
Deep Reinforcement Scheduling for Mobile
Crowdsensing in Fog Computing

著者 LI He, OTA Kaoru, DONG Mianxiong
journal or
publication title

ACM TRANSACTIONS ON INTERNET TECHNOLOGY

volume 19
number 2
year 2019
URL http://hdl.handle.net/10258/00010299

doi: info:doi/10.1145/3234463

1

Deep Reinforcement Scheduling for Mobile Crowdsensing in
Fog Computing

HE LI, KAORU OTA, and MIANXIONG DONG, Muroran Institute of Technology, JAPAN

Mobile crowdsensing becomes a promising technology for the emerging Internet of Things (IoT)
applications in smart environments. Fog computing is enabling a new breed of IoT services, which
is also a new opportunity for mobile crowdsensing. Thus, in this paper, we introduce a framework
enabling mobile crowdsensing in fog environments with a hierarchical scheduling strategy. We
first introduce the crowdsensing framework that has a hierarchical structure to organize different
resources. Since different positions and performance of fog nodes influent the quality of service (QoS)
of IoT applications, we formulate a scheduling problem in the hierarchical fog structure and solve
it by using a deep reinforcement learning based strategy. From extensive simulation results, our
solution outperforms other scheduling solutions for mobile crowdsensing in the given fog computing
environment.

Additional Key Words and Phrases: Fog Computing, Mobile Crowdsensing, Deep Reinforcement

Learning

ACM Reference Format:
HE LI, KAORU OTA, and MIANXIONG DONG. 2018. Deep Reinforcement Scheduling for Mobile
Crowdsensing in Fog Computing. ACM Trans. Internet Technol. 1, 1, Article 1 (January 2018),
20 pages. https://doi.org/10.1145/3141249

1 INTRODUCTION

Mobile crowdsensing is an emerging technology to collect data and information from in-
dividual mobile devices for different interests [14, 25, 31]. Mobile crowdsensing provides
opportunities in many areas, such as public security, smart cities, disaster recovery and so
on. For example, it is possible to precisely map noise pollution by using data from GPS
receivers and microphones of smartphones [17].
A potential of mobile crowdsensing is collecting and analyzing multimedia data, e.g.,

images, videos, and voices, from smart devices to support graphically rich applications
[23, 35, 46]. However, the nonnegotiable overhead in transferring and processing multimedia
data limits applications of mobile crowdsensing, especially in real-time scenarios [21, 38, 49].
Fog computing offloads computing tasks from the cloud servers to fog nodes, which can

relieve the pressure of processing multimedia data in mobile crowdsensing [8, 11]. Meanwhile,
since fog nodes are usually much near to mobile devices, the network overhead in transferring

Authors’ address: HE LI, heli@mmm.muroran-it.ac.jp; KAORU OTA, ota@mmm.muroran-it.ac.jp; MIANX-

IONG DONG, mxdong@mmm.muroran-it.ac.jp, Muroran Institute of Technology, Mizumoto Cho 27-1,

Muroran, Hokkaido, 0508585, JAPAN.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned

by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.

© 2018 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing

Machinery.
1533-5399/2018/1-ART1 $15.00
https://doi.org/10.1145/3141249

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/3141249
https://doi.org/10.1145/3141249

1:2 HE LI, KAORU OTA, and MIANXIONG DONG

large multimedia data is reduced [47]. Therefore, fog computing is a promising technology
for mobile crowdsensing applications with multimedia information [5].

However, task scheduling is a perennial issue in most modern computing systems, and fog
computing is not exempt [47]. The complex structure of fog computing increases the difficulty
in scheduling mobile crowdsensing tasks [9]. Meanwhile, multimedia tasks are different from
traditional tasks, which needs different hardware such as graphics processing units (GPUs)
and computing models such as neural networks [26, 27]. Most existing scheduling techniques
are not acclimatized for scheduling mobile crowdsensing tasks in fog environments [10].
Most mobile crowdsensing applications will use hierarchical procedures in processing

multimedia information from unstructured data to textual information [2]. For example, in
processing images, applications will first recognize the objects in images and then execute
further computing [13]. In image recognition, an image data will be preprocessed into
different features for classification [40]. Fog computing has a hierarchical structure which
is appropriate for multimedia crowdsensing application [41]. For example, mobile devices
execute the collecting and coding, fog nodes execute preprocessing, and cloud servers execute
further computing [20]. Therefore, in this paper, we state a scheduling problem to optimize the
quality-of-service (QoS) of both mobile users and crowdsensing providers in this hierarchical
structure.

Furthermore, since there is no given structure or topology of fog computing, the scheduling
method needs more scalability and elasticity for mobile and heterogeneous environments. Most
scheduling methods focus on given structures such as fat-tree structures in data centers and
mesh structures in ad-hoc networks [1, 12, 29, 50]. We introduce a deep reinforcement learning
model into our hierarchical scheduling to self-adapt different structures and topologies of
fog computing after extensive training. In the performance evaluation, we compare the
performance of our solution and other methods in different fog computing structures, and
the results show the reinforcement learning concept improves the scheduling efficiency in
varying environments.

The main contributions of this paper are summarized as follows.

∙ We first state the scheduling issue of mobile crowdsensing tasks in fog computing with
multimedia data. We investigate the hierarchical structure of both fog computing and
multimedia processing.
∙ We then introduce deep reinforcement learning into the scheduling problem and propose
a scalable and elastic method to self-adapt varying fog computing structure and mobile
environments.
∙ We take the performance evaluation of our solution and other scheduling methods with
different settings of fog computing. From extensive simulation results, the proposed
deep reinforcement learning model shows good efficiency for scheduling crowdsensing
tasks in fog computing.

The remainder of this paper is organized as follows. Section 2 discussed the related works
of task scheduling in fog computing and reinforcement learning. Section 3 first presents
the hierarchical structure of fog computing and mobile crowdsensing, and then state the
scheduling problem. The deep reinforcement learning based scheduling solution is described in
Section 4. Section 5 evaluates the proposed scheduling method through extensive simulations.
Finally, this paper is concluded with future works in Section 6.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:3

2 RELATED WORK

In this section, we first introduce some recent works focusing on scheduling problems in fog
computing, and then discuss the technology of reinforcement based scheduling.

2.1 Scheduling Tasks in Fog Computing

Scheduling is an essential issue in fog computing because of complex and sophisticated
resource management. As well as cloud computing, it is important to provide scheduling tools
in fog computing [22]. Hong et al. proposed a programming model to support fog computing
in the Internet of Things (IoT) environment [19]. As a basic function, the programming
model provides high-level management interfaces for supporting programmable scheduling.
Users can develop different scheduling to improve the efficiency of resource management
with this programming model in fog computing.

Some fog computing systems are built by virtualization for good encapsulation and
migration. In virtualization-based fog computing such as GigaSight [36] and ThinkAir [24],
virtual machine placement and movement are usually the main approaches for scheduling
resources. However, most lightweight fog computing systems are hard to afford the additional
overhead brought by virtualization. Thus, our solution focuses on a compatible task scheduling
methodology for different implementations of fog computing.
Unlike general cloud computing, mobility is a critical issue in fog computing where few

general scheduling methods work correctly in a mobile environment. Bittencourt et al.
proposed a mobility-aware task scheduling in fog computing, which focused on the scheduling
consistency in mobile environments [8]. The scheduling method implemented an applicant
in each access point to maintain the task information during user movement. Our work also
includes the consideration of user mobility with a more efficient scheduling method.
Fog computing is usually deployed in heterogeneous environments which increases the

difficulty of resource management and task scheduling. Bossche et al. first introduced the
directed acyclic graph (DAG) into the task scheduling problem in a hybrid cloud environment
which is similar to the fog computing [7]. Thus, Pham et al. introduced DAG to formulate
the heterogeneous resources in fog computing and proposed a simple scheduling algorithm
to improve the efficiency of the task scheduling in fog computing [34].
More mathematical formulations are introduced for fog computing with heterogeneous

resources or user mobility. Sharma et al. introduced a probabilistic model into the con-
vergence of IoT and fog computing to improve the resource utilization efficiency [37]. The
probabilistic model is used to understand traffic features and dynamics in the heterogeneous
IoT environment. Meanwhile, a cooperative-based model is proposed to schedule IoT tasks
in fog computing and improve the quality of data collection [28]. The model focused on
the cooperation of mobile participants in the suburban regions. Based on the cooperative
relationship, it is possible to distribute smart sensors according to the population density.
In our work, we propose an elastic reinforcement learning method for the compatibility of
different heterogeneous and mobile environments instead of static mathematical formulations.
Since edge computing and fog computing have similar hierarchical structure, scheduling

methods in edge computing also provide some experiences to our work. Li et al. provide a
hierarchical scheduling for deep learning based IoT applications in edge computing, which
divided deep learning networks into different offloading layers [?]. Thus, it is possible to
offload a part of each deep learning task instead of the entire task into the edge node.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:4 HE LI, KAORU OTA, and MIANXIONG DONG

