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ABSTRACT

An essential goal of artificial intelligence is to support the knowledge discovery
process from data to the knowledge that is useful in decision making. The challenges in
the knowledge discovery process are typically due to the following reasons: First, the real-
world data are typically noise, sparse, or derived from heterogeneous sources. Second, it
is neither easy to build robust predictive models nor to validate them with such real-world
data. Third, the ‘black-box’ approach to deep learning models makes it hard to interpret
what they produce. It is essential to bridge the gap between the models and their support
in decisions with something potentially understandable and interpretable. To address the
gap, we focus on designing critical representatives of the discovery process from data to
the knowledge that can be used to perform reasoning.

In this dissertation, a novel model named Class Representative Learning (CRL)
is proposed, a class-based classifier designed with the following unique contributions in
machine learning, specifically for image and text classification, i) The unique design of

a latent feature vector, i.e., class representative, represents the abstract embedding space

il



projects with the features extracted from a deep neural network learned from either im-
ages or text, ii) Parallel ZSL algorithms with class representative learning; iii) A novel
projection-based inferencing method uses the vector space model to reconcile the domi-
nant difference between the seen classes and unseen classes; iv) The relationships between
CRs (Class Representatives) are represented as a CR Graph where a node represents a CR,
and an edge represents the similarity between two CRs.

Furthermore, we designed the CR-Graph model that aims to make the models ex-
plainable that is crucial for decision-making. Although this CR-Graph does not have full
reasoning capability, it is equipped with the class representatives and their inter-dependent
network formed through similar neighboring classes. Additionally, semantic information
and external information are added to CR-Graph to make the decision more capable of
dealing with real-world data. The automated semantic information’s ability to the graph
is illustrated with a case study of biomedical research through the ontology generation

from text and ontology-to-ontology mapping.
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CHAPTER 1

INTRODUCTION

The era of artificial intelligence (AI) and machine learning has bought sophisti-
cated Al-systems in all walks of human life (as in medicine, defense, or education). With
movement in Al towards deep learning, inherently encourages black-box machine learn-
ing. The increase in the use of black-box machine learning and deep learning models in
critical context demands transparency of these decisions [1]. The need for transparency
introduces the particular interest in the need for machine learning systems that can explain
their rationale, characterize their strengths and weaknesses, and also convey an under-
standing of how they will behave in the future [2]. In the last few years, the need for ex-
plainable Al has increased drastically, and commendable research has been done towards
this big goal. Explainable Al can be achieved through deep explanation, interpretable
models, or model induction. This dissertation focuses on using data representations and
graphs to aid explainable machine learning models.

The performance of machine learning is heavily dependent on the choice of data
representation. For that reason, much of the actual effort in deploying machine learning
algorithms go into the design of pre-processing pipelines and data transformations that
result in a representation of the data that can support effective machine learning. A good
representation is often one that captures the posterior distribution of the underlying ex-

planatory factors of the observed input [3]. Good data representation gives us explanatory



information about the data it represents, making representations an essential piece towards
explainable Al. The data representations of a given data provide an intricate knowledge
of the structure of the data and the valuable information from a large amount of data.
Data representations have been present for a long time since dimensionality reduction,
feature extraction techniques; from there, it has come to the new world with intensive
and beautifully designed deep learning techniques. The data representations have feature-
level information about the data. They need to be coupled with the auxiliary data like
semantics, attributes, and textual information to improve the reasoning. This information
is typically inter-dependent and intertwined and needs a good knowledge representation.
Graphs have become an essential part of developing useful data exploration tools, espe-
cially knowledge graphs.

Most available knowledge graphs are synthetic, seeding real-world properties into
generation routines. Others are laboriously curated from source materials or manually
created by domain experts. This process is time-consuming. So this dissertation presents
a path: dynamically deriving the graph from real-world data sources. This dynamic graph
generation process is used for creating data representation graphs. A larger corpus can
be automatically processed with greater confidence by adequately grounding the tools in
a small collection of curated datasets. The end system leverages the machine learning
model’s knowledge and reasoning, reducing the amount of time for human intervention
through automation.

This dissertation’s objectives can be split into two parts: class representative learn-

ing for images and class representative learning for text.



1.1 Class Representative Learning for Image

The Class Representative Learning for Image is done through three different goals.
The first goal aims at designing class representatives for visual data for image classifica-
tion settings, i.e., seen data. The next step is creating class representatives for unseen
data with no learning, also known as the zero-shot image classification setting. The third
goal is to create a discriminant distribution of classes based on the misclassification score.
The discriminant distribution essentially groups heterogeneous classes or non-confusing
classes to increase overall accuracy. Figure 1 shows the gist of each goal represented
as a chapter and how chapters are interlinked in the dissertation. As discussed earlier,
the whole architecture em-composes the steps involved in the transformation of data into
knowledge. We take the data to create data representations (also known as class represen-
tations) and create knowledge graphs.
A brief abstract of each chapter is as follows:
Chapter 2: CRL: Class Representative Learning for Image Classification
Recent advances in deep learning (DL) have improved the state-of-the-art results of the
data-driven approaches and applications in a wide range of domains. However, building
robust and real-time classifiers with diverse datasets is one of the most significant chal-
lenges to deep learning researchers. It is because there is a considerable gap between
a model built with training (seen) data and real (unseen) data in applications [4, 5, 6].
The current deep learning research assumes firm boundaries between data, between data
and models, and between models in deep learning. There is no attempt to deal with this

problem of breaking the boundaries or dynamically building a model. Consequently, the
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new paradigm focusing on the universal representation of diverse datasets and dynamic
modeling depending upon users’ contexts appears to be of great importance. There has
been increasing attention on Zero-Shot Learning [4] and one-shot/few-shot learning [7,
8]. These efforts aim to build the ability to learn from a few examples or even without
seeing them. Alternatively, it is required to represent and match new instances on a se-
mantic space, minimizing training efforts and maximizing learning outcomes. They focus
on active transfer learning by fully leveraging information from pre-trained models. The
seamless integration of unlabeled data from the seen/unseen classes is possible through
the artistic representations of multi-model embeddings, including semantic, word, visual
embeddings.

Chapter 3: Class Representatives for Zero-shot Learning using Purely Visual Data
The building of robust classifiers with high precision is an important goal. In reality, it
is quite challenging to achieve such a goal with the data that are typically noise, sparse,
or derived from heterogeneous sources. Thus, a considerable gap exists between a model
built with training (seen) data and testing (unseen) data in applications. Recent works,
including zero-shot learning (ZSL) and generalized zero-short learning (G-ZSL), have
attempted to overcome the apparent gap through transfer learning. However, most of
these works are required to build a model using visual input with associated data like
semantics, attributes, and textual information. Furthermore, models are made with all of
the training data. Thus, these models apply to more generic contexts but do not apply to

the specific settings that will eventually be required for real-world applications. In this



chapter, we propose a novel model named Class Representative Learning (CRL), a class-
based classifier designed with the following unique contributions in machine learning:
i) The unique design of a latent feature vector, i.e., class representative, represents the
abstract embedding space projects with the features extracted from a deep neural network
learned only from input images. ii) Parallel ZSL algorithms with class representative
learning; iii) A novel projection-based inferencing method uses the vector space model to
reconcile the dominant difference between the seen classes and unseen classes. This study
demonstrates the benefit of using the class-based approach with CRs for ZSL and G-ZSL
on eight benchmark datasets. Extensive experimental results suggest that our proposed
CRL model significantly outperforms the state-of-the-art methods in ZSL/G-ZSL based
image classification.

Chapter 4: MCDD - Multi-class Distribution Model for Large Scale Classification
We need a parallel and distributed machine learning framework to deal with a large
amount of data. We have seen unsatisfactory classification performance, especially with
an increasing number of classes. In this chapter, we propose a distributed deep learn-
ing framework, called Multi-Class Discriminative Distribution (MCDD) that aims to dis-
tribute classes while improving the accuracy of deep learning with large-scale datasets.
The MCDD framework is based on an evidence-based learning model for the optimal dis-
tribution of classes by computing a misclassification cost (i.e., confusion factor). These
observations about learning attempts have been used to extend a classifier into a classi-
fication model hierarchy by learning an optimal distribution of classes. As a result, a

distributed deep neural network model with multi-class classifiers (MCDDNet) was built



to optimize the learning process’s accuracy and performance. The MCDD model has
been implemented in parallel environments, Apache Spark, and Tensor Flow using large
real-world datasets (Caltech-101, CIFAR-100, ImageNet-1K). MCDD can build a class
distribution model with higher accuracy compared to existing models.

Chapter 5: Zero-shot Learning for Text Classification using CRL

Zero-Shot Learning (ZSL) has been a very active research area over recent years. How-
ever, the ZSL algorithms for text classification remains very limited despite considerable
research efforts in NLP. In this chapter, we proposed a novel Class Representative Learn-
ing (CRL) framework for ZSL-based text classification that was designed using sentence-
level word embeddings and deep neural network features. The experiments show that
CRL achieved the highest overall accuracy compared with the state-of-the-art research in

Zero-Shot Learning and Generalized Zero-Shot Learning (GZSL).

1.2 Class Representative Learning for Text

Figure 2 shows the gist of each goal for text data are represented as chapters and
how text-based chapters are interlinked in the dissertation. Each chapter in the disserta-
tion describes a specific problem that contributes to the entire architecture. As discussed
earlier, the whole architecture em-composes the steps involved in the transformation of
data into knowledge. We take the data to create data representations (also known as class
representations) and create ontologies.

A brief abstract of each chapter is as follows:
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Chapter 5: Zero-Shot Learning for Text Classification using Class Representative
Learning

With significant advances in supervised machine learning and enormous benefits from
deep learning for a range of diverse applications. Despite the success of deep learning,
in reality, very few works have shown progress in text classification. Transfer learning,
known as the zero-shot learning (ZSL)or generalized zero-short learning (G-ZSL), is re-
ceiving much attention due to its ability to transfer knowledge learned from a known
domain to unknown domains. Nevertheless, most of the ZSL works are relying on large
training corpus and external semantic knowledge. Thus, there are very few studies that
have investigated the improvement of text classification performance in sorely text-based
ZSL/G-ZSL. In this chapter, we propose a class-based framework for zero-shot classifi-
cation effectively that is based on a three-step approach consisting of: (1) sentence-based
embeddings, (2) deep neural networks, and (3) class-based representative classifiers. Ex-
perimental results show that the proposed framework achieves the best classification re-
sults in text-based ZSL/G-ZSL compared with the state-of-the-art approaches investigated
with three text benchmark datasets.

Chapter 6: Visual Context Learning with Big Data Analytics

Understanding contextual information composed of both text and images is beneficial for
multimedia information processing. However, Capturing such contexts is not trivial, es-
pecially while dealing with real datasets. Existing solutions such as using ontologies (e.g.,
WordNet) are mainly interested in individual terms. Still, they do not support identifying

a group of words that describe a specific context available at runtime. There are minimal



solutions regarding the integration of contextual information from both images and text
within our knowledge. Furthermore, existing solutions are not scalable due to the compu-
tationally intensive tasks and are prone to data sparsity. In this chapter, we propose a se-
mantic framework, called VisContext, based on a contextual model combined with images
and text. The VisContext framework is based on the scalable pipeline that is composed of
the primary components as follows: (i) Natural Language Processing (NLP); (ii) Feature
extraction using Term Frequency-Inverse Document Frequency (TF-IDF); (iii) Feature
association using unsupervised learning algorithms including K-Means clustering (KM)
and Expectation-Maximization (EM) algorithms; iv) Validation of visual context models
using supervised learning algorithms (Naive Bayes, Decision Trees, Random Forests).
The proposed VisContext framework has been implemented with the Spark MLIib and
CoreNLP. We have evaluated the effectiveness of the framework in visual understanding
with three large datasets (IAPR, Flick3k, SBU) containing more than one million images
and their annotations. The results are reported in the discovery of the contextual associa-
tion of terms and images, image context visualization, and image classification based on
contexts.

Chapter 7: Transformation from Publications to Diabetes Ontology using Topic-
based Assertion Discovery

During the last decade, we have seen explosive growth in the number of biomedical pub-
lications. In this chapter, we present an Assertion Discovery framework that aims to

transform from PubMed publications (diabetes domain) to an ontology, called Diabetes
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Publication Ontology (DPO). The assertions in the DPO ontology were mapped and in-
tegrated with ones in existing diabetes ontologies. The Assertion Discovery framework
consists of three main components: (i) Assertion Discovery, (ii) Assertion Alignment, and
(iii) Assertion Integration. The proposed approach for ontology generation was based on
Stanford CoreNLP for Natural Language Processing, OpenlE (Open Information Extrac-
tion) for relation extraction, LDA (Latent Dirichlet Allocation) for topic modeling, and
OWL API for ontology generation on the Spark parallel engine. We presented a web-
based application for searching diabetes publications and retrieving the assertions from
the diabetes publications through the DPO ontology.

Chapter 8: Ontology Mapping Framework with Feature Extraction and Semantic
Embeddings

During the last decade, we have seen an increasing interest in biomedical ontologies.
In this chapter, we proposed a semantic framework for an automatic ontology mapping
through ontology search, feature extraction, and word embeddings. This framework is
a new way to discover semantic mapping between the concepts across multiple ontolo-
gies. The ontologies were mapped to semantic features extracted from various ontologies
selected from the NCBO BioPortal. We confirmed that the OMF framework effectively
enhances the existing ontologies mapping and discovers new relations across ontologies

beyond the boundary of ontologies.
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CHAPTER 2

CRL: CLASS REPRESENTATIVE LEARNING FOR IMAGE CLASSIFICATION

Recent advances in deep learning (DL) have improved the state-of-the-art results
of the data-driven approaches and applications in a wide range of domains. However,
building robust and real-time classifiers with diverse datasets is one of the most significant
challenges to deep learning researchers. It is because there is a considerable gap between
a model built with training (seen) data and real (unseen) data in applications [4, 5, 6]. The
current deep learning research assumes strong boundaries between data, between data and
models, and between models in deep learning. There is no attempt made to deal with this
problem of breaking the boundaries or dynamically building a model. Consequently, the
new paradigm focusing on the universal representation of diverse datasets and dynamic
modeling depending upon the user’s context appear of great importance.

There has been increasing attention on Zero-Shot Learning [4] and one-shot/few-
shot learning [7, 8]. These efforts aim to build the ability to learn from a few examples
or even without seeing them. Alternatively, it is required to represent and match new in-
stances on a semantic space, which results in minimizing training efforts and maximizing
learning outcomes. They focus on active transfer learning by fully leveraging information
from pre-trained models. The seamless integration of unlabeled data from the seen/unseen
classes is possible through the expressive representations of multi-model embeddings, in-

cluding semantic, word, visual embeddings. However, there are the notable limitations of
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these Zero/Few-Shot Learning works: Many of them are relying on semantic embeddings
in a common semantic space having a generative model [9, 10, 11].

The current works of Zero-Shot Learning demonstrated their effectiveness in trans-
ferred from prior experiences to new classes, which is a form of transfer learning. The
most used semantic space in the Zero-Shot Learning model is supported by a joint em-
bedding framework called Label-Embedding Space [4, 12]. This semantic space contains
a combination of visual embeddings and word embeddings. The other popular semantic
space is Engineering Semantic Space called Attribute Space, which uses attribute anno-
tations for the ZSL model [13]. In contrast to prior work, we mainly extract the deep
neural network features learned from visual inputs of seen classes creating image repre-
sentatives, and we do not rely on any other features such as attribute annotations or word
embeddings.

Similar to our approach in the feature extraction, there are active efforts [14, 15]
for extracting important features from Convolutional Neural Networks such as Inception
or ResNet. Mahendran et al. [14] analyzed the preserved deep features through inverting
the fully-connected layers. Zhou et al. [15] built the class activation map using CNN
features for the localization of the objects in the images for the discriminative image
regions. Unlike [14] and [15], we are interested in generating class-specific markers using
CNN features.

Our goal is to propose an innovate model, called Class Representative Learning

(CRL), for image classification for seen and unseen data. In this model, the focus is on
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creating a universal representation called the class representatives using the source envi-
ronment, which is typically pre-trained deep learning models. Given this goal, architec-
tural improvements are not our purpose; instead, we explore the potential and impact the
universal representation can make. It is desired to enable the universal representation to
be trained from any existing architectures or datasets with reduced efforts and resources.
The minimum requirement for the CRL model is to secure a suitable source (pre-trained)
environment for a given dataset.

The CRL model can be classified as transfer learning, called meta-learning [16,
17]. The basic idea behind transfer learning is to use previously learned knowledge on
different domains or tasks. The CRL model is based on the transductive approach that
aims to project the target data onto a source environment for the extraction of features
by mapping to unify the input spaces. The transductive property in transfer learning is to
derive the values of the unknown function for points of interest (class-based or instance-
based) from the given data (source environment or source domain) [4, 18].

The CRL model poses the property of being selective during inferencing. In other
words, the CRL model can classify an input image to either source labels or target labels
or both. Due to this property, the CRL model can behave like a traditional classification
model. The Convolution Neural Network-based Classification models tend to be high
in parameter requirements to achieve state-of-the-art accuracy [19, 20]. To show the
superiority of the CRL model developed in this study, we have compared our CRL model
against other state-of-the-art deep learning models.

The contributions of this chapter can be summarized as follows:
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The key contribution of our work is an effective way of building zero-shot classi-
fiers. Classifiers are built by dynamically aggregating Class Representatives (CRs)

depending upon the context in which it appears.

The proposed modeling approach is also flexible enough to allow breaking down
boundaries between datasets and building a model across domains through effective

transferring knowledge from one domain to another.

The unique contribution is that we can dynamically generate classifiers for image
classification problems. The dynamic model in the CRL model was possible due
to its ability to generate the Class Representatives (CRs) one by one through the

aggregation of CNN activation features.

Furthermore, we can represent the relationships of the CRs as a graph form. The CR
Graph can be used for interpreting a model performance by identifying the accuracy

of CRs as well as the similarity between CRs.

A comprehensive evaluation of the proposed model has been conducted using the
four benchmark datasets. The CRL model outperforms state-of-the-art Zero-Shot
Learning (ZSL) in terms of learning time and accuracy. CRL also shows improved
performance compared to the existing MobileNet models [21, 21, 22] for image

classification.
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2.1 Related Work

2.1.1 Dynamic Modeling for Classifiers

Chang et al. [23] presented a dynamic composition approach for discovering the
optimal weights of different concept classifiers by aggregating the individual concept pre-
diction scores. This technique is inspired by zero-shot learning frameworks [6, 24]. Aydin
et al. [25] proposed dynamic Bayesian networks by sparsifying their parameters for pro-
tein secondary structure prediction. Some machine learning approaches were improved
their accuracy by aggregating complementary features of data such as coding [26, 27] and
dynamic pooling [28]. Among dynamic pooling works in deep learning for image anal-
ysis, [29] is limited due to their assumption of fixed regions while dynamic pooling with
content-based regions [28]. Li and Vasconcelos [28] proposed a binary dynamic system
for characterizing the action attributes, representation of human activity in attribute space
[30], and a bag of words for attribute dynamics ( [31]. These works were mainly concen-
trated on the attributes or features that would be used for classifiers. However, none of

these works consider building a classifier dynamically for a specific context.

2.1.2 Transfer Learning

Recent studies have indicated the importance of transfer learning (TL) [32, 33]
that aims to maximize the learning outcome by transferring a model developed for a task
for building a model on another task. NASNet [22] explored the possibility of transferring
from what learned from a small dataset (e.g., CIFAR-10) to a larger dataset (ImageNet-

1K) through searching and utilizing a core architectural building block from the small
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dataset.

He et al. [34] have shown that pre-trained models with an extensive data set like
ImageNet-1K or with a small dataset like a subset of MS COCO have incredible influence
in computer vision. Initialization with pre-trained models or evaluating with pre-trained
features (e.g., unsupervised learning [35]) can reduce efforts and produce better results in
Deep Learning (DL). It is possible because pre-training models are widely available, and
learning from the models is faster than building from scratch.

The DL community has extensively studied transfer Learning [32, 33]. The trans-
fer learning from ImageNet-1K in Decaf [36] showed substantial improvements compared
to learning from image features. Ravi et al. [16] also presented a meta-learner model that
supported the quick convergence of training with a new task using few-shot learning.

Pan et al. [37] defined an inductive transfer learning as cross-domain learning
where the target task is different from the source task. The data in the target domain are
required to induce a predictive model that can be transferred from the source domain to
the target domain. Our model is similar to the Feature-representation-transfer defined by
Pan et al. However, the difference is that our model was encoded based on the aggregation
of the high-level features extracted from Convolutional Neural Networks.

In our chapter, we used a pre-trained model only for feature extraction, but training
is not required with new data. After the fully connected layers are removed from the entire
network, the rest will be mainly used for feature extraction for new data. Thus, the use
of the pre-trained model in our study is different from others since we only use it as a

reference model for extracting features for new data.
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2.1.3 Universal Representation

Ubernet [38] is a universal CNN that allows solving multiple tasks in a unified
architecture efficiently. It is through the end-to-end network training with a single training
set for diverse datasets and low memory complexity. Universal representations [39, 40]
perform well for visual domains in a uniform manner and have proven to be efficient for
multiple domain learning in relatively small neural networks.

Rebuff et al. [41] demonstrated that universal parametric families of networks
could share parameters among multiple domains using parallel residual adapter modules.
Similar to our work, all these works presented universal representations for multiple do-
mains or multiple tasks. However, unlike CRL, none of them focus on dynamically gen-
erating a model for multiple domains.

In this chapter, we define Source Environment for providing a basis for feature
selection as well as a uniform representation of a set of heterogeneous data sources for
effective deep learning. Feature selection is a crucial step in machine learning since it
directly influences the performance of machine learning. (e.g., as the right choice of
features drives the classifier to perform well). However, Kapoor et al. [42] observed that
finding useful features for multi-class classification is not trivial due to the volume in the
high-dimensional feature space as well as the sparseness over the search space.

Dictionary learning [43] was presented to determine the subspaces and build dic-
tionaries by efficiently reducing dimensionality for efficient representations of classes of
images. The critical contribution of the work is the reduction of sparsity constraints and

the improvement of accuracy by identification of the essential components of the observed
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data. From the extracted set of relevant features from images and quantizing them with
these bags of visual words, we will further build up a visual CR vector for each class by
combining these primitive features. The visual CRs will be used for efficient learning as

well as recognition with large scale multi-class datasets.

2.1.4 Lightweight Deep Learning

Recently, there has been an increasing demand for mobile applications for small
networks or dynamic networks in deep learning. There have been several deep neu-
ral architectures to strike an optimal balance between accuracy and performance. The
lightweight deep learning was achieved using three types of layer compression tech-
niques, namely: weight compression, convolution compression, and adding a single layer
[44]. Weight compression is the primitive technique used to create a lightweight model.
MobileNet-V1 [45] and Shufflenet [46] used a convolution compression technique in its
architecture, specifically depth-wise separable convolutions and point-wise group convo-
lution, respectively.

As an extension of the previous works, MobileNet-v2 [21] added a new layer,
namely an inverted residual layer, with a narrow bottleneck to create a lightweight model.
In NasNet Mobile [22], a new paradigm, called Neural Architecture Search (NAS), was
proposed with reinforcement learning for knowledge transfer. In general, architectural
changes are typically considered to achieve a lightweight model. In the CRL model, we
have obtained a lightweight model through the flexibility of representation concerning the

class.
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2.1.5 Matching Networks

Few-shot classification [7, 8] is to label new classes which are not seen in training,
but through matching with only a few examples of each of these classes. The matching
networks are similar to a weighted nearest-neighbor classifier in an embedding space. The
embedding in the matching networks was built as a form of sampled mini-batches, called
episodes, during training. Notably, matching networks [8] is similar to our work in terms
of mapping an attention-based embedding to a query set for predicting classes. However,
our model is different from these works since we can build a dynamic model for multiple
classes by assembling a set of a single class classifier, called Class Representative, built
one by one independently.

A meta-learning approach [16] aims to build a custom model for each episode
based on LSTM, unlike others building each episode over multiple episodes. The pro-
totypical networks built a class prototype by computing the mean of the training set in
the embedding space. The inferring step was achieved by finding the nearest class pro-
totype for a query set. This approach is very similar to our work in terms of building
the classas prototype as a class abstraction in shared embedding space [47]. Recently,
Wang et al. [48] extended the performance of Zero-Shot Learning and Few-Shot Learn-
ing using latent-space distributions of discriminative feature representations. Similar to
our approach, they used only the feature extractor of the CNN model. However, they
are different from our work in terms of the following aspects: (1) they used variational
autoencoder (VAE) while we are using a vector space model with a cosine similarity mea-

surement, (2) they built a model for all classes in any given dataset while we are building
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a model class by class. They focused on learning an embedding of the meta-data into a
shared space. However, in our work, we build CRs class by class. Thus, once the CR is
generated, there is no dependence between CRs. Due to the independence between CRs,

we can build multi-class models dynamically.

2.1.6  Zero-Shot Learning

Zero-Shot Learning (ZSL) defined a semantic encoding for predicting new classes
by using a standard feature set derived from a semantic knowledge base [24]. All well-
known works have worked on learning and understanding explicit and external attributes.
Much of the early work adapted from the original definition of the semantic knowledge
base in Zero-Shot Learning [24], focused on attributes solely based on visual feature
learning. Some of the works in the feature learning include boosting techniques [49],
object detection [50], chopping algorithm [51], feature adaption [52], and linear classifiers
[53].

The recent works of Zero-Shot Learning can be categorized into Engineered Se-
mantic Spaces (ESS) and Learned Semantic Spaces (LSS) according to the semantic space
type and ZSL methods in Wang et al. [4]. ESS can be further sub-categorized into At-
tribute Space, Lexical Space, and Text-Keyword Space; and LSS into Label-Embedding
Space, Text-Embedding Space, and Image-Representation Space. The Zero-Shot Learn-
ing method is classified into Classifier-based Methods and Instance-Based Methods. Ac-

cording to this categorization, the CRL model can be classified as Image Representation
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Semantic Space and Instance-Based Method, specifically Projection Method (see Fig-
ure 3). The Projection method provides insights for labeled instances from an unseen
class by projecting both the instance’s feature space and the semantic space prototype to
a shared space [4].

Most of the recent work includes two kinds of semantic spaces, namely Label-
Embedding Spaces [4, 12] and Attribute Spaces [4] (also known as Probability Predic-
tion Strategy [12]). Label-Embedding Spaces focuses on learning a projection strategy
that connects image semantic features to labels, in which labels are represented a high
dimensional embedding using Word2Vec [54] or Glove [55]. Image Features in Label-
Embedding Spaces are typically learned from Convolutional Neural Networks [13, 56,
57, 58, 59, 60]. Attribution Spaces or Probability Prediction initially focuses on pre-
training attribute classifiers based on source data [12], where an attribute is defined as a
list of terms describing various properties of given a class [4]. Each attribute forms the
dimensions of class; value is typical given if a class contains the attribute or not [61, 62,
17].

Pure Image Representation Space-based ZSL is rarely observed, one of the very
first works was to use Image Deep Representation and Fisher Vector for the ZSL Project
method [63] and an extension of this approach was used to create unsupervised domain
adaptation [64]. Zhu et al. used the partial image representation method to achieve a

universal representation for action recognition [65].
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Zero-Shot Learning

Semantic Space Method

Engineered Semantic Learned Semantic Space
Space (ESS) (LSS)

|: Attribute Space

Instance Based Method

Label-Embedding Space Classifier Based Method

Image Representation
Space

Figure 3: Types of Semantic Space and Zero-shot Learning Methods
* The CRL model belongs to the highlighted types.

2.2 Dynamic Model Building

The CRL framework supports dynamic modeling that can generate a deep learning
model on the fly. The models generated by the deep learning community are mostly static.
Our dynamic modeling is different from existing dynamic modeling supported by online
learning researchers. We typically define that a static model is trained offline and no more
updated. In contrast, a dynamic model is trained online with updated continuously by
incorporating new data into the model. The dynamic model is created by selecting the
Class Representatives of a set of classes. The subset of classes can be done through any
given criteria, namely context-based selection criteria, random selection criteria, or asso-
ciation based. As the Class Representatives are independent of each other, the creation
of a dynamic model is done by mere selection, so there is no additional cost associated
with the model generation. The dynamic model generation is technique is similar to the

ensemble model with no learning component and no additional cost with a changing set
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of chosen classes. Source S provides the environment to understand the Target T

2.3 Class Representative Learning Model

The significance of the Class Representative Learning (CRL) model is its com-
petence to project the input data to a global space that is specified by the activation of
neurons in the pre-trained model such as CNN. The space of the CRL model is similar to
the universal representation proposed by Tamaazousti et al. [66], where visual elements
in the configuration (e.g., scale, context) can be encoded universally for transfer learning.
The fundamental concept of the CRL model is its ability to represent the representatives
of class in parallel and independently without depending on other classes. Also, universal
representation allows us to integrate heterogeneous data from diverse domains or multiple

modalities to generate a model dynamically. Thus, the CRs are a basis for generating a
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new model by integrating data from different sources, platforms, and modalities.

As shown in Figure 4, the CRL model is composed of two primary components,
namely: CR Generation and CR-based Inferencing. The model used to evaluate the CRL
model is the Inception-V3 model that was pre-trained with ImageNet-1K [67]. The pre-
trained model is the Source environment for the CRL model where no learning is happen-
ing, but the Source environment was mainly used as a reference standard for producing a
feature vector of the input data in space. Figure 4a shows the Source environment (i.e.,
Pre-trained model), and Figure 4b shows the inferencing process with CRs on how a new
image is projected on the Source environment and is mapped it on to the CRs for classifi-

cation.

2.3.1 Problem Setup

Assume the given source data D = {x,,, y,, } =, of m labeled points with a label
from the source class 1, ..., S, where z,, € R is the feature of the n!” image in the source
data and y,, € S where S = {1,...,C,} is the number of source classes. The target
data D, = {x,,y, 0, classes where y,, € T. The target classes T are represented as
{Cs+1,C5+2,...,C,} where C total number of classes is C' = S U T. For each class
¢ € SUT, has a Class Representative C'R(c), which is the semantic representative of
class c. Furthermore, the source label S and the target label T are considered such that
SN T = (. [Note: For simplicity, the source and target datasets have overlapped labels,
but these overlapped classes are considered distinct.] In the CRL model, the source data

are considered as seen, and the target data are unseen. In other words, the target data are
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not used in the learning process. Table 1 summarizes all the symbols and notations used
in the CRL model.

The goal of the CRL model is that given a new test data x*, the model will classify
it into one of the classes y* where y* € C'. The CRL model defines a universal problem for

a classification approach as well as a traditional Zero-Shot Learning approach as follows:
e Classification (CL) Approach : y* € S
e Zero-Shot Learning (ZSL) Approach: y* € SUT

In both models, there are no dependencies among CRs. The difference between
these two models is in the properties of the inference. If the CR of the target set was
introduced, then it would be CL, and if both CRs of the source set and the target set are

introduced, then it would be ZSL.

2.3.2 CR Definition and Property

Definition 1: Activation Feature
Activation Feature is a feature value generated from a source model kernel for a given

input data, as shown in Equation 2.1.

a(j)j—y = (I x K)(i)

=3I - d)K(d) @D

The feature value a(j) is generated from the convolution of a two-dimensional
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Table 1: Formal Symbol and Notations in the CRL model

Notation Description
D& D, Source and Target Domain
ms&m, | #Data Points from Source and Target, respectively
C.&C, #Classes from Source and Target, respectively
S&T Source and Target Label Set
C #Classes
x Feature Vector of Labeled Data Point
Y Label of Data Point
7 #Neurons in a Given Activation Layer
AFM, Activation Feature Map {b1,bs,...,b;}
CR(c) Class Representative of Class ¢ where ¢ € C
CR(c) | Class Representative Set {CR!,CR? ... CR"}
x* Unlabeled Data Point
CRC Class Representative Classifier
CRFS" Class Representative Feature Space
n Dimensions of the CRF'S

input image / with dimensions d and two-dimensional kernel K as shown in Equation 2.1
[68]. The Activation Feature is the element (also known as a single neuron) within the
resultant matrix generated from Equation 2.1. The kernel K is the combination of weights
and biases, where each matrix element in the two-dimensional has a weight w and bias
b. The activation feature value j in n dimensions can be represented as a vector like the
Activation Feature Map.

Definition 2: Activation Feature Map

Activation Feature Map (AFM) is a vector of features extracted from a base model that
will be defined by a pre-trained model for any given instance. For a given input, AFM
represents the features that are defined by the activation of neurons in the base model. The

AFM dimensionality is the number of neurons in the selected layer of the base model. In
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other words, it is the number of distinct neuron activating neurons occurring in the corpus.
The n dimensional AFM forms the basis for the Semantic Space that is defined in Zero-
Shot Learning (ZSL).

