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ABSTRACT

There have been significant advances in supervised machine learning and enor-

mous benefits from deep learning for a range of diverse applications. Despite the success

of deep learning, in reality, very few works have shown progress in text classification.

Transfer learning, known as the zero-shot learning (ZSL) or generalized zero-shot learn-

ing (G-ZSL), is receiving much attention due to its ability to transfer knowledge learned

from a known (seen) domain to unknown (unseen) domains. But most of the ZSL works

are relying on large training corpus and external semantic knowledge. Thus, there are very

few studies that have investigated the improvement of text classification performance in

sorely text-based ZSL/G-ZSL.

In this thesis, a class representative framework was proposed for text-based ZSL

by designing the novel projection method, learned from the seen classes, and applying

it to transfer the knowledge to the unseen classes effectively. We designed a three-step
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approach, which consists of (1) sentence-based embeddings, (2) deep neural networks,

and (3) class-based representative classifiers. Experimental results show that the proposed

projection framework achieves the best classification results in text-based ZSL/G-ZSL

compared with the state-of-the-art approaches investigated with three benchmark datasets

including large newsgroup post of 20 classes called 20 Newsgroup Dataset and DBpedia

dataset on various topics.
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CHAPTER 1

INTRODUCTION

Natural language processing (NLP) is a branch of artificial intelligence that sup-

ports computers to understand, infer, and engineer human language. NLP covers many

domains, including computer science and computational linguistics, to fill the space be-

tween human communication and computer understanding. By extending the capabilities

of Natural Language Processing, we can classify or categories the contextual meaning in

the sentence to a specific class.

The cause of technology invention is to make lives more comfortable. It is hard

to go through significant texts and understand what exactly meant to be. But what if

there is a classification model that classifies, standardize the data and make it simple to

navigate through. Consider, for example, an image classification technique that does a

good job explaining what the picture contains. If the image resembles a cat, the model

says it’s a cat. Likewise, there is a large text referring to science and technology; the text

classification model should classify this under science and technology. The so-called text

classification assigns one or more labels to a data point. In practice, semantic analysis

and sentiment classification does a similar job. Semantic analysis tends to classify the

textual data under positive, negative, and strength of being positive or negative based on a

word embedding. This job is done quite quickly with available data for both the classes,

but then it is quite hard if there are a more significant number of classes and accessible
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information.

The text classification technique becomes more complicated when dealing with

multi-label classification. The usage of resources like training data and model inferencing

is quite an issue when it comes to multi-label tasking. Then came the Zero-shot learning

into focus, ZSL setting shows promising results in achieving the goals for inferencing

the unseen class during the training. Most of the ZSL algorithms use some connection

between the available information or seen data to the unseen data.

1.1 Problem Statement

There are numerous species and items without named information and new visual

classifications, such as the most recent contraptions or vehicle models presented regularly.

The problem for computation of multi-label classification has become more complex for

a few labeled data; more techniques are proposed to deal with lesser training data. As

research started to advance, more and more techniques came up. One of them is ”Zero-

shot learning,” it has been a very active research area over recent years. The strategy of

ZSL includes preparing a model on an enormous corpus of sentences to gain proficiency

with the connection between a sentence and embedding of sentence’s labels. Learning

the relationships between the data and labels helps to understand the unseen data for the

model. Though the technique has gained more popularity in recent times, there are few

assumptions made are the text information was auxiliary information used for rendering

a better representation of data. We are inspired by the works in ZSL and the use of more

sophisticated classifiers and auxiliary information for creating better representations for
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Figure 1: Traditional classification Architecture

text classification. We propose a novel ZSL framework based on an embedding space

and ZSL projection method to classify unseen categories in text data by learning on seen

classes in the text.

1.2 Proposed Solution

As mentioned in the problem statement, in our work, we proposed a new represen-

tation in zero-shot learning. The contributions of our work can be summarised as follows:

We propose a new framework for Zero-Shot text classification, a framework for the design

of abstract representatives as classifiers, and suggest innovation in ZSL research. Unlike

previous ZSL works [1]–[3] in which they require extra information besides text data, our
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framework does not request any external or auxiliary data. We use the productive rela-

tionship between embeddings of text and represent them as inputs for the classifier. We

create prototypes for each class as classifiers, called Class Representatives, independent

of other categories. These class representatives hold on the rich information for each class

label and try to connect or drag some relationship patterns with the unseen label data.

Figure 2: Proposed CRL Architecture

In the Figure 1 shows an illustration of the traditional classification architecture

where the I (1 to N) is referred to show the inputs text documents, the weights and bias

are added on for the hidden layer information. The softmax output is shown as O (1 to n);

in this case, n is the number of classes. This is the traditional classifier architecture. Our

CRL architecture is shown in 2; this architecture differs from the main one by creating a

sum of hidden layers, i.e., show as Cn, where n is the number of classes. We have class
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representative(CR) C for n classes, i.e., each class is represented by a CR.

We evaluate the Class Representative Learning (CRL) framework using metrics

established by [4]. Our evaluation is done in two steps: focusing the performance CRL

architecture and others with CRL architecture with zero-shot learning.
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CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter gives background information of various components used in the

thesis and provides an overview of related work that will help understand this work better.

2.1 Related Work

2.1.1 Embedding Techniques

Natural Language processing techniques become famous for dealing with text ab-

stractions. Learning of distributed representation has been successful for symbolic data

and is first introduced by Hinton(1986)[5] later on, this representation has given a name

as word embeddings.

BOW known for bag-of-words[6], this model is a way of representing the text in

the form of a dictionary, so-called bag-of-words. It tries to count on the measure of the

presence of words describing the frequency of the word in the dictionary document. This

model is confined to size, space, and neglects the meaning of a sentence. In contrast,

Word2Vec is a skip-gram neural network model[7] designed by a team of Google Inc.,

tries to learn the weights of the hidden layers in a neural net referred to as word vectors.

These vectors represent the words in a dimensional space.

Therefore, words can be distinguished based on the distance between the vectors.