2.2 Reinforcement Learning based Scheduling

Reinforcement learning is a promising scheduling method in many real-time systems [18, 44,
45]. Usually, reinforcement learning is an efficient solution for a Markov decision process
(MDP) problem. In a general dynamic system, the outcome of each decision is partly random
and partly under control. MDPs model decision making in the dynamic system and the
decision-making problem can be transferred to an MDP problem, and a wide range of
optimization problems include task scheduling can be formulated as MDP problem.
Since it is very difficult to solve complex MDP problems, some early works try to apply

reinforcement learning in some simple scheduling problems such as multi-agent scheduling
and job-shop scheduling [3, 48]. These problems usually have two layers for task scheduling
and reinforcement learning, which is less than the number of layers in some ordinary fog
computing environments.
Glaubius et al. proposed a reinforcement learning based real-time scheduling in cyber-

physical systems [18]. The scheduling model can improve the system performance even
with limited information of tasks. The task scheduling model is formulated as an MDP
problem and solved via a successive elimination algorithm proposed by Even-Dar et al [16].
However, this approach only considered the relationship between tasks and jobs in resource
management while there are more problems such as mobility, localization, and heterogeneity
in fog computing.
Deep reinforcement learning brings new opportunities to the scheduling problems in

complex environments. Deep reinforcement learning achieved dramatically better results
than ordinary reinforcement approaches in some complex problems such as Atari games
and Go [32, 39]. Since deep reinforcement learning introduces deep neural networks to
learn representations from high-dimensional inputs, it is possible to solve problems in some
scenarios where making decisions will affect the state of the entire environment.

DeepRM is the first solution applying deep reinforcement learning for resource management
[30]. The authors transfer the resource and task management states into images as the
input of the deep neural network, which is more feasible for complex resource management
problems. Since the deep neural network has a higher capability for learning states from
complex resource management problems, some works introduced deep reinforcement learning
for scheduling resources in large-scale network systems [33, 42].

Atallah et al. proposed a deep reinforcement learning-based model in vehicular networks
to extend the lifetime of roadside units (RSUs) as well as to guarantee the quality of service
(Q levels [4]. The authors applied a traditional full-connected artificial neural network in
the deep reinforcement learning model. The stochastic gradient descent (SGD) method is
adopted for training the neural network.
However, the proposed model is not appropriate for a realistic environment due to the

hidden-layer based neural network design. In our work, we introduce a four layer convolutional
neural network (CNN) based model for the fog computing environment.

3 SCHEDULING PROBLEM

In this section, we first describe the hierarchical structures of fog computing and mobile
crowdsensing tasks. Then, we apply the MDP to formulate the mobile crowdsensing task
scheduling problem in fog computing.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:5

Cloud

Fog

Edge

Data Centers

Fog Nodes

Devices

Fig. 1. Hierarchical Structure of Fog Computing

3.1 Hierarchical Structure

Usually, fog computing has a hierarchical structure as shown in Fig. 1 including a cloud
layer, a fog layer, and an edge layer. In the cloud layer, cloud servers in data centers execute
the major computing of each service. In mobile crowdsensing, data analytics are usually
deployed in the cloud layer since sensed datasets are stored in the cloud servers. In the edge
layer, there are many types of smart devices such as smartwatches, smartphones, personal
computers and smart meters. These devices will sense different data in a mobile crowdsensing
scenario.
In traditional computing structures, all collected data will be directly sent to the cloud

layer for further processing. There are two problems in traditional cloud computing in the
mobile crowdsensing scenario. One problem is that the performance of network connections
between the cloud layer and the edge layer limits the amount of sensed data and increases
the latency in real-time analytics. Another problem is that the cloud servers are hard to
process all sensed data including some multimedia data.
Fog computing adds a fog layer between the cloud layer and the edge layer to offload

computing from the cloud layer as well as to preprocess the primary sensed data from the
edge layer. Fog nodes in the fog layer are usually deployed in the transmission paths between
edge devices and cloud servers and are closer to the edge layer. For example, carriers can
deploy the fog nodes in radio access networks (RANs) to reduce the traffic from RANs to
core networks.
In mobile crowdsensing, fog computing can improve the efficiency of data analytics and

reduce the inbound traffic of the cloud layer. As shown in Fig. 2, we use an example to
introduce the profits of fog computing for mobile crowdsensing. Flower recognition is a

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:6 HE LI, KAORU OTA, and MIANXIONG DONG

... ...

...

Sun flower

Environment

Image data

Deep neural network

Camera

Classifier

Data analyzing

Preprocessing

Data collecting

User devices

Data center

Edge

Cloud

Fog nodes

Neural layers
(Sub-steps)

Fig. 2. Hierarchical structure of a mobile crowdsensing task

popular application that some people want to know more about the environment. The flower
recognition application is very precise in recognizing different flowers and also provide a
good opportunity for mobile crowdsensing. When users upload flower photos to the cloud
layer, it is possible to analyze more information such as positions, flowering seasons and
vegetations.

However, analyzing image data is a costly task for the cloud servers. The size of image data
is also very large for transmission from devices to the cloud layer. Thus, in fog computing,
fog nodes first preprocess image data and extract some textual information and then transfer
the extracted information to the cloud layer, which improves the network efficiency and
relieve the computation pressure of cloud servers.
Most image recognition applications adopt deep learning networks to extract image

features for classification. The deep learning-based tasks also have a hierarchical structure
in processing procedures including a data collecting step, a preprocessing step and a data
analyzing step. For the flower recognition application, edge devices record and code the
flower image data in the data collecting step. In the preprocessing step, deep neural network-
based learning modules extract features from the image data. In the data analyzing step,

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:7

classifiers recognize the flower from the extracted features. Moreover, in the preprocessing
step, learning modules have multiple layers which can be divided into small sub-steps for
extracting features.
Therefore, whole or part of the preprocess step of a given mobile crowdsensing task can

be executed in any layers of fog computing. For example, edge devices can preprocess the
collected data before transferring with higher energy consumption. As a result, the mobile
crowdsensing task scheduling is a two-dimensional decision problem to decide the position
and layer for executing each step and sub-step in fog computing.

3.2 Problem Statement

In the task scheduling model, we use set 𝑈 to denote all users and 𝑢𝑖, 𝑖 ∈ {1, |𝑈 |} to denote

a user in 𝑈 . Each user 𝑢𝑖 has a sequence of tasks 𝑡𝑖,𝑗 |𝑗=∞
𝑗=1 . We first define indicator 𝑋𝑖,𝑗 to

denote whether a task is fulfilled, given by

𝑋𝑖,𝑗 =

{︂
1, if 𝑙𝑖,𝑗 ≤ 𝐿𝑖,
0, elsewise,

(1)

where 𝑙𝑖,𝑗 is the time to completion (TTC) of task 𝑡𝑖,𝑗 , and 𝐿𝑖 is the required TTC of user
𝑢𝑖.

If the fog computing system can complete a task before required TTC, the task is fulfilled.
There are many tasks of each user and it is hard to fulfill all tasks in the scheduling with
limited resources. Thus, for user 𝑢𝑖, we use the service fulfillment ratio 𝑄𝑖 to denote QoS,
defined as

𝑄𝑖 =

∑︀𝑁𝑖

𝑗=1 𝑋𝑖,𝑗

𝑁𝑖
(2)

where 𝑁𝑖 is the number of completed tasks of user 𝑢𝑖.