Definition 3: Class Representative

Class Representative (CR) is a representative of A instances in a single class. The Acti-
vation Feature Map of the CR is a unique characteristic pattern of visual expression that
occurs as a result of the deep learning process in Convolutional Neural Networks (CNN).
Thus, CR is an abstraction of instances of a class by computing an aggregation of the
average mean vectors of the AFM for the K instances. The CR characterizes a class and
differentiates one class against another. The Class Representatives C'R(c) for Class c is
represented as {C'R!, CR?, ..., C'R"} with n dimensions. Each dimension corresponds
to a separate feature. If a feature occurs in CR, its value in the vector is non-zero.
Definition 4: Class Representative Classifier

A Class Representative Classifier CRC' : I? — C maps an input image space [¢ of
the dimension d to the Class Representative Feature Space C'RF'S™ of the dimension n to
classify it to Class C'. (CRFS is defined in Definition 5). C'RC'is defined as a composition

of two functions as shown in Equation 2.2.

CRC = L(S(.))
S: 1"~ CRFS" (2.2)

L:CRFS"—C
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The CRC model first maps the Input Space I? to Class Representative Feature
Space C'RF'S™ with n dimensions. C'RF'S™ further maps into Class C'. The mapping
function S represents the source environment, which aids the transformation of the in-
put data into the Feature Space. (The source environment is further discussed in Sec-
tion 2.3.2). For example, the input of a dog image with dimensions [299x299x3] is
mapped into Class Representative Space (as defined in Definition 4). Then, the CRFS
will be labeled with the class dog through the classification process [24, 69, 70].
Definition 5: Class Representative Feature Space

Class Representative Feature Space (CRFS) is a n dimensional semantic feature map
in which each of the n dimensions represents the value of a semantic property. These
properties may be categorical and contain real-valued data or models from deep learning
methods [24]. The Class Representative Feature Space represents n dimensional repre-
sentative features as a form of the Activation Feature Map (AFM).

The design of the CRES is based on the equations defines in [71]. Given an data
point {1, ... 2™} with each () € R where C is the number of classes. A set of the
mean of the base features is defined as ¥ € C' = SUT. The labeled target data points can
be defined as D, = {(z,yW), (), 4@), .., (™) y™))} as in Equation 2.4 where
m, is the number of data points. Note that the data points can also be defined in D,
that will be used in CRFS to understand both source and target domains (refer to Sec-

tion 2.3.4).
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D, = {$(i)7?/(i) )
. ‘ . | (2.3)
a(2") = argming|lz¥ = ai’b;l15 + Blla®|l;
J

D, = {(a(z®), yDyme (2.4)

CREFS is created based on the base vectors b = {by,bo,...,bs} with each b; €
R,. The base vector b is generated in the source environment using D,. The activation
a = {aW,...,a®} with each ¥ € R, forms the semantic property of CRFS. Each

()
J

dimension of an activation vector a;’ is the transformation of input z) using the base b;.
The number of bases s can be much larger than the input dimension n. The transformed
target data points D, will be input for the Class Representative Generation.

Since each pair of (z(?,y() is independent of each other, our algorithm was de-
signed with the CRCW (Concurrent Read Concurrent Write) model which allows parallel
computing, including I/O, with the shared memory and processors. The CRL’s operation
time is proportional to the number of the selected CRs across all processors. The CR Gen-
eration will be proportional to the input set per CR independent of the number of classes

in a given dataset. The CR-based inferencing will be proportional to the number of CRs

in a given model.

2.3.3 CR Generation

Class Representatives (CR) are generated using the nearest prototype strategy by
aggregating feature vectors. The nearest mean feature vector with instances of the given

class, i.e., Class Representatives, is computed for each class. Specifically, the average
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feature mean operation was used to summarize the instances of classes. For each class, the
instances of each feature in the feature maps (e.g., 12K for a CNN layer) are aggregated
into a simple mean feature in order to create its CR. The CR is an aggregated vector of
the mean features for all the features in the feature maps.

For the Class Representative Generation, we considered the transformed Target
Dataset D, as the input (as shown in Equation 2.3). As we emphasis on the parallelism
and independence, we considered the individual activation vector a(x) such that ' = c,

that will be used in formulating the CR as shown in Equation 2.5.

CR(c) = {CR',CR?,...,CR"}

| N (2.5)
CR = v > a(at)

c ]:1

where j ranges from 1 to n representing the feature dimensions, c is the class of
the input image, and V. is the number of data points for the class c. Class Representa-
tive of the given class c is represented as the group of CR features values C' R’ where j
ranges from 1 to n feature dimensions. C'¥/ is generated from the mean of AFM (refer
to Equation 2.3) of every input image in a given class ¢ as shown in Equation 2.5. The
CR Generation can be conducted in parallel so that each CR of class independently can
be generated. The parallel algorithm with CRCW (as explained in Section 2.3.2) was

implemented with Spark’s broadcast variables for the CR Generation.
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2.3.4 CR Feature Space: Source and Target Mapping

The Class Representative (CR) mapping is a variation of Multi-Discriminative
Problem network [66]. This method is attempting to universalize a method that combines
different but complementary features learned on different problems. The source domain
problem is defined as the D P? in the class when the Convolution Neural Network as-
signs to the input image the label corresponding to the classes provided by the source
domain D. Similar to what is described in Pan et al. [37], we define our source and tar-
get domain based two aspects, namely Class Representative Feature Space (CRFS) and

Marginal Distribution.

D, = CRFS,, P(CR,)
(2.6)

Dt - CRFSt, P(CRt>

As shown in Equation 2.6, the CR source domain D, is a two-element tuple con-
sisting of Source CR Feature Space C'RF'S; and Probability Distribution of CR P(C Ry),
where C' IR, is Class Representatives from the source domain. The CR target domain D,

is also defined as a two-element tuple consisting of Target CR Feature Space C RF'S; and
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Probability Distribution of CR, P(C'R;), where C'R, Class Representatives were gener-

ated from the target domain.

F.(z) = P[CRVCR, € CRFS,

D* = max|Fs(x) — Fy(x)|

As shown in Equation 2.7, F;(x) and Fi(z) are the distribution functions based
on the probability distribution (P(C'R) and P(CR;)) for the source and target domain
CRs respectively. D* shows the Kolmogorov-Smirnov distance between the source CR
distribution and target CR distribution, i.e., it is computed as the max of distance between
Fy(x) and Fi(x).

We use Two-Sample Kolmogorov-Smirnov Test (KS-Test) as a simple test for
measuring the differences of the distributions of two sets, such as a sample and a reference
probability distributions. Equation 2.7 computes the distance D* between the medians
of the Source Distribution F(z) and Target Distribution F;(z). The distance D* is the
indicator that would be used to measure the CR similarity between Fi(z) and Fi(x). A

larger distance D* yields less accurate transfer learning for the target domain.

2.3.5 CR-based Inferencing

The CR-based inferencing is a mapping between the input and Class Representa-
tives (CRs) and label it with a class. The CR-based inferencing can be done in parallel

since the CRs are independent of each other.
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_ CR(c)-NI
cos(CR(c), NI) = ICR(c)|[|INI]|

ZN (2.8)

o i=1 Li,cLimni
N 2 N 2
VEL a2 /3N, a2,

Here are the steps for the CR-based inferencing. Given a new input is vectorized in the

source environment to the Class Representative Feature Space (CRFS), NI = a(z(®),
as shown in Equation 2.3. The cosine similarity between the new input (V1) and Class
Representatives for class ¢ (C'R(c)), where ¢ € C' can be computed using Equation 2.8.
The CRL Model assigns the new input with the label associated with Class c that has the
highest cosine similarity score. The higher cosine similarity score indicates the closeness
between the Class Representative C'R(c) and the new input (N 1) in the Class Represen-

tative Feature Space (CRFS).
¢ = argmacx{cos(CR(c), NI)} (2.9)
ce

As shown in Equation 2.9, the label for the new input from CRL Model ¢ is pre-
dicted by selecting the class from all classes C' that has the highest cosine similarity to the
new input. The CRL model will conduct inferencing by matching the new input against

the available CRs and label it with a class having the highest cosine similarity score.

2.4 CR Graph: Relationships between Class Representatives

The Class Representative Graph is a Graphical Representation of the Domain-

based on CR-to-CR Similarity. The CR Graph is introduced to demonstrate the ability of
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51.0%

Figure 5: CR-Graph in CIFAR-100

Table 2: Class Representative Relationships in CIFAR-100

Baby | Boy | Girl | Man | Woman | CS, A,
Baby 1 0.95 | 0.95 0.91 0.92 || 0918 | 46.5%
Boy 0.95 1 0.98 096 | 0.95 || 0.938 | 36.9%
Girl 0.95 | 0.98 1 0.95 0.97 0.94 | 25.7%
Man | 091 | 0.96 | 0.95 1 0.95 || 0.754 | 51.6%
Woman | 0.92 | 0.95 | 0.97 0.95 1 0.758 | 51%

the CRL model to understand the Target Domain’s Semantics. The CR Graph showcases
excellent performing classes as well as wrong performing classes. In recent years, graph
representation for image data has been used to identify mislabeled data [72], to create
a community to improve classification [73] or to create a state-based ZSL Model [58].
Visual Trees are also used for hierarchical classification [74]. In this work, the goal of

CR-Graph brings insights within domain-based individually as well as a group.
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Definition 6: CR Graph

Class Representative Graph is defined as a graph CR Graph formed with nodes are classes
(hosting Class Representatives with them), and the association between the Classes form
the edges. A CR Graph G, is defined as a set of vertex V' and edges F, i.e., G.(V, E).
The vertex V' in G, represents a class that is highly similar to other classes (thus, it is
called confusion class), and the accuracy of the confusion class is lower than the overall
accuracy of the model. The percentage of P in red is the classification accuracy of each
class at G.. The edge E represents the cosine similarity C'S between two classes (C;, C;).
Definition 7: CR Community

Class Representative Community is defined as the neighborhood C'RC'om in CR Graph
of a given class c. CRCom is a set of CRs containing the members (i.e. classes) that are
similar to each other forming a community. The community can be represented in the CR
Graph that was introduced in our previous work [75]. In addition, the measurement degree
of similarity is extended to find the relationships between CRs within the community or
across the communities and estimate the accuracy performance of the CRL model.

The cosine similarity C'S; of all edges E in the CR Graph G. is bigger than the
threshold (6), i.e., C'S(C;, C;) > 0. Figure 5 shows the CR Graph G with the threshold &
= 0.85. Each edge E is bi-directed since the cosine similarity between any two confusion
classes is symmetric, C'S (C;, C;) = CS(C}, C;). Figure 5 shows a CR Graph, which
represents a CR Community including baby, boy, girl, man, and woman that are confusion

classes randomly selected from the CIFAR-100 dataset.
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The group cosine similarity of class C' is computed as follows:

os(c) - EC5 a1

where K is the number of the confusion classes excluding self in the CR Graph G.. In
Figure 5, the total number of confusion classes is 6 and the number of the neighbor-
hood classes for girl K = 6 - 1 = 5. The group cosine similarity of girl is C'S,(girl)

= (0'95+0'98+0'§5+0‘97+0‘85) = 0.94. The accuracy of the girl class (Ag;; = 25.7%). The

C'S,y(girl) is the highest similarity while its accuracy Ag;,; is the lowest accuracy. The

(0.9540.9540.91+0.92+0.86) _ )
= = (0.91846 while

group cosine similarity of baby is C'S,(baby) =
the accuracy is Ay, = 46.5%.

Definition 8: Class Representative Superstar
Class Representative Superstar (CR-SS) is a class with the CR having a high individual
accuracy as well as being less confused with other classes. CR-SS contributes to high
performance in classification; unlike Troublemaker, especially they are less similar to

other CRs in the CR Graph.

CR— SS(c;) = CS,(ci) < ay & A(e;) > 64 2.11)

Definition 9: Class Representative Troublemaker
Class Representative Troublemaker (CR-TM) is a class with the CR having a low individ-
ual accuracy as well as being highly confused with other classes. Troublemaker causes

low performance in classification, especially due to the high similarity with other CRs in
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the CR Graph. Let us define ¢; € C, ay is the threshold of cosine similarity of the group

(9), and d, is an average accuracy of the domain (d).

CR—TM(c;) = CSy(ci) > ay & A(c;) < b4 (2.12)

The accuracy of these classes in this CR Graph is lower than the overall accuracy
of the dataset (for example, CIFAR-100, 58%). The group cosine similarity of class
CSy(C) is inversely related to its accuracy (A.). As shown in Table 2, the candidates
for the confusion classes include boy, girl, man, and woman. They meet the condition for
confusion classes. Thus, the confusion classes of baby include boy, girl, man, and woman.

The CS threshold (o) is set as o, (for example, oy is defined 0.9 through experiments).

2.5 Implementation and Experimental Design

The experiments on the Class Representative Learning (CRL) model have been
conducted on ImageNet-1K as a source domain and CIFAR-100, CalTech-101, and CalTech-
256 as a target domain. The source environment, i.e. the pre-trained model from the
source dataset (ImageNet-1K), with three different deep learning networks, such as Inception-

V3 [76], ResNet-101 [77], and VGG-19 [78].
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2.5.1 Implementation

2.5.1.1 System and Library Specifications

The Feature extraction was implemented on a single GPU, which is Nvidia GeForce
GTX 1080 (with 12GB GDDR5X RAM) on MATLAB 2018b version. The CR Gener-
ation and CR-based Inferencing were implemented using Spark 2.4.3 version [79]. The
parallel and batch process was conducted through RDD based parallelism on a single
CPU with 4GHz Intel Core 17-6700K (quad-core, 8MB cache, up to 4.2GHz with Turbo

Boost) and 32GB DDR4 RAM (2,133MHz) (i.e., local parallelism of 4 cores).

2.5.1.2 Models Specification

As described in Section 2.3.2, the source environment provides the feature space
for the CRL model. The Inception-V3 model was predominantly used as the source en-
vironment (pre-trained with ImageNet-1K) for the CRL experiments. The Inception-V3
model was obtained from MATLAB’s Pre-trained Deep Neural Networks [80]. The layer
information of the Inception-V3 model is shown in Figure 6. The feature extraction has
been conducted class by class as a form of parallel processing to build a CR for each
class. For some experiments, ResNet-101 and VGG-19 extracted from MATLAB were
also used as our source environments. The last convolution layer from the source envi-
ronments was considered for Feature Extraction. The CR Generation was implemented
in parallel with Spark’s Resilient Distributed Datasets (RDDs), which is a collection of
features partitioned across the nodes of the cluster. The batch in this context was de-

fined while keeping CR independence of each class for the CR Generation and CR-based
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Inference.
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2.5.2 Datasets

We have conducted the experiments with the CRL model using four datasets ac-
cording to the three transfer learning types defined in Day et al. [81], i.e., Homoge-
neous Transfer Learning (HOTL), Heterogeneous Transfer Learning (HETL), and Neg-
ative Transfer Learning (NTL). The four datasets include ImageNet-1K, CalTech-101,
CalTech-256, and CIFAR-100 (as shown in Table 3). Figure 7 shows the four datasets
that were used for the CRL’s transfer learning [82].

The source environment is built on the ImageNet-1K dataset that is the Homo-
geneous Transfer Learning (HOTL) type (the same label set and the same attributes).
The transfer learning with CalTech-101 and CalTech-256 are the Heterogeneous Transfer
Learning (HETL) type, which was projected on the semantic space of the source domain
with minimal distinction classes. The transfer learning with CIFAR-100 is the Negative
Transfer Learning (NTL) type since the target domain data are projected on the semantic
space that is quite distinct from the source domain. Although the CIFAR-100 is semanti-
cally relevant to other datasets, the CRL space of CIFAR-100 is divergent from the source
space in terms of image modality, such as image quality and image size. The size of
CIFAR-100 images is [32x32] while one of the source domain ImageNet-1K [400x400].
More specifically, the dimension of the source environment of Inception-V3 is [299x299].
In the experiment section, the details on the performance of these different transfer learn-

ing types will be discussed.
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Figure 7: t-SNE Visualization of Class Representatives[82]

Table 3: Benchmark Datasets

Domain Dataset #Class | #Image | Image Size
Source | ImageNet-1K | 1000 | 1,281,167 | 400x400
CalTech-101 101 8,677 300x300
Target | CalTech-256 256 30,608 300x300
CIFAR-100 100 59,917 32x32

2.5.3 Experiments for Transfer Learning Performance

Transfer Learning Performance in terms of Accuracy and Time or Space Re-
quirements: state-of-the-art Transfer Learning vs. CR-based Classification with different

datasets (CalTech-101, CalTech-256, ImageNet-1K, ImageNet-20K, CIFAR-100).
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e Case 1: Source Domain (S): ImageNet-1K, Target Domain (T): CalTech-101 or
CalTech-256: The distance between the medians of both domains, SD and TD, is
very small (i.e., D* < 0.05). In this case, the classification with the class represen-
tatives (CV), which are generated from the pre-trained model in SD with small data

in TD, are as effective as the state-of-the-art models.

e Case 2: Source Domain (S): ImageNet-1K, Target Domain (T): CIFAR-100: The
distance between the medians of both domains,S and TD, is very big (i.e., D* >

0.3) as well as the size of the data in TD is small.

Two-Sample Kolmogorov-Smirnov Test is used to determine whether the instances of any
given class are distributed within a class. The class distribution would also be applied to
determine if there are any data issues such as data labeling errors or noise data. Thus,
we could estimate the class accuracy using the class distribution model even before the
training. Figure 9 and Table 4 shows the KS-Test results between the distribution of the
source and target datasets. If the KS-Test value is high, then the source model may not be
suitable for the target domain.

Figure 9 demonstrates the similarity distribution in the feature space of the source
and target datasets as well as their accuracy distributions. Accuracy distribution repre-
sents the histogram of class accuracy in a given dataset while using CR based classifi-
cation. Cosine similarity distribution represents the cosine similarity between a CR Pair.
Higher cosine similarity means the similarity between CRs is high. The cosine similarity
distribution is using to compare the source dataset to the target dataset. The compari-

son between CIFAR-100 and ImageNet-1K has the highest KS-Test value among the four
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different datasets.

The CRL model is used to understand the distribution of datasets and their per-
formance. It also showcased the overall group cosine similarity (refer to Section 2.4 and
Equation 2.10). Table 5 shows the CR distribution statistics for the source and target do-
mains in terms of their accuracy and group cosine similarity (GCS). The results based on
the CR-Inception-V3 as seen from Table 5 are consistent with Figure 7, t-SNE Visualiza-
tion shows that CalTech-101 and CalTech-256 are overlapped with ImageNet-1K (source
domain), while CIFAR-100 is in a long distance from the source domain. The CalTech-
101 shows the best mean accuracy and low cosine similarity. However, CIFAR-100 is
limited by low mean accuracy and high cosine similarity. For the CIFAR-100 dataset,
the accuracy of 57.9% is the least, and the group cosine similarity of 0.74 is the highest
compared to the ones for all other datasets. The salient reason for the low accuracy of the
CIFAR-100 dataset is mainly due to high cosine similarity and a huge distance from the
source domain. In summary, among the four datasets, CIFAR-100 performs the worst,

and CalTech-101 performs the best.

2.5.4 C(Classification Performance with Benchmark Datasets

In this chapter, the CRL model has been validated in terms of CR Feature Exaction
and CR Generation as follows: 1) Feature extraction in terms of CNN Network models
(Inception-V3, ResNet-101) and CNN layers, ii) Feature representation and optimization
such as (12K vs. 3K feature vector) and the number of training images (20, 30, 60, 100,

and All). For most of the evaluation, CR-Inception-V3 version was considered.
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2.5.4.1 Results for Architecture Selection in Feature Extraction

The CRs are mainly dependent on the quality of the features extracted from the
pre-trained CNN model. The two popular pre-trained models such as Inception-V3 [76]
and ResNet-101 [77] were used as the CR source environments and their performance
was compared in Table 6. We also evaluated to select the most suitable layer in these
pre-trained models. For both the pre-trained models, we compared CRL with the original
accuracy, as shown in the state-of-the-art approaches [76, 77, 83, 84, 85].

The accuracy for the datasets reported here is for the Top-1 accuracy of the model.
Comparing the CRL model to the original model, it was observed that CalTech-101 has an
increase of 1.56% in both the models. There was a significant decrease in the accuracy of
The CIFAR-100 for both the models. This is likely due to the greater distance in a seman-
tic space between the source domain (ImageNet-1K) and the target domain (CIFAR-100),
as discussed in Section2.5.2. In the end, for the overall comparison of the models, the
accuracies of the Homogeneous Transfer Learning (HTL) in Inception-V3 are better than
the ones in ResNet-101. This comparison leads to the use of Inception-V3 as the source

environment of the CRL model.
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2.5.4.2 Results for Layer Selection in Feature Extraction

From Inception-V3, the most suitable layer for the Feature Extraction was iden-
tified by the layer-wise experiment. As shown in Table 7, the accuracy evaluation was
conducted with the models built using the features from the selected layer. For this com-
parison, the twelve layers (including ten different convolution layers, final concatenated
convolution layer, and final average pooling layer) were considered. These layers are
indexed, as shown in Figure 6.

The best layer was determined in terms of the feature size and the accuracy of
the model. Table 7 shows the feature size, flatten feature size, and accuracy. For this
evaluation, comparable datasets are considered to evaluate the effectiveness of the CR-
based classification. The Homogeneous Transfer Learning (HTL) was used to conduct
non-biased feature analysis and layer selection. Layer 10 (conv2d-94) shows the best
accuracy in CalTech-101, while Layer 12 (AvgPool) shows the best accuracy in CalTech-
256. For the flatten feature size, the feature set of Layer 10 shows the highest accuracy

compare to other layers.

2.5.4.3 Results from Feature Reduction

Once the CR feature map is generated, the CRL model might be required to com-
press it for mobile deployment. In this chapter, we have applied three different sampling
techniques for the model compression: (1) Max Pooling, (2) Average Pooling, and (3)
Min Pooling. The Max Pooling is a sample-based discretization technique that is widely

used in Deep Learning. The objective of the Max Pooling is to reduce the feature map’s
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dimensionality by applying the max operation to features contained in the sub-regions of

the feature map. The initial input of the CR feature map, such as X * X matrix (e.g., 8*8),

will produce to Y x Y matrix (e.g., 4*4) using a Z*Z filter (e.g., 2*¥2). A stride of S (e.g.,

2) controls how the filter operates around the input matrix by shifting S units at a time

without any overlap regions.

For each of the regions represented by the filter, the max of that region is computed

to create the output feature map, in which each element is the max of a region in the

original input. The Average Pooling and Min Pooling are very similar to the Max Pooling;

the only difference is to utilize a different operation such as average and min operations

for the feature map reduction.

Table 7: Inception-V3 Layerwise Accuracy on Similar Domain Datasets

Num | Layer Filter Size | Activation | Activation | CalTech- CalTech-
Shape Size 101 256
1 conv2d_10 | 3x3x64 35x35x96 117601 59.9% 24.0%
2 conv2d 20 | 1x1x288 35x35x64 | 78401 52.7% 23.7%
3 conv2d 30 | 3x3x96 17x17x96 | 27745 71.3% 32.0%
4 conv2d 40 | 1x1x768 17x17x192 | 55489 79.0% 44.1%
5 conv2d 50 | 1x1x768 17x17x192 | 55489 79.7% 47.1%
6 conv2d 60 | 1x1x768 17x17x192 | 55489 83.8% 52.2%
7 conv2d 70 | 1x1x768 17x17x192 | 55489 81.1% 49.5%
8 conv2d 80 | 3x1x384 8x8x384 24577 93.3% 74.2%
9 conv2d 90 | 1x1x2048 8x8x448 28673 85.3% 62.1%
10 | conv2d 94 | 1x1x2048 8x8x192 12289 94.4% 78.2%
11 | mixedl0 - 8x8x2048 131073 91.9% 77.9%
12 | avg-pool 8x8 [pool- | 1x1x2048 | 2049 90.0% 79.1%
ing]
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Considering the feature size of the Layer 10 in Inception-V3, we evaluate by re-
ducing the dimensions using standard reduction techniques, namely minimum pooling
(MinPool), maximum pooling (MaxPool), and average pooling (AvgPool). The pooling
in CBL was implemented on the [8x8,192] feature vector (Layer 10) with the filter size
of 2x2 transforming into [4x4,192]. In CR-Inception-V3C, we applied AvgPool with a
filter size [2x2] to the feature map of [8x8x192] extracted from Layer 10 and obtained
the reduced feature map of [4x4x192]. As shown in Figure 14, the average pooling layer
reduction is applied to the post-processing of CR-Generation. The same filter size was
used for MaxPool and MinPool.

Table 8 shows the accuracy for CR-Inception-V3C by using the filter size based
on the three pooling techniques. Based on the analysis with all of the datasets, CR-
Inception-AvgPool showed the accuracy drop with an average of 1% in Top-1 accuracy
when comparing with 12K or the original Layer 10 Accuracy. The interesting observation
through this evaluation was the 12K CRL model’s Top-5 Accuracy outperformed on all

datasets compared with other available models.
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Figure 14: Reduction using Average Pooling

8X8 sized 192 channels [8x8x192] are reduced to 4x4 sized 192 channels [4x4x192]
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2.5.4.4 Results from Data Imbalance Experiments

Most of the deep learning suffered from the data imbalance problem. Our exper-
iments show that CRL is not sensitive to the data imbalance issue. Since CalTech-101
and CalTech-256 are imbalanced datasets, we have conducted experiments to show their
classification performance is independent of the number of input.

In order to analyze the imbalanced data issue in the CRL model, we have evaluated
the CR Generation with a varying number of images and accuracy. Table 9 shows the CR
Generation accuracy for the image sets of 20, 30, 60, 100, and all. All represented in
the training dataset (i.e., 70%) for any given class. The results show that the accuracy of
CR-based classification does not vary significantly for a varying number of images. This
effect is clearly shown with the imbalanced datasets such as CalTech-101 and CalTech-
256. For example, CalTech-101, Class airplanes have 560 images with a class accuracy
of 97.9% while camera has 35 images with a class accuracy of 96.8%. This indicates
that the image imbalance problem does not affect the classification accuracy in the CRL

model.

Table 9: Image Classification Accuracy for an Increasing Image#

Dataset Image Count & Accuracy

20 30 60 100 All

ImageNet-1K | 69.5% | 70.9% | 72.5% | 73.0% | 73.9%
CalTech-101 | 91.9% | 93.5% | 93.6% | 93.8% | 93.9%
CalTech-256 | 74.4% | 75.8% | 77.3% | 77.8% | 77.9%
CIFAR-100 | 50.9% | 53.4% | 55.9% | 56.8% | 57.9%
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2.5.5 Dynamic Models

For evaluating the functionality of dynamic modeling that is capable of the class
representative is demonstrated by a random selection of 10 classes from the four datasets
separately, and 10 classes selection from four datasets combined, as shown in Figure 10-
13 (refer to Section 2.2). Table 10 shows the random selection of classes from 10 to 100
from different individual datasets and all together.

Table 10: Dynamic Model Accuracy (Random Generation)

#Class | CIFAR-100 | CalTech-101 | CalTech-256 | ImageNet-1K | Mixed Models
(4 Datasets)
10 79.3% 99.7% 93.6% 95.8% 95.9%
20 79.7% 97.9% 90.0% 95.9% 96.3%
30 74.1% 95.9% 90.9% 94.6% 96.1%
40 63.9% 95.3% 90.6% 93.6% 89.6%
50 69.5% 95.6% 84.3% 91.3% 92.7%
60 66.2% 95.9% 87.7% 91.9% 91.0%
70 61.5% 95.4% 87.8% 92.7% 91.1%
80 60.9% 94.1% 87.0% 91.3% 92.1%
90 58.1% 94.0% 84.1% 92.0% 91.2%
100 58.0% 93.4% 85.4% 87.6% 90.1%

2.5.6 Model Performance Comparison

The CRL model’s performance is evaluated by comparing with Inception-V3 pre-
trained model retrained with the target domain. The CRL model’s performance is calcu-
lated based on AFM Generation Time (refer to Section 2.3.2), CR-based Inference Time
(refer to Section 2.3.5) and CR Model Generation Time (refer to Section 2.3.3).

Table 11 shows the comparison of the CRL model’s overall time vs. the time
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taken for retraining the dataset using the Inception-V3 pre-trained model. The pre-trained
model was run on the same system specification as the CRL model. Pre-training of the
Inception-V3 Model was stopped at a reported number of epochs as the time taken was
significantly higher than that of the CRL model. The CRL model with three datasets,
(CalTech-101, CalTech-256, and CIFAR-100) have an average of 99% time reduction that
is a significantly reduced time compared with that for the original Inception-V3 model.
Within the same time window and based on the same pre-trained model, the Inception-V3
model performance has not reached the accuracy published in [33]. The CRL model’s
overall time shows genuinely outstanding performances in the target domains, even if the

models never learned from the target domain.
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2.5.7 Comparison with Lightweight Classification Models

The two CRL models, namely CR-Inception-V3 [based on 12K Layer 10] (refer to
Figure 6) and CR-Inception-V3C [based on AvgPool] (refer to Figure 14) were considered
for evaluation. The CRL models are compared with the state-of-the-art mobile Deep
Learning models such as Mobile-Net-v1 [45], Mobile-Net-v2 [21] and NasNet-Mobile
[22]. The Inception-V3 Model accuracy is also compared as the CRL model is based on
Inception-V3 (refer to Section 2.5.4). The state-of-the-art accuracies shown in 12 were
based on the work by Kornblith et al. [33]. Another work by Kornblith et al. [86] was
based on the performance of checkpoints from TensorFlow-Slim repository.

The following a brief review of Light-Weight Classification models that are com-

pared with CRL.

e MobileNet-vl MobileNet-v1 is one of pioneer work in light-weight convolution
neural network. An efficient low latency model is achieved using Depthwise Con-

volution Filters [45]

e MobileNet-v2 MobileNet-v2 is extention of MobileNet-v1, they improve light-
weight model using inverted residual module with linear bottleneck. MobielNet-v2
1.4 is a version with neural network image input size of 224x224 and multipliers

setto 1.4 [21].

e NASNet-A-Mobile NASNet is Convolution Neural Network where the Semantic
Space is transfered from smaller dataset to bigger dataset using a Reinforcement

Learning Search Method called Neural Architecture Search (NAS) [22].
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The comparison between the mobile models and CRL is conducted in terms of the
computational cost, model size, and accuracy. The computation cost is usually defined
based on floating-point operations (FLOPs) and parameters. The FLOPs of the CRL
model are less than the one for prediction with the base model, i.e., Inception-V3. As
shown in Table 12, the number of parameters for the CRL model is Nil as there is no
traditional learning component in the CRL model. The CRL model’s computational cost
outperforms all the other models.

The CRL model’s size is given based on the size of each CRL of class. The
significant difference between the traditional deep learning model and the CRL model
is that the model size is dependent on the number of classes rather than the number of
layers or size of the layer. The size as listed in Table 12, includes two parts the size of the
pre-trained model plus the per CR per class size, i.e., 0.15MB for CR-Inception-V3 and
0.06MB for CR-Inception-V3C.

In Table 12, the two CRL models were compared with other mobile models. These
models outperform the existing mobile models. Also, these models perform better than
the original Inception model with CalTech-101 and CalTech-256 datasets. Their perfor-
mances are reasonably comparable to the original ones with ImageNet-1K Dataset. How-
ever, the CRL models do not perform well on the CIFAR-100 Dataset. Overall, the CRL
models are better than state-of-the-art mobile models if the target domains are similar to
the source models. Otherwise, as seen from the CIFAR-100 model, the performance did
not meet expectations. It is because there is a considerable gap between the source and

target domains, and this gap may result from the lack of learning in the target domain.
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This result confirms that the CRL model can be used to validate the distribution
of data in terms of dissimilarities and similarities of CRs. The classification accuracy can
be estimated based on the CR distribution model. Furthermore, outliers of data can be

normalized, or mislabeled images can be detected with a CR.
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2.5.8 Comparison with Zero-Shot Learning Algorithms

In this section, we evaluate the CRL model using three different evaluations;
Recognition Task-based Accuracy, Accuracy with an increasing number of instances of
the unseen dataset, and comparison with state-of-the-art Zero-Shot Learning (ZSL) ap-
proach. For this section, we consider two versions of the CRL model; (i) Inception-
V3 based and (i1)) VGG-19 based model. In Table 13, the performance of Inception-V3
model-based CRL (CR-Inception-V3) in the ZSL perspectives was presented.

The CRL model is capable of recognizing the target labels (unseen data) without
having the source labels (seen data) as an option. This shows the advantage and ability as
a classification model (see Section 2.5.7). Table 14 shows two versions of the recognition
tasks with testing data from target set (T); T = T when the testing label could be only
from the target set y* € T and T = S U T when the testing label could be from both
the source set and target set y* € S U T. For this experiment, we consider all instances
(70% of the dataset) from the dataset to generate CRs. The increase in the number of
labels in the dataset was compared with the accuracy. There were significant drops when
the source set was also considered. The interesting observation is that the Heterogeneous
Domain (HD) such as CIFAR-100 does not have a significant drop in accuracy, which
makes sense, as CIFAR-100’s CR space does not overlap with ImageNet-1K’s CR space
(see Figure 7).