Tomas Mikolov., who developed Word2Vec in 2013, came up with FastText[8] with a
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Table 1: Text Embeddings and NLP
Embedding Word

Level
Sentence
Level

Position of
words/phrases

Segmentation Sequence
of phrases

Neural Network

Word2Vec
[9]

3 7 7 7 7 Dense Network

GloVe [10] 3 7 7 7 7 Dense Network
BERT [11] 3 7 3 3 3 Transformer

Encoder
USE [12] 3 3 3 3 7 Transformers,

DAN
S-BERT
[13]

7 3 3 3 3 Transformers

group from Facebook AI Research. FastText[8], a super-fast model includes generating

words representation that didn’t appear at the time of training, also known as the out-of-

vocabulary phenomenon.

Several works came up with the intuition of unsupervised learning with a super

vision of sentiment and semantic knowledge. The state-of-art-model ElMoPeters:2018,

is a bi-directional language models compute embedding in two states. ElMo (Embedding

for language model) takes characters as inputs instead of a word, thus increase the out-of-

vocabulary as FastText by considering sub-words. Later on, a novel approach of multi-

tasking came into existence i.e which can do both unsupervised and supervised learning.

Universal sentence embedding[12] computes the embedding vector for an entire sentence

not just a word or a character, this helps to improve the model to include the context

of the sentence. Recently [14] has published an Evaluation of sentence embeddings in

downstream and linguistic probing tasks, this nice work by them compares on different

techniques and pre-trained model details.
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Talking about the text classifiers, there are a lot of text classifiers used widely.

Among them are Deep Neural Network classifier(DNN Classifier), support vector ma-

chines, nearest neighbors, naive-Bayes, decision trees, etc. While each has its advantage

over others, choosing a better classifier among them is a challenging task.

Text Classification Using Machine Learning Techniques[15] has an apt distinguish

between different text classifiers. It concludes a combined approach of any classifiers has

superior performance when compared with an individual classifier.

Doc2vec is one of the first sentence embedding techniques, [16] this is an unsu-

pervised algorithm.

2.1.2 Zero-Shot Learning

In [17], a method for word embedding with LSTM network and aspect-based

LSTM was proposed for Zero-Shot multiclass classification by learning the relationship

between a sentence and embedding of sentence’s tags and applying it for inferencing with

unseen sentences and tags into the same embedding space.

In [18], a Discriminative and Generative LSTM model was proposed for ZSL with

label-embedding space as an auxiliary task.

In [19], a neural architecture was proposed for handling a few- and zero-shot la-

bels in the multi-label setting in the form of a DAG for tags with their natural language

descriptor.
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In [20], a zero-shot text classification framework was designed using data aug-

mentation and feature augmentation. For an efficient ZSL, semantic knowledge, includ-

ing word embeddings, class descriptions, class hierarchy, and a general knowledge graph,

were incorporated into the proposed framework.

In [21], natural language descriptions were mapped to probabilistic assertions

grounded in latent class labels. A classifier has been trained with quantitative constraints

for guiding predictions from the learned models. A ZSL method was proposed for seman-

tic utterance classification (SUC) by linking categories and utterances through a semantic

space [22]. The discriminative semantic features were learned without supervision and

will guide the learning of the semantic features.

A latent feature generation framework was proposed for generalized zero-shot

learning (GZSL) that aims at improving the prediction on codes for the diagnoses of

diseases [23]. For improved semantic consistency between the generated features and real

features of the International Classification of Diseases (ICD), an adversarial generative

model was designed for the GZSL on multi-label text classification.

A joint space of embedding documents and labels was designed for multi-label

text and ZSL classification [24]. The zero-shot learning algorithm has been applied to

the multi-label classification task in Medical Subject Headings (MeSH) assignment for

biomedical publications.
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CHAPTER 3

LITERATURE ON DOCUMENT EMBEDDINGS

3.1 Supervised Embedding Techniques

Supervised techniques make full use of the labeled data available to create the

representation of its learning. The quality and heartiness of these techniques in this way

depend intensely on the learning structure, yet additionally on how well the misleadingly

planned learning objective requires or achieves the learning of significant highlights or

information that would demonstrate valuable in different downstream undertakings. Ex-

pectations are reached by capturing the semantic and synthetic meaning of the words or

content in a text document. Thus, some evaluations proved these techniques focus on rich

learning information. Below are some of the existing embedding approaches that follow

supervised learning architecture. These techniques are designed to make use of the in-

depth neural network information in generating the mathematical embedded information.

3.1.1 Learning Text Representations from Labeled Data

This one of the first techniques developed to generate the sentence embedded in-

formation from the labeled set of data. [25] and [26] are the first one’s made use of the

different neural network fashion in generating the text representations overcoming the

more general techniques of representation words using Word2Vec. [7] developed recur-

rent neural network encoder-decoder based representations where the encoder tries to map
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the sequence between the uneven length of input with a specific size of vector and decoder

maps the vector to the desired target sequence. The RNN-encoder-decoder has some hid-

den layers in between to enhance the training time and capacity of the memory. Later

works focus on predicting the next series occurring using long-short term methodology.

The ideology of using an LSTM is to handle the sequence to sequence problems. The

input is read word by word and make a high fixed dimensional vector and also to extract

the output from it.

3.1.2 Supervised Sentence Embedding using task-specific Data

A typical directed strategy to create record embeddings utilizes different neural

system models, learning composition patterns that map word vectors to document vectors,

and are passed to a supervised task that depends on a label of the class back-propagate

through the composition weights. Therefore, most of all hidden layers of a network can be

considered to generate a vector representation embedding for input document data. [27]

have rigors ways of learning sentence vector embeddings based on word vectors and a

supervised learning task Several other approaches have been developed for learning com-

position patterns/operators that map word vectors to sentence vectors, including recursive

neural networks, recurrent networks, convolutional networks, and recursive-convolutional

architecture others. All of these architectures produce sentence representations that pass

on to a supervised task, and they depend on a class label to regenerate through the com-

position weights. Consequently, the methods learn high-quality sentence representations

but tuned in such a way that they can only use them for a respective task. The paragraph
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vector is proposed as an alternative to the above models because it can learn unsupervised

sentence representations by introducing a distributed sentence indicator as part of a neural

language model.