Task 𝑡𝑖,𝑗 has a sequence of steps 𝑠𝑖,𝑗,𝑘|
𝑘=𝐾𝑖,𝑗

𝑘=1 where 𝐾𝑖,𝑗 is the number of steps in task
𝑡𝑖,𝑗 . In sequence 𝑠𝑖,𝑗 , step 𝑠𝑖,𝑗,𝑘+1 will start after receiving all output data of step 𝑠𝑖,𝑗,𝑘. For
step 𝑠𝑖,𝑗,𝑘, there is an input data size 𝑑𝐼𝑖,𝑗,𝑘, an output data size 𝑑𝑂𝑖,𝑗,𝑘, and TTC 𝑐𝑖,𝑗,𝑘. We

assume there is no branch in tasks so that 𝑑𝑂𝑖,𝑗,𝑘 = 𝑑𝐼𝑖,𝑗,𝑘+1.
For a given fog computing system, we use set 𝐹 to denote all fog nodes and 𝑓𝑚 to denote

a node in set 𝐹 . The TTC of task 𝑡𝑖,𝑗 is calculated as

𝑙𝑖,𝑗 =

𝐾𝑖,𝑗−1∑︁
𝑘=1

(
𝑑𝑂𝑖,𝑗,𝑘

𝐵𝑖,𝑗,𝑘+1
+ 𝑐𝑖,𝑗,𝑘 + 𝛿𝑖,𝑗,𝑘+1) + 𝑐𝑖,𝑗,𝐾𝑖,𝑗 + 𝑤𝑖,𝑗 + 𝑣𝐼𝑖,𝑗 + 𝑣𝑂𝑖,𝑗 (3)

where 𝐵𝑖,𝑗,𝑘+1 is the bandwidth for step 𝑠𝑖,𝑗,𝑘, 𝛿𝑖,𝑗,𝑘+1 is the latency from step 𝑠𝑖,𝑗,𝑘 to step
𝑠𝑖,𝑗,𝑘+1, 𝑤𝑖,𝑗 is the waiting time for scheduling, 𝑣𝐼𝑖,𝑗 is the time for inputing data to step

𝑠𝑖,𝑗,1, and 𝑣𝑂𝑖,𝑗 is the time for inputing preprocessed data to the cloud.
In task scheduling, the scheduler usually slices time into time slots. We use 𝜏 to denote

the length of each time slot. We use 𝑏𝑖,𝑗 to denote the begin time of task 𝑡𝑖,𝑗 . In time slot
𝑛, we use a set 𝐹 𝑎

𝑛 to denote the available fog nodes, and a set 𝑇 𝑟
𝑛 to denote the tasks for

scheduling, given by

𝑇 𝑟
𝑛 =

⋃︁
𝑏𝑖,𝑗=𝑛

{𝑡𝑖,𝑗}. (4)

We analyze the impact of the task scheduling with rewards and costs in time slot 𝑛. Let
𝐴𝑛 denote the scheduling decision set and 𝑎𝑖,𝑗,𝑛 denote the decision for task 𝑡𝑖,𝑗 where
𝑏𝑖,𝑗 = 𝑛𝜏 . Decision 𝑎𝑖,𝑗,𝑛 = {𝑓𝑎

𝑖,𝑗,1, 𝑓
𝑎
𝑖,𝑗,2, ..., 𝑓

𝑎
𝑖,𝑗,𝐾𝑖,𝑗

} denotes assigned fog nodes for each step

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:8 HE LI, KAORU OTA, and MIANXIONG DONG

of task 𝑡𝑖,𝑗 in time slot 𝑛. In time period during the execution of step 𝑠𝑖,𝑗,𝑘, the assigned fog
node is not available, given by

𝑓𝑎
𝑖,𝑗,𝑘 ̸∈ 𝐹 𝑎

𝑛′ (5)

where 𝑛′ = [𝑛+ 𝛿𝑖,𝑗,𝑘−1 +
𝑑𝐼
𝑖,𝑗,𝑘

𝐵𝑖,𝑗,𝑘
, 𝑛+ 𝛿𝑖,𝑗,𝑘−1 +

𝑑𝐼
𝑖,𝑗,𝑘

𝐵𝑖,𝑗,𝑘
+ 𝑐𝑖,𝑗,𝑘], and 𝛿𝑖,𝑗,0 = 0.

In the task scheduling, since the bandwidth and latency between fog nodes and users are
varying because of the user mobility, time 𝑣𝐼𝑖,𝑗 is related to user 𝑢𝑖 and time slot 𝑛, given by

𝑣𝐼𝑖,𝑗 = 𝑉 (𝑓𝑎
𝑖,𝑗,1, 𝑛) (6)

where 𝑉 (·) is a function to calculate the total time for inputting data to step 𝑠𝑖,𝑗,1 from user
𝑢𝑖 in time slot 𝑛.

The bandwidth and latency for step 𝑠𝑖,𝑗,𝑘 are decided by fog node 𝑓𝑎
𝑖,𝑗,𝑘−1 and 𝑓𝑎

𝑖,𝑗,𝑘, given
by

𝐵𝑖,𝑗,𝑘 = 𝐵𝑓 (𝑓𝑎
𝑖,𝑗,𝑘−1, 𝑓

𝑎
𝑖,𝑗,𝑘), and (7)

𝛿𝑖,𝑗,𝑘 = 𝛿𝑓 (𝑓𝑎
𝑖,𝑗,𝑘−1, 𝑓

𝑎
𝑖,𝑗,𝑘) (8)

where function 𝐵𝑓 (·) and 𝛿𝑓 (·) denote the bandwidth and latency between two servers,
respectively.

We use 𝑋𝑛 to denote the scheduling state including assigned and available fog nodes from
time 𝑛 to 𝑛+𝑚𝑎𝑥(𝑛𝑎), where 𝑛𝑎 is the maximum TTC of steps assigned before time 𝑛.
The cost paid at time 𝑛 consists of three components, the TTC of each task in set 𝑇 𝑟

𝑛 ,
the expected bandwidth cost for submitting the output data after the executing tasks in set
𝑇 𝑟
𝑛 in fog nodes, and the amount of time for processing tasks in the cloud layer. The reward

of the mobile crowdsensing task is the uploaded information. In task scheduling, the reward
of task 𝑡𝑖,𝑗 is equal to 𝑑𝑂𝑖,𝑗,𝐾𝑖,𝑗

. Meanwhile, time 𝑣𝑂𝑖,𝑗 is decided by fog node 𝑓𝑎
𝑖,𝑗,𝐾𝑖,𝑗

, given by

𝑣𝑂𝑖,𝑗 =
𝑑𝑂𝑖,𝑗,𝐾𝑖,𝑗

𝐵𝑓 (𝑓𝑎
𝑖,𝑗,𝐾𝑖,𝑗

,C)
(9)

where C is the cloud layer.
Thus, we use reinforcement learning to maximize the total reward of the fog computing

system. Let 𝑟𝑛 denote the single step reward of the fog computing system, and let 𝑅𝑛 denote
the total future discounted reward, given by

𝑅𝑛 =

𝑁∑︁
𝑡=𝑛

𝛾𝑡−𝑛 · 𝑟𝑛 (10)

where 𝑁 is a target execution time of the fog computing system, 𝛾 is the discount factor.
Discounted factor 𝛾 is usually less than 1 in typical MDP formulation to make discounted
reward 𝑅𝑛 converge.

There are three goals in the task scheduling as follows.

∙ The scheduling guarantees the QoS of each user.
∙ The bandwidth cost from fog nodes to the cloud layer is minimized.
∙ The cloud layer executes minimum computing.

In mobile crowdsensing, each piece of user data, upload traffic and cloud resources can be
priced reasonably. Thus, we design a reward 𝑟𝑛 for all costs of bandwidth and computing at
time 𝑛 as

𝑟𝑛 =

|𝑈 |∑︁
𝑖=1

(𝛼 · 𝑑𝑂𝑖,𝑗,𝐾 ·𝑋𝑖,𝑗 − 𝛽 ·
𝐾𝑖,𝑗∑︁
𝑘=2

𝐵𝑖,𝑗,𝑘 − 𝜂 ·
𝐾𝑖,𝑗∑︁
𝑘=1

𝑐𝑖,𝑗,𝑘) (11)

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:9

Task scheduler

Task request queue

Mobile device

CPU DSP

Fog node

GPU CPU DSP

Fog node

GPU CPU DSP

Fog node

GPU

Core network

Base station

State input

Fog node manager

Fog node state information

Assignment

Learning network

Access network

Fig. 3. Processes of the deep reinforcement scheduling

where 𝛼, 𝛽 and 𝜂 are the unit price of user data, upload traffic, and fog processing, respectively.
Task scheduling problem for mobile crowdsensing in fog computing: given a set

of fog nodes and a set of users, the task scheduling problem attempts to assign fog nodes to
steps of each task submitted by users. In the scheduling, QoS of each user is guaranteed
with minimal computing and bandwidth costs.