Table 13 shows the performance of CR-Inception-V3 with one image from each
class to ten images from each class. For this experiment, we considered only (T = T)

setting. The interesting to see that the CRL model with just ten images from each class all
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the dataset Top-1 accuracy reach more than 75% of accuracy achieved when all instances

are used.
Table 13: CR-Inception-V3 Accuracy with
Increasing Target Instances (#Ins.)
Hns. CalTech-101 || CalTech-256 || CIFAR-100 || ImageNet-1K

T-1 T-5 T-1 T-5 T-1 | T-5 T-1 T-5
1 70.2 | 834 | 414 | 548 20 38 325 | 50.1
2 792 | 923 || 51.7 | 66.7 || 255 | 52.2 44 64.9
3 853 | 952 || 565 | 72.1 || 30.3] 569 || 509 | 723
4 85.6 | 96.7 | 615 77.1 36 | 629 || 549 | 76.2
5 86.8 97 63.6 78 38 | 66.7 || 58.1 79
6 87 97.6 || 65.1| 794 | 409 | 69.5 || 603 | 81.2
7 894 | 977 | 672| 822 | 424 | 70.8 || 61.3 | 822
8 90.7 98 682 | 824 | 446 | 736 || 634 | 83.6
9 90.8 | 979 | 69.8 | 83.8 | 448 | 74.1 | 64.6 | 84.6
10 | 91.2 | 98.2 70 84.4 || 458 | 754 || 654 | 852
all | 939 | 99.1 | 77.8 | 924 ||579] 90.5 || 73.9 | 933

2.5.9 Results for Class Representative Graphs

Figure 15 shows the CR Graphs that are composed of class representatives (CRs)
as well as their relationships in a given domain. In these CR Graphs, the nodes represent
CRs, and the edges (CR-to-CR) are the relationship between two CR. The CR graph is
undirected, as there is a symmetric relation between the source and target CRs that the
similarity from the source CR to the target CR is equal to one from the target CR to the
source CR. The attributes of the class are represented in the following manner; the node

size indicates the number of images, and the node color indicates the CR accuracy. The
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Table 14: Accuracy for CR-Inception-V3
Zero-Shot Learning Tasks

Recognition Task Accuracy
Accuracy | T=T | T=SUT
Top 1 93.9% 87.4%
Top 5 99.1% 97.5%
Top 1 77.8% 40.9%
Top 5 92.4% 54.9%
Top 1 57.9% 57.4%
Top 5 90.5% 83.4%

Dataset

CalTech-101

CalTech-256

CIFAR-100

color schema for nodes is relatively simple: red is bad, white is marginal, green is super
high. The CR-to-CR similarity is represented as the edge color and Silhouette Width.
Similar to the node color, the edge color represents the CR-to-CR similarity; brown is
similar while white is not similar.

Through the CR Graph, we now explain the reason why the target domain, i.e.,
ImageNet-1K, does not perform well even if it is the same with the source domain ImageNet-
1K Pre-trained Inception-V3, compared to the state-of-the-art accuracy (as shown in Ta-
ble 12). As mentioned previously, the red nodes are the troublemaker, and the green nodes
are the Superstar (see Section 2.4). The Superstars and Troublemakers show a visible pat-
tern on their edge density. Troublemakers show very high edge density while Superstars
show lower edge density in the CR Graph of ImageNet-1K.

Silhouette Width (SW) was used to validate the consistency within clusters of data.
Specifically, the SW measurement was useful in the CR validation in terms of two aspects:

(1) how well each CR is modeled within a domain (dataset) or (i1) how well each instance
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is labeled within a CR (class). The SW value is a measure to check how similar an object
is grouped to its own CR (cohesion) against other CRs (separation). The computation is
based on Euclidean distance, and the range of these SW values is from —1 to +1. A high
value indicates that the CR is well defined. In other words, the members are well-matched
together while they are not matched to the ones in neighboring CRs.

Tables 15- 16 shows the statistics of the four CR Graphs showing in Figure 15. The
Troublemakers’ SW mean for all the datasets have a negative value. This indicates that
there are significant similarities between the instances of the Troublemakers. Similarly,
the Superstars show the positive SW value means, and this signifies how well the data fit

the CR model.
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Figure 15: Class Representative Graphs

The limitations of the CRL model are that a source environment (except the fully

mobile applications.

2.6 Discussion

connect layers) is still required for generating a feature map for any input in the testing.
The size of the source environment may be too big to fit in low-end devices like a mobile
devices. In our research, we can provide a cloud service for the feature map generation

as a basic interface, such as Application Programming Interfaces (APIs) for lightweight




The Class Representative (CR) generation was obtained by extracting the abstrac-
tion of the distribution of each feature in the Class Representative Feature Space (CRFS)
of an input image. For the purpose, we used a simple average mean approach. Thus, a CR
can be sensitive to outliers and sample size bias of the CRFS. The CRL model was ex-
tremely strong at the Top-5 inferencing compared to Top-1 inferencing (see Table 8). The
CR computation might not be accurate due to bias or unexpected outliers. This indicates
that the high similarity between some CRs can lead to misclassification. To overcome
the limitation of the CR Generation, We will explore an advanced optical model such as
Fisher Vector and Gaussian-Mixture-Model. We also can use unsupervised deep learning
techniques such as the autoencoder in learning efficient data codings to reduce the CR’s
Feature Space to a more optimal representation. We can further extend it to determine the
common and unique features of the CR vectors and find the weights that maximize the
uniqueness between CRs.

The CRL inferences based on the simple similarity matching are subject to some
limitations. We are currently using cosine similarity between CRs and an input image
vector. It is possible that further fine tuning of the CRL inferencing for complex classi-
fiers (e.g., very large CRs or multi-domain/modality CRs) could have improved predictive
performance. The CR space could be simplified by applying reduction techniques (PCA
or t-SNE). The improvements are to develop attention vectors or semantic CR model such
as a hierarchy of CRs. The CR Graph possess an ability to help an inference process by
using the CR Community.

The CRL model has a potential extension to have the open set recognition with
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T >> 8§, in this chapter, we show dataset with 0.278 openness factor [88]. The potential
extension includes validating the CRL model using the metric for Generalised Zero-Shot

Learning proposed in Xian et al. [89].

2.7 Conclusion

We presented the Class Representative Learning (CRL) model that is composed
of class-level classifiers built by utilizing activation features of Convolutional Neural Net-
work for classification problems. The CRL model has the ability to generate the CRs one
by one through the aggregation of CNN activation features and inference by matching a
new input to the CRs. Due to the independence of CRs, we could dynamically gener-
ate and utilize classifiers for image classification problems. We also represented the CR
Graph with the CR accuracy and the relationships of CRs and interpreted a model perfor-
mance by identifying good and bad performers correspond to classification performance
as well as the similarity between CRs. We have conducted a comprehensive evaluation of
the CRL model using the four benchmark datasets. We have shown the capacity of the pro-
posed algorithm for the model generation by dynamically composing selected CRs. The
accuracy of the classes in these models are significantly improved compared to ones in
their original model. Excellent scalability of our dynamic models is shown for a increas-
ing class# in a model.The CRL model outperformed state-of-the-art Zero-Shot Learning
(ZSL) in terms of learning time and accuracy. It also showed improved performance com-
pared to the existing MobileNet models for image classification. The work presented in

this chapter was published as part of Chandrashekar et al.[90].
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CHAPTER 3

CLASS REPRESENTATIVES FOR ZERO-SHOT LEARNING USING PURELY
VISUAL DATA

3.1 Introduction

Deep learning technologies have received significant attention for large-scale im-
age classification in the area of computer vision. The substantial requirements for such
image classification tasks are the availability of a large amount of labeled data. Besides
the limited amount of labeled data for supervised learning, we face severe challenges in
applying image classification models to real-world problems, such as a lack of effectively
transferring knowledge from one domain to another, or the effective adaption for newly
generated data daily. There is a strong need for systematic image classification that sup-
ports active transfer learning and scalable solutions for real-world applications.

Recent efforts are focused on developing zero-shot learning (ZSL) or few-shot
learning (FSL) that aims to handle the challenges of the real-world applications of image
classification. ZSL aims to recognize instances from unseen or unknown (target) cat-
egories by using external linguistic or semantic information through intermediate-level
semantic representations from seen or known (source) categories [61, 91, 62]. Rapid
growth in recent years leads to the development of innovative methods in ZSL [4] and
FSL [7, 8]. These studies focus on effective transfer learning by fully leveraging informa-

tion from pre-trained models. The central idea behind these studies is to link known and

76



unknown classes through auxiliary information and visually distinguish them [89, 92]. It
will allow them to learn from a few examples or even without seeing them. Alternatively,
it is required to represent each of the new instances to match them on a semantic space,
which minimizes training efforts and maximizes learning outcomes [9, 10, 11].

The ZSL works demonstrated their effectiveness in transferring from prior expe-
riences to new classes. The semantic space model used in one of the most popular ZSL
approaches is a joint embedding framework, called label-embedding space [4, 12], or
based on attribute space [13]. Label-embedding space is based on a combination of visual
embeddings and word embeddings, while attribute space is based on attribute annotations
for the ZSL model. Such external or auxiliary information is used as a form of combining
two or more sources of data, e.g., image features + word embedding, image features +
attribute information, or image features + ontologies.

This chapter proposes a novel zero-shot learning model, called class representa-
tive learning (CRL), which builds class prototypes from image instances for each class
and defines them as class representatives (CRs). The class prototypes for source and tar-
get domains will be generated using the features extracted using a projection function
with typically a convolution neural network trained in the source (seen) domain. CRs are
a universal representative of the classes in the source and target domains that aims for
the effective transfer learning from the source domain to the target domain. This study
demonstrates the usefulness of the CRL novel approach based on the universal representa-
tives for transfer learning in image classification, with significantly improved performance

for ZSL and G-ZSL problems.
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The class representative learning (CRL) model can be categorized as a Class-
Inductive Instance-Inductive projection method (as defined in [4]). In the training phase
for the seen classes, the feature learning model is built from the training instances. Dur-
ing the testing phase for the unseen classes, both unseen and seen prototypes are projected
into the same space, based on learned models. This study adopts the evaluation methods
defined in Xian et al. [92, 89], but extends it to the seen classes built from the fea-
ture extraction learning from ImageNet dataset [67]. The performance of the generalized
zero-shot learning (G-ZSL) algorithm was validated with the harmonic mean of seen and
unseen classification performance [89, 92].

CRL is similar to the generative model in building a prototype class by class,
using a class representative criterion [93, 48]. However, they are different since the CR
generation is not based on probabilistic, but based on the generalized mean of aggregated
features. For the classification step, a standard projection approach is used to compare the
prototypes with each other. Compared to existing ZSL algorithms, CRL is required sorely
visual data, rather than both visual data and auxiliary information. Still, higher accuracy
can be achieved compared to the state-of-the-art research in ZSL and G-ZSL.

The contributions of this chapter can be summarized as follows:

e Proposing the CRL model as an efficient way of building class-level classifiers by
fully utilizing the features from a pre-trained Convolutional Neural Network (CNN)

with purely visual data;

e Designing a universal representation, called class representative feature space (C RF'S),

for source and target classes that can be applied to multiple cross domains;
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e Applying the CRL model to ZSL and G-ZSL problems;

e Designing the parallel ZSL and G-ZSL algorithms based on CRL;

e Through extensive evaluations, the proposed CRL model shows significant perfor-

mance gain compared to the state-of-the-art research in ZSL and G-ZSL.

3.2 Related Work

3.2.1 Universal Representation

Ubernet [38] is a universal CNN that allows solving multiple tasks efficiently in
a unified architecture. It provides a simple end-to-end network architecture for diverse
datasets, and scalable and efficient low memory processing. Also, universal representa-
tions [39, 40] have been shown to work well in a uniform manner for visual domains.
They have proven to be efficient for multiple domain learning in relatively small neural
networks. Rebuff et al. [41] presented that universal parametric families of networks
could share parameters among multiple domains using parallel residual adapter modules.
Similar to our work, all these works presented universal representations for various do-
mains or various tasks. However, unlike CRL, their model cannot adequately support
effective transfer learning in multiple domains.

Feature selection is a crucial step in machine learning since it directly influences
the performance of machine learning. The right choice of features drives the classifier to
perform well. However, Kapoor et al. [42] observed that finding useful features for multi-

class classification is not trivial. It is because of the volume in the high-dimensional
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feature space and the sparseness over the search space. Dictionary learning [43] was
presented to determine the subspaces and build dictionaries by efficiently reducing di-
mensionality for efficient representations of classes in the domain. They overcame the
sparsity constraints and improved the accuracy by identifying essential components of
the observed data. In CRL, the class representative feature space C'RF'S provides a basis
for building the prototypes, i.e., CRs, using the features from the CNN network that are a
uniform representation of the images.

In the context of zero-shot learning and few-shot learning, the representatives are
known as a class prototype, which is defined as vector representation in semantic space
corresponding to each class [4]. In EXEM, a similar concept, class exemplar, was in-
troduced as the center of visual feature vectors that are used in prediction and label em-
bedding [94]. A hierarchical super prototype was proposed based on a combination of
semantic prototype and visual data for seen and unseen classes [95]. Fu et al. proposed
a prototype graph where each prototype is a node in the graph, and the semantic relation-
ship between classes is an edge for their connectivity [96]. The prototype is also used in
FSL, as demonstrated by Snell et al. [47].

In the class representative learning (CRL) model, the class prototype is part of
the predictive step, unlike the previous work defined as an intermediate step towards a
learning model. The class prototype (i.e., class representatives) can be built independently
class by class to be self-contained and not dependent on other classes. For example, a
class representative (CR) for dog class is built using the data only from one class (i.e.,

dog) without considering other classes, such as horse or cat.
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3.2.2 Zero-Shot Learning

Zero-shot learning (ZSL) uses a semantic encoding in predicting new classes that
were derived from a semantic knowledge base [24]. Besides the knowledge bases, explicit
and external attributes are considered for visual learning [24]. In addition to standard
image feature extraction techniques, other feature learning techniques such as boosting
techniques [49], object detection [50], chopping algorithm [51], feature adaption [52],
and linear classifiers [53] are used to enhance the accuracy of unseen classes.

Wang et al. [4] categorized zero-shot learning based on feature requirement into
engineered semantic space and learned semantic space, as shown in Figure 16. Engi-
neered semantic space is further sub-categorized into attribute space, lexical space, and
text-keyword space. Learned semantic space is categorized into label-embedding space,
text-embedding space, and image-representation space.

Table 17 shows the proposed method and the existing ZSL models compared in
the evaluation section. Recent ZSL works mostly include two kinds of semantic spaces,
namely label-embedding spaces [4, 12] and attribute spaces [4] (also known as probabil-
ity prediction strategy [12]). The image representative space is present in all the zero-shot
learning works but typically coupled with additional semantic space. The ZSL approaches
based on the label-embedding space focus on learning a projection strategy. This strategy
maps semantic features extracted from the image representative space to the labels that
are represented in a high dimensional embedding such as Word2Vec [54] or Glove [55].
Image representative space are typically learned from convolutional neural networks [13,

56, 57, 58, 59, 60]. Attribute space or Probability prediction strategy pre-trains attribute
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Figure 16: Zero-shot Learning and Semantic Spaces [4]

classifiers based on the source data [12], where an attribute is defined as a set of terms
having the properties for a given class [4]. A class has distinguishing attributes, the em-
bedding of visual features for the defining characteristics of the class, and assignment
of the label to a class based on these features and attributes [61, 62, 17]. Unlike these
works, CRL focuses on uses a mono-modal, specifically just the image representative se-
mantic space. Using only the image representative gives CRL the advantage in terms of
classification performance comparing to using a multi-modal semantic space approach.
Pure image representation space-based ZSL approaches are rarely observed. One
of the few works was to use image deep representation (i.e., neural network-based) and
fisher vector for the inference [63], and an extension of this approach was used to create
an unsupervised domain adaptation [64]. Zhu et al. use a partial image representation

method to achieve a universal representation for action recognition [65]. Like the above
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approaches, CRL uses only image representative semantic space but with a unique method

of creating class prototypes and perform inference all within the space.

3.2.3 ZSL Projection Methods

The ZSL approaches can be categorized into classifier-based and instance-based
methods. Based on the categorization, the CRL model is defined as a zero-shot learn-
ing model that uses image representation semantic space and employs an instance-based
projection method for model building and inference. The projection method provides in-
sights on the labeled instances of an unseen class by projecting them onto the common
feature space or the semantic space where instances and prototypes are compared [4].
We consider four different zero-shot learning inference methods, namely classifier-based
correspondence method, classifier-based relationship method, instance-based projection

method, and it instance-based synthesizing method.

Table 17: Related Work: Zero-Shot Learning Methods

Zero-Shot Learning Method
Instance-based Classifier-based

Projection Synthesizing Method |Relationship|Correspon-
Method Method dence Method
CRL Model(ours)

SJE [56]
DWV[69] GAN+ALE[101]

LATEM [60]
Deep-SVR[61, 97]| GAN+Softmax[101] SSE [105] ALE [91]
ConSE[62] CADA-VAE[102] AMP [58] .

DeViSE[57]
CMT[98] cycle-GAN[103] SynC [106]

ESZSL[59]
SAE[99] BPL+LR[104]

SP-AEN [107]
Embed[100]

Classifier-Based Correspondence Method constructs a correspondence between binary
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one-vs-rest classifier and unseen class prototypes to classify unseen classes. The compat-
ibility function is a key part of the correspondence method. It takes instances and proto-
types as an input to compute a compatibility score denoting the probability of instances
to classes [108, 89, 4]. A bilinear function is a widely used compatibility function includ-
ing DeViSE [57], ALE[108], SJE [56], and ESZSL [59]. The other widely used method
is the projection functions such as linear projection [109, 110]. Even though the corre-
spondence method uses classifier and prototype method, no explicit relationships between
classes are modeled due to one vs. all strategy. As the class relationship plays a vital role
in understanding ZSL performance, the CRL model uses a pure-prototype approach that
helps to discover the class relationship to increase the model’s interpretability.
Classifier-Based Relationship Method constructs classifiers for the unseen classes based
on the relationships among classes [4]. SSE [105] uses binary one-vs-rest classifiers for
seen classes, and unseen class prototypes establish their relationship with seen classes.
AMP [58] uses a directed k-nearest neighbor graph where each edge establishes the re-
lationship between the classes. The relationship method focuses on creating a classifier
by creating a class-to-class relationship; this inter-class dependency creates scalability is-
sues. To handle scalability issues, CRL focuses on inter-class independence during model
building, and the relationship between class is determined using their prototypes.
Instance-Based Projection Method ’s insight to classify is by obtaining labeled in-
stances for the unseen classes by projecting both the feature space instances and the
semantic space prototypes into a shared space [4]. The projection space is defined as

a space where the classification is performed. The approaches using projection methods
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are further categorized according to the projection space: Semantic Space as Projection
Space, Visual Space as Projection Space, and Transductive Projection Strategy.

Semantic Space as Projection Space: Projection function is learned to project the
visual feature space to semantic space with a linear model or non-linear model. Cross-
modal transfer (CMT) was proposed based on semantic word vector representations and
Bayesian framework to differentiate the semantic manifold of seen classes for transfer
learning of unseen classes [98]. CMT and few other works use regression function as
the projection method and softmax classifier on the semantic space [98, 24, 111]. ConSE
uses a projection method achieved from a convex combination of seen class prototypes
(ConSE) [62]. ConSE has an n-way classifier built on seen data and is used to predict
probabilities on the unseen instances. The projection function of Deep-SVR consists of
classifiers for attributes. The probabilities from attribute classifiers are coordinates with
projected instances in semantic space using 1-NN classification [61, 97].

Visual Space as Projection Space: Projection Function is learned to project the
semantic space to visual feature space. Linear regression projection approach was used
to mapping from the target space to the source space [112]. However, this approach is
based on a strong assumption like a multivariate normal distribution of data and also
lacks advanced similarity measures like cosine similarity or multi-modal data distribu-
tions. Non-linear regression (DEM) uses the visual space as the embedding space, re-
sulting in fewer hubness problems than other ZSL approaches [100]. Unseen visual data
synthesis (UVDS) introduced a latent embedding space that takes into account seman-

tic space and visual feature space [113]. Jiang et al. Multiple projection spaces, such
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as semantic auto-encoder (SAE), were designed to learn a more generalized projection
function [99].

Transductive Projection Strategy Manifold regularization was used together with
data augmentation strategies to enhance the semantic space, resulting in easy access to
testing data in the training phase [114]. Matrix factorization with testing instances and
unseen class prototypes was designed for unsupervised domain adaptation to overcome
the projection domain shift problem [115]. The self-training strategy aims to adjust the
prototypes of unseen classes with the testing instances when performing 1-NN classifi-
cation. For an unseen class, the prototype is adjusted as the mean value of the k nearest
testing instances [116, 70, 117, 118, 119]. This unseen prototype creation is also used in a
few-shot learning settings [47]. Markov chain process-based projection method was pro-
posed to compute semantic manifold distance in embedding space as a seamless fusion of
the semantic relatedness and embedding based methods for ZSL [58]. Fu et al. presented
a unified framework based on vocabulary-informed learning. It incorporates distance con-
straints from vocabulary atoms for projecting closer to their correct prototypes in semantic
manifold-based recognition [69].

As mentioned earlier, the CRL model can be categorized as a projection method.
Unlike most of the existing work, CRL uses the visual feature space created using projec-
tion function to inference without depending on classifiers. Class representative genera-
tion is similar to prototype creation by self-training strategy. The zero-shot learning ap-
proaches using self-training uses the visual feature and some additional semantic space for

creating the prototype. The few-shot learning approach uses a massive network classifier
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model post prototype generation. The unique feature of class representative generation is
the sole usage of visual feature space.

Instance-Based Synthesizing Method based zero-shot learning has been prevalent last
year with the use of a generative neural network to create additional data points, especially
for unseen classes, to handle the problem pertinent to data imbalance issues. GAN+ALE
[101], GAN+Softmax [101], and cycle-GAN [103] uses various types of (GAN). The
GAN-based model typically samples a random vector and combines that with the unseen
class prototype to form the input to the generator, whereas CADA-VAE [102] uses vari-
ational auto-encoder for data synthesizing. BPL[104] uses semantic feature synthesis by
perturbation approach, which incorporates by directly perturbing the seen class samples to
unseen class prototypes. In the context of the projection method, BPL [104] uses bidirec-
tional projection learning as part of a competitive learning strategy between seen samples
and unseen prototypes. Even though synthesizing methods differ in architectural sense
from CRL Model, we consider them as some of the top-performing models in Zero-Shot

Learning.

3.3 Class Representative Learning Model

In this chapter, we present the class representative learning (CRL) model designed
to project the input data onto a global space and generate a universal representation for
domains and use it for inference in zero-shot learning. The space of the CRL model
is similar to the universal representation proposed by Tamaazousti et al. [66], where

visual elements in the configuration (e.g., scale, context) can be encoded universally for
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the transfer learning. Unlike their work, our CRL representation is defined based on the
aggregation patterns from the activation of neurons of the projection function (typically a
pre-trained model, such as CNN). The CRL model’s fundamental concept is its ability to
create the representatives of class independently from other classes for a given domain.
Figure 17 shows the conventional label-embedding based zero-shot learning model,
and Figure 18 shows the class-representative model in a similar setting. As shown in Fig-
ure 17, Nourouzi et al. introduced zero-shot learning two-step mapping function [62],
where the first step is the projection function, and the second step is inference function in
the label-space. As shown in Figure 18, the two-step mapping stays in place.However, the
second mapping becomes non-essential because the class representatives (image feature
prototypes) have the label as tagged information. In the label-based embedding model
(Figure 17), the second mapping plays an essential role where the image feature space
maps into the label space. In most of the existing works, the classification happens in the
label space, wherein CRL’s classification happens in image feature space, also known as

class representative feature space (CRFS) [90].

3.3.1 Problem Setup

Assume the given source data D, = {z;,y;}~ of mg labeled points with a label
from the source class S, where z; € R is the feature of the i*" image in the source data, and
y; € S, S is the set of source classes. The target data is represented as D; = {z;, y; } "4
classes where y; € T. For each class ¢ € S U T, has a class representative C'R(c) which

is the semantic representative of class c. Furthermore, the source label S and the target
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Figure 17: Label Embedding Based Zero-Shot Learning

label T are considered such that S N'T = (. For simplicity, the source and target datasets
have overlapped labels, but these overlapped classes are considered distinct. In the CRL
model, the source data are considered as seen, and the target data are unseen. In other
words, the target data are not used in the learning process. Table 18 summarizes all the
symbols and notations used in the CRL model.

The goal of the CRL model is that given a new test data x*, the model will classify
it into one of the classes y*, where y* € C. The CRL model defines a universal problem

for a ZSL approach as well as G-ZSL as follows:
e Zero-Shot Learning (ZSL): y* € T

e Generalized Zero-shot Learning (G-ZSL): y* € {SU T}
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There are no dependencies among CRs in any of the models. The difference be-
tween these two models is in the properties of the inference. If the CR of the target set
was introduced, then it would be ZSL, and if both CRs of the source set and the target set

are introduced, then it would be G-ZSL.

Definition: Class representative (CR) is a representative of K instances in a single class.
The activation feature map of the CR is a unique characteristic pattern of visual expression
using the projection function; for example, the feature map generated through the deep
learning process using convolutional neural networks as the projection function (CNN).
Activation feature map (AFM) is a vector of features extracted from a base model, which

is learned from the source dataset. Thus, CR is an abstraction of instances of a class by
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computing an aggregation of the average mean vectors of the AFM for the K instances.
The CR characterizes a class and differentiates one class against another. The class repre-
sentatives C'R(c) for Class c is represented as {CR!, CR?, ... C'R"} with n dimensions.
Each dimension corresponds to a separate feature. If a feature occurs in CR, its value in

the vector is non-zero.

Table 18: Formal Symbol and Notations in the CRL model

Notation | Description

D & D; |Source and Target Domain
ms&my |#Data Points from Source and Target, respectively
S&T |Source and Target Label Set
#Classes
Feature Vector of Labeled Data Point
Label of Data Point
#Neurons in a Given Activation Layer
Base vector learned in P(.) {b1,b2,...,b;}
CR(c) |Class Representative of Class ¢ where ¢ € C
x* | Unlabeled Data Point
y*  |Predicated Label for z*
CRC(.) |Class Representative Classifier
P(.) |Projection Function

- s e 8 QO

L(.) |Inference Function
CRFS™|Class Representative Feature Space
n Dimensions of the C REF'S™

3.3.2 Class Representative Classifier

We introduce a class representative classifier CRC : ¢ — ¢ that maps an input
image space I of the dimension d and ¢ € S U T. Classifier has two essential functions,

namely the projection function P(.) and inference function L(.). The projection function
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takes the input images and learns feature space for class representatives through source
data D,. The inference function uses the class representative feature space C RF'S™ of the
dimension n to classify it to class ¢. C'RC' is defined as a composition of two functions,

as shown in Equation 3.1.

CRC = L(P(.))
P: 1%~ CRFS" G.D

L:CRFS" —c

The CRC model first learns a projection function S using the seen data, which aids
the mapping of the input images /¢ into class representative feature space C REF'S™ with n
dimensions. T the inference function L creates class representatives C'R in the C RE'S™

of either seen data or unseen data depending on the setting. The L maps any new images

from CREF'S™ to Label c where c € Torce SUT.

3.3.3 Projection Function

In the class representative learning method, we use a projection mechanism that
primarily uses only visual feature space. The visual feature space in the CRL method
is known as the class representative feature space. The projection function is prevalent
as part of the class representative classifier in two ways. First, learning the projection
method using seen data and building the class representative feature space C RF'S™. Sec-

ond, applying the pre-learned projection mapping mechanism to seen data or unseen data
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depending on the setting for inference.

Class representative feature space (CRFS) is defined as a n dimensional semantic
feature map in which each of the n dimensions represents the value of a semantic prop-
erty. These properties may be categorical and contain real-valued data or models from
deep learning methods [24]. Class representative feature space is the projection space.
The class representative feature space represents n dimensional representative features
is a form of the activation feature map (AFM). The design of the CRFS is based on the
equations defines in [71]. The data points from D, {(z™, M ... (2™ ¢m)} with
each z® € R and y” € T (as shown in Equation 3.3). A set of the mean of the base
features is defined as () Note that the data points can also be defined in D, that will be

used in CRFS to understand both source and target domains (refer to Section 3.4.4).

a(z;) = P(x;)

. . ; (g 112 () 3.2)
a(r;) = argming||z' =Y ai”bjl[5 + Bl
J
where
Dy = {z;,y;i}:y
D, — D, (3.3)
P,

Dy = {(a(xi), yi}izy
Class representative feature space is created based on the base vector b which has j
dimensions with each b; € R,,. The base vector b is generated with the projection function

using D, using optimization function such as stochastic gradient descent. Equation 3.2
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points out the self-training based on unsupervised data. The activation a(z;) consists
of {a(x}),...,a(z?)} with each a(z;) € R forms the semantic property of CRFS. Each
dimension of an activation vector a(z;) is the transformation of input z; using the base
b;, note that j is independent of size of input ;. The base b is learnt through smooth
approximation with L; sparsity penalty a(7). Even though approximation does not lead to
sparse features, Raina et al. reports using re-calibrated 5 value before computing labeled
data representation improve the classification accuracy [71].

Projection function P(.) can potentially be a convolution network layer or a resid-
ual network layer. The advantage of having a projection function purely for mapping; any
pre-trained models can be used in it is place. The pre-trained model’s availability to clas-
sify the source classes does not influence projection function mapping, instead of changes
on how the base vector is optimized. By having projection function, being independently
learned from the source classes gives the ability to use any advanced pre-trained model

available as part of the class representative learning model.

3.3.4 Class Representative Generation

Class representatives (CR) are generated using the nearest prototype strategy by
aggregating feature vectors. As the name specifies, class representatives create represen-
tatives from the instances projected in class representative feature space C'RF'S™ using
Projection Function P(.). Class representatives (CR) and the instances share the same
feature space C' RF'S™. The nearest mean feature vector with instances of the given class,

i.e., class representatives, is computed for every class. Correctly, the average feature mean
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operation was used to summarize the instances of classes. The CR is an aggregated vector
of the mean features for all the elements in the feature maps.

For the class representative generation, we considered the transformed source
dataset D, as the input (as shown in Equation 3.2). As we emphasize the parallelism
and independence, we considered the individual activation vector a(z;) such that y; = ¢

where ¢ € S, that will be used in formulating the CR as shown in Equation 3.4.

( 1 ms
CR'=—) a(x}), ify =
mS;a(%)’ Y = ¢
I <.,

CRQZ—Zd(fL‘Z)a lfyZ:C
ms <

(3.4)

CR"= — a(xl), ify, =
mSZa(xz), ify, =c

CR(c) = {CR'"CR? ...CR"},¥c€S
Equation 3.4 shows the feature-wise class representative generation in the class
representative feature space. For the CR generation, the projected source data D, is con-
sidered. For each class ¢ € S, the projected source data {(a(x;),y;} is considered were
y; = c. Each feature is considered based on the C REF'S™ dimension ranged 1 to n, the

average is considered to represent the corresponding dimension for C'R(c).
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3.4 Class Representative Inference

3.4.1 Zero-Shot Learning Setting

Algorithm 1: CRC-Inference: Zero-Shot Learning Setting

1

s W N

10

11
12

14

15

Input: D; = {z;, yi};2 ; o
Output: y*

ZSL Setting: y* € T
Projection Function P, () :

/x Base Vector b was learnt from D,, Based on Equation 3.2
a(x) = P(x)
return a(x)

Inference Function L (CR(c)Vc € T, a(z*)) :

Yyt = argmea]rx{cos(CR(c), a(z™))}
where

szt = _CR() - ala)
cos(CR(c),a(z")) = ICR(c)|| ||la(z*)]

ORI ()
VI (CRI))?\ ST alar)?

return y*

CR-Classifier Function CRC (D, , z*) :

/* Projection of Unseen Data D; into CRFS™ Similar to
Equation 3.3

D, ?thorie 1 — m; do
b

| a(a) = Py()

end

Dy = {(a(z), i}y

/+* Projection of New Data Point z* into CRFS"
a(z*) = Py(x*) /+ CR Generation: Based on Equation 3.4
forc € Tdo

. 1 ,
13 CR(c)! = — Yorta(xl),ifyy=c & Vje(l,n)
¢
end

/* Classifier Function

y* = L(CR(c)VceT,a(z*) 96

*/

(3.5)

(3.6)

*/

*/
*/




The zero-shot learning setting for the class representative classifier (C'RC), would
involve using the pre-learned projection function P using source or seen dataset D, on the
unseen or target dataset D;. The CR-based classifier involves three steps, namely projec-
tion function (as describes in Section 3.3.3), class representative generation (as described
in Section 3.3.4) and finally the inference function L. Algorithm 1 presents the projection
function P, pre-trained on the source dataset D,is used to map the target D, instances and
the test data point z* to class representative feature space C'RF'S™. Note that as recorded
in all existing projection methods, each unseen class needs at least one labeled instance
to create a prototype, i.e., class representative [4]. The class representative creation is
independent of the number of instances per class, with the only requirement of having at
least one labeled instance per class.

The aggregation of projected unseen dataset D, creates the class representative
for all classes ¢ € T. As shown in Equation 3.4, the dimensions of the projected are
maintained for the class representative as well. The class representatives C' R(c)Ve € T
and the new data point a(x*) reside the same feature space i.e., the class representative
feature space C RF'S™.

