help of domain experts was used

to annotate the medical words manually. For a large text corpus, manual annotation of a

corpus would be a tedious task. Also, they explored binary classification for relationship

extraction. The binary classification does not discover topics for a particular text corpus

if a word belongs to a specific entity or relation.

Fred [227] is a tool that automatically produces RDF/OWL formatted ontologies

from natural language sentences. This tool uses multiple natural language processing

components to formalize the output to a visual knowledge graph. The generated output
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graph is designed according to frame semantics, where each frame is expressed by verbs

or other linguistic constructions formalized as OWL n-ary relations. Fred is a domain

and task-independent tool suitable for task-specific applications. It changes the input

from discourse representation structures to RDF/OWL n-ary relations. It can represent

modality, tense, and negation of the sentences. It is capable of handling compositional

semantics, taxonomy induction, and quality representation. However, Fred is incapable of

handling large datasets for generated ontology visualization. The results are not uniform

if both facts and entities are expressed by natural language text. Fred’s frame construction

based on real-world facts was not what we expected.

Topic modeling techniques were used in biomedical domains. Topic modeling

techniques such as Latent Dirichlet Allocation (LDA) [209] and semantic group-based

model were used for recommending patient education materials [228]. In this study, the

LDA topic model outperformed the vector space model (VSM) and semantic group-based

model in the context of patients’ question-answering in recommending diabetic education

materials.

In this chapter, we use LDA for topic discovery to determine the topic that the au-

thors discuss in each cluster of the triplets. Previous studies identified knowledge struc-

tures or topics by adopting the LDA model. There are many attempts [229], [230], in

which the LDA model was used to incorporate content analysis into metadata genera-

tion. The limitation of these works mainly explains topical trends by using topical terms

but failed to extend it to understand bio-medical publications’ assertions. Applying the

proposed model, we aim to integrate the topics from the LDA model to assertions from
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bio-medical publications. We further extended the topic-oriented assertions to the ontol-

ogy to represent the significant assertions.

Chan et al. [231] aim to provide the structural and digital form of patient records

and helps patient care, advice, and clinical decision. The terms related to liver cancer

are extracted and mapped to ontological features using the Systemized Nomenclature of

Medicine (SNOMED). In our work, we are assigning our terms to several ontologies in-

cluding Ontology for Genetic Disease Investigations(OGDI) [220], Ontology of Glucose

Metabolism Disorder (OGMD) [221], BioMedBridges Diabetes Ontology (DIAB) [222],

Diabetes Mellitus Diagnosis Ontology (DDO) [211] and Diabetes Mellitus Treatment On-

tology (DMTO) [212].

7.3 Assertion Discovery Framework

In this chapter, we propose the Assertion Discovery framework that aims to con-

struct the Diabetes Publication Ontology (DPO) through a topic-driven approach. In this

framework, the PubMed abstracts in diabetes are transformed into the Diabetes Publica-

tion Ontology (DPO). The sentences in the publication datasets will be converted into

an assertion in a triplet format <Subject, Predicate, Object>. We used state-of-the-art

technologies to process and discover significant entities and predicates. In this chapter, an

entity is defined as a subject and an object in a triplet. The entity might be later identified

as either a concept or an individual in an ontology. A predicate is defined as a relationship

between entities. The Assertion Discovery framework consists of three main compo-

nents: (i) Assertion Discovery, (ii) Assertion Alignment, and (iii) Assertion Integration.
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Figure 55 shows the transformation process of the assertion discovery framework, being

changed from publications to the DPO ontology (highlighted the assertions associated

with diabetes and cardiovascular risk factor. We will discuss each of these steps below.
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Figure 55: Transformation from Publications to Diabetes Publication Ontology

7.3.1 Assertion Discovery

The assertion is defined as textual facts or textual findings from biomedical re-

search that will be described as a form of <Subject(S), Predicate(P), Object(S)>. The

assertion discovery (Figure 54) is based on the integration process of the following two

steps: (i) Rule-based Triplet Extraction using OpenIE [218]; (ii) Natural Language Pro-

cessing (NLP).

7.3.1.1 Rule Based Triplet Extraction

First, the Open Information Extraction (OpenIE) [218] is performed to the PubMed

abstract dataset. Open information extraction (OpenIE) refers to the extraction of relation

tuples, typically binary relations, from plain text. The OpenIE delivers its result in the

form of Quadruple <S, P, O, C>, where the triplet of Subject(S), Predicate(P), Object(O)

is determined when its confidence-score (C) is a higher than a threshold δ. The triplets
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extracted from the publication text are based on the rules defined in terms of syntactic,

lexical, and semantic patterns in the linguistic form of the English language. The rules act

very effectively on the publication dataset, as the sentences are well structured.

Some rules inspired by the existing works [218],[232] were used to extract the

triples (subjects, predicates, objects). The rules written in terms on Parts of Speech (PoS)

Tagging [233] and Universal Dependencies Representation [234].

7.3.1.2 Natural Language Processing (NLP)

The Natural Language Processing (NLP) was conducted to separate entities and

predicates from the triplets. The NLP steps were performed using Stanford CoreNLP

Library [217] as follows: (1) Tokenization is the process of breaking sentences into tokens

which are the smallest constructs of a huge text data; (2) Lemmatization is the process of

separating words into individual morphemes and identify the class of the morphemes; (3)

Stopword Removal is the process of removing stopwords from the corpus. For example,

the stopwords in English include able, about, above, according, accordingly, etc. After

performing the NLP operations, the triplets (Subject, Predicate, Object) will be separated

into two parts: Entities (Subjects or Objects) and Predicates.

7.3.1.3 Topic Modeling

The topic modeling for the assertion discovery is based on Latent Dirichlet Allo-

cation (LDA) [209]. In Latent Dirichlet Allocation (LDA), topics are discovered through
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the probability distribution of topics over documents that are associated with word distri-

bution. Topics are inferred by mapping words into topics associated with documents.

LDA is a Bayesian model where the distributions over the parameters θ and φ are

modeled, given by Dirichlet distributions with hyperparameters α and β. More specifi-

cally, each word n in document d has a variable wdn that represents the observed word

type and a latent topic variable δdn. A word is generated by randomly sampling a value

zdn = k from the topic distribution of document θd, then sampling a word type wdn = v

from the topic (k) distribution φk. Each word is conditionally independent, given the

parameters. Given the parameters θ and φ, the probability of a word in the LDA model is:

P (wdn = v|θd, φ) =
∑
k

θdkφkv (7.1)

We computed overall term frequency and estimated term frequency within the

selected topic according to Termite [235]. Top-30 most salient terms were computed for

topic t and term w as follows:

sal(w) = freq(w) ∗
∑
t

P (t|w) ∗ log P (t|w)
P (t)

(7.2)

The relevance metric was computed to adjust to given a weight parameter λ (where

0 ≤ λ ≤ 1) according to LDAvis [236] as follows:

rel(w|t) = λ ∗ (w|t) + (1− λ) ∗ P (w|t)
P (w)

(7.3)

In this chapter, we extended the LDA model [209] to map topic terms to the triplets
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extracted from diabetes publications. The PyLDA [236] was used to discover the hidden

topics in the triplets and visualized the inter-topic distance map with PyLDA (as shown

in Figure 56).

7.3.1.4 Topic Wise Assertion Discovery

We now select only the important triplets <Subject(S), Predicate(P), Object(O)>

by matching the topic terms from the LDA-based topic discovery with the entities that

were extracted from the OpenIE triplets. As in, we retain only those triplets in which a

subject S or an object O matches one of the topic terms of a topic Ti = {ti1, ti2, . . . , tin}.