Skip-thought proposes a new architecture of learning the embeddings without the

specific contest, and it is entirely unsupervised. Means, instead of making use of a word

to predict its surrounding meaning, the authors in [28] encoded a sentence to predict the

other sentences around it. Thus, any composition operator can act as a sentence encoder,

and only the objective function becomes modified. Hence came in the name skip-thought

vectors, more information can be seen in the following sections.

3.1.3 Transfer learning for sentence Representations

Distributed representations of words, also called word embedding, have appeared

to give valuable highlights to different natural language processing phenomena and com-

puter vision tasks. While there is an agreement concerning the support of word embed-

dings and how to learn them, this isn’t yet clear to portrayals that convey the importance

of a full sentence. That is, the way to catch the connections among different words and

phrases in a single vector stays an inquiry to illuminate. In this [29], the authors proposed

a new technique of learning the sentence representation in a supervised way, i.e., a sen-

tence encoder model trained on a large corpus and subsequently transferred to other tasks.

To perform this, the immediate two questions to be solved, build such an encoder, namely:

what is the preferable neural network architecture, and how and on what task should such

a network be trained. The authors then investigated whether supervised learning can be
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leveraged instead of the pre-trained model before being transferred. The evaluations show

that the sentence embeddings, which trained on various supervised tasks, have best trans-

fer accuracy results from that of the sentence embeddings generated from models trained

on a natural language inference (NLI) task.

3.1.4 Universal Sentence Encoder

Universal sentence encoder[12] works on two main concepts: the Transformer

model and the Deep Averaging Network. Both of the designed models allow multi-task

learning, with supported tasks including a skip-thought like a task for unsupervised learn-

ing, a conversational input-response task for the inclusion of parsed conversational data;

and classification tasks for training on supervised data. The authors focus on different

experiments with transfer learning tasks and benchmark their models versus simple Con-

volutional neural networks and deep averaging network baselines.

Universal sentence encoder converts the sentence into a 512-dimensional vector,

which internally transforms the input document into chunks of words, so it can at times

work as sentence-to-vector and also word-to-vector. It considers the whole document’s

data but doesn’t concentrate on the order of the sentence, though it focuses on the sen-

tences’ segmentation.

The design model creates embeddings for sentences using the encoding sub-graph

architecture from the transformer. The encoder uses an attention technique to compute

context-aware representations of words in a sentence that considers both the order and

identity of other words. The context-aware word representations are averaged along to
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obtain a sentence-level embedding. Whereas in the DAN model, presented in [30], the

input of words and bi-grams were first averaged together and then moved through a feed-

forward deep neural network (DNN) to generate sentence embeddings for the given data.

3.2 Unsupervised Embedding Techniques

3.2.1 N-grams based Embedding Mechanism

Inspiration from pre-trained word to vector concept leads to training bi-grams and

tri-grams embedding. N-grams are defined as a combination of 1,2....N words. This tech-

nique has extended word2vec’s skip gram-model to handle the small number of sentences

or short phrases. This n-gram based embedding technique tries to capture the context of

a single word with others in the sentence, unlike the bag-of-words approach. Since the

meaning is already achieved, it makes things easy to work with unlabeled data.

3.2.2 Shared representation of words and phrases

There is an exceptionally natural approach to build document embeddings from

meaningful word embeddings: Given a sequence of words, play out some vector math-

ematics on all the vectors relating to the expressions of the document, to sum up, them

into a single large vector in the equivalent installing space; two such standard outline

administrators are sum and aggregation.

[31] describe a Siamese CBOW (continuous bag of words) architecture, an effi-

cient neural network model for obtaining high-quality word embeddings to get directly

optimized sentence representations from it. This setting of averaging words embeddings
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and making better optimized to representation out of it has shown better evaluation results.

[31] had evaluated this technique on 20 different data sets and has proven the sharing of

word representation outperforms the concept, naturally choosing the representation for of

single word.

After a series of years [32] have performed unsupervised evaluations on CBOW

and skip-gram based embeddings architecture. His evaluations have shown good results

for sentence representations using shared words concept.

3.2.3 Sentence to vector

This technique is pretty much a combination of section 3.2.1 and 3.2.2 approaches:

The classic C-BOW model of word2vec is extended to consider word n-grams and explore

the options to optimize the word (and n-grams) embeddings to aggregate them to yield

sentence or phrase vectors. Sentence to vector, in short, also called sent2vec, can also

be described as an unsupervised model of fastText [8] where the single text sentence or

phrase is the context, and all the possible label words are determined to be vocabulary.

In addition to this, the input sub-sampling technique removed; instead, the architecture

considers the entire phrase in context. This implies both that (a) the utilization of regular

word sub-sampling is disposed of so as not to forestall the age of n-grams highlights

and (b) the dynamic setting windows utilized by word2vec are carried off. The whole

sentence considers as the setting window, rather than testing the setting window size for

each sub-sampled word consistently among one and the length of the current sentence.
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3.2.4 Paragraph vector Technique

Sometimes referred to as doc2vec or paragraph to vector representations, the

method presented in [16] is mostly the first attempt to generalize word2vec to work with

word sequences. The authors introduce two variants of the paragraph vectors model: Dis-

tributed Memory and Distributed Bag-of-Words.

The distributed memory(DM) model uses the standard encoder-decoder model,

which most embedding techniques are built on. DM arguments encoder-decoder by

adding a memory vector to capture the topic of the paragraph is focused on, or the context

from the input data. The training task here is quite the same as that of any continuous bag

of word architecture. Expecting the context words are the other words, not the surround-

ing words in document or paragraph.

The second proposed variant of paragraph vectors, distributed bag-of-words, as

from its name, this is parallel to word2vec’s skip-gram architecture. The work of the

classifier is to predict a single context word using only the paragraph vector. At each step

of stochastic gradient descent, a text window is sampled, then a single random word is

obtained from that window. Apart from this rest of the architecture and training are sim-

ilar, except that word vectors are not jointly learned along with paragraph vectors, which

makes both memory and run-time performance of the distributed bag of word architecture

better.
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3.2.5 Document vector (Doc2Vec)

Unline the paragraph vectors, Doc2Vec tries to use both averaging the words and

directly send the context of the words to the classifier. Doc2Vec represents each document

as an average of the embeddings of words randomly sampled from the text. The fusion

layer between the document vector and the word vector tries to catch in the information

required by a classifier to generate the next words’ prediction in the sequence of the

sentence.