For the inference, the cosine similarity between each class representative in 7’
and projected new data point a(z*) is calculated. The label information is retained and
coupled with each class representative. For the final inference step, the label of the class
representative with the highest cosine similarity is returned as the predicted class y* for
the new data point x*.

The CRC classifier uses an instance-based projection method and inference method
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with no learning for unseen data or any new data as an ideal zero-shot learning setting.

3.4.2 Generalized Zero-Shot Learning

Algorithm 2: CR-Inference: Generalized ZSL Setting

*

Input: D, = {x;,y; };2y 5 Dy = {zi, yi}i2y s @
Output: y*
G-ZSL Setting: y* € {SUT}

1 CR-Classifier Function CRC (D, , D;, z*) :

/* Projection of Unseen Data D; into CRFS™ Similar to
Equation 3.3 */

2 _Dt — Dt
Py
/* Projection of Seen Data Dy into CRFS™ Similar to
Equation 3.3 */
3 D, — D,
b,
/* Projection of New Data Point z* into CRFS" */
4 | a(x*) = By(x")
// CR Generation: Based on Equation 3.4
s | force {SUT} do

. 1 ~
CR(c) = — ™ (),
6 (C) my Zz:l a(xz)
7 ify,=c & Vje(l,n)
8 end

// Classifier Function
9 y* = L(CR(c)Vce {SUT}, a(z*))

Algorithm 2 shows the variation of Algorithm 1, incorporating generalized zero-

shot learning(G-ZSL) setting. In the G-ZSL setting, the source dataset, target dataset,
and new data point are projected into the feature space during the projection function.
The projection method used here is based on pre-trained base vectors b learned from the

source or seen dataset. Having projected both seen and unseen dataset onto the class
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representative feature space C'RF'S™, we can generate class representatives for all class
¢ € SUT as shown in Equation 3.4. The class representative CR(c)Ve € SU T and
the projected data point a(z*) reside in the same feature space C RF'S™ for the inference
step. The inference step involves getting ¢, where the class representative C'R(c) has the
highest cosine similarity with the data point, leading to the conclusion that data point is

predicted with the label c.
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3.4.3 Model Parallelism

Algorithm 3: CRC-Inference: ZSL Setting [Parallel Mode]

QA B W

10

11

12

13

14

15
16

17
18
19
20

21

Input: D; = {x;, y; };" 5 x*

Output: y*

ZSL Setting: y* € T

Inference Function L (CR(c)Vc € C,, a(z*)):

Yp —argmax{cos(C'R() a(z™))} (3.7)
ceCyp
/* score, is the cosine similarity between CR(y,) and z* */

return (y,,,score,)

CR-Classifier Function CRC (D; , z*) :

Broadcast:
Pre-trained base vectors b and new data point x*

/x C, represents subset of classes split based on distribute
function. D, is data point for C, with size of m, */

D,,C, = distribute(D,,T)

Y, SCORE = {empty}

PARALLEL MODE

in parallel do

/* Projection of Distributed Data D.s into CRFS™ Similar to

Equation 3.3 %/
[%>;?'[%
/* Projection of New Data Point z* into CRFS" x/
a(x*) = Py(z*)
/+x CR Generation: Based on Equation 3.4 */
forc e C, do

CR(c) = —27”1 a(x;),
1fy, =c & Vje(l,n)

end
/* Classifier Function */
(yp, score,) = L(CR(c) VYV c € Cp , a(x*))
Y ,SCORE <y, , score,
end
REDUCTION STEP

/* Reduction Step combines results generated from each () */

Y= argm}z}x{SC’ORE} (3.8)
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Algorithm 3 showcases the parallelized zero-shot learning inference for the class
representative classifier. As there is no learning for target classes, C'RC can support
parallel processing for even larger datasets. The algorithm is designed with the CRCW
(concurrent read concurrent write) model, which allows parallel computing, including
I/0, with the shared memory and processors. The parallelized class representative clas-
sifier function C'RC' has two major steps, first involves in the declaration of the global
variables, broadcasting certain inputs, and distribution of other inputs. Global variables
are the variables that can be accessed and updated across the parallel process. Algorithm 3
declares predicted label set Y and corresponding cosine similarity score set SCORE as
global variables. The broadcast variables are the ones that represent the new projected
data point a(z*) and pre-trained base vectors b for the projection function P(.). Next,
the target data points D; and target domain T gets distributed into smaller sets of classes
using distribute(.) function. The distribute function splits the target classes T and the
corresponding data points D, into smaller sets of classes C), and their corresponding data
points D,,. The distribution can be aligned according to the parallelization capacity of our
method. The class set C), can be as small as a single class due to the complete indepen-
dence for every class in target classes ¢ € T. Each parallel processor works with each
set data points D,, and classes C, to create class representatives C'R(c) for all classes in
C, and compare with the new data point a(z*). At the end of each parallel execution,
a predicted label y, and the cosine similarity score, between C'R(y,) and a(z*) is re-
turned. The predicted label and score are accumulated onto the global variables, Y, and

SCORE. The final resultant label y is obtained using a reduction step where the label
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with the highest cosine similarity in Y, SCORLE, is returned (refer to Equation 21).

3.4.4 Validation using Domain Adaptation

We validate domain compatibility by checking the compatibility between source
(seen) domain and target (unseen) domain inspired from existing domain adaptation tech-
niques. The domain adaptation problem arises when the source domain data distribution
is different from target domain data distribution. Domain adaptation aims to learn a pre-
dictor function in given a feature space using the source domain and apply it to the target
domain. The hypothesis of domain adaptation is verified by measuring the distance be-
tween using the probability distribution obtained as a resultant of the predictor function

between source and target [120, 121].

CR;

-

CR,

Figure 19: Source Domain - Cosine Similarity Distribution

We use domain adaptation to validate the class representative distribution of source
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and target domains. The standard way of domain adaptation uses the predictor function
and the instance distribution of source and target to measure the divergence. Unlike the
conventional way, we formalize domain distribution through the cosine similarity be-
tween class representatives of all the sources classes and the cosine similarity between
class representatives of the target classes. The domain distribution using cosine similar-
ity between class representatives showcases the confusion between the classes, i.e., if the
current feature space is favorable for the discrimination of classes within the source and
target domain. The goal is to see if the target domain has the same CR-to-CR cosine
similarity distribution as the source domain.

Figure 19 shows an abstract three dimensional (X,Y,Z) vector space model of CR
cosine similarity distribution. Note that the dimensions of vector space model corre-
sponds the n dimensions of C'RF'S. We consider three classes (i,j,k) from source do-
main and their corresponding class representatives (C'R;, CR;, CR;;). We also consider
three classes (i’,j’,k’) from target domain and their corresponding class representatives
(CRy,CRjy,CRy). The cosine similarity between each pair of class representative is
calculated to each domain distribution in the class representative feature space (refer to

Equation 3.9).
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f(S) ={0i;,0ir, 0k}
f(T) = {e’i/,j/7 e’i/,k/a ek/,j/}
3.9
where

97;7]' = COS(CRi, CRJ)

The domain adaptation’s hypothesis typically uses the distribution over the in-
stances in a given domain (i.e., either source or target)[ 120, 121]. Usually, this distribution
is the probability distribution over the prediction function; instead, we use the distribution
of cosine similarity. ESZSL was the first to introduce zero-shot learning as a domain adap-
tation problem based on the probability distributions over the instances [59]. Romera et
al. presented the theoretical model using .A-distance as the measurement between source
and target distributions. The 4-distance is defined as the total variation or the L' norm
between the distribution within a given measurable subset A with the domains [122].

Intuitively, .A-distance shows the most substantial change in the similarity of a
given set. The set can be considered based on manual choice or conditional filtering,
and we show a conditional filtering set in Table 20. The first conditional set is obtained
by filtering higher cosine similarity V(0.5 < #) to understand the highly similar class
representatives showcasing the potential confusion between classes. Similarly, the second
conditional set is generated by filtering lower cosine similarity (0 < 6 < 0.5), which

points of the class representative pair with the least similarity.
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Vis = sup [f(S) — f(T)|

V= ZSip!f(SA) — f(T.)|

(3.10)

The Kolmogorov-Smirnov (K S) test is used to measure variation across the entire dis-
tribution, whereas A-distance is used to measure variation across a subset obtained from
both the distribution for a given condition. As shown in Equation 3.10, f(S) and f(T) are
the distribution functions based on the cosine similarity distribution for the source and tar-
get domain, respectively. V., shows the Kolmogorov-Smirnov distance between the entire
source CR distribution and target CR distribution. V4 shows the .A-distance between the
source and target domain on a given subset of data. For V4 and V., a lower score means
the target is closer to the source, and the higher score means the targets are further away
from the source. The higher score indirectly indicates incompatibility between target and
source, and the target might perform poorly because of the far distance, i.e., with lower

accuracy.

3.5 Experiments

3.5.1 Datasets

The CRL model was evaluated using six different targets (unseen) datasets in two
different settings. For our experiments, ImageNet-1K (2015), with 1000 classes [67], was
used as the source dataset. The target dataset info is shown in Table 19. We consid-

ered four standard zero-shot learning (ZSL) datasets and two classification datasets for
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the target dataset. The four ZSL datasets include Animals with Attributes-2 (AWA?2),
Caltech-UCSD Birds-200 (CUB200), Scene Attribute dataset (SUN_A), and ImageNet-
360 (IN360). IN360 includes 360 unique classes present in ImageNet-1K (2010) version,
which is different from the source domain dataset, ImageNet-1K (2015) [70, 69, 104].
The two classification datasets are Caltech-101 (C-101), Caltech-256 (C-256).

Table 19: Benchmark Dataset: Seen and Unseen Classes

Dataset  |#Class| #Image | Setting-1 Setting-2
Seen |Unseen|Seen |Unseen
C-101 [123] | 101 | 8,677 - 1000 101
C-256[124] | 256 | 30,608 | - 1000| 256
AWA? [92] 50 | 30,475 | 40 10 |1000| 50
CUB200 [125]] 200 | 11,788 [ 150 | 50 |1000| 200
IN360 [67] 360 |2,44,800{1000| 360 |1000| 360
SUN_A [126] | 806 | 14,340 | 697 | 109 |1000| 806

Setting-1: We investigated the effects of the seen and unseen split for Setting-1,
similar to work presented by Xian et al. [92]. The seen and unseen data in Setting-1
are prepared for a fair comparison with the state-of-the-art ZSL models. It is noted that
the seen and unseen split is mainly for evaluation purposes. We want to highlight that
there is no training activity happening with the unseen data in the CRL model since the
ImageNet-1K pre-trained models are used as projection function as the default method
(refer to Section 3.5.2). The ImageNet-1K pre-trained model should be sufficient for
inference with the seen and unseen data for this setting.

Setting-2: The Setting-2 is a unique setup for CRL, where the source domain
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Figure 20: t-SNE Visualization for Class Representatives of Benchmark Datasets [82]

(ImageNet-1K) included in the pre-trained model are considered as seen classes. Typi-
cally, the generalized zero-shot learning setting consists of both source and target classes
as a class set during inference. For this G-ZSL setting, we argue that ImageNet-1K should
be included with the given dataset in the class set as it is present during the learning of
projection function (as we are using a pre-trained model). As CRL focuses on no learning
for unseen classes, Table 19 Setting-2 shows the ImageNet-1K as seen classes (source

domain) and each dataset’s categories as the unseen classes (target domain).
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3.5.2 Pre-trained Model as Projection Function

As described in Section 3.3.3, the projection function P(.) mapping the input im-
ages into the class representative feature space. For the experiments, we use widely avail-
able image classification models pre-trained using ImageNet-1k (2015). MATLAB’s pre-
trained deep neural networks [80] were used as projection functions, namely Inception-V3
[76], ResNet101 [77], VGG-19 [78] and GoogleLeNet [127]. One of the CNN models
were defined as the projection function (pre-trained with ImageNet-1K) for the CRL ex-
periments. The last convolution layer from the CNN model was considered as the base
vector b. The j dimensions are based on the input size of the layer, and the layer’s output

dimensions become n dimensions of class representative feature space C' RF'S.

3.5.3 Evaluation Metrics

For zero-shot learning setting (Section 3.3.1), we use the average of class-wise
accuracy Accr and flat-hit@F is reported. Equation 3.11 shows that class-wise accu-
racy is calculated by the average of correct predictions for each class. This evaluation
was used to interpret the accuracy of the best performing class and the worst-performing
class. flat-hit@£k evaluation is defined as the percentage of the test images for which the
model returns the matched label in its top & predictions. It is useful to determine whether
the CRF'S is facilitating enough to get better accuracy by considering k nearest class

representatives to a given instance.

T . . b
1 ”z% # correct predictions in ¢
=1

3.11
#samples in ¢ ( )
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For the generalized zero-shot learning setting, the harmonic mean (/) of the
source dataset accuracy (Accy) and the target dataset accuracy (Acc’.) are reported [89,
92]. Accy is calculated by considering correct predictions source instances by consider-
ing the label space to be both source and target (S U T). Similarly, Acc/. is calculated by

considering correct predictions of target instances (Equation 3.12).

/ /
_ 2 Accg * Accrp
Accy + Accly

Accy :S=SUT (3.12)

Accp: T=SUT

3.5.4 Model Parallelism and System Specifications

The feature extraction has been conducted class by class as a form of parallel
processing to build a CR for each category (Section 3.4.3). The CR generation was im-
plemented parallel with Spark’s resilient distributed datasets (RDDs), a collection of data
points partitioned across the nodes of the cluster. The distribute function was imple-
mented as the RDD partition with the condition that all data points of a given class are
present in the same partition. The CR generation was performed in the map stage, where
each partition is independent of each other.

The projection of the data through the pre-trained projection method was imple-
mented on a single GPU, which is Nvidia GeForce GTX 1080 (with 12GB GDDRS5X

RAM) on MATLAB 2018b version. The CR generation and CR-based inference were
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implemented using Spark 2.4.3 version [79]. The parallel and batch process was con-
ducted through the RDD based parallelism on a single CPU with 4GHz Intel Core 17-
6700K (quad-core, 8MB cache, up to 4.2GHz with Turbo Boost) and 32GB DDR4 RAM

(2,133MHz) (i.e., local parallelism of 4 cores).

3.6 Results and Discussion

3.6.1 Domain Adaptation

Table 20: Source Domain and Target Domain: Accuracy, Kolmogorov-Smirnov Test
Scores, A-distance

Target Domain Source & Target Comparison
Dataset Acer | Vi Va Va
VO(0.5 < 6) | VO(0 <6 <0.5)
ImageNet-1K | 73.7% 0 0 0
C-256 70.5% | 0.0921 0.0908 0.1132
! C-101 91.2% | 0.1570 0.1350 0.2767
SUN_A 31.9% | 0.3560 0.1398 0.6205
AWA?2 76.8% | 0.4120 0.2848 0.7228
IN360 38.1% | 0.4580 0.5877 0.9009
CUB200 |40.1% |0.4740 0.9737 0.2450
CIFAR-100 |57.9% | 0.9125 1.6429 1.3115

The Kolmogorov-Smirnov Test and .A-distance are used to identify the type of
transfer learning [81] that happened when during the zero-shot learning process from a
given source dataset and target dataset. For this experiment, Inception-V3 based class rep-
resentatives were considered. Each class representative was generated using ten labeled

instances. Homogeneous transfer learning happens when the source and target feature
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spaces have the same attributes, labels, and dimensions. In this experiment, ImageNet-1K
is identified as homogeneous transfer learning with V,, and V4 scores as zero. Note that
source to source mapping is not typically considered as transfer learning. The CRL model
takes just feature space established based on a pre-trained projection method and uses a
different inference method. Thus, the CRL model in ImageNet-1K is identified as homo-
geneous transfer learning. Heterogeneous transfer learning happens when the source and
target domains share limited or no features or labels, and dimensions of the feature space
differ as well. All the target domains can be considered heterogeneous transfer learning
when no or little label overlaps with the source domain, i.e., ImageNet-1K. The critical
observation is if the heterogeneous transfer learning negatively impacts the target domain
performance, that brings the issue of negative transfer. Negative transfer learning happens
when the target domain’s performance has negative implications on knowledge transfer
from the source domain. The negative transfer learning is generally found when the source
domain has minimal similarity with the target domain. The KS test and .4-distance is used
to identify if the target domain has a negative transfer.

With the highest score in all variations, i.e., V}, and both V4, the dataset CIFAR-
100 has the negative transfer. Figure 20 shows the target domain data are projected on
the semantic space that is quite distinct from the source domain. Although the CIFAR-
100 is semantically relevant to other datasets, the CRL space of CIFAR-100 is divergent
from the source space in terms of image modality, such as image quality and image size.
The size of CIFAR-100 images is [32x32] while one of the source domain ImageNet-1K

[400x400]. More specifically, the dimension of the projection method Inception-V3 is
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Figure 21: t-SNE Visualization of Class Representatives [82]

[299x299].

Figure 22 demonstrates the similarity distribution in the feature space of the source
and target datasets. This figure further confirms the existence of negative transfer. The
next dataset, which might have negative performance, is CUB200, which a score of 0.9737
on cosine similarity greater than 0.5. This indicates that the distribution created by higher
similar class representatives in CUB200 is very different from ImageNet-1K. This distri-
bution disparity can also be observed in Figure 21, where CUB200 forms a highly dense
cluster in all the figures. It supports the nature of the dataset as CUB200 is specific to bird
categories, whereas ImageNet-1K has a variety of animate and inanimate objects.

Table 20 shows that the accuracy of datasets does not perfectly correlate with the
scores V; and V4. This lack of correlation is due to the size of the dataset, i.e., several
classes. Figure 23 shows the class-wise distribution of the dataset, and the star marker in-
dicates the number of classes. The SUN_A dataset’s performance is dependent on multiple
factors such as the size of the dataset, the standard deviation of the class-wise accuracy,

and the domain compatibility score. The standard deviation is class-wise accuracy, and
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Figure 22: Cosine Similarity Distribution of 8 Benchmark Datasets

the significant difference between two V4 can be correlated. This inconsistency is due
to a lack of quality images for certain classes. Figure 24 shows an example of two best

performing and two worst-performing classes.

3.6.2 Comparison with ZSL Algorithms

We have evaluated the CRL model in terms of the three perspectives, such as ZSL
performances with the six different benchmark datasets, ZSL. performance with an in-
creasing number of instances, and comparison with the state-of-the-art ZSL algorithms.
The two types of CRL models (the projection methods) was included Inception-V3 based
model and VGG-19 based model. Table 21 and Figure 25 show the CRL’s ZSL perfor-
mance with flat-hit@k using Inception-V3 projection with the dataset under Setting-2.

Table 22 shows the comparison of the state-of-the-art zero-shot learning algorithms using
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Figure 23: Accuracy Distribution of 8 Benchmark Datasets

the VGG-19 model, considering just the IN360 dataset under Setting-2.

The experiments show the CRL model’s performance for the ZSL task that recog-
nizes the target (unseen) labels without having the source (source) labels. Table 21 shows
two versions of the recognition tasks with the testing data from the target set (T); T = T
when the testing label could be only from the target set y* € T and T = S U T when the
testing label could be from both the source set and target set y* € S U T. For this exper-
iment, we consider all instances (70%) from the dataset to generate class representatives.
The results show the influence of an increasing number of labels in the dataset to the ZSL
accuracy similar observation was made from Figure 23. When comparing the Flat-hit@k%

with £ = 1 (Top-1) and k£ = 2 (Top-2), we can see an average of 21% increase from
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Figure 24: Inference Performance for Two Best and Two Worst Cases

Top-1 accuracy to Top-2 to accuracy. This increase signifies that C RF'S provides a well-
formed neighborhood, with a 21% increase chance of getting the correct prediction at the
second nearest class representative. Comparing the two different recognition tasks, we
note the significant drop in efficiency is shown when the source set was also considered.
Note that these results were based on Setting-2, source set is ImageNet-1K. The number
of classes in S U T would be a minimum of 1050 (case of AWA?2 dataset) and a maximum

of 1806(case of SUN_A dataset). A negative correlation between the number of classes

and accuracy was observed.

Figure 25 shows the performance of CR-Inception-V3 with the images at a speci-

fied number ranged from one to ten from each class. For this experiment, we considered
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Table 21: Accuracy for Zero-Shot Learning Tasks (Setting-2)

Recognition Task Accuracy
Dataset
Flat-hit@K |T = T |T=SUT
1 1.2 4
C-101 91.2% | 86.4%
2 97.4% | 93.5%
5 98.5% | 97.0%
1 . .
C.956 70.5% | 55.6%
2 783% | 69.2%
5 84.7% | 78.7%
1 . .
AWAD 76.8% | 48.6%
2 87.9% | 72.9%
5 95.5% | 86.5%
1 40.1 .
CUB200 0.1% | 384%
2 53.9% | 52.5%
5 71.0% | 69.9%
1 31.9% | 28.5%
SUN_A
2 433% | 40.4%
5 58.7% | 56.3%
1 38.1% | 28.3%
IN360
2 47.6% | 40.1%
5 59.7% | 54.3%

only (T = T) setting. Interestingly, the Top-1 accuracy with just ten images reaches
higher than 75% accuracy compared to the accuracy reported in Table 21, which consid-
ers 70% of the data.

Table 22 shows the state-of-the-art zero-shot learning (ZSL) algorithms to be com-
pared with CRL in Table 17. This experiment considered the class representative model
built using pre-trained VGG-19 as a projection method with ImageNet-1K as a source and

IN360 as the target. Table 22 shows that the performance of the CRL model is superior
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Figure 25: Accuracy on CRL Model based on Increasing Instances in Setting-2 (S =
Sand T = T)

in both cases of 3000 instances and all instances. In the 3000 instance case, the CRL
model’s Top-1 shows a 27% increase compared to the top performer, Deep WMM-Voc.
In all cases, the CRL model’s Top-1 accuracy is significantly higher than the others; on

average, the CRL model’s Top-1 accuracy is considerably higher than Deep WMM-Voc’s.
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Table 22: Comparison between the CRL model with VGG-19 Model for IN360 (Setting-
1)

3000 Instances All Instances

Top-1 | Top-5 || Top-1 | Top-5
CRL (ours) |11.78% |25.52% || 31.6% | 55.1%
Projection | DWV [69, 70] | 9.26% |21.99% || 10.29% |23.12%

ZSL Type Methods

Method SAE [99] 5.11% | 12.26% || 9.32% |21.04%
Deep-SVR [61]| 5.29% | 13.32% || 5.7% |14.12%
Embed [100] - - 11.0% | 25.7%

ConSE [62] 55% | 13.1% || 7.8% | 15.5%

Correspon- | ESZSL [59] | 5.86% |13.71% || 8.3% | 18.2%
dence DeViSE [57] 37% | 11.8% || 52% | 12.8%

Relationship| AMP [58] | 3.5% | 105% | 6.1% | 13.1% |

*Results reported for SOTA Models are from Fu et al.[69]. The CRL model is configured with the same
settings such as VGG-19 with 3000 instances, i.e., 3 images per class and all 50000 instances, i.e., 50
images per class
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3.6.3 Generalized Zero-Shot Learning

Table 23 shows the performance of the generalized zero-shot learning (G-ZSL)
model comparing CRL (built on Inception-v3) to the four state-of-the-art G-ZSL models.
The SOTA models for AWA?2, CUB200, and SUN_A were built on ResNet-101, and the
SOTA model for IN360 was built on Google-LeNet. The number of images for the G-
ZSL model datasets is as follows: 600 images per class for AWA?2, 50 images per class
for CUB200, 20 images per class for SUN_A, and 180 images per class for IN360. The
number of images is the same as the setting specified by Guan et al., for fair evaluation
[104].

Table 23 also shows the accuracy of the target (unseen) and harmonic mean of the
CRL model outperforms the other SOTA models, including the BPL+LR model, which
includes synthesized data. On average, the accuracy of CRL was 20% better than the
other SOTA models. Compared to a fine-grained dataset, the CRL model performs better
in the coarse datasets, such as SUN_A with only 40.5% of the Harmonic Mean Accuracy.
The CRL accuracies for the seen classes have been improved with all datasets excluding
IN360. For the IN360 dataset, BPL+LR shows the highest accuracy of 95.5%, and CRL
shows the second-highest accuracy of 89.4%. The pattern of source accuracy being bet-
ter than target accuracy can be observed in works in instance-based projection method,
classifier-based correspondence method, and classifier-based relationship method. Re-
portedly difference in accuracy between source and target domain is around 60% in those
three types except CRL. CRL Model is an instance-based projection method that still re-

ports an accuracy equivalent to the instance-based synthesizing method. In most cases,
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the CRL model outperforms the Synthesizing Methods. The most significant advantage
of CRL compared to the synthesizing method is that it does not use any complex and time

consuming generative or auto-encoder models.

3.6.4 Time Performance

The CRL model’s performance is evaluated by comparing it with the Inception-
V3 pre-trained model retrained with the target domain. The CRL model’s performance
is calculated according to the projection time (Section 3.3.3), CR model generation time
(refer to Section 3.3.4) and CR-based inference time (refer to Section 3.4). For this exper-
iment, we use Inception-V3 as our pre-trained projection. The class representative for this
experiment was built with 70% of the given dataset. Note that since most of the zero-shot
learning methods do not report time performance, image classification setting was consid-
ered. The CRL image classification setting is the same as the CRL ZSL setting (T = T)
since no learning happens for either of them. Our previous work [90] reports more details
on the comparative evaluation of the CRL model with others. The comparison is with
the Inception-V3 pre-trained model from MATLAB (same as CRL’s projection method),
where the last layer of softmax is retrained with the new dataset.

Table 24 shows the comparison of the CRL model’s overall time vs. the time taken
for retraining the dataset using the Inception-V3 pre-trained model. Both pre-trained mod-
els were run on the same system specification. Pre-training of the Inception-V3 Model
was stopped at a reported number of epochs as the time taken was significantly higher

than the CRL models. The CRL model with three datasets (CalTech-101, CalTech-256,
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and CIFAR-100) has an average of 99% time reduction that is a significantly reduced
compared with that for the original Inception-V3 model. Within the same time window
and based on the same pre-trained model, the Inception-V3 model performance has not
reached the accuracy published in [33]. The CRL model’s overall time would show gen-
uinely outstanding achievements in the target domains, even if the models were never
learned from the target domain.

Table 24: Transfer Learning Performance Analysis: CRL vs. Inception-V3 [80]
Pre-trained Model: Inception-V3 with ImageNet-1K

Target CRL Inception-V3 [80]
Step Time (minutes) | Accr || Time (minutes) | Epoch | Accr
Projection 5.35
C-101 CR Generation | 1.51 7.2 94.4% 425791 40 88.7%
Inference 0.33
Projection 10.23
C-256 CR Generation | 1.9 13.88 | 78.2% 14193.96 14 59.3%
Inference 1.75
Projection 13.2
CIFAR-100 || CR Generation | 0.93 | 15.73 | 57.9% 26941.85 10 50.3%
Inference 1.6

3.7 Discussion

The class representative generation was obtained by extracting the abstraction of
each feature’s distribution in the class representative feature space C'RF'S for the target
domain. For the purpose, we used a straight-forward aggregation approach. Thus, the
class representative learning model might be susceptible to outliers, sample size bias, and

hubness. The CRL model was extremely strong at the flat-hit@k with k = 2 & k = 5
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compared to £ = 1 (Table 21). This indicates that the high similarity between some
CRs might lead to misclassification. To overcome the limitation of the CR generation, an
advanced optical model such as the fisher vector and gaussian mixture model might be in-
corporated in the future. We will consider unsupervised deep learning techniques to learn
efficient data codings and reduce the CR’s feature space to a more optimal representation.
We can further extend it to determine the CR vectors’ common and unique features and
find the weights that maximize the uniqueness between CRs. Currently, CRL is mainly
based on the use of visual data only for zero-shot learning. We will extend the CRL model
to handle multi-modal data distributions such as text data in the future. The CRL model
has a potential extension to have the open set recognition with T >> S. Currently, CRL

has an openness factor of 0.278 [88].

3.8 Conclusion

This chapter proposes the class representative learning (CRL) that projects the ab-
stract features extracted from a deep learning environment to the high-dimensional visual
space. In the CRL model, class representatives (CRs) are designed to represent potential
features for given data from the abstract embedding space. A projection-based inferencing
method is intended to reconcile the dominant difference between the seen classes and un-
seen classes. The CRL model has three distinct advantages than existing ZSL approaches.
(1) There is no dependence among CRs to be built in parallel and used freely, depending

upon the context. (2) Unlike other ZSL approaches, the CRs can be generated only using
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the abstract visual space by eliminating the need for semantic spaces or auxiliary infor-
mation. (3) The abstract embedding space of the source (seen classes) is solely used to
project the instances of the target (unseen classes) without any learning involved. The
current research demonstrated the benefit of using the class-based approach with class
representatives for ZSL and G-ZSL on eight benchmark datasets. Extensive experimental
results confirm that the proposed CRL model significantly outperforms the state-of-the-
art methods in both ZSL and G-ZSL settings. The CRL model is presented herein as an
instance-based projection-method zero-shot learning method, but surprisingly this outper-
forms complex state-of-the-art instance-based synthesizing methods. The work presented

in this chapter was published as part of Chandrashekar et al.[128].
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CHAPTER 4

MCDD: MULTI-CLASS DISTRIBUTION MODEL FOR LARGE SCALE
CLASSIFICATION

Data level parallelization or distribution has become the new normal among the
proposed machine learning or deep learning algorithms. The model built from a large
amount of data is singular but not decomposed. One of the significant problems in ma-
chine learning and deep learning with big data is that it is becoming a complex and big-
ger model. As shown [19], an increase in either the number of layers or the number of
parameters in a deep learning model leads to better accuracy. The well-known deep neu-
ral network models include AlexNet [129], VGG [78], GooGleNet [127], ResNet [77],
and Inception-Resnet [130]. They mainly focus on large and very complex networks to
improve accuracy by adding additional layers or combining other networks to existing
network models.

As evaluated in [131], ensemble learners could be an effective mechanism to com-
bine and scale the deep learning classification model as a base learner. Some ensemble
learners, such as Random Forest [132] and Ada Boost [133], showed improvement in
classification accuracy compared to using a single classifier in terms of data distribution
and model distribution. Ju et al., [131] introduced advanced ensemble learners, including
Base Learner, Super Learner, Bayes Optimal Classifier, Unweighted Average, and Ma-

jority Voting in the Deep Neural Network setting. Considering Random Forest, Multiple
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Models (trees) are built based on randomly distributed data and a simple voting paradigm
as a decision making process.

Here is the limitation of these algorithms: (1) the randomness in the data distri-
bution; (2) the model has no structure; (3) there is no distributed decision making on the
classification (i.e., if there are ten classes, they still decide on ten classes). Due to these
issues, the computation cost is quite expensive. There is no significant improvement as
there are still a large number of classes to be classified.

This chapter proposes a distributed classification model called multi-class discrim-
inative and distribution (MCDD), focusing on building multiple models in a distribution
and parallel manner. The motivation of this work is how a model can be partitioned into
several various sub-models. Depending upon the need, a more prominent model can be
composed. The smaller models can be organized in a hierarchical manner (divide-and-
conquer) to produce the most optimal recognition for any given input.The effectiveness of
the MCDD model was shown with the CNN based image classification and segmentation
on multiple large datasets, Caltech-101 [123], CIFAR-100 [134], ImageNet-1K [135].
The MCDD-based distribution model shows a better performance than the state-of-the-
art performance.

Our primary contributions in this chapter are as follows.

e We define a measurement called confusion factor that computes a misclassification
cost and detects communities with high classification errors and build a deep CNN

model to over the limitations.
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Figure 26: MCDD Deep Learning Networks
e We develop a hierarchical clustering algorithm to break the ’confusing” communi-
ties down into smaller communities. This clustering will result in minimizing the

confusion factor of the communities and maximize the classification accuracy.

The MCDD networks are designed as a hierarchical deep learning network that is
composed of multiple AlexNets [129] as shown in Figure 26 and it is also evaluated with

multiple datasets, Caltech-101 [123], CIFAR-100 [134], and ImageNet-1K [135].
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4.1 Related Work

4.1.1 Classification Measurements

A distance metric [136] was proposed to find the most influential neighbors and
approximate their influence on classification. However, they cannot detect the classes of
the misclassification. The visualization methods for representing models of misclassi-
fied cases were developed in [137] and [138]. A method for improving the performance
of classification in small datasets such as MNIST in [139]. Recently, the accuracy im-
provement in large-scale classification using CIFAR-100 [134] and ImageNet [135] using
a graph-based tool in [72]. Even if this work presented community detection based on
the confusion graph [72], they are limited to finding an optimal solution for significant

improvement in the classification.

4.1.2 Hierarchical Classification

The hierarchical structure was proved to be useful in the multi-class classification
problem. In the works [140, 141, 142], similarity priors were analyzed to determine if
the nodes in classifiers are too close to nearby nodes. Similar to our work, a dissimilarity
constraint was used to differentiate nodes from their ancestors [143, 144]. The weighted
classification error model was proposed to assign different nodes according to the hierar-
chical loss of model learning [145, 146, 147].