In the Topic Wise Assertion Discovery, for any given triplets from the previous

step, if Subject(S) or Object(O) from <Subject(S),Predicate(P),Object(O)> contain any

topic terms Ti = {ti1, ti2, . . . , tin} discovered from the LDA topic discovery, the assertion

is selected as a topic wise assertion (i.e., Sti = S ∈ Ti or Oti = O ∈ Ti).

Medical terms were not captured using the rule-based linguistic approach For ex-

ample, for the given triplet<S: 1680 mgNaHCO3, P: followed by, O: acid load meal in a

double-blind>, S: mg NaHCO was captured while ignoring a number or a special charac-

ter in the text. The entities from the triplets are mapped to the existing diabetes ontologies

such as Diabetes Diagnosis Ontology (DDO) [211] or Diabetes Mellitus Treatment On-

tology(DMTO) [212] using the Bioportal Annotator API [237].

7.3.2 Assertion Alignment

For Assertion Alignment, the following steps are designed:
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Figure 56: Inter-topic Distance Map for Diabetes Publications
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Figure 57: Diabetes Publication Ontology (DPO): Topic Entity Hierarchy (Topics 1- 10)
& Property Hierarchy
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Entity Learning: The classes and their individuals will be identified in this step. A

medical term captured by the Annotator [237] or topic terms discovered by the LDA

topic modeling are considered as a class. Individuals for these classes are also generated.

Regarding the entity learning, we have not fully covered the schema learning here. In this

chapter, we have simplified the schema learning as follows: any entities containing the

types (S or O) by using the Annotator [237], these entities, S or O, will be represented as

URIS and URIO. The entities are mapped to the Diabetes Mellitus Treatment Ontology

(DMTO), as shown in Figure 57. The annotated entities from DMTO are shown with a

red arrow mark. The entities are a child of the DMTO entity since they partially contains,

in its context, that have the same meaning as the formal entity in DMTO.

Property Learning: We are now checking if the objects O in the triplet belong to any of

the Classes or Individuals. If they do, the type of property P is Object Property. If not, it

is Data Property.

Triplet Learning: Once the entities and properties are identified, the triplets <Subject,

Predicate, Object> will be generated with S and O from step i) and P from step ii).

These triplets <S,P,O> will be defined as the assertions in both schema (TBOX) and

data (ABOX). <S,P,O> will be represented as <URIS , URIP , URIO> where URIS ,

URIP , URIO are defined from the previous steps.Figure 57 shows the topic wise entity

hierarchy and property hierarchy in the DPO ontology. The entities were mapped to the

entities in DMTO [212] ontology using Annotator API [237]. The topics considered to

display here are the topics which had the highest number of entities that could possibly

be grouped under the DMTO entity. A very interesting discovery was made among the
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Figure 58: Diabetes Mellitus and Associated Assertions in (a) OGMD (b) OGDI (c) DIAB
(d) DDO

Figure 59: Diabetes Mellitus in (a) DMTO, (b) DPO, (c) Integration of DPO and DMTO

entities across the shown topics, the entities were uniquely grouped under each topic. For

example, protein, (a DMTO Class Entity) exists in Topic 2 as well as Topic 5 but the sub-

classes in Topic 2: protein discusses protein levels and Topic 5: protein discuses about

the interaction between proteins.

7.3.3 Assertion Integration

In the Assertion Integration step, the newly discovered assertions that were not

present in the existing diabetes ontologies will be integrated into existing ontologies. Fig-

ure 58 shows the Diabetes Mellitus as an entity from (a) OGMD, (b) OGDI, (c) DIAB

and (d) DDO, respectively. OGMD is specifically designed from Glucose Metabolism
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Disorders, while OGDI is designed for Genetic Disorders concerning Diabetes Mellitus.

DIAB is cross-referencing to other famous ontologies such as SNOMED CT, UMLS.

DIAB also provides a brief definition of diseases. DDO shows that Diabetes Mellitus is a

specific case of diabetes where a disorder of Endocrine System has occurred. Figure 59a

shows the DMTO Ontology’s triplets associated with Diabetes Mellitus. These are the top

five diabetes ontologies, providing excellent structural inferences, but they fail to cover

the semantic aspect of diabetes; also, there is a lack of predicates connecting them to

potential risks and treatments.

We consider DMTO, the latest ontology (published in Feb 2018), to guide us with

structural and schematic information built by experts. Figure 59a shows the entity Dia-

betes Mellitus in DMTO, Figure 59b the entity Diabetes Mellitus with newly discovered

assertions in DPO. Once we conduct the assertion integration, then we have the integra-

tion of assertions in Figure 59a and Figure 59b in DPO as shown in Figure 59c. After

integrating the DPO assertions and DMTO structural assertions, we try to construct a

holistic ontology.

Some of the predicates discovered are<S: Diabetes Mellitus, P: Independent Fac-

tors, O: Body Mass Index>, <S: Diabetes Mellitus, P: Commonly Identified Causes,

O: Nephropathy> , <S: Diabetes Mellitus, P: Impairs, O: Endothelial Cell Function of

BSCS>. In the last-mentioned triplet, it was clearly determined that the object entity En-

dothelial Cell Function of BSCS was an error when it was processed in the context of the

assertion. It is supposed to BSCB (Blood Spinal-Cord Barrier). This chapter shows that

NLP and OpenIE techniques could be used in detecting errors by authors of publications.
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Table 41: DPO Dataset and Assertions

D A W T TN E P AE
Dataset 1 100 11,700 490 324 582 229 126
Dataset 2 500 56,000 2,417 1,557 1,802 870 457

D: Dataset; A: Abstract; W: Word; T: Triplet; TN: Triplet after NLP; E: Entity (Concept/Individual); P:
Predicate (Object/Data Property); AE: Annotated Entities

7.4 Results and Evaluation

7.4.1 Dataset

We used the PubMed API to access publications from more than 27 million cita-

tions for biomedical literature from MEDLINE, life science journals, and online books.

We have randomly collected two corpora 100 and 500 publications in diabetes as shown in

Table 41 through the PubMed API [238]. For the 100 abstracts and 500 abstracts datasets,

there were 11,700 and 56,000 words, respectively.

7.4.2 Results from Topic-based Assertion Discovery

From the Rule-based triplet Extraction and NLP steps of the Assertion discovery

(as shown in Table 41), we obtained 490 and 2,417 triplets and 324 and 1,557 triplets after

the NLP treatment for the two abstract datasets (100 and 500 abstracts), respectively.

The number of entities (Subjects or Objects) discovered from the Assertion Discovery

framework for the two datasets are 582 and 1802, respectively. The numbers of predicates

are 229 and 870, respectively.

Figure 56 shows 10 topics from each domain with their topic name discovered
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from LDA topic modeling. Table 42 shows the entities, the annotated entities, and as-

sertion examples for each LDA topic. We discovered 10 topics from the 1802 entities

of the 1,557 triples in the 500 abstract dataset. The 30 topic terms were generated for

each topic. Table 42 shows the entities and triplets in each topic of the DPO ontology

(10 topics) as well as the annotated entities that were mapped to the other five diabetes

ontologies (OGMD, OGDI, DIAB, DDO, DMTO). Topic 2 has the largest number of en-

tities (88 entities), while Topic 9 has the smallest entities (39 entities). Topic 5 has the

highest number of the annotated entities (31 entities) mapped to the diabetes ontologies.

The entity hierarchy with newly discovered entities and existing annotated entities for

each topic are shown in Figure 57. Topics 6, 8, 9, 10 are closely related, as shown in

Figure 56. Topics 6, 8, 9, 10 are about Weight Loss, Risk Factors, Body Weight, and

Kidney Disease, respectively.
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7.4.3 Results from Ontology Mapping and Integration

In the Ontology Mapping, we used the Bioportal API [237] to identify the types

of these entities. The annotated entities are detected by the Annotator [237] based on the

five diabetes ontologies. As shown in Table 41, the number of entities (annotated entities)

that were mapped to existing ontologies is 21.6% (126 out of 582 entities) and 25.3%

(457 out of 1802 entities), respectively.