3.2.6 Skip-Thought Vectors

The authors in [28] presented another early attempt to generalize word2vec. The

research works mostly extend word2vec â especially the skip-gram architecture in an in-

tuitive way. The base unit in their innovation is now sentencing, and an encoded sentence

is used to predict the sentences around it. The vector representations are learned using

an encoder-decoder model trained on the above phenomena. This architecture is built on

the use of an RNN encoder with GRU activations and RNN decoders with a conditional

GRU. Two different decoders are trained for the previous and next sentences since the

input is a sentence, and predictions around are the following sentence.

The skip-thought encoder [28] uses a word embedding layer for the conversion of

each input word of the sentence to its corresponding word embedding, effectively turning

the input sentence of a document into a sequence of continuous word embeddings. This

embedding layer has also been shared with both of the decoders.
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3.2.7 Bidirectional Encoder Text Representations

Bidirectional encoder Text Representations(BERT)[11] is built of the transformer.

Transformers are mainly used for an attention mechanism that tries to learn the contextual

relations between words (or sub-words) in a text. The nature of a transformer includes

two separate mechanisms, an encoder that takes and reads the text input and a decoder

that, in general, produces a prediction for the task. Since BERT’s goal will be likely to

generate a language model, only the encoder mechanism is necessary.

Rather than directional models, which read the content information successively

from left-to-right or right-to-left, the transformer encoder concentrates on the entire se-

quence of words. Along these lines, it is viewed as bidirectional; however, it would be

more exact to state that it’s non-directional. This trademark permits the model to become

familiar with the setting of a word dependent on the entirety of its environmental factors

(left and right of the word). Also proved to BERT is a sequential embedding technique

since tracks of the sequence in terms.

3.2.8 Sentence BERT

While a vanilla BERT [11], also called the traditional BERT, can be used for en-

coding the sentences, the embeddings generated by it are not robust. The samples deemed

similar by the model are often more lexically than semantically related. Small perturba-

tions in input samples result in significant changes in predicted similarity. Hence a new

concept is created to generate sentence embeddings using BERT, i.e., a Siamese network
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with BERT designed under Sentence-BERT[13] also referred to as S-BERT. Sentence-

BERT is a fine-tuned pre-trained BERT using the siamese and triplet system. It is ob-

tained by adding a pooling layer to the BERT model’s output to extract some semantical

similarity comparison within a vector space that can be used to compare with cosine sim-

ilarity function. While comparing the Bert with SBERT following things are the major

drawbacks of BERT, which overcame the introduction of the SBERT. BERT uses cross-

encoder networks that take two sentences as input for the transformer network and then

predict a target value. BERT can achieve a state of the art performance on semantic textual

similarity tasks, but to do this, both sentences must be passed through the full network.

For example, in a corpus consisting of 10000 sentences, finding similar pairs of sen-

tences requires about 50 million inference computations taking approximately 65 hours.

Sentence-BERT impressively can provide the encodings for 10000 sentences in about 5

seconds. SBERT is a so-called twin network which allows it to process two sentences

in the same way, simultaneously. These two twins are identical down to every parameter

(their weight is tied), which allows us to think about this architecture as a single model

used multiple times.
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CHAPTER 4

PROPOSED FRAMEWORK

The Framework we proposed is a combination of the feature space, model net-

work, and the class representative. The CRL is the signature of the Class that uses to

make for the network do make decisions. CR symbols the Class and the unseen perspec-

tives try to find combinations from the signatures to validate the data. The input to the

learner network is rich in content; it focuses on the data that is more important in the entire

data point and is carry free about the other content. Figure 3 is an example from a class

data point(i.e., one email document from 20 Newsgroup dataset) and the colored words

are the ones that the embedder tries to focus on to learn the content of a text document

that is useful enough to represent the entire context. The learner network tries to degrade

the information to the usability and prompts for the class representative learning.

4.1 Framework Architecture

Class Representative Learning (CRL) Framework consists of three main steps (as

shown in Figure 4). The first step is Sentence Encoder (SE), which transforms given doc-

uments to feature matrix. The second step is Learner Network (LN), which learns better

intermediate feature vectors by taking the document feature matrix from SE as the input

and mapping them to seen classes Sc. The third step is Class Representative Generation

(CRG), which takes both the seen Sc and unseen Uc classes through the pre-trained SE
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Figure 3: Example of CRL based Classification

Figure 4: Class Representative - Text Classification
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and LN and extracts an intermediate feature vector to create Class Representatives CR.

Ei
k = SE(Ti)

CRi = LN(Ei
k)y
∗

(4.1)

The equation 4.1 describes the method of generating the class representatives for each

class from using the information from sentence encoder and learner network, where Ei
k

denotes the embedding matrix obtained from T documents processed by sentence encoder

SE(Ti). The CRi consists of seen and unseen class information Sc ∪ Uc retrieved from

the learner network LN(Ei
k)y
∗.

Notation Description
T n Input Documents
Sc Seen Classes
Uc Unseen Classes
Ek Document Embedding Matrix

with k dimensions
Sf(.) Sentence Encoder
Lf(.) Learner network
CR class representatives

Table 2: Description of mathematical notations used

4.1.1 Sentence Encoder

Sentence Encoder (SE) is the first step of our framework, which focuses on con-

verting sentences to encoded vectors. We consider a set of n text documents T =

T 1, T 2, .., T n as an input set, and convert the text document T into Document Embed-

ded Matrix Ek Equation 4.2 shows the transformation of each text T i, where i ∈ n to
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Figure 5: Universal sentence encoder based on DAN

Document Embedded Vector Ei
k through Sentence Encoder Function Sf(.)