Hierarchical class structures were introduced to improve the performance of deep
networks. In [148], similar classes were grouped and classified with an augmented deep

network. In [149], a hierarchical convolutional neural network (HD-CNN) was designed
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based on the two-level organization of coarse and fine-grained categories by sharing com-
mon layers. In [135], common and discriminative features were analyzed across classes

and learned for representing the feature in pooling layers of a hierarchical structure.

4.1.3 Classifier Structure

Hierarchical models have been built for multi-class classification based on con-
fusion matrices obtained from SVM classifiers [150, 151, 152], constructed as a binary
branch tree in [151], a label-embedding tree in [150], and a probabilistic label tree in
[152]. Furthermore, a relaxed hierarchical structure was introduced in [153] for allowing
the confusion classes to belong to more than one node in the hierarchy. In contrast, vi-
sual trees were constructed by clustering techniques [154, 155, 156, 157], AP clustering
by [157], and Spectral clustering by [155]. Clustering methods are intuitive and efficient.
However, they may not provide a higher classification accuracy compared to classification
methods.

The greedy learning method is typically utilized for class prediction. Most hi-
erarchical classification approaches [157, 158, 159, 43] are greedy learning by making
predictions in each layer for maximizing the classification probability. However, greedy
learning-based inferences may produce propagated errors at consequent layers (i.e., a pre-
diction error at the lower level will provide ones at a higher level).

These works mainly focus on the similar or the same features that are shared by
all classes. On the contrary, our proposed MCDDNet enforces to group classes that have

various features instead of having a similar feature. Recently, SplitNet [160] addressed
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Figure 27: Example of the MCDD Distribution and Classification
the problem of splitting classes or features for sharing common features within a group of
related classes and results in reducing the number of parameters and computation cost for
large-scale problems. In SplitNet, the networks are partition into subnetworks according
to the semantic taxonomy, and they are assigned and trained for groups. On the other
hand, semantic knowledge of class relatedness is not well-fitted for a distributed machine
learning setting to learn a network structure that is well-fitted for a distributed machine

learning setting.

130



4.2 Multi-Class Discriminative Distribution Model

We design a new model, called the Multi-Class Discriminative Distribution Model
(MCDD), for maximizing the classification accuracy in large scale multi-class classifica-
tion. For the purpose, classes will be clustered based on the baseline levels of confusion
factors among multiple classes, as shown in Figure 27. In the MCDD framework, the

following properties are satisfied:

e The confusion matrix should present the representative confusion between the classes

in the classification.

e The members of a community (classifier) should be as diverse as possible.

e The average accuracy of the child-level classifiers should be higher than the parent-

level classifier’s accuracy.

e The singleton community (the size of the community is one) is prohibited. Thus,

during the clustering, singletons are forced to team up with others.

e The communities should be mutually exclusive and collectively exhaustive.

e The confusion between classes within a community during the multi-class classifi-

cation should be minimized so that the classification accuracy could be maximized.

Unlike the recent work [72], we propose a novel concept of a diversity community
detection and a community clustering model. The MCDD framework will minimize the

confusing factors among classes using a deep learning hierarchical model and improve
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the overall and community-wide classification accuracy using a hierarchical deep learning

model (shown in Figure 26).

4.2.1 Confusion Measures

The confusion factor (3) measures the degree of confusion among the classes that
are misclassified by the classifier. The confusing factor of classes is determined with
false-positive instances and false-negative instances of the confusion matrix. We assume
that if two classes are similar, then their confusion factor is high. Also, if there are high
instances of false-positive as well as false-negative, the confusion factor is high.

The confusion factor is defined by a harmonic and integrated model of the false-
positive factor and the false-negative factor for a given confusion matrix. The confusion
matrix (CM) is an n by n matrix C'M, where the each entry, C'M;;, where 1 <=1,j <=n
has the percentage of correctly or incorrectly classified cases (i.e., true-positive, false-

positive, false-negative, true-negative) as follows:

true-positive (TP): M;; is correctly classified of class ¢ which is classified as class j

false-positive (FP): M;; is misclassified of class 7 which is actually a class j.

false-negative (FN): M;; is misclassified of class j which is actually a class 7.

true-negative (TN): M;; is correctly classified of class j which is actually a class j

(¢ #7)
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We design a probabilistic matrix called the confusion factor (CF) that will be used
to detect a homogeneous community (i.e., high confusion factors among classes in the
community) and partition such a community into smaller ones. The CF matrix is gener-

ated by computing the confusion factor using
e Confusion factor between false-negative (FN) and true-positive (TP)

e Confusion factor between false-positive (FP) and true-positive (TP) for a given con-

fusion matrix CM.

More specifically, the false-negative Confusion Factor (F'N — C'F};) between classes c¢;
and ¢; in CM (C'F};) is the confusion factor of classes ¢; and c;. The false-positive confu-
sion factor (F'P — C'F};) between classes ¢; and ¢; in CM (C'F};) is the confusion factor
of classes ¢; and c;.

The Confusion Factor (CF) represents the confusion measure between classes c;

and c¢; in the CM matrix computed by the following formula:

CFy = \/(CMy; — CM;;)? + (CMj; — CM;)? @.1)

where 1 <= 7,7 <= n. In Equation 4.1, C'M;; is a false-negative (FN) case, C'M;; is a

true-positive (TP) case, and C'M; is a false-positive (FP) case.
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The CF matrix is represented where m = n as follows:

CMy., =

miia

ma1

Mm1

mi2

ma2

Mm2

min

m2,n

M,

Table 25 and Table 26 show an example of confusion matrix with five classes and

their confusion factor matrix, respectively. The number of total instances in the matrix is

25. In Table 26, the confusion factor for two classes, Beaver (B.) and Airplanes (A;) is

computed as follows: CFy, g, = CFp, a, =

V(CMp, a4, — CMa, 4,)? 4+ (CMa, 5, — CMa, 4,)? = /(0 — 1)+ (4 — 1)2 = 3.16.

Table 25: Example of Confusion Matrix

Ac | Ai | An | Ca | Be
Ac| 4 0] 0] 0] 1
Ai | O 1 0 0 4
An| 0 1 2 1 1
Cal| O 1 1 2 1
Be| 0|01 0| 4

Table 26: Example of Confusion Factor Matrix

Ac Ai An Ca Be
Ac 0 |4.12]5.66 | 5.66 5
Ai | 4.12 0 1 1 3.16
An | 5.66 1 0 141 | 1.41
Ca | 5.66 1 1.41 0 2.83
Be 5 3.16 | 1.41 | 2.83 0
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Table 27: Example of Normalized Confusion Factor Matrix

Ac Ai An Ca Be
Ac | 100% | 67% | 100% | 100% | 86%
Ai | 67% | 100% | 0% 0% 46%
An | 100% | 0% | 100% | 45% 9%
Ca | 100% | 0% 45% | 100% | 39%
Be | 86% | 46% 9% 39% | 100%

The Normalized Confusion Factor (NCF) matrix is the normalization of the Con-

fusion Factor (CF) using Equation 4.2.

4.2)

STl ) >

In Table 27, the normalized confusion factor (NC'Fg, 4,) for two classes, Beaver
(B.) and Airplanes (4;) is computed as follows: NCFy, p, = % = 46%.

In Confusion Factor Matrix Computation, A.: Accordion, A;: Airplane, A,,: Ant,

C,: Cannon, B,: Beaver

4.2.2 Community Detection

In this chapter, we design our community detection algorithm to find out the com-
munity having a high number of confusing classes from the classification. A community
having such classes will be detected by an unbalanced distribution factor in the confusion
space. Several primary parameters (including the community classification performance,
the size of the community (), and the confusion factors () of the classes in the com-

munity) need to be determined for the partitioning of the community into smaller diverse
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communities.

We used the standard deviation as a measurement to check how the members are
spread out in the community distribution. Each of the confusion factor values in the dis-
tribution deviates from the center of the community. We first compute (1) the subtract
the center’s confusion factor from each number’s, (2) square the results (the squared dif-
ferences), (3) compute the average of those squared differences (variance), (4) take the
square root of the variance (standard deviation). We utilize simple statistic testing such
as analysis of variance (ANOVA) to validate variation” among and between communi-
ties by comparing means of communities for statistical significance. Precisely, we first
compute the confusion factor for a given community. Then we use the p-th percentile
(0 < p < 100) as the cutting point to detect the large confusing community. Any com-
munity whose confusion factor is less than the p-th percentile will be partitioned. From
this analysis, we will find significant differences in the members’ performance between
the best and worst communities.

We define two distinguished classes that influence the classification accuracy of a

community: Trouble maker and Superstar.

e Trouble maker (TM) is a class that causes difficulty or problems in classification,
especially that results into degrading the classification performance of the commu-
nity. It can also be considered as class which has lower individual accuracy and is

also highly confused with other classes.

TM(C) = ¢; > 5% * Avg(C) where ¢; € C 4.3)
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e Superstar (SS) is a class that contributes to increase the community-wise classifi-
cation accuracy. It is class which mostly best performers of the group, projecting
and increasing community accuracy. This doesn’t affect or contribute to individual

accuracy of other classes. The Superstar will be detected based on formula below:

(

Maz(0)—Avg(©) Avg(C) > 90

SS(C) = 75% of Avg(C) Avg(C) < 50% (4.4)

Avg(C) + SS_thr(C) otherwise
\

The Superstar (a higher performer with a high classification accuracy) and the Trouble
maker (a poor performer with a low classification accuracy) will be recognized and uti-
lized in the community’s partition. The three superstar and three trouble maker commu-

nities are shown in Figure 28 and Figure 29, respectively

Figure 28: ImageNet Communities 1 - 6: Superstars

4.2.3 Community Reconstruction

We propose a noble clustering algorithm to construct communities in the MCDD

framework. The MCDD model aims to improve classification performance. The MCDD
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Figure 29: ImageNet Communities 1 - 6: Trouble Makers

classifier is a hierarchical assembled one, which is different from the existing assembled
classifier [132]. We are given a Confusion Factor (CF) matrix from the classification.
The MCDD clustering algorithm partitions the set of classes into smaller sets where sim-
ilar classes are to be spatially separated in the Euclidean distance space. We used two
clustering techniques (K-Means and EM) and compared their performances in terms of
an optimal distribution of classes. For the K-Means clustering, we used a heuristic ap-
proach to determine K using Silhouette width. This optimal method determines that a
higher number of clusters does not always improve the learning. The optimal heteroge-
neous clustering method supports the improvement based on how to distribute classes for
a given dataset. In this chapter, we have hierarchically extended the clustering algorithm
by designing optimization strategies using the accuracy performance of communities or

sizes of communities.

4.2.3.1 Hierarchical K-Means Clustering

For constructing the MCDD model, the Hierarchical K-Means clustering (HKM)
algorithm is designed to group visual entities together based on their confusion factors

to discover an ideal distribution of categories that results in high classification accuracy.
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The purpose of the clustering in MCDD is quite different from other clustering methods.
We are clustering classes in terms of diversity between them. In other words, the classes
in a community formed after the cluster have classes that differ so that the confusion that
existed during the classification.

Each model in MCDD will show the minimum confusion factor so that MCDD
supports the high learning performance for both the community-based classification and
the overall classification. The HKM supports the hierarchical distribution of multiple
categories according to the MCDD model for the multi-class classification problem.

The HKM algorithm aims to minimize a confusion factor between categories and
to find an optimal distribution of these categories. The HKM algorithm was designed by
extending the KM algorithm for the construction of classification models in a hierarchi-
cal manner. The HKM algorithm is an unsupervised learning technique for partitioning
entities (annotated terms extracted from images) into K different contexts by clustering
them with the nearest mean. For our purpose, we applied it using the Confusion Factor
(CF) matrix. The condition for clustering the CF matrix into a set of smaller CF matrices
(smaller communities) will be defined based on the threshold («) of the community-wide
accuracy. The number K can be determined in a heuristic manner. We have applied a
simple rule (k = \/n, where n is the number of classes in the community for the shake of

simplicity) level-by-level during the clustering.

k

SO lx = will? (4.5)

i=1 x€S;

where 1; is the mean of points in .5;.
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Figure 30: ImageNet Community Size: Confusion Graph vs. MCDDNet

The HKM algorithm is an excellent way to discover the optimal distribution of cat-
egories by minimizing the confusion factor between classes and hierarchically organizing

them.

4.2.3.2 Distribution Algorithm and Strategies

The Distribution algorithm of the MCDD is intended to group the categories into
communities such that the community achieves better accuracy compared to belonging to

the global community.

4.3 Experimental Results

In this section, we evaluate the performance of MCDD on three datasets: Caltech-
101 [123], CIFAR-100 [134], ImageNet-1K [135]. First, we verify the effectiveness of
MCDD in accuracy and efficiency by comparing it with other works. We investigate the

effect of level-by-level clustering so that the community will be organized for distributed
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Algorithm 4: Class Distribution using Confusion Factor

1 Input: Data set d with n number of categories, o represents the minimum
accuracy threshold for community splits, ¢ represents the minimum possible size
Output: £ communities with dissimilar categories sets

2 WHILE noChange is true

3 FM;; = Classi ficationAlgorithm(d)

4 ED;; = \/(FM;; — avg;;)? + (FMj; — avg;;)?

5 =0

6 k=+yn/2—-F

7 CommunityModel = Clustering..

8 Algorithm(ED, k)

9 for i € ndo

10 CommunitySet|i] = Community..
11 Model.predict(ED]i))
12 end

13 for i = 1to CommunitySet.length do

14 if CommunitySet[i].accuracy > « then
15 ‘ noChange = false

16 end

17 if CommunitySet[i].size < t then

T R S

19 end

20 end
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Size and Accuracy of Communities for ImageNet1K
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Figure 31: ImageNet Community and Classification Accuracy

classification hierarchically. We also examine the impact of distributed classification on
large-scale multi-class classification and learning on several communities and hierarchical
levels. Finally, we validate the proposed MCDD model in terms of the accuracy analysis
for the optimal distribution. It has been conducted using the combination (the order does
not matter and repetition is not allowed) where n is the number of classes to choose from,
and we choose k& from them. The number of ways to distribute n classes into k learners
(communities), each community will have § < /n classes.

We validate the proposed MCDD method for image classification tasks using three
benchmark datasets. As shown in Table reftable:datasets, the CIFAR-100 dataset [134]
contains 32 X 32 pixel images from 100 generic object classes. For each class, there are

500 images for training and 100 images for the test. We set aside 50 images for each class
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Table 28: Community-Based Classification: Confusion Graph [72] vs. MCDDNet on
AlexNet with ImageNet

Model Confusion Graph MCDD
Type Best Worst Best Worst
Size 3 3 25 41
Comm. | 352,353,354 | 651, 829, 856 | Community 1 | Community 4
Error % 28% 65.71% 4.9% 54.6%
Size 3 3 37 62
Comm. | 231,232,233 | 589,791,792 | Community 2 | Community 5
Error % 42.66% 51% 8.1% 50.1%
Size 3 3 47 69
Comm. | 409, 587,848 | 571, 692,797 | Community 3 | Community 6
Error % 44.82% 50.35% 9.4% 40.6%

from the training dataset as a validation set for cross-validation.
Secondly, the ImageNet-1K dataset [161] that consists of 1.2 million images from
1,000 generic object classes. For each class, there are 1K-1.3K images for training and

50 images for validation, which we use for the test, following the standard procedure.

e Baselines. To compare different ways to obtain grouping, we test multiple variants

of our MCDDNet and baselines.

e Base Network. Base networks with full network weights. We use AlexNet [129],
VGG [78] and GoogleNet [127] variants as the base network for the ImageNet-1K

[135].

e Semantic. We use a semantic taxonomy model (6 top-level Caltech-101 semantic

categories) in [162] and 18 CIFAR-100 semantic categories in [72].

The communities detected by MCDDNet are much larger than ones from the con-

fusion graph, as shown in Figure 30 and Figure 31. Thus, the number and the size of

143



communities are more significant than ones from the confusion graph. Also, the overall
accuracy of the community-based classification in MCDDNet is significantly improved
compared to the accuracy of the detecting communities in the confusion graph.

Figure 32 and Figure 33 confirm that the community classification performance
is strongly related to the following two factors: the number of trouble makers and the
accuracy distribution among the members in each community. In the best communities
Figures 32a- 32c¢ shows very few trouble makers and Figures 33a- 33c shows a distri-
bution pattern (a high mean value (m) and a low standard deviation (sd)) in members’
classification performance (similar font sizes). For example, Community 1: mean = 0.95
and sd = 0.0391. In the worst communities Figures 32d- 32f shows many trouble makers
(red color) and Figures 33d- 33f shows a high distribution pattern (a low mean value (m)
and a high standard deviation (sd) of the community classification accuracy. For example,

Community 4: mean = 0.49 sd= 0.16.

4.3.1 Evaluation for Community-based Classification

Table 28 shows the accuracy improvement (error rate in %) in the experiments for
two models (Confusion Graph [72] and our MCDDNet). We tested each refined model
using images from the ImageNet validation set.

Table 29 shows the comparison of the MCDDNet and SplitNet in terms of three
datasets, CIFAR-100, ImageNet, and Caltech-101 on AlexNet and VGG Network. MCDDNet

shows a significant improvement in the classification errors by community detection and
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Table 29: Comparison: SplitNet vs. MCDDNet

Method Dataset Network | Depth | Group | Baseline | Error(%) | Reduced(%) | Semantic
SplitNet CIFAR-100 | AlexNet 6 2 24.28% 23.96% 0.32% 24.46%
ImageNet AlexNet 3 1-1-3 | 41.72% | 42.07% -0.35% N/A
ResNet 3 1-1-3 | 25.58% 24.90% 0.68% N/A
MCDDNet | CIFAR-100 | AlexNet 3 10 55.3% 19% 36.3% N/A
18 55.3% 12% 43.3% 33.6%
VGG 2 5 64% 34% 30% N/A
ImageNet | AlexNet 2 16 58.3% 27% 31.3% N/A
Caltech-101 | AlexNet 3 8 21.1% 6% 15.1% 12.6%
VGG 3 8 23% 5% 18% N/A

Table 30: MCDD Hierarchical Classification Model Results on AlexNet

Dataset Level | Error% | Comm# Size of
Community

CIFAR-100 1 55% 1 100

2 25% 5 20

3 19% 10 10
Caltech-101 1 21% 1 101

2 9% 5 20

3 6% 8 13
ImageNet-1K 1 58% 1 1000

2 27% 16 63

3 17% 43 23
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construction steps. Table 30 shows the effective of the hierarchical community construc-
tion using the MCDD model. This table clearly shows the significant improvement in the
accuracy of going deeper and smaller communities. Table 31 shows the effectiveness of
the classification for varying sizes of images in the CIFAR-100 dataset for training. We
have found that the classification performance with 200 images is still excellent compared
to other cases.

The tag clouds of the best 3 communities and worst 3 communities are shown in
Figure 32a- 32c and Figure 32d- 32f, respectively. The tag cloud is a visual represen-
tation of the community, specifically used to depict classes in the community. Tags are
class names of the ImageNet data, and the accuracy contribution of each class is shown
with font size or color. The green color and red color are used to represent the superstars
and trouble makers. The font size is representing the accuracy of each class in their com-
munity. We can easily find out that the font sizes of classes in the best three communities
are similar, while the worst three communities have quite diverse classes (some are big,

and some are small).

4.4 Conclusion

In this chapter, we presented Multi-Class Discriminative Distribution (MCDD) for
effective deep learning with large scale datasets. In the MCDD framework, we presented
an optimal distribution of classes by computing a misclassification cost (i.e., confusion

factor). The classification hierarchical deep neural network model was built by learning
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Table 31: Performance with CIFAR-100 Image# on AlexNet

Image# | Level | Accuracy | Comm.#
100 41%
72%
75%
45%
75%
81%
46%
75%
78%
50%
76%
81%
49%
74%
81%
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an optimal allocation of classes with a higher accuracy performance of the learning pro-
cess. The MCDD framework was validated using large real-world datasets (Caltech-101,
CIFAR-100, ImageNet-1K) with higher accuracy than existing models. The work pre-
sented in this chapter was published as part of Chandrashekar et al.[75]. Zhao et al. [163]
and Vaka et al. [164] are a few application papers based on fundamental machine learning

ideas.
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CHAPTER 5

ZERO SHOT LEARNING FOR TEXT CLASSIFICATION USING CLASS
REPRESENTATIVE LEARNING

5.1 Introduction

Zero-Shot Learning (ZSL) has been a very active research area in the field of
image processing. However, ZSL in text classification has attracted very little attention
despite the increasing interest in the research of NLP and text classification. ZSL is clas-
sically defined as the classification of unknown or unseen (target) categories by using
external linguistic or semantic information through intermediate-level semantic represen-
tations from seen or known (source) categories [61, 91, 62].

With the rapid growth in topics in social media and having fewer and fewer labeled
training data, Zero-Shot Learning-based Text Classification has become an essential re-
search problem. The recent ZSL works demonstrated their effectiveness in transferring
from prior experiences to new classes, a form of transfer learning. The most used seman-
tic space in the ZSL model is supported by a joint embedding framework called Label-
Embedding Space containing a combination of visual embeddings and word embeddings
[4, 12, 165]. In this work, we attempt to take advantage of already well-established Label
Embedding Space and use it for text classification.

With the prevalence of word embeddings, more and more work adopts pre-trained

word embeddings to represent the meaning of words, to provide the models with the
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knowledge of labels through Generative Models [166], External Knowledge Graph [167]
or Class Descriptions [167, 168]. In contrast to prior works, we mainly extract the deep
neural network features learned from text inputs of seen classes creating image represen-
tatives. We do not rely on any other features such as attribute annotations or external infor-
mation. The goal is to propose an innovative model called Class Representative Learning
(CRL) for zero-shot learning-based text classification for seen and unseen data. In this
model, the focus is on creating a universal representation called the class representatives,
which is typically based on Seen Classes based pre-trained deep learning models. Given
this goal, architectural improvements are not our purpose; instead, we explore universal
representatives that could be used for classification. It is desired to enable the universal
representation to be trained from any existing architectures or datasets with reduced ef-
forts and resources. The minimum requirement for the CRL model is to have a suitable
seen (pre-trained) model that can be mapped to the given datasets (unseen).

The contributions of our work can be summarised as follows:

e We propose a new framework for Zero-Shot text classification, a framework for
the design of abstract representatives as classifiers, and suggest innovation in ZSL
research. Unlike previous ZSL works [61, 91, 62] in which they require extra infor-
mation besides text data, our framework does not require any external or auxiliary

information.

e We create prototypes for each class as classifiers, called Class Representatives, in-

dependent of other classes.

e We evaluate the Class Representative Learning (CRL) framework using metrics

150



@ Deep Neural Network
(7 500 250 20 |2 o
o |» o ||o o ||le Engineering
o | o o o =+ >
7 2 B2 |BITE B
® ® ° |8 Religion Textile
@ Automobile
A Seen Label
Text D
ext Data Sentence CR Generation Space
Embedder

Figure 34: Class Representative - Text Classification

established by Xian et al. [92].

5.2 Related Work

In [169], a method for word embedding with LSTM network and aspect-based
LSTM was proposed for Zero-Shot multiclass classification by learning the relationship
between a sentence and embedding of sentence’s tags and applying it for inferencing
with unseen sentences and tags into the same embedding space. In [166], a Discrimi-
native and Generative LSTM model was proposed for ZSL with label-embedding space
as an auxiliary task. In [168], a neural architecture was proposed for handling few-shot
and zero-shot labels in the multi-label setting in the form of a DAG for labels with their
natural language descriptor In [167], a zero-shot text classification framework was de-
signed using data augmentation and feature augmentation. For an efficient ZSL, semantic
knowledge, including word embeddings, class descriptions, class hierarchy, and a gen-
eral knowledge graph, were incorporated into the proposed framework. In [170], natural

language descriptions were mapped to probabilistic assertions grounded in latent class
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labels. A classifier was trained with quantitative constraints for guiding predictions from
the learned models.

A ZSL method was proposed for semantic utterance classification (SUC) by link-
ing categories and utterances through a semantic space [171]. The discriminative seman-
tic features were learned without supervision and will guide the learning of the semantic
features. A latent feature generation framework was proposed for generalized zero-shot
learning (GZSL) that aims at improving the prediction on codes for the diagnoses of dis-
eases [172]. For improved semantic consistency between the generated features and real
features of the International Classification of Diseases (ICD), an adversarial generative
model was designed for the GZSL on multi-label text classification.

A joint space of embedding documents and labels was designed for multi-label
text and ZSL classification [173]. The zero-shot learning algorithm has been applied to
the multi-label classification task in Medical Subject Headings (MeSH) assignment for

biomedical publications.

5.3 Text-based Class Representative Learning

Class Representative Learning (CRL) Framework consists of two main steps (as
shown in Figure 34), namely: the first step is Projection Function and Inference Function.
In this chapter, three different variations of the the projection function P(.). The first
variation is a combination of sentence encoder and two-layer feed-forward network. The

second and third variation is sentence encoder based on universal sentence encoder(USE)
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and sentence bidirectional encoder representations from transformers (S-BERT). Equa-
tion 5.1 shows the first variation of P(.), which has a sentence encoder and two-layer
feed-forward network.Sentence Encoder (SE)transforms given documents to feature ma-
trix. The Learner Network (LN) learns better intermediate feature vectors by taking the
document feature matrix from SE as the input and mapping them to seen classes S. The
third step is Class Representative Generation (CRG), which takes both the seen .S and
unseen U classes through the pre-trained SE and LN and extracts an intermediate feature
vector to create Class Representatives C'R.

Projection Function P(.) : D}, = LN(SE(T;))
(5.1)

Inference Function I(.) : y* = I(2*, D})

Table 32: Notations for Text-based Zero-Shot Learning

Notation | Description

(T",y") | Input Documents , (T, y*), (T?, y?), .., (T",y™) where i €
(1,n)
S & U | Seen Classes & Unseen Classes respectively

D;, | Document Feature Matrix for the Text Document 7" with k

dimensions
P(.) | LN(SE(.)) Combination of Sentence Encoder and Learner
Network are used as Projection Function
SE(.) | Sentence Encoder takes a input of 7" and produces output
of D}
LN(.) | Learner Network takes a input of D} and produces output
of Di.
I(.) | Inference Function
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5.3.1 Projection Function

5.3.1.1 Sentence Encoder

Sentence Encoder (SE) is the first step of our framework, which focuses on con-
verting sentences to encoded vectors. We consider a set of n text documents T =
T, T?,..,T" as an input set, and convert the text document 7" into Document Feature
Matrix D, Equation 5.2 shows the transformation of each text 7, where i € n to Docu-

ment Feature Vector D}, through Sentence Encoder Function SE(.)

D; = SE(T") (5.2)

The Document Feature Matrix D), consists of n Document Feature Vector D?,
where i € n with the corresponding class label y* where y* € S. The dimension of
the Document Feature Matrix k is dependent on which a sentence encoder is used for
transformation.

In this chapter, we consider the existing framework, Universal Sentence Encoder
(USE), as the sentence encoding. USE encodes text into high-dimensional vectors, where
the model is trained and optimized for sentences, phrases, and short paragraphs. The
USE’s deep averaging network model is used as part of our CRL Model [174].

As shown in Figure 36, deep averaging network (DAN) averages the input em-
bedding of the words and bi-grams together and then the average embedding is passed

through a feed-forward network [175].
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Figure 36: Universal Sentence Encoder based Deep Averaging Network
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Figure 37: Two-layer feed-forward Network

5.3.1.2 Learner Network

Learner Network (LN) can be based on any neural network model that aims to
build a ZSL model with the seen classes S for predicting class labels of the documents
for unseen classes U. In this chapter, for the learner network, we introduce a Three-Layer
Deep Neural Network(DNN), as shown in Figure 34. The DNN consists of two dense
layers coupled with the rectified linear unit (ReLU) activation function and the final layer
for the seen classes.

Two dense layers are based on the non-linear activation function. Equation 5.4
shows the non-linear mapping function D L(.), which incorporates both the dense layers.
The ReLLU activation function was implemented element-wise over each feature vector
Di in Document Feature Matrix Dj. The weights and biases of the dense layer 1 & 2 are
represented as (W, b1) & (W, be), respectively.

The final layer is a multi-class probabilistic classifier that produces a S-dimensional
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vector of probabilities p for each feature vector D}C from Document Feature Matrix Dy,
where ¢ € n, as shown in Equation 5.4.

The layer of SoftMax is calculated for the seen classes S. During the training of
the Learner Network, the model is building based on the seen classes’ data. The prob-
ability calculated in Equation 5.4 is used just to facilitate the binary cross-entropy loss
function. Unlike the general neural network model, in the CRL framework, the CRs play
class-base discriminant roles in the final classification instead of the Softmax regression.

As shown in Equation 5.4, we aim at learning the non-linear mapping DL(.), i.e.,
obtaining network weights W, and W5 using Binary Cross-Entropy Loss. Binary Cross-
Entropy Loss (L(.)) sets up a binary classification problem between C' = 2 classes for
every class in Seen Class Set S. Equation 5.4 shows the minimization function across the
weights W, and W5 (shown as W) with the Loss function, which takes each Document
Feature Vector D! with the corresponding label 3’ as the input. (Note: y’ is the one-hot

encoded version of the label.)

5.3.2 CR Generation

Class Representatives (CRs) are generated using the nearest prototype strategy by
aggregating feature vectors and is independent of the Learner Network. The closest mean
feature vector with instances of the given class (i.e., CRs) is computed class by class.
In order to generate CRs, an average mean operation with the feature maps was used
to summarize the instances of classes. For each class, the instances of each feature in

the feature maps are aggregated into an abstract mean feature. The CR is an aggregated
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Figure 38: Class Representative Generation

vector of the mean features for all the elements in the feature maps. The feature maps are
generated from a dense layer of the DNN network.

The Class Representative is generated for both Seen S and Unseen U classes using
the pre-trained Sentence Encoder (SE) and pre-trained Learner Network (LN) from the
previous steps.

Figure 38 shows the class representative generation. The equation 5.5 shows the
aggregation formula where j ranges from 1 to [ representing the feature dimensions, c is
the class of the input text and ¢ € SUU, and N, is the number of data points for the class
c. Class Representative of the given class c is represented as the group of CR features
values C' R/ where j ranges from 1 to [ feature dimensions. C'R’ is generated from the
mean of DL(.) with pre-trained weights of every input document D! in a given class ¢

as shown in Equation 5.5. Each class ¢ in Seen and Unseen Classes (S U U) has a CR
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generated at this stage.

5.3.3 CR-based Inference

The CR-based inference is matching the input data into the Class Representatives
(CRs) and classifying with the best matched CR to the input.The CR-based inference can
be done in parallel since the CRs are independent of each other.

Here are the steps for the CR-based inference. The input is vectorized using Equa-
tion 5.4: a(x*)) = DL(D}). The cosine similarity between the new text document (N 1)
and Class Representatives for class ¢ (C'R(c)), where ¢ € C' is computed using Equa-
tion 5.7. The CRL Model assigns the new input with the label associated with Class c that
has the highest cosine similarity score. The higher cosine similarity score indicates the
closeness between the Class Representative C'R(c) and the new input (N 1) in the Class

Representative Feature Space (CRFS).

Yy = argme%x{cos(CR(c), a(x*))} (5.6)

where
cos c),a(z*)) = CR(c) -a(a”) _ z?zl{ORj(c)*d(xj*)}
O = RO~ b @y

(5.7)

As shown in Equation 5.7, the label for the input from CRL Model ¢ is predicted
by selecting the class from all seen (source) classes S or all unseen (target) classes 7" that

has the highest cosine similarity to the new input. The CRL model will conduct inferring
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by matching the new input against the available CRs and label it with a class having the

highest cosine similarity score.

5.4 CRL Experiments and Evaluations

We have conducted a set of extensive experiments for text classification and Zero-
Shot Learning (ZSL) with three datasets. For the text classification experiment, we have
built and evaluated four different CRL models with various embeddings methods. For the
ZSL evaluation, we have built three CRL models and compared the results with several

state-of-the-art ZSL methods.

5.4.1 Datasets

IMDB Movie Dataset: It is a large dataset representing a binary (positive or negative)
sentiment for each of the movie review. The IMDB[176] sentiment analysis dataset con-
sists of 100,000 movie reviews taken from the IMDB large movie rating and review site.
One key aspect of this dataset is that each movie review has several sentences.

The 100,000 movie reviews are divided into 25,000 reviews for labeled training
and testing, and 50,000 unlabeled instances. There are two types of labels: Positive and
Negative, and these labels are balanced in both the training and the test sets. The dataset
can be downloaded at [177]. This data is already preprocessed with NLP techniques,
including lemmatization and stemming, segmentation, stop-word removal.

20 Newsgroup Dataset: It is a collection of approximately 20,000 newsgroup docu-

ments, partitioned (nearly) evenly across 20 different newsgroups. These 20 different
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newsgroups are organized according to their topic so that each group corresponds to
a specific topic. Some of them are very closely related to each other, for example,
comp.sys.ibm.pc.hardware, comp.sys.mac.hardware, while others are highly unrelated,
for example, misc.forsalem, soc.religion.christian. The dataset is divided into 11,314
training samples and 7,352 testing samples.