Table 43 shows the comparative analysis among six diabetes including OGMD

[221], OGDI[220], DIAB[222], DDO[211], DMTO[212] and our ontology DPO. DMTO

has the largest number of triplets, 97,203, while DDO has the largest number of enti-

ties, 25,480. OGDI has the largest number of predicates, 1,274 and DPO has the second

largest number of predicates, 870. In terms of coverage for both entities and predicates,

DPO shows the highest coverage (100%) of entities (terms) or predicates (relations) dis-

covered from publications while most of these diabetes ontologies have an insufficient

coverage (0%-13%). This indicates a big gap between ontologies designed by domain

experts and terminologies used by researchers in publications. Thus, it would be difficult

for ontologies to be readily used in applications such as question answering systems or

information retrieval systems.

Figure 60a shows the results from the mapping between the entities in the DPO

ontology (DPOE) and ones in the DMTO ontology (DMTOE). The number of the enti-

ties in DMTO (DMTOE) is 10,700 while the number of the entities in DPO (DPOE) is
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Figure 60: Mapping between DMTO and DPO
(a) Entities in DMTO and DPO (DMTOE ∩DPOE) (b) Predicates in DMTO and DPO

(DMTOP ∩DPOP ) & Entities in DMTO and Predicates in DPO (DMTOE ∩DPOP )

1,802. The common entities of these two ontologies are 110. The entities in the DPO on-

tology are very specific and informative. Figure 60b shows the results from mapping be-

tween the predicates of the DMTO and DPO ontologies. There are two kinds of mapping:

1) Predicates in DMTO mapped to Predicates in DPO (DMTOP ∩DPOP ) and 2) Enti-

ties in DMTO mapped to DPO’s Predicates (DMTOE ∩ DPOP ). From this figure, the

common predication number (DMTOP∩DPOP ) is 6 while the common entity/predicate

(DMTOE ∩DPOP ) is 19. The unique predicates in DMTO (DMTOP ) is 315 while the

unique predicates in DPO (DPOP ) is 870. Interestingly in the DMTO Ontology when

queried, there are only 95 Unique Predicates that contain a possible subject and object

associated with it. The rest of predicates (about 315 predicates) are merely declared in

the ontology without usage.
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Table 43: Mapping between Publications and Ontologies

T: Triplets; E: Entities; P: Predicates; EC: Entity Coverage%; PC Predicate Coverage%
T E P EC(%) PC(%)

OGMD[221] 976 435 14 0.66% 0%
OGDI[220] 4,137 4,131 1,274 0.66% 0.68%
DIAB[222] 11,944 4,327 39 0.66% 0.68%
DDO[211] 34,423 25,480 56 0.66% 0%

DMTO[212] 97,203 10,700 315 13% 3%
DPO (ours) 2,417 1,802 870 100% 100%

7.5 Diabetes Publication Ontology Application

The web-based application for the proposed framework has been implemented on

the Spark parallel engine [239]. For the dataset collection, we have used the PubMed API

[238]. The NLP and OpenIE triplet extraction have been implemented using Stanford

CoreNLP [217] and Annotator [237]. The Annotation has been implemented using An-

gularJS with NCBO BioPortal Annotator API [237]. The Ontology construction has been

implemented using OWL API [219] on the Spark. The OWL API is a Java API and refer-

ence implementation for creating, manipulating and serializing OWL Ontologies. We are

visualizing the generated ontology using the online WebVOWL tool [240]. WebVOWL is

a web application for ontology visualization. It implements the Visual Notation for OWL

Ontologies (VOWL) by providing graphical depictions for elements of the Web Ontol-

ogy Language (OWL) that are combined to a force-directed graph layout representing the

ontology.

We have built a web-based application for searching diabetes publications as well

as retrieving the assertions from the diabetes publications through dynamically generat-

ing the DPO ontology. Protégé [241],an open-source ontology editor and framework for
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Figure 61: Web Application: Publication Searching

Figure 62: Web Application: Ontology Visualization
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Figure 63: Web Application: List of Discovered Subject, Predicate, and Object from
PubMed Abstracts

Figure 64: Web Application: List of Filtered Entities (Subject and Object) using Annota-
tor API [237]
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building intelligent systems, can be used to query the ontology and retrieve papers and

assertions from the DPO ontology.

The Web application contains the following parts: (i) Publication Search Widget:

The users can input their query in terms of keywords and the number of papers to be

retrieved (Figure 61); (ii) Abstract Display Widget: This displays the abstract obtained

using the PubMed API. The abstract is shown in the display with a list of assertions

(Figure 62); (iii) Assertion Widget: This widget will display all the assertions that were

dynamically generated after the Assertion discovery step with all the abstracts selected

above (as shown in Figure 63). Assertion Discovery step of our model is incorporated into

this widget; (iv) Ontology Widget: This is the widget where the WebVOWL visualization

[240] of the ontology dynamically generated for the given abstract will be displayed (as

shown in Figure 64). (v) Annotation Widget: This is the widget where the extracted

<Subject(S),Predicate(P),Object(S)> are annotated with bio-portal API [237] to validate

in any existing ontologies. The Assertion Alignment process of the Diabetes Publication

Ontology (DPO) model is shown in this widget.

7.6 Conclusion

In this chapter, we proposed a semantic framework for dynamically generating a

diabetes publication ontology from a large corpus of diabetes publications. The popu-

lar topic modeling method LDA was very effective in finding latent topics. These topic

terms were mapped to ontological assertions extracted from the scientific publications in
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PubMed. The ontological assertions were used to enhance the existing diabetes ontolo-

gies and new relations and entities between topics were introduced to existing diabetes

ontologies. The proposed framework has been implemented in a parallel and distributed

computing engine, Apache Spark for providing a scalable solution for a large amount

of data. The parallel and distributed pipeline approach includes CoreNLP for Natural

Language Processing, OpenIE (Open Information Extraction) for relation extraction, and

LDA (Latent Dirichlet Allocation) for topic discovery and OWL API for ontology gen-

eration. We presented a web-based application that aims to provide enriched information

to healthcare providers in diabetes patient care and treatments through the interface for

searching publications as well as retrieving the assertions from the publications. The

application can be used in many practical cases, providing knowledge and evidence to

support decisions in healthcare.The work presented in this chapter was published as part

of Nagulapati et al. [242]. Nagabhushan et al.[223] and Chandrashekar et al. [243] are

some related publications.
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CHAPTER 8

ONTOLOGY MAPPING FRAMEWORK WITH FEATURE EXTRACTION AND

SEMANTIC EMBEDDINGS

8.1 Introduction

There is an increasing demand for ontologies that will contribute most to expedit-

ing the discovery of new diagnostic treatments and interventions for medical applications

such as knowledge retrieval, summarization, medical question answering system. Under-

standing the relationships among the classes from multiple ontologies will be more useful

for evidence-based medicine or personalized treatment than general ontologies or more

prominent ontologies.

The National Center for Biomedical Ontology (NCBO) BioPortal [244] intro-

duced about 690 ontologies for diverse applications such as data integration [245], data

annotation [246], data interoperability [247], and data encoding in electronic health records

(EHRs) [248]. Some of these ontologies are large and complex. Due to the size and com-

plexity of ontologies, understanding or extracting relations between classes and axioms

either within an ontology or across ontologies is not feasible.

Shen and Lee [224], [249] presented algorithms to find relations across multiple

ontologies that were significant in biomedical research. The contribution of these works

is in using a graph clustering method and an indexing technique to discover knowledge

patterns over a set of interlinked data sources and query execution with the Bio2RDF data.
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SAMBO [250] was proposed for matching and merging biomedical ontologies

through (i) lexical similarity based on n-gram, edit distance, (ii) structural similarity based

on is-a, part-of hierarchies, (iii) knowledge-based similarity using WordNet and UMLS.