Ei
k = SE(T i) (4.2)

The Document Embedded Matrix Ek consists of n Document Embedded Vector

Ei
k, where i ∈ n with the corresponding class label yi where yi ∈ S. The dimension of

the Document Embedded Matrix k is dependent on which a sentence encoder is used for

transformation. In this paper, we have carefully considered one of the existing framework,

Universal Sentence Encoder (USE), as the sentence encoder. USE encodes text into high-

dimensional vectors, where the model is trained and optimized for sentences, phrases,

and short paragraphs. [12] has introduced two mechanisms for USE, one is with using

the transformer[33] and other is with Deep Averaging network [30]. The USE’s Deep

Averaging Network model is used as part of our CRL Model.

Deep Averaging Network averages the input embedding of the words and bi-grams

together, and then the average embedding is passed through a feed-forward network [30].
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4.1.2 Learner Network

Learner Network (LN) can be on any neural network model aiming to build a ZSL

model with the seen classes S for predicting class labels of the documents for unseen

classes U . In this paper, we introduce a Three-Layer Deep Neural Network(DNN) for the

learner network, as shown in Figure 4. The DNN consists of two dense layers coupled

with the rectified linear unit (ReLU) activation function and the final layer for the seen

classes.

Two dense layers are based on the non-linear activation function. Equation 4.3

shows the non-linear mapping function DL(.), which incorporates both the dense lay-

ers. The ReLU activation function was implemented element-wise over the each feature

vector Di
k in Document Feature Matrix Dk. Each element in Dk is represented as x in

Equation 4.3. The weights and biases of an dense layer 1 & 2 are represented as (W1, b1)

& (W2, b2), respectively.

DL(Di
k) = W T

2 max{0,W T
1 x+ b1}+ b2 (4.3)

The final layer is a multi-class probabilistic classifier that produces a S-dimensional

vector of probabilities p for each feature vector Di
k from Document Feature Matrix Dk,

where i ∈ n, as shown in Equation 4.4.

p(Di
k) = SoftMax(DL(.)) (4.4)

The layer of SoftMax is calculated for the seen classes S. During the Learner

Network training, the model is building based on the seen classes’ data. The probability

calculated in Equation 4.4 is used just to facilitate the binary cross-entropy loss function.
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Unlike the general neural network model, in the CRL framework, the CRs play class-base

discriminant roles in the final classification instead of the Softmax regression.

As shown in Equation 4.5, we aim at learning the non-linear mapping DL(.), i.e.,

obtaining network weights W1 and W2 using Binary Cross-Entropy Loss. Binary Cross-

Entropy Loss (L(.)) sets up a binary classification problem between C
′
= 2 classes for

every class in Seen Class Set S. Equation 4.5 shows the minimization function across the

weights W1 and W2 (shown as W ) with the Loss function, which takes each Document

Feature Vector Dki with the corresponding label yi as the input. (Note: yie is the one-hot

encoded version of the label.)

min
W

n∑
i=1

L(Di
k, y

i
e)

L(Di
k, y

i
e) = −

C′=2∑
i=1

yielog(p(D
i
k))

(4.5)

4.2 CR Generation

Class Representatives (CRs) are generated using the nearest prototype strategy by

aggregating feature vectors and is independent of the Learner Network. The closest mean

feature vector with instances of the given Class (i.e., CRs) is computed Class by Class.

To generate CRs, an average mean operation with feature maps was used to summarize

the classes’ instances. For each Class, the instances of features in the feature maps are

aggregated into an abstract mean feature. The class representative(CR) is an aggregated

vector of the mean features from all the elements in the feature maps. The feature maps are

generated from a dense layer of the DNN network. The Class Representative is generated
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Figure 6: Workflow of class representative generation

for both Seen S and Unseen U classes using the pre-trained Sentence Encoder (SE) and

pre-trained Learner Network (LN) from the previous steps. In this stage, we consider the

non-linear mapping DL(.) from Equation 4.3 as the intermediate feature layer.

More specifically, we computed an aggregative measure (i.e., the mean of the

orientation of the vectors) using the high dimensional feature maps (e.g., 12K for a CNN

layer) using the cosine similarity measure.

For the CR Generation, we considered the transformed Target Dataset D̂t as the

input. As we emphasis on the parallelism, we considered the individual activation vector

â(x(i)) such that yi = c, that will be used in formulating the CR as shown in Equation 4.6.

CR(c) = {CR1, CR2, ..., CRl}

CRj =
1

Nc

l∑
j=1

DL(Di
k)

(4.6)

where j ranges from 1 to l representing the feature dimensions, c is the class of the input
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Figure 7: Architecture of class representative inferencing with Unseen class data

text and c ∈ S ∪ U , and Nc is the number of data points for the class c. Class Represen-

tative of the given class c is represented as the group of CR features values CRj where

j ranges from 1 to l feature dimensions. CRj is generated from the mean of DL(.) with

pre-trained weights of every input document Di
k in a given class c as shown in Equation

4.6. Each class c in Seen and Unseen Classes (S ∪ U ) has a CR generated at this stage.

4.3 CR Inferencing

The CR-based inferencing is matching the input data into the Class Representa-

tives (CRs) and classifying with the best matched CR to the input.The CR-based infer-

encing is parallel since the CRs are independent of each other.

cos(CR(c), NI) =
CR(c) ·NI

‖CR(c)‖ ‖NI‖ (4.7)

Steps for the CR-based inferencing. The input is vectorized using Equation 4.3:

NI = DL(Di
k). The cosine similarity between the new text document (NI) and Class

Representatives for class c (CR(c)), where c ∈ C is computed using Equation 4.7. The
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Figure 8: CR based inferencing example

CRL generated Model assigns the new inferencing input with the label associated with

Class C that has the greater cosine similarity value. Higher the cosine similarity score,

closer the Class Representative CR(c) and the new input (NI) in the Class Representative

Feature Space (CRFS).

ĉ =c∈S|c∈T {cos(CR(c), NI)} (4.8)

As shown in Equation 4.8, the label for the input from CRL Model ĉ is classified

by selecting the Class from all seen (source) classes S or all unseen (target) classes T that

has the highest cosine similarity to the new input. The CRL model will conduct inferring

by matching the new input against all the extracted CRs and label them with a class having

the highest cosine similarity score.