DBPedia Dataset: The DBPedia dataset contains hierarchical classes representing the
structured information from Wikipedia [178]. The DBPedia dataset is constructed by
picking 14 non-overlapping classes[179] from DBPedia 2014. From each of these 14
classes, the fields we used for this dataset contain the title and abstract of each Wikipedia

article.

5.4.2 CRL Experiments for Classification

We have conducted experiments with four widely used embeddings in Table 34,
to know which embedding techniques are useful in building competent Class Represen-
tatives (CRs). In this experiment, we have used both sentence-level embedding (e.g.,
USE) and word-level embedding (e.g., GloVe [55], Word2Vec [180], NNLM) techniques
to see how the model might have to perform in the novel method for class representa-
tions. As seen from Table 34, USE outperforms the word embedding techniques (GloVe
or Word2Vec) for the Class Representation Learning.

For this experiment (as shown in Table 33), the IMDB dataset was used as the base
model. The two benchmark datasets, 20Newsgroup, and IMDB, are used for training and

testing. Class Representatives (CRs) were generated for positive and negative categories
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for the IMDB movie reviews.

In this experiment, the four kinds of the CRL model have been built and evaluated.
Word2Vec+CRL: Word2Vec [180] compute high dimensional word vectors from a very
large corpus. High-quality word vectors were trained using model architectures with the
CBOW and Skip-gram models. This model has been efficiently encoded in embedding
space to improve the semantic and syntactic generalizations by increasing the volume of
training data.

NNLM+CRL: A model architecture, called neural network language model (NNLM)
[181], was designed to learn both the word vector representation and a statistical language
model. The NNLM architecture is composed of a feed-forward neural network with a
linear projection layer and a non-linear hidden layer.

USE+CRL: Universal Sentence Encoder (USE)+CRL Universal Sentence Encoder [174]
provided sentence level embeddings for transfer learning in a deep averaging network
for NLP tasks. USE showed a better performance in transfer learning with NLP tasks
compared to word-level embeddings alone. In the text classification, the CRL with USE
embeddings showed the best performance among the four different CRL models.
USE+DNN+CRL For this experiment, we have also built a Deep neural network (DNN)
that is composed of two hidden units with dimensions as [500, 100] along with the input
and output layer. In this architecture (USE+DNN+CRL), (1) words classes were embed-
ded using USE, (2) they were learned in the DNN network for the conditional probability
of levels and words, (3) CR feature vectors were generated with the features extracted

from DNN, and (4) CRL was used to estimate the class-based model. For the DNN
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Figure 39: T-SNE Visualization for 20 Newsgroup Instances (USE+DNN-+CRL)

training, 1000 epochs, i.e., 128,000 iterations with a batch size of 5 with 25000 training

samples.

5.4.3 CRL Experiment for Zero-Shot Learning

The second set of experiments focuses on applying the class representation tech-
nique for Zero-shot learning. For these experiments, we divide our dataset into seen and
unseen classes. Two different rates of unseen classes, 50%, and 25%, were chosen, and

the corresponding sizes of a set of the seen classes and unseen classes are shown in Ta-

ble 35.

5.4.3.1 Comparison based on Learner Network

For evaluating CRL in Zero-Shot Learning Setting, we use Convolution Neural
Network and Deep Neural Network as Learner Network to validate.
USE+DNN+CRL: This model is what we proposed for Zero-Shot learning in this chapter.

The framework of USE+DNN+CRL, as described in Section 5.3.1.2. Figure 39 shows the

163



t-SNE visualization of the 20Newsgroup dataset for the first, second, third layers of the
CRL-ZSL architecture (USE+DNN+CRL) architecture, respectively. TSNE Visualization
shows the clarity obtained through instance grouping, which corresponds to the accuracy
shown for each layer in Figure 40.

GloVe+CNN+CRL: GloVe [55] is an unsupervised learning approach for word represen-
tations in a large corpus, rather than representing the entire sparse matrix or individual
context windows. GloVe leverages a word-word co-occurrence matrix using a global log-
bilinear regression model and outperforms other models on word similarity and named
entity detection. The CRL has conducted with CRs generated from the model architec-
ture of GloVe embedding and Convolution Neural Network (CNN). The first convolution
is built on GloVe. We have used Glove embedding here since the sentence level embed-
ding doesn’t support convolution. As shown in Figure 40, USE+DNN+CRL model clears
out-performs GloVe+CNN+CRL Model on both the datasets. Interestingly, in classifica-
tion accuracy, we noted that USE+CRL performs better USE+DNN+CRL (See Table 34).
Whereas in Zero-Shot Learning USE+CRL i.e., Layer 1 in USE+DNN+CRL Model has

atleast 5-10% less accuracy compared than other layers on both the datasets.

5.4.3.2 Comparison with SOTA ZSL Model

The USE+DNN+CRL Model is compared to the four state-of-art models, as shown

in Table 36.
Label Similarity: The label similarity model was previously introduced for predicting

unseen documents with labels using a semantic similarity between the label and the corpus
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Figure 40: CNN/DNN Layer-based CRL Performance for ZSL with 20NG/DBP Datasets

[182]. For the class prediction, the cosine similarity measure was used to compute the
similarity between class-based word embeddings and N-gram based word embeddings.
The multi-label ZSL model [182] was revised to a single-label ZSL. model and the revised
model was used in comparative evaluation in [167].

LSTM+FC LSTM+FC predicts unseen sentences by learning the relationship between
the sentences and embedding of their tags using the LSTM networks [169]. The LSTM
network is designed 512 hidden units together with two dense layers, having 400 and 100
units, respectively. This model is generalized to predict if a given sentence is related to a
tag or not, rather than classifying the sentence with a label.

CNN+FC: CNN+FC is revised in [167] by replacing the LSTM in the LSTMFC model

with a CNN for building the zero-shot classifier.
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CNN+ZSL: CNN+ZSL is a CNN-based two-phase framework using data augmentation
and feature augmentation [167]. For ZSL, semantic knowledge, including word embed-
dings, class hierarchy, class descriptions, and a knowledge graph, are incorporated into
the proposed framework.

As shown in Table 37, for comparison between SOTA Models, we report Seen
Accuracy i.e., (S — 9), Unseen Accuracy i.e., (U — U) and Overall Accuracy. The Un-
seen Accuracy of USE+DNN+CRL clearly outperforms with a minimum of 40% increase
comparing to any other SOTA Model. The Seen Accuracy still lacks especially comparing

to CNN+FC and CNN+ZSL models, but with only a maximum of 7% accuracy drop.
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Algorithm 5: CRC-Inference: Zero-Shot Learning Setting

1 Projection Function P (x) :

10
11
12

13

14

15

16

17

18

Input: D, = {z;,y;}i") ; x

Output: y*
ZSL Setting: y* € U

a(x) = P(x)
return a(z)

return y*

D, — Dt
P

fori €1 — m; do

| alx) = P(x)
end

Dy = {(a(x:), yi ;24
a(z*) = P(z")

/+ CR Generation:

for c € Udo

end

: 1
J— N\
CR(eY = =25

ify, =c

a(x}),

& Vje(ln)

/* Classifier Function

y* =I(CR(c)VceU,a(x"))

Inference Function [ (CR(c)Ve € U, a(z*)) :

CR-Classifier Function CRC (D;, z*) :

/+ Projection Function as shown in Figure 36 & Figure 37

Yy = argr?e%x{cos(CR(c), a(z*))}

Based on Equation 5.5

*/

(5.8)

*/

*/

Table 33: Class Representative Text Classification Setting

Dataset | #Class | Base | Embedding
20NG 20 IMDB | USE, NNLM,
IMDB 2 Word2Vec
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Table 34: Class Representative Learning Text Classification- Testing Accuracy

Table 35: Dataset for Zero-Shot Learning Evaluation

Model IMDB | 20NG
Word2Vec + CRL 64.9% | 54%
NNLM + CRL 68.6% | 58%
USE + CRL 79.3% | 65%
USE+DNN+CRL | 76% | 64.2%

Dataset | Unseen Split | #Seen | #Unseen
20NG 25% 15 5
50% 10 10
DBPedia 25% 11 3
50% 7 7

Table 36: State-of-Art Zero-Shot Learning Model

Approach Model Pre-trained | Semantic Knowledge

Label Similarity | Unsupervised

LSTM+FC LSTM Google Semantic Emeddings for Tags, Word Em-

News beddings (Word2Vec)

CNN+FC CNN

CNN+ZSL CNN Word Embeddings, Class Descriptions,
Class Hierarchy, ConceptNet (Knowl-
edge Graph)

CRL+ZSL (ours) | DNN None Embeddings (USE)
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Table 38: Class-wise Accuracy for Class Representative Learning in Zero-shot Learning
setting

20NG 50% Seen (10 classes) 50% Unseen (10 classes)

Class F1-Score | Avg Class F1-Score | Avg
alt.atheism 0.53 0.646 | rec.sport.hockey 0.81 0.629
comp.graphics 0.63 sci.crypt 0.59
comp.os.ms-windows.misc | 0.54 sci.electronics 0.61
comp.sys.ibm.pc.hardware | 0.57 sci.med 0.82
comp.sys.mac.hardware 0.55 sci.space 0.82
comp.windows.x 0.57 soc.religion.christian | 0.67
misc.forsale 0.70 talk.politics.guns 0.63

rec.autos 0.75 talk.politics.mideast | 0.55
rec.motorcycles 0.72 talk.politics.misc 0.45
rec.sport.baseball 0.90 talk.religion.misc 0.34

DBPedia 50% Seen (7 classes) 50% Unseen (7 classes)

Class F1-Score | Avg Class F1-Score | Avg
Company 0.93 0.944 | Natural Place 0.90 0.878
Educational Institution 0.91 Village 0.89

Artist 0.97 Animal 0.85

Athlete 0.98 Plant 0.86

Office Holder 0.90 Album 0.79

Mean of Transportation 0.95 Film 0.91

Building 0.96 Written Work 0.95

Class-wise Accuracy: The class-wise accuracy for USE+DNN+CRL is shown Table 38.
For understanding accuracy for seen and unseen classes, we consider 50-50 split of 20New-
group and DBPedia Datasets. The Advantage of Class Representative can be effectively
showcased that the average accuracy of unseen classes is almost as high as the average

accuracy of seen classes.

5.5 Conclusions

In this chapter, we proposed a novel class representative framework learned from

deep neural network features and sentence level word embeddings. The experiments
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show that CRL+CL improved the accuracy using Universal Sentence Encoder in clas-
sification instances for text classification, while CRL+ZSL improved the overall accuracy
for zero-shot learning in transferring knowledge from seen to unseen classes. From the
experiments on three benchmark datasets across various domains, we achieved the high-
est overall accuracy compared with the state-of-the-art works in Zero-Shot Learning. As
future work, we will extend our CRL framework to perform Zero-Shot Learning for multi-
modal classification with a more substantial amount of mixed text and image data. The

work presented in this chapter was published as part of Chandrashekar et al.[183].
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CHAPTER 6

VISUAL CONTEXT LEARNING WITH BIG DATA ANALYTICS

6.1 Introduction

Understanding contextual information composed of both text and images is benefi-
cial for multimedia information processing. We face challenges in dynamically capturing
such contexts from real datasets. This challenge of capturing context is strongly related
to big-data issues (i.e., volume, variety, velocity). Existing models such as ontologies
and dictionary (e.g., WordNet) are mainly interested in individual terms/concepts. Still,
they do not support identifying a group of words that describe a specific context. We as-
sume that the association will define the relationship’s consistent context among entities
in the images. In our contextual model, the association among entities in visual settings
(i.e., images) will be dynamically computed as relations in such contexts are extracted
atomically from their annotated text. These are used to generate a contextual graph that
describes a specific context of images.

We have relatively limited capacities to support for processing big data for extract-
ing contextual information from heterogeneous sources and building contextual models
for such big data. Furthermore, existing solutions are not scalable due to the computa-
tionally intensive tasks and prone to data sparsity.

Big data analytics have made significant progress in analyzing heterogeneous,
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more massive datasets using big data processing frameworks like Hadoop and Spark. Pro-
cessing, mapping, and integrating different data from multiple sources can be efficiently
conducted for data-processing for real-world applications.

Our work is inspired by the concept of end-to-end machine learning pipelines
in Spark MLIib that was proposed for scalable and efficient large-scale data processing
in big data applications [184]. They have demonstrated the improvement of the speed,
scalability, and continuous extension in Spark MLIib. Specifically, Spark provides a new
computational paradigm for parallel and pipeline programming for big data analytics.
Although Spark has shown the improvement of high performance in data analytics with
big data compared to Hadoop [184], some challenges should be overcome for big data
analytics. Specifically, there is still much room for improvement in the learning context
from big data. Understanding the nature of what is required to build a context model is
imperative. Providing context models for data processing is extremely time-consuming
and complex but often highly demanding.

In this chapter, we have presented a novel framework based on a parallel and
pipeline architecture that will support big data analytics for context learning from large
scale images and their annotations. We present the VisContext framework (shown in
Figure 41) that aims to support contextual learning from multiple sources by constructing
clusters of contexts in multimedia. In the clusters, contexts are analyzed for preserving
neighboring information that is relevant in a given context. The context models based
on the associated entities and their neighbors are defined as context graphs in clusters of

associated features. Effectiveness in the discovery of the contextual association of terms
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Figure 41: VisContext Framework on Apache Spark

and images, visual context symmetrization, and image classification based on context,
have been evaluated using various well-known datasets.

We first rationalize the Visual Context Model (VisContext) that specifies contex-
tual association for visual context learning from heterogeneous sources. Second, we de-
fine the association measurement between features and their clustering. Third, we eval-
uate the robust context learning approaches using state-of-the-art clustering and classifi-
cation techniques for recognizing the most suitable method for building the VisContext

model.

6.2 Related Work

There are ongoing efforts in annotating the contents of images. Correctly, for

automatic annotation of images, a corresponding mapping schema between words and
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images [185] and the spatial mapping between scene type and objects [186, 187] were
presented. These works focus on correct image classification in terms of correctly labeling
scenes or objects with a fixed set of categories. However, our work is different as we are
interested in extracting contextual information from a collection of images and building a
contextual model based on evidence from the derived contexts.

The following are some works that explore the description generation for images:
Machine learning algorithms were applied to generate the most compatible annotation
models [188], braking annotations into smaller pieces and binding them together into new
annotations [189], image caption generation based on predefined templates for the context
[190], generative grammars [191], and a fixed window context [192]. Recurrent Neural
Networks [193] were used to generate image descriptions depending upon the probabil-
ity distribution over the next word [194], but they suffered in performance. Our work
is different from these works since we focus on building context models and collecting
contexts extracted from images for these context models.

Image annotation and description datasets [195] and sentence description for se-
mantically similar images [196] establish image description generation through semantic
scene understanding. Semantic tagging focuses on recognizing words of semantic im-
portance and on a contextual understanding of a natural language description or query.
Common approaches in semantic taggers include recurrent neural networks [193], senti-
ment analysis [197], named entity recognition [198], entity-relation extraction [199], and
supervised word learning with word2vec [200].

These works depend on large amounts of manually annotated data or well defined
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categorized data to achieve excellent performance. Besides, they are limited in terms
of the context learning with associated conditions and presenting the semantic relations
of these contextual terms. In [201], the visual context the structure was constructed by
analyzing visual link graphs and latent semantics using Singular Value Decomposition
(SVD), which is not applicable for a large number of images due to computational com-
plexity.

Unlike these works, we focus on a pipeline approach that started from unstructured
data to contextual knowledge using natural language processing, information retrieval
technologies, and unsupervised learning approaches. Finally, the context models will be
evaluated using supervised learning algorithms. This approach supports understanding
the semantics of context models built from evidence extracted from images by analyzing
the association of features (their concurrence and frequency in specific contexts) and their

attributes.

6.3 Visual Context Model

Zitnick et al., [202] described the semantic meaning of images that can be captured
through the presence of objects, their attributes, and their relations to other objects. It is
not easy to extract such complex visual information from a group of images. In this
chapter, we propose a new approach to building a model for a visual context model that
depicts the visual contexts and the semantic information of images.

Definition 1: Visual Context - The visual context describes bounded contexts through

the association of entities and their relations in a visual context. Different settings may
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have completely different associations among any everyday objects and their relationships
in multimedia domains. It is extended by the collaboration of entities with each other
through contextual association model.

Definition 2: Visual Context Graph - The visual context graph describes bounded con-
texts through contextual association model. A visual context is represented by the context
graph representing an association of entities (features) and their relations. Different enti-
ties may have different associations dependent upon a specific context.

Definition 3: Context Boundary - The context boundary defines the scope of context
in which the information can be associated, related, and connected in a visual context
graph. The association of data is given by boundary on the context graph based on terms
described as sets of entities and relations

Various factors can determine boundaries between contexts. Usually, the dom-
inant one is strongly associated with others so that this can be measured by high in-
degree/out-degree and distance in a visual context graph. This boundary can be set differ-
ently depending on the context. Multiple contexts can be found within the same domain.
Similarly, a single context can be found across various domains.

The visual context clusters are discovered with the bounded contexts that are a
central concept in visual context learning. The clustering technique is applied to partition
a large and complex context graph into multiple smaller settings. The bounded contexts
are specifically tailored for a set of visual contexts. The boundary B is determined based
on the distance L (without considering direction) between any two contextual features

from different images. In this framework, the context boundary will be determined using
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clustering techniques. The distance L can be measured differently depending upon the
clustering techniques used. For example, the Euclidean distance was used for K-Means
clustering and maximum likelihood estimation for Expectation Maximization clustering.
Definition 4: Degree of Association - The degree of association is defined to measure the
degree of the association between features from different sets of images. The associate
degree is determined with a weight assigned to links between contextual features from
different categories.

The weight will be computed to measure the degree of the association between
contextual features from different categories. In this chapter, TF-IDF was used to cal-
culate the degree of associated visual contexts using Equation 6.1 for TF, Equation 6.2
for IDF and Equation 6.3 for TF-IDF . The rationale is to capture association relations
between contextual features from multiple images by giving a higher weight to the ties

for frequent evidence and contextual information distribution.

6.4 VisContext Framework: Image Context

The visual context model is a graph with the vertex set that corresponds to the
features and the association among the features. In our context learning model, the as-
sociation among features in images will be identified to describe a specific context. We
assume that the association among features in the images will be defined in a consistent
context for the relationship to hold. The proposed VisContext framework for building the
visual context model is composed of (i) Natural Language Processing, (ii) Feature Ex-

traction using TF-IDF, (ii1) Visual Context Learning using clustering techniques, and (iv)
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Validation using classification techniques.

6.4.1 Pruning of Annotation Terms using NLP

The first part of the VisContext framework is to prune annotation terms using
Natural Language Processing composed of two primary operations: (i) Lemmatization. It
is the algorithmic process of determining the base form by grouping together the various
forms for a given word. It is required to understand the context of associated words and
identify the part of speech of a word in a sentence. For example, 'run’, ’ran’, ’runs’,
‘running’ will be mapped to the base form, 'run’. (ii) Stop Word Detection - It is the
algorithmic process of filtering out some of the most commonly chosen stop words to
improve the performance of pruning the annotation terms. For example, some of the most

common and function words include ’the’, ’is’, *with’, ’that’, and on.

6.4.1.1 Feature Extraction using TF-IDF

Each image consists of several annotated terms that can be used as features. This
is used to identify the critical features implemented by each of the images. The input for
this technique could be the annotated terms detected from the images. Visual features
of images are identified by applying Term Frequency-Inverse Document Frequency (TF-
IDF) [203] to their annotated terms. The high-level flow of feature extraction from the
images is shown in Figure 41.

The feature extraction has the following four steps. In the first step, the features

from the images are aggregated to form the feature matrix. The representative terms for
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feature extraction are selected using TF-IDF, which is the product of term frequency and
inverse document frequency. The term frequency is the number of annotated terms that
appear in a specific image. Document frequency is the frequency of the terms in all the
images. The Inverse Document Frequency intends to reduce the word’s importance that
occurs most frequently in all the images. It is mainly used to eliminate the common terms
across all the images. The IDF value is computed by dividing the number of images with
the number of images containing the given term ¢ and then applying a logarithm to the
resultant value. If the term appears in more images, it is more likely to be a common term
that is not specific to any given image. Hence, the log value of the word reduces to zero,

ensuring that the IDF value and thereby the TF-IDF value, is less for this term.

TF(t,d) =1+ log(fya) 6.1)

o N
g1+|{deD:ted}|

IDF(t,D) =1 (6.2)

where N is the total number of images in the corpus, i.e., N = |D| and |{d € D :
t € d}| is the number of images where the term ¢ appears (i.e., TF(t, d) # 0).

TF-IDF value is high if the term has high term frequency and a low document
frequency in the whole collection of images. Hence by considering the TF-IDF value, we

can eliminate the common terms in determining features.

TF — IDF(t,D) = TF(t,d) - IDF(t, D) (6.3)
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A feature may be implemented in different images. The feature variants imple-
mented by different images could be different. Hence, we need to aggregate the (feature,
<List of feature variants>) tuples generated from all the images to obtain the final feature

to feature variant mapping.

6.4.2 Feature Association using Clustering Techniques

A context association model can be created for any given list of contextual features
concerning any collection of any image corpus. Contextual sets of features can be called
"neighbors’, and these often group into 'neighborhoods’ based on their similarity or co-
occurrence (interconnections) in images. Individual features may have several neighbors.
Neighborhoods may relate to one another through at least one unique feature or may
remain unrelated.

We designed the context association model using two different clustering algo-

rithms: K-Means and EM.

6.4.2.1 K-Means Clustering for Associating Contexts

For constructing the visual context model, the K-Means clustering (KM) algo-
rithm was used to group visible entities based on their contextual closeness properties to
discover contextual information in images. In this chapter, we designed the KM algorithm
for the discovery of relevant contexts from integrated multiple sources to form a context
graph. The KM algorithm is an unsupervised learning technique for partitioning entities

(annotated terms extracted from images) into K different contexts by clustering them with
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the nearest mean.

Given a set of visual annotated terms (77,75, . ..,T;,), where each image can be
represented as a vector, KM clustering aims to partition the n terms into /', which is
< mnsets C' = C1,Cs, ...,y to minimize the within-cluster sum of squares (amount of

distance functions of each point in the cluster to the K center).

k
[argmsinz Z lx — ] (6.4)

i=1 x€S;

where 1; is the mean of points in .5;.
The KMeans algorithm is an excellent way to discover contexts with multiple

features from images and summarize with an integrated view of the provided features.

6.4.2.2 EM Clustering for Associating Contexts

We also used an Expectation-Maximization (EM) algorithm [204] for building a
visual context model. EM is an iterative method that aims to create a model for maximum
likelihood of the features by exploring unobserved latent variables. The EM algorithm
iteratively performs two steps: (1) Expectation step (E) creates the expectation function
of the log-likelihood evaluated by using the current estimate of the parameters (2) Max-
imization step (M) computes parameters maximizing the expected log-likelihood com-
puted from the E step (i.e., by determining the distribution of the latent variables in the
next E step).

The EM algorithm seeks to find the maximum likelihood estimate (MLE) of the

marginal likelihood by iteratively applying the steps. Given the statistical model which
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generates a set X of observed data, a set of unobserved latent data Z, and a vector of
unknown parameters 6, along with a likelihood function L(0; X, Z) = p(X, Z|6), the MLE

of the unknown parameters is determined by the marginal likelihood of the observed data

L(6;X) = p(X|0) = Zp (X, Z|6)

Expectation step (E step): Calculates the expected value of the log-likelihood
function, concerning the conditional distribution of Z given X under the current estimate

of the parameters 6(*)
Q(@\G(t)) = EZ|X,9(t> [log L(0; X, Z)]
Maximization step (M step): Finds the parameter that maximizes this quantity:
e+ — argmax Q16"

6.4.3 Validation using Supervised Learning Algorithms

To validate the visual context models constructed from the clustering, we have
utilized supervised learning algorithms (i.e., Naive Bayes, Decision Tree, and Random

Forest) using Spark MLIib.

6.4.3.1 Naive Bayes classifier

It is a probabilistic classification algorithm based on applying Bayes’ theorem

with naive independence assumptions between the features. Given a problem instance to
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be classified, represented by a vector x = (x1, ..., z,) that represents some n features, it
assigns to this instance probabilities p(Cy|z1, . . ., x,), for each of K possible classes Cj,.

The probability can be formulated as follows:

p(Cilx) =

6.4.3.2 Decision Tree

A predictive model that maps observations about an item to build a model is called
the decision tree. Tree models, where the target variable can take a finite set of values,
are called classification trees. The decision tree is composed of nodes representing the
features and edges representing the feature valuesatraversing the tree to reach a leaf node
representing a class label by matching branches representing the conjunctions of features.
In a decision tree, information gain is the measure used for selecting features in the con-
struction of a tree by computing information entropy H for the given information 7'. The

information gain for an attribute a is defined in entropy H () as follows:

IG(T,a) = H(T) — H(T|a) =

X Ty =0 (6.5)
ny - 3 TR x e 1, = )

vevals(a)

where 7" denotes a set of data, each of the forms (x,y) = (x1, 22, %3, ..., T, V)
where x, € vals(a) is the value of the a,h feature of x and y is the corresponding class

label.
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6.4.3.3 Random Forest

Random Forest is an ensemble learning method that constructs a multitude of de-
cision trees and classifies the input data by taking the majority voting within the individual
trees. The training learner of random forests applies bootstrap aggregating. Given a train-
ing set X = x1,...,x, with responses Y = y1,...,¥y,, bagging by repeatedly selecting
a random data with the replacement of the training set and fits trees to these data. Af-
ter training, predictions for unseen samples 2’ can be made by averaging the individual
regression trees’ predictions on z’.

For this validation, with the above three algorithms (Naive Bayes Classifier, Deci-
sion Tree, Random Forest), the datasets are randomly divided into 60% training and 40%
testing datasets. The validation is designed as part of the VisContext framework. The ac-
curacy performance of these three different algorithms (Naive Bayes Classifier, Decision

Tree, Random Forest) are reported in Section 6.5.3.5.

6.5 Results & Evaluation

6.5.1 Datasets

We used three different datasets for validating our approach. All the datasets are
of image annotations or images with captions. Table 39 shows the datasets used for eval-
uating our framework: SAIAPR TC-12 Benchmark(IAPR) [205], 1 million captioned
images from Stony Brook University (SBU) [206], and Flickr30k dataset collected from
Flickr (social media data) (Flickr30k) [207]

The SAIAPR TC-12 Benchmark(IAPR) describes the segmented and annotated
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Table 39: Dataset Description

. #terms | #unique
#images | #terms after NLP | terms
IAPR 20000 99527 99527 261
Flickr30k | 158915 | 2127783 2124534 13273
SBU 1000000 | 13319299 | 13128289 | 177921

IAPR-TC12 benchmark designed for multimedia information retrieval. The IAPR TC-12
collection includes (1) Segmentation masks and segmented images for the 20,000 pictures,
(i1) Features extracted from the regions and labels assigned to them, (iii) Region-level
annotations according to an annotation hierarchy, (iv) Spatial relationship information.
The SBU dataset and Flickr30k consist of Flickr images shared by different users on
social media. Flickr is a hosting service for more than 6 billion images in blogs and social
media, and the number of images is continuously growing. SBU is a pruned dataset

compared to Flickr30k, as discussed in [206].

6.5.2 Implementation

The implementation was based on a 12 GB Ubuntu 14.04 operating system and
was implemented using parallel processing based on Apache Spark. The Apache Spark
is scalable and can be extended to larger sized datasets. For the VisContext framework’s
scalability, all of the algorithms and implementation discussed in this chapter are entirely
implemented in Spark. The algorithms were performed with the Spark MLIib, Spark NLP,

and CoreNLP libraries.
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Effectiveness of NLP
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Figure 42: Evaluation: Effectiveness of NLP with RMSE

6.5.3 Evaluations

6.5.3.1 Effectiveness of Natural Language Processing

The Natural Language Processing (NLP), i.e., Lemmatization, Stop Word Detec-
tion, were conducted in the process of context discovery. We measured the effective-
ness of NLP in context learning using Root Mean Square Error for two clustering groups
(K = 5 with NLP and K = 5 without NLP, where K is the number of clusters). The
effectiveness of the NLP based clustering (the error rates decreased after applying NLP
to the data in the clustering case, ' = 5 with NLP) is shown in Figure 42. The other
advantage is the reduction in the number of terms, as shown in Table 39. We observed
that the number of words after the NLP operations was lesser than the number of original

words in all three datasets.
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6.5.3.2 K-Means Clustering Validation: K Value vs. RMSE

We used Root-Mean-Square Error (RMSE) to validate cluster outcomes by min-
imizing the forecasting errors computed by the standard deviation of the differences be-
tween predicted and observed values. The RMSE of predicted values 2, for times ¢ of a
regression’s dependent variable x; is computed for n different predictions as the square

root of the mean of the squares of the deviations as follows:

n

For the K-Means clustering algorithm, three different values of K (K=5, 10, 20)
were considered for comparison, as shown in Figure 43. We observed that the best value
was at k=20. Another observation was that the RMSE value was higher for social network
data such as Flickr30k and SBU compared to the IAPR human-defined annotation data,

with a limited vocabulary.

6.5.3.3 TF-IDF Validation: Vector Size and Accuracy

The comparison of TF-IDF vector sizes (50, 100, 150, 200) was performed to ob-
serve the influence of the scale over the clusters formed. The Naive Bayes classification
algorithm was run for validating the clusters. Figures 44 - 46 shows the Precision, Re-
call, and F-Measure, respectively. The highest Precision was 85% for vector size=100 in
Flickr30K, and the lowest one was 75% for vector size = 150 for IAPR. The highest recall
was 82% for vector size = 50 in Flickr30K, and the lowest one was 68% for vector size

=150 for IAPR. The highest F-Measure was 82% for vector size=100 in Flickr30K, and
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TF-IDF Validation (Recall Based)
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Figure 46: Evaluation: Feature Vector Size vs F-Measure

the lowest one was 68% for vector size = 150 for IAPR.

6.5.3.4 Latent Dirichlet Allocation on Datasets

Our context association model is different from Latent Dirichlet Allocation (LDA),
a generative statistical model in which each document is a mixture of a small number of
topics. Each word’s creation is attributable to one of the document’s topics. In our ex-

periments, the LDA performed poorly on the three different datasets compared to our
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Likelihood of LDA on Datasets

ho
-10
o
Q
2 -2
£
S -30 -26.28117633
L
0 40
z -41.99345873

-50
-60 -54.27721258

H IAPR ®Flickr30k mSBU

Figure 47: Evaluation: Average Log Likelihood of LDA Models

clustering-based approach against the LDA topic discovery model. Figure 47 shows the
average log-likelihood for each dataset presented. One of the disadvantages of using these
datasets for LDA is that there is no distribution available for the datasets in general, which

makes the likelihood much lower.

6.5.3.5 Comparison of Clustering and Classification Algorithms

The two clustering algorithms, EM and K-Means, were compared with two differ-
ent vector sizes (50, 100). Figure 48 shows the comparison using Precision. The obser-
vation from this comparison is that EM performed very well and formed unique clusters.
The contexts discovered were verified using the three classification algorithms; Naive
Bayes, Decision Tree, and Random Forest. Figures 49a- 49¢ shows the Precision, Recall,
and F-Measure for different datasets and algorithms. Observation of these figures was

that the overall performance was better with Naive Bayes. The highest F-Measures (by

191



Comparison of Clustering Algorithms
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Figure 48: Comparison between EM and K-Means

Naive Bayes) were 72%, 83%, 69% for IAPR, Flickr30K, SBU, respectively. The low-
est F-Measures (by Random Forests) were 67%, 22%, 24% for IAPR, Flickr30K, SBU,

respectively.