Falcon [251] proposed (i) partitioning ontologies using clustering, (ii) matching structural

blocks (GMO), and (iii) discovering structural proximities and alignments.

Most of the existing ontologies are designed extensively by domain experts. Some

of the domain experts generated ontologies are OntoDiabetic [210], Diabetes Diagnosis

Ontology (DDO) [211] and Diabetes Mellitus Treatment Ontology(DMTO) [212]. Most

of these ontologies are proposed in general domains, with different techniques to automate

the extraction tasks. These studies have shown promising results. Nevertheless, experts

are always needed because ontology construction and enrichment require a considerable

amount of domain knowledge. Text2Onto [213], OntoLearn [214], and Sprat [215] are

semi-automatic methods for ontology construction from textual data.

In this chapter, we proposed an ontology mapping framework (as shown in Fig-

ure 65) that aims to discover the relationships (mapping and connectivity) from the anal-

ysis of semantic features across multiple ontologies and identify the abstractions of the

ontological relationships through mapping between features to the ontologies. We de-

signed a pipeline approach of machine learning with the ontological properties (concept

terms and other related terms) from multiple ontologies in a domain as follows:

• Ontology search and selection

• Feature extraction based on ontological properties (concept terms and other related

terms),
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Figure 65: Ontology Mapping Framework

• Natural Language Processing with ontological features,

• Feature Extraction using Term Frequency (TF) and Term Frequency and Inverse

Document Frequency (TF-DF)

• Word Embeddings using ontological properties,

• Semantic Embeddings by combining the feature extracting techniques and Word

Embeddings,

• Ontology Mapping and Connectivity across ontologies using Ontology Mapping

Graphs.

As a case study, we choose 32 ontologies in the hypertension domain for the anal-

ysis of ontology mapping and connectivity, as shown in Table 44.
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8.2 Related Work

The previous works developed Abstraction Networks for ontologies [252], [253],

in which the structures and contents of various ontologies are identified and classified. In

Ochs et al. [254], more than 300 NCBO BioPortal ontologies were analyzed and classified

into the abstractions of ontologies defined by the structural meta-ontology. In Mortensen

et al. [255], ontology design patterns (ODPs) were proposed for utilizing reoccurring

models and best practices in ontology development and maintenance for biomedical on-

tologies.

Similar to our work, in Noy et al. [256], more than 30,000 mappings were ex-

tracted from 20 ontologies in BioPortal. However, this work is limited since some of these

mappings were created manually by developers of biomedical ontologies as follows:

• The connects of Gene Ontology, ICD-9, FMA, and the NCI Thesaurus are mapped

through the concepts in UMLS Metathesaurus,

• Preferred names and synonyms for concepts in the domain ontologies,

• Relate concepts through rdfs:seeAlso or obo:xref,

• Manual mappings between concepts in the NCI Thesaurus and the Mouse anatomy

ontology

• mapping based on the lexical comparison in the PROMPT mapping algorithm for

the mappings between the NCI Thesaurus and the Galen ontology

Many projects have been proposed to process natural language data and create a
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meaningful ontology for building an information retrieval system. The work by Omura

[225] is similar to our approach in which the focus is on finding the disease similarity

by constructing a graph representing anatomical features, and it’s local information. But

the work doesn’t focus on those features that are unique to a disease. In our work, we

are fetching the common topics and relationships among ontologies and the unique topics

and relationships.

Lossio-Ventura [216] focused on automatic knowledge base construction from

heterogeneous information sources on Obesity. In this work, they used biomedical entity

detection, which is very useful to determine the meaning of the various medical terms

present in the paper. Also, the help of domain experts was used to annotate the medi-

cal words manually. For a large text corpus, manually annotating the words would be a

tedious task. Also, they explored binary classification for relationship extraction. The bi-

nary classification doesn’t discover topics for a particular text corpus instead of classifies

based on if a word belongs to a distinct entity or relation. In our work, we applied NLP, in-

formation extraction techniques to ontologies to generate semantic embeddings. We will

further extend the semantic embeddings to ontology annotation and relation extraction.

Chan et al. [231] provided a structural and digital form of patient records and

helped inpatient care, advice, and clinical decision. The terms related to liver cancer are

extracted and mapped to ontological features using SNOMED (Systemized Nomenclature

of Medicine). In our work, we mapped semantic embeddings we generated from NLP and

information retrieval to the hypertension domain’s ontologies.
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8.3 Ontology Mapping Framework

In this chapter, we propose the Ontology Mapping framework (OMF) that aims

to construct a dynamic ontology based on users’ interests through the assertion discovery

approach of Natural Language Processing (NLP), information retrieval (IR), and machine

learning (ML). In this framework, the ontological properties (concept terms and other

related terms) from base ontologies are used to discover new assertions dynamically. The

Ontology Mapping framework (OMF) consists of three main components: We designed

the pipeline approach in OMF as follows: (i) Ontology search and selection using the

NCBO BioPortal API [237] with a keyword hypertension, (ii) Feature extraction based

on ontological properties (concept terms and other related terms), (iii) Feature vector

generation using word embedding technique, Word2Vec, (iv) Topic discovery with the

semantic feature vector, (v) Assertion discovery through dynamic ontology modeling and

alignment.

Figure 65 shows the assertion discovery process in the OMF framework, being

changed from a list of assertions from the base ontologies to new types of assertions. We

will discuss each of these steps below.

8.3.1 Ontology Search and Selection

First, we have collected ontologies through the NCBO BioPortal API [237] for the

hypertension domain. Ontologies were searched using the search keyword hypertension.

Second, related ontologies were further searched through the Reuses in Other Ontologies

option (e.g., MeSH and RH-MeSH). Finally, a refined set of ontologies were selected
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based on (i) ontology format: OWL, RDF, TTL, N-TRIPLE were supported. While OBO,

OFN, OWL2, and xrdf were not supported in our framework. (ii) public availability: some

of them were private and not downloadable, and (iii) semantic annotation: ontologies

contain the following OWL or RDF properties that would be used to extract ontological

properties such as label, hasExactSynonym, hasRelatedSynonym, hasNarrowSynonym,

and prefLabel.

8.3.2 Semantic Property Retrieval

For ontology mapping and understanding of their relationships, we have started to

extract the key features considering ontological features (label, hasExactSynonym, has-

RelatedSynonym, and prefLabel) for the given ontologies. We further extract more impor-

tant features from the base ontologies’ ontological properties that provide more structured

features such as concept names and synonyms, etc.

8.3.2.1 Natural Language Processing

The Natural Language Processing (NLP) was conducted to separate concepts and

predicates from the triplets. The NLP steps were conducted using the Stanford CoreNLP

library [217] as follows: (1) Tokenization is the process of breaking sentences into tokens

which are the smallest constructs of a huge text data; (2) Lemmatization is the process of

separating words into individual morphemes and identify the class of the morphemes; (3)

Stopword Removal is the process of removing stopwords from the corpus. For example,

the stopwords in English include able, about, above, according, accordingly, etc. After
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performing the NLP operations, the triplets (Subject, Predicate, Object) will be separated

into two parts: Concepts (Subjects or Objects) and Predicates.