In figure 8 is an example of the CR based inferencing for an unseen class data

point.
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CHAPTER 5

RESULTS AND EVALUATIONS

5.1 Introduction

In this section, we discuss the results and evaluation of the proposed framework.

First, we describe the results of text classification with CRL setting using different embed-

ding techniques. Second, we show the accuracy results of zero-shot learning with CRL

on three benchmark datasets.

5.2 Data Preparation

Table 3 gives in an excellent idea about all the datasets which are used to evaluate

all different experiments. The more detailed information about datasets is mentioned

below.

5.2.1 IMDB Dataset

It is a large dataset representing a binary (positive or negative) sentiment for each

movie review. The IMDB dataset [34] sentiment analysis dataset consists of 100,000

movie reviews taken from the IMDB large movie rating and review site. One main aspect

of this dataset is that each movie review has several sentences. The IMDB dataset [35]

contains lowercase English reviews. The reviews are originally released in 2002, but

the cleaned and refined version was released in 2004. Author of the dataset named it

Polarity dataset. Dataset [35] contains movie reviews in two folders, one for negative
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Table 3: Statistics of Dataset used in Evaluation
Dataset Training Samples Testing Samples No. of Classes Experiments
IMDB 25000 25000 2 CRL

20 Newsgroup 11314 7352 20 ZSL, CRL
DBpedia 15410 9233 14 ZSL, CRL

reviews and positive reviews. The dataset provides 100,000 movie reviews, divided into

25,000 reviews for labeled training and testing, and 50,000 unlabeled instances. There

are two types of labels: Positive and Negative, and these labels are balanced in both

the training and the test sets. The dataset can be downloaded at Maas2011. This data

is already preprocessed with NLP techniques, including lemmatization and stemming,

segmentation, stop-word removal.

Table 4: IMDB dataset sample documents and class labels
Movie Review Label
An idiotic dentist finds out that his wife has been un-
faithful. So, no new storylines here. However, the
authors managed to create a stupid, disgusting film.

Negative

Wesker has to be the best character in the RE series, in
my opinion. The story amazed me and took many dif-
ferent twists that I wasn’t expecting. The only rating
this game deserves is great.

Positive

5.2.2 20 Newsgroup Dataset

It is a collection of approximately 20,000 newsgroup documents, partitioned (nearly)

evenly across 20 different newsgroups. These 20 different newsgroups are organized

according to their topic so that each group corresponds to a specific topic. Some of

them are very closely related to each other, for example, comp.sys.ibm.pc.hardware,
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comp.sys.mac.hardware, while others are highly unrelated, for example, misc.forsale,

soc.religion.christian. The dataset is divided into 11,314 training samples and 7,352 test-

ing samples.

5.2.3 DBpedia Dataset

The DBPedia dataset contains hierarchical classes representing the structured in-

formation from Wikipedia [35]. The DBPedia dataset is constructed by picking 14 non-

overlapping classes[36] from DBPedia 2014. From each of these 14 classes, the fields we

used for this dataset contain the title and abstract of each Wikipedia article.

5.3 Experiments and Evaluation

5.3.1 CRL Experiments for Classification

We have conducted experiments with four widely used embeddings in Table 5, to

know which embedding techniques are useful in building competent Class Representa-

tives (CRs). In this experiment, we have used both sentence-level embedding (e.g., USE)

and word-level embedding (e.g., GloVe [10], Word2Vec [9], NNLM) techniques to see

how the model might have to perform in the novel method for class representations. As

seen from Table 5, USE outperforms the word embedding techniques GloVe or Word2Vec

for the Class Representation Learning.

For this experiment (as shown in Table 6), the IMDB dataset was used as the base

model. The two benchmark datasets, 20Newsgroup, and IMDB, are used for training and

testing. Class Representatives (CRs) were generated for positive and negative categories
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Table 5: CRL Classification Testing Accuracy
Model 20 Newsgroup IMDB

Word2Vec +CRL 64.9% 54.2%
NNLM+ CRL 68.6% 58.6%
USE + CRL 79.3% 65.0%

USE+ DNN+ CRL 76% 64.2%

Table 6: CRL Classification Setting
Dataset Class Base Embedding
20NG 20 IMDB USE, NNLM,
IMDB 2 Word2Vec

for the IMDB movie reviews.

In this experiment, the four kinds of the CRL model have been built and evaluated.

Word2Vec+CRL: Word2Vec [9] computes high dimensional word vectors from a very

large corpus. High-quality word vectors were trained using a model architectures with the

CBOW and Skip-gram models. This model has been efficiently encoded in embedding

space to improve the semantic and syntactic generalizations by increasing the volume of

training data.

NNLM+CRL: A model architecture, called neural network language model (NNLM)

[37], was designed to learn both the word vector representation and a statistical language

model. The NNLM architecture is composed of a feed-forward neural network with a

linear projection layer and a non-linear hidden layer.

GloVe+CRL: GloVe [10] is a unsupervised learning approach for word representations

in a large corpus, rather than representing the entire sparse matrix or individual context

windows. GloVe leverages a word-word co-occurrence matrix using a global log-bilinear
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regression model and outperforms other models on word similarity and named entity de-

tection. The CRL has conducted with CRs generated from the GloVe embedding. In our

experiment, the classification with GloVe+CRL performed better than Word2Vec+CRL.

USE+CRL: Universal Sentence Encoder [12] provided sentence level embeddings for

transfer learning in a deep averaging network for NLP tasks. USE showed a better per-

formance in transfer learning with NLP tasks compared to word-level embeddings alone.

In the text classification, the CRL with USE embeddings showed the best performance

among the four different CRL models.

USE+DNN+CRL: For this experiment, we have also built a Deep neural network (DNN)

that is composed of two hidden units with dimensions as [500, 100] along with the input

and output layer. In this architecture (USE+DNN+CRL), (1) words classes were embed-

ded using USE, (2) they were learned in the DNN network for the conditional probability

of levels and words, (3) CR feature vectors were generated with the features extracted

from DNN, and (4) CRL was used to estimate the class-based model. For the DNN

training, 1000 epochs, i.e., 128,000 iterations with a batch size of 5 with 25000 training

samples.