6.5.3.6 Visual Context Model

The top five words representing each cluster for 20 clusters in the IAPR dataset
and Flickr dataset are shown in Figures 50- 51, respectively. The images grouped under
four unique contexts for IAPR and Flickr30k domains gives a visual perspective to the
context-based clusters formed through the process. The contexts discovered are from a
vector size of 100 with K = 20 with the K-Means clustering algorithm. The framework

based images are shown in Figures 52- 53.
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Figure 49: Classification Algorithms: (a) Precision (b) Recall (c) F-Measure
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Cusera bus sky-light edifice lamp public-sign

Custer1  vegetable chair window chimney wall

Quser2  man group-of-person  woman ground non-wooden-furniture
Cuser3  ocean sky-red-sunset-dusk  sun hut palm

Cusers seal herd-of-mammal  rock sky-blue wood

CluserS  ocean dolphin sky person man
Custersisland ocean water chair floor-other
custers  bed curtain table floor-carpet  wall

Custers  couple-of-person food person fioor group-of-person
Cusers  vegetation branch leaf ground rock

Cluser 10 wave ocean man surfboard sky

Cuserti man crab sand-beach ocean vegetation
Cusert2  cloud sky-blue ground hill flower

Qusersz  sky-blue hut sand-beach vegetation  palm

Cluster 14 flower leaf butterfly plant water

Cuserss  man woman paper fabric wood

custerss  roof wall cactus sky-blue bed

Cuser17  vegetation waterfall rock water sky-blue
Cuser1e  public-sign swimming-pool plant door window
Custer1s  couple-of-person  face-of-person child-gir sky-blue child-boy

Figure 50: 20 Context Clusters of IAPR Dataset

Cluster 0 kid play seesaw sit man
Cluster 1 white out condition snow ground
Cluster 2 young White male outside bush
Cluster 3 black dog tri-colored each road
Cluster 4 baseball cap black jacket stand
Cluster 5 girl cellphone skating Woman talk
Cluster 6 young guy shaggy hair hand
Cluster 7 black dog. white brown spot
Cluster 8 man cook bean grill basket
Cluster 9 people photo play guitar poke
Cluster 10 man Germany jump rail shirt
Cluster 11 man green guitar stuff lion
Cluster 12 guy joke man finishing Touch
Cluster 13 girl grass play Finger paint canvas
Cluster 14 man kitchen cooking Food trendy
Cluster 15 girl pink dress wooden climb
Cluster 16 worker piece equipment Asian man
Cluster 17 man gray Black stand stove
Cluster 18 youth jump roadside Railing night
Cluster 19 child pink dress climb stair

Figure 51: 20 Context Clusters of Flickr30K Dataset

Contexts in IAPR

Figure 52: Image Context Clusters of IAPR Dataset
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Contexts in Flickr30K

Figure 53: Image Context Clusters of Flickr30K Dataset

6.6 Conclusion

In this chapter, we presented the VisContext framework for context learning from
large scale multimedia data. The implementation of the VisContext framework was intro-
duced. The evaluation of the framework was conducted with three large datasets (IAPR,
Flick30k, SBU) in the effectiveness of visual understanding in terms of accuracy. The
results confirm the effectiveness in discovering the contextual association of terms and
images, visual context clustering, and image classification based on context. The work

presented in this chapter was published as part of Chandrashekar et al.[208].
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CHAPTER 7

TRANSFORMATION FROM PUBLICATIONS TO ONTOLOGY USING
TOPIC-BASED ASSERTION DISCOVERY

7.1 Introduction

In recent years, there has been an explosive growth in the amount of biomedical
data being generated, with the majority being unstructured. The majority of this growth
can be observed and tracked using the publication databases. These publications represent
the novel findings and hypotheses from the research. The dissemination and sharing of
biomedical findings to translational medicine are slow, even though most of them are
open-source and available to all through publications. The most up-to-date findings of
the diagnosis, interventions, and treatments would be critically important. They can be
life-changing when used to back critical decisions for their patients by physicians and
researchers in health care.

Topic modeling is a frequently used technique to discover latent topics and topical
structures in document collections. Latent Dirichlet Allocation (LDA) [209] that is widely
used allows documents to have a mixture of topics. We will explore the patterns in the
diabetes publication and identify assertions by mapping the topical probability. In this
study, we will demonstrate the effectiveness of the ontology generation by integrating

topic distribution and assertion discovery.
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There is an increasing demand for ontologies that will contribute most to expe-
diting the discovery of new diagnostic treatments and interventions for medical applica-
tions such as knowledge retrieval, summarization, medical question answering system.
Dynamic and relevant ontologies will be more useful for evidence-based medicine or per-
sonalized treatment than general ontologies and significant ontologies.

Most of the existing ontologies are designed extensively by domain experts. Some
domain expert generated ontologies are OntoDiabetic [210], Diabetes Diagnosis Ontol-
ogy (DDO) [211] and Diabetes Mellitus Treatment Ontology(DMTO) [212]. Most of
these ontologies are proposed in general domains, with different techniques to automate
the extraction tasks. These studies have shown promising results. Nevertheless, experts
are always needed because ontology construction and enrichment require a considerable
amount of domain knowledge. Text2Onto [213], OntoLearn [214], and Sprat [215] are
semi-automatic methods for ontology construction from textual data.

Unlike these ontologies, we may need an automatic approach that can generate an
ontology by discovering assertions from free-text sources, such as scientific publications
in PubMed. To determine ontological assertions from a free-text corpus, Lossio-Ventura
et al.,[216] detected subject or object from a sentence using named-entity recognition
(NER), PoS tagging, or Information Extraction techniques. The relationship between
subject and object was also detected and classified.

In this chapter, we proposed the Assertion Discovery framework (as shown in Fig-
ure 54) that aims to discover bio-medical assertions from free-text sources (like PubMed

publications), mapped them to the existing diabetes ontologies, and integrated them with
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Figure 54: Assertion Discovery Framework

newly found assertions from diabetes publication. We designed a pipeline approach of
(1) Natural Language Processing (NLP) [217], (i1) Information Extraction (IE) [218], (ii1)
Topic Discovery using Latent Dirichlet allocation (LDA) [209] and (iv) Ontology Gener-
ation using OWL API [219].

In this chapter, we choose diabetes as a case study and use diabetes publications
as datasets for topic discovery and assertion refinement. As shown in Table 40, we com-
pared our ontology, Diabetes Publication Ontology (DPO) against the existing diabetes
ontologies including Ontology for Genetic Disease Investigations(OGDI) [220], Ontol-
ogy of Glucose Metabolism Disorder (OGMD) [221], BioMedBridges Diabetes Ontology
(DIAB) [222], Diabetes Mellitus Diagnosis Ontology (DDO) [211] and Diabetes Mellitus

Treatment Ontology (DMTO) [212].
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7.2 Related Work

Many projects [223] have been proposed to process natural language data and
create a meaningful ontology that can be used in an information retrieval system. In
BioBroker [224], Shen and Lee clustered entities to facilitate the process of biomedical
knowledge discovery. A work by Omura [225] is similar to our approach in which the
focus is on finding the disease similarity by constructing a graph representing anatomical
features. However, the work does not focus on those features that are unique to a disease.
In our work, we are fetching the common topics and relationships among ontologies and
extracting the unique topics and relationships. Ma et al., [226] aimed to classify the
diseases based on their related term. This work is similar to our approach, where the
relationships are extracted between three categories of diseases.

Another similar work, Lossio-Ventura [216], focused on automatic knowledge
base construction from heterogeneous information sources on Obesity. In this work, they
used biomedical entity detection, which is very useful to determine the meaning of the
various medical terms present in the chapter. Also, the help of domain experts was used
to annotate the medical words manually. For a large text corpus, manual annotation of a
corpus would be a tedious task. Also, they explored binary classification for relationship
extraction. The binary classification does not discover topics for a particular text corpus
if a word belongs to a specific entity or relation.

Fred [227] is a tool that automatically produces RDF/OWL formatted ontologies
from natural language sentences. This tool uses multiple natural language processing

components to formalize the output to a visual knowledge graph. The generated output
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graph is designed according to frame semantics, where each frame is expressed by verbs
or other linguistic constructions formalized as OWL n-ary relations. Fred is a domain
and task-independent tool suitable for task-specific applications. It changes the input
from discourse representation structures to RDF/OWL n-ary relations. It can represent
modality, tense, and negation of the sentences. It is capable of handling compositional
semantics, taxonomy induction, and quality representation. However, Fred is incapable of
handling large datasets for generated ontology visualization. The results are not uniform
if both facts and entities are expressed by natural language text. Fred’s frame construction
based on real-world facts was not what we expected.

Topic modeling techniques were used in biomedical domains. Topic modeling
techniques such as Latent Dirichlet Allocation (LDA) [209] and semantic group-based
model were used for recommending patient education materials [228]. In this study, the
LDA topic model outperformed the vector space model (VSM) and semantic group-based
model in the context of patients’ question-answering in recommending diabetic education
materials.

In this chapter, we use LDA for topic discovery to determine the topic that the au-
thors discuss in each cluster of the triplets. Previous studies identified knowledge struc-
tures or topics by adopting the LDA model. There are many attempts [229], [230], in
which the LDA model was used to incorporate content analysis into metadata genera-
tion. The limitation of these works mainly explains topical trends by using topical terms
but failed to extend it to understand bio-medical publications’ assertions. Applying the

proposed model, we aim to integrate the topics from the LDA model to assertions from
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bio-medical publications. We further extended the topic-oriented assertions to the ontol-
ogy to represent the significant assertions.

Chan et al. [231] aim to provide the structural and digital form of patient records
and helps patient care, advice, and clinical decision. The terms related to liver cancer
are extracted and mapped to ontological features using the Systemized Nomenclature of
Medicine (SNOMED). In our work, we are assigning our terms to several ontologies in-
cluding Ontology for Genetic Disease Investigations(OGDI) [220], Ontology of Glucose
Metabolism Disorder (OGMD) [221], BioMedBridges Diabetes Ontology (DIAB) [222],
Diabetes Mellitus Diagnosis Ontology (DDO) [211] and Diabetes Mellitus Treatment On-

tology (DMTO) [212].

7.3 Assertion Discovery Framework

In this chapter, we propose the Assertion Discovery framework that aims to con-
struct the Diabetes Publication Ontology (DPO) through a topic-driven approach. In this
framework, the PubMed abstracts in diabetes are transformed into the Diabetes Publica-
tion Ontology (DPO). The sentences in the publication datasets will be converted into
an assertion in a triplet format <Subject, Predicate, Object>>. We used state-of-the-art
technologies to process and discover significant entities and predicates. In this chapter, an
entity is defined as a subject and an object in a triplet. The entity might be later identified
as either a concept or an individual in an ontology. A predicate is defined as a relationship
between entities. The Assertion Discovery framework consists of three main compo-

nents: (i) Assertion Discovery, (ii) Assertion Alignment, and (iii) Assertion Integration.
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Figure 55 shows the transformation process of the assertion discovery framework, being
changed from publications to the DPO ontology (highlighted the assertions associated

with diabetes and cardiovascular_risk_factor. We will discuss each of these steps below.
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Figure 55: Transformation from Publications to Diabetes Publication Ontology

7.3.1 Assertion Discovery

The assertion is defined as textual facts or textual findings from biomedical re-
search that will be described as a form of <Subject(S), Predicate(P), Object(S)>. The
assertion discovery (Figure 54) is based on the integration process of the following two
steps: (1) Rule-based Triplet Extraction using OpenlE [218]; (ii) Natural Language Pro-

cessing (NLP).

7.3.1.1 Rule Based Triplet Extraction

First, the Open Information Extraction (OpenlE) [218] is performed to the PubMed
abstract dataset. Open information extraction (OpenlE) refers to the extraction of relation
tuples, typically binary relations, from plain text. The OpenlE delivers its result in the
form of Quadruple <S, P, O, C>, where the triplet of Subject(S), Predicate(P), Object(O)

is determined when its confidence-score (C) is a higher than a threshold d. The triplets
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extracted from the publication text are based on the rules defined in terms of syntactic,
lexical, and semantic patterns in the linguistic form of the English language. The rules act
very effectively on the publication dataset, as the sentences are well structured.

Some rules inspired by the existing works [218],[232] were used to extract the
triples (subjects, predicates, objects). The rules written in terms on Parts of Speech (PoS)

Tagging [233] and Universal Dependencies Representation [234].

7.3.1.2 Natural Language Processing (NLP)

The Natural Language Processing (NLP) was conducted to separate entities and
predicates from the triplets. The NLP steps were performed using Stanford CoreNLP
Library [217] as follows: (1) Tokenization is the process of breaking sentences into tokens
which are the smallest constructs of a huge text data; (2) Lemmatization is the process of
separating words into individual morphemes and identify the class of the morphemes; (3)
Stopword Removal is the process of removing stopwords from the corpus. For example,
the stopwords in English include able, about, above, according, accordingly, etc. After
performing the NLP operations, the triplets (Subject, Predicate, Object) will be separated

into two parts: Entities (Subjects or Objects) and Predicates.

7.3.1.3 Topic Modeling

The topic modeling for the assertion discovery is based on Latent Dirichlet Allo-

cation (LDA) [209]. In Latent Dirichlet Allocation (LDA), topics are discovered through
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the probability distribution of topics over documents that are associated with word distri-
bution. Topics are inferred by mapping words into topics associated with documents.
LDA is a Bayesian model where the distributions over the parameters 6 and ¢ are
modeled, given by Dirichlet distributions with hyperparameters o and 5. More specifi-
cally, each word n in document d has a variable wy, that represents the observed word
type and a latent topic variable d4,. A word is generated by randomly sampling a value
24n = k from the topic distribution of document 6, then sampling a word type wg, = v
from the topic (k) distribution ¢. Each word is conditionally independent, given the

parameters. Given the parameters ¢ and ¢, the probability of a word in the LDA model is:

P(wgn = v|ta, ¢) = Zedkcbkv (7.1)
i

We computed overall term frequency and estimated term frequency within the
selected topic according to Termite [235]. Top-30 most salient terms were computed for

topic t and term w as follows:

sal(w) = freq(w ZP tlw) * log ((| )) (7.2)

The relevance metric was computed to adjust to given a weight parameter A\ (where

0 < X\ <'1) according to LDAvis [236] as follows:

rel(wlt) = A x (w[t) + (1 — \) = (7.3)

In this chapter, we extended the LDA model [209] to map topic terms to the triplets
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extracted from diabetes publications. The PyLDA [236] was used to discover the hidden
topics in the triplets and visualized the inter-topic distance map with PyLDA (as shown

in Figure 56).

7.3.1.4 Topic Wise Assertion Discovery

We now select only the important triplets <Subject(S), Predicate(P), Object(O)>
by matching the topic terms from the LDA-based topic discovery with the entities that
were extracted from the OpenlE triplets. As in, we retain only those triplets in which a
subject S or an object O matches one of the topic terms of a topic T; = {t;1, ti2, ..., tin}-

In the Topic Wise Assertion Discovery, for any given triplets from the previous
step, if Subject(S) or Object(O) from <Subject(S),Predicate(P),Object(O)> contain any
topic terms 7; = {t;1, i, . . ., tin } discovered from the LDA topic discovery, the assertion
is selected as a topic wise assertion (i.e., S = S € T; or O% = O € T)).

Medical terms were not captured using the rule-based linguistic approach For ex-
ample, for the given triplet <S: 1680 mg NaH CQOs, P: followed by, O: acid load meal in a
double-blind>, S: mg NaHCO was captured while ignoring a number or a special charac-
ter in the text. The entities from the triplets are mapped to the existing diabetes ontologies
such as Diabetes Diagnosis Ontology (DDO) [211] or Diabetes Mellitus Treatment On-

tology(DMTO) [212] using the Bioportal Annotator API [237].

7.3.2  Assertion Alignment

For Assertion Alignment, the following steps are designed:
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Figure 56: Inter-topic Distance Map for Diabetes Publications
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Entity Learning: The classes and their individuals will be identified in this step. A
medical term captured by the Annotator [237] or topic terms discovered by the LDA
topic modeling are considered as a class. Individuals for these classes are also generated.
Regarding the entity learning, we have not fully covered the schema learning here. In this
chapter, we have simplified the schema learning as follows: any entities containing the
types (S or O) by using the Annotator [237], these entities, S or O, will be represented as
URIg and U RIp. The entities are mapped to the Diabetes Mellitus Treatment Ontology
(DMTO), as shown in Figure 57. The annotated entities from DMTO are shown with a
red arrow mark. The entities are a child of the DMTO entity since they partially contains,
in its context, that have the same meaning as the formal entity in DMTO.

Property Learning: We are now checking if the objects O in the triplet belong to any of
the Classes or Individuals. If they do, the type of property P is Object Property. If not, it
is Data Property.

Triplet Learning: Once the entities and properties are identified, the triplets <Subject,
Predicate, Object> will be generated with S and O from step i) and P from step ii).
These triplets <S,P,O> will be defined as the assertions in both schema (TBOX) and
data (ABOX). <S,P,O> will be represented as <U RIg, URIp, URIo> where URIg,
URIp, URIy are defined from the previous steps.Figure 57 shows the topic wise entity
hierarchy and property hierarchy in the DPO ontology. The entities were mapped to the
entities in DMTO [212] ontology using Annotator API [237]. The topics considered to
display here are the topics which had the highest number of entities that could possibly

be grouped under the DMTO entity. A very interesting discovery was made among the
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entities across the shown topics, the entities were uniquely grouped under each topic. For
example, protein, (a DMTO Class Entity) exists in Topic 2 as well as Topic 5 but the sub-
classes in Topic 2: protein discusses protein levels and Topic 5: protein discuses about

the interaction between proteins.

7.3.3 Assertion Integration

In the Assertion Integration step, the newly discovered assertions that were not
present in the existing diabetes ontologies will be integrated into existing ontologies. Fig-
ure 58 shows the Diabetes Mellitus as an entity from (a) OGMD, (b) OGDI, (c) DIAB

and (d) DDO, respectively. OGMD is specifically designed from Glucose Metabolism
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Disorders, while OGDI is designed for Genetic Disorders concerning Diabetes Mellitus.
DIAB is cross-referencing to other famous ontologies such as SNOMED CT, UMLS.
DIAB also provides a brief definition of diseases. DDO shows that Diabetes Mellitus is a
specific case of diabetes where a disorder of Endocrine System has occurred. Figure 59a
shows the DMTO Ontology’s triplets associated with Diabetes Mellitus. These are the top
five diabetes ontologies, providing excellent structural inferences, but they fail to cover
the semantic aspect of diabetes; also, there is a lack of predicates connecting them to
potential risks and treatments.

We consider DMTO, the latest ontology (published in Feb 2018), to guide us with
structural and schematic information built by experts. Figure 59a shows the entity Dia-
betes Mellitus in DMTO, Figure 59b the entity Diabetes Mellitus with newly discovered
assertions in DPO. Once we conduct the assertion integration, then we have the integra-
tion of assertions in Figure 59a and Figure 59b in DPO as shown in Figure 59c. After
integrating the DPO assertions and DMTO structural assertions, we try to construct a
holistic ontology.

Some of the predicates discovered are <S: Diabetes Mellitus, P: Independent Fac-
tors, O: Body Mass Index>, <S: Diabetes Mellitus, P: Commonly Identified Causes,
O: Nephropathy> , <§: Diabetes Mellitus, P: Impairs, O: Endothelial Cell Function of
BSCS>. In the last-mentioned triplet, it was clearly determined that the object entity En-
dothelial Cell Function of BSCS was an error when it was processed in the context of the
assertion. It is supposed to BSCB (Blood Spinal-Cord Barrier). This chapter shows that

NLP and OpenlE techniques could be used in detecting errors by authors of publications.
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Table 41: DPO Dataset and Assertions

D A W T TN E P | AE
Dataset 1 | 100 | 11,700 | 490 | 324 | 582 | 229 | 126
Dataset 2 | 500 | 56,000 | 2,417 | 1,557 | 1,802 | 870 | 457

D: Dataset; A: Abstract; W: Word; T: Triplet; TN: Triplet after NLP; E: Entity (Concept/Individual); P:
Predicate (Object/Data Property); AE: Annotated Entities

7.4 Results and Evaluation

7.4.1 Dataset

We used the PubMed API to access publications from more than 27 million cita-
tions for biomedical literature from MEDLINE, life science journals, and online books.
We have randomly collected two corpora 100 and 500 publications in diabetes as shown in
Table 41 through the PubMed API [238]. For the 100 abstracts and 500 abstracts datasets,

there were 11,700 and 56,000 words, respectively.

7.4.2 Results from Topic-based Assertion Discovery

From the Rule-based triplet Extraction and NLP steps of the Assertion discovery
(as shown in Table 41), we obtained 490 and 2,417 triplets and 324 and 1,557 triplets after
the NLP treatment for the two abstract datasets (100 and 500 abstracts), respectively.
The number of entities (Subjects or Objects) discovered from the Assertion Discovery
framework for the two datasets are 582 and 1802, respectively. The numbers of predicates
are 229 and 870, respectively.

Figure 56 shows 10 topics from each domain with their topic name discovered
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from LDA topic modeling. Table 42 shows the entities, the annotated entities, and as-
sertion examples for each LDA topic. We discovered 10 topics from the 1802 entities
of the 1,557 triples in the 500 abstract dataset. The 30 topic terms were generated for
each topic. Table 42 shows the entities and triplets in each topic of the DPO ontology
(10 topics) as well as the annotated entities that were mapped to the other five diabetes
ontologies (OGMD, OGDI, DIAB, DDO, DMTO). Topic 2 has the largest number of en-
tities (88 entities), while Topic 9 has the smallest entities (39 entities). Topic 5 has the
highest number of the annotated entities (31 entities) mapped to the diabetes ontologies.
The entity hierarchy with newly discovered entities and existing annotated entities for
each topic are shown in Figure 57. Topics 6, 8, 9, 10 are closely related, as shown in
Figure 56. Topics 6, 8, 9, 10 are about Weight Loss, Risk Factors, Body Weight, and

Kidney Disease, respectively.
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7.4.3 Results from Ontology Mapping and Integration

In the Ontology Mapping, we used the Bioportal API [237] to identify the types
of these entities. The annotated entities are detected by the Annotator [237] based on the
five diabetes ontologies. As shown in Table 41, the number of entities (annotated entities)
that were mapped to existing ontologies is 21.6% (126 out of 582 entities) and 25.3%
(457 out of 1802 entities), respectively.

Table 43 shows the comparative analysis among six diabetes including OGMD
[221], OGDI[220], DIAB[222], DDO[211], DMTO[212] and our ontology DPO. DMTO
has the largest number of triplets, 97,203, while DDO has the largest number of enti-
ties, 25,480. OGDI has the largest number of predicates, 1,274 and DPO has the second
largest number of predicates, 870. In terms of coverage for both entities and predicates,
DPO shows the highest coverage (100%) of entities (terms) or predicates (relations) dis-
covered from publications while most of these diabetes ontologies have an insufficient
coverage (0%-13%). This indicates a big gap between ontologies designed by domain
experts and terminologies used by researchers in publications. Thus, it would be difficult
for ontologies to be readily used in applications such as question answering systems or
information retrieval systems.

Figure 60a shows the results from the mapping between the entities in the DPO
ontology (D POp) and ones in the DMTO ontology (DMTOp). The number of the enti-

ties in DMTO (DMTOg) is 10,700 while the number of the entities in DPO (D POg) is
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Figure 60: Mapping between DMTO and DPO

(a) Entities in DMTO and DPO (DMTOpgr NDPOg) (b) Predicates in DMTO and DPO
(DMTOp N DPOp) & Entities in DMTO and Predicates in DPO (DMTOg N DPOp)

1,802. The common entities of these two ontologies are 110. The entities in the DPO on-
tology are very specific and informative. Figure 60b shows the results from mapping be-
tween the predicates of the DMTO and DPO ontologies. There are two kinds of mapping:
1) Predicates in DMTO mapped to Predicates in DPO (DMTOp N DPOp) and 2) Enti-
ties in DMTO mapped to DPO’s Predicates (DMTOg N DPOp). From this figure, the
common predication number (DM TOpNDPOp)is 6 while the common entity/predicate
(DMTOgN DPOp)is 19. The unique predicates in DMTO (DM TOp) is 315 while the
unique predicates in DPO (DPOp) is 870. Interestingly in the DMTO Ontology when
queried, there are only 95 Unique Predicates that contain a possible subject and object
associated with it. The rest of predicates (about 315 predicates) are merely declared in

the ontology without usage.
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Table 43: Mapping between Publications and Ontologies

T: Triplets; E: Entities; P: Predicates; EC: Entity Coverage%; PC Predicate Coverage%
T E P EC(%) | PC(%)
OGMD[221] 976 435 14 0.66% 0%
0OGDI[220] 4,137 4,131 | 1,274 | 0.66% | 0.68%
DIAB[222] 11,944 | 4,327 39 0.66% | 0.68%
DDOJ[211] 34,423 | 25,480 56 0.66% 0%
DMTO[212] | 97,203 | 10,700 | 315 13% 3%
DPO (ours) 2,417 1,802 870 100% 100%

7.5 Diabetes Publication Ontology Application

The web-based application for the proposed framework has been implemented on
the Spark parallel engine [239]. For the dataset collection, we have used the PubMed API
[238]. The NLP and OpenlE triplet extraction have been implemented using Stanford
CoreNLP [217] and Annotator [237]. The Annotation has been implemented using An-
gular]JS with NCBO BioPortal Annotator API [237]. The Ontology construction has been
implemented using OWL API [219] on the Spark. The OWL API is a Java API and refer-
ence implementation for creating, manipulating and serializing OWL Ontologies. We are
visualizing the generated ontology using the online WebVOWL tool [240]. WebVOWL is
a web application for ontology visualization. It implements the Visual Notation for OWL
Ontologies (VOWL) by providing graphical depictions for elements of the Web Ontol-
ogy Language (OWL) that are combined to a force-directed graph layout representing the
ontology.

We have built a web-based application for searching diabetes publications as well
as retrieving the assertions from the diabetes publications through dynamically generat-

ing the DPO ontology. Protégé [241],an open-source ontology editor and framework for
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building intelligent systems, can be used to query the ontology and retrieve papers and
assertions from the DPO ontology.

The Web application contains the following parts: (i) Publication Search Widget:
The users can input their query in terms of keywords and the number of papers to be
retrieved (Figure 61); (ii) Abstract Display Widget: This displays the abstract obtained
using the PubMed API. The abstract is shown in the display with a list of assertions
(Figure 62); (iii) Assertion Widget: This widget will display all the assertions that were
dynamically generated after the Assertion discovery step with all the abstracts selected
above (as shown in Figure 63). Assertion Discovery step of our model is incorporated into
this widget; (iv) Ontology Widget: This is the widget where the WebVOWL visualization
[240] of the ontology dynamically generated for the given abstract will be displayed (as
shown in Figure 64). (v) Annotation Widget: This is the widget where the extracted
<Subject(S),Predicate(P),Object(S)> are annotated with bio-portal API [237] to validate
in any existing ontologies. The Assertion Alignment process of the Diabetes Publication

Ontology (DPO) model is shown in this widget.

7.6 Conclusion

In this chapter, we proposed a semantic framework for dynamically generating a
diabetes publication ontology from a large corpus of diabetes publications. The popu-
lar topic modeling method LDA was very effective in finding latent topics. These topic

terms were mapped to ontological assertions extracted from the scientific publications in
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PubMed. The ontological assertions were used to enhance the existing diabetes ontolo-
gies and new relations and entities between topics were introduced to existing diabetes
ontologies. The proposed framework has been implemented in a parallel and distributed
computing engine, Apache Spark for providing a scalable solution for a large amount
of data. The parallel and distributed pipeline approach includes CoreNLP for Natural
Language Processing, OpenlE (Open Information Extraction) for relation extraction, and
LDA (Latent Dirichlet Allocation) for topic discovery and OWL API for ontology gen-
eration. We presented a web-based application that aims to provide enriched information
to healthcare providers in diabetes patient care and treatments through the interface for
searching publications as well as retrieving the assertions from the publications. The
application can be used in many practical cases, providing knowledge and evidence to
support decisions in healthcare.The work presented in this chapter was published as part
of Nagulapati et al. [242]. Nagabhushan et al.[223] and Chandrashekar et al. [243] are

some related publications.
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CHAPTER 8

ONTOLOGY MAPPING FRAMEWORK WITH FEATURE EXTRACTION AND
SEMANTIC EMBEDDINGS

8.1 Introduction

There is an increasing demand for ontologies that will contribute most to expedit-
ing the discovery of new diagnostic treatments and interventions for medical applications
such as knowledge retrieval, summarization, medical question answering system. Under-
standing the relationships among the classes from multiple ontologies will be more useful
for evidence-based medicine or personalized treatment than general ontologies or more
prominent ontologies.

The National Center for Biomedical Ontology (NCBO) BioPortal [244] intro-
duced about 690 ontologies for diverse applications such as data integration [245], data
annotation [246], data interoperability [247], and data encoding in electronic health records
(EHRs) [248]. Some of these ontologies are large and complex. Due to the size and com-
plexity of ontologies, understanding or extracting relations between classes and axioms
either within an ontology or across ontologies is not feasible.

Shen and Lee [224], [249] presented algorithms to find relations across multiple
ontologies that were significant in biomedical research. The contribution of these works
is in using a graph clustering method and an indexing technique to discover knowledge

patterns over a set of interlinked data sources and query execution with the Bio2RDF data.
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SAMBO [250] was proposed for matching and merging biomedical ontologies
through (1) lexical similarity based on n-gram, edit distance, (ii) structural similarity based
on is-a, part-of hierarchies, (iii) knowledge-based similarity using WordNet and UMLS.
Falcon [251] proposed (i) partitioning ontologies using clustering, (ii) matching structural
blocks (GMO), and (iii) discovering structural proximities and alignments.

Most of the existing ontologies are designed extensively by domain experts. Some
of the domain experts generated ontologies are OntoDiabetic [210], Diabetes Diagnosis
Ontology (DDO) [211] and Diabetes Mellitus Treatment Ontology(DMTO) [212]. Most
of these ontologies are proposed in general domains, with different techniques to automate
the extraction tasks. These studies have shown promising results. Nevertheless, experts
are always needed because ontology construction and enrichment require a considerable
amount of domain knowledge. Text2Onto [213], OntoLearn [214], and Sprat [215] are
semi-automatic methods for ontology construction from textual data.

In this chapter, we proposed an ontology mapping framework (as shown in Fig-
ure 65) that aims to discover the relationships (mapping and connectivity) from the anal-
ysis of semantic features across multiple ontologies and identify the abstractions of the
ontological relationships through mapping between features to the ontologies. We de-
signed a pipeline approach of machine learning with the ontological properties (concept

terms and other related terms) from multiple ontologies in a domain as follows:

e Ontology search and selection

e Feature extraction based on ontological properties (concept terms and other related

terms),

224



Search Term: SPARQL

Hypertension Query
re Bi . Hyper Semantic List of Ontol S dR
O ioPorta | : ist of Ontology topword Removal
e = Propety Features & NLP Processing
2 Ontology Ontologies| Triplets Retrival
Bioportal <S,PO>
Ontologies !

Filtered Feature

Word2Vec
Vectors

numaQ
zebrafish Semantic Embedding
- mouse

Feature Extraction rat

using TF/TFIDF

most_similar('protein”)
compound 0678515
cardio blast 0.665923

Compound

Cardiobldst Ontology Mapping

peplide  0.633120 Among 32
?@‘Eﬂ\tgén hypertension
Highest Cosine distance ontologies
values in vector space of Ontology
Word2Vec Model the nearest words Visualization
Important
Feature

Figure 65: Ontology Mapping Framework

e Natural Language Processing with ontological features,

e Feature Extraction using Term Frequency (TF) and Term Frequency and Inverse

Document Frequency (TF-DF)

e Word Embeddings using ontological properties,

e Semantic Embeddings by combining the feature extracting techniques and Word

Embeddings,

e Ontology Mapping and Connectivity across ontologies using Ontology Mapping

Graphs.

As a case study, we choose 32 ontologies in the hypertension domain for the anal-

ysis of ontology mapping and connectivity, as shown in Table 44.
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8.2 Related Work

The previous works developed Abstraction Networks for ontologies [252], [253],
in which the structures and contents of various ontologies are identified and classified. In
Ochs et al. [254], more than 300 NCBO BioPortal ontologies were analyzed and classified
into the abstractions of ontologies defined by the structural meta-ontology. In Mortensen
et al. [255], ontology design patterns (ODPs) were proposed for utilizing reoccurring
models and best practices in ontology development and maintenance for biomedical on-
tologies.

Similar to our work, in Noy et al. [256], more than 30,000 mappings were ex-
tracted from 20 ontologies in BioPortal. However, this work is limited since some of these

mappings were created manually by developers of biomedical ontologies as follows:

e The connects of Gene Ontology, ICD-9, FMA, and the NCI Thesaurus are mapped

through the concepts in UMLS Metathesaurus,

e Preferred names and synonyms for concepts in the domain ontologies,

e Relate concepts through rdfs:seeAlso or obo:xref,

e Manual mappings between concepts in the NCI Thesaurus and the Mouse anatomy

ontology

e mapping based on the lexical comparison in the PROMPT mapping algorithm for

the mappings between the NCI Thesaurus and the Galen ontology

Many projects have been proposed to process natural language data and create a
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meaningful ontology for building an information retrieval system. The work by Omura
[225] is similar to our approach in which the focus is on finding the disease similarity
by constructing a graph representing anatomical features, and it’s local information. But
the work doesn’t focus on those features that are unique to a disease. In our work, we
are fetching the common topics and relationships among ontologies and the unique topics
and relationships.

Lossio-Ventura [216] focused on automatic knowledge base construction from
heterogeneous information sources on Obesity. In this work, they used biomedical entity
detection, which is very useful to determine the meaning of the various medical terms
present in the paper. Also, the help of domain experts was used to annotate the medi-
cal words manually. For a large text corpus, manually annotating the words would be a
tedious task. Also, they explored binary classification for relationship extraction. The bi-
nary classification doesn’t discover topics for a particular text corpus instead of classifies
based on if a word belongs to a distinct entity or relation. In our work, we applied NLP, in-
formation extraction techniques to ontologies to generate semantic embeddings. We will
further extend the semantic embeddings to ontology annotation and relation extraction.