8.3.2.2 Feature Extraction

For the purpose, we used two feature extraction techniques: (i) Term Frequency

(TF) and (ii) Term Frequency and Inverse Document Frequency (TF-IDF). We have ex-

tended the term frequency (TF) and the term frequency-inverse document frequency (TF-

IDF) that are a numerical statistic (a term is an ontological feature and a document is an

ontology). Thus, the term frequency (TF) as the number of annotated terms that appear

in a specific ontology. The representative terms for feature extraction are selected using

TF-IDF, which is the product of term frequency (TF) and inverse document frequency

(IDF). We redefined the Document frequency (DF) to the frequency of the terms in all the

ontologies. The Inverse Document Frequency (IDF) intends to reduce the importance of

the word that occurs most frequently in all the ontologies. It is mainly used to eliminate

the common terms across all the ontologies. The IDF value is computed by dividing the

number of ontologies with the number of ontologies containing the given term t and then

applying a logarithm to the resultant value. If the term appears in more ontologies, it is

more likely to be a common term that is not specific to any given ontology. Hence, the

log value of the word reduces to zero, ensuring that the IDF value and thereby the TF-IDF

value, is less for this term.

TF (t, o) = 1 + log(ft,o) (8.1)
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IDF (t, O) = log
N

1 + |{o ∈ O : t ∈ o}|
(8.2)

where N is the total number of the ontologies in the corpus, i.e., N = |O| and

|{o ∈ O : t ∈ o}| is the number of ontologies where the term t appears (i.e., TF (t, o) 6=

0).

TF-IDF value is high if the term has high term frequency and a low document

frequency in the corpus. Hence by considering the TF-IDF value, we can eliminate the

common terms in determining features.

TF − IDF (t,D) = TF (t, d) · IDF (t,D) (8.3)

The TF-IDF score reflects how important an ontological feature is to an ontology

in a corpus of ontologies. The top X important words can be extracted based on the

weights of the TF-IDF terms (e.g., X= 50).

8.3.3 Semantic Embeddings using Word2Vec

For the feature vector generation, we used Word2Vec [257], which was designed

to produce word embeddings. Word2Vec is a two-layer neural network model for finding

contexts of words in the corpus.Word2Vec can utilize two types of model architectures

either continuous bag-of-words (CBOW) or continuous skip-gram. In the CBOW model,

the current word is predicted from surrounding context words (bag-of-words assumption).

In the skip-gram model, the surrounding context words will be predicted from the current
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word by weighing more to nearby context words. [Note: word and term are interchange-

ably used in this chapter.]

In this chapter, we used the skip-gram model of Word2Vec with negative sampling

[54] in which a window is defined to learn word embeddings. The model defines a context

based on the frequently co-occurred terms in the same dimensional space of an ontology

corpus. The model builds similar embeddings for target words t that co-occur with similar

contexts c. The objective function is defined to optimize embeddings as follows:

L =
∑

(t,c)∈P

Lt,c (8.4)

Lt,c = logα(v
′

c.vt) +
∑
r∈Rt,c

logα(v
′

r.vt) (8.5)

where vt and v′
c are the vector representations of target word t and context word c.

P is a set of co-occurring target-context pairs (t, c) within a defined size of window, and

R(t, c) is a set of randomly sampled context words c used with the pair (t, c).

In this chapter, we have uniquely applied the Word2vec model to a large corpus of

ontological properties (label, hasExactSynonym, hasRelatedSynonym, and prefLabel) that

were extracted from the ontologies to produce a vector space with k dimensions. Each

unique word in the corpus was assigned a corresponding vector in the space. In the vector

space, if an ontological property shares common contexts with the other ontology, they

will be located near one another in the space.

We have constructed the semantic embeddings by mapping significant features
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(TF or TF-IDF) to Word Embeddings (Word2Vec). We have outlined the notable fea-

tures X (X = 200) using TF and TF-IDF measurements to the base terms in the word

embeddings using Word2Vec with window size W (W= 20) and cosine similarity. The

Semantic Embeddings are representative embeddings selected by integrating Word Em-

bedding (Word2Vec) with Feature Extraction (TF or TF-IDF).

8.3.4 Ontology Mapping Graph

In this step, we have mapped the terms in the semantic embeddings to concepts

of the 32 hypertension ontologies. We have applied partial matching for this mapping

by using the contained operation (e.g., (contains(hypertension, c), where hypertension is

contained in the concept c). The ontology-concept and embedding matrix is designed to

identify the matched concepts from this ontology mapping. From this analysis, we also

find the degree of connectivity based on the matched concepts of the ontologies. In the

final step of the ontology mapping process, the connectivity between ontologies is defined

as an edge in a graph, called Ontology Mapping Graph. More specifically, an ontology

Ox is defined as a node in the graph G and two ontologies is connected (Ox, Oy) if a

concept in the semantic embeddings in an ontology (Ox) is contained any concepts (S

or O) of another ontology (Oy) in the hypertension domain. This represents the local

edge-connectivity of the ontologies that are symmetric.

The ontology mapping graph represents the degree of connectivity. Two ontolo-

gies are k-edge-connected if the edge between the two ontologies is connected with the

degree of k. A graph is called k-edge-connected if its edge connectivity is k or greater.
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The ontology mapping graph is maximally connected if its connectivity equals its mini-

mum degree (k=#Ontology-1). In the hypertension context of the 32 ontologies, an on-

tology can be mapped to most 31 ontologies (i.e., k=31). The ontology mapping graph

is minimally edge-connected if its edge-connectivity equals its minimum degree (k = 0).

Furthermore, we extended the connectivity concept to the concepts across ontologies. The

concept graph across ontologies are t-edge-connected if the edge between the two con-

cepts across ontologies are connected with the degree of t.The ontology mapping graph

is strongly connected if its edge-connectivity t > 100.

8.4 Results and Evaluation

The OMF implementation and experiments were conducted on a 16GB RAM Ma-

chine. Ontologies were extracted from the NCBO BioPortal using Biportal Rest API

[237]. The queries on the ontologies were performed with Apache Jena [258] with the

SPARQL Wrapper. TF-IDF and Word2Vec Model were implemented with Apache Spark

2.2.0Â Visualization of the Ontology Mapping Graph was done using Gephi 0.9.2 [259].

Pandas 0.22.0 [260] was used for the implementation of a pipeline for data analysis such

as cleaning data, analyzing and modeling, then organizing the results in the tabular display

or by plotting.

8.4.1 Dataset

For the experiment, 32 ontologies (shown in Table 44) were searched and selected

from the NCBO BioPortal that contains more than 690 ontologies in biomedical domains.
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Initially, we had 41 ontologies using the search keyword hypertension through the Bio-

Portal API [237]. This dataset was extended to 55 ontologies through the Reuses in Other

Ontologies option (e.g., MeSH and RH-MeSH) (shown in Table 45). From the 55 on-

tologies, we have a refined dataset of 32 ontologies (shown in Table 44) that are selected

based on (i) ontology format: OWL, RDF, Turtle, N-Triples were supported while OBO,

OFN, OWL2, and xrdf were not supported in our framework (as shown in Table 46) and

(ii) publicly available: some of them were private and not downloadable.