5.3.2 CRL Experiment for Zero-Shot Learning

The second set of experiments focuses on applying the class representation tech-

nique for Zero-shot learning. For these experiments, we divide our dataset into seen and

unseen classes. Two different rates of unseen classes, 50%, and 25%, were chosen and the

corresponding sizes of a set of the seen classes and unseen classes are shown in Table 7.
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Figure 9: T-SNE Visualization for 20 Newsgroup Instances (USE+DNN+CRL)

Figure 10: Heatmap CR Visualization for 20 Newsgroup (USE+DNN+CRL)
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Table 7: Dataset for Zero-Shot Learning Evaluation
Dataset Unseen Split #Seen #Unseen
20NG 25% 15 5

50% 10 10
DBPedia 25% 11 3

50% 7 7

Table 8: CNN Architecture

Layer L1 L2 L3 L4 L5 L6
Name Conv1D Conv1D Conv1D Conv1D Conv1D Conv1D

Activation Shape 499 x 400 497 x 400 495 x 400 491 x 200 94 x 80 23 x 32
Activation Size 120400 160400 240400 400200 160160 8224

5.3.2.1 Comparison based on Learner Network

DNN Learner Network with Universal Sentence Encoder, as explained in Sec-

tion 4.1.2. For CNN Learner Network, we use 5-Layer Convolution Network with GloVe

based sentence encoder as the input. Table 8 and Table 9 show Layer-wise details of CNN

and DNN Learner Network, respectively.

Figure 11 shows the layer-wise accuracy of the corresponding layer shown in Ta-

ble 8 9. The evaluation is based on DBPedia and 20-NewsGroup Datasets. For evaluating

CRL in Zero-Shot Learning Setting, we use Convolution Neural Network and Deep Neu-

ral Network as Learner Network to validate.

USE+DNN+CRL: This model is what we proposed for Zero-Shot learning in this paper.

The framework of USE+DNN+CRL, as described in Section 4.1.2. The layer-wise details

of USE+DNN+CRL are shown in Table 9.
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Table 9: DNN Architecture
Layer L1 L2 L3
Name Embedding Dense Dense

Activation Shape 512 500 250
Activation Method N/A ReLU ReLU

Activation Size N/A 262656 134572

We have developed the CRL architecture with the three phases for Zero-Shot

Learning (ZSL), as shown in Figure 4. First, we have applied Universal Sentence En-

coder (USE), i.e., to extract features from our datasets. Second, after the embedding is

generated, deep learning has been implemented with the embedding. As per our knowl-

edge, there is no proper classification pre-trained model for text data. Thus, all the deep

neural networks we presented in our experiments have been implemented using Keras

[38] with the TensorFlow framework [39] as a back-end. Using the deep neural network

models as a base environment, we have built class representatives (CRs) with the feature

vectors using the source data for Zero-Shot Learning (ZSL). Our experiments in Table 10

show that the effectiveness of the transfer learning model, the pre-trained model of the

source domain, has successfully applied to the target domain.

Figure 9(a) shows the t-SNE visualization of the 20Newsgroup dataset for the

first, second, third layers of the CRL-ZSL architecture (USE+DNN+CRL) architecture,

respectively. TSNE Visualization shows the clarity obtained through instance grouping,

which corresponds to the Accuracy shown for each layer in Figure 11.

Figure 9(b) shows the similarity between Class Representatives are computed each

other using cosine similarity for the 20Newsgroup dataset using a heatmap. The darker
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blue group captured in the heatmap represents a similar CRs with a high similarity score.

GloVe+CNN+CRL:

GloVe [10] is an unsupervised learning approach for word representations in a

large corpus, rather than representing the entire sparse matrix or individual context win-

dows. GloVe leverages a word-word co-occurrence matrix using a global log-bilinear re-

gression model and outperforms other models on word similarity and named entity detec-

tion. The CRL has conducted with CRs generated from the model architecture of GloVe

embedding and Convolution Neural Network (CNN). The Convolution Neural Network

(CNN) is of 6-Layers. The first convolution is built on GloVe. We have used Glove em-

bedding here since the sentence level embedding doesn’t support convolution. A pooling

layer follows every two convolutional 1D layers, this model different pooling techniques

have been used, and we tried different hyperparameters for the CNN model. Convo-

lution expects to have a 3-dimensional embedding shape rather 2-dimensional for sen-

tence level. In our experiment, the classification with GloVe+CRL performed better than

Word2Vec+CRL. As shown in Figure 11, USE+DNN+CRL model clears out-performs

GloVe+CNN+CRL Model on both the datasets. Interestingly, in Classification Accuracy

we noted that USE+CRL performs better USE+DNN+CRL (See Table 5). Whereas in

Zero-Shot Learning USE+CRL i.e. Layer 1 in USE+DNN+CRL Model has atleast 5-

10% less accuracy compared than other layers on both the datasets.
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Figure 11: CNN/DNN Layer-based CRL Performance for ZSL with 20NG/DBP Datasets

5.3.2.2 Comparison with SOTA ZSL Model

GloVe+RNN+CRL: This Recurrent Neural Network (RNN) model is trained on GloVe

and is a combination of convolution and Bidirectional RNN layers. This model is more

potent since it is trained back and forth. The first dimension of the RNN is 128, which at

the final, is reduced to 32.

RNN AutoEncoder: RNN AutoEncoder was built based on a Seq2Seq model with

LSTM (512 hidden units), and is trained to encode documents and class labels on same

latent space. The cosine similarity was applied to predict a class label closest to the text

on the latent space.