4 DEEP REINFORCEMENT SCHEDULING

For solving the task scheduling problem in fog computing, we propose a deep reinforcement
scheduling solution shown in Fig. 3. We add a task scheduler to the cloud layer to decide
the scheduling strategy for the fog computing. The task scheduler consists of a task request
queue, a learning-based scheduling decider, and a fog node manager. When a mobile user
wants to upload data for mobile crowdsensing, the mobile device sends a request to the
task scheduler. The task scheduler will put all requests into a request queue for further
scheduling. If waiting time 𝑤𝑖,𝑗 of task 𝑡𝑖,𝑗 in the request queue exceeds 𝐿𝑖 − 𝑣′𝑖,𝑗 where 𝑣′𝑖,𝑗

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:10 HE LI, KAORU OTA, and MIANXIONG DONG

is time for inputing data from 𝑢𝑖 to the cloud layer, we assign the cloud layer for processing
task 𝑖, 𝑗 to meet the QoS requirement.
In task scheduling, the scheduler first collects the state information of all fog nodes and

task requests and then generates several scheduling decisions. For each decision, the scheduler
makes a state bitmap as the input of the learning network. The learning network inferences
the input and generates values of input scheduling decisions. The task scheduler selects and
sends the decision with the best value to the fog node manager. The fog node manager
assigns the fog nodes in the decision of the task request. After scheduling, the mobile device
uploads data to the fog node assigned for the first step of the required task.
The optimal scheduling needs a determined stationary policy denoted by 𝜋 that which

action 𝐴𝑛 should be applied at time 𝑛 for maximizing the reward and minimizing the cost.
Decision set 𝜋 is denoted by a sequence of functions {𝐴1, 𝐴2, 𝐴3, ..., 𝐴𝑁} where 𝐴𝑛 is a
function of the state 𝑋𝑛. We use set A𝑛 and X𝑛 to denote all admissible decisions and
states at time 𝑛, and A = {A1,A2, ...,A𝑁} and X = {X1,X2, ...,A𝑁} to denote decisions
and states in whole scheduling period. The goal of the scheduling is to find an optimal set 𝜋*

to maximum total discounted rewards. When the scheduling is following set 𝜋, the decision
at time 𝑛 is 𝐴𝑛 = 𝜋(𝑋𝑛). Thus, the reward of this decision is 𝑟𝑛 = 𝑟(𝑋𝑛, 𝜋(𝑋𝑛)) and the
optimal decision set is given by

𝜋* := argmax
𝜋∈Π

𝑅𝜋
𝑛, and (12)

𝑅𝜋
𝑛 =

𝑁∑︁
𝑡=𝑛

𝛾𝑡−𝑛 · 𝑟(𝑋𝑛, 𝜋(𝑋𝑛)) (13)

From reinforcement learning model [43], we use a 𝑄*(·) function to define the decision-
reward function defined by the maximum reward in state 𝑋𝑛 with an optimal decision 𝐴𝑛.
We get the 𝑄*(𝑋𝑛, 𝐴𝑛) from the Bellman optimality equation [6] as

𝑄*(𝑋𝑛, 𝐴𝑛) = E𝑋𝑛+1
[𝑟𝑛 + 𝛾 · max

𝐴𝑛+1

[𝑄*(𝑋𝑛+1, 𝐴𝑛+1)]|𝑋𝑛, 𝐴𝑛] (14)

where E is the expectation.
Traditional reinforcement learning will estimate the 𝑄* function iteratively with the

Bellman equation as

𝑄𝑖+1(𝑋𝑛, 𝐴𝑛) = E𝑋𝑛+1
[𝑟𝑛 + 𝛾 · max

𝐴𝑛+1

[𝑄𝑖(𝑋𝑛+1, 𝐴𝑛+1)]|𝑋𝑛, 𝐴𝑛] (15)

where 𝑖 is the number of iterations.
Thus, the optimal 𝑄* function will be covered by iterations of (15) as

𝑄𝑖 → 𝑄* as 𝑖←∞. (16)

However, the iterations are not practical since there is no general way to find the 𝑄
function which is estimated separately with different 𝜋. It needs function approximator to
estimate 𝑄* function as

𝑄(𝑋,𝐴; 𝜃) ≈ 𝑄*(𝑋𝑛, 𝐴𝑛) (17)

where 𝜃 is a sequence of approximation weights.
Traditional reinforcement learning usually adopts a linear function approximator while in

deep reinforcement learning, the approximator is non-linear with a deep neural network. In
our solution, we organize the approximation weights 𝜃 as a 𝑄-network to find the function
approximator. We define a loss function L𝑖(𝜃𝑖) that changes at the 𝑖th iteration as

L𝑖(𝜃𝑖) = E𝜌(𝑋𝑛,𝐴𝑛)[(𝑌𝑖 −𝑄(𝑋𝑛, 𝐴𝑛; 𝜃𝑖))
2] (18)

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:11

where

𝑌𝑖 = E𝑋𝑛+1
[𝑟𝑛 + 𝛾 ·𝑄(𝑋𝑛+1, 𝐴𝑛+1; 𝜃𝑖−1)|𝑋𝑛, 𝐴𝑛] (19)

is the target of the 𝑖th iteration and 𝜌(𝑋,𝐴) is a behavior distribution over sequences 𝑋 and
decisions 𝐴. We can iteratively train the 𝑄-network by minimizing a sequence of (18). We
maintain fixed parameters from the (𝑖− 1)th iteration in optimizing (18) in the 𝑖th iteration.
Since target 𝑌𝑖 depends on the value of approximation weight 𝜃𝑖−1, we use a gradient to
differentiate (18) as

∇𝜃𝑖 · L𝑖(𝜃𝑖) = E𝜌(𝑋𝑛,𝐴𝑛)[(𝑟𝑛 + 𝛾 ·𝑄(𝑋𝑛+1, 𝐴𝑛+1; 𝜃𝑖−1)
−𝑄(𝑋𝑛, 𝐴𝑛; 𝜃𝑖)) · ∇𝜃𝑖 ·𝑄(𝑋𝑛, 𝐴𝑛; 𝜃𝑖)].

(20)

We use the stochastic gradient descent (SGD) to optimize (18) instead of computing
the full expectations in (20) for simplifying the computation procedure. For building an
off-policy solution, we apply an 𝜖-greedy strategy to explore 𝜌(𝑋,𝐴). In the exploration, the
method learns the policy as

𝐴 = argmax
𝐴

𝑄(𝑋,𝐴; 𝜃) (21)

with probability 1− 𝜖 and selects a random decision with probability 𝜖.
As shown in Algorithm 1, we introduce the algorithm of the deep reinforcement scheduling

for mobile crowdsensing in fog computing. We first initial a replay buffer 𝑅 to store transitions
for mini-batch sampling. The buffer 𝑅 is used for storing previous experience during learning
the deep reinforcement learning model. Due to the low variance in immediate transitions,
it is necessary to use past experience to make the reinforcement learning model converge
quickly.

A 𝑄-network with random 𝜃 is built for the learning procedures. The algorithm performs
M iterations to find the optimal scheduling decisions. At the beginning of each iteration,
the algorithm will generate a state without any tasks. Then, the algorithm schedules tasks
from time 1 to 𝑁 . In the scheduling, an 𝜖-greedy strategy is performed to generate the
decision 𝐴𝑛. Thus, the reward is calculated with (11), and all fog nodes are assigned with
decision 𝐴𝑛. The algorithm calculates the new state 𝑋𝑛+1 with assigned fog nodes from
time 𝑛 + 1 to 𝑛 + 1 + 𝑚𝑎𝑥(𝑛𝑎). The transition (𝑋𝑛, 𝐴𝑛, 𝑟𝑛, 𝑋𝑛+1) is stored in buffer 𝑅.
Then, the algorithm loads |𝐵|, 1 ≤ |𝐵| ≤ 𝑘 transitions from buffer 𝑅 for the mini-batch
sampling. In the sampling, if the episode terminates, the output is set as 𝑟𝑖 otherwise
𝑟𝑖 + 𝛾 ·max𝐴𝑖+1

𝑄(𝑋𝑖+1, 𝐴𝑖+1; 𝜃𝑛−1). In sampling, the value of 𝜃𝑛 is updated by performing
the SGD. After sampling, the value of 𝜃𝑛−1 is updated by 𝜃𝑛.
In the practical application, we build a CNN to solve the scheduling problem. For input

of the CNN network, we design a bitmap structure to describe the fog node scheduling. In
a fog computing environment, each fog node is geographically distributed with different
network architectures. Although the distance between users and fog nodes is varying due
to user mobility, the connections between fog nodes are usually stable. Thus, we assume
max(𝐿𝑖) ≤ |𝐹 | and design a matrix of size [|𝐹 | × |𝐹 |] as the input of the CNN network. In
the fog node assignment, steps of the same task will be assigned to the same fog node or
neighbor fog nodes. Thus, we use same value to color fog nodes executing steps from the
same task in the matrix. As shown in Fig. 4, fog nodes 𝑓1, 𝑓2 and 𝑓3 at time 1, 3, 5 are
colored by red when executing step 𝑠1,𝑗,𝑛, 𝑠1,𝑗,𝑛+2 and 𝑠1,𝑗,𝑛+5 from user 𝑢1’s task 𝑡1,𝑗 .
With the input data structure, we build a four-layers neural network including two

convolution layers and two fully connected layers. As shown in Fig. 5, we use an example to
describe the structure of the deep learning network. In the example, we use a 64x64x4 bitmap
image with the input structure, which means there are 64 fog nodes and max(𝐿𝑖) = 64𝜏 .