Chan et al. [231] provided a structural and digital form of patient records and
helped inpatient care, advice, and clinical decision. The terms related to liver cancer are
extracted and mapped to ontological features using SNOMED (Systemized Nomenclature
of Medicine). In our work, we mapped semantic embeddings we generated from NLP and

information retrieval to the hypertension domain’s ontologies.
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8.3 Ontology Mapping Framework

In this chapter, we propose the Ontology Mapping framework (OMF) that aims
to construct a dynamic ontology based on users’ interests through the assertion discovery
approach of Natural Language Processing (NLP), information retrieval (IR), and machine
learning (ML). In this framework, the ontological properties (concept terms and other
related terms) from base ontologies are used to discover new assertions dynamically. The
Ontology Mapping framework (OMF) consists of three main components: We designed
the pipeline approach in OMF as follows: (i) Ontology search and selection using the
NCBO BioPortal API [237] with a keyword hypertension, (ii) Feature extraction based
on ontological properties (concept terms and other related terms), (iii) Feature vector
generation using word embedding technique, Word2Vec, (iv) Topic discovery with the
semantic feature vector, (v) Assertion discovery through dynamic ontology modeling and
alignment.

Figure 65 shows the assertion discovery process in the OMF framework, being
changed from a list of assertions from the base ontologies to new types of assertions. We

will discuss each of these steps below.

8.3.1 Ontology Search and Selection

First, we have collected ontologies through the NCBO BioPortal API [237] for the
hypertension domain. Ontologies were searched using the search keyword hypertension.
Second, related ontologies were further searched through the Reuses in Other Ontologies

option (e.g., MeSH and RH-MeSH). Finally, a refined set of ontologies were selected
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based on (i) ontology format: OWL, RDF, TTL, N-TRIPLE were supported. While OBO,
OFN, OWL2, and xrdf were not supported in our framework. (ii) public availability: some
of them were private and not downloadable, and (iii) semantic annotation: ontologies
contain the following OWL or RDF properties that would be used to extract ontological

properties such as label, hasExactSynonym, hasRelatedSynonym, hasNarrowSynonym,

and prefLabel.

8.3.2 Semantic Property Retrieval

For ontology mapping and understanding of their relationships, we have started to
extract the key features considering ontological features (label, hasExactSynonym, has-
RelatedSynonym, and prefLabel) for the given ontologies. We further extract more impor-
tant features from the base ontologies’ ontological properties that provide more structured

features such as concept names and synonyms, etc.

8.3.2.1 Natural Language Processing

The Natural Language Processing (NLP) was conducted to separate concepts and
predicates from the triplets. The NLP steps were conducted using the Stanford CoreNLP
library [217] as follows: (1) Tokenization is the process of breaking sentences into tokens
which are the smallest constructs of a huge text data; (2) Lemmatization is the process of
separating words into individual morphemes and identify the class of the morphemes; (3)
Stopword Removal is the process of removing stopwords from the corpus. For example,

the stopwords in English include able, about, above, according, accordingly, etc. After
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performing the NLP operations, the triplets (Subject, Predicate, Object) will be separated

into two parts: Concepts (Subjects or Objects) and Predicates.

8.3.2.2 Feature Extraction

For the purpose, we used two feature extraction techniques: (i) Term Frequency
(TF) and (ii) Term Frequency and Inverse Document Frequency (TF-IDF). We have ex-
tended the term frequency (TF) and the term frequency-inverse document frequency (TF-
IDF) that are a numerical statistic (a term is an ontological feature and a document is an
ontology). Thus, the term frequency (TF) as the number of annotated terms that appear
in a specific ontology. The representative terms for feature extraction are selected using
TF-IDF, which is the product of term frequency (TF) and inverse document frequency
(IDF). We redefined the Document frequency (DF) to the frequency of the terms in all the
ontologies. The Inverse Document Frequency (IDF) intends to reduce the importance of
the word that occurs most frequently in all the ontologies. It is mainly used to eliminate
the common terms across all the ontologies. The IDF value is computed by dividing the
number of ontologies with the number of ontologies containing the given term ¢ and then
applying a logarithm to the resultant value. If the term appears in more ontologies, it is
more likely to be a common term that is not specific to any given ontology. Hence, the
log value of the word reduces to zero, ensuring that the IDF value and thereby the TF-IDF

value, is less for this term.

TF(t,0) = 1 +log(fi,) 8.1)
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N
1+ {o€O:teo}

IDF(t,0) = log (8.2)

where N is the total number of the ontologies in the corpus, i.e., N = |O| and
[{o € O : t € o}| is the number of ontologies where the term ¢ appears (i.e., T'F'(t,0) #
0).

TF-IDF value is high if the term has high term frequency and a low document
frequency in the corpus. Hence by considering the TF-IDF value, we can eliminate the

common terms in determining features.

TF — IDF(t,D) = TF(t,d) - IDF(t, D) (8.3)

The TF-IDF score reflects how important an ontological feature is to an ontology
in a corpus of ontologies. The top X important words can be extracted based on the

weights of the TF-IDF terms (e.g., X= 50).

8.3.3 Semantic Embeddings using Word2Vec

For the feature vector generation, we used Word2Vec [257], which was designed
to produce word embeddings. Word2Vec is a two-layer neural network model for finding
contexts of words in the corpus.Word2Vec can utilize two types of model architectures
either continuous bag-of-words (CBOW) or continuous skip-gram. In the CBOW model,
the current word is predicted from surrounding context words (bag-of-words assumption).

In the skip-gram model, the surrounding context words will be predicted from the current
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word by weighing more to nearby context words. [Note: word and term are interchange-
ably used in this chapter.]

In this chapter, we used the skip-gram model of Word2Vec with negative sampling
[54] in which a window is defined to learn word embeddings. The model defines a context
based on the frequently co-occurred terms in the same dimensional space of an ontology
corpus. The model builds similar embeddings for target words ¢ that co-occur with similar

contexts c. The objective function is defined to optimize embeddings as follows:

I = Z L. (8.4)
(t,c)eP
L. =log a(v;.vt) + Z log Oz(v;-?ft) (8.5)
r€R: ¢

where v, and v,, are the vector representations of target word ¢ and context word c.
P is a set of co-occurring target-context pairs (¢, ¢) within a defined size of window, and
R(t, ¢) is a set of randomly sampled context words ¢ used with the pair (¢, ¢).

In this chapter, we have uniquely applied the Word2vec model to a large corpus of
ontological properties (label, hasExactSynonym, hasRelatedSynonym, and prefLabel) that
were extracted from the ontologies to produce a vector space with k dimensions. Each
unique word in the corpus was assigned a corresponding vector in the space. In the vector
space, if an ontological property shares common contexts with the other ontology, they
will be located near one another in the space.

We have constructed the semantic embeddings by mapping significant features
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(TF or TF-IDF) to Word Embeddings (Word2Vec). We have outlined the notable fea-
tures X (X = 200) using TF and TF-IDF measurements to the base terms in the word
embeddings using Word2Vec with window size W (W= 20) and cosine similarity. The
Semantic Embeddings are representative embeddings selected by integrating Word Em-

bedding (Word2Vec) with Feature Extraction (TF or TF-IDF).

8.3.4 Ontology Mapping Graph

In this step, we have mapped the terms in the semantic embeddings to concepts
of the 32 hypertension ontologies. We have applied partial matching for this mapping
by using the contained operation (e.g., (contains(hypertension, c), where hypertension is
contained in the concept c). The ontology-concept and embedding matrix is designed to
identify the matched concepts from this ontology mapping. From this analysis, we also
find the degree of connectivity based on the matched concepts of the ontologies. In the
final step of the ontology mapping process, the connectivity between ontologies is defined
as an edge in a graph, called Ontology Mapping Graph. More specifically, an ontology
O, is defined as a node in the graph G and two ontologies is connected (O,, O,) if a
concept in the semantic embeddings in an ontology (O,) is contained any concepts (S
or O) of another ontology (O,) in the hypertension domain. This represents the local
edge-connectivity of the ontologies that are symmetric.

The ontology mapping graph represents the degree of connectivity. Two ontolo-
gies are k-edge-connected if the edge between the two ontologies is connected with the

degree of k. A graph is called k-edge-connected if its edge connectivity is k£ or greater.
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The ontology mapping graph is maximally connected if its connectivity equals its mini-
mum degree (k=#Ontology-1). In the hypertension context of the 32 ontologies, an on-
tology can be mapped to most 31 ontologies (i.e., k=31). The ontology mapping graph
is minimally edge-connected if its edge-connectivity equals its minimum degree (k = 0).
Furthermore, we extended the connectivity concept to the concepts across ontologies. The
concept graph across ontologies are t-edge-connected if the edge between the two con-
cepts across ontologies are connected with the degree of ¢.The ontology mapping graph

is strongly connected if its edge-connectivity ¢ > 100.

8.4 Results and Evaluation

The OMF implementation and experiments were conducted on a 16GB RAM Ma-
chine. Ontologies were extracted from the NCBO BioPortal using Biportal Rest API
[237]. The queries on the ontologies were performed with Apache Jena [258] with the
SPARQL Wrapper. TF-IDF and Word2Vec Model were implemented with Apache Spark
2.2.0A Visualization of the Ontology Mapping Graph was done using Gephi 0.9.2 [259].
Pandas 0.22.0 [260] was used for the implementation of a pipeline for data analysis such
as cleaning data, analyzing and modeling, then organizing the results in the tabular display

or by plotting.

8.4.1 Dataset

For the experiment, 32 ontologies (shown in Table 44) were searched and selected

from the NCBO BioPortal that contains more than 690 ontologies in biomedical domains.
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Initially, we had 41 ontologies using the search keyword hypertension through the Bio-
Portal API [237]. This dataset was extended to 55 ontologies through the Reuses in Other
Ontologies option (e.g., MeSH and RH-MeSH) (shown in Table 45). From the 55 on-
tologies, we have a refined dataset of 32 ontologies (shown in Table 44) that are selected
based on (i) ontology format: OWL, RDF, Turtle, N-Triples were supported while OBO,
OFN, OWL2, and xrdf were not supported in our framework (as shown in Table 46) and

(i1) publicly available: some of them were private and not downloadable.

8.4.2 Results of Semantic Property Extraction

From the 32 ontologies, we extract features by querying semantic properties: the
following OWL or RDF properties were used to extract ontological features including
label, prefLabel, hasExactSynonym, hasRelatedSynonym, hasNarrowSynonym, as shown
in Table 47. In most of the ontologies gave useful semantic concepts from the label and
prefLabel. Two major patterns were observed during the domain expert-designed ontolo-
gies.In the first pattern, Concepts were named based on the complete semantic meaning,
such as ADO URI for NSAID medication is named based on the same while the second
type, Concepts were mainly had URI based on Identification Numbers such as CRISP
(as shown in Table 48). Ontological features were extracted from the medication concept
in the 32 hypertension ontologies, as shown in Table 48. In this table, some interesting
features are extracted, for example, Studying medication history, medication adherence

behavior, and time-release medication.
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Table 44: Ontology Dataset in Hypertension Domain

Acronym Ontology Name #Class | #Individual | #Property
ACGT-MO Cancer Research and Management ACGT 1770 61 260
Master Ontology
ADO Alzheimer’s disease ontology 1565 0 12
BAO BioAssay Ontology 7192 1 223
BDO Bone Dysplasia Ontology 3668 0 19
CCONT Cell Culture Ontology 20844 0 61
COSTART Coding Symbols for a Thesaurus of Ad- 1707 0 1
verse Reaction Terms
CRISP Computer Retrieval of Information on Sci- 9039 0 7
entific Projects Thesaurus
CSEO Cigarette Smoke Exposure Ontology 20085 0 91
DIAB BioMedBridges Diabetes Ontology 375 0 4
DMTO Diabetes Mellitus Treatment Ontology 10700 63 315
DOID Human Disease Ontology 12694 0 15
DTO Drug Target Ontology 10075 0 0
EFO Experimental Factor Ontology 20637 0 0
FAST-TOPICAL | FAST (Faceted Application of Subject Ter- 3 583314 0
minology) Topical Facet
HFO Heart Failure Ontology 1652 0 0
HL7 Health Level Seven Reference Implemen- 9866 0 63
tation Model
ICDI9CM International Classification of Diseases, 22533 0 8
Version 9 - Clinical Modification
IFAR Fanconi Anemia Ontology 4530 0 0
KTAO Kidney Tissue Atlas Ontology 2201 13 163
LOINC Logical Observation Identifier Names and | 2000674 0 0
Codes
MESH Medical Subject Headings 268289 0 38
NATPRO Natural Products Ontology 9465 22012 64
NCIT National Cancer Institute Thesaurus 138291 0 97
OMIM Online Mendelian Inheritance in Man 98642 0 15
ONS Ontology for Nutritional Studies 3442 104 66
PMA Portfolio Management Application 2084 0 9
RADLEX Radiology Lexicon 46656 47155 94
RCTV2 Read Clinical Terminology Version 2 88854 0 0
RH-MESH Robert Hoehndorf Version of MeSH 305349 0 1
RPO Resource of Asian Primary Immunodefi- 1545 0 166
ciency Diseases (RAPID) Phenotype On-
tology
SSE Surgical Secondary Events 244 1323 19
UPHENO Combined Phenotype Ontology 86448 4 142
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Table 45: Reuses in Other Ontologies

Base Ontology Reuses in Other Ontologies
MeSH RH-MeSH
DOID BAO, NATPRO, DTO
HP NIFSTD, BDO, DIAB, KTAO
EFO CCONT, ONS
DDO DMTO
MP UPHENO
APAONTO APADISORDERS
OF APO

Table 46: Ontology Formats of the NCBI BioPortal [244]

Format Description OMF
Sup-
port

OWL is a family of knowledge representation lan- | Yes
guages for authoring ontologies. The OWL lan-
guages are characterized by formal semantics.

RDF RDF Schema provides a data-modelling vocab- | Yes
ulary for RDF data. RDF Schema is an exten-
sion of the basic RDF vocabulary that is a stan-
dard model for data interchange on the Web.

Turtle Turtle (Terse RDF Triple Language) is a format | Yes
for expressing data in the RDF data model

N-Triples | N-Triples is a format for storing and transmit- | Yes
ting data. It is a line-based, plain text serialisa-
tion format for RDF graphs, and a subset of the
Turtle format

OBO The OBO format is a format for sharing the use | No
of controlled vocabularies across different bio-
logical and medical domains.

OFN OWL functional notation No

OWL2 Version 2 of the Web Ontology Language No

xref/Dbref | Xref and Dbxref are properties for support OBO | No

mappings by referring it to an analogous term in
another vocabulary
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Figure 66: Tokens from Hypertension Ontologies

8.4.3 Results of Natural Language Processing

Figure 66 shows the number of tokens generated from the NLP processing with
the ontological properties in hypertension ontologies datset.An average of 300,724 tokens
are extracted from 32 ontologies.The extracted tokens are at a maximum of 2,696,885 in
LOINC ontology and at a minimum of 42 in RADLEX ontology. Top three ontologies
with the largest tokens are LOINC, MESH, and FAST-TOPICAL. These tokens are used

to generate the word embeddings.

8.4.4 Results of Word Embeddings

Figure 67 shows the word embeddings generated from ontology property corpus
using Word2Vec with window size 20. In this embeddings, the first column in each row
is the base word and the words from the second column to the 20" column are the words

that share common contexts with the base word in the corpus.
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1 AALPHA.  VLISSINGE TOCHIGI MATSUMCFLORXENII PRDX1 15G56 IFNA14  MILANO IFNAR2  SIMO ALDIMINE AF2 HPPA

2 ACCORD. HEALEY CHARGER CORVETTEHOLDEN MITSUBISICRUISER LEGEND THUNDERISTUDEBAK CADILLAC CITROAfA«CIRRUS  RENAULT
3 ALLOILE. ADAMANT DLEU PLACTIN HISTOGRA OET DTRP BzZL MEASP  MEARG  ARGININYINHOH ENKEPHAL NHCH3

4 ANALYST. TRACER GENERATI SELAGINEI FOCK VOYAGER CHEMIST MICROCEEHOMA  ASCENT  ELISA IMMUNO( COCCIDIO LYMPHAN!
5 ANCYLOST ENTOPTER CYSTOISO: EUROTIUN PHAEOCHI PROTHOR, DENTARY CALDICELLEPIBOLY BARTONELOPERCLE RADICLE KENMEDY' BRAZILIEN
6 ANNIVERS UNBORN CUSTARD ARENAS KAW LIMINALIT ALTIMETE| OILSEEDS MASERATI DACIANS GRAYLING WITCHES VULNERAE FILMSTRIP

7 APOD. SYNEMBR' PARAXIS NOELIN  HYAL2 HRK MKRN2  BID3 RNF13 MTSSB  CHIBBY FOXD2  FOXH1  DRP1
8 ARTHROSC PERONOSI PERIPLOC/ NEUROPH BARI SCYPHOZC PEARLS  TIGGER RUFOUS DICHOTOMCHARACID WALTON CROTIN  BREWSTEF
9 AUREUS.M MRSA AUREUS.G SP.OXACIL HAEMOLY SP.COAGU SAU3AI  SEB TOX1 SPECIES.Vi AERUGINCETX TS5T SUSCEPTIE

10 AVOCADO CLAM ENDIVE  SCALLOP PERSIMMC(PARSNIP SWORDFISGINGER CHICORY ASPEN NECTARIN OREGANO WATTLE  ALLSPICE
11 BARX2.  GSH2 GEC1 ANGPTL6 SEC6L1  PINCH1 DYNLT1 COTL1 DMRTZ  PNAS4  WNTLESS TSNAXIP1 ARHGAP1: WBSCR14
12 BCL2. E1B ATHANOG BCL IGH CCND1  MYC TRANSCRI Q21.3 NIP2 Qs2 MYEQV  BAX MAF

13 BIOSEQUE TAUSCHII PLASMABL HYPOCHO CHORDO TELEOPSIS NISHIMURLNCAP ~ KARPAS  QUADRATIPITUICYTC UACC sCLC CAKI

14 BOTULISV BOTULISNM FOODBOR BRAWNY MEGACOL MICROCEF MUCORM' ENDOPHTI ARTERIOL NEURONIT KARYOME! PARAPHAF MYXOEDE| HYPOGAST
15 BRUCEL.  TRYPANO: RHODESIE CRUZI GAMBIENS PROCYCLII VSG RHODESIE ESAG CONGOLEITRYPANOS FURANOEI PHYTASE  PA26

16 CEBPA.  NEFL APTX FGF23 PTCH RPGR ABCD1  MEN1 SFTPB HEXB TYROBP CSTB AHCY AARS2

17 CEREBROS BOREDON NGBAKA ALMSHOU CHEETAH HUANCA BERBERS DANES  PURIM  DAFLA PALACES NOSOLOG ARCADES JUKEBOXE
18 CLARITY. FLD.SPUN UNPREDICWOUND.EANNUL  EXHIBITEC WOUND.E OXYMETR' TOPICALS RECAPITUILANGUAG! IRREVOCA REINTUBA REFRACTC
19 CLuc2. CLIC3 KCNF1 KCNT2  CLCN4  TNK1 STYK1 PDIKIL  NImM1 YSK1 MARK4  GRK1 MAP4KS  CDKL1

20 CLONAZEF ETHYLFLUI PENTOBAF NORPROP: DESALKYLI CHLORDIA MDMA  EME PROPOXYF PHENIDAT BZE MDEA METHAQU NORTRAM

Figure 67: Word2Vec Embeddings

8.4.5 Results of Semantic Embeddings

The feature extraction techniques are applied to the 5 ontological properties (shown
in Table 47) extracted from 32 ontologies. We have identified the top 10 features and also
selected 500 significant features based on the weight of each feature. The window size
for Word2Vec was defined as 20 using TF and TF-IDF Terms and the similarity measure
is cosine similarity. Table 49 shows the results (top 10 features) from two feature extrac-
tion approaches: (1) Term Frequency (TF) and (i1) Term Frequency and Inverse Document
Frequency (TF-IDF).

Considering 500 significant features, only 109 terms were found in TF-IDF/Word2Vec
Model, while 363 terms were found in TF/Word2Vec Model. As the terms of the TF/Word2 Vec
Semantic Embeddings were higher than TF-IDF/Word2Vec Semantic Embeddings, the
TF/Word2Vec Model is more appropriate than TF-IDF/Word2Vec for semantic embed-

dings.
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Table 50: Ontology Mapping

Type Original Mapping OMF Mapping
Connectivity #Ontologies | #Connectivity || #Ontologies | #Connectivity
Regular Connectivity 27 113 32 23029
Strong Connectivity 19 39 13 54
| Extraction | OMF: TF-IDF | OMF: TF |
| Regular Connectivity | 29 \ 367 \ 32 | 23029 |

8.4.6 Results of Ontology Mapping

Table 50 shows the increase in the degree of connectivity among ontologies in
the hypertension context. After the OMF mapping, we found the degree of connectiv-
ity among ontologies has been significantly increased from 23% to 98%. Specifically,
ontology mapping with no connectivity was 16% in original mapping, while all 32 on-
tologies were connected to other ontologies in the OMF mapping. In the OMF mapping,
the degree of connectivity for the full connectivity (i.e., 31 ontologies) was 68%.

Figure 68 shows the connectivity among ontologies in hypertension without and
with OMF. As seen in the figure, most of the ontologies are fully connected to other
ontologies in the OMF framework. Figure 69a shows the ontology mapping graph for the
27 ontologies, 113 concept connectivity among 27 ontologies, 23% degree of connectivity
with the original ontology mapping. Figure 69b shows the ontology mapping graph for
the 32 ontologies and 23029 concept connectivity among 32 ontologies, 98% degree of
connectivity after applying the OMF framework (TF-Word2Vec). These results show that
the OMF framework is very effective in increasing the ontology number and the degree

of concept connectivity among ontologies.
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Table 51: Ontology Mapping and Connectivity in Hypertension

Type Original OMF
Ontology #Con | #Con > 100 | #Con | #Con > 100
ACGT-MO 9 0 30 0
ADO 9 0 30 2
BAO 13 5 31 0
BDO 9 0 31 9
CCONT 13 4 31 0
COSTART 8 6 30 9
CRISP 8 6 31 0
CSEO 10 2 30 0
DIAB 9 1 30 0
DMTO 0 0 31 0
DOID 7 2 31 0
DTO 8 4 31 8
EFO 13 4 31 9
FAST-TOPICAL 8 0 31 0
HFO 0 0 31 0
HL7 8 6 30 9
ICDI9CM 8 6 31 0
IFAR 8 1 31 0
KTAO 14 3 31 9
LOINC 8 4 31 3
MESH 8 6 31 0
NATPRO 1 0 31 9
NCIT 1 0 30 9
OMIM 9 5 31 0
ONS 12 6 30 0
PMA 1 0 30 4
RADLEX 6 0 21 4
RCTV2 0 0 31 0
RH-MESH 0 0 31 0
RPO 0 0 31 10
SSE 8 1 30 0
UPHENO 10 4 31 0

244




No.of Ontologies
bR NN W w
« 5 & 8 & 8 &
ACGT-MO [ e —

o

Ao [ —
Ba0 [ —
800 [ —
ceonT e —

Ontology-Ontology Connectivity

FAsT-ToPICAL [

HFO

s 0 g

HyperTension Ontologies

ons [
RADLEX [

sst [ ——
UPHEN O e —

RPO

PMA
RCTV2

oM
RH-MESH

Figure 68: Ontology Connectivity in Hypertension

M Original
= OMF

Table 52: Ontology Mapping (Source/Target) in Hypertension

Original OMF

Source Target | #Con Source Target #Con

EFO CCONT | 20636 || RH-MESH MESH 202

DOID BAO 3210 EFO CCONT 148

DTO DOID | 2089 OMIM MESH 146

DTO BAO 1770 RCTV2 MESH 145
UPHENO | CCONT | 1767 MESH LOINC 141
UPHENO | EFO 1756 MESH CCONT 135
UPHENO | KTAO | 1462 MESH EFO 135

NCIT IFAR 1048 MESH FAST-TOPICAL | 135
UPHENO | DIAB 359 RCTV2 LOINC 134

KTAO | CCONT | 301 RCTV2 OMIM 132
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(b) OMF Ontology Mapping with TF Feature Extraction

Figure 71: OMF with TF & TF-IDF Feature Extraction: Ontology Mapping in Hyperten-
sion
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Figure 70a shows the ontology mapping graph with 19 ontologies, 39 concept
connectivity, showing a strong relationship (the number of common concepts > 100) with
the original ontology mapping. Figure 70b shows the ontology mapping graph with 13
ontologies, 54 concept connectivity showing a strong relationship (the number of common
concepts > 100) after applying the OMF framework (TF-Word2Vec). These results show
that the OMF framework effectively increases the degree of concept connectivity (for the
strong connectivity of the number of common concepts > 100) among ontologies.

Figure 71a shows the ontology mapping graph with 32 ontologies and 367 con-
cept connectivity showing strong relations (the number of common concepts > 100) after
applying the OMF framework (TF-IDF-Word2Vec). Figure 71b shows the ontology map-
ping graph for the 29 ontologies and 23029 concept connectivity after applying the OMF
framework (TF-Word2Vec). These results show that the TF feature extraction is more
effective than the TF-IDF extraction method in the OMF framework.

Table 51 shows the original and OMF mappings for normal and strong connec-
tivity relations between the concepts for the 32 ontologies. Table 52 shows the original
and OMF mappings between source and target ontologies, together with the number of

connectivity.

8.5 Conclusion

In this chapter, we proposed a semantic framework for automatic ontology map-

ping through ontology search, feature extraction, and word embeddings. This is a new
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way to discover semantic mapping between concepts across multiple ontologies. The on-
tologies were mapped to semantic features extracted from multiple ontologies selected
from the NCBI BioPortal [244]. From the comparative analysis, we confirmed that the
proposed approach is effective in discovering relationships between ontologies.

The OMF framework was implemented in a parallel and distributed computing en-
gine, Apache Spark, for providing a scalable solution for a large number of features from
multiple ontologies. The parallel and distributed pipeline approach includes (i) Ontology
searching using BioPortal API [237], (ii) Ontology query with the ontology properties us-
ing Apache Jena (iii) TF-IDF (Term Frequency Inverse Document Frequency) for feature
extraction, (iv) Word2Vec for Word Embeddings, (v) Ontology mapping through concept
matching, (vi) Gephi for Ontology mapping graph visualization. We confirmed that the
OMF framework is effective in enhancing the existing ontologies mapping and discover-
ing new relations across ontologies beyond the boundary of ontologies. The work pre-
sented in this chapter was published as part of Chandrashekar et al. [261]. Nagabhushan

et al.[223] and Chandrashekar et al. [243] are some related publications.
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CHAPTER 9

CONCLUSION

We proposed a new learning method, the deep open representative learning for
image and text classification. The open representative learning consists of class repre-
sentative for text and image data. Class Representatives are designed to project the ab-
stract features extracted from a deep learning environment to the high-dimensional feature

space. The contributions can be summarized into image and text categories.

9.1 Class Representative Learning for Image

e Image Classification Setting: As shown in Chapter 2, the class representatives were
independently generated using pre-trained convolution networks for image classifi-
cation. The CRL model showed slightly improved performance compared to exist-
ing mobile-based image classification with significant in execution time. The Class
Representative. Such showing that the class representative learning model was an

effective and efficient image classification model.

e Zero-Shot Learning Setting: As shown in Chapter 3, the class representative showed
an effective model for seen data and unseen data. Compared with state-of-the-art
zero-shot learning models, CRL proved to out-performed significantly for unseen

data and at par in seen accuracy. The class representative model was powerful,
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with very small and highly imbalanced datasets. In this chapter, the class repre-
sentative’s shows the ability to transfer knowledge from seen dataset to completely

unseen dataset with no learning or relearning on the unseen dataset.

Discriminant Distribution Model: As shown in Chapter 4, a discriminant distribu-
tion model was proposed using an optimal distribution of classes by computing a
misclassification cost (i.e., confusion factor). The classification hierarchical deep
neural network model was built by learning an optimal distribution of classes with

a higher accuracy performance of the learning process.

9.2 Class Representative Learning for Text

Zero-Shot Learning Setting: As shown in Chapter 5, the class representative learn-
ing was proposed for zero-shot learning text classification. The class representa-
tive learning was generated by aggregating projected features using sentence en-
coder and feed-forward networks. In this chapter, the class representative’s shows
the ability to transfer knowledge from seen text dataset to completely unseen text
dataset with no learning or relearning on the unseen dataset. The class representa-
tive learning model was very effective in the text classification compared to state-

of-art zero-shot learning text classification models.

Context Discovery: In Chapter 6, the VisContext framework was proposed to cap-
ture visual context through text caption data using unsupervised approaches. The

results confirm the effectiveness in discovering the contextual association of terms
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and images, visual context clustering, and image classification based on context.

Text to Ontology: In Chapter 7, a semantic framework was proposed for dynam-
ically generating a diabetes publication ontology from a large corpus of diabetes
publications. The topic modeling methods were employed in finding latent topics.
These topic terms were mapped to ontological assertions extracted from the sci-
entific publications in PubMed. The ontological assertions were used to enhance
the existing diabetes ontologies, and new relations and entities between topics were
introduced to existing diabetes ontologies. In Chapter 8, describes an automatic on-
tology mapping through ontology search, feature extraction, and word embeddings,
a new way to discover semantic mapping between concepts across multiple ontolo-
gies. The ontologies were mapped to semantic features extracted from multiple

ontologies selected from the NCBI BioPortal [244].
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CHAPTER 10

FUTURE WORK

As future work, the class representative learning (CRL) model can be extended
to represent multi-modal data, particularly by combining image and text class represen-
tatives of a particular class. It will be shown that the extension of the CRL model needs
further enhancement for multi-label classification and even zero-shot object detection.
The CRL-based zero-shot framework can be easily extended to incorporate multi-label
text classification with the minimum modification in the CRL’s inferring. It is similar to
the object detection problem. The same success can be achievable with the change of
zero-shot classification by extracting features from multiple objects instead of from entire
images. By adding a region detection layer to the CRL based image classification model,
we can create class representatives for object detection.

The CRL-based zero-shot learning shows the superior ability to transfer knowl-
edge from a source domain to a target domain. CRL can be considered as an effective
domain adaptation technique due to its superiority in performance, even if no learning
is needed for a target domain. The existing domain adaptation methods rely on rich
prior knowledge on the relationships of source and target domains. The bonds can be
analyzed in different abstraction levels, such as class representatives (lowest abstraction
within a single domain), category gaps (intra-domain relationships), and domain gaps

(inter-domain relationships). Currently, CRL relies on a single source and multiple target
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model. The CRL-based domain adaptation can be extended for open-set transfer learning
for various sources and various targets. The various targets in the transfer learning in CRL
will be supported for an open-set recognition framework.

We have described the ability of smaller models and contextual models in CRL in
Chapter 2. This ability can be further explored for lightweight edge or mobile applications
for specific contexts. The CRL framework will be extended for context-aware dynamic
modeling.

We will apply the CRL model to a bio-medical domain. The CRL models for
image and text can be integrated with medical ontologies. The integrated semantic model
will contribute to creating a bio-medical application for clinical decision support systems.
This integrated semantic model can be exploited for personalized detection and treatment,
which is crucial to precision medicine.

Finally, the integrated semantic model with CRL (the CRL ontologies) will sup-
port the explainable artificial intelligence. Machine learning and ontologies can be inter-
operability (from ontologies to machine learning as well as machine learning to ontolo-
gies). The CRL ontologies will provide actionable interpretable models to applications.
It will lead to reasoning and learning capabilities that will be available in the CRL ontolo-

gies.
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APPENDIX A

A COMPARATIVE EVALUATION WITH DIFFERENT SIMILARITY MEASURES

In this appendix, we compare the four different similarity measures namely cosine
similarity, Minkowski distance, Euclidean distance and Manhattan distance for evaluation
of class representatives.

Cosine Similarity: Cosine Similarity is measured by the cosine of angle between two

class representatives projected in /V-dimensional space (Equation A.1).

Cosine Similarity :

. CR,-CR,
cos(Cl, OTte) = e R TRl (A1)

N
D i1 TilTi2

- N N
\/Zi:l 5512,1 \/Zi:l xz%Q

Euclidean Distance Euclidean Distance is the distance between two points in Cartesian

coordinates in /N-dimensional space (Equation A.2).

Euclidean Distance :

N (A.2)
(

Ti1 — xm)?

E(CR,,CR,) =

=1

Manhattan Distance Manhattan Distance is the fixed distance between two points in

Cartesian coordinates in /NV-dimensional space (Equation A.3).
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Mabhanttan Distance :
N (A.3)
M(CRl, CRQ) = Z (ZL‘Z‘J — $i72)

i=1

Minkowski Distance The Minkowski distance is a metric in a normed vector space which
can be considered as a generalization of both the Euclidean distance and the Manhattan

distance.

Minkowski Distance of order of p:

=1

N m (A4)
Mk(CRy,CRy) = <Z (zin — xi,z)p>

Table 53 shows the comparison between Similarity Measures using class repre-
sentatives from two different datasets: Caltech-101 and CIFAR100. Caltech-101 is one
of the best performing and CIFAR100 is one of the worst-performing datasets. The class
representative image classification task was considered for this evaluation.

Table 53: Comparison between Similarity Measures in CRL Image Classification Task

Similarity Measures Caltech-101 Accuracy | CIFAR-100 Accuracy
Cosine Similarity 93.9 57.96
Euclidean Distance 93.0 57.07
Manhattan Distance 92.5 56.17
Minkowski Distance (p = 0.5) 92.3 54.09
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