USE+DNN+CRL: Unlike CNN or RNN, we trained the Dense Neural Network network

with Universal sentence embedding. The DNN network is a deep neural network with
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Table 10: Comparison of Zero-Shot Learning Models
Dataset Split(%) Category Label

Simi-
larity
[40]

RNN+FC
[17]

CNN+FC
[20]

CNN+ZSL
[20]

CRL+ZSL
(Ours)

20NG 75:25
Seen
Unseen
Overall

0.279
0.287
0.280

0.614
0.065
0.482

0.792
0.134
0.633

0.745
0.280
0.633

0.713
0.622
0.649

50:50
Seen
Unseen
Overall

0.293
0.266
0.280

0.709
0.052
0.381

0.684
0.126
0.405

0.767
0.168
0.469

0.646
0.629
0.616

DBPedia 75:25
Seen
Unseen
Overall

0.377
0.426
0.386

0.895
0.046
0.713

0.985
0.204
0.818

0.975
0.402
0.852

0.954
0.852
0.900

50:50
Seen
Unseen
Overall

0.401
0.369
0.386

0.960
0.044
0.052

0.991
0.069
0.530

0.982
0.197
0.590

0.944
0.878
0.929

three layers. The USE encoder is defined in 512 dimensions; these embeddings are further

reduced into smaller dimensions as specified in Table 9.

Label Similarity: [40] The label similarity model was previously introduced for predict-

ing unseen documents with labels using a semantic similarity between the label and the

corpus [40]. For the class prediction, the cosine similarity measure was used to compute

the similarity between class-based word embeddings and N-gram based word embed-

dings. The multi-label ZSL model [40] was revised to a single-label ZSL model and the

revised model was used in comparative evaluation in [20].

They used semantic embedding of labels and document words, predicting previ-

ously unseen labels based on the similarity between the label name and the document

words in this embedding.
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Table 11: CRL-ZSL: CRL Models for Zero-Shot Learning
Dataset Split Category GloVe+RNN+CRL GloVe+CNN+CRL USE+DNN+CRL
20NG 75:25 Seen 0.321 0.297 0.713

Unseen 0.181 0.192 0.622
Overall 0.236 0.233 0.649

50:50 Seen 0.234 0.196 0.646
Unseen 0.125 0.195 0.629
Overall 0.162 0.195 0.616

DBPedia 75:25 Seen 0.719 0.582 0.954
Unseen 0.601 0.412 0.852
Overall 0.654 0.482 0.900

50:50 Seen 0.762 0.582 0.944
Unseen 0.631 0.456 0.878
Overall 0.692 0.511 0.929

RNN+FC: [17] RNN+FC predicts unseen sentences by learning the relationship between

the sentences and embedding of their tags using an RNN layer with LSTM [17]. The

LSTM network is designed 512 hidden units together with two dense layers, having 400

and 100 units, respectively. This model is generalized to predict if a given sentence is

related to a tag or not, rather than classifying the sentence with a label. Training model

on a large group of sentences to learn the relationship between a sentence and embedding

of sentence’s tags. Learning such a relationship makes the model generalize to unseen

sentences, tags, and even new datasets provided they can be put into the same embedding

space. The model learns to predict whether a given sentence is related to a tag or not,

unlike other classifiers that learn to classify it as one of the possible classes. It uses an

RNN layer with LSTM(512 hidden units) followed by two dense layers with 400 and 100

units. Though this model training rate is high, the learning is very low, and also the seen

Accuracy in Table 10 is small when compared with that of RNN+FC [17] and high unseen
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Dataset 20NG DBPedia
50:50 75:25 50:50 75:25

AccS 0.603 0.671 0.859 0.907
AccU 0.346 0.455 0.724 0.765
HM 0.439 0.544 0.785 0.829

Table 12: Generalized Zero-Shot Learning

rate.

CNN+FC: CNN+FC was revised in [20] by replacing the LSTM in the LSTM+FC model

with a CNN for building the zero-shot classifier.The CNN+FC in the table has shown

increase in the accuracy for unseen rate and the training accuracy is 98%. Table 8 implies

layer-wise accuracy information for CNN+CRL. As the activation shape decreases the

learning rate is seen to increasing. We choose the best layer class representatives for

testing.

CNN+ZSL: [20] CNN+ZSL architecture has low learning rate for CR-based approach.

We observed that CNN architecture 8 has a good learning rate. We have used the same

architecture to train the model on seen, generated CR on top of it to see how they un-

derstand the unseen data. CNN+ZSL is a CNN-based two-phase framework using data

augmentation and feature augmentation [20]. For ZSL, semantic knowledge, including

word embeddings, class hierarchy, class descriptions, and a knowledge graph, are incor-

porated into the proposed framework.

As shown in Table 10, for comparison between SOTA Models, we report Seen

Accuracy, i.e. (S → S), Unseen Accuracy, i.e. (U → U ) and Overall Accuracy. The

Unseen Accuracy of USE+DNN+CRL clearly outperforms with a minimum of 40% in-

crease comparing to any other SOTA Model. The Seen Accuracy still lacks, especially
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Figure 12: Increasing instances for CR generation and change in accuracy

comparing to CNN+FC and CNN+ZSL models, but with only a maximum of 7% accuracy

drop.

DNN+GZSL: We have performed generalized zero-shot learning 12 evaluation along

with the zero-shot learning. GZSL assessment is quite different from that of the ZSL, i.e.,

the seen Accuracy is generated by comparing the seen test data S to seen(S) and unseen

(U) (S → S ∪ U ). In contrast, the unseen Accuracy is generated by matching the CR

produced to (U → S ∪ U ). In our case, the ZSL had a rise in the Accuracy of 2%

compared to GZSL.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, we proposed a novel class representative learning (CRL) framework

for ZSL-based text classification using sentence-level word embeddings and deep neural

network features. The CRL framework’s performance has been evaluated with various

embedding techniques such as Universal Sentence Encoder, Glove, Word2Vec for text

classification. The CRL framework has been evaluated for Zero-Shot Learning and Gen-

eralized Zero-Shot Learning problems that aims for effective transferring knowledge from

seen to unseen classes. We achieved the highest overall accuracy from the experiments

on three benchmark datasets across various domains compared with the state-of-the-art

Zero-Shot Learning and Generalized Zero-Short Learning algorithms.

6.2 Future Work

We are planning to extend our CRL framework to perform Zero-Shot Learning for

multi-modal classification with a more significant amount of mixed text and image data.
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