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:12 HE LI, KAORU OTA, and MIANXIONG DONG

ALGORITHM 1: Deep Reinforcement Scheduling with Experience Relay

Initialize the replay buffer 𝑅;

Build a 𝑄-network with random 𝜃;

for k from 1 to M do
state 𝑋0 is set that no fog node is assigned;

for n from 1 to N do
𝑝𝜖 ← 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1);

if 𝑝𝜖 ≤ 1− 𝜖 then
𝐴𝑛 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑄(𝑋𝑛, 𝐴𝑛; 𝜃𝑛);

else
𝐴𝑛 is randomly selected from set A𝑛;

end
Observe reward 𝑟𝑛 and assigned fog nodes from time 𝑛+ 1 to 𝑛+ 1 +𝑚𝑎𝑥(𝑛𝑎) by
executing 𝐴𝑛;

Set 𝑋𝑛+1 ← {𝐹 − 𝐹 𝑎
𝑛+1, 𝐹 − 𝐹 𝑎

𝑛+2, .., 𝐹 − 𝐹 𝑎
𝑛+1+𝑚𝑎𝑥(𝑛𝑎)};

Store transition (𝑋𝑛, 𝐴𝑛, 𝑟𝑛, 𝑋𝑛+1) in 𝑅;

Sample transitions 𝐵 as mini-batch from 𝑅;

for i from 1 to |𝐵| do
if 𝑋𝑖+1 is the terminal state then

𝑌𝑖 ← 𝑟𝑖;

else
𝑌𝑖 ← 𝑟𝑖 + 𝛾 ·max𝐴𝑖+1 𝑄(𝑋𝑖+1, 𝐴𝑖+1; 𝜃𝑛−1) ;

end

Update 𝜃𝑛 by performing the SGD;

end
𝜃𝑛−1 ← 𝜃𝑛

end

end

Input at time n

n

n+1

n+2

n+3

n+4

f1 f2 f3 f4 f5

steps of t1,3

steps of t2,3

steps of t3,1

steps of t4,1

steps of t5,2

Fig. 4. Input structure of the state from time 𝑛 to 𝑛+ 4 for the CNN network

The four input images are generated by four different actions denoted by 𝐴1
𝑛, 𝐴

2
𝑛, 𝐴

3
𝑛 and

𝐴4
𝑛, respectively. The first convolutional layer uses 8× 8 filters with stride 4 for the input

images. There is also a nonlinear rectifier following the convolutional layer. The second
convolutional layer uses 4× 4 filters with stride 2, followed by a nonlinear rectifier. The third
layer is a general fully connected hidden layer consisting of 256 rectifier units. The output
layer is also a fully connected layer which outputs a single valid action. A difficulty is the
number of tasks beginning at time 𝑛. If there are multiple tasks beginning at the same time,

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:13

Convolutional layer 1 Convolutional layer 2 Fully connected layer 3

Output
Q(Xn, A1

n)

Q(Xn, A2
n)

Q(Xn, A3
n)

Fully
connected

Fully
connected

8x8x4 filter
stride 4

4x4x4 filter
stride 2

Input

Fig. 5. Deep learning network structure used in the deep reinforcement scheduling

the number of valid actions will be much larger than the number of possible outputs of the
neural network. In following experiments, we assume there is maximum 1 task beginning
at each time slot for scheduling. Since the number of layers in most modern deep neural
networks is no less than 100 and the traffic is reduced in the first several layers, we assume
the number of steps is no more than 3. In task scheduling, the assigned fog nodes are limited
to the nearby nodes in 1 hops. Therefore, the number of valid actions outputted by the last
layer is no more than 9.

We then discuss the time complexity of the proposed algorithm. For a single convolutional
layer 𝑚, the time complexity denoted by O𝑚 is given by 𝑂(M2 ·K2 ·C𝑖𝑛 ·C𝑜𝑢𝑡) where M
is the side length of the feature map, K is the side length of a kernel, C𝑖𝑛 is the number of
input channels and C𝑜𝑢𝑡 is the number of output channels. For the CCN model, the time

complex is 𝑂(
∑︀D

𝑙=1 O𝑚). Since we use a four layer CCN model, the time complex is 𝑂(X4)
where 𝑋 is the side length of the input matrix. Thus, the time complexity for scheduling
one task is 𝑂(|𝐹 |4) since the size of the state matrix is |𝐹 | × |𝐹 |.

5 PERFORMANCE EVALUATION

In this section, we first introduce the experiment settings and then analyze the experiment
results.

5.1 Experiment Settings

We take extensive simulations to evaluate our solutions. In all simulation, we build a simulator
with the Python 2.7 and networkx 1.6 on a workstation computer. The workstation computer
has an Intel Core™i7 4770 (8MB cache, up to 3.90GHz) CPU, 16GB memory, a 128GB SSD
and a 2TB hard-disk. The scheduler is developed in a server equipping an Intel Core™i7
7700 (8MB cache, up to 4.2GHz) CPU, 32GB memory, a 256GB SSD, a 3TB hard-disk and
a NVIDIA GeForce GTX 1080 (8GB Memory) graphics card. We installed Ubuntu 16.04.3
LTS as the operating system and Keras 2.0.6 as the neural networks API. In all experiments,
we use the RMSProp optimizer provided by Keras. The size of mini-batches is set to 32. The
value of 𝜖 for the 𝜖-greedy in Algorithm 1 is set to 0.1. The deep learning network is trained
1 million times. All input data are stored in the replay memory.

In all simulations, we use a tracing dataset from CRAWDAD, which records the activities
of 100 mobile devices at Massachusetts Institute of Technology (MIT) in nine months [15].
Thus, the number of users is set to 100, and the position of each user is decided with the
tracing data.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:14 HE LI, KAORU OTA, and MIANXIONG DONG

(a) AT&T Mobility

(b) T-mobile

Fig. 6. Cell towers near to MIT campus

As shown in Fig 6, we also investigate the positions of cell towers near to MIT campus
from Cellmapper, including towers of AT&T Mobility and T-mobile. Since there are five cell
towers from AT&T in Fig. 6(a) and five cell towers from T-mobile in Fig. 6(b), fog nodes
in simulations are distributed in 10 positions near to these cell towers. The number of fog
nodes is set from 10 to 50, while the number of fog nodes in the same position is from one
to five. The mobile users connect the nearest cell towers geographically. The bandwidth
between devices and fog nodes is distributed in [10, 35]Mbps for T-mobile, and [8, 32]Mbps
for AT&T Mobility.
The bandwidth between fog nodes from the same company is set to 10Gbps with 10ms

latency. The bandwidth between fog nodes and cloud servers is set to 1Gbps with 200ms
latency. Between fog nodes from different companies, the bandwidth is set to 500Mbps with
400ms latency.