8.4.2 Results of Semantic Property Extraction

From the 32 ontologies, we extract features by querying semantic properties: the

following OWL or RDF properties were used to extract ontological features including

label, prefLabel, hasExactSynonym, hasRelatedSynonym, hasNarrowSynonym, as shown

in Table 47. In most of the ontologies gave useful semantic concepts from the label and

prefLabel. Two major patterns were observed during the domain expert-designed ontolo-

gies.In the first pattern, Concepts were named based on the complete semantic meaning,

such as ADO URI for NSAID medication is named based on the same while the second

type, Concepts were mainly had URI based on Identification Numbers such as CRISP

(as shown in Table 48). Ontological features were extracted from the medication concept

in the 32 hypertension ontologies, as shown in Table 48. In this table, some interesting

features are extracted, for example, Studying medication history, medication adherence

behavior, and time-release medication.
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Table 44: Ontology Dataset in Hypertension Domain

Acronym Ontology Name #Class #Individual #Property
ACGT-MO Cancer Research and Management ACGT

Master Ontology
1770 61 260

ADO Alzheimer’s disease ontology 1565 0 12
BAO BioAssay Ontology 7192 1 223
BDO Bone Dysplasia Ontology 3668 0 19

CCONT Cell Culture Ontology 20844 0 61
COSTART Coding Symbols for a Thesaurus of Ad-

verse Reaction Terms
1707 0 1

CRISP Computer Retrieval of Information on Sci-
entific Projects Thesaurus

9039 0 7

CSEO Cigarette Smoke Exposure Ontology 20085 0 91
DIAB BioMedBridges Diabetes Ontology 375 0 4
DMTO Diabetes Mellitus Treatment Ontology 10700 63 315
DOID Human Disease Ontology 12694 0 15
DTO Drug Target Ontology 10075 0 0
EFO Experimental Factor Ontology 20637 0 0

FAST-TOPICAL FAST (Faceted Application of Subject Ter-
minology) Topical Facet

3 583314 0

HFO Heart Failure Ontology 1652 0 0
HL7 Health Level Seven Reference Implemen-

tation Model
9866 0 63

ICD9CM International Classification of Diseases,
Version 9 - Clinical Modification

22533 0 8

IFAR Fanconi Anemia Ontology 4530 0 0
KTAO Kidney Tissue Atlas Ontology 2201 13 163
LOINC Logical Observation Identifier Names and

Codes
2000674 0 0

MESH Medical Subject Headings 268289 0 38
NATPRO Natural Products Ontology 9465 22012 64

NCIT National Cancer Institute Thesaurus 138291 0 97
OMIM Online Mendelian Inheritance in Man 98642 0 15
ONS Ontology for Nutritional Studies 3442 104 66
PMA Portfolio Management Application 2084 0 9

RADLEX Radiology Lexicon 46656 47155 94
RCTV2 Read Clinical Terminology Version 2 88854 0 0

RH-MESH Robert Hoehndorf Version of MeSH 305349 0 1
RPO Resource of Asian Primary Immunodefi-

ciency Diseases (RAPID) Phenotype On-
tology

1545 0 166

SSE Surgical Secondary Events 244 1323 19
UPHENO Combined Phenotype Ontology 86448 4 142
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Table 45: Reuses in Other Ontologies

Base Ontology Reuses in Other Ontologies
MeSH RH-MeSH
DOID BAO, NATPRO, DTO

HP NIFSTD, BDO, DIAB, KTAO
EFO CCONT, ONS
DDO DMTO
MP UPHENO

APAONTO APADISORDERS
OF APO

Table 46: Ontology Formats of the NCBI BioPortal [244]

Format Description OMF
Sup-
port

OWL is a family of knowledge representation lan-
guages for authoring ontologies. The OWL lan-
guages are characterized by formal semantics.

Yes

RDF RDF Schema provides a data-modelling vocab-
ulary for RDF data. RDF Schema is an exten-
sion of the basic RDF vocabulary that is a stan-
dard model for data interchange on the Web.

Yes

Turtle Turtle (Terse RDF Triple Language) is a format
for expressing data in the RDF data model

Yes

N-Triples N-Triples is a format for storing and transmit-
ting data. It is a line-based, plain text serialisa-
tion format for RDF graphs, and a subset of the
Turtle format

Yes

OBO The OBO format is a format for sharing the use
of controlled vocabularies across different bio-
logical and medical domains.

No

OFN OWL functional notation No
OWL2 Version 2 of the Web Ontology Language No

xref/Dbref Xref and Dbxref are properties for support OBO
mappings by referring it to an analogous term in
another vocabulary

No
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Figure 66: Tokens from Hypertension Ontologies

8.4.3 Results of Natural Language Processing

Figure 66 shows the number of tokens generated from the NLP processing with

the ontological properties in hypertension ontologies datset.An average of 300,724 tokens

are extracted from 32 ontologies.The extracted tokens are at a maximum of 2,696,885 in

LOINC ontology and at a minimum of 42 in RADLEX ontology. Top three ontologies

with the largest tokens are LOINC, MESH, and FAST-TOPICAL. These tokens are used

to generate the word embeddings.

8.4.4 Results of Word Embeddings

Figure 67 shows the word embeddings generated from ontology property corpus

using Word2Vec with window size 20. In this embeddings, the first column in each row

is the base word and the words from the second column to the 20th column are the words

that share common contexts with the base word in the corpus.
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Figure 67: Word2Vec Embeddings

8.4.5 Results of Semantic Embeddings

The feature extraction techniques are applied to the 5 ontological properties (shown

in Table 47) extracted from 32 ontologies. We have identified the top 10 features and also

selected 500 significant features based on the weight of each feature. The window size

for Word2Vec was defined as 20 using TF and TF-IDF Terms and the similarity measure

is cosine similarity. Table 49 shows the results (top 10 features) from two feature extrac-

tion approaches: (i) Term Frequency (TF) and (ii) Term Frequency and Inverse Document

Frequency (TF-IDF).

Considering 500 significant features, only 109 terms were found in TF-IDF/Word2Vec

Model, while 363 terms were found in TF/Word2Vec Model. As the terms of the TF/Word2Vec

Semantic Embeddings were higher than TF-IDF/Word2Vec Semantic Embeddings, the

TF/Word2Vec Model is more appropriate than TF-IDF/Word2Vec for semantic embed-

dings.

241



Ta
bl

e
49

:S
em

an
tic

E
m

be
dd

in
gs

:I
nt

eg
ra

tio
n

of
T

F-
ID

F
an

d
W

or
d2

V
ec

T
F

Te
rm

s
W

or
d2

Ve
c

T
F-

ID
F

Te
rm

s
W

or
d2

Ve
c

Pr
ot

ei
n

C
om

po
un

d,
Pe

pt
id

e,
C

ar
-

di
ob

la
st

H
ex

an
e

H
ep

ta
ne

,
M

et
hy

lth
ia

zo
le

,
D

im
et

ho
xy

be
nz

yl
id

en
e

Ti
m

e
D

at
e,

D
ay

,P
la

nn
ed

A
vo

ca
do

C
la

m
,E

nd
iv

e,
Sc

al
lo

p
Po

in
t

Ti
m

ep
oi

nt
,

E
nd

po
in

t,
Ti

tr
a-

tio
n

Te
m

afl
ox

ac
in

Tr
ol

ea
nd

om
yc

in
,

R
ox

ith
ro

m
yc

in
,

Ta
la

m
pi

ci
lli

n
H

um
an

M
ou

se
,R

at
,Z

eb
ra

fis
h

A
na

ly
st

Tr
ac

er
,G

en
er

at
io

na
l,

C
he

m
is

t
Pi

an
o

G
ui

ta
r,

C
ho

ir,
C

ym
ba

ls
Pr

es
cr

ib
ed

R
efi

lls
,P

re
sc

,M
ed

ic
at

io
n

D
N

A
R

N
A

,G
ly

co
la

se
,M

et
hy

la
se

D
is

tr
ac

te
d

Sh
oc

ke
d,

H
el

pf
ul

,A
cr

os
s

A
ci

d
Sa

lt,
M

on
os

od
iu

m
,D

is
od

iu
m

N
or

de
ox

yc
or

tic
os

te
ro

ne
C

ho
le

st
at

ri
en

,K
et

ov
ita

m
in

,T
hi

ae
s-

tr
a

Fo
od

So
ur

ce
,P

la
nt

,M
ix

H
eb

re
w

A
ra

m
ai

c,
Ta

ga
lo

g,
K

on
ka

ni
Se

ru
m

Pl
as

m
a,

Te
st

,L
ev

el
To

rt
ur

e
N

ov
ic

es
,U

m
ba

nd
a,

Po
ly

ga
m

y
B

re
as

t
O

es
op

ha
gu

s,
U

re
tu

r,
Pr

os
-

tr
at

e
M

ac
ul

o
B

la
ck

he
ad

s,
H

er
pe

tif
or

m
,

Pa
pu

lo
ve

si
cu

la
r

242



Table 50: Ontology Mapping

Type Original Mapping OMF Mapping
Connectivity #Ontologies #Connectivity #Ontologies #Connectivity

Regular Connectivity 27 113 32 23029
Strong Connectivity 19 39 13 54

Extraction OMF: TF-IDF OMF: TF
Regular Connectivity 29 367 32 23029

8.4.6 Results of Ontology Mapping

Table 50 shows the increase in the degree of connectivity among ontologies in

the hypertension context. After the OMF mapping, we found the degree of connectiv-

ity among ontologies has been significantly increased from 23% to 98%. Specifically,

ontology mapping with no connectivity was 16% in original mapping, while all 32 on-

tologies were connected to other ontologies in the OMF mapping. In the OMF mapping,

the degree of connectivity for the full connectivity (i.e., 31 ontologies) was 68%.