We also test the upload data of some mobile crowdsensing applications and set the size
of the upload data of each task is distributed in [1, 10]MB and the size of the output data
is set to 1KB of each task. Each user randomly requires an upload task for the mobile
crowdsensing. The time interval of two tasks from the same user is distributed in [2, 4], [4,
6], [6, 8], [8, 10]seconds. The required TTC is set from one to five seconds, which is near to
the average page loading time.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:15

0 1000 2000 3000
Scheduling time (s)

0

50

100

150

200

Re
wa

rd
 (c

en
t) DFS

FIFO
RFG
OSA
DeepRM

(a) 10 fog nodes

0 1000 2000 3000
Scheduling time (s)

0

50

100

150

200

Re
wa

rd
 (c

en
t)

DFS
FIFO
RFG
OSA
DeepRM

(b) 20 fog nodes

0 1000 2000 3000
Scheduling time (s)

0

50

100

150

200

Re
wa

rd
 (c

en
t)

DFS
FIFO
RFG
OSA
DeepRM

(c) 30 fog nodes

0 1000 2000 3000
Scheduling time (s)

0

50

100

150

200

Re
wa

rd
 (c

en
t)

DFS
FIFO
RFG
OSA
DeepRM

(d) 40 fog nodes

0 1000 2000 3000
Scheduling time (s)

0

50

100

150

200

Re
wa

rd
 (c

en
t) DFS

FIFO
RFG
OSA
DeepRM

(e) 50 fog nodes

Fig. 7. Rewards with different numbers of fog node in the first hour

The price of the output data is set to 1.54e−5dollar/KB. After each step, the data size
is reduced 80 %. The computing cost of the cloud server is set to 0.003dollar per second
from the price of the Amazon EC2 p3.8xlarge instance. The cost of uploading traffic is set
to 2e−7dollar/KB from the price of dedicated Internet access service.

The length of a time slot is set to 100ms, and each task has three steps. The TTC of each
step is distributed from [100, 300]ms.
We also compare the performance of our work named deep reinforcement fog scheduling

(DFS) to following solutions.

∙ FIFO: the first in, first out strategy assigns the nearest fog nodes to tasks until there
is no available fog node. After that, the strategy sends all tasks to the cloud server.
∙ RFG: the reward first greedy strategy assigns fog nodes to tasks for maximizing reward
𝑟𝑛 at time 𝑛.
∙ OSA: the online scheduling algorithm assigns fog nodes to those tasks if the reward
becomes more than a threshold value. If the reward is lower than the threshold value,
the strategy submits the task to the cloud server.
∙ DeepRM: a resource management method with deep reinforcement learning [30]. We
modify the deep neural network of DeepRM for scheduling tasks in fog computing. We
use the same discount factor 𝛾 = 0.9 in the DeepRM as well as in our solution.

5.2 Numerical Results

For five different numbers of fog nodes in the simulation, we train five learning networks
for these settings. We test the rewards with different fog nodes. After training all learning
networks, we select one hour from the validation dataset as an example shown in Fig. 7. The
time interval of two tasks from the same user is distributed in [2,4] seconds. Our solution
performs better than other strategies with different numbers of fog nodes. Increased fog
nodes improves the performance of FIFO and RFG. From the results shown in Fig. 7(a), the
reward increasing rates of FIFO and RFG decrease after 500 seconds simulation with 10 fog

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

1:16 HE LI, KAORU OTA, and MIANXIONG DONG

[2,4] [4,6] [6,8] [8,10][10, 12]
Time interval (s)

500

1000

1500

2000

Re
wa

rd
 (c

en
t)

DFS
FIFO
RFG
OSA
DeepRM

(a) 10 fog nodes

[2,4] [4,6] [6,8] [8,10] [10, 12]
Time interval (s)

500

1000

1500

2000

Re
wa

rd
 (c

en
t)

DFS
FIFO
RFG
OSA
DeepRM

(b) 20 fog nodes

[2,4] [4,6] [6,8] [8,10][10, 12]
Time interval (s)

500

1000

1500

2000

Re
wa

rd
 (c

en
t) DFS

FIFO
RFG
OSA
DeepRM

(c) 30 fog nodes

[2,4] [4,6] [6,8] [8,10][10, 12]
Time interval (s)

500

1000

1500

2000

Re
wa

rd
 (c

en
t)

DFS
FIFO
RFG
OSA
DeepRM

(d) 40 fog nodes

[2,4] [4,6] [6,8] [8,10][10, 12]
Time interval (s)

500

1000

1500

2000

Re
wa

rd
 (c

en
t)

DFS
FIFO
RFG
OSA
DeepRM

(e) 50 fog nodes

Fig. 8. Rewards with different frequencies of crowdsensing task requiring in ten hours

nodes. When the number of fog nodes is increased to 20, the performance of FIFO and RFG
decreases after 900 seconds as shown in Fig. 7(b). When we increase the number of fog nodes
to 50, the reward increasing rates of FIFO and RFG decrease after 2000 seconds. As shown
in Fig. 7(e), RFG performs better than OSA before 3000 seconds with 50 fog nodes in the
simulation. Since FIFO and RFG assign as many fog nodes as possible to the tasks in online
scheduling, the performance will decrease quickly when there are not enough available fog
nodes. Since OSA reserves available fog nodes for the future tasks, there are always enough
fog nodes for future assignment. Due to the reinforcement scheduling can learn the optimal
decision for the future assignment after training, the performance of DFS and DeepRM is
better in the fog computing. Since we apply CNN instead of the hidden-layer-based deep
neural network in DeepRM, the performance of DFS is better than DeepRM in one-hour
experiments.
We also test the performance of four strategies in a longer period. We test the rewards

with different time intervals of two tasks from the same user. From the validation dataset,
we choose the user mobility records from 9:00 a.m. to 19 a.m. We execute each simulation 20
times and record the average value of the rewards. As shown in Fig. 8, we find the frequencies
of task requests obviously affect the performance of the scheduling. From the results in Fig.
8(a), the rewards decrease with longer intervals between task because the total amount of
tasks is decreased. When users upload data in a high frequency, the performance of DFS
and DeepRM is better than other solutions. The reward of DFS in 10 hours becomes more
than 2000 cents which is higher than the reward of DeepRM. The number of fog nodes
only affect slightly the performance of FIFO while other solutions perform similarly with
different numbers of fog nodes. The reward of FIFO increases with more fog nodes in the
experiment. The reward of FIFO is near to 500 cents with 10 fog nodes when the time
interval is distributed from two to four seconds. When the number of fog nodes increases to
50, the reward of FIFO is more than 550 cents. However, the number of fog nodes makes a
very small influence on the task scheduling in a long period.

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:17

As a result, the deep reinforcement scheduling shows promise for scheduling mobile
crowdsensing tasks in fog computing. Since the fog node brings an additional cost to the
service provider, it is hard to deploy enough fog nodes in access networks. For this issue, our
solution shows good performance with limited fog nodes based on real-time task scheduling.
Moreover, our solution can provide enough performance for processing user data with a high
data collection frequency in mobile crowdsensing.

6 CONCLUSION AND FEATURE WORK

This paper shows that it is possible to apply deep reinforcement learning concept to schedule
mobile crowdsensing tasks in fog computing. The results from extensive simulations show
that the deep reinforcement scheduling is better than traditional solutions for a given fog
computing environment. We plan to implement the strategy in a practical context that
learning task scheduling decisions directly from experiences can offer a good opportunity for
the future fog computing system.

ACKNOWLEDGMENTS

This work is supported by JSPS KAKENHI Grant Number JP16K00117, JP15K15976,
JP17K12669, and Research Fund for Postdoctoral Program of Muroran Institute of Technol-
ogy.

REFERENCES

[1] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, and Amin Vahdat.

2010. Hedera: Dynamic Flow Scheduling for Data Center Networks. In Proceedings of the 7th USENIX

Conference on Networked Systems Design and Implementation (NSDI’10). USENIX Association,
Berkeley, CA, USA, 19–19. http://dl.acm.org/citation.cfm?id=1855711.1855730

[2] M. A. Alsheikh, D. Niyato, S. Lin, H. p. Tan, and Z. Han. 2016. Mobile big data analytics using deep
learning and apache spark. IEEE Network 30, 3 (May 2016), 22–29. https://doi.org/10.1109/MNET.

2016.7474340

[3] S. Arai, K. Sycara, and T. R. Payne. 2000. Multi-agent reinforcement learning for planning and
scheduling multiple goals. In Proceedings Fourth International Conference on MultiAgent Systems.
359–360. https://doi.org/10.1109/ICMAS.2000.858474

[4] R. Atallah, C. Assi, and M. Khabbaz. 2017. Deep reinforcement learning-based scheduling for roadside
communication networks. In 2017 15th International Symposium on Modeling and Optimization in

Mobile, Ad Hoc, and Wireless Networks (WiOpt). 1–8. https://doi.org/10.23919/WIOPT.2017.7959912
[5] S. Basudan, X. Lin, and K. Sankaranarayanan. 2017. A Privacy-Preserving Vehicular Crowdsensing-

Based Road Surface Condition Monitoring System Using Fog Computing. IEEE Internet of Things

Journal 4, 3 (June 2017), 772–782. https://doi.org/10.1109/JIOT.2017.2666783
[6] Richard Bellman. 2013. Dynamic programming. Courier Corporation.
[7] K. Bessai, S. Youcef, A. Oulamara, C. Godart, and S. Nurcan. 2012. Bi-criteria Workflow Tasks

Allocation and Scheduling in Cloud Computing Environments. In 2012 IEEE Fifth International
Conference on Cloud Computing. 638–645. https://doi.org/10.1109/CLOUD.2012.83

[8] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar. 2017. Mobility-Aware

Application Scheduling in Fog Computing. IEEE Cloud Computing 4, 2 (March 2017), 26–35. https:
//doi.org/10.1109/MCC.2017.27

[9] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. 2014. Fog Computing: A Platform

for Internet of Things and Analytics. Springer International Publishing, Cham, 169–186. https:
//doi.org/10.1007/978-3-319-05029-4 7

[10] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog Computing and Its Role

in the Internet of Things. In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud
Computing (MCC ’12). ACM, New York, NY, USA, 13–16. https://doi.org/10.1145/2342509.2342513

[11] D. Bruneo, S. Distefano, F. Longo, G. Merlino, A. Puliafito, V. D’Amico, M. Sapienza, and G. Torrisi.
2016. Stack4Things as a fog computing platform for Smart City applications. In 2016 IEEE Conference

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

http://dl.acm.org/citation.cfm?id=1855711.1855730
https://doi.org/10.1109/MNET.2016.7474340
https://doi.org/10.1109/MNET.2016.7474340
https://doi.org/10.1109/ICMAS.2000.858474
https://doi.org/10.23919/WIOPT.2017.7959912
https://doi.org/10.1109/JIOT.2017.2666783
https://doi.org/10.1109/CLOUD.2012.83
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1109/MCC.2017.27
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1007/978-3-319-05029-4_7
https://doi.org/10.1145/2342509.2342513

1:18 HE LI, KAORU OTA, and MIANXIONG DONG

on Computer Communications Workshops (INFOCOM WKSHPS). 848–853. https://doi.org/10.1109/
INFCOMW.2016.7562195

[12] Shin-Ming Cheng, Phone Lin, Di-Wei Huang, and Shun-Ren Yang. 2006. A Study on Distribut-

ed/Centralized Scheduling for Wireless Mesh Network. In Proceedings of the 2006 International Con-
ference on Wireless Communications and Mobile Computing (IWCMC ’06). ACM, New York, NY,
USA, 599–604. https://doi.org/10.1145/1143549.1143668

[13] Yohan Chon, Nicholas D. Lane, Fan Li, Hojung Cha, and Feng Zhao. 2012. Automatically Char-
acterizing Places with Opportunistic Crowdsensing Using Smartphones. In Proceedings of the 2012
ACM Conference on Ubiquitous Computing (UbiComp ’12). ACM, New York, NY, USA, 481–490.

https://doi.org/10.1145/2370216.2370288
[14] Salvatore Distefano, Francesco Longo, and Marco Scarpa. 2015. QoS Assessment of Mobile Crowd-

sensing Services. Journal of Grid Computing 13, 4 (01 Dec 2015), 629–650. https://doi.org/10.1007/
s10723-015-9338-7

[15] Nathan Eagle and Alex (Sandy) Pentland. 2005. CRAWDAD dataset mit/reality (v. 2005-07-01).

Downloaded from https://crawdad.org/mit/reality/20050701. (July 2005). https://doi.org/10.15783/
C71S31

[16] Eyal Even-Dar and Yishay Mansour. 2001. Learning Rates for Q-Learning. In Computational Learning

Theory, David Helmbold and Bob Williamson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
589–604.

[17] R. K. Ganti, F. Ye, and H. Lei. 2011. Mobile crowdsensing: current state and future challenges. IEEE

Communications Magazine 49, 11 (November 2011), 32–39. https://doi.org/10.1109/MCOM.2011.
6069707

[18] Robert Glaubius, Terry Tidwell, Christopher Gill, and William D. Smart. 2010. Real-time Scheduling

via Reinforcement Learning. In Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial
Intelligence (UAI’10). AUAI Press, Arlington, Virginia, United States, 201–209. http://dl.acm.org/

citation.cfm?id=3023549.3023573

[19] D. Hoang and T. D. Dang. 2017. FBRC: Optimization of task Scheduling in Fog-Based Region and
Cloud. In 2017 IEEE Trustcom/BigDataSE/ICESS. 1109–1114. https://doi.org/10.1109/Trustcom/

BigDataSE/ICESS.2017.360

[20] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and Boris Koldehofe.
2013. Mobile Fog: A Programming Model for Large-scale Applications on the Internet of Things. In

Proceedings of the Second ACM SIGCOMM Workshop on Mobile Cloud Computing (MCC ’13). ACM,

New York, NY, USA, 15–20. https://doi.org/10.1145/2491266.2491270
[21] H. Hu, Y. Wen, T. S. Chua, J. Huang, W. Zhu, and X. Li. 2016. Joint Content Replication and

Request Routing for Social Video Distribution Over Cloud CDN: A Community Clustering Method.
IEEE Transactions on Circuits and Systems for Video Technology 26, 7 (July 2016), 1320–1333.
https://doi.org/10.1109/TCSVT.2015.2455712

[22] H. Hu, Y. Wen, and D. Niyato. 2017. Public Cloud Storage-Assisted Mobile Social Video Sharing: A
Supermodular Game Approach. IEEE Journal on Selected Areas in Communications 35, 3 (March
2017), 545–556. https://doi.org/10.1109/JSAC.2017.2659478

[23] H. Hu, Y. Wen, and D. Niyato. 2017. Spectrum Allocation and Bitrate Adjustment for Mobile Social
Video Sharing: Potential Game With Online QoS Learning Approach. IEEE Journal on Selected Areas
in Communications 35, 4 (April 2017), 935–948. https://doi.org/10.1109/JSAC.2017.2676598

[24] S. Kosta, A. Aucinas, Pan Hui, R. Mortier, and Xinwen Zhang. 2012. ThinkAir: Dynamic resource
allocation and parallel execution in the cloud for mobile code offloading. In 2012 Proceedings IEEE

INFOCOM. 945–953. https://doi.org/10.1109/INFCOM.2012.6195845

[25] H. Li, K. Ota, M. Dong, and M. Guo. 2017. Mobile Crowdsensing in Software Defined Opportunistic
Networks. IEEE Communications Magazine 55, 6 (2017), 140–145. https://doi.org/10.1109/MCOM.
2017.1600719

[26] H. Li, K. Ota, M. Dong, A. Vasilakos, and K. Nagano. 2017. Multimedia Processing Pricing Strategy

in GPU-accelerated Cloud Computing. IEEE Transactions on Cloud Computing PP, 99 (2017), 1–1.

https://doi.org/10.1109/TCC.2017.2672554
[27] L. Li, K. Ota, M. Dong, and W. Borjigin. 2017. Eyes in the Dark: Distributed Scene Understanding

for Disaster Management. IEEE Transactions on Parallel and Distributed Systems 28, 12 (Dec 2017),

3458–3471. https://doi.org/10.1109/TPDS.2017.2740294
[28] T. Li, Y. Liu, L. Gao, and A. Liu. 2017. A Cooperative-Based Model for Smart-Sensing Tasks in Fog

Computing. IEEE Access 5 (2017), 21296–21311. https://doi.org/10.1109/ACCESS.2017.2756826

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1109/INFCOMW.2016.7562195
https://doi.org/10.1109/INFCOMW.2016.7562195
https://doi.org/10.1145/1143549.1143668
https://doi.org/10.1145/2370216.2370288
https://doi.org/10.1007/s10723-015-9338-7
https://doi.org/10.1007/s10723-015-9338-7
https://crawdad.org/mit/reality/20050701
https://doi.org/10.15783/C71S31
https://doi.org/10.15783/C71S31
https://doi.org/10.1109/MCOM.2011.6069707
https://doi.org/10.1109/MCOM.2011.6069707
http://dl.acm.org/citation.cfm?id=3023549.3023573
http://dl.acm.org/citation.cfm?id=3023549.3023573
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.360
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.360
https://doi.org/10.1145/2491266.2491270
https://doi.org/10.1109/TCSVT.2015.2455712
https://doi.org/10.1109/JSAC.2017.2659478
https://doi.org/10.1109/JSAC.2017.2676598
https://doi.org/10.1109/INFCOM.2012.6195845
https://doi.org/10.1109/MCOM.2017.1600719
https://doi.org/10.1109/MCOM.2017.1600719
https://doi.org/10.1109/TCC.2017.2672554
https://doi.org/10.1109/TPDS.2017.2740294
https://doi.org/10.1109/ACCESS.2017.2756826

Deep Reinforcement Scheduling for Mobile Crowdsensing in Fog Computing 1:19

[29] Yuanyuan Li, Zhiyang Li, Mianxiong Dong, Wenyu Qu, Changqing Ji, and Junfeng Wu. 2015. Efficient
subspace skyline query based on user preference using MapReduce. Ad Hoc Networks 35, Supplement
C (2015), 105 – 115. https://doi.org/10.1016/j.adhoc.2015.07.006 Special Issue on Big Data Inspired

Data Sensing, Processing and Networking Technologies.