Figure 68 shows the connectivity among ontologies in hypertension without and

with OMF. As seen in the figure, most of the ontologies are fully connected to other

ontologies in the OMF framework. Figure 69a shows the ontology mapping graph for the

27 ontologies, 113 concept connectivity among 27 ontologies, 23% degree of connectivity

with the original ontology mapping. Figure 69b shows the ontology mapping graph for

the 32 ontologies and 23029 concept connectivity among 32 ontologies, 98% degree of

connectivity after applying the OMF framework (TF-Word2Vec). These results show that

the OMF framework is very effective in increasing the ontology number and the degree

of concept connectivity among ontologies.
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Table 51: Ontology Mapping and Connectivity in Hypertension

Type Original OMF
Ontology #Con #Con > 100 #Con #Con > 100

ACGT-MO 9 0 30 0
ADO 9 0 30 2
BAO 13 5 31 0
BDO 9 0 31 9

CCONT 13 4 31 0
COSTART 8 6 30 9

CRISP 8 6 31 0
CSEO 10 2 30 0
DIAB 9 1 30 0
DMTO 0 0 31 0
DOID 7 2 31 0
DTO 8 4 31 8
EFO 13 4 31 9

FAST-TOPICAL 8 0 31 0
HFO 0 0 31 0
HL7 8 6 30 9

ICD9CM 8 6 31 0
IFAR 8 1 31 0
KTAO 14 3 31 9
LOINC 8 4 31 3
MESH 8 6 31 0

NATPRO 1 0 31 9
NCIT 1 0 30 9

OMIM 9 5 31 0
ONS 12 6 30 0
PMA 1 0 30 4

RADLEX 6 0 21 4
RCTV2 0 0 31 0

RH-MESH 0 0 31 0
RPO 0 0 31 10
SSE 8 1 30 0

UPHENO 10 4 31 0
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Figure 68: Ontology Connectivity in Hypertension

Table 52: Ontology Mapping (Source/Target) in Hypertension

Original OMF
Source Target #Con Source Target #Con

EFO CCONT 20636 RH-MESH MESH 202
DOID BAO 3210 EFO CCONT 148
DTO DOID 2089 OMIM MESH 146
DTO BAO 1770 RCTV2 MESH 145

UPHENO CCONT 1767 MESH LOINC 141
UPHENO EFO 1756 MESH CCONT 135
UPHENO KTAO 1462 MESH EFO 135

NCIT IFAR 1048 MESH FAST-TOPICAL 135
UPHENO DIAB 359 RCTV2 LOINC 134

KTAO CCONT 301 RCTV2 OMIM 132
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(a) Original Mapping (b) OMF Mapping

Figure 69: Ontology Mapping in Hypertension (Original Mapping vs. OMF Mapping)

(a) Original Concept Mapping: Degree of Connectivity > 100

(b) OMF Ontology Concept Mapping: Degree of Connectivity >
100

Figure 70: Ontology Mapping in Hypertension (Strong Degree of Connectivity: Original
Mapping vs. OMF Mapping)
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(a) OMF Ontology Mapping with TF-IDF Feature Extraction

(b) OMF Ontology Mapping with TF Feature Extraction

Figure 71: OMF with TF & TF-IDF Feature Extraction: Ontology Mapping in Hyperten-
sion
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Figure 70a shows the ontology mapping graph with 19 ontologies, 39 concept

connectivity, showing a strong relationship (the number of common concepts> 100) with

the original ontology mapping. Figure 70b shows the ontology mapping graph with 13

ontologies, 54 concept connectivity showing a strong relationship (the number of common

concepts > 100) after applying the OMF framework (TF-Word2Vec). These results show

that the OMF framework effectively increases the degree of concept connectivity (for the

strong connectivity of the number of common concepts > 100) among ontologies.

Figure 71a shows the ontology mapping graph with 32 ontologies and 367 con-

cept connectivity showing strong relations (the number of common concepts > 100) after

applying the OMF framework (TF-IDF-Word2Vec). Figure 71b shows the ontology map-

ping graph for the 29 ontologies and 23029 concept connectivity after applying the OMF

framework (TF-Word2Vec). These results show that the TF feature extraction is more

effective than the TF-IDF extraction method in the OMF framework.

Table 51 shows the original and OMF mappings for normal and strong connec-

tivity relations between the concepts for the 32 ontologies. Table 52 shows the original

and OMF mappings between source and target ontologies, together with the number of

connectivity.

8.5 Conclusion

In this chapter, we proposed a semantic framework for automatic ontology map-

ping through ontology search, feature extraction, and word embeddings. This is a new

248



way to discover semantic mapping between concepts across multiple ontologies. The on-

tologies were mapped to semantic features extracted from multiple ontologies selected

from the NCBI BioPortal [244]. From the comparative analysis, we confirmed that the

proposed approach is effective in discovering relationships between ontologies.

The OMF framework was implemented in a parallel and distributed computing en-

gine, Apache Spark, for providing a scalable solution for a large number of features from

multiple ontologies. The parallel and distributed pipeline approach includes (i) Ontology

searching using BioPortal API [237], (ii) Ontology query with the ontology properties us-

ing Apache Jena (iii) TF-IDF (Term Frequency Inverse Document Frequency) for feature

extraction, (iv) Word2Vec for Word Embeddings, (v) Ontology mapping through concept

matching, (vi) Gephi for Ontology mapping graph visualization. We confirmed that the

OMF framework is effective in enhancing the existing ontologies mapping and discover-

ing new relations across ontologies beyond the boundary of ontologies. The work pre-

sented in this chapter was published as part of Chandrashekar et al. [261]. Nagabhushan

et al.[223] and Chandrashekar et al. [243] are some related publications.
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CHAPTER 9

CONCLUSION

We proposed a new learning method, the deep open representative learning for

image and text classification. The open representative learning consists of class repre-

sentative for text and image data. Class Representatives are designed to project the ab-

stract features extracted from a deep learning environment to the high-dimensional feature

space. The contributions can be summarized into image and text categories.

9.1 Class Representative Learning for Image

• Image Classification Setting: As shown in Chapter 2, the class representatives were

independently generated using pre-trained convolution networks for image classifi-

cation. The CRL model showed slightly improved performance compared to exist-

ing mobile-based image classification with significant in execution time. The Class

Representative. Such showing that the class representative learning model was an

effective and efficient image classification model.

• Zero-Shot Learning Setting: As shown in Chapter 3, the class representative showed

an effective model for seen data and unseen data. Compared with state-of-the-art

zero-shot learning models, CRL proved to out-performed significantly for unseen

data and at par in seen accuracy. The class representative model was powerful,

250



with very small and highly imbalanced datasets. In this chapter, the class repre-

sentative’s shows the ability to transfer knowledge from seen dataset to completely

unseen dataset with no learning or relearning on the unseen dataset.

• Discriminant Distribution Model: As shown in Chapter 4, a discriminant distribu-

tion model was proposed using an optimal distribution of classes by computing a

misclassification cost (i.e., confusion factor). The classification hierarchical deep

neural network model was built by learning an optimal distribution of classes with

a higher accuracy performance of the learning process.

9.2 Class Representative Learning for Text

• Zero-Shot Learning Setting: As shown in Chapter 5, the class representative learn-

ing was proposed for zero-shot learning text classification. The class representa-

tive learning was generated by aggregating projected features using sentence en-

coder and feed-forward networks. In this chapter, the class representative’s shows

the ability to transfer knowledge from seen text dataset to completely unseen text

dataset with no learning or relearning on the unseen dataset. The class representa-

tive learning model was very effective in the text classification compared to state-

of-art zero-shot learning text classification models.

• Context Discovery: In Chapter 6, the VisContext framework was proposed to cap-

ture visual context through text caption data using unsupervised approaches. The

results confirm the effectiveness in discovering the contextual association of terms
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and images, visual context clustering, and image classification based on context.

• Text to Ontology: In Chapter 7, a semantic framework was proposed for dynam-

ically generating a diabetes publication ontology from a large corpus of diabetes

publications. The topic modeling methods were employed in finding latent topics.

These topic terms were mapped to ontological assertions extracted from the sci-

entific publications in PubMed. The ontological assertions were used to enhance

the existing diabetes ontologies, and new relations and entities between topics were

introduced to existing diabetes ontologies. In Chapter 8, describes an automatic on-

tology mapping through ontology search, feature extraction, and word embeddings,

a new way to discover semantic mapping between concepts across multiple ontolo-

gies. The ontologies were mapped to semantic features extracted from multiple

ontologies selected from the NCBI BioPortal [244].
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CHAPTER 10

FUTURE WORK

As future work, the class representative learning (CRL) model can be extended

to represent multi-modal data, particularly by combining image and text class represen-

tatives of a particular class. It will be shown that the extension of the CRL model needs

further enhancement for multi-label classification and even zero-shot object detection.

The CRL-based zero-shot framework can be easily extended to incorporate multi-label

text classification with the minimum modification in the CRL’s inferring. It is similar to

the object detection problem. The same success can be achievable with the change of

zero-shot classification by extracting features from multiple objects instead of from entire

images. By adding a region detection layer to the CRL based image classification model,

we can create class representatives for object detection.

The CRL-based zero-shot learning shows the superior ability to transfer knowl-

edge from a source domain to a target domain. CRL can be considered as an effective

domain adaptation technique due to its superiority in performance, even if no learning

is needed for a target domain. The existing domain adaptation methods rely on rich

prior knowledge on the relationships of source and target domains. The bonds can be

analyzed in different abstraction levels, such as class representatives (lowest abstraction

within a single domain), category gaps (intra-domain relationships), and domain gaps

(inter-domain relationships). Currently, CRL relies on a single source and multiple target
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model. The CRL-based domain adaptation can be extended for open-set transfer learning

for various sources and various targets. The various targets in the transfer learning in CRL

will be supported for an open-set recognition framework.

We have described the ability of smaller models and contextual models in CRL in

Chapter 2. This ability can be further explored for lightweight edge or mobile applications

for specific contexts. The CRL framework will be extended for context-aware dynamic

modeling.

We will apply the CRL model to a bio-medical domain. The CRL models for

image and text can be integrated with medical ontologies. The integrated semantic model

will contribute to creating a bio-medical application for clinical decision support systems.

This integrated semantic model can be exploited for personalized detection and treatment,

which is crucial to precision medicine.

Finally, the integrated semantic model with CRL (the CRL ontologies) will sup-

port the explainable artificial intelligence. Machine learning and ontologies can be inter-

operability (from ontologies to machine learning as well as machine learning to ontolo-

gies). The CRL ontologies will provide actionable interpretable models to applications.

It will lead to reasoning and learning capabilities that will be available in the CRL ontolo-

gies.
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APPENDIX A

A COMPARATIVE EVALUATION WITH DIFFERENT SIMILARITY MEASURES

In this appendix, we compare the four different similarity measures namely cosine

similarity, Minkowski distance, Euclidean distance and Manhattan distance for evaluation

of class representatives.

Cosine Similarity: Cosine Similarity is measured by the cosine of angle between two

class representatives projected in N -dimensional space (Equation A.1).

Cosine Similarity :

cos(CR1, CR2) =
CR1 · CR2

‖CR1‖ ‖CR2‖

=

∑N
i=1 xi,1xi,2√∑N

i=1 x
2
i,1

√∑N
i=1 x

2
i,2

(A.1)

Euclidean Distance Euclidean Distance is the distance between two points in Cartesian

coordinates in N -dimensional space (Equation A.2).

Euclidean Distance :

E(CR1, CR2) =

√√√√ N∑
i=1

(xi,1 − xi,2)2
(A.2)

Manhattan Distance Manhattan Distance is the fixed distance between two points in

Cartesian coordinates in N -dimensional space (Equation A.3).
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Mahanttan Distance :

M(CR1, CR2) =
N∑
i=1

(xi,1 − xi,2)
(A.3)

Minkowski Distance The Minkowski distance is a metric in a normed vector space which

can be considered as a generalization of both the Euclidean distance and the Manhattan

distance.
Minkowski Distance of order of p:

Mk(CR1, CR2) =

(
N∑
i=1

(xi,1 − xi,2)p
) 1

p (A.4)

Table 53 shows the comparison between Similarity Measures using class repre-

sentatives from two different datasets: Caltech-101 and CIFAR100. Caltech-101 is one

of the best performing and CIFAR100 is one of the worst-performing datasets. The class

representative image classification task was considered for this evaluation.

Table 53: Comparison between Similarity Measures in CRL Image Classification Task

Similarity Measures Caltech-101 Accuracy CIFAR-100 Accuracy
Cosine Similarity 93.9 57.96

Euclidean Distance 93.0 57.07
Manhattan Distance 92.5 56.17

Minkowski Distance (p = 0.5) 92.3 54.09
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brary [WWW Document]”. In: URL http://pandas. pydata. org/(accessed 7.22.

15) (2015).

[261] Mayanka Chandrashekar, Rohithkumar Nagulapati, and Yugyung Lee. “Ontology

mapping framework with feature extraction and semantic embeddings”. In: 2018

IEEE International Conference on Healthcare Informatics Workshop (ICHI-W).

IEEE. 2018, pp. 34–42.



VITA

Mayanka Chandrashekaris from a township called Anupuram, Tamil Nadu, India.

She graduated from Women’s Christian College, Chennai, Tamil Nadu, India (affiliated

to University of Madras) with an Integrated Master in Computer Science degree in 2014.

In August 2014, she moved to the USA to start her Interdisciplinary Ph.D. in Computer

Science from the School of Computing and Engineering, University of Missouri-Kansas

City, under the supervision of Dr. Yugyung Lee. Mayanka Chandrashekar’s research in-

terests include Semantic Web, Knowledge Discovery, Natural Language Processing, and

Image Processing. She is currently leading two projects with her doctoral advisor, namely

”Implicit Bias in STEM” and ”Understanding Greek Literature using Deep Learning.”

Mayanka has received multiple awards, such as Google Lime Scholarship and SGS Re-

search Award. She did a research internship in Pacific Northwest National Lab on the area

of Natural Language Processing. She has published in multiple top conferences such as

IEEE Big Data, ICDM, and PerCom. After completing her degree requirement, Mayanka

Chandrashekarwill start her Postdoctoral Research Associate in Oak Ridge National Lab

in Oakridge, TN. She will be working in the area of Artificial Intelligence and Natural

Language Processing for Biomedical Applications.

290