[30] Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. 2016. Resource Management
with Deep Reinforcement Learning. In Proceedings of the 15th ACM Workshop on Hot Topics in

Networks (HotNets ’16). ACM, New York, NY, USA, 50–56. https://doi.org/10.1145/3005745.3005750
[31] Giovanni Merlino, Stamatis Arkoulis, Salvatore Distefano, Chrysa Papagianni, Antonio Puliafito,

and Symeon Papavassiliou. 2016. Mobile crowdsensing as a service: A platform for applications on

top of sensing Clouds. Future Generation Computer Systems 56, Supplement C (2016), 623 – 639.
https://doi.org/10.1016/j.future.2015.09.017

[32] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin A. Riedmiller. 2013. Playing Atari with Deep Reinforcement Learning. CoRR abs/1312.5602
(2013). arXiv:1312.5602 http://arxiv.org/abs/1312.5602

[33] M. Mohammadi, A. Al-Fuqaha, M. Guizani, and J. S. Oh. 2018. Semisupervised Deep Reinforcement
Learning in Support of IoT and Smart City Services. IEEE Internet of Things Journal 5, 2 (April
2018), 624–635. https://doi.org/10.1109/JIOT.2017.2712560

[34] Xuan-Qui Pham and Eui-Nam Huh. 2016. Towards task scheduling in a cloud-fog computing system.
In 2016 18th Asia-Pacific Network Operations and Management Symposium (APNOMS). 1–4. https:
//doi.org/10.1109/APNOMS.2016.7737240

[35] Mahadev Satyanarayanan. 2010. Mobile Computing: The Next Decade. In Proceedings of the 1st ACM
Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond (MCS ’10). ACM,
New York, NY, USA, Article 5, 6 pages. https://doi.org/10.1145/1810931.1810936

[36] M. Satyanarayanan, P. Simoens, Y. Xiao, P. Pillai, Z. Chen, K. Ha, W. Hu, and B. Amos. 2015.
Edge Analytics in the Internet of Things. IEEE Pervasive Computing 14, 2 (Apr 2015), 24–31.

https://doi.org/10.1109/MPRV.2015.32

[37] S. K. Sharma and X. Wang. 2017. Live Data Analytics With Collaborative Edge and Cloud Processing
in Wireless IoT Networks. IEEE Access 5 (2017), 4621–4635. https://doi.org/10.1109/ACCESS.2017.

2682640

[38] W. Sherchan, P. P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke, and A. Sinha. 2012. Using
On-the-Move Mining for Mobile Crowdsensing. In 2012 IEEE 13th International Conference on Mobile

Data Management. 115–124. https://doi.org/10.1109/MDM.2012.58

[39] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,

Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. 2017. Mastering the game
of Go without human knowledge. Nature 550 (Oct. 2017), 354. http://dx.doi.org/10.1038/nature24270

[40] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale

Image Recognition. CoRR abs/1409.1556 (2014). arXiv:1409.1556 http://arxiv.org/abs/1409.1556
[41] Karolj Skala, Davor Davidovic, Enis Afgan, Ivan Sovic, and Zorislav Sojat. 2015. Scalable Distributed

Computing Hierarchy: Cloud, Fog and Dew Computing. Open Journal of Cloud Computing (OJCC) 2,

1 (2015), 16–24.
[42] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang. 2018. Machine Learning for Networking: Workflow,

Advances and Opportunities. IEEE Network 32, 2 (March 2018), 92–99. https://doi.org/10.1109/

MNET.2017.1700200
[43] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning 8, 3 (01 May

1992), 279–292. https://doi.org/10.1007/BF00992698

[44] L. Xiao, Y. Li, G. Han, H. Dai, and H. V. Poor. 2018. A Secure Mobile Crowdsensing Game With Deep
Reinforcement Learning. IEEE Transactions on Information Forensics and Security 13, 1 (Jan 2018),
35–47. https://doi.org/10.1109/TIFS.2017.2737968

[45] L. Xiao, X. Wan, C. Dai, X. Du, X. Chen, and M. Guizani. 2018. Security in Mobile Edge Caching

with Reinforcement Learning. ArXiv e-prints (Jan. 2018). arXiv:cs.CR/1801.05915

[46] Yu Xiao, Pieter Simoens, Padmanabhan Pillai, Kiryong Ha, and Mahadev Satyanarayanan. 2013.
Lowering the Barriers to Large-scale Mobile Crowdsensing. In Proceedings of the 14th Workshop on
Mobile Computing Systems and Applications (HotMobile ’13). ACM, New York, NY, USA, Article 9,

6 pages. https://doi.org/10.1145/2444776.2444789
[47] Shanhe Yi, Cheng Li, and Qun Li. 2015. A Survey of Fog Computing: Concepts, Applications and

Issues. In Proceedings of the 2015 Workshop on Mobile Big Data (Mobidata ’15). ACM, New York,

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1016/j.adhoc.2015.07.006
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1016/j.future.2015.09.017
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1109/JIOT.2017.2712560
https://doi.org/10.1109/APNOMS.2016.7737240
https://doi.org/10.1109/APNOMS.2016.7737240
https://doi.org/10.1145/1810931.1810936
https://doi.org/10.1109/MPRV.2015.32
https://doi.org/10.1109/ACCESS.2017.2682640
https://doi.org/10.1109/ACCESS.2017.2682640
https://doi.org/10.1109/MDM.2012.58
http://dx.doi.org/10.1038/nature24270
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1109/MNET.2017.1700200
https://doi.org/10.1007/BF00992698
https://doi.org/10.1109/TIFS.2017.2737968
http://arxiv.org/abs/cs.CR/1801.05915
https://doi.org/10.1145/2444776.2444789

1:20 HE LI, KAORU OTA, and MIANXIONG DONG

NY, USA, 37–42. https://doi.org/10.1145/2757384.2757397

[48] Wei Zhang and Thomas G. Dietterich. 1995. A Reinforcement Learning Approach to Job-shop
Scheduling. In Proceedings of the 14th International Joint Conference on Artificial Intelligence -

Volume 2 (IJCAI’95). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1114–1120. http:
//dl.acm.org/citation.cfm?id=1643031.1643044

[49] D. Zhao, X. Y. Li, and H. Ma. 2014. How to crowdsource tasks truthfully without sacrificing utility:

Online incentive mechanisms with budget constraint. In IEEE INFOCOM 2014 - IEEE Conference on
Computer Communications. 1213–1221. https://doi.org/10.1109/INFOCOM.2014.6848053

[50] Z. Zheng, L. X. Cai, M. Dong, X. Shen, and H. V. Poor. 2011. Constrained Energy-Aware AP Placement

with Rate Adaptation in WLAN Mesh Networks. In 2011 IEEE Global Telecommunications Conference
- GLOBECOM 2011. 1–5. https://doi.org/10.1109/GLOCOM.2011.6134158

ACM Transactions on Internet Technology, Vol. 1, No. 1, Article 1. Publication date: January 2018.

https://doi.org/10.1145/2757384.2757397
http://dl.acm.org/citation.cfm?id=1643031.1643044
http://dl.acm.org/citation.cfm?id=1643031.1643044
https://doi.org/10.1109/INFOCOM.2014.6848053
https://doi.org/10.1109/GLOCOM.2011.6134158

	Abstract
	1 Introduction
	2 Related Work
	2.1 Scheduling Tasks in Fog Computing
	2.2 Reinforcement Learning based Scheduling

	3 Scheduling Problem
	3.1 Hierarchical Structure
	3.2 Problem Statement

	4 Deep Reinforcement Scheduling
	5 Performance Evaluation
	5.1 Experiment Settings
	5.2 Numerical Results

	6 Conclusion and Feature Work
	Acknowledgments
	